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In .this thesis a presentation has been~ made_ to _illustrate the

solutlon for the half monthly operating policy of a multlreservmr»

tree-connected hydro-power system with what is believed to be one
of the largest hydro electric nonlinear . optimization problems
attempted considering the number of variables and constraints.

~

Yo

The problem  is formulated as ,a minimum, norm’ problem and

solved using functional - analysis and minimum norm formulation
techniques. The time period used is half a month therefore, short

range hydraulic and electro- techmque effects are  not taken into

consideration: o : ; o ’ ‘ i

" The tree systen‘] is a general case of the reservoir topology
which adequately  specifies any system with . any 'éhrbitrary
-topblogical arrangement. It is an Jimprovement. over the methods
.which deal with independent erCI'S ( parallel . connectlons ) that have
several reserv01rs iIn  series.

The problem is solved considering the. generation from each

reservoir, as a linear function first and then -a quadratlc function of
the storage times the .discharge thrbugh the turbine. Also, ‘tailwater
elevation is first considered constant and then improved to be a
nonlinear functien of the total release. Moreover, the storage is
initially considered to be a linear function of the forebay elevation,

them, improved to the actual case, where it is a. nonlinear functlon of

_the forebay elevation and then tackled using a cubic spline curve

fitting technique. “Furthermore, all  types of equallty and 1nequa11ty"
), constraints are . considered. First, only linear type constraints are
types of constramts‘

considered. Then both linear ~and" nonlinear
which meet all the- requirements are used.

In thlS thesis &e first maxlmxzed the total generauon Th n
we max1mlzed the total generation shaped- umformly to the load

while meetmg hard constraints and balancing the violations of soft -

constraints if  there are any violations. . : S

.




~The attractive feature of _this', techmquc ~is. jts - ability to - -

automatically produce the optimal solunon‘ while satisfying the
system constraints. The .t'échnique combines - both methodology and

experience and overcomes the” influence of - thc Startmg point . Wthh,

" N N

is a common problem for other techmques

o
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CHAPTER I

INTRODUCTION

-~
RS

_ Optimal operation‘ of a hydro-electric po@er system means the
' z ' ;
allocation of the available hydraulic, pumped storage, - thermal,
;- .

nuclear, and other resources 2f the “hydro-electric power system to the
various time intenvéls of the period under consideration in such a way
that the total system production cost is a minimum within limitg_
permitted by the constraints. The constraints refiect physical limits,
bank'ierosion considerations, coordination agreements among various
ownerships, and multiburpoée requireménts - such’  ag .irrigétion,
navigation, fishiﬁg, flood coﬁ;rol, water quality recreational.uses,

and other purposes if any. Hydro—~plants are considered as limited

energy plants since their energy prbduétions are subject to reservoir

constraints and seasonal variations in rainfall. However, it ig

worthwhile. to fully utilize all available hydro-energy in place ~ of
i kN

fossil' enefgy because of its low production cost. -

.

No two hydroelectric systems -in the world are alike. The reasons
~for the differences are the natural differences in the watersheds, the

differences in the man-made storage and release elements used to
q

gcoutrol the water flbws, and the‘very‘many different types of natural
and - man-made constraints imposed on the operation of hydroelectricv

systems. River systems may be simple, with relatively few tributar%gs

with dams in series along the river, or they may extend over vast
o

. . . \\ ~ .

multi-national areas, and include;Jmany tributaries and complex.
( ‘ 7 .

arrangements of storage reservoifrs. such as the Bonneville . Power

x )
t
S ] A
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Administration (B.P.A.) system. However, the one single aspect of

_hydroelectric -plants that differentiates theﬁgoordination of ‘their -

operation = more .than any- other is the many and .highly varied,j

* conatraints. : : STV TR v

Long term multireservoirtschedulingfiéféfJComplex _problém. The
o S e T I L S
problem is a.dbnstrained -'nonlinear problem fni;hich- the objective

function is nonlinear and the constraints are a mixture of linear -and

nonlinear 'relationships.} This .can-be a difficult problem even"for

S . A

moderate dimensions,\ Jonsidering the: number of‘ variables and the.
practical limitations of computer storage eﬁd time,'wltvis an extremely

formidable one. L . . 2 b

"The problem is dynamic so that present' decisions ~(reservoirf;}7f

. .
releases) for one reservolr have an;impact ‘on future decisions‘for all

&
reservoirs.. Also, the optimal opereting strategy for one reservoir

depends \not only on’ 1its own energy content, but alsp on the

corresponding content of each one of the remaining reservoirs,,;

-

The problem 1s a highly stochastic problem in which '-major'
_uncertainties are assoclated with the reservolr inflows, load, and
unit.availability. ' , , .

Moreover, spatial and time correlation among hydro inflows is
often high and must be modelled.

An  additional  complication arises from- the nature of the

~
-~

inequality constraints.: 'Spme of these derive from'properties of the

»

physical systems and cannot be violated under any circumstances (hard
constraints), whereas others are "expressions of desired operating

ranges which can be violated to some extent (soft constraints).



1.1 Preface

A hydroelectric generation_system consists of fivers, tributar: -
reservoirs such as lakes or ponds), power houses and additional hydro
facilities for power generation such as feeders and gates. Pipes,
canals and rivers interconnect reservoirs and nvower houses. The
natural inflows into the system are stored in the res: -volrs.

éonventional hydro power units are classified as either
controllable or.run-of—river plants. Because.of insufficient pondage,
‘the run-of-river .power house must take ‘the mater as .- it becomes
available. On the othervhand; a controllable hydro plant can exercise
control on hoth the 1level of output and times of .generation by
manipulating the pondage, storing Water at night and _weekends and
-generating at maximum output at peak demand times. -

A hydro unit' usually has two associated levels: the forebay
located 1in the upstream and the afterbay'located in the do;nstream.
The water flowing out from the power house is called the tailwater, and

he

it 1s released to the afterbay through the tailrace, Fig. 1. The
difference in the water surface-elevation of t' > forebay and of the
.taillwater elevation 1is called the head of the power house, Fig. 2. If
the tailrace is submerged in the afterhay, as 1s the case at a power
house with aﬂreaction turbine, the ele&ation of the tailwater is the
sur” elevation of the afterbay. = On the other hand, if the tailr:ce
18 located upstream of the afterhay, as in some cases of power houses
with an impulse turbine, the tailwater elevation remains constant.

At some power houses, changes in the surface elevations of the

forebay and the afterbay may lead to significant head level variations,

-
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In s8uch cases, the head i1s a function of the storage levels of the
forebay and afterbay. Only 1in the cases where the forebay 1is
located above the power house at such a high altitude that the surface
level changes are = .11 compared to the head, the changes- in the
forebay storage level may .be neglected. . At a run—bf—river power plant,

~—

the forebay storage level 1is, in general, consi@ered.constant.

A partic;lar hydrq élan; usually has n generating units. The
generation of a unit, as'a function of 1its flow,'is.zero up to a point
q;5 then it increases up to the_maximum generation q5- Any flow more
than 93 1s spillage which entails a deé}easeyiﬁ generation due to an
incgease in tailwater elevation as in Fig. 3. ~ For the- plant the
operating rule as the flow lncreases is to start a unit when the
generation rate of the previously started unit becomes "too small”,
l.e., a 1little befofe the unit flow reaches 93+ In this study, each
station will be reduced to a éingle equivalent input/output curve to
reduce the number of variables in the optimizatibn processe

The MW capacity of a hydro unit depends on the head and the flow

' N
through the power house. Typical‘curves showing the hydro generation
capacity as a function of the water flow through the power house for
different values of head for a reaction type Qnit are shown in Fig. 4.
The wmaximum flow through a power house is also a function of the head;
therefore, the maximum MW output of a unit is a function of the head
~ only. ' This is indicated in.Fig. 4 by the broken curve labeled maximum

I3
flow. -

1.2 The Problem General Description

The primary objective 1in the operation of a hydroelectric

¢
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generation system is to use the water in the‘most efficient way, while
satisfying all the constraints imposed by 1legal and contractual
obligations, physical characteristics and operating . policies. The
optimal water release schedules are determined at each reservoir so as
to-meet this goal. Due to the la;ge-scale network structure of hydro
systems of practical interest, determination of such scheddles entails
the solution of rather complex problems. 7

In this problem the initial amount of storage in each reservoir
and thelnatural inflows into each stream during each period are assumed
to be known. The forecasts of natural inflows are nbtained using
historical rainfall, river measurements and snow survey data. The
demand for water,. typically for irrigational purposes, is‘also assumed
to be ¥own at each location in each period. Evdﬁi;ation and -
percolation : losses -are accounted ‘fot by deducting them from the
forecastsd sideinflows .. The time period used-in the modeling is half
a month; therefore,'short range hydraulic and electrotechnique effects
are not considered. Also, due to the nature of the planning objective,
deterministic critical period hydrological boundary type data are used.

Tre hydraulic system model is based primerily on fleld mnmeasured
tables and on water balance equations. The latter ‘are. simple
relationships betﬁeen reservoir contents , total release and the
inflow. The field_measured tables basically consist of the following
for each project: ﬂ

1) forebay elevation as a function of the reservoir contents,

11) tailwater elevation as a function of the total reservoir

release,
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111) water—to-energy converslon factor as a nonlinear function of
reservoir contents and turbine d%scharge

iv) wmaximum generation at each plant as a function of —full-gate

flow restriction which itself is a function of the head, Fig.4 .

1

1.3 Previous Work

The- effiaieqt ﬁtilizatién of hydro resources is of paramount
lmportance 1in the planning and operation of a power system where the
hydroelectrig generation. plants constiﬁute a significant portion of the
Ilngtalled capacity and where a substantial reduction in the ‘total
systeﬁ operatiné cost and 1n the risk of energy curtallments can be
achievéd by an appropriate management of the energy stored in various
reservoirs. The hydro system scheduling problem then aiﬁs to determine
‘the water releases from each reservoir and through each?bbwer house so
as to optimize the total benefit of the hydro generated energy, while

i

the various environmental, physical, legal and contractual constraints

are satiéfied.

»

Computing maximum energy capability of the hydro system 1is a
stochastic, discrete-time pfoblem principally concerned with seasonal
management of reservoir storage. The problem is to deQermine, for all
system reservoirs, a storage—management‘ schedule which fesults in
maxinum eﬁergy éapability for the system (total generation averaged
ove; all periods 1in’the whole critical period horizon) with system

constraints satisfied and withqgcceptable uniformity in the surplus of

generation'ovér load during each period.
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Solutions to this'maximization problem have been determined in the

past by skilled engineers using digital computer simulation programs

and “"cut and try" methods wherein resarvolr storage-management
schedules ‘a{Q\\sgssessfully “modified. This approéch has become
cumbersome with present day requirements to deal with such as 88
reservoirs and run-of-river plants and with adverfe stream—flow periods

of a 4 years long (96 periods). ' »(

Many other techniques for obtaining optimal operation have been

applied and yet no completely satisfying solution has been obtained,

. ~
since 1in every publication the problem has been over—sgimplified in

order to éope’alth the dimensionality of the problen. ‘Christensen, El-
Hawary, and Soliman [1,2,70! and Rosenthal “[60] have presented

comprehensive surveys for the problem of multireservoirs, multiperiod

deterministic or stochastic inflow, and the nonseparable benefit.
| A -
The two prominent ‘approaches that have been used in solving the

N .
problem are nonlinear programming and dynamic programming.

Nonlinear programming techniques are developed for models with
nonseparag;e benefits. Gagnon et.al. [9,50,61] and Hicks et.al. [7]
worked with the Bonneville Power Authority, Hanscon et.al. [63] worked
with Hydro—Quebec, Divi et.al. [64] worked with ALCAN (Aluminum of
Canada) system and Rosenthal [49] with Tennessee Valley Authority
(Tva). All but one of these applications required the model to handle
a géneral network topology (any arbitrary topological configuration)
for the reservoir systems The exception to this requiremedt was ALCAN,
yhose reservoirs exhibit only ser;eé“agrangemenxs.

7

The selected measure in TVA and Hydro—Quebec studies [49,63] was

.
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the savings of thermal 'fuels that results from hydroelectric
generation. In the ALCAN study [64], the measure of benefit was the
potential energy in the system at the end of the planning period. 1In
the Bonneville study [7,9,50,61]; the measure was a weighted sum of (1)
the proportion of power loéd met with hydro, (ii) the uniformity of
load deficits, and (1ii) the violation in certain "soft” constraints.

The energy production as a function of vblume of outflow 1is taken

"

as a constant independent of the head {7,9,50,61] or as plece-wise

polynomialsy with two pieces; one plece represents enérgy p;oduction

from outflows ‘phat are directed entirely to the ‘turbineé, the pther

piece 1s needed to account for spills i.e., the situatiéns in which
e v

outflows exceed turbine capacities. The ALCAN resear£h team [64] used

a cubic spline to smooth dut the breaks betweenﬁfhe two pleces.

Hicks et.al. [7] transform the general nonlinear progrém
formulation of the hydro sysfem scheduling problem (HSSP) into an
optimization probfem with a nonlinear objective and only linear
constraints. All the nonlinear cqnst;aints are expressed as penalty
terms and are added to the original objeétive.fun;t}on. This approach
1s considered as the first successful attempt to solve a larée HSSP

with a nonlinéar 'optimization technique [681]. Howevea, ) the
computational times reported are rather leﬁgthy. ‘ -

Hanscom et.al. [63] have employed alsimpler model for a large
scale nonlinear programming problem without any nénlinea; constraints.

-

They solved the large-scale scheduling problem'in less tire compaied to
P :

\\\;hat taren by Hicks et.al. [7].

Tkura and Gross [68] present a hydro scheduling problem

~—
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"formulation and- a method of soluytion to this problem as a nonlinear

-

programming problem. The maximum turbine discharge constraint 1is

approximated by a plece-wise linear function. A nonlinear constraint
P .

for forced spill is @reated as a penélty factor. ‘Tbe resulting problem
has a nonlinear objective function with linear constraints and 1s
solved using standard mathematical programming packages. A  network
flow algorithm is/'used ﬁo provide a good starting poiﬂt for the
stagdard -programming packages; They ‘[68] also have distinguished

between forced and controllable spills which results in my opinion in
’ ) \
an unnecessarily complex model,

Alsol Tkura and Gross [68] found that using a good starting polnt

t

with a suitable linear network flow algorithm saves about 50% of the
P ‘ .
solution time.

The ~nonlinear programming ., algorithms [7,9,26,28,
47;49,50,54,61,@3,68] that have been applied to the ,m;ltireservbir
model’ are fairly éfficient in comparison with the dynamic programming
approaches. Nevertheless, it doe;'not appear likely that”the nonlinear
pgogramming methods are adoptable.fo; handling stochéétic inflows,
because the computational effort alpeady expended 1n solving the
deterministic problems is quite large using the nonlinear programming
technique.

Dynamic pr'ogréﬁnn.ling approaches [14,15716,17,18,21,51,52,62] to
mdltireservo}r models have as much difficulty as the nonlinear
programmiﬁg in accommodating stochastic inflows solutioﬁ. Linear anq

°

nonlinear ! dynamic programming solution methods .were used with
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relatively small syatems,‘qr after dividing the given system into small
parts or after applying different methods of: )
i) decomposi%ion [15,16,25,301,
ii) aggfegation [17,18,29],
111) aggregation/decomposition [18], and
iv) successive approximations [52].

‘Murray and Yokowitz [62] convert the HSSP wighga high dimensional
state space into a sequence of problems with lower dimensional state
spaces. Their technique helped in running the hydro scheduli;g problem
with a memory and computational requiremenththat’grows onlf as-n2 and
n3, respectively, instead of growing exponentially with n as in almbst
all the cases of dynamic programming. n 1s the number of }eservoirs in
the optimized p-ojec |

Turgeonb [18] presents and compares two possible manipuiation
metﬁods for solving the optimal operation of multireservolr power
systems with stochastic inflows. The first, called the one-at-—a-time

s

method, consists in breaking up the original multivariable problem into

a séiies of one—state variable subproblems that are éélved by dynamic
programming. The final result is an oét;mal local feedback operating~t%
policy for each reservoir. The second methbd, called the
aggregation/decomposition method, consists 1n breaking up the original
n-state variable stochastic optimization problem into =n  stochastic
optimization subproblems of two—state variables that are also solved by
dynamic programming. The final result 1is a suboptimél global feedback -
operating bolicy for the system of n reservoirs.

Other methods, Grygler and Stedinger [21)] and Dillor et.&l. {561,

have simplified the problem by converting the highly nonlinear problem
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' L
into a 1linear one and sblving it using a kind.of linear 'prbgramming
technique. Marino and Loaiciga [26], have wused the- quadratic

: - ]
programming technféLe to solvg the problem of management of the Central
Yalley.Project. ' o a

Christensen and Soliman [23,24,31,32,33,34,35,38,39,41], used

"functional analysis and the minimum norﬁ'fo;mulatiod"to solve the hydro

system schedu}ing proBlem for relatively gmall systems (slx reservoirs
maximum). They considered constant tailwater elevation and.only linear
types of equality and inequality constraints. Also, they considered a
- |

linear relationship 5etween reservoir content and forebay elevation.
The water conversion factor is considered _constant, linear function of
the gtorage, linear functioh of forebay elevation, or quadratic
function of the storage. R
1.4 Scope of the Thesisg

In this theéis, fuﬁctionai analysis and ‘the miﬁimum_ norm
form;iation téchnique have been used to maximize the total énergy

capability for the long-term problem of hydro pgwer systems. The

~ algorithm uses the general tree connection of reservoir and run-

of-river‘ plants which can fit any arbitrary topological configuration.
Célculations have been made for the crbéical period (9?) which
represents_; historical streaﬁ record during which the natural inflows
to the hydro system are the smallest on record. ThQ optimization
problem 1is described and formulated as the optimal control of a
multivéfiable model in which-the state and control variables are
const%ain(ai by a set of equality and_inequality éonstraiﬁts to satisfy

the multipurpose stream use requ&fements. Lagrange and Kuhn-Tucker
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Lmultipliers; are used to adjoin these constraints to the objective

e

function.

Chapter II presents a mathematical background. Chapter "III 1s
devoted to brief descriptions of the two éystem models uséd/ to épply
the a}gopﬂthm, the nine reservoir system and the B.P.A. hydro‘sysgem;
It sumé;rizés some of the pitfalls that any optimizggion technique
will encounter. - In Chapter IV, the optimization }algorithms are
described and applied ta the two models. In this ;hapt;r the water
conversion factor (WCF) is considered as a linear function -of the

_storage,- the storage is considered as a linear function of the. forebay
elevation, the taillwater Elevation 18 considered constant, and the
maximum draft aconstrair_lts ‘are neglected. | In Chapter 'V, the v
optimization technique is,des’dyibéd and applied to the 'B.P.A. hydr:‘
system, In this chapter, the _generatidn from each reservoir 1is
considered as a quadratic funpt;on of the storage times the discharge
through ;he turbine. The storage is considered asg a nonliﬁear function
of the forebay elevation and solved using thé cdbic spliqél curve '
fitting. "Tailwater elevation is considered as a nonlineaf:function of
the total releasé and calgulated using the cubic spline curve fitting,
and ghe maximum’ draft constraints are considered which re;ult in a
nonlinea; étate dependent type of inequality constraint. In Chaptér VI
the load-following scheduling problem 1is presentgd»consideriﬁg all the

factors taken into account in the previous chapter and then applied to

the B.P.A. system, Impressive -results were obtained which show the

strength of our technique.



-control the system.

CHAPTZR 11

AN APPROACH TO FUNCTIONAL ANALYSIS AND OPTIMIZATION TECHNIQUES

r

ﬁuring the past‘twenty’y%ars mathematics and engineering have Been
incfeasin;ly directed towards problems of decision making in
optimizational systems. This trend has been inspired primarily_by the
significant economic Dbenefits wnioh often result from‘ a proper

decisionxcéncerning_the‘distributfon of expensive resources, and by the

repeated demonstration that such proBlems can be realistically

~,formulated,and mathematically analyied to obtaln good decisions.

The arrival of high-speed digital oomputefs has also. played a-
major role in theqdevelopment of the science of decision making.
Computers have 1inspired the -development of larger ,systems' and  the

COuplingvoﬁ previously separate systems, “thereby resulting in decision

and control problems of correspondingly increased complexity. At the

_same time, however, _computers have revolutionized applied mathematics

and solved many of the compléx-problemslthey generated.
. .
Any'problem investigated in an optimization analysis will have “as

its -objective’the improvement of the system or systems. It should be

fairly obvious that, 1in order to improve any system, it is essential

. that at least one solution be obtainable for thét 'system. In  other

words, by defining the inputs to a system, we can find the resulfing
c, : .

output, if this is possible, 1f not then we cannot design or operate or '

Usually, no single answer 1s normally found to any problem, and "{'t”

. &




is therefore necesséry to choose the "be-=t" solutlion for ‘a given
problem from the multitude of possible soiutioqs. , How canv}this be
achieved? ‘Firét, it is necessary to definé the objective of the study.
Tﬁis méy vary frém one problem to another, but in ourlapplicationg it
is ecopomic.._ Such économic aims may - be é maximum power géner;tion_or
'minimum deficit. By the optimalvwe ﬁean that such an objective has
been ma#imizedvto the stage that no further improvement can be attained
ffom any other study.

Mathematical optimization consiSts in determiniﬁg values of
variables to maximizebo; minimizé an objective fﬁnction. In many
optimization problems the ,variablesn are also vrequired to sat%sfy
constraining equations‘or inequalities.’ Optimization problems often

‘arise from the need to determine parémeters of.a model SOQTthat the
model best fits measured data according vto some critefion. Many
o?timiiation problems also arise from the desire to determine‘ a
system's {ﬁperating policy which 1is in some ‘sense best. | In this

setfing, the equations which constitute the model of the system act as.

limitations sometimes

3

optimization problems, often in the form of inequalities. The

cbqstraints- on the op{ii%zation. Also, many of the physical

introduce additionai constraints into

objective functions and the constraints functions may be arbitrary

-

nonlinear functions.

This chapter consists .of a collection of mafheﬁatical fopics which-

serves as a basis for the next chapters.
2.1 The Fundamental Concepts and Methods of Functional Analysis

The fundamental concepts and method of functional analysis have

&
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gradhally.vemanated from some of the oldest domains cf analysis 1ike
“cakculus of v#riations, theory of differential equati. 18, theory of
approximation of funrtions, numerical analysis and in particular theory
of integral equations [71].  This development of fun&tional analysis
has made rapid progress during the{last decades. .
Our objective 1in this section is to stéte an lwmportant minimum
norm - result vwhich plays a crucial part in the solution of problems
treated "in this work. Before we do this, a bsief discussidn of
relevant concepts from functional analysis is given.
2.1.1 Linéar Spaces [71]
A set X 1is called a lineaf spaée. 1f addition and scalar
multiplication are;defined on X and the following rules~hold:
‘(l)
éddition»is commutative, i;e.,
x+ty=y+x fof an} X andi& in X,
:(2) addition 1s associative, i.e.,
(x+y)+z=x+(y+z) for aﬁy Xx,y,z in X,
(3) there exisﬁs“ an element 0cX (the zero element) such that x+0=x
for any xeX,
(4).. for ‘any xeX there exists an element yeX (the inverse of x) such
that x+y=0, .
- - -
(5) 1z=x for aﬁy'xsx,
(6) a(Bx)=(ap)x for any xeX and any scalar o and g,
(7)  (a+8)x=ax+gx for any Q;X and any scalér o« and g,
" (8) &(x+y)-ax+ay £ r,ény x,yeX and any scalar a,:

. F)
A linear space 1s called réal or complex ‘according to whether the

'
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scalars‘ are the real or complex number éystem. The elements of a
linear space are called vectors.
2.1.2 Normed Linear Spaces:

A linear space 18 called a normed liﬁear‘spaée ifl a rule

exists which assoclates with every element, xcX, a real number called

the norm of an element x and demoted by ||x]|. This rule must obey the
"followiﬁg condition’s (norm axioms): : ' ‘ .

(D [[x]120 and {]x|[0 only 1£ x=0, \
@) lxry [ x|+ ]Iy ]] ‘ /
(3) |lax||=|a]-||x||, o is any scalar valu%; : _

The non-negative real number llxll_can be thought of as the length

P

of the element x.
Since the same standard of comparison should be used to measure

distances as well as lengths in a normed linear space, we can define

the metric of the space by
o (x,y)= | lx-y ||

2.1.3 Inner Products

The léngth[l xll of the vectof x 1s defiﬁed‘by
\ .

\

’HxHé /% X and-

x.y =y [[ ([l x || cos®)

)

e

-

where ||x|| cos¢ 1s the length of the projection of x on y. Following
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are the properties of the dot product:
(1) 1length is non-negative, that 1is
x.x>0 with equality if and only if x=0
(2) the magnitude of ¢ (or cos¢) is independent of the order of
x and y; that is k.y"y.x |
(3) the 1length Jf cx equais ]c| times of length x for any scalar . c;

that 1s, | [ex] [=[e].

x| |
(4) diétribution, i.e.,
(xl+x2).y = Xy ytx,Ty .
Definition: An inner product (or scalar product) on a ‘rdal (or
complex) vector space is a scalar-valued function <x,y> of the ordered
pair of vectors x and y éuch that:
(1) <x,x> Z:O with equality only 1if x=0
(2) <x,y> = <7,%> (the bar denotes complex conjﬁgation)
. \
(3 <clxl+c2x2,y> = cl<x1,y>+ ¢y <x, ,y>

e

when <x,y> 18 real, we can define the angle ¢ between x and y by

<x’y> s

cos¢p =
v
Also, 1f <x,y>=0,x’and y are said to pe orthogonal
If <x,y> =+ ||x||-]ly|],x and y are séi& to be collinear
Inner product sbace 18 called pre-Hilbert space.
2.1.4 Cauchy Sequence
An - infinite sequence [yu] from an. inner pfo&ucf space 1s

called a Cauchy Sequence 1f'1]yn—ym[]+0 as n,m~. Hence a Cauchy-
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Sequence 18 a convergent sequence.
2.1.5 Complete Spaces

A metrix épace X 1is sald to be complete if every Cauchy‘
(con@érgent) sequence from X converges to a limit in X (ad;element of
X).o
- A complete inner product space 18 called Hilbert space.
;—Every finite-dimensional inﬁéf‘product space 1s complete.
— Banach spaces are complete metric linear spaces.
~ A Hilbert spéce is a Banach séaée whose norm ' is induced by an inner

product.- o

2.1.6 Hilbert Space

A Hilbert Space is a spécial form of normed space having an
lnner product defined. Hilbert spaces, equipped with their inner
products, possess a wéalth of structural prdperties generalizing many
of our geu.etrical insights'fo; twb‘and_thfée dimensions. The concepts
of Four series and least-squares minimization all haye natural
settings = Hilbért space. |
2.1.6.1 The Hilbert Space l2

')The space 12 18 the inner product of the vectors
x’(xl,xz,...,nn,...) and y=(yl,y2,...;yn,...)
15 defined by

<g,y> = nzl xn.yn , | ~\\

The usual norm and metric on 1. are

O . 2

e
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o(x,y)ﬁlix‘Yll’('E l;ifyi[

i=1

-

2.1.6.2  The Hilbert Space Lz(a,b)

If x(t) and y(t) are féhctions from the space Lz(a,b),

) -
inner product, :

b .
<z,y>= f x(t)y(t)de
a

The norm and ‘metric on L2(a,b) are given by

< . t

1/2

b
llx'l”((x,y)) =[af !x(t)lzdt]l/z e

P (x,y)=‘lx-yll‘[af ]x(t)—y(t)lzdt]l/2

o

2.1.6.3 The Hilbert Space Lz(a,b;u)

23

the

If (t) 1s any function ,(t)>0 over the interval (a,b),

then a valid inner product would be

b
<gy> = [ W(E)x(e)y(t)de;
‘ a’ o

in this case

AN

b o
e =0 [ we) [xCe) [ Zae) /2
a . Y
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1
\

\

. : b '
p G, 90| [x=y | |=[ [ u(t) [x(e)-y(e)|%ar]*/?

a

~2.1.6.4  The Hilbert Space of Random Variables [37,59]
Let P(g) be the probability that the random variable x °
assumes a value less than or equal to the number ¢. The expected value

and the variance of a discrete random variable x, denoted by u
x

defined by - i

and Var(x), is

Elxlm_= | x(£)P(s)
. L x .
and Var(x)=[]x—E(x)|]2 = E(xz)—Ez(x)

where 2 means the sum over all x values.
X

Given a finite collection of real random variables [xl,xé,...,xn],

we define their joint probability distribution P as

W

P(gl,gz,...,gn)=Prob,(x1£51, XZng?...,XDSgn)

2

l1.e. the probability of the simultaneous occurrence of xi<Ei for all 1. \\

The expected value of any discrete function g of-x,'s 18 defined by

i

. E{g(xl,xz,.;.,xn)]- ) g(gl,gz,...,gn).P(gl,gz,...,En)
(‘ X :

Two random variables X5 xj are said to be uncorrelared 1if .

o

E(xi,x ) = E(xi).E(x )

J 3

To.construct a Hilbert space of random variables let

(yl,yz,...ﬂym] be a finite collection of random variables with E[y12]<>°

<

\
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for each i. A Hilbert space H that consists of all réndom variables is
a space of linear combinations of the yi's. The inner product of two,,

elements x,y in H 1s defined as
<x,y> = E(x#)

and 1f x= Zaiyi, y= ZBiyi then-
E(X,Y)=‘E[( Z Qiyi)-( Z Biyi)]
i i

The space H 1s a finite-dimensional Hilbert space with dimensions equai
to at most m. If in the Hilbert space H each random variable has an.

expected value equal to zero, then two vectors x,z are orthogonal 1f

they are uncorrelated:
<x,2> = E(x).E(z) = 0

The concept of a random variable can be generalized in an
lmportant direction. An n-dimensional vector-valued random variable x
is an ordered collection of n scalar-valued random variables.

Notationally, x 1s written as a column vector
x'col.(xl?xz,...,xn)
x in the above equation is referred to as a random vector.

‘A Hilbert space of random vectors .canm be’ generated from a' given

set of random vectors in a manner analogous to that for random



s

variables. Suppose [yl,yz,.t.,ym] 18 a collection of n-dimensional
fandom veétors. Each element ¥y has n components yij; j=l,2,;..,n each
ofv which 1is a random'Qariable with finite varlance. We define the
Hilbert space H of n-dimensional random vectors as consisting of all

vectors whose components are linear combinations of the components of

the yi's. Thus an arbitrary element y 1n this space can be' expressed

as ,
Y=Kl.yl+K2-)’2+. . .:}(rl\.yj/ ~1\/_"’\~ ’
. '//
whefe the K 's are reaY nxn matrices.

i

If x and z are elements of H, we define thelr inner pfoduct as

. LS n
<x,z> = EC ) oxyzy) .
i=1
which 1s the expected value of the n-dimensional {inner product. A

convenlent notation is -
. T .
<x,z> = E(x'g) ) v

We refer to E(x) as the mean of the random variable X.

-

The varilance of‘x is defined b§

"~

b\.,‘

S

var(x) 4 E | |x-E(x) | |2’_‘E(x2)-E2(x)\“‘“”‘

The covarlance between x and y is defined by
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cov(fty) A E<x-E(x),y~E(y)> = E(x.y)-E(x)E(y) -

~

The random variables x and y arg sald to be uncorrelated if cov(x,y)’O

If x and y are uncorrelated, then
var(x+y) = var(x) + var(y)

2.1.7 ' The Minimum Norm Theorems [72]
The first optimization problem is this. Given a vector x in a
pre—Hilbert space X and a subspace M in X, find the vector méM closest

to

Of course, 1f x itself
lies in M, the solution is trivial. In genmeral, however, three
”important-:questions must be. answered for a complete solution‘ to the
problem. First, is there a vector meM which minimizes r[x—m|l, or is
.there no m that. is at least as good as others? Second, 1is the gg;gtion
‘uniqué, and third, what is the solution or how 18 it eharacterir;d?
Theorem 1 |

Let X bg’ a pre-Hilbert space, m & subppace» of M, and x an
arbitrary -vector in X. If there is a vector mOEM such - that

’lx—molﬁsf]x—mll for all meM,
then m 18 unique. A necessary and sufficient conditioﬁ that moeM bé a
unique minimizing = vector in M is rhac' the error yecror x-qé be
,orthogonal to M. .

We still have not established the existence rf the minimizing
vector. We have shown that if it exists, it is unique and that x-m is
orthogonal to thg éubspace M.} By slightly strengthening the.

{ : A

hypotheses, we can also guarantee the‘existencé of the minimizing



vector.

Theorem 2 &
Let. H be a Hilbert space and M a closed subspéce of H.

Then, corresponding to any ve?tor x€H, - there 1s a unique vector mosM

such that ||x—m0[| Sjlx-ml[-for all meM. Furthermore, a necessary and

sufficient condition that moeM be the uniqué'minimizing vector is that

T r—

x-m be orthogonal to M. n
Now we consi?gr the question of determining a vector in a subspace

M of ‘a normed space which best approximates a given vector x in the

sense of minimum norm;
We have that 1f M 1s a closed subspace in Hilbert space, thege is

always a unique solution to the minimum norm problem and the _solutibn

satisfies’ an orthogomality condition. Furthermore, the projection

theorem (theorem 2) leads to a liqear equation for determining the
unknown optimizing“vector. The following two theorems  contain more
informztion than the projection theoren.
Theorem 3 o y

| Let x be an element in a real normed linear space X, and let d

denote its distance from the subspace M. Then,

d=inf||x-m|| = max(x,x*>

meM IFyi . °
X*eMl

.
where the maximum on the right is achieved for some vx.0 eMl. If the

v

infimum on the left is achieved for some moéM, then X 18 aligned with

-m_ .
X o



Theorem 4

Let x be an,element of a real normed linear vector space i, and
let M be a subspace of X. A vector m_eM é%tisf;eS“llx—mo[]<|lx—m{|

* -
for all meM 1f and only if there 1s a nonzero vector x EML alAgned with
X-m .
0

. Theorem 5

, _ : x X
Let M be a subspace in a real normed space X, Let x €X be a

distance d from Mli Then,

;_;j:\
: X % *
d= minl k -m l] = sup<x,x >
m*e XEm
x| [<1

where‘ tﬁe minimum on-tﬁe!left 1s achileved f%r mo*eM+' If the ghpremum
on the right is achieved for some xogM, then'x*—mo* 1s aligned with X~
Theorem 5 guarantees the existence of a solution to the Kyinimuﬁ
1orm problem if the.pfoblem is appropriatelz‘formulated in the d;;l of
a normed sbéce.' | :
Notations
-‘Ml’is the orthogonal component to M
- inf means infimum or the greatest loyer»bound
;- x*;is the normed dual of x

- A set P 1s said to be closed if P5§

2.2 Lagrange Multipliers
" These vecify the magnitudes of the forces exerted by the

constraints; that 1s, they indigaéé how hard each constraint is

working. The importance of Lagrange multipliers is that they indicate



the sensitivity of the minimum (maximum) value of the objective

function to changes in each of the constraints. -



— , . CHAPTER III -

THE SYSTEM UNDER STUDY

4

‘There are two systems which have been used for applying the
mathematical technique. The first one 1s'a moderate system composed of

'nine(storage projects connected like ,a tree, the general case, Flg. 5.
The'other system is'the B.P.A. system Fig. 6, a huge sys.cm composed of

2

51 run—-of-river (ROR) type projects and 37 storage type projects on the
Columbia river from Mica Dam to thevPacific Ocean. Fig. 7, presents a

v

schematic diagram of the system.

In this chapter a description of the ecriticai period hydro

optimization problem of the B.P.A. .8ystem and of$eome of the obstacles

[

(that any OPtimizer of that enormous system encounters) will be

presented. Theh a short description of each project in the B.P.A.
system and the releyant necessary table“of constralats will be touched
upon lightly. Finally the nine storage hrojects system will “ be
preéented briefly. |

3.1 Critical Period

v

L

The Critical Period (cp) refers to the period durimg which at;site
stre-m flow decreased to its lowest rate in history." The stream flOWS
- during thelcritical period are called Critical period stream flows :
]
The total generation during the CP defines the maximqm firm power
g€§%€§210n from that system. The optimal generation during that period
is that which maximizes thelobjective gpnction and of course does not
violate any of the given hard constraints of the whole Sys?t -m. p*

CP'.regQLations are required by the Pacific Northwest Co *dination

R

31
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Agreement (PNCA’ to determine the Eirm'Enérgy Load Carrying Capability
(FELCC) df the system and’tp defibe en gy content curvesv (ECC) and
critical rule curves' (CRC);for guiding actual reservoir operation.
FELCC is the minimum generation, uniformly shapéd each period (haif a
month) similar to the hydro-power system firm i;ad, that the' hydro--
power s8ystem can produce during the historical streamflow :periods on
record, ' while optimimly drafting the available reservoir storage from
full to empty. The CP 1is the specific period during. the historical
streamflow record that the hydro-bower system produces ﬁhe FELCC. ' Some
of the important CP assumpfions are:
1.‘ All PNCA _ceservoirs must be full at thehbeginning of CP unless
drafting for. minimum flow or fléod control.  .Usually Dworshark and
Mossyrock, - storage rgservoirs, need tﬁis ad justment. All PNCA
regservolrs must empty at the end of CP unless drafting ”empty would
actually cause 1less .system évefage CP generation. Several small
reservoirs must‘eméﬁyigeforevthe end of the CP. Usqélly Priest Lake
and Coepr d'Alene Laké require this change.
2. All PNCA pr&jects must limit their CP generatlon to gg percent of
full-gate flow wunless a higher fl?w is geceésary to make all storage
water usable during the CP. There zre several projects that must
e#ceed 85 perc;nt full-gate flow. 1In the Columbia Rivét Tfeaty Assured
Opefating‘Plan (A0P) studies, the Canadian projgcts are also limited to

85 percent of full-gate flow.
3. Critical Rule Curve (CRC) crossovers and bubbles should be avoided
1f the schange does not adversely affect FELCC or dniformity. CRC

crossovers occur when the'2nd, 3rd or 4th year CRC is above a lower
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numbered CRC during any peribd. CRC bubbles occur when any project

s
S L

reverses a general seasonal.tredd of either: drafting or filling. An

_ example of a 'CrC bubble would be a project filling slightlyq during

December when the general trend is a steady draft of all projects from

September through ‘April.' Both crossovers and bubblesg may indeed be
wg’/

optimum for the CP, but appear illogicnl for guiding a 40-year

regulatign. Neither crossovers nor bubbles are prohibited by the PNgA

-however, when only minor violations occur, they should be fixed at the

‘major reservoirs if it does not significantly decrease FELCC or cause

uniformity problems. ;

/"

4., Some of the nomnmajor reservoirs do not have a significan> ability

to optimize total system operation and they are usually more tightly

- constrained by at-site nonpower constraints.

5. All project nonpower constraints must be met to the maximum extent

-

‘ possible. These include flood control, at—-site and downstream minimum
" and maximum outflow constraints (including the Water Budget) spills

and bypass flows, reservoir filling and drafting rate limits, and

ninimum and maximum elevetions. Violation of any of these constraints

’

in order to increase FELCC is almost jever allowed.

3.2 Critical Period Optimizer

The CP Optinzier is used to help determine the operation that
maximizes the average CP generation, shaped’uniformly to the‘ load,
while meeting hard constraints and balancing the violations of soft
constraints. The model does this by varyling the storage contents of
projects, "all periods, 80 as to maximize the objective function. The

objective function is a snnmation of many linear and nonlinear
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equations, ?with many limiting inequalities. ° The model u;ed here 1s
" functional aﬁalysis and the mipimum nofé formulation techﬁique! to
search for the change in storage values for each project, Aéach period
(half a ‘month), that will increase the objective function. fﬁghe
optimizer has to check the main CP regulatidn prqbleﬁs which are:

1. All scorage’projecfs must start the/éPlfull and end the CP empty

/
5

gnless cqpstrained by minimum flow.
2. All stoerage projects must not violate minimum and maximum storagé
constraints. Minimum and maximum outflow constraints éan cause storage
constrainté to be violated and this should be taken care of dﬁring the

planning process.

3. All storage projects' generation should be less than 85 percent

full~gate flow except Kerr in June.

4. Assure that each project is regulated so that all minimum and
e : v :

maximum flow constraints are'met. Project minimum flows are not.

Rk o0ty

a project 1is empty and‘éga}n this should be taken care of during  the
planning process.

5. Water Budget ninimum flow 1s exactly met. The Pacific Northwest
Power -Planning Council has established a'Water Budget to help the
.ddwnstream migration of’fish on the Columbia and Snake Rivers. The

Corps of Engineers have in turn established minimum flow consfraints in

ATy ) .
orderﬁﬂ§@'f eet the Council's Water Budget. The Water Budget minimun
t_)& \‘4 - » .
XY s
flows @71;"measured at Priest Raplids Dam on the Columbla and Lower

Grauiﬁe Dam on the Smake River. In addition to the Water ‘Budget, these

projects also have other minimum flow constraints.
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6. CRC bubbles should be fixed if no significant loss of FELCC will
Ve

result.

3 Ar .
7. CRC crossovers should be fixed ff/no significant loss of FELCC
‘will result. - * .

8. Different ir?igation depletions, plant datavchanges? and major

reservolr operation changes are thé\usual ca’iﬁlbf changes 1in- CP o
. generation. These differences 1in CP average gsggratjggﬁazﬁf
.;;project and system total compared to similar previou; studies shbujq

explainable. ‘ - - &y
9; The PNCA requires that n; reservolr draft below its E;ergy Content -
Curves (ECC) except for nonpower purposes,' unless a total sygigp draft
below ECC 1s required to produce the system FELCC. ECC in agfio;year
regulation 1is to dgte;miné the amount eéch reservolr may draft to
produce nonfirm generation. ) .‘ @
10. The optimizer éhould supply the B.P.A. at the end of optimization
process with the new rqle curves (curves that specify reservoir ;water
levels as a funciton of timg).which should guarantee va maximum
generation and satisfy all hard constraints. fhis implies that the
benefit from the recomﬁended rule curves should be more than that of
the sd%blied initial estimate if it is not the global maximum.
3.3 B.P.A. Hydro-Power frojects

The B.P.A. system consists of 37 storage projects and 51 run—of-

river projects Fig. 7. Figure 8 presents an explanatdry,

" schematic diagram of the whole system, the 88 projects.
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Following 1is a list of the 88 projects and a brief description of
each one from the nonpower constraints viewpoint; tailwater tables for
the storage projects; and the water to energy tables.
“sal;
3.3.1 Mayf1eld(42) . ’
‘“Run-of-river (ROR) project.
=85%  Full gate flow constraints (FGFC)=12 389.€ .rS (cubic

feet per second).

— Generation vs. Outflow Through the Turbine for the Mayfie;d Dam

(Ref. 74, Table 1)

- Minimum Flow Requirements for the Mayfield Dam (™ ~f. 74, Table 2)

]

3.3.2 Mossyrock (48) 5

-~ Mossyrock Dam 1s the ma jor storage project for a series of
dams downstream oﬁ,fhe Cowlitz River located”t river mile.

| | - Projec; purposes include power &enefation, flood control,

and power storage.

- It has an average water coﬁyersiqn factor. (WCP) of 22.26
KW/CFS. |

‘thly limits on maximum draft fate.

- Maxir im  orage = 654.3 KSFD (KSFD=86.4*lO6ft3)

=~ Minimum =.. age = 0.0

— Maximum el:: +ion = 778.5 ft

= Mloimun elevation = 621.5 ft

- FCG™ . = 13 370 CFS

~ Minimuer W = 1000 CFS
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- Tallwater Elevation (TWE) vs. Total Outflow (Outflow Through the

Turbine Plus the Spill) for the Mossyrock Dam (Ref. 74, Table 3)

- Storagé vs. Forebay Elevation for the Mossyrock Dam (Ref. 74, Table

4 )

- Head vs. ‘onversion Factor (Watt/CFS) for the Mossyrock Dam

€hef. 74, . ie 5)

>

3.3.3 Packwood (62-63)

- Two projects one 1s a ROR and the other 1s a storage

project.

85% FGFC = 233.7 CFS
= Minimum outflow = 10.0 CFS

— Maximum storage = 1.4 KSFD:

Minimum storage = 0.0

oy o
~ Total Gemeration vs. Outflow Through the Turbine for the Packwood Dam

(Ref. 74, Table 6) &

~

3.3.4 Merwin (76)

- Storage project .. .

- Maximum storage ’_22114KSFD ' .‘ﬁ'y' ‘

-‘MinimumVSQOrigﬁ = 34.3 KSFD =
B B

~ Mzximum outfiﬁw = 11400 CFS
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= Minimum OQutflow Requirements for the Merwin Dam (Ref. 7&, Table 7)

— Storage vs. Forebay Elevation for Merwin Dam (Ref. 74, Table 8)

Tailwater Elefution vs. Total Outflow for the Merwin Dam
48

(Ref. 74, Table 9)
- EffectivevHead vs. Water Conversion Factor (Watt/CFs)

for the Merwin Dam (Ref. 74, Table 10)

3.3.5 Yale (78)
- Storage project
- Maximuﬁ seerege =.95.6 KSFD
—- Minimum storage = 0.0

~ Maximum outflow = 8000 Cfé?bh

‘—4Minimum outflow = 0.0

ﬂP

: ’ H:'l . .
= Tailwater Elevation vs. Total-Outflow for the Yale Dam (Ref. 74,
| . y .

Table 12)

- Effective Head vs. Water Conversion Factor (Watt/CFS) for

the Yale Dam (Ref. 74, Table 13) '. \“T .gﬁiz



k]
’

3.3.6 Swift II (80)

— Tailwater Elevation vs. total Outflow for the Swift II Dam

ROR project

Maximum outflow = 8,600 CFS

Minimum outflow = 0.0

1 .

Forebay elevation = 603.0 feet

(Ref. 74, Table 14)

- Effective Head vs. Water Converslon Factor (Wa@t/CFS) for the

Swift II Dam (Ref. 74, Table 15)

KA

3.3.7 Swift I (82)

Storage project

o~

Maximum storage
Minimum stbrage
Maximum outflow

)

Minimum outflow

Tailwater elevation = 605.0 feet

<

225.4 KSFD

0.0

935.0 CFS

0.0

43

- Storage vs. Forebay Elevation for the Swift I Dam (Ref. 74, Table 16)

£

~ Effective Head vs. Water Conversion Factor (Watt/CFS) for

the Swift I Dam (Ref. 74, Table 17)



3.3.8 River Mi11 (108)

&S\\

- ROR project <!
- 85% PGFC = 3 833.5 CFS
S

=~ Minimum outflow = 0.0 .. 4 B

— Generation vs. Outflow'Through the Turbine for thg River Mill Dam

(Ref. 74, Table 18) R ' o
he:4 ' o
3.3.9 ‘Faraday (110) ‘

— ROR project
— 85Z FGFC = 4 109.7 CFS

- Minimum flow = 0.0

— Generation v8. Outflow Through the Turbine for the Faraday Dam

(Ref. 74, Table 19)

3.3.10 North Bdrk (111)
~ ROR project
- 85% FGFC = 4 636.7 CFS

—.Minimum»outflow = 0.0

- Generation vs. Cutflow Through the Turbipe for éﬁe North Fork Dam
(Ref. 74, Table 20)
3,3.11 Oak,Grng (115)
= ROR projecgr

=~ 85%.FGFC = 454.7 CFS

44



- Minimum outflow = 0.0

= Generation vs. Outflow Through the Turbine for the 04k Grove Dam

4

(Ref. 74, Table 21)

3.3.12 Timothy (117)
— Storage project . x o
— Maximum storage = 31.1 KSFD
*= Minimum storage = 0.0
- Maximum outflow = 535.0 CFs
- Minimum outflow =§%Zo.o CFS
— No generation

3:.3.13 Bi11 Cliff (172)

Jﬁ; - ROR project

&

~ 85% FGFC = 3 060.0 CFS

’

= Minimum Flow Requirement for the Big Cliff Dam (Ref. 74, Table 22)

)

- Generation vs. Outflow Through the Turbine for the Big Cliff Dam
(Ref. 74, Table 23)
3.3.14 Detroit‘(l73)
— Storage project
— Maximum storage = 162.0 KSFD. i“; 
- Minimum storage = 0.0

= Maximum outflow = 5,340 CFS

Tailwater elevation = 1,202 feet

>
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- Miniﬁhm Flow Requirement for the Detroit Dam (Ref. 74, Table 24)

o= Generation vs. Outflbw Through the Turbine for the Detroit Dam

N (Ref 74, Table 25) '

et - Effective Head vs. Water Conversion Factor (Watt/CPFS) for the

Detroit Dam (Ref. 74, Table 26)

3.3.15'  Foster (188)
—"Sﬁorage project.
- Maximum stofage = 14.3 KSFD
= Minimum storage = 070
- Maximum outflow = 3‘200.0 CFé

Tailwater elevation .= 527.0 feet

- Minimum Flow Requ%;ement for the Foster Dam (Ref..74, Table 27)

a1
-

LI

o

=i Storage vs. Forebay Elevation for the Foster Dam (Ref. 74, Table 28)

Effective Head vs. Water Conversion Factor (Watt/CFS) for the

Foster Dam (Ref. 74, Table 29)

3.3.16  .Green Peter (190)
— Storage projecf
~ Maximum storage = 157.8 KSFD

— Minimum storage = (.0
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= Maximum outflow = 4,600 CFS
- Minimum outflow = 50 CFS

- Tailwater elevation = 700.0 feet

- Storage vs. Forebay Elevation for the Green Peter Dah:&&gf. 74, Table

30) ' T

L3

- Effective Head vs. Water Conversion:Factor (Watt/CFS) for

the Green Peter Dam (Ref. 74, Table 31)

3.3.17 Walterville (218)
= ROR proj¢gect
- 85% FGFC = 2,193.0 CFS

= Minimum outflow = 0.0

o

= Genération vs. Outflow Through the Turbine for the Walterville Dam -

(Ref.'74, Table 32)

3.3.18 Leaburg (221)
- ROR project
-'85% FGFC = 2,159.0 CFS

= Minimum outflow = 0.0

1’3 o s’

— Generation vs. Outflow Through the Turbine for the Leaburg Dama-“A

" (Ref. 74, Table 33)

5=



3.3.19 Cougar (234)
- Stdragé‘project
— Maximum storage = 77.4 KSFD
—’Minimum storage = 0.0 =«

= Maximum outflow = 2,100.0 CFS

Tailwater elevation = 1,254.0 feet

~ Minimum Flow Requirements for the Cougar Dam (Ref. 74, Table 34)

~ Storage vs. Forebay Elevation foér éﬁg’Cnga *Dam (Ref.‘74, Table 35)

“\

°

— Effective Head vs. Water Conversion Pactor (Watt/CFS)

A}

for the Cougar Dam (Ref. 74, Table 36)

3.3.200 Trail Bridge (255)
= ROR project
- 85% FGFC = 578.0 CFS

- Minimum outflow = 0.0

& v

- Generation vs. Outflow Througﬁ the Turbine for ;hé Trail Bridge Dam

(Ref. 74, Table 37)

3.3.21 Carmen Smith (257)

= ROR projéct
- 85% FGFC = 382.5 CFS

=~ Minimum outflow = O.Q

5,



= Generation.vs. Outflow Through the Turbine for the Carmen Smith Dam

(Ref. 74, Table :38)

3.3.22 Dexter. (223)
= ROR project
- 85% FGFC = 3,697.5 CFS *

- Min%mum outflow = 0.0

= Generation.vs. Outflow Through the Turbine for the Dexter Dam
(Ref. 74, Table 39)

,

3.3.23 Lookout Point. (275)
— Storage projéct

-~ Maximum storage = 169.7 KSFD

‘Minimum storage = 0.0

- Maximum outflow = 9,300.0 CFS

Tailwater elevation = 6,930 feet

= Minimum Flow Requirement for the Lookout Point Dam

(Ref. 74, Table 40)

-
P

— Storage vs. Forebay Elevation for the Lookout Point Dam

(Ref. 74, Table 41) ' !

i3

- = Effective Head vs. Water Conversiod.Factor'(Watt/CFSj for the.

Lookout Point Dam (Ref. 74, Table 42)

-

S

49
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3.2.24 Hills Creek (290)

'

—~ Storage project

— Maximum storage = 122.8 KSFD

Minimum storage = 0.0

Maximum outflow = 1,800.0 CFS

Minimum outflow = 100.0 CFS

Tailwater elevation_= 1,226.0 feet

k!

= Storage vs. Forebay Elevation for the Hills Creek Dam

(Ref. 74, Table 43)

— Effective Head vs. Water Conversion Factor (Watt/CFS)

for the Hills Creek Dam (Ref. 74, Table 44)

\ ‘ N
3.3.25  Bonneville (320) .

= ROR project
~ 85% FGFC = 262,225.0 CFS

- Minimum outflow = 10,000.0 CFS

— Generation vs. Outflow Thfough the Turbine for the Bonneville Dam

(Ref. 74, Table 45)

3.3.26 Dalles (365) °
= ROR project

- 85% FGFC = 318,750.0 CFS

/
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- Minimum Flow Requirement for the Dalles Dam (Ref. 74, Table 46)

= Generation vs. Outflow Through the Turbine for thé Dalles Dam

(Ref. 74, Table 47)

3.3.27 Pelt. Rereg (387)
- ROR project
- 85% FGFC = 5/440.0 CFS

/
i
/.
S
\

'~ Minimum Flow Requirément_for the Pelt. Rereé‘Dam
[ N

(Ref. 74, Table 48)

- Genefétion vs. Outflow Th:ough]the Turbine For the Pelt. Rereg Dam
(Ref. 74, Table 49) .

2T

3.3.28° Pelton (388)

- ROk project
- 85% FGFC = 9,804.7 CFS

a7

- Minimum outflow = 3,000.0 CFS

s

- Generafion vs. Outflow Through the Turbine for the Pelton Dam

/:4, Table 50) .

§

- (Ref.

-4,
VAT

S
3.2.27 Round Butte (390) . o :
/ -~ Storage project . f,. :é}

- Maximum storage = 138.26 KSFD

&
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= Minimum storage = 0.0
— Maximum outflow = 11,200.0 CFS
=~ Minimum outflow = 0.0

1,578.0 feet

= TWE

G
= Storage vs. Forebay Elevation for the Round Butte Dam

(Ref. 74, Table 51)

.~ Effective Head vs. Water Conversion Factor (Watt/CFS) for the

Round Butte Dam (Ref. 74, Table 52)

3.3.30 John Day (440)

| A - ngrage projecti

=~ Maximum storage = 269.7 KSFD
_S;‘Miﬁimum storage = 0.0

= Maximum outflow = 322,000.0 CFS

1

- ‘Minimum Flow Requirement for the John Day Dam (Ref. 74, Table 53)

s

- Storage»vs. Forebay Elevation for the John Day Dam (Ref. 74, Table

54)

’

- Tailwater Elevation vs. Total Outflow for the John Day Dam

(Ref 74, Table 55)



: “KH o
- Effective Head vs. Water Conversiqn‘?éqtor (Watt/CFS) for John Day Dam
oy :

o

(Ref. 74, Table 56)

3.3.31  McNary '(488)

— ROR project

I3

Lt
L

= Minimum Flow Requiremgnts for the McNary Dam (Ref. 74, Table 57)

- Tailwater vs. Total Outflow for the McNary Dam (Ref. 74, Table 58)

o

Effective Head vs. Water Conversion Factor (Watt/CFS)

for the McNary Dam (Ref. 74, Table 59)

3.3.32  Ice Harbor (502)
- ROR project

- 85% FGFC = 89,250.0 CFS

Minimum Flow Requirements for the Ice Harbor Dam (Ref. 74, Table 60)

,

-~ Generation vs. Outflow Through the Turbinefo?/f%e Ice Harbor Dam

(Ref. 74, Table 61)

3.3.33 Lower Monumental (504)

— ROR project



-

- 85% FGFC = 113,900.0 CFS

=~ Minimum Flow Requirements for the Lower Monumental Dam

(Ref. 74, Table 61)

— Generation vs. Outflow Through the turbine for the Lower Monumental Dam

(Ref. 74, Table 63)

3.3.34 Little Goose (518)
~ ROR project

- 85% FGFC = 113,900.0 CES

= Minimum Flow Requirements for the Little Goose Dam (Ref. 74, Table

hed

64)

Sy .
. .2,4: ;

- Géneration vs. O§$flow f%rough the Turbine for the Little Goose Dam

(Ref. 74, Tabla 65)-

3.3.35  Lower Granite (520)
= ROR project

= 85Z FGFC = 113,900.0

= Minimum Flow Requirements for the Granite Dam to Assure the Water

Budget Minimum ?lows on the Snake River and Other Minimﬁm Flow

Constraints (Ref. 74, Table 66)
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%% Generation vs. outflow Through the Turbine for the Lower Granite Dam

(Ref. 74, Table 67) . o

3.3.36 Dworshak (535)

— Storage project

5 — Dworshak was constructed for power, flood control, and

navigation. Fishery apnd recreation uses are not project authorized
uses, but are allowed at the Corps' discretion.

— Maximum storage = 1,016.0 KSFD

- — Minimum storage = 0.0
- Magimum forebay elevationhj 1,600.0 feet

— Minimum forebay elevation = 1,445.0 feet

'l

- Maximum outflow 10,000.0 CFS

— Minimum outflow 1,000.0 CFS

~ Storage vs. Forebay Elevation for the Dworshak Dam (Ref. 74, Table

68)

= Tallwater Elevation vs. Total Outflow for the Dwoshak Dam

(Ref. 74, Table 69)

—.Effective Head vs. Water Conversion Factor (Watt/CFS) for the

Dworshak Dam (Ref. 74, Table 70)

3.3.37 Hells Canyon (762)

- ROR project



- 85% FGFC = 25;?40.0 CFS

~ Minimum outflow = 5,000 CFS

— Generation vs.

(Ref. 74,

Y

‘Table 71)

3.3.38 Oxbow (765)

= ROR project

- 85Z FGFC = 23,970.0 CFS

- Generation vs. Outflow Through the Turbine

(Ref. 74,

Minimum outflow = 5,000.0 CFS

Table 72)

3.3.39 Brownlee (767)

Storage project
Maximum storagé = 491.7 KSFD
Minimum storage = 0.6 KSFD

Maximum outflow = 34,500.0 CFS

A

for

the

Oxbow

Dam

~ ~ Minimum Flow Requirement for Brownlee Dam (Ref. 74, Table 73)

L - Minimﬁm forebay elevation = 1,976 feet

=~ Maximum Forebay Elevation for the Bfownlee Dam (Ref. 74, Table 74)

56

Outflow Through the Turbine for the Hells Canyon Dam
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v “
- Maximum’ Draft Rate for the Brownlee Dam

(Ref. 74, Table 75)

=~ Storage vs., Forebay Elevation for the Brownlee Dam

(Ref. 74, Table 76)

— Tailwater elevation = 1,802.5 feet

— Effective Head vs. Water Conversion Factor (Watt/CFS) for the

Brownlee Dam (Ref. 74, Table 77)-

3.3.40 Priest Rapids (1160) N
- ROR projeét

- 85% FGFC = 148,750.0 CFS.

= Minimum Flow R

B
ety
2

equiremeﬁt for the Priest Rapids Dam to Assure

P :
the Water Budget Minlmum Flows on the Columbia River and Other

Miﬁimum Flow Constraints (Réf. 74, Table 778)
¢
- Because Priest Rapids. or the other “foﬁr mid-Columbia
projects do not hize seaéonai storage, the regulations require that the
Water Budget (WB) minimum flow constraints be transferred upstream.
The May WB minimum flow'fgquirement at Priest Rapids 1is so large that
a normal at-site wminimum flow requiremeht at Grand Coulee would"

frequently cduse the project to draft empty. This 1s because the model

satisfies at—site flow constraints before determining drafting rights

o]
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for system load or flow needs. The problem then is to determine which
'upstream projects should draft and in what proportion they should draft

for WB minimum £ Lw. .

— Generation vs. OQutfiow Throgég the Turbine for the Priest Raplds Dam

(Ref. 74, Table 79)

3.3.41  .Wanapum (1165) N !
— ROR project . .
- 85% FGFC = 147,900.0 CF§' . .

- Miminum outflow = 36,000.0. CFS* &

, L3

oA
%, &

= Genération vs. Qutflow Through the Turbine for the Wanapum Dam
(Ref. 74, Table 80) ‘

3.3.42 Rock Island (1170) o

- ROR project .

- 85% FGFC = 182,750.0 CFS - o . o ‘ )
' - 9 S

~ Minimum outflow = 35,000,0'éFS

~

“ Generation %s. Outflow Through the Turbine for the "Rock Island Dam ‘v
v
A N v : 2

,A.(Ref 74‘ Table 81) . - “ -~ ‘ Cwd , -
s b . A o g . .
¢ 3.3.43 ‘ 'Rocky Reach'(1200) , , R . , ..;.
5 - RbR.projectA - ’ v - [ % e
- - 85% FGFC = 187,000.0 CFS :
B, ' o o
- Minimum outflow = 30,000.0 CFS o 3

+

Pras
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- Generation vs. Outflow Through the Turbine for the Rocky Reach Dam

(Ref. 74, Table 82), e N
/- B

3.3.44  Chelan (1210)
= Storage project

- Low head dam on Chelan River to control ihe outflows from -

Lake Chelan, a large natural lake.
- JQ%}mum storage = 341.5 KSFD

- Minimum storage = 0.0 . ﬂ&

-

~ Maximum elevation =.1100.0 feet

s

= Minimum elevation = 1079.0 feet : I
§
- Maximum flow = 2,016.0 CFS
¥, - Minimum flow = 50.0 CFS BN

- Tailwater elevation = 707.0 feet

z

A e
5 R
v

- Storage vs. Forebay Elevation for the Chelan Dam (Ref. 74, Table 83)

a

t

- Effective Head vs. Water Conversion Factor (Watt/CFS) for the Chelan Dam

(Ref. 74 Table 84) : ‘ | o . “ v“' - T
‘ | K - - : ’ . T o
o \ | - : ﬂ%
3.3045  Wells (1220) T . -
, ¥ R ! ' .“:. < : "-\
— ROR project o , - -7
- 85% FGFC\-ZlZ 500.0 CFS . .- . . .. .».‘\ g

- Miﬁimum flow = 30,000.0 CFS i'

3
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= Generation vs. Outflow Through the Turbine for the Wells Dam

(Ref. 74, Table 85)

3.3.46 Chief Joseph (1270)
- ROR project ' .

= Maximum outflow = 215,000 CFS

b

Minimum outflow = 30,000 CFS
"5» H - -
- Forebay elevation = 956.0 feet

~

— Tallwater Elevation vs. Total Outflow for the Chief Joseph Dam

(Ref. 74, Table 86) o )

-

L}

‘- Effective Head vs. Water Conversion Factor (Watt/CFS) for the Chief

Joseph Dam (Ref 74, Table 87)

3.3.47 Grand Coulee (1280) -
- Storage project =
E»' /— The -largest':reseryoir, dam. and nowerhouse in the U.S..
‘portion of thﬁ?Columbf% River Basin. :Situatedtat the top of a. string
of large ROR-projects. It 1is the single most impbrtant project'of the

U.S. Federal Colp@bia RiVer<Power'System. . It has the largest. amount of
- Lo . » ' . ’
control over monthly and weekly river operations. Water releaged from . :

»~

. : S .
Grand Coulee flows through 10 downstream projects with each"KSFD.

19roducing .a total of about 2. 8 MW months of energy.~ On a smaller

scale, . 10. cubic feet of water (about 75 gallons) released from Grand

-

Coulee will produce 240 watt hourg- of energy, worth about 1 cent ‘to the

e [ -

~ N

-
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residential consumer, i . .
— Maximum storage = 2,614.3 KSFD -
= Minimum storage = 0.0

v ~ Maximum elevation,=:1,290.0 feet

=~ Minimum elevation ?‘1 208.0 feet

- irrigation, flood -control, ninimum flows, and power impacts’

v

are the major criteria for developing constraints on reservoir
operation. Recreation, ;;;}gation, an§ at-site fish.néeds, do not
significantly affect reservoir operation. ) ‘

'~ Maximum outflow = 280,000.0 CFS

- The ‘WB minimum flo¥ requirements at Priest Raplids Dam are

so large that a normal at-site minlmum flow requirement would

frequentl§ cause Grand Coulee to draf% empty. This 1is because the

' model satisfies at-site flow constraints before determining drafting

- ) . B
~ ! . 1 o "
N / * - iy
} i ' ' ' ‘
, . B P .
. : : " C R : '
N . v R ) ”
P

>

rights for system lodd ybr flom

-.ﬁidimum Flow Requirement for the Graﬁd Coulee Dam to Assure the
Watef- Budget Minimum Flows on the Columbia River gnd Other Minimum
Flow Constralnts (Ref. %4, Table ?8):'mf -

_ . _ df,' ‘

- Storage vs. Forebay Elevation for the Grand Coulee Dag

-(Ref. 74, Table 89)

~ Tailwawter Elevation vs. To%al Outflow for the-Grand Coulee Dam
s N ‘ R o -

.

(Kef. 74, "Table 90) <

‘l- .

~
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-rEffective Head vs. Watér Conversion Factor (Watt/CFS) for the

‘Grand Coulee Dam (Ref. 74 Table 91)

;v] \)

3.3.48  Little Falls (1280)
= ROR project
- 85% FGFC = 5,950.0 CFS

= Minimum flow = 0.0

- Generation vs.rOutflow Through the Turbine for the Little Falls Dam

(Ref. 74, Table 92)

3.3.49  Long Lake (1305) \ ; -
| —<Storage pfeject ”
~ Maximum storage = 52.5 KSFD .
- M%nimum storage = 0.0
~ Maximum outflow = 6,300?6 CFS

= Minimum outflow = 0.0 = .

— Tailwater elevation = 1,363.0 feet

- Storage vg. Forebay Elevation for the Long Lake Dam

(Ref 74, Table 93) - | I

c( . 5

»

"-fEffectivefHead V8. Water Conversion Factor (Watt/CFS) for the

Long Lake Dam (Ref 74 Table 94)
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3.3.50  Nine Mile (1315)
= ROR project
- 85% FGFC = 3,910.0 CFS

- Minfmum outflow = 0.0

- Generation vs. Outflow Through the turbine for the Nine Mile Dam

(Ref 74, Table 95) - .

3.3.51".  Monroe Stx

-

fgn Lo

_ ~ Minimum flow =.0.0° : B
& L LRI B A

T .

b

- Generatlon ws. Outflow Through the turbine for the Monroe Street Dam

1.
=T

“ (Ref. 74 Table 96)

N
B (<28

3.3.52 Upper Falls (1332)

&

.= ROR ptbject S o

- 85% pGFC = 2, 125 O CFS

. X ’\ , ‘l- . : . " . ) .
g &g@mum flow = 3@0 0 cFs . i

3

=’Generation vs. Outflow Through the Tu:bine-for the Upper Falls Dam
. (Ref. 74, Table-97) ST

-

 3,3.53 . Post Palls and Lake Cour D'Alene (1341-1340)

.

- s

- Two projects, one is ‘a ROR project a?dwthe other 1s a
. - ) o ‘ ) ’ 4



- ' . ' , . 64
gtorage project. '
- Maximum‘sggrage = 112.5 KSFD « .

= Minimum éforage = 0.0

85Z FGFC = 3,995.0 CFS

Minimum flow = 300.0 CFS

- Generation vs. Outflow Through the Turbine for the Post Falls Dam

)

 (Ref. 74, Table 98)

3.3.54 Waneta (1440) . L
= ROR project on the Canadian side of the border.

- 85% FGFC = 21,250.0 CFS

¥

- Minimum flow = 0.0 f

&

- Generation vs. Outflow Through the Turbine for the Waneta Dam

(Ref. 74, Table 99) . !

-

Voa

3.3.55  Seven Mile (1442)
- — ROR project ‘on the Canadian sidelbf the border.
— 85% FGFC = 31,025.0 CFS

= Minimum flow,; 0.0

I

-
»

- Gedérat}on vs.'outflow'Thrquh the Turbine for the Seven Mile Dam

(Ref. 74, Table 100) , S

3 N PR

3.3.56  Boundary (1450) v

L ROR project '_ . - R



- 85% FGEC = 45,645.0 CFS ' '

= Minimum flow = 0.0

v

- Generation vs. Outflow Through the Turbine for the Boundary Dam

(Ref. 74, Table 101) T |
3.3.57 Box Canyon (1460)
- ROR ‘project

- 85% FGFC = 24,820.0 CFS

- Minimuﬁ.flow = 0.0

= Generation vs. Outflow‘Through‘the Turbine for the Box Canyon Dam

(Ref. 74, Table 102)

3.3.58 Albeni Falls (1465)

~ Storage project .

@B

d Low head dam on the Pend Oreille river downstnpam from Pend °

Oreille Lake, a natural lake. The project controls outflows from Pend

/

Oreille Lake for flood control, navigation, power, recreatlon, and fish
PR \
and wildlife conservation objectives.

-

- Maximum hydraulic capacity = 33,000 CFS

- Bypass flow = 50 CFSN . ' ' , .

g . . ! \

2

- iaximum Storage Requirements for the Albeni Falls Dam (R f. 74,

3>

Table 103) : - R S s
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Minimum Storage Requirement for the Albeni Falls Dam (Ref. 74

Table 104)

v

Maximum Ele?ation'Requireﬁent for the Albeni Falls Dam .

(Ref. 74, Table 105) = B

Minimum Elevation Requirement for the Albeni Falls\Dam
(Ref. 74, Table 106)

= Minimum flow requirement = 4,000 CFs

Maximum Draft Rate Constraints for the Albeni Falls Dam

(Ref. 74, Table 107)

Storage vs. Forebay Elevation for the Albenti Falls Dam (Ref. 74,

Table 108)

R X

W s

Tailwater Elevation vs. Total Outflow for’thé Albeni Falls Dam

(Ref. 74, Table 109)

£ d

K

Effective-Head V8. Water Conversion Factor (Watt/CFS) for the

Albeni Falls Dam (Ref 74, Table 110) A

66
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3.3.59  Priest Lake (1470)
- Storage-projedt
- Magimgm storage qonstraint = 35.5 KSFD
- Minimdm storage constraint = 0.0
- Maximum outflow = 2,820 CFS
— Minimum outflow = 60 CFS

— No generation

3.3.60 Cabinet Gorge (1475)
— ROR project
~ 85% FGFC = 30,090.0 CFS

et

" = Minimum flow = 3 000.0 CFS

- Generation vs. Outflow Through the Turbine for the Cabinet Gorge Dam:

(Ref. 74, Table 111)

3.3.61 Noxon (1480) v
— Storage project

- = Maximum storage constraint =.116.3 KSFD

Minimum storage constraint = 0.0 -

- Maximum ocutflow = 46,900 CFS

Minimum outflow = 0.0 ) '_.' _ -

«

—- Storage vs. Forebay Elevatiod for the Noxon Dam#(Ref1 75,‘fa51e 112)
. <5_7\<. A . . s ) 4", e
SO ) A .

Y

- Tailwater Elevatidh'vs, Total OQutflow for thafNoxon Dan
(Ref. 74,»Table‘}13) o © e

i L : h
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- Effective Head vs. Water Conversion Factor (Watt/CFS) for

———

the Noxon Dam (Ref. 74, Table 114)

3.3.62 Thompson Falls (1490)
= ROR project
=~ 851 FGFC = 9,435.0 CFS

= Minimum outflow = 0.0

=~ Generation vs. Outlow Through the Turbine for the Thompson Falls Dam

] o

(Ref. 74, Table 115)

3.3.63 Kerr (1510)
- Storage project

- Low head dam downstream of Flathead Lake on the Flathead

River.
- Maximum hydraulic'cabacity = 14,346 CFS
— Kerr always has a 85 percent Egll—gate violation during
June. - . |
& - ﬁaximum'storage = 614.7 KSFD
r “’,. - Hinimum gtorage = 0.0

Maximum elevation = 2,893.0 feet
Minimum ele?géion = 2,883.0 feet

Maiimum

outflow-= 14,346.0 CFS
r :

Minimum ohﬁflow = 3,200.0 CFS'

.,Tailwater"élevatioﬂ = 2,705.0 feet




~
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- storaée V@;WForebay Elevation for the Keer Dam (Ref. 74, Table 116)

1

-~ Effective Head vs. Water Conversion Factor (Watt/CFS) for the

n‘

o

Kerr Dam (Ref. 74, Table 117)

3.3.64  Colfls and Hungry Horse (1520-1530)

a) Colfls Dam (1520)

~

= It has nelther storage capacity nor power house generation.

b) Hungry Horse (1530)

-~ Has the msot valuable?%torage in the Federal Columbia River
Power System with an average CP Sys§§m water conversion factor of 155

MW/KCFS. , 7

- Max{imum hydraulic capacity varies with head, but it is 8900

v

‘CFS at critical head. Critical head is the minimum head that maxim@é

generation can be maintained.

i
A, -

\

- Maximum Flow Constraints for the Hungry Horse Dam (Ref. 74, Table

¥

@
118)

~ Minimum flow.reduirement = 40Q\CFS

!

— Maximum storage = 1,593.6 KSFD !

- Minimum storage = 0.0

£

- Maximum elevation = 3,560.0 feet

!

Minimum elevation = 3,336.0 feet
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— Storage vs. Forebay Elevation for the Hungry Horee Dam

(Ref. 74, Table 119)

- Tailwater Elevation vs. Total Outflow for the Hungry Horse Dam

(Ref. 74, Table 120)

- Efféctive Head vs. Water Conversion Factor (Watt/CFS)

" for the Hungry Horse Dam (Ref‘,74 Table 121)

3.3.65 Brilliant (1652)

- ROR project on the Canad®an side of the border

~ 85% FGFC = 15,300.0 CFS

= Minimum flow = 3,500.0 CFS

a5 e TR

(Ref 74, Table 122)

. 4
etk : +

- Generation Qs. Outflow Through the Turbine for the Brilliant Dam

3.3.66  South Slocan (1658) - , o - -

- ROR projéct on the Canadian side of the border

—)aszlpcpc = 9,171.5 CFS

- Minimum flow = 3,500.0 CFS -

EY

- Generation vs. Outflo% Through the Turbine,

(Ref. 74 Table 123)

for the South Slocan Dem
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3.3.67 fower Bonnington (1660)

= ROR project on thé Canadian side of the border
~ 85% FGFC = 7,820.0 CFS

= Minimum flow = 3,500.0 CFS e

(54

~ Generation vs. Outflow Through the Turbine for the Lower Bonnington

han Y

Dam (Ref. 74, Table 124)

-~
,

3.3.68 Upper Bonnington (1663) ‘ -
. ) Mk, s . | .
=~ ROR project on the Canadian side of* the border '

b i

85% FGFC = 11,322.0 CFS~ - RN

—- Minimum flow = 3,500.0 CFS

.
A

o

- Generatiq&, outflow Through the Turbina\Eg;:lhe Upper Bonnington

950.0 cFs . N

o T

arts at the Corra Linn Dam and discharges flow back into

"the Kootenay river upstream of the Brilliant plant,. bypassing the Upﬁef
’ ; ’ .

and Lower Bonnington and South Slocan plants Fig. 9 "

1

-t
-

- Distribution of Water Budget Between the Corra Linn Dam

and the Canal Plant Dam (Ref. 74, Table 126)



e
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Cora Linn

Upper -~
Bonnington .

South
Slocan

Brilliant

Fig. 9 Explanatory Schematic Diagram of the Canal Plant Project.

v' L0wer L
X Bonnington -

72



i . - B

- Generation v8. Outflow Through the Turbine.for the Canal Plant Dam

(Ref. 74, Table 127)

”~

3.3.70 Corra Linn (16§5)
: AN
- Storage project on thé Canadian side of the horder

&\

- Lies_on the Kootenay River downstream of Kootenay Lake

- CorAra Linn. outflcws. in excesj of 500 CFS and up to 32000
‘CFS areﬁﬂiverted from the Corra Linmn powerhouse to the more efficient
Canal Plant which has -a 528 MW powerhouse and a full-gate capacity of
. 2700 cFs. The Canal Plant discharges flow back 1into the Kootenay river
upstream of the. Brilliant Plant, bypassing the Upper and Lower

-

‘ BonningtonA and South Slocan -plantq, Fig‘ 9. Corra Linn inflows in

excess of 32000 CFS are passed through Corra Linn, Table 125. The

hydro models are hardwired for this operation.

- L
—rMaiimnm';SforagenRequirement for the Corra Linn Dam (Ref. ‘74, Table

128)
.. = Minimum gtorage = 69.8 KSFD"
-~ Maximum Elevatibn5Requifemenpffnf‘:ht‘Confa,Linn:Dam; S

(Ref. 74, Table 129)

- Minimnm elevatsion = 1739.,3 feet-':"'

% Storage vs. Maximum 2 . low fc. the Corra Linn Dam (Ref. 74,

Table 130) ER ' n o e
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- Minimdm outflow = 5,000.0 CFS. - :

NS
5

- Storage 'vs. Forebay Elevation for the Corra Linan Dam (Ref. 74,

~
Table 131)

ﬂ o1

< Tailwater Elevation vs. Total Outflow for the Corra Linn Dam

(Ref. 74, Table 132) - - . |

- 7
- ’

- Effective Head vs. Water Conversion Factor (Watt/CFS) for the

L4

Corra Linn Dam (Ref. 74, Table 133)

3.3.71 Duncan (1681)
' - Storage projectlon the Canadian side of the'bOrder“

- Duncsn is tbe:%third and smsllest;of tne Columbia River
Treaty projects ’in Canads;" Duncan Lake was a natursl lake beforng |
onstruction of the dam. I -7

‘ - There 18 no powerhouée‘st-Duncsn.‘V

- Draft proportionallyvto meet U.S. system losd:

- Operation of Duncan is limited by the International Joint
Commission rules on” Kootenay Lake. The major requirement on Duncan 1is
to limit Spring outflows so as .ot “to cause Kootenay Lake -ﬁé' exceed

elevations that would haVe occurredulfrom filling on  restriction

without upstream storage. "i.'ﬂfbf*' b
..\,ﬁ’ ’ :

,pruncan is the second most important reservoir (after Arrow)_

N J\ i

for uniforming CP generation because of its large storage capacity and

no at-site generation.“i CRC crossovers and bubbles should be corrected

- f

C



when only a major change is needed to avoid them.
~ Maximum storage = 705.8 KSFD o*

= Minimum storage = 0.0

= Maximum outflow = 20,000.0 CFS

= Mindimum outflow = 100.0 CFS
. .

: . >
=~ Maximum elevation = 1892.0 feet

1794.2 feet

.- Minimumielevation

— Maximum drft rate = 1.0 foot/day

— Storage vs. Forebay Elevation for the Duncan Dam

(Ref. 74, Table 134)

-3.3.72 Libby (1760)
[

e

- Srorage project.

' «© ~ The prinary purposes for rhe construction of Libby.Dam were
. to provide flood control prorection and to produce power. The major
downsrrean operational i%g}tation for Libby ieftovavoid the Corra Linn
"outflow channel restriotion that can force Kootenay Lake&to-fill above
the prescribed rule.curves if the outflows from Libby -and Duncan are

too great. Downstream reservoirs include Corra Linn (in Canada)

' HfﬁGrand Coulee, and John Day. There are no reservoirs upstream of Libby.r_

L e
ARG '

.- Flood control outflow restriction at Corra Linn, ninimum
‘outflows, and refill are the major constraiats on reservoir operation.
VLfNavigation, and at-site fish needs do not significantly affect'

. treservoir operation. E ' 0

"a— Maximum\storage = 2,510.5 KSFD L

o
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~ Maximum elevation = 2,459.0 feet : ;fnb

Minimum elevation = 2,287.0 feet

Maximum outflow = 24,100.0 CFS

Minimum outflow = 2,000.0 CFS

S

Bypass flow = 200.0 CFS

Maximum draft rate = %.8 feet/day

. , 9 .
- Storage vs.*Forebay Elevation for the Libﬁy Dam-(Ref. 74, -

-

‘Table 135) ' ' @

N
4
’

— Tallwater Elevation vs. Total Outflow for th;\Lgﬁby‘Dah

(Ref. 74, Table 136)

¢

- Effective Head vs. Water Conversion Factdr (Watt/CFS) for :

the Libby Dam (Ref. 74, Table 137) T

3.3.73 - Arrow (1831)

P

>

- Storége. projgct on the Canadian side of‘the border on the
Columbia RiverTQ»ﬂd o | . - . | AR
- Doeg‘ﬁd;'héﬁe a powerhouse

- Trégty_opefating'plans, irriggtidn, flood control, minimum

v

flows,.-and.’bbﬁer impacts are’,the» ma jor criteria for developing
constraints on reservoir 6peration. .Howeyet,' regfeaﬁion,'navigatipn,
and at-site fish needs do significantly affect reservoir;'bpération.

The Cafadian entity will sometimes use'non?treaty storagé> ;at.‘M@ca,

°

Revelstoke,: and Duncan to meet Arrow Treaty outflow requiremeﬁté, ;ih;:Fnz‘

|

<

k4
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b

order to maintain Arrow reservoir'atielevations desired by Canana.

—~ The Canadians prefer that Arrow be maintained above 1440.0'
feet (3343.3 KSFD) elevation during.the'summer months in oroer to avoid
‘severe dust problems at‘the town of Revelstoke. It is not yet clear
. whether or not this should be treated as even a soft constraint sincei
the Canadians always have ‘the option to use non-treaty storage to
raide Arrow reServoir elevation in the summer. A : : ’

it— Arrow 1is t?e most important reservoir for uniforming CP

generation because of its 1large storage gapacity, location Just

: upstream of Grand Coulee, and there is no on-site generation.
!

v

-‘Storage ve. Maximum Outflow for the Arrow Dam (Ref. 74, Table 138)
” -~ Minimum outflow = 5,000 CFS

= Maximum storage (treaty) = 3,579.6 KSFD .
{ : ’

Minimum storage = 0.0

)

— Maximum draft rate = 1.0 fodt/day \ N

Maximum elevation (treaty) = .1,440,0 feet

Minimum elevation = 1,377.93 feet

~ Maximum storage content (non-treaty) = 3,711.7 KSFD .

Maximum elevation (non-treaty) = 1,446.0 feet

{fj f 'l . , e "v;'u ‘;f“‘

- Storage 93.‘Forebay Elevation for the Arrow_Dan“ Ref. 74, Table 1}9}
X 3.3.74  Revelstoke (1870) B ) o

- Sﬁbrage project on the Canadian side of the border.

= Maximum storage = 557 O KSFb

- Minimqm_storage = 0.0

Ry



- Effective Head vs. Water Conversion Factor (Watt/CFS)

-*

~- Maximum outflow = 56,000.b CFS

- Minimum outflow = 0.0

- Tailwater elevation = 1,457.0 feet

- Storage VB. Forebay Elevation for the Revelstoke -Dam (Ref 74,

Table 1405 ' I

e

for the Revelstoke Dam (Ref. 74, ‘Table 141)

.

.

3.3.75  Mica (1890)

. _ . N
/~ , = Lonstructed wunder the terms of the Columbia River Treaty.

i

/

containing .11,953,000 acre—feet of activeaetorage. The operation of

the reservolr 1is governed by the Treaty Assured Operating Plan and

. .

Detalled Operating Plan.  In these operating plans, Mica and Arrow

(Keenleyside)‘ are operated as if they were ode reservoir.‘ That_.is,

-

' ﬁKeenleyqide is operated ‘to. make up ﬁghe difference between Mica

operating for Canadian optimum versus U.S, optimum.

= Flood control, -minimum flows, and Canadian power impeets
AL Co :
are . the mkjor constraints .on reservoir operation., Recreation,

'

navigation,-.‘and' at-site fish needs do not signifieantly affect

. o \
reservoir operation. :

-

.~ - In 1984, BPA and B.C. Hydro signed a 10-year agreement
'»allowing both parties the right to use non—treaty storage in Mica,
S ‘ . .

‘Revelstoke, ‘and Arrow for storing or drafting, and allowing the initial

v

) i ’ . ‘ . 78

It has created the largest treaty storage reservoir (Kinbasket Lake),‘

iHMica !is regulated ‘to provide optimum generation '15 Canada, and .

S
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: fillizg of Revelstoke reservoir, and to help fill treaty etoragé4during

low water years..

~

.

Makiﬁum

Minimum

Minimum
™~

Maximum
Minimum
Minimﬁm

Méximum

Minimum

®

. [ ;
8torage content = 0.0

» ~

3 '
storage content = 6, 073.0 KSFD

~storagé (treaty) = 2,543.8 KSFD

elevation = 2,475.0 feet . I

elevation (tréaty) = 2,400.0 feet

elevation = 2,320.0 feét 2
. o

outflow = 4Q,000.0 CFS

outflow = 3,000.0 CFS

= Storage vs. Forebay Elevation for the Mica Danm (Ref. 74, Table 142)

v

(Ref. 74, Table-143)
i Py .

/
K

2
3

~ Tatlwater Elevation vs. Total Outflow fbr the Mica Dam
X ol A

N

- Effective Head vs. Water. Conversion FaCtor (Watt/CFS) for the

Mica Dam (Ref. 74, Table 144)

3.3.76 * - Lower Baker (2025)-‘

— Storage project

'Maximuq
Mioimom:

Maximum

storage = 71.8 KSFD ' o T

stqraée = 25, 3 KSFD

outflow = 4 OOO 0 CFS

4

~ Minimum outflow = 0.0 o ;

I@ilwatér élevation'= 180.0 feet’

- R

i



—.Storage vs. Forebay Elevation for the Lower Baker Dam
(Ref. 74, lable 145)
.%

s

- Effective. Head vs. Water Conversion Factor (Watt/CFS)
for the Lower Bakér Dam (Ref. 74, Table '146)
3.3.77  Upper Baker (2028)"

1
— Storage project

Maximum storage = lll.Z‘KSFD

Minimum storage = 18.1 KSFD

Maximum outflow:*= 5,100.0 CFS
- ﬂig;mgi\iztflow = 0.0

— Storage vs. Forebay Elevation for the Upper Baker Dam

(Ref. 74, Table 147)

»— Tallwater Elevation vs. Total Outflow for the Upper Baker Dam

(Ref. 74, Table 148)

- Eifecﬁive Head vs. Wate; Céﬁversigﬁ'Faptor (Watt/CFS) for the
Upper Bakef‘Dam (Reffv74)fTabiehlé9) i
3.3.78° Gorgi‘ (2065)
- ROR projeét

~ 85% FGEC = 6,324.0 CFS

i
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-
—

= Minimum Flow Requirement for tfie Gorge Dam (Ref. 74, Table 150),

- Eenerationeve. Outflow Through the Turbine for the Gorge Dam.

; _ - :
(Ref. 74, Table 151) ' v

3.3.79 Diablo (2067)

‘-AROR'project

*'= 85% FGFC = 5,538,4

4~ Minimum outflow -

- Generation V8. Outflow Through the Turbine for the Diablo Dam

(Ref. 74 Table 152)

3.3.80  Ross (2070)
- Storage.project
= The uppermost of a sﬁring of dams on the Skagit River,

3

Washington, locefed at fiver mile.
~ Maximum Flow Requirement for the Ross Dam (Ref. 74, Table 153)

— Minimum Flow Requirement for the Ross Dam (Ref. 74, Table 154)

-'MEXImumAstoiage = 530.5 ‘KSFD
- Minimum storége = 0.0

- Maximum elevation = 1 602 5 feet

/
Minimum §levation =1, 475 0 feet

! J
~/
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- Tailwater elevation = 1,205.0 feet o
-

|

I3

- Storage vs. Forebay Elevation for the Ross Dam (Ref. 74, Table 155)~

) - Effective Head vs. Water Conversion Factor (Watt/CFS) for

the Ross Dam (Ref. 74, Table 156)

3.3.81  White River (2160)
;vStoragé project
- Maximum storqge = 23.5 KSFD
- Minimum stofage = 1.7 XSFD

1,990 CFS

= Maximum outflow
= Minimum outflow = 100 CFS
- Tallwater elevation = 53.0 feet e . f

- Water copversion factor = 32.0 watt/CFS -

- Storage vs. Fofebay Elevatio?bfor the White:RiVeeram'

y

(Ref. 74, Table 157)

‘

3.3.82 = Lagrande (2188)
- ROR project "
- - 85% FGFC = 1,888.7 CFS

.= Minimum flow = 300.0 CFS

- Generation vs. Outflow Through .the Turbine for the Lagrande Dam

(Ref. 74, Table 158)
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3.3.83  Alder (2190) » ” o o - ' -

;“Storage project ' v M

¢ . , A .

o — Maximum storage = 81.4 KSFD
- Minimum storage = 0.0\ N T C '
- Maximum outflow = 2,610.0 CFS S

. 3
(. — Minimum outflow = 300.0 CFS
° - Tailwatep elévation © 935.0 feet .

- Storage vs. Forebay Elevatic- for tlie \kder Dam (Ref.“74, Table 159) ;f
' Fio
i
R
P
v 7?
= Effective Head vs. Water Conversion Factor (Watt/CFS) for the N ; 2
Alder Dam (Ref. 74 Table 160)
3.3.84°  Cushman IT (2206) . _g
~ ROR project o N
= 85% FGFC =-2,269,5 CFS
= Minimum outflow = 0.0
P - ») -
A ‘ E
~ Generation vs. Outflow Through the Turbine for the Cushman I% Dam
(Ref. 74y Table 161) . S .

-
- _3.3]85” : Culhman,I (2208)
’ | -__fiStorage prﬁjegt
- Maxiﬁum'stéfage = 187.6. KSFD

= Minimum storage = 0.0

iHaximumﬂqutflow = 2,448.0 CFS

- Miniﬁﬁmlgutflow ; 0.0 .
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- Tailwater elevation = 480.0

~ Storage vs. Forebay Elevation for the Cushman I Daﬁ - .

(Ref. 74, Table 162) =

- Effective Head vs. Water Conversion-Factor (Watt/CFS) for the

Cﬁshman 1 Dam:(Ref) 74, Table 163).'

»

3.4 The nine reservoir system -

. . ‘ - n , o : . .
-<The nine reservolr hydro sYstem 1s composed of nine projects

connected like a tree which is the general case of reservoir top . Logy

and it adequately specifies a“Feal system EéJ. 6. h:A

N



CHAPTER IV - ’
Maximum Energy Capability of ydro-Power System Linear Water

Conversion Factor qnd nstant Tailwater Elevation

In,' this chapter ‘functional analysis and the minimum . vnorm
'formulation have been used to maximize the total energy capablility for
the long-term probled'of hydro oower systems. The algorithm considers
the general configuration of reservoirs and run—of-river topology that
-one 'may encounter. The tree connection is the one that can adapt to
.any arhitrary topological configuration. Calculations have been made
for the critical perlod‘(CP)‘which represents a historical stream
record during which exogeoous inflows to the syste; ie a‘minimum. The
expected conseqoence of the minimum inflows is the flrm tofai energy
capability of the systemv aesuhing,the system optimum operation has
been .found. The-maximumﬁgeneration'that the hydro-power system can
produce during the CP, while optimally: drafting the available reservoir
storage from full to empty is called the fir;\EEergy load carrying
capability of the system (FELCC).

The water conversion factor (WCF) is ‘considered as a linear
function  of thevatorage. lhis aasumptioo_is much -more: accurate -in
representlng “the true case over other techniques [7,9,50,61]1 which
consider the WCF as a constant. Also, it generalizee the objective
fonction' and verifieh the well known -fact"that different heads
(storages) mean different generation capability. By WCF we mean the

-average amount of watts produced due to. an outflow of one cublc foot
; v

per second.
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i
The fime period use for the two sysfems under consideration fs
~ half a month (from 14.to 16 days); and the expectation of the delay in
water reaching a plant from upstream planté ranges from éero to about
24 vhours; therefore, .there will be no significant delay 1in water
reachling a reservoir from 1its immédiate upstream neighbor.

Due to the stochastic nature of exogepohs inflows ﬁo the system
and thé planning objective, a stochastic type of 6§timizatiog,technique
is used. Many of the well known techniques [7,9,49,50,61,63], cannot
accommodatdi®he stochastic néture.of the pfoblém.

4.1 'Background ) |

| Various optimization techniques hgve been prqposediin thé past to
vsolve the problemvof optimal scheduling of hydro-powér systems. The
' *o prominent approaches %hét ha&e been'used iﬁ %glving the probieﬁ are
nonlinear.programming and dynamic progr;mming.

' Vonlinear programming approéches [7,9,26,47,49,50;54,61,63] are
dew peg/uéb;ily for models with ,nseparable benefits. Gagnon et al.
9,50,61] -énd Hicks' .et al. [7] worked with thev Bonneviile Power
Authority, Hanscon et al. [63] worked with Hydrp —Quebec, Divi et al.
. [64]-'worked‘ with ALCAN (Aluminum of Canada).system and Rosethal'b[49]
with Tennessee Valley Authority CTVA). All, but oé; of thése
applications required the model to handle a gene ._ network tbpology
(any arbifrary topological configuration) for - -'e reservoir system.
The exception to this reqqirement was AL.CAN, whose reservoirs exhibits
onl; suriles arrangéments. ‘

The médels grouped togetner above can all be described as having
;ﬁe form

~



maximize £(y) : - : %.D
LA
subject to Ay=b : - - (4.2)
and _Z_<_y§§ - (4.3) g

where y 18 a vector of release and eturage decision_ variables. . The
linear system of equations (4.2) is a set of fIBW*Jgeneervation
‘constrainte with the vector b a known set ofvexogeneus inflows. The
inequality constraints (4.3) place bounds on the flows telserve flood
control, nnvigational, fishing, recreational, physical constraints and

+

other purposes. The‘greaf majority of the effort in construction of
. . - . SN

models of the form (4.1), (4.2), (4.3 1is invested in the formulation

ofi the objective function F(y). This step requires, first, the
selectiOn of an economic measure of/the benefit derived from the

system; second, ‘an approximate mathematical representation of the

selected measure; and third (usually>; an approximatic: to this is made

to nake it computationally manageeble.

The selected measure in TVA and Hydro—Quebec studies [49,63] was
the savings of thermal fuels that result from hydroeleetric generation.
' That is, theleeonomic value of a watt ofvnydroelectricity is the cost
that would, have been incurred had the watt peen' generated from a

-

thermal or nuclear plant inetead. In the ALCAN 'study [64], the measure

of benefit was the potential energy in the system at the end of the

planning period. In the Bonneville study {7,9,50,61], the measure was
a weighted sum of (1) the proportion of power load met with hydro;
(11) the uniformity of load deficits, and (iii) the violation in

certain - "soft” constraints. The energy production as a function of

v



volume of outflow is taken .as a constant [7 9, 50 ,61] or as: piece-wise‘

polynomyals, with two- pieces, one piece represents energy production;

Vfrom outflows that are directed entirely to the‘ turbines, }the‘_other

'pieCe' 1s needed to account for spills; 1i.e. situations in('Vhich e

outfloWs’Aexcaed turbine capacities. The ALCAN research team [64]used
cublc splines to smooth out the bfgaks between the two pieces.
:irih,_ solﬁ{ion approaches in all the nonlinear programming models

involve the’ l{mination of some of the variables by means of the

equality constraints (4'2) A, search direction ‘in terms of thej

= <L

remaining variables (or a subset of the remaining variables) isj then‘.

computed and used for locating an improved point.
The nonlinear programming algorithms that have been applied to the

multireservoir model are fairly efficient in comparison _with' the

dvnamicﬁ programming approaches. ' Nevertheless, 1t does not appear

likely that the nonlinear programming methods are adaptable for
handling stochastic inflows, because thevcomputational effort already
expended in solving the deterministic problems is quite large using the

nonlinear programming technique.

Dynamic programming approaches [14,15,16,18,21,51,52,62] to the -

multireservoir models have as much difficulty as the . nonlinear

programming approaches in obtaining the stoctastic inflows solution.‘

" Linear and nonlinear dynamic programming solution methods were used
with relatively small systems, or after dividing the given system into

'small parts, or after applying different methods of aggregations. .

The ‘aggregation of a multireservoilr system to a single equivalent

reservoir and the = use of aggregation/decomposition methods
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[14,15,16,17, 18A55]. assured‘a satisfactory solution for a system where
reservoir and inflow characteristics are sufficiently =1imilar to;
justify aggregation into a single reservoir and hydro-plant model.

' Other methods [21] have oversimplified the problem by converting
the highly nonlinear problem into a linear one and solving it wusing
linear programming techniques. : ‘Others" [26] have, used quadratic

Ty

programming techniques. .
@ Christensen and Soliman [23 24 31, 32 33,3435, 38 39 41] have wused.
functional analysis and the minimum norm formulation to solve _the

multireservoir hydro-power problenm.for r-lTatively small ~systems (six

ffeservOirs maximum). They solved the problem considering the WCF as a

cdpstant multiplied by the net "head with purely linear type .constraints

and  applied it to two reservoirs in series [24], then to four

reservoirs on three independent system flow rivers [31], and a four

reservoir system where each two reservoirs are 1in series on two

independent - stream flow rivers [32]. Then ‘they gsolved the problem
considering the WCF as a linear functioﬁ?of the storage with linear

3

'type constraints while the objective funétion is the sum- of hydro-

v

electric generation plus the expected future return from the water left’

in storage at \the end of the planning period. . They applied the

* algorithm to a four—reservoir system where each two reservoirs are on

an 1independent river [23} and to a six regervolr system where each two -
reservoirs are in serles on three independent rivers [38]. They - also
considered the WCF as a quadratic function of the average storage with

linear type equality'and inequality constraints and applied it to two

reservolrs in series [33], to four reservoirs each two in series on two
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independent river [341, and to a.six reservoir system ﬁhere each two .
" 1lie omn an.ind endent river. They then solved the problem when the
/)/;b;e::i\f:;jfb/to obtain a monthly generation equal“ to a certain/f

percentage of the total hydro-generation of the whole year. The WCF

is taken as a quadratic function of the storage at the beginning of the
month (the petiod); and the algofithm is applied.to_a . four-reservolr
system each two Situeted on an independent river [41]. Then they

| < considered WCF as a quadratic function of the,aVerege storage\[39] and

applied the technique to a slx-reservolr system where each tyo

reservoirs are loeeted on an independent tiver.

4.2 Multiobjective Water Management

The main objective of water management here is tP answer the
. o
question: how much water should be stored in and rele%sed.from each

reservolr of the given system in each;period of a given /horizon so that

system power output is optimum. In spite of this i mited scope of

18

decisions, a formidable degree of mathematical comnle ty can arise.
With the models under consideration, the conseq/enééf of a chosen
! .

set of valqes-for the decision'variables are measured with a scalar-

valued objective function. Thevcrum of cheosing specific objective

function ﬂs to sufficiently aid the plsnning‘and opetation of water

resource ﬁbystems. There ere four impottant /eharacteristics of
/

resetvoir‘operation problems that are of great imfortance._ The ability

; ~

‘or inability to handle these four characteristics is usually a Dbasis-
for jud ing different models and algorithms. Tve characteristics are:
1. the existence of multiple relervoirl in the system under study,

2. the need for integrated system managemént over multiple time

-



k

\’ . . ) < .

periods, ‘ | ~
3. the nonseparability ih tﬁe méasurement-of the system benefits, and
4, the stoéhastic nature ?f// ogéﬁous inflows.
o 1t ;s worthwhile to mention that the specification of multiplg
reservoifs shouldvperhaps be replaced by mutliple valleys with multiplé
resef&oirs'per valley. The poinf here is that one would desire a model
which can handle a éomglete generality 1h the topology of Ehe reservoir
systems. Some: of the multireservoir‘models in Ehefliterature Are.'in
fact limited to a siﬁgle valley (resefvoirs in series) or to a single
réservoirbper valiey (reservoirs in parall;a) [60].‘* |
0f great importance 1in assessing ﬁhe strength of the models
conside:ed is whether or ﬁot the single objective function is allowed
to be rather general-in form. ° The specific test offgenerality usually -
used 1s whether or‘ not the single objective function can be
ponsgparable.  >A 'twiée differenti;ble function f£(y) 1is nonseparable
(general in form) 1f for some value of y the Heséian matrix [azf(y)/ayiayj]
has somé: nonzero ‘off-diagonal terms [60]. The ' importance of
nonseparabiliﬁy. is that it accoﬁnts for the'economicninteractiéné of
the éffects that different decision vaiiables have on the objective
"function. In the  1literatuye of microeconoﬁics and 'ﬁtility. theory,

separability is called addit ity.

4.3 Long-Term Optimal Operation of Hydro-Power Systems

The ppgimal operation of hydro-powerbsystems can be divided into
X

several subproblems which are more computationally manageable and eaéh

' .subproblem provides the answer to a different aspect of the whole

problem. The different subproblems that can be distinguished are as
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follo&s:'

4.3.1 Long-Term Subproblem
| 1) Long—term production planning yhere the hydro—fesources‘
utlilization is optimized over time periods of 2 to 3 years.
11) Seasonal production pianning; the optimization period here
is 12-15 months.
11i) Momnthly and‘half—monthly optimization planning for a one
to four year horlzon, the optimiz§tion period 1;\a hQnth or half a

month or a combination of both. .

4.3.2 Medium-term Subproblem
i i) Weekly production ﬁl;nning; which provides the mode of
usage of the available results from the léng-term planning - to assess.
the value of reservoir levels at th;,end of the horizon. They time
period of interest is one week. |
ii) Daily production planning which'provides.the answer to two

major decisions; wunit commitment and economic dispatch. The time

period of interest in this case 1s one day.

4.3.3 Short-Term Subproblem

. Short term economic diepatchbproblem is to detérmin;h the )
1oading of+ all generating sources, 'active and feaétive that are i; '
service at regular time iégervalé. This is eéaentially a static
optimization éroblem, requiring recalculation at 10 minute to Half hour
intervals. |

4.4 E:dro Generation

-

The electric power generated in a hydro plant is a function of

discharge througﬁ the turbine and the head. The head is the differeﬁce

[
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between the water level in the reservoir and the level of tail wdter.

—

The water level is a fhncti%n of the amount of water in the reservoir.

\
In practice such a relation is always defined for every reservoir° ‘The

N
level of the tail wateér depends on both “the discharge from the
reservoir and the level of the next reservoir. The maximum discharge
through the plant is;defined by the maximum power production or the
plant, and the excessive flow beyond thisvdiscbarge is called forced
spill. ’ ', ‘ (

The hydro plants on the same river are hydrologically coupled, and
tbey must be operated according to the regulations along the river.
These requirements define tbe acceptable rangeiof the flow through the
‘river whfch consequently defibes the amo#mt of energy production from

each plant along the; river. The hydro plants with short or long—terh

reservoirs can take best advantage of the available energy by saving

v
'

this energy from the low electric)demand periods‘to the higin electric
demand periods; and from the high at-site inflows periods fo the low
at-site inflows periods. The hydro plants withlsmall Oor no Treservolir
must use this energy as 1t is aveilable. The utilization of availeble

-

energy iam a river is optimized with respect to all the plants in the

i
J

river. | If there are different owners along the river, such an overall
optimiéition is complex and sometimes imposkible.

The long—term and most of the short-term reservbirs breek the
hydrologic coupling along the river due to thelr storage capability.
These reservoirs decouple, to a certain extent, the 7pstreaﬁ plants

from the downstream onés. In some publications [64] they are

treated« as completely separate  and independent from the
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upstreém -plants; and-the river in such cases is divided into several
independent segments. Then they solve small problems rather than
solving a large one.

4.5 Hydro-Plant Mpdeling for Long-Term Operation

H&dro power plants are classified into pumped storage plants and
~ conventional hydro plants. The conventional hydroplants are classified

into run—of-river plants and storage plants.

n

4.5.1 Run—-of-River Plants

c%

2

The run-of-river plants have little storage capacity, and use
water as it becomes availabie, water not utilized is spilled. The Mwh
generated from a run—of-river plant is equal to a constant times the

discharge through the turbines

Gk’i = CkUk,i - MWh | (4.4)
where Ck 18 a constant measured in MWh/MCF (MCF'IOéft3) and referred to

as the water conversion factor (WCF);>U is the discharge through the

k,1
\tﬁrbiné for plant k during a périod 1 in MCF; 1 is an index used for
~ the period number; this period is considered here as half a month (from
14 to 16 days)..

4.5.2 Storage Plants

[l

Storage plants are vasgociated with reservoirs with
‘significant stdrage capacity. “In périodg'with_low power requirements
water ~an be stored and then released when ﬁhe demand is high.

Modeling of storage plants, for a long-term study, depends on

the water head variation. For hydro plants in.whicg the: water head
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variation 1s émall, the MWh generated from: the plaﬁfs can be considered
as a constant times the discharge, as given in equation (4.4), and this

; , -
constant 18 equal to the average number Gf MWh generated during a
.period 1 by an outflow of .one MCF. ﬁu;, for power systems in which the
water heads vary by a considerable amdunt, this assumption 1s unot
valid, and the WCF, MWh/MCF, varies with the head, which itself 1s a-

- function of the storage. In this chapter, the MWh generated can _be

Written\as
k 1 =E{[a +1/28 (xk - l+xk i } MWh (4.5)

where o and B, are constants — these can be obtéined by least-squares
curve fitting to typical‘plant data available; and xk,i 1s the storage
of plant k at the end of period 1 in MCF, the symbol E stands for_ the
expected value.

Equation (4.5) 1s a function of the discharge through the
turbines and the average storage between two.successlve: perioda i-1 and
i, ¢to avoid underestimation for rising water levels and overestimation
for falling water levels in the MWh generatgd:

4.5.3 - Pumped Storage Plants

A pumped storage plant is associated with upper and lower
rééervéirs, - During' 1light load periods water is pumped from the lower
to the upper reservoir using the available energy from other sources as
’sﬁrplus. energy. During péak load the water stored in the'_upper

reservolr %3 released to generate power that saves fuel costs of the

thermal plénts. The pumped‘étoragelplan; is operated until the added
\ .



96

\

pumping cost exceeds tpe saving in thermal costs.

' - B
4.6 Mathematical Model and Optimization Problem

« The mathematical meodel 1is based on' the ﬁollowing types of

N . 7

rglafionships and data: ’ .

-

1) basic relationships between the system vaiiables, ~

i1) water conservation :elationship&,
1): relationships which specify the éenerated power for given flows
t
‘and heads at each plant in the system, &

iv) initial water levels {n\all system reservoirs,

v) side flows ;gto the system for all time periods/
)

vi) constraints on generation, flows, contents, and draft. (Some of
these COnstraints are hard and others are sbft, and this 1s taken into
account by the solution mé*hod.

The time period usgd in'tpe modeling is-haif a month, therefore
short range hydraulic and electrb?eéhnic effects are not taken into

consideration.
L

. The H}draulic system model is based primarily on tables derived

from field measurements and on water balance equations. The latter are

o

simple relatiomnships between contents, total discharge and inflows. The ,
tables consist of the followigg for each project (Chapter III):
i) Tailwater elevation as a function of total(discharge.

i1) Forebay elevation as a function of reservoir contents.

K X . ‘
A version of this study has been presented as a study repo%F #1 to

the'B;P.A;’/Company [Ref. No. 11], and a version of ‘this study' has been

3

4 f
submitted to.Can.Ehg.J.) June 1987 [Ref. No. 42].



. 111) Peak pouerﬁas a function of head.

»

-~ 3
iv) Water—to—-energy converslon factor as a function of the

effective ‘head and turbine discharge (total discharge minus spill), and
- v) Seasonal constraints on minimum and maximum storage, outflow,
R
and forebay elevation and/maximum draft rate (refill and drawdown).

The constraintg// reflect -hysical limits, bank erosion
considerations, coordinetion agreements among various ownerships,
system ssfety and multipurpose requirements such as irrigation,v

’navigation; @;shlng, flood control; water quality, and recreation.
'’ The expected evaporation and percolation losses are sccounted for- .
" by deducting them from the forecasted st-site inflows.

4.7 §Zstem Under Study

The system under study eonsists of'n‘reservoirs on the different
branches ‘of a river in an arbitrary topologrcal configuration mbich
represents a genersl case. | At each reservoir there ds_a power plant
connected’in cascade through power-lines to.the.neighboring system . for
energy exchange, Figs. 6 and 7. |

To streamline the presentation, it will be assumed : that all
plants have\ a variable forebay elevation (1.e. are adjacent to a
reservoir), that there 18 an equal number of reservoirs’and‘ plants,
,that all blsnts-have a storage and that all reservoirs are in the same
/71 . ' .

valley.
The objective of this study is to determine how much water should

be stored in, and ‘réleased from, each reservoir of the given gystem in

each period of a given hogizon, so that the system outpug ig optimum.

»

N\~
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_f4.8 OpfimihationIObjectiQe and Constraints | - ' R
. Giyen | a hydroelectrie system in anv:,arbitrary topolbgical
\eonfiguration, the problem isvto‘find‘the.optimal release as aofuncrionﬁ'
of time over the given horison;.subject to rhe foiioqinggocbnditions:
1) The torai 'generation from thatisxsren'o#erﬁiiﬁenhoptimizatiOnb
noriZOniis a maximum. L o | .
ii) The:fWCfaiforhyiﬁ.reseqvoir plant is considered as a .linear-. -~

-vfunction of the storage, i ef

__WCFk’»i-akH/zsk.(xk,i+xk,i_l.) e (4.6)p

o

‘ iii) The WCF for run-of-river (ROR) plants is a conatant. .
v éf iv) To satisfy the constraints 'thar‘reglect physical limits, bank
erosion, coordination agreement ' among .various ownerships_l and
multipurpose ‘requirements su%P as irrigation, .navigagidn,»'fishing,
flood control, water quality,r:recreation, and other purposes igiany,'

the plant variables must satisfy the following inequality constraints:.

a) upper and lower bounds on reservoir contents,

5 <o ‘ 4.7)

3

~

where Ek 1 and'Ei y are defined to satisfy physical 1imits;”coordination
’ N ’ ¢ - )

agreements, and multipurpose requirements on reservoir\contents.

*. b) upper and lower bounds on reservoirs and ROR plants outflow,

B, 1%, 1iUk 1 | - AL
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Hk,i andJ Uk,i are defined,?o sat;sfy the sysFem safety, the
multipurpose stream use requirements, and coordination agreement on
total release.

4.9 Problem Formulation

1) Each station 1s reduced to a single equivalent inbut/output

curve to reduce the number of variables in the optimization process.

11) The water conservation equation for each reservoir may be

adequately described by the continuity—type-equation,

N1 ™, 11T INE gt ) Ve, 1 %,1t rg 5,1 5,1
' - S R )

4

where,Rk'is the set of plants immediately upstream of plant k,
INFk i’.1.51 the expected natural inflow for plant k during a period 1;
’ . . o

the expected natural inflows are conéidered stétistidally indpendent
i .

. -

random variables, and
S; 1 " 18 the spillage of plant k duriﬁg a period 1i.
’ . . -

The spillage usually causes a negative generation since it ralses

the tallwater elevation which eventually decreases the effective net

'“.héad. 2 net effect is dependent on the design of the hydro-plant.

In this chapter, the ﬁegative generation of the spillage ﬁill_ bgl

. -neglected.

1i1) The storage plants dictate how the 1mmediéte downstream ROR.

plants operate éince in the ROR plants, the total release 1s equal to

‘the total at-siﬁe‘/inflows plus the total releaée.frbm the . upstream

. plants; and it has nd,significépt storage. , S
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iv) Irrigation, evaporation, and percolation losses are accounted
for by deductiﬁg them from the forecasted side inglow. In some %cases
ti. output of these deductions are negative numbers; in such cases the
.-planner has to wait for the'release%;rom the upstream plants or use the

available storage to satlsfy the minimum flow requirements.

v) In mathematical terms, the optimization objective is to find

Uk,i that maximizes
m g ' i
I N L T LY (4.10)
i=1 k=1

subject to satisfying the equality constraints given by equation (4.9),
and the inequality constraints given by equations (4.7) and (4.8),
using the linear approximation of the-WCF, equatién (4.6). Symbols m
and n stap@s for the total number of periods in thevgiven horizon and

|

the total number of plants, i.e. the storage plants plus the ROR ones.
) , * . », -
4,10 Minimum Norw Formulation

Substituting from equation (4.5) into equation (4.10) for G

X,1 we
!
get:
m n ) .
J'.Z Z LBl Uy 41/28, Gy b g 000 (1 (41D
l—l k=1 ) -

Then, substitutingifrom Eq. (4.9) into Eq. (4.11) for x, 4 we get:

A version of this section has been presentgd in the North American

power Symposium [Ref. No. 4].

>
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m n . .
e T 1/70 - 25 z L. .
e T S L PLLTA . N I ) U1,

121 k=1 | TR

(4.12)

where

b, 17 H/28 (INFy (+ ] Sr,175k,1) (4.13)

reRk

A

The  ugmented cost function, ' J, 1is obtainedlby adjoin_ng to the
cost fuction '(4.125 the equality constraints (4.9) via Lagrange
multipliers and the 1neqﬁality conztraints (4.7) and (4.8) via Kuhn-
Tucker multipliefs; one.thua obtains:

J*E(

n

! (o 17Uk g

: +8
1 k=1

Uy

I o~

. k.Uk,i.xk’i_1+l/2_.ﬁk.

¢ I Ur, 170, 1A 1 Oy e VINF (+ ] Ve, 17 %,1

rERk naRk
+ )y s_.-S . )- i(U LU - (v, T, )
r,1 k17 k1 STk, %1 Uk, 17V
: rERk Y )
3 4 — ' \
o @™o, o B R PO L Bs

In the above equation Ak 1 1s a Langrange multiplier and wi}l be
b4 4 .

determined 1in such a way that the corresponding equality constraints

1 2

must be satisf?ed. ek,i s ek,i s

e

K 13, and e 4 are Kuhn-Tucker
: 3 .

. k,i
multipliers. They are equal to zero 1f the constraints: are noﬁ
violated and greater than.zero if the conmstraints are violated."

Equation (4.14) can be written in the following vector form
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~ m

J=E( ) [bT(I).U(I)+UT(I).B.i(1-1)+l/2.UT(I).
I=1
B M.U(D-AT (1) x(1):AT(D) . x(-1)0 T (D).
INP(D)+A" (1) M.UCD+ (1) .M.8(D+6 (1) .U(D)

+ezT(1).x(1)]} | (4.15)

In the above equation

b(I)-col.(bl’i,bz’i,...,bk’i,...,§n’i) (4.16)

U(I)'col.(Ui’i,Uz,ii...,Uk;i,...,Un’i) (4.17)
B -diag'(el’BZ""’Bk"f"Bn)_ . 7 o (;.18)

X(D=col. () 4%y yseeesX goeresZy 4) | (4.19)

A;I) -col.(xlli,xz’i,...,Ak’i,...,xn’i) (4.20)
@
IN?(I)'col.(INFl’L,INFZ’i,...,INFk’i,;..,INFn;i) (4.21).
‘ .
1 1. 1 1
61(1) col.(el’i ,62;1 ""’ek,i ""’en,i ) | (4.22)
v 2 2 2 2, | |
82(.:.) COl-(el’i 302,1 ,o-o,ek’i ,--o’en’i ) (4.23)
and . ’ ¢ '

,,rr.‘ \
e

i
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1. 1 2
Bk,i ek,i ek,i v ‘ (4.24)‘

(4.25)

£

M Is an nxn matrix where the diagoqal elements are equal to -1 and the
other elements vary between 1 and zero depending on the topological
afrangemeﬁt of a glven reservoir set. |

Example:

the M matrix for the topological arrangement give in Fig. 10

~ -1 0 0 0 0 7
0 -1 0 0 0
M= 1 1 - 0 0 (4.26)
0 r 0 ‘ -1 0
L o v 1 1 -1 ]
Constant terms are dropped from Eq. (4.15). “ ~._

~N T
\’.\\

Employing the discrete version of integration by parts so that¥\

a .
L X(I)=X(1)+X(2)+...+X(m)
I=1 : -

= X(0)+X(1)+. . .+X(m)-X(0)

m
= ) X(I-1)+X(m)-X(0)" (4.27)
A I=1 o

equation (4.15) can be written as

)
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Fig. 10 Schematic Diagram of a General Configuration of
Reservoir Topology for 5-Reservoir Sys‘gem.

»
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F=E(27(0).X(0)-3T(m) . X(m)+4, " (m) . X(m)
. m
- 9, (0).X(0) + T [bN(D).0(D=0%(D).g.
I=1

x(i-1)+1/2.UT(I).B.M.U(I)-XT(I—l).x(I-l)
T | T T '

+ A7(D).X(I-1)+3 " (I) . INP(I)+A (1) .M.U(I)
T, . T T .

+ 2 (I).M.S(I)+el (I).U(I)+92 (1—1).x(1f1)]} (4.28)

Defining the following vectors

# -~

WH(D=[X"(1-1)  uT(D)] , (4:29)

RT(D=(M(D-A-140,(1-1)  b(D4UTAD+e (1] (4.30)
and “ -
o | 1/2.8
(D= |~ o (4.31)

- 1/2.8 1/4.8.M+1/4.4" . 6"
one obtains the augmented cost function

7=E0," () .X(m)=2" (m) .X(m)

+
I ~18

WD . L. WDRTE WD) (4.32) -
I , .
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. constant parts were dropped from equation (4.32)\

. \ ‘
Equation (4.32) 1s composed of a boundary part and a discrete

Y

integral- part. The two pafts are independent of each,other. So, Eq.

(4.32) can be written, as

2

J=Jl+J2 \ ‘ | (4.33)
where
- T T Lo
-0 J1=E[62'(m)ix(m)‘k (m) .X(m)} (4.34)
A m T
J,2El ] (W (D).L(D).W(IHR™(I).W(I))] (4.35)

I=1

If we define the vector Vv(I) such that

V(D=L (1).R(D) } 436)

~

then, the augmented cost function, J2, can be written as

~ m
JZ'E( Z

I

[(W(I)+1/2.V(I))T.L(I).(W(I)+l/2.V(I))
l . é

- 1/4.9(DLL(D . (D)) : T (4.37)

V(I) is independent of ﬁhe_variabléEQector W(1). Dropping the constant

terms from Eq. (4.37) we get

~ m
3,7E( ) [(H(D+1/2.9(DY.L(D) . (W(D+1/2.9(I)]) (4.38)
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Equation (4.38) defines a norm in Hilbert space, hence we can write Eq.

'(4.38) as

J,= [ [W(D+1/2v(D) || (4.39)

L(I)

4.11 The Optimal Solution

-~

To maximize J in Eq. (4.33) we will maximize each term separately.

S

~

Max.J =Max.Jl + Max.J2
[X(m),W(I)] [(X(m)] (W(D)]
. " ’ '4\
The maximum of Jl'is achieved when
8, (m)=A(n) = 0 N (4.40)

.

Eq. (4.40) givés the value of Lagfange multiplier as a function of the

Kuhn-Tucker mulE}pliers at the last period.
s
The maximization of Eq. (4.39) 1s mathematically equivalent to

o o, .
minimizing the norm of the same equation. The minimum of Eq. (4.39)

is achieved when the norm of this equation is equal to zero; therefore,
E(W(D)+1/2.%(1)) = 0 : ' (4.41)

gubstituting from Eq. (4.36) tnto (4.41), we obtain

N

| R
E{R(I)+2.L(I) WD) =0 | (4.42)

The maximum of equatlon (4. 39) assured when E

‘ {'w(1)+1/2 V(I)} =0
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Eq. (4.42) 1s the condition of optimality. Writing this equation

explicitly and adding the equality constraints, we obtain

-

E[A(D)=A(I-1)+e, (I-1)-8.U(I)]= O (4.43)

‘v

E[b(I)+MT.A(I)+el(l)+B.X(I-l)41/2.B.M.U(I)

A

+u gl = 0 | | (4.44)
R

E[~X(I)+X(I-13+INF(1)+M. UCT)+M.S(I)] = 0 (4.45)

E[-b(I)+c+1/2. 8. INF(I)+1/2.8.M.5(I1)] = 0~ (4.46)

-0, (I)+e, (I)~-e,(I) = 0 (4.47)
= 8y(I)t+ey(I)-e, (1) = 0 (4.48)
where -
. ) \ ;
Ot"col.(al,otz,...,otk,.... ’O‘n) . . (4.49) .
1 1 1 1
= . yose .o 4.50
el(I) col (el,i ey 4 e g LI ) ( > )
. . Rt .
4 ‘ 2 N
N ez(I)"col.(el,iz,ez’iz,...,ek’iz’,..‘_.,en’i ) (4.51)

. 33 3 3, :
e3(I) COl'(el,i ’eZ,i ""’ek,i ""’en,i ) , ,(4'52) -
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4 « 4 4

- 4 .
e4(I) col_.(&%’i ’e2,1 ""’ek,i "f"en,i ) (4.53) ,
/
We also have the following limits on Kuhn-Tucker values
o~ n -
oone Y, 12%,1
1 = J . T ' '<‘
ek,i Z , if [ (4.54)
) A >0.0 U <Yy
f 0.0 Uk,isuk,i
2 oo :
’ i
( >in Uk,i>Uk,if
4
- 0.0 NG
3 :
. = < .
®k,1 I if . (4.56)
L i
200 “ X 1% 1
- fT0.0 'ka,iS?k,i '
L . : ' |
.t 4 < (4.57)

-

>0.0 - xk,i>xk,1(

Equations (4.43) to (4.57) with Eq. (4.40) completely apecify - the
optimal solution. |

4.12 Algorithm for Solution

“Given a system of n reservoirs, the expected values of natural
inflowé INFk,i for each plént k=l,...,n, at each period i!l,}..,m, the

initial storage Xk(O) (all reservoirs must be full at the beginning of

E3
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cp, Xk(O)'ik(O),‘ unless drafting for minimum flow or flood control),
tables which specify the relationships betwelen the variables at each
plant in the system, and different kinds of constraints.

1) First: assume initialyvalues for Xk 1 k=l,...,n; i=1,...,m then,
R . 3 .

>

check the limits on:Xk 4s 8O that
. bl

kN

2) Start with spillage Sk i equal to zero and calculate Ui 1 using Eq.
b >

(4.9), the water conservation equation starting from the end reservoir
" or ROR plant and then go to the next down-stream plant till the end of
the branch taking one brznch at a time.

3) Check the limits on U
: k,1

=T
if Uk,i<gk,i let Uk,i Lk,i and calculate a new Xk,i

if Uk,i>Uk,i let Uk,i-Uk,i and calculate a new xk,i

~

4) Check the limits on Xk i .

1f Xk,;<5k,1 a) 1ec2£k’if§k,i
b) calculate the corresponding value of Uk 4
- b

. 1
c) 'let ek,i >0.0 \

X 0%y @) Lot X 7Ky

b) let Uk,i-Uk,i

c) calculate the corresponding value of Sk

2 ,
d) let ek,i >0.0

,1

If Xk , and Uk q satisfy the boundary constraints then the
oMy ’ -
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corresponding values of Kuhn—Tucker multipliers will be set equal to

zero, Eqs. (4.54) to (4 57).

'5) Calculate the values of Ak(m) trom Eqs. (4.40) and (4.48). ya
6) Calculate{%he values of Ak(i) from Egs. ~(ﬁ743) and (4.48) backward

using‘the;values of Ak(ml from step (5).

7) Detergine the new updeted value of Xk i_l'using Eqs. (4.44), (4.46)

and (4.47). Then adjust any violation on Xk 4 so that X iﬁxk LSXk i

8) If the solution converges toward a'petter solution -(this can be

observed by calculating the objectine function), then ::ntinue (go to

step 2) until no significant changes occur from iteretion to iteration.

If the solution diverges then, first stop the calculation. Second use

~ ~

the results to modify the’controlling soft constraints, k i and Xk 1
which will be discussed 1in the next section. Then,_ repeat the
calculations.

4.13 Global Maximum

Since the starting point has a considerable influence on the
number of iterations leading to a convergent solution which ‘18 not
guaranteed to be the global maximum, ana since the system different
starting points can be infinite even for experiencci‘gystem engineers,
it 1is eseential to search for a'way to cope wféﬁ this general problem

-which has faced all nnnlinear optimizers until now.

Techniques that use trial and error with different. starting points“
[5,31,32,33,34,35,37,38,39,40,41,45,46] may be acceptétle for a small
" number 6f. reservolirs and ROR plante, up to 6 projects, but these

: R :

techniques cannot be used for large systems such as the BPA " hydro

system.
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The proposed technique searches for the optimum solution .through

the expected or recommended discharge. This is done by using two" new

qQ ~ /
values for maximum discharge and maximum storage, and Xk , for
. k,i ,1

all reservoirs durlng all periods. The proposed technique will deal
' ~ ~ . 45\-9 .
with these two new values, Uk 1 and Xk 10 28 the new maximum values of
. ) ’

the discharge and reservoir conﬁent. These new values will be

\

considered as a soft comnstraint i.e.,\athe solution algorithm may omit
any or both at any period if the recommended values cause any violation
of a hard consrrglnt or cause a spill at that period. In this case

(when the system violates aﬁy or both of the recommended soft

constraints,_’Uk 1 and Xk'i) the system will remain at the given values of
’ » s : '

maximum discharge, U , and . maximum reservoir content, Xk .- The
k,1i o1
recommended new soft comstraint values should be within the acceptable ‘.

range of the hard counstraints, i.e.,

Y, i~<-Uk <Y1

and

' ) . oy
—kii 15- i,1 ’ i

¢

~

The values of Uk 1 and ik 1 are defined by the programmer who
supposedly has some idea about .the whole system or parts of the systes.
.The programmer in this case will suggest the ranges which he expects
contain the global maximum during that - horizon; ip ohoosing these
ranges he may'use any. previous studles,’ anyvreeommendarions, and the
supplied soft oonstraits from different ownerships. But, the optimizer

should be cautious in endiﬁg his recommended range with a one"ipgint
. i f - .

/
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Storage for the Nine Reservoir Systém

Table 1

'l

Water‘Conversion Factor as a Linear Function of the

Plant °

WCF=0+8x MW/MCF.

No. a _ B
B 9.102 6.712
C 2 7,410 . 3.020
3 2,090 4.200
4 3.1367 1.7333
s 0.948 3.010
6 0.285 3.670
7 4.950 7:150
o8 5.303 ©1.300
9 ©1.7833 7.830

——
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Table 2
Maximum Discharge Capacity of the Power House for Each Project

. of the Nine Reservoir System

.Project , Max.Discharge

No. (CFS)

i -165,000.0
2 | 56,600.0
3 - 225;206,0
4 216,320.0
5 | 40,700.0
6 44,600.0
7 | 998.000.0‘
g 31,200.0
9 : ‘ ~232,000.0




) (3
Table 3 N

Minimum Discharge Requirementd for each Project of

the Nine Reservoir Systém-_‘

Project . Min.Discha;ge >
No. B (CFS)
1 | 3,000.0
1 2 . 0.0
3 A : 5,000.0
4 : 3,000.0
5 } 100.0
6 500.0
7 %
-8 . 50.0
" 9 xk

* Varies dufing the year, Table &

- *% varies during the year, Table 5

115
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Table &
Minimum Flow Requirement for Project No. 7 of the

Nine Reservoir System

Period Min.Flow
from to . (CFS)
Apr. 1 Aug. 31 30,000.0
'Uk
Sept.1l " Dec. 31 50,000.0
Jan. 1 Feb. 28 30,000.0 o
Mar. 1 Mar. 31 50,000.0
~
Table 5

Minimum Flow Requirement for Project No. 9 of the

Nine Reservoir System

Period o Min.Flow

\ from . o (CFS?
Dec. 1 Peb. 28 12,500.0

Mar. 1 Sept.30. 50,000.0
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Table ¢
Maximum Storage Requirement for Each Project of the

Nine Reservoir System

Project . Max.Storage

No. o (KSFD)
1 6,073.0
2  557.0
3. 3,579.6
4 '4 ~2,510.5
5 : 705.8
6 - 296.9
7 2,6014.3

8 ' 341.5

9 . 269.7
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Table 7

-
g}nimum Storage Requirement for each Project of the

Nine Reservoir System

Project - Min.Storage
No. (KSFD)
1 | | 543.8
2 N 0.0 .
3 . 0.0
4 | : 0.0
5 : o 0.0
6 | 69.0
7 o 0.0.
8 0.0
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Table 8

Expected Natural Inflow During One Dry Year (24 Period)

e}

For Each‘Project of the Nine Reservoir System

119

Period Expected Natural Inflow (MCF)

Reservoir Number

Period # 1 2 3 4 5 6 7 8 9
July 1-151 76959;;30197 31663 27167 13219 24997 74639 3745 45140
July 16-31 2 82090 32210 33773 28978 14101 26664 79615 3995 48149
Aug. 1-15 3 70333 15881 21893 10916 8300 10826 18379 1558 23333
Aug. 16-31 4 41706 11999 13068 6874 5253 8014 25355 1388 18873
Sept. 1-15 5 32734 11068 19808 8860 3135 8615 15625 892 16787
Sept.16-30 6 16405 5521 9907 7313 2464 5183 14082 715 27254
Oct. 1-15 7 10303 3328 12453 8903 2320 7359 19890 1192 35202
Oct. 16-31 8 10990 3550 13284 9497 2475 7849 21216 1271 37549 -~
Nov. 1-15 9 6376 2955 7281 5533 1295 5736 19711 531 46843
Nov. 16-30 10 6376 2955 7281 5534 1295 5736 19711 531 46843
Dec. 1-1511 5495 3214 3059 4199 810 4456 16282 570 38119
Dec. 16-31 12 5861 3428 3263 4479 - 864" 4753 17367 608 40661
Jan. 1-15 13 5586 4549 0 3525 498 2850 11479 493 35781
Jan. 16-31 14 5958 4852 0 3760 531 3040 12244 ° 525 38167
Feb. 1-14 15 3580 2020 . 750 3544 385 2262 12786 411 34320
Feb. 15-28 16 3580 2020 750 3544 385 2262 I12786 411 34320

"Mar. - 1-15 17 4121 1737 3149 3797 508 5272 23592 - 498 61914
Mar. 16-31 18 4396 1852 3359 4050 542 5624 15165 531 66041
Apr. 1-1519 2779 1500 6363 3827, 540 . 5574 25460 499 46122
Apr. 16-30 20 4764 2544 10847 6541 1173 10831 50076 1383 67490 -
May 1-15 21 22412 13738 26131 24186 5029 30917 101766 4741 98375
May 16-31 22 23906 14653 27873 25798 5364 32979 108550 5057 104934
June 1-15 23 71168 33048 37773 43874 11962 38342 104224 57222 119768
June 161?0 24 71168 33048 37773 43874 11962 38342 104224 57222 119768

N



p]
range (one feasible .point), Because this impliess a pre-estimated
solution for that part of the system during that périod‘which may not

guarantee a system global maximum.

Using this algorithm‘helps to assure a conversion in a .minimum
time. The obtimizer may have to modify the values of Gk,i and ik,i
after each trial especially those values which have. been violated until

he reaches what 1s believed to be the global maximum.

4.14 Nine—-Project System

The algotithm is used successfully to optimize the total release
of each reservoir during each period (half a month periods) for a nine-
reservoir hydro system, Fig. 6, for one dry year (24 periods).~ The

water converslon factor in a given period is taken as -a linear function

of the average reservoir content during that period. Table 1 includes

the values of the reservoir constants o and B, watt hour per.cubic feet'

and #att‘hour per cuﬁic feet square respectively. The definitiods of «
and B ére given in Egs. (4.55 and (4.6). The projects’ m;nimum and
maximum discharge during each period are given in tables 2 and 3.The
projects' miniﬁup and maximum content duriné each perliod are given 1in
tables 6 and(7. The expected natural inflows duriﬁg the 24 periods for

each reservolr are given in table 8. P

The program takes 0.4 seconds of CPU time on the MTS—-AMDAHL-5870

computer system for éach'trial-to.calculate the optimal operation of

the nine reservoir System, I have donme 7 trials.. After each trial I°

modified the values of Uk,i and xk,i'

The results show- a significant increase in tﬁe total system energy

<

\
.
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cépability. over any starting point and completely satisfy the system

N ’ i

constraints.

fables\ 9 and 10 contain the fingl rule~curves for the given
system. Table 9 includés the reservolr conténts during each period
of the optimization horiz;n ’(24 period). In table 10 total
generation and.average power during different iterations 1s given.

| Table 9
Reservoir Contents (MCF) During Each’éeriod of the Ope Year.
o Optimization Horizon

Reservoir Content '
Period Xk’i

RESFRVOIR No. ' '

1 2 3 4 5 6 7 8 9
524710 48125 309280 216910 60981 25652 225880 29506 23302
524710 48125 309280 216910 60981 25652 225880 29506 23302
524710 48125 309280 216910 60981 24881 225620 29506 23302
524710 48125 309280 216910 60981 25652 224850 29506 23302
524700 48125 303090 216910 60981 5962 225880 29009 23302
524700 - 48125 - 270440 216110 54432 5962 196590 28329 23302
484880 48125 261360 213110 48739 5962 188540 28126 23302
440870 48125 259990 210670 43289 5962 179230 27999 23302
392230 48I25 257000 204220 35085 5962 141890 27131 23302
329640 48125 256920 197710 31400 5962 125340 26251 23302
. 276180 48125 251480 189920 27216 5962 130330 25809 23302

. 222910 48125 246860 182420 24100 5962 135460 25218 23302
' 169500 48125 239040 174000 ' 20495 5962 134890 24311 23302
116540 48125 231170 161770 17003 6516 131410 23447 23302
61117 48125 220560 132130 12898 9586 153120 22459 23302
46984 40882 175080 121680 9180 13802 154910 21476 23302
46984 31494 122620 104490 5586 18042 174450 20588 22302
46984 25715 66262 48518 2140 25652 142270 19714 23302

DO b e e e et b e
VO\Om\JO\‘J\‘-\uNF‘O\Om\JO’\Lﬂ-&\WNP—‘

46984 8919 21566 0 - 0 25652 84932. 4i% 23302

46984 o 0 0 0 5962 120 0 23302
21 46984 0 "0 0 0 8292 0 0 23302
22 46984 0 0o 0 0 10777 0. 0 23302
23, 46984 31641 0 31690 0 15463 0 0 23302
24 - 46984 48125 0 0 0 25652 0 0 23302




l ‘Tabie 10

Total Generation During Different Iterations

of the Optimization Process

Total Generation

v

Iteration Energy Power
No. MWH MW
ey ]
1 5.9788E+04 - 6.8251E+00
2 539503E+04 6.7926E+00
L .
3 // 6.5606E+04 7.4893E+00
4 6.5609E+04 7.4896E+00
5 6.5609E+04 7 .4896E+00
6 6.5609E+04 7 .4896E+00
7 6.5609E+04 7.4896E+00
8 6.5609E+04 7 .4896E+00
9 6.5609E+04

%

7.4896E+00

4.15 The B.P.A. System

P

J

taken into consideration.

(see schematic diagram in Fig.

&.

122+

The 'problem of séheduling the hydro—-power bf the B.P.A. systeﬁ
8, . and section 3.3,‘ Chapter . III)
-considering a constant ‘tailyater"elevatiﬁg;and'a WCF és a - linear
fﬁnction%of the storage 1s presented in this"chabtts1 Maximum d;aft
‘constraints (nonlinear state dependent ingquality type of constraints)

have not been considered.;_:*Only linear type of constraints have - been
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The B.P.A. hydro systeﬁ consists of 37 storage projects and 51 ROR
. projects, - Fig. 18, The. storage capacitles of the reservoirs vary
between 3579.6 KSFD (Arrow), 2614.3 KSFD (Grand Coulee) to 1.4 KSFD

(Packwood L.): Also, the power housespcapacities vary between 6684.0 °
MW (Brand Coulee), 2686.8 MW (Chief Josephy), 6.0 MW (Monroe Stteket)

“to zero MW or no power house at all (Priest Lake). The maximum
+ discharge capacity %hrough the turbine elso Qaries between 375,000.0

CFS (The Dalles), 308;500;0 CFS (Bonneville), 14,576.0 (Mayfield) to
275.0 CFS (Packwood).

Because of the nature of some projects, 8lx projects have_ been
grouped 80 that each two are considered as one project. This ﬁill
'decrease the. number of calculations without any effect on the
iﬁdividuality of each of them. 'The first two projects are Packwood~62
and Packwood L.-63, see section 3.3.3 in Chapter III. Packwbod—62 is a
ROR project which has:

minimum outflow requirements = 0.0 CFS//

'maximum.outflow.through the tutbine - 275.0CFS

maximum power capability = 30.0 MW
aod generation versus outflow through the turbine are given in table
6, Ref. 74. . | o ;

,Peckwood L.-63 ip“a storage project woich has:
minimum outflow requirements - 10.0 CFS

no power house for generation

maximum storage capacity = 1.4 KSFD

-

Combining the two projects regsult in the one given in section 3.3.3,

l

Chapter III. As can be observed the combined ¢constraints satisfy both
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project constraints and it 18 easy to see from the results for the

combined project that the rule curves for each one can easily be

found. .
| The next two projecks are fost Félls and Cour D'Alene Lake.
Falls is a ROR project which has: ‘ L

a minimum flow requirement of 0.0 CFS
a ‘maximum outflow through the turbine of 4,700.0 CFS
a maximum power capability of 16.0 MW |
and a generation versus.outflow through the turbine as given in
98, Ref. 74. |
Cour D'Aléne Lake 18 a storage project which has:l
miﬁimuﬁ flbw requirement = 50.0 CFS
maximum outfloﬁ constraints =15,000.0 CFs

no power house for genmeration

and wmaximum 5torage éapacﬂty = 112.5 KSFD.

Post

t
table

Combining the two projects together result in the one given in section

3.3.53, Chapter III.

The third two projects are Col.Falls and Hungry Horse. Col. Falls

is a ROR project which has:

~

“\miniﬁum flow requirement = 0.0 CFS

no maximum fldﬁ constraints

no power house for generation
Hungry Horse 1s a storage?project which has:
. minimum flow ré&uireﬁent = 400 CFS

maximum flow constraints as given in Table 118, Ref. 74.-

' storage va. forebay elevation as given in table 119, Ref.

74.
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tallwater elevation vs. total outflow as given in table 120, Ref: 74.
‘effective head vs. WCF as given in table 121;,Ref;-7§.
Combining the two projects resuits in the one éiven'in section 3.3.64,
Chapter lII. As we can see, the combined constraints satisfy'both the
two projects constraints. Also, it is easy to determine the operating
: strategy of any of them from the results of the combined project.

In the case of Canal Plant and Corra_Linn projects, Fig. 9, a
special subroutine has been ‘written to suite their special
configuration #&hd the required distribution of water budget between
them, table 126, Pef. 74,

The computation process,is performed for 9% time periods (fonr
years) including 84 critical time perilods (periods 5 to 88 inclusive).

The results show: no hard constraint violation at all, very sm{%l
awnrat of spill results compared t9 the B.P.A. rule curves, and most
importantly, an 1increase Ain the/system total qenergy capability.‘of
4.522. Table 11 compares the average power generated by the B.P.A.
rule curves and the calculatedrones. In table 12, a comparison of
.the energy capability of the whole system during the total horizon. (42—
month critical period) between the B.P.A. rule curves and the

calculated ones 1s presented.
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. Table 11
A Comparison of the Average Power Generated Between the B.P.A. Rule’
Curves Results and the Calculated Ones Each Year For the 42-~Month *

Critical Period’

Period - Av. Power Generated for

from . to ' 'B.P.A." Caleulated
‘ ' ' Rule Curves in GW

Sept. 1, 1928 Tune 31, 1929 12,313 13,054
CJuly 1, 1929  June 31, 1930 11,730 12,419
July 1, 1930 " June 31, 1931 - 2,254 12,427
July 1, 1931 - Feb. 29,’1932 012,076 . 12,723

Table 12 o
A Comparison of the Energy Capability‘of the Whole Hydro Syétem
During ‘the Total Horizon (42-Month Critical Period) Between

" the B.P.A. Rule Curves Results and the Calculated Ones o

, s g 40, yidle Curves
Compérison-Bétweeﬁ; R i i
- Calculated
LS "
. Total energy (GWH) 370,361 387,088
‘Average power (GW) 12.0844 12.6301

% Increase 4.51622%

? 3

~
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4.16 mm

.A presentation has been,made to illustrate the solution for the
half month operating policy of a multireservoir-tree connected hydro—
: electric power system with what is believed td be one of the largest
- o

hydro—electric nonlinear optimization problems attempted considering

the number of variables and constraints.'.

The proposed solution has been done by a one-at-a-time technique.

‘It starts from the " end reservolr or ROR plant of each branch and

follows one branch at a time. - The problem 1s formulated as a - minimum.

r

norm problem and solved using functional analysis and the minimum norm
“formulation techniques. The time period used here is half a month;
therefore, short range hydraulic and electrotechnique effects are not
taken into consideration. |

The tree system‘is a general csse of the reservoir topology which
vadequately specifies any real system. It {8 an improvement over the
‘previous methods which deal -with independent rivers with sgeveral

LY

reservoirs in series or in parallel. Also, 1t 1s an improvement over
the methods‘which need essentially good initial estimates.

The basic feature of this new  procedure is 'its ab’lity to
automiﬁésﬂ!ly produce maximum hydro-generation while satisfying the

system constraints.

e .
The - technique overcomes the influence of starting polnts and is

able to combine methodology and experience to end with the systenm

global maximum.

-



CHAPTER V-.

- Long-Term Optimal Operation of Hydro—Power sttau

Pl

In the previous chapter the 1ong—te¥m optimal operation problém
for hydro—bowef systems with any arbitrafy topological configura#ion
(the treer'cﬁnnection fifé any arbitrary topological arrapgeﬁent of
hydro-systems) has been solvéd; All types of constréints are

'considered Vexcépt the maximum draft constraints (gonlinearv state
dependent 1nequality type constraints); The water con;ersion factor
(WCF). cénsidered in the previous chapter is a lineér function of' the

. 8
effective head (effective head equals the foréBay’elevation minus the

tailwater elevétion). Also. in Chapter IV, tailwate; elevat}on' is
considered. as a constant equal to the average value o% the - tailwater
variations. Moreover, Qe thave aséuméd that the storage is a lineaf
function of the forebay elev#tion. "Even though the study in Chapter iV
" 'has many a&vantages over previous studies, it still has many
, 8
inaccuracies caused by: 1) considering constant tailwater ele;étion,
i1) consideriﬁg WCf as a linear fumction of the ‘gtorage, 1iii)
considefidg storage as a linear function of forebay elevation; gﬁd iv)
considering onlyvthevlineardtypes of constraints. "

In this chapter the same problem will bé solved considering a much
more accurate and écceptable represé;tation of the syéteh. The WCF
will- be taken as a quadratic function of the storage, -and in section
5.2 we will see that thiq assumptionlis highly advantageous. .All types
of constraints will be considered including maximumbdrafgt coﬁstraints

(nonlinear. inequality type of constraints). Also, 1n this éhapter,

tailwater elevation 18 a variable and represents a nonlinear function

128
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of total release (discharge: through the turbine plus spillage plus
bypass) and 1s solved using a suitable cubic spline subroutine
(Appendix 1).° ln/idgition to the previous assumption forebay elevation
will be considered as a nonlinear fungtion of the storage and will be
solved for by using a sUitabl§ cubic spline subroutine. |
The resulting problem of scheduling the operation of a hyd{o—power
system is a formidable problem since: (1) its objective function is :
highly nonlinear, (2) the production energy function of the hydro-
plants 1is a non-separable function of the’ discharge and the effective
head which itself is a function of the storage, (3) there are 1linear
‘and nonlinear inequality constraints on both the state (storage) and
the decision (release) variables, (4) it 1s'a stochastic problem with
respect to the river flows, and (5) the availability of limited amounts
of hydroelectric energy, in the form of/stored Vater in the system
reservoirs, makes the optimal operation problem very complex because it
creates a link-between an operatin%'decision in a given stage and the
future consequences of this decision. “The complexity Of the operation
problem can easily be seen ifﬁweAknow thatggpne of the given.references
deal simultaneously vwith\(all' agpects -of he problemv (multiple
reservoirs, ‘multiple .periods, stochasticwinflows,l and nonseparable
benefits) described in the previous chapter. . l

Y

The solution model uses- functional analysis and the minimum norm

LY
s

formulation technique CChapter II), ' to search for ﬁthe changes in
. L . . ' I . s T ’
gtorage values for each reservoir, during each \périod that will

increasge the generation under the given criticaL;w%;er condition, with

a complete satisfaction of the system hard conétraints. There are two

/

types of constraints;‘ hard and soft. _g&nstraints Vhich derived from
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physical properties of the system and those which cannot be violated
under any circumstances are called the hard constraints. ' The rémaining.

are soft constraints and are expressions of desired operating raﬁges
Y

whichh can be violated to some extent. A toﬁ%lly feagible Bolut:iori,f‘*‘v

.-

(i.e., one which strictly satisfies all hard #nd softvconstraints) may -~

not exist for ail. pfobléms posed; ,.The ability of the proposed

technique to produce B maximum energy capab;lity whife satisfying the
system hard cénstraints 1s evident and the re;ults show much pfomise.'f

5.1 Background o

The prdblem of optimizing tﬁeﬁopgtatioé of a hydroﬁpowéf ;ystem ig
a stochastic nonlinear, discfete-ﬁime problem, It tﬁ.a problem ' of
allocating_ Iimite& fesources in a’ﬁiéhly‘cénstrained eﬁvironpent tﬁat
reflects: physical limitg, bank eroéion, ébordinatibn‘agreemeﬁts among
various ownerships, and multipurpose stream flow reéﬁirements such ag:
.irrigation, navigation, fishing, 'water'quaiity, flbod;coptfol, aﬁd :v
recréational activities. | '

Many ﬁechniques for obtaining thekbptimai opéfatipn for hydgo—):
power systems . have been developed and yet no comﬁletely 'sgtisfactoryo,
solution hés been obtained, since in every publication the pfoble% is
over-simplified 1in | order to cbpe with the compli;ations Q and
dimensionality of the system., Ahong these different approaches Fhat
simplify‘ the . topologx of the actqal systems We can Kﬁistingdish. the
following methods:

(1) ifhe'decomposition épprpach
(2) The aggregation approach

(3) The aggregation/decomposition approach

(4) The successive approximations approach
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Also, we can classify the methods of solution as follows:
: Y4 ' .

§§v5_ Dynamic programming methods
(2) Linear, quadnatic; and n;niinear programming methods
. AR .

(3). Discrete maiimnm principle methods
‘(4) Functional analysis and the minimum norm formulation methods
Furthermore, all these methods of solution can handle the problem as a:
(1) Deterministic ;Eoplém; or .

(2) Stochastic nroblem

5.1.1 . Simplified Syaten Topology

: 5.1.1.1° The Deconpoaition Approach

‘The procedure first builds a composite reservoir for all the

downstream reservoirs k+1,...,m, and then represents the whole system

-
.-

by two reservoirsmthe reservoir k and the composite resérvoir. The
: and to T

s ¢ . i v

: remaining reservoirs- 1,...,k—-1"have already been solved for and are
considered as a constant snpply of power to the'system (usually taken
as a negative 1load) and inflow to downstream projects. Finally, the

P

| problem of determining the optimal operating -policy of a two-reservoir ’
system' is easily solved using any technique’ of solution (usually
dynamiciprogramming is used).

; ThesConpooite Model [15;16] ’ s
+ To build a,composite model first, assign a fixed WCF MWh/fts to
: each ‘hydro-plant. ~ This factor is taken equal to the average Mwh

: produced in. a period k by an outflow of one cubic foot.

~
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Second, the .water stored in each reservoir is converted to -
energy By ‘mﬁltiplying it by the ‘sum of tﬁg cgpversion‘factors of the
downstream plants. Then the total pgtiﬁfgal energy.)(I’k+1,i stored in
reservolrs k+l to n at the end of the peggodwi isbgiven by

&

oL

Pl n - n
XP = Y WCF, - X, (5.1)
k+l,1 vj=k+L§Q=j 2 3,1

<&
R

where WCFl 18 the water conversidq factor measured by MWh/ft3 at site °

Q,Gand X is the water content of reservoir j at the end of period i.

3,1
Similarly, the inflow potential emergy to reservoirs k+l to m in pefio?/>

1 1s

. n
INFP

= 7 WCF_ - INF, (5.2)

g

i,1
The outflow potential energy from reservoir E%K§§6 m in period 1 is

)

where INF 1s the at-site total inflow to pla?; jJ during a period 1.

Yo WCF, U, (5.3)
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Equations (5.1), (5.2) and (5.3)¥Fompletely derine_a compositeiﬁégzel
for reservoirs k+l to n. , ‘ hi ?'M4;f
In practice, the Mﬁh generated from the composite reservoir is not
equal to the actual MWh generated from each reservoir. The first

reason for this, is that thefactual water conversion factor, MWh/ft3 at

g??a plant depends heavily on the net head, which may vary considerabiy.dl

-
A second reason 1s that there may be spillage at soiie plants.
Therefore‘ a\generating function, Gk+l,i (XPk+l,i’ UPk+l,i)’ must be
constructed that relates the actual generation to the MWh (outflow and
¥
/
energy content) of the composite reservoir. S

Com

The decomposition approach may be Jjustified ohly for similar
reservoirs; otherwise the solution obtained by this method 1s not a
global feedhack solution,v hut it is rather a suboptimal operatipg
’policy, because_ it 18 not yet possible to obtain global feedback

/
solutions for large-scale systems using this method. .
5.1'.1.2‘_ The Aggregation Approach | ~
The systems usually used in this approach have p independent
rivers [17, 18], the following agsumptions are used: |
(n The optimal operating policy»of river j is such that spillage will
not occur in period‘i'nor will it occur at all the reservoirs on
the river; and shortage of water will not occur in period 1 nor
will 1t occur in all the reservoirs on the river.
(2) The amount of electric energy generated by any power plant in
‘period i is a constant times the discharge.
Following these hypotheses, a composite model of each river 1is

‘then built. The resulting composite model of river h| has the following_

characteristics.
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g M 6B

where INFj 1 is the infliow potenfial energy of composite reservoir j in
’ . ‘4@.:‘.“' b

period 1, INFk 1,4 18 the inflow of water to reservoir k on river j”
’ b - N 1
" during a period i, and WCF 18 the water couversion factor, MWh/MC
< 23 /’
of water at site 2 of river j. -
’ n n . .
X = WCF, ..X, . . 5:5
i1 kzl Q,’E—;k %] Xk’J s 1 ¢ ' )
Xy $Xy 0 £Xy (5.6)
where
n n
X - WCEF ,.X._ . . 5.7
—j’i kz‘l sz 293 —XyJs1 ( )
F n —
X, ,o= "WCF, L.X, . ST ~ 5.8
3.1 kzl Rfék : 2,3 2,3,1 ) ( )

Xj N i1s the storage potential energy of composite reservoir j at period
) " .
i,

ik j,1 is contents of reservoir k on fiver.j at the end of period i,
'’ 3

Xj i is the storage minimum potential energy of composite reservoir j

—J» .

at period 1, . »

Xj 1 is the~qtorage maximum poténtial energy of edgmposite reservoir j
‘' - >

a S

3 g

Zk'j i 18 5€3 minimum storage comnstraint of reservoir k on river j at
2 J» . )
period 1,

s the maximum storage constraint of reservoir k on river j at
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n
T S “
U - WCF, . . U ’ .
j,1i :1 k,]j k,j,1 - ' ‘(5 9
) “‘/‘\
1,120,050 (5.10)
n S
U = WCF . U o]
—j,1 kZl k,j '_k)j:i @
_ n o _ ‘.‘Jf;)i
U = "WCF,_ ., . U d
3,1 kél k,1 7 Tk, g,k &

i . . s

where U
3,1

at period 1,

1s the °discharge potential energy of

U.
k,j,1
reservoir j at period i,’

U

K, 9,1 1s the discharge from reservoir k on river
) 2J)

period L,
Ej,i is the diséhgfge ninimum pote#tial energy of
reservoir j at period i, |
IU Uj,i is thé discharge maximum potential energy of
reservolr j at period_iﬂ

Ek 1,1 18 the minimum discharge of reservoir k on
3J> ~

1s the discharge potential energy of composite reservoir j

Aﬁ;)"

composite
J} during
composite

composite

river j at

| period 1,
: ﬁL,j,i is the maximum discharge of reservoir k on river j at
period 1,
and ,
n
554" kzl WCR, 4« S yy | (5.13)

where Sj 1 i1s  the amount of potential energy spilt from composite
b .

G .
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regservolr j at period 1,

4

Sk,j,i is  the sp%llage from reéervoix'k on river j during
period 1. ’
1f we replace every rf;er by 1its coﬁposite ﬁodel, we obtain a network
of p reservoir hydro-plant éd;plexes in paraliel.
The main drawback ofithis method 1is that -the approach avoids
answergng the basic éuestion of how the‘individpal reservoirs ig the#

system are to be opefated in an optimal fashion.

&,
'5.1.1.3 The Aggregation Decomposition Approach

A4

- The ;optimizatién of a system of m feservoirs is broken " down
here to m subproblems in ;hich one reservolr is optimized knowing the
total enérgy content forU the rest of the ré;ervoirs. For éach
subproble?: one of the reservoir hydro-plant models 1is retained and the

- R 2

remaining m—~1 are aggregated into an equivélent'feservoift}hydro—plant
moded . The bglobal feedback characteris;ic.of the problem 1s thus
retained and.the féchnique can'poﬁenﬁially handle’ all. the uncertaiﬁties
as well as the local counstraints in each hydro chain. Furthermore, the
computational requirement of this method grows linearly with the number
of ';eservéirs. More precisély, for each new reservoir added to the
system,. only one édditional demand of two-state vézfibles needs to. be
solved. | | |
5.1.1.4 The Succellive’Approximatioﬁl Apptoach

| The succeséi;e abproximations approach dses the local
feedback policv 1in which each reservoir is obtimized independently‘
. assuﬁing an  expected operatidn (state or release) of the rest of thé

v

reservoirs; The procedure iterates, using a one-at-a-time



optimization technique'for each reservoir, until convergence is fpund.
Detalled representations of each hydro chain can be used (random

inflow, serial Eorrelation, local constraints, ewm.). The major

drawback of this approach\is that it igpores the dependence of the

operating policy of one reserwolr on the -actual energy content of other

reservoirs. The method gives good results only if the .actual operation

ﬁhof the remaining resErvoirs is very close to the expeoted values.

3.1.2 Methods of Solution

5.1.2.1 Dynamic Programming Method

| The fodndation of this method is the principle of optimality,

which may be stated in the following form: o

‘ An * optimal strategy has the property that

whatever the initial state and the initial ~
decisions are, the remaining deeisions must

constitute an optimal strategy with regard to

the state resulting from the first decision.

!
.

The. major shortcoming of this method is the large ' memory
requirements that arise 1n cases of large scale systems. Also dynamic
programming has difficulty in dealing with- multireservoir' problems
which have nonseparable benefies. Moreover; publications which have
dealt - " e '»mic programming models with stochassic inflows,
he- ignored <~he nc.se  -able benefits of the problem because of the
- :0gC  memory requiremenc: f the dynamic programming method and the
@ieveldable  calculaticus e iired in the total enumeration "of states

z2d £_lowable actions.

137
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5.1.2.2° Linear,Quadratic, and Nonlinear Progranning Methods

Thé problem of linear, quadratic, and nonlinear programming

©

can b scribed by
magimize f(y) , (5.14)
= g
st Ay = b (5.15).
tziys? | . (5.16)
where y 1is a . . of release and storage decision variables. The
% ' ’
linear system of equations (5.15) is a set of flow conservation
- 8

constraints, with the vector b as a set of exogenous inflows. The
inequality constraints (5.16)'place bounds on the flows to serve: flood
control, navigational, fishing, water quality, recreational and other
requirements; It should be pointeq out that fundamentally ‘different
nodelsiarise from'different choices of the objectivehfunctfon. )
The main drewback of this method,isithe difficulty in handling ”
inequality constraints. Also, ‘there ‘18 no way to differentiate
between hard and soft constraints usinﬁ'thie nethod and the only

reasonable way to cope with this problem appears to be by the use of

different weighting (Penalt}% functions. Somedgechniques also require

a.feasible starting point [61].

Penalty functions . g | mﬁ?;ﬁ; .
| A,fpenalty term reflecting‘the oonstraint violations?ie‘muitiplied
by a” scalar weight and augmen;ed to the actual perfornance index. 1f
VM - :

the augmented performance index 1is minfmized by a seqdence of

increasing penalty : welghts, the solution of - the successive

unconstrained . prghﬁgns approaches the constrained solution. ‘The main
$xp : i1 :
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problem in using penalty funotions 1s that there is no method to aid ih
?f choosing the sequence og‘penalty‘weights. A
5.1.2.3 ‘Discrete Maximum Principle Method

Thevdiscrete maximum‘principle‘method has not been a popular
approach .to the problem of multireservoir operationf This is because
of numerical difficulties in solving the resulting two-point boundary
‘value problem, especially when state variable constraints -are included
in the problem formulation. | * -
5.1.2.4 Punctional Analysis and Minimum Norm Formulation Method

The minimum norm formulation in the framework of functional
analysis has . been used successfully in the problem of optimal hydro
scheduling. A rypical “=2ature of the approach is that it can ~yleld
necessary and sufficient conditions for the existepce"of solutions.
This fact makes itvpossible to srudy the qualitative aspects of optimal

processes. Moreover, . this approach is free of the concrete nature of

the system. More details on the method have been given in‘Chapter II.

5.1.3. Deterministic Versus Stochaq;i@.Solptio_h'

The deterministic equivalentlmethoéb asshme that the inflows
.are known during the whole planning period. -ln“rhis way, lnstead of an
operation strategy that produces the optimal operating decision U for
each possible state xt, it is eqogggééo determine a trajectory [xl*"
xz*,...,xt*,...,x *] * which corresponds to E: joptimal_. reservoir
evolution for the preestablished inflgw‘seqhence. .
With the hypothesis of deterministic inflows, the dimensionality
problem disappears. Although the remaining problem s still very

oomplex, several algorithms are already available to solve it, such as

those suggested by Rosenthal [49], Hanscom et-al. [63], Mdrrayw,and
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Yokowitz [67], Ikura and Gross [68], and Gagnon et al. [7,9,50,61].
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‘The theoretical ‘basis for using deterministic inflows is the
certainty: equiQalence principle, which establisheé_ the = optimal.
strétegy fof thg solution of certain classes of stpchéstic ,coqtrolé
problems. This. can be obtained by replacing the .stochaatiC"
;omponents by t?éir expected values. Itvshouid be noted that this
method assumes that the deterministic equivalent problem is resolved at
each stage as soon as the new inflow measures become available;

The main advantage of detciministic equivalent methods &s° that
they allow for a correc!. representatiou of the hydroelectric system.:
The main disadvantage of the methodé 1s that they prpauce an optimistic
operation - which, 1n case of éeveré droqghts, can lead to sevére

—

economic losses.
5.2 Quadratic Representation of the WCF-

The generation of a hydro plant is a function of both its flow and

.

its water head, i.e.; the difference betwqeh its forebay and tailwater
. . LR
?levékibns, Fig. *2. The tailwater elevation is a function of the

plant flow and of the storage of the reservoir immediately ddwnstream.

S
—

In our system, -this last influence 18 negligible due to the~ distance
. - . :

- from.a plant to the following reservoir. 1 »
. : i )

" The generation of hydro-plants thatvhave more t&;n one generating

unit cannot be assumed identical for most of the plants in the systéﬁ.

The generation of a unit, as a function of its f10w, is zero upbto a

point qi; then‘it anregses'up to the maximum gene?ation_flow 433 ahy,_

. flow above d3 is spiilage which causes a decrease in_%enerétion due to

an 1increase in tailwater elevation - as in Fig. 3.  The .‘operating

"rule for the plants usually is, as the flow increases start the next
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unit. .when the generation rate of the previously started unit becomes
too small. This 1is a little before the unit flow reaches ‘35. In
practice, the system operator must avoid operating the. system of the

lntersection "points since these points have the lowest generating
. o

BN

efficiency.
Fﬁec;wisé approximation ﬁsually guaranteeg a very cioSehanalogy to
the original curves. The - main drawback of using this method is that
~the derivative 6btained from this.éiecewise approximation curve 1is
highly :non-cqntinuous which may cause some difficulties during the
optimization process. Pilecewise liﬁgar approximatiog, Fig. 11 gives
a reasonable apprqximation of the system. Ih this method the curve‘is
approximated by a series of linear segments. To calculate the
corresponding generation for a given dischérge Qk;i first let |
.L .
ot 221 a, | (5.1
where qg.ig a component of Qk,i corresponding to a certain line segment
of the linear approxima;ing power prodﬁction curve. . Ag an exé@ple the

value of Q on figure 11 -

Qk,i *q, tq, t+ta d3 > a<‘ constant < 1.0
} .

°

. then the total power generated due to Qk 1 1s
. 2 . R 4 .

1

BV

n

)
[ ]
Il 1

. qz' ' (5-18)
k{i . % '

)

The method recommended in this work calculates the -corresponding
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_Fig. 11. Piecewise linear app‘roximatip‘n‘ of hydro production
curve for a constant head (i:=4):.
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value ofﬂtﬁe " tailwater elevation during each time period for each

plantlg Then, the effective head 1is calculated by subtracting tailwater

I SR . . :
#glevation from the forebax_elevation of that period (function of the

Y
e

“ A A ’
© . storage). Finally, both thé effective head and the diséharge through

‘pr;'the turbine are used to calculate the total generation for each plant
during each period. The method can be summarized as:
. . For the storage project, the total generation Gk 1 for plant k
. - 3

' during a period 1 is o~

- ‘ 2
S, 1 Uk,i'[ak,i+8k,i/2'(Xk,i+xk,i—l)+yk,i/é'(xk;i+xk,i-l)
‘ ‘ (5.19)

To find the values of @

Bk, anu'yk for a reservoir;k during-a pericd
B the following steps are performed: |

(a)'. calculate the optimal value of the storage Xk 1 the: discharge
'through the turbine Uk.; and the corresponding spillage Sk 1

(b) from ‘the table of total discharge versus tallwater- elevation
: i

(U +S, Vs, TWEk) calculate the tailwater elevation TWEk ; using a

suitable cubic spline subroutine (Appendix I)

(e) construct a new table for the relation between the storage and the
'head (Xk vs. Hk) ustng the field*measured table of the storage versus
forebay elevation (Xk vs Ek) and the calculated TWE, 10 H = E - TWEk

1(d) match the (Xk vs H ) table with the field-measured table of the
WCF versus. the head ‘ (WCF vs Hk) using a suitable cubic spline

-subroutine to conclude with a new table of the storage versus the WCF

(X, vs WCF. 5i,a
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(e) calculate ak,i’ Bk,i’ and Yk,i for the (Xk V8. Wka)i g;ble'usingv-
a least square curve fitting subroutine. .

During' this précess, more weight is given to.the;poiqts in each
table that completely satisfy the boundary constr;ints.;k;pg}ng tﬁé
average 1n Eq. (5.19) helps to avoid undefes;ﬁg&tiohxusf | the
corresponding generation: during rising ‘wéter levels and
overestjimation duriﬁg falling wagér levels.

In the previous chapter linear relationships between the WCF and
the storage and elevation were used. Ihis representat;on, whilé.it is
much more accurate than using constant WCF independent of thé storage
variation and head, st1ll ylelds a large error in the calculated WCF.

: p v
In this chapter, the over-all error considerably dec;éQﬁes as a result
of using a quadratic relationship between the WCF and tﬁe~8torage aﬁd
;levation, and also due to the consideration of a variabie .tailwater‘
élevation‘ rather than a constant one. = Table 13 ' contains‘ a
comparison qf the over-all maximum error in calculating the 'énérgy .
genefation fof some reservolrs from the B.P.A. n.ydro-system consider}ng
the quadratic, the third order, and the fourth order rélationghip;‘afv-
between WCF and storage, and a cubic ‘spline rela;iéﬁship .Eetweeg-ﬁ

storage and forebay'élevation with variable tailwagértelevatioq.
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\\\\ Table 13
A .comparieon between the overell maximum error in the 4eases' of
quadratic, third order, and fourth order relationships between WCF and
storage end a cubic spline relationship between storage and forebay

elevation with variable tallwater elevation

Plant Max.Storage % Max.Error
' v Capacity

No. Name KSFD Quadratic 4 3}? Order 4th order
Lo 3 :
2/48 Mossyrock 654.3 i 05996 =0.485
7/82 - Swift I 225.4 ©9.024 0.024
14/173 Detroit 162.0 -0.435 -0.375
15/188 Foster 14.3 -0.8712 © 0.860
16/190° Green Peter 157.8 0.762 0.238
19/234 Cougar 77.4 - 1%099 -0.631
23/275 Lookout Pt. 169.7 1. ~1.840 - -1.326
- 24/290 Hills Crk. 122.8 2.783 1.847 ° -0.104
29/390 Round Butte 138.3 0.1927 0.213 0.168
39/767 Brownlee - 494,2 0.530 =0.855 0.687
44/1210 Chelan 341.5 -0.067 -0.000 - . 0.000
49/1305 Long Lake 52.5 ~0.547 0.620 0.528
63/1510 Kerr - 614.7 . 0.818 -0~.306 =0.129
76/2025 Lwr. Baker 71.8 - -0.437 -0.362 ~-0.360
80/2070 Ross 530.5 2.302 - -0.874 =0.890
83/2190 Alder : 84.0 1.977 0.512 . =0.535

85/2208.  Cushman I 187.6 . 1.108 . 0.418 = 0.137

. 8 9]
& L
AR
o,
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5.3 Problem Formulation ’ '

-

The objective 1s to maximize éﬁe total generation for the whole
system over the optimization horizgn subject to satisfying the following

conditions: 3
» o

(1) The plant k expected energy generation during a time interval i,

will be taken as: "

y | | 0

(5.20)

)

where WCF anﬂ U are the WCP, watt hour per cubic feet, and the

CF 1 emd Uy g
total diascharge through the turbine of plant k during the 1-th period

. .
respectively. The symbol E stands for the.expected value.

(2) The water conservation -equation of each reservoir may be

adequately described by the continuity-type difference equation as:

r1 Sk,

o (5.21)

Joou', -u .+ 5 s

X, T K TR

where
» Rk is the set of Blantsﬂimmediatelyﬂupstream of plaqt k,
%k,i.is the sto;age of reservoir k a; the end of‘the period i,

INFk,i 1s the total e#pected natural inf}ow after the deduction of the
expeéted eyappratidﬁ and péq;olation losses. | The expected ﬁatural .
" inflows are assumed to be ;tatistically independent. random variables;
and o . -

Sk,i is the total spill from reservoir k during-a pe;iod i.

(3) The WCF for a reservoir is modelled as a quadratic function of the

~
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average storage, l.e.: )

1

"R T % B (Rt Y1116 K1 * X )
' ’ : (5.22) -

N

o 4 ' ; NE f:-".'
K, 1? Bk,i’ and Yk,i,are functions of the tailwater elevati j.,.e"tign

5.2, this chapter). .
(4) The WCF for run—of-river (ROR) plants is considered as a consﬁant.
(5) To saﬁisfy the. constraints that reflect physical 1limits, bank
erosion, cbordination agreements among varioué ownerships  and
multipurpose ‘requirements such as 1irrigation, navigation;- fishing,
flood conﬁrol,_ water quality, recreation, and other purposeé’if any,
the plant variables must sati;fy the following ineqﬁality (hard

»

constraints): - , N . N

(a) upper and lower bounds on reserv&i.xgontents,

LIS S (5.23)

where zk;i and Xk,il are defined to satisfy physical Jlimits and

coordination agreement constralats on reservoir contents,

(b) upper and lower bounds on storége and ROR plant ouﬁflbwﬁ

; Byt £ 0,1 S0y , (5.24)
where U and U, are defined to satisfy system safety,. the
_k,i k,i ’r\ ) . .

¢ ™~ ' . )
multipurpose stream idse réquiréments an:/foordination agreements,
\ } co

(¢) maximum draft comstraints ‘to prevént any excessive soll  erosion



)

around the reservoir,

By g1 = By < (5.25)

where Ek 1 1s the forebay elevation of reservoir k at the end of a
I’

;vneriodji,

s 5ktis the maximum draft allowable for reservoir k.
. Here, ne.redefine this equation to be an equation of the storage
ﬂrathervthan the elevation.; This is done by equating forebay elevation

.

‘ ;with'a quadratic function of the storage, 1. e.,iz_;*

. . - 2
- + . + . N
Bt T T s K T & ka,i (5.26)
-¢', Wk, and Ek are constants determined by using the forebay elevation
versus the storage (Ek vs Xk) table and a least squares curve fitting

subroutine.

Substituting from Eq. (5.26) into Eq. (5.25) we get

i

- (X i—lxki)+gk - (X ,1-1 in 5.kv

[

f=1,.00,mand k=1,..,0 - (5.27)

Equation (5.27) proQides‘forumaximum’draft constraints and is a

nonlinear state, dependent inequality constraint. ‘

el
'l' e
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(6)- Each station is reduced to a single equivalent inpqt/output curve

* to reduce the number of Variables in the optimization process.

(7)  The storage plants dictate how ‘the immediate vdown stream - ROR,



plants operate since for the ROR plahts, the outflow 1s equal to the
total inflows (total inflows = total at site inflow + total outflow and

spillage from upstream plants).

(8) The spillage usually causes a negative generatilon since it raises‘

the tailwater elevation which eventually decreases the effective .net

head. The net effect is dependent on‘the'design of the hydro-plant.

r
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(9) The results of the algorithm will be used to allocate the half—

monthly generation targets for each plant in the hydro-system.v ‘These

targets will then‘be further refined into daily and finally - hourly'

‘targets in real-time operation (a short-term study).

-~

In summary, the objective is to maximize

. o n
'J-E[Ezi iz LU n 2B T O i+xk 1-1

+ 1/4. Yk 101 (Xk 11 o - (5.28)

o
)

Subject to satisfying the equality cﬁnstraints of Eq. (5.21), and'

the binequality constraints of Eqs. (5 23), (5.24) and (5. 27) and

taking into account the different relationships between the variables
which have been given through . the fleld measured tables.

5.4 Minimum Norm Pormulation

The augmented cost function, 5; 1s obtained by adjoining to the-

- cost function in Eq. (5.28) the equality constraints, Eq. (5.21), via

Lagrange wmultipliers and the inequality constraints, Eqs. (5.23),

(5.24) and (5.27), via Kiuhn-Tucker multipliers, This yields‘



~ n
CJ=E[ )
k=1 i

1] MB’

) Cope g0y, 1*1/2 By, i'Uk 1ng§k 1%, 1-1)

sy

NRZALY PEL NPT e Y
| [
+ '>‘k,i -( xk’i+xk’i_l+INFk’i+

1
) Sp,175%,1) K, 1 °(yk;i
reRk '

3 4 _
%1 PR 0701 K 17K 1)

T 9 e R 1R 100 e B 1m0 Rt 0D
) (5.29)

In the above equation A 1 i1s the Lagrange multiplier for plant k

k,1

1 2 3 4 ‘
ek,i ’ ek,i , ek,i sy €...,. ando are Kuhn-Tucker

at beriod i, Kt k.1
’ ’

multipliers. They are equal to zero if the corresponding konstraints
are not violated and greater than zero if the comstraints are violated.

Substituting from Eq. (5.21) 1into Eq. (5.29), gives

. n ' :

J=E[ ] - Z {a, ;.U ;F1/2.8, ..U .(2.X . .+ ] U

k=1 i=1 k,i k,1 k,i""k,1 Xk,l-l RaRk r,i
A ‘ : - 2

- + - . . (4.
U, HINE gt ] Seyi TSk, O 1V 1 Ry
reRk
(2

LS e nk FINFL 4 f[ Lo Sp i S 417 10

reR, reR,

S L I i) Sy, 17y, i INFy ;]

reRk ’ | ’ reRk

150
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+2.[ §2 -
AL ] [ Z S_ . Sk’i+INF

ReRk | Rk r,i k,i]

.+ 2.INF . S - +
k,1 [rg r,17 Sk, 1 P e X1t i-1 +INFk,i

+ 5 Uu U+ v

reRk r,i "k,i reRk

-U

S, 175k, 0078, i “Gy 7Y gD

2

— 3 _ 4 —
T %1 k1 G100 LRG0y X 17 gD

.y ¢ -
%1 e K 50 i, 10 60 Ky 1 "X (DD

. (5.30)

We also have tﬁat
. }

. _
g Ak 1 *k 1 et K 1+Ak 2 Feg e

i=1

ﬁj} | 1 _ 1
_ﬁfﬁék,m 'Xk,m+kk,o 'Xk,o Ak,o 'Xk,o

Aﬁfk'xk,m-xk,o 'st°+~1§1 1110

(5.31)

3
ek,i-l .X

Il o~18
w
w

e
w
Il ~18

k,i-1

(5.32)

m

B 4 4
Z %1 K, T, n 8,0 Kkt izl

4
®,1-1 "Xk, i-1

(5.33)

%1801 T %%, %, 0 %k, o %%,1-1"%k, 1-1

- .
It ~18
’—l

Il e~18

i=1

o (5.34)
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g

¢

- . 2, @
- B Z I, 1%, 1 %, n N, %%k,0 %k,0 T 121 %,1°%k,1-1
T | -

(5.35)
—

7 ' /

Substituting from equations (5.31) to (5.35) into Eq. (5.30), gives

n

m
5 J’E[kfl izl 1,14, 1%, 1%, 11

+ 1/2.dk’i.uk;i.( ) U 170 y)

re
+ Yk 1%, 1%, 1-1° rng U171
+ Y. ..U 20176y, U ( ) U U )2
T8 11 1,1 %, 1 r,1 V%, 1

reRk

1 1 '
| A= ) A -
; O T K gty (INF g+ ] Sr,175% 1)

reRk

o ( Z U ,-U, )48 1

+ A
LR R U, 1,11 K, 11

o

‘ 2
k,i_ak,i—l)'wk'xk,i-l+(ok,i-ok,i-l)'gk'xk,i-l )

v

1 1 2 2

+ xk,o 'Xk,o—xk,m 'Xk,m+ek,m 'Xk,m_ek,o 'Xk,o :

+ (o

. R : 2
* Ok,o'wk'xk,o Ok,m'wk'xk,m+°k,o°gk'xk,o

» .
—‘Ok,m.ﬁk.xk’m ]~ \(5036)

where



f . | : | isj
(5.37)

(5.38)

bk’iaak’i+1/2.8k’i.INFk,i+l/26k’i.( ) Se,175%,1)
. - reRk g
H/hoy o(Ne BE T s ss, 1M2.E, 0 T s -s ]
. k,1i k,1 - Tr,i Tk,1i- k,1 r,1 “k,i
rERk reRk
' (5.39)
and
G, 1™, 10 (NF o+ L S, Sk, (5440
: reRk . . .
Constant parts have been dropped from Eq. (5.36). .
Defining the pseudo-state variables:
and '
- 2
Zk,i xk,:l.—l . ? (5.42)

. this 18 done to reduce the polynomial nonlineé@iequation, Eq. (5.38%),
to ‘a quadratic equation. Doing this and ad joining :the equality
equations, Eqs.‘ (5.41) and (5.42), via Légrange multipliers Ak,iz and
Ak,i3’ to guafantee a satisfaction of the‘ correspondingl equaii?y

equations yields:
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r\ﬂ | . + . . .
T=EL kzl izl [bk,i Uk,i dk,i Uk,i Xk,i-l ‘ m

-+

1/2.d 4.0 - rng UL U )

"kt R, 1.1 T, 1, 1% 10 %k, 1

+ 1/4-Yk,1’Tk,1‘( l Ui i)+(ﬁ< "k, 1-1 D e 1-1

reRk

1 oo s 1.
A ) S -5.. A - .
R LA WP G M

1 U 2

o, U1t -1 K, 1= O 170 1m0 e R -

2 2
* Cop 1o 110 8 B 1e1 P Yk, 10

. : 2 L3 2, 3 |
Mot T, 1P, K 1-1 TG 1 %k, 1)

+ >\k Xk,o k,m Xk m k m Xk m k o :Xk,o -

'.“Vu

v

2
+ %,o0 Y- Xk,o k,m Y xk,m k,o0 gk'Xk,o
. ) 2 : : .
- Gk,m'gk'xk,m ] _ : (5.43)
A .

Defining the following vectors
"'
,

X(I) S_COl'(Xl;i’XZ,i""’Xk,i""’xn,i) : (5.44)

U(I) = col.(U

1,0, e o U game sy ) (5.45)

) -
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b(I) = col. (bl L 2 1"'°’bk,i"°"bn,i) (5:§6)
>
: f <
A - 1, 1 A1 o1
1(I) col.(A 72,0 0 g ey g ) . (5.47)
- 2 2 2 2
AZ(I) - COL-(Al,i NI CIT L .,An’i ) (5.48)
. L
ATy - 3 3 3 Ao 3
3D, =eol. O 30 3L, SPRITRRI S (5.49)
1 1 - 1 1 . ;s
8 - : 8
1 (I = col.( 1,1 02,0 00 ey ) e (5.50)
. 2 2 2 2, . | Q
%(1) = colito %0, g 2 o) (5.51)
-O(I) = col. (0l 4 2,1""’Ok,,i""’on‘,i) - . (5.52)
. ' ) o \ ] o
T(I) = col. (’I‘1 1 2",1""?Tk,i""’Tn,i) : o g (5.53) ‘ .
| x ) » . %
. : - B 9 . - i !
Y = . . ) S .
Z(I( col. (Zl 1029 400 Zk i'f"zn,i) : : wg o (5:54)
, , i
G(I) = col. (al % 2 FEREET k i""’én,i) . . (5.55) . ’<
. L
~ . ¢ - w/ ) 3
B(H) ': col. (31 13 2 1 ..,&1,.. ,3 0,1 ). . -~ : (5.56),; |
N - B ,f” ‘ ! e - AN R
sel)*"°°l‘(31,1’sz,1""’Sk,i’ﬂ“’sn,i? - »J(s.sz} y

CLINE ) (5.58)

AINF(I) = 1. (INF
. n,i

INF «+,INF

1,272,100 k,i’"

. 3
P [ : _ . .
1.1 1 I : e

1,1 ’e2,i ""’ek,i ""’en,i ) (5f59)

L] ~

elgl) = col.(e

PR

~__/
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Then equation (5443) cap be rewritten as -
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' - 2 2 2 2
ez(I) COl'(el,i ’£2,1 ,...,ek’1 ,...,en,1 ) (5.60)
. _— / ‘ Y
‘ / _
- 3 3 3 3
(I) col. (e1 N ,e2 " ,...,ek 1 ""’en,i‘) ) (5.61)
‘ 4. 4 4 ‘ 4
e4(I) col.(e1 1 ,e2 i ,...,ek FEEREEFL S ) . (5.62)
Also, defining the following square matrices
,d(:I) = diag'(dl;i’dZ,i’""dk,i"'"dn,,i) (5.63)
Y(I)‘ = diag‘(Yl,i’Y’z,i"_"’Yk,i""’Yn,i) | - (5.64)
‘ {
w'{'diag.(wl;wz,...,wk,...,wn) | . o - . (5.65)
€= dlag.(E),6, e Ty, 360D . O (5.66)

s
v

M = nxn matrix where the dlagonal elements are equal to (~1), and the

other elements vary betweén (1). and (zero) . depending on fhe'

topological arrangement of the reservoirs and the ROR plants (see
,Q

‘the example given in Chapter IV)
o ' . ‘\\ : S : 5

J=E[ Z [b . u(?a+u (1). a(z) X(I 1)

.
f - v ’

°

" 1/z.uT(1>Qd(i),n.n(1)+xT<1-1).v(r).m<1)"f,

+_UT(I),Y(I5fZ(I)+1/4.fT(I).;( 1).4.U(I)

X

N
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+4, T (m-x, ¢ I-D].X(I=1)4+), (1) [INF(D)4+4.5(D) ]

RCIE RUCHTILR TN <1-1) X(I-1)
+Ho (D=0 (1-1) ]y XD+ (D~ T(T-1) ...
xtx—l).ﬁ.iﬁléﬂ)+A2T:1).U(I).ﬁ.M.U(I)
-xéT<1).r(1)+x3T<1>.x(x-1>.ﬁ.x(x-1)-xj (D).2(D))
+A1T(o).X(o)~AlT(p).X(m)+62T(m).X(m)
= 9,7(0).X(0)497(0) 1y .X(0) o T(m) .y .X(m)

+07(0).6.X(0) - H.X. ()0 ()£ X (@) FX(m) ] (5.67)

H in the above ~equation is a 5ector nxn matrix in which the- vector

index uaries from 1~ to n. As an example let n=3

& —vector index =1

- 1 0] 0
: Lo ) !
~ I\Hl- O ,O O »
] » . Q
0" + 0 0 , Y .
_ . R
" =vector index = 2 - : ,‘v . ‘ k‘;‘_> ;"f f‘,‘f?’ o f‘iv S
- 0 ° 0 0 {
Hy= 0 1, 0 |
0 0 0



~vector index = 3

AY

a= "'a

then -
; -4
> ¥
a;H.c = ‘a

}

j{éT(I)ng(I.—l’)'

x4

T

MR-

Lo " Defining -the following vectors

c

LGOI B¢ SMPLIE 9

AN

P
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-( Al(I)-Al(I-l)+62<I—1)t[c(1)—o(1—1)].w ]

o =
i b(I)f@&:>A1(1)+61(I)

R(D= - | (5.69)
2, (D)
‘\\ A . ‘ . ' :!
L -A,(D) | .
o leD=o(I-DLHEE /2.4 1/2.4(1) 0
A-3§I).H
1/2.d(1) 1/64(1) . MHL/6.H A1) 1/8.M5 oy (D) 1/29(D) |
h L W1/2v,(D) M .
L(1)= +1/2M .2, (D)
1/2.5(D) 1/8.9(D.M o 0
\ e ‘. ..
L o . - 1/2.4(D) 0 0
. (5.70)
o { .
- glves . #
j.E[-AlT(m)i.x(m)+ezT(m).x’,cm>—gT<m).}p.xm) o .

“ .
<

"-oT‘(m) .‘E;.X(m).fhly.'x(m)v o - ~

. K ) R t&" - } . L { -
<+ ) (WD LI WEDHRTCD) LW YT
- =1 . S ‘

Constant terwms are dropi)ed- from equéti@.?l)., .

v I ‘
s — ) &
ﬁ'_ A .’ 1

U S
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Eq. (5.71) is composed of a boundary.part‘and a discrete integral

part. The twovparts.ére independent of each other. Sé, Eq. (5.71) can

>
_be written as

o

1 (5.72)

where

1 T 9
-,Jl'E["M (?1) .X.(m)+62‘l.

FE I

.~ W T R ) L
3,7EL I [W (D) .L(D WD) W(D)] &
R =S| ) ; o

If the vector V(i)@is defined such that

. Py

V(D=L (1) .R(T) N
. &

- o [
~ . . I4

" then, the augmented- cost functioh, Jz,.can be written. as

o g o
<, C e RS, :
J,=El Y UIWCD+1/2.v(I) ] L(D) . [WCI)+1/2V(1) ]
I=1 - 4 ‘ _
LS UAWD.LOamI - (5.76)

- . - - - -

V(1) -and L(I) are iﬁdependent of the variable-‘w(l).br'Dropping ‘the-.~
constant terms from Eq. (5176), y{éldé
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. ,
J,=E[ ] ([W(I)+1/2$V(I)]T.L<1).[W(I)+L/2v(1)]]] (5.77)
=1 - 2 < . |

i
b
W £

Equation (5.77) defines a norm in Hilbert space. Hence Eq. (5.77) can

be written as

3, IW(D+1/2v(D)] | (5.78)

L(I)

)

AY

5.5 The Optimal Solution

To maximize J in Eq. (5.72), we maximize each term separately (31,
vi.ei, . '
i

Max.J = Max.31 + Max.J,

ORI [X(m)] W)

The maximum of 31 1s achieved when

ez(m)fll(m)-c<m?-w-d(l).ng(m)fg - (5.79)

Equation (5.79) gives the value of Lagraﬁge multipliersAas a function.

of the Kuhn-Tucker multipliers and the storage at-the last period.

Ty .

The maximum of Eq.'._(5.79). 1s mathematically. equivalent to
. minimizing the norm.of the same equation. The mipimum of Eq. (S;f8) 1s

lachievedlﬁhen the norm of this equation is equal ‘to zero;’f@grefbre,
1‘ " . ( ) B ) . . Catume ‘
s . ) b4 . . .

(5.80)

- *

e

¥
. ST

O

- E{(W(I)+1/2v(1)) =0

- Substituting from Eq. (5.75) into (5.80), gives =~ ‘-

)

- w
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E(R(I)+2.L(I).W(I) = 0 . (5.8D

Eqﬁation (5.81) is the condition of.qptiina_lity, Writing thié»équai:ion‘_
'exp'lic'itly and adding the eﬁua"lity constraiut's,,,‘,;produceé C
: ' | Y Voo

E(=A, (D #y (1) X(I-1+1 /4.y (D.MU(D) = 0 (5.82)
E(A(DW(D.WD) =0 - (5.83)
S . . . O .
ECBCD+MT A (D40 (D+(D) . X(I-1)+1/2.d(1) M. U(D)

+172,3T.d(1)+1Z(IS;E.M.U.(I)+MT{EZA;(I).u(I)
#1/4.45 Y (D) T+ (1)22CD)) = 0 3 (5.84)

'E[Alcx)—xl<1—1)+ez(1-1)+[o(i)—o(1—1>j.¢+z.x3<1>.§.x(1—1>

| £
#2.[0(1)=0(T=1) ] . Ho £.X(T~1)+d (L) DD+ (1) . T(T) ) :19J
| N A 589
- N
E(X(D=X(I-DAINEDMLU(DM.S(D) =0~ (5.86)
EC-moi (D .EMuar =0 (5.87) -

E-2(D+T(DEX(D) =0, ©5.88)

~
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E{-b(I)+o(I)+1/2.8(I) .E.INF(I-)+'1/2.g(i) JH.M.S(I)
+1/4.3(D) . [INF(D) H.INFCD48(CD) ME. . M5(D)
$2.NF(D.HMS(D]) =0 o (5.89)

E(~d(D+¥(D). [INF(I)+M.S(1) ]+B(1) = 0 o (500

E[—el(l)fel(l)-ez'(l)}_ =0

B0 (Dbey(D-e, ) =0 (5.92)

Also, there are the following limits op Kuhn-Tucker multipliers

. . I
‘ 0.0 S U, 20 _
1, . : - - _ ,
e 1 - if ‘ , _ (5.93)
>0.0 Uk,i <Hk,i o
. RSAe
L ™
0.0 . 'Uk,iﬁuk,i ,
2 .
e 4 = 7 .ifK (5.94) ,
v 3 ) . A
:>0.0 | Uk,i > Uk-,i
“ 0.0 . E(k,,‘i. 33{’.1
e, ¢3 - if ’ (5.93)
CER I .
) 0.0 S
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0.0 S S
e, 14™ 2) 1f 7 (5.96)
- >040 Lx g ik,i
~0.0 = e K1, P28 Ry 10107% 12050
%1 <{ i~ -‘ g
/0.0

- e (g1, 10480 Ry 1m197K 107D,

B

(5.97)

-t
@

e

Equationg. (5.82) to (5.97) with equatioﬁ'(5.79) completely specify the

optimal sbiution.
5.6 Algorithm for Solution

Given: a system of n reservolrs, the expected values of natural -

{nflows (INFk 1 for each plant k=l,,..,n, at each period i=1,..,m) the
3 ) )

initial storage Xk 6 (all reservoirs nust be full at the beginning of
b

the critical period,i.e.,xk Sii 6, unless drafting for minimim fldw-or
’ s P :

-

flood control); also, given the tables which spgéify the relationships

 between the variables for each plant at different periods and all the

associated'constraints:;

(1) -assume any initial value for Xk T k=l,...,n and i=l,...,n

- (2) 1let the spillage S, =0, k=1,..,n and i=1,..,m

k,1
(3) check the limits on Xk , 80 that
. : ) ,1
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(4) calculate Uk 4 starting from the end reservoir or ROR plant and

then go to the next down—stream plant till the end of the branch apd

take one branch at a time until they have all been finished. Calculate

Uk y» use the water conservation equation.

Ui, 1™, 1-1 K, 1 IVFy 4+ ) U, 1™80,10 Sk 1

reRk

(5) check the 1limits on U
’ o Uy

[3

if U < Hk,i let Uk,i-gk,i and calculate the corresponding value

k,1

-

of Xk 1 using the above conservation equation,
3 . Y

S

k,i’lEt Uk,i - Uk 1 and calculate‘ the corresponding

?
value of Xk 1 using the above congservation, equation,
k., .

k,i

-

1 X <Ke,g @) let Xk‘i Kot

b) calculate the corresponding value of Uk i;
S *

(6) check the limits on X

1 ‘A
c) let e 1 > 0.0

a) let Xk e Xk {

b} let Uk,i = Uk,i

c) calculate'the corresponding-value of S 4
- : b

e o0 D let’e B 0.0
. ’ ’

L -

‘Another alternanive is to user the soft constraints Uk i .and Xk 1
. b
,preeeding period to increase or decrease the~‘discharge; S0

??n £es ching for a suitable Kuhn—Tucker value can be avoided and the

54‘

<



\fé12) calculate A 2 using Eq. (5.82), - - .
¥ k,1 :

166

optimum solutLqQ can be reached much faster.

3y
I

In the case when both X,y and U, 4 satisfy the boundary -
b 3

constraiu;s then the cbrresponding Kuhn-Tucker multipliers will be set
. \>1 B ‘

at zewg‘ .

(7) using the calculated values of X and the values of wk’ak and D

“k,i k
calculate the value of % iﬁirom the following ‘
‘ 3 .
if y, . (X -X, )+, (X 2% 2)<5 then o, ,=0.0 .
. k' 7k,1-1 "k,i” "k 7k,1-1 k,i =7k k,i °°

2 -
if wk'(xk,i—l Xk,f+€k'(xk,i—l §$,1)>Dk then N1 > 0.0

;_"Y-’S, : ) )
(8) using the calculated values of Kuhn—Tucker multipliers at the last
7
2 ’ ,
period m,»@k’m angﬁok’m and the constants w and &k and the calculated
storage at the last period Xk calculate thé'value of Xk o at the

last period, m; using equation (5. 79) and (5. 92)

(9) .calculate © , b d sing equations (5.91
kot Tk,17 %10 Pi,g 2nd 4y g using quatlons (3.91),

)
ERNEH

(5.87), (5. gB) (5.89), and (5.90).
(10) calcuéate the tailwater elevation for each reservoir, then the

effective head, and then calculate the values of the WCF cOnstants

%,10 B, @ e \

(11) calculate Me i3 using Eq. (5.83), -
b

N

13) calculate ) L using the calculated values of. Xk' L at ‘last
- ) Ck,1 : i ,m . s

period (step 8) using the backward approach solution of equation

(5.85),

(14) calculate a new updated value of X using Eq. (5.84),

k,i-1
(15) calculate the value of the objective function and check 1f the

solution converges toward a better solution, then continue (go to step -
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.2) until no significant changes occur from iteratidnﬁto_iteration. '
If the solution diverges stop the calculation and then ;se the results
to modify the controlling soft constraints Uk 1 and Xk T described in
Section 4.13, Chapter IV; and then repeat the :calculation starting from
step 1. Here we don't have to change the initial estimate from trial
to trial.
5.7 Application to the B.P.A. Systeam
The algorithm i8 used to solve the 3.P.A. hydro-power system (37
reservoir type and 51 ROR type, see Chapter'III, éection 3.3). The
optimization 4is done in half-month periods for four years (96 periods)
' which include the 42 month (84 periods) critical period.

This time we have considered the generation from each reservolr as

a quadratic function of the storage times-the discharge through the

turbiﬁe4f Also, tailwater elevation is taken as a nonlinear function of

»

<\\ the total discharge and calculated each time using cubic spline curve

I

//’fitting. » ldoreovera the xela&ion between the water content in each
reserv01r is generally a nonlinear function of the forebay elevation
,which is computed each time using cubic spline curve fitting. In this
chapteré we also considered the maximum draft constraints (nonlinear ‘

. state dependent, inequality type of constraintsz__ along with the other
types of equality and tnequality constraints (the linear type).

TheA B. P7§ thro—system projects are varied N6 two' hydro—
electric systems among the whole'project are’ aldke. The neasonsg,for
the .differences among-the plants are the naturcl‘differences Qin the -
watersheds, the differences in 'the' man-made storagev and release
elements used to control Jater flows, and the very many different types

\ . .
of  unatural and man-made constralnts imposed on ‘the operation of‘-t he

el
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\ .
hydro-electric( systems. The B.P.A. river system extends over vast

multinational _areas and 1ncludes many tributaries and complex
arrangements of storage reservoirs.

Because of the nature of some projects, oix projects have been
grouped so that each two are considsered as ff they are one project.
This decreases the computational effort; and will not “affect the
distinctive features for anp of the projects (Sectiong 4.15, Chapter
V). Also, a special subroutine has been written to sult .the

~
» 4

individnal topolagical configuration and chaggcteristics of the Canal

Plant and the Corra Linn pfygects, Fig. 9 and Table 126, Ref. 74.

. The cubic spline technique 1s a good fit for all of the field

measured tables in all the 88 projects except for two tables of the

tailwater elevation versus the total discharge (discharge through the

v turbine plus the spillage) for The Yale (Section 3.3. 5) and The Upper

o

.77) projects, Fig.i2.

:7 seconds of central processing unit time on
;for each trial (3 1iteratioms). - I have
hhed the'global maximum for the propdsed.

and X

” I modify U K,1

g (Sectlon' 4.13),

;been violated by*the program, to satisfy
the. s j-i- zeiﬁtst The results show:

1

no violation of any of the hard constraints,
(2) very small (unavoidable I believe) amount of spill compared to the

results from the B.P.A. rule curves, and more importantly,

-

(3> an increase 1o the system total energy capability of .4.7Z oveft
that glven when applying the B.P.A. rule curyves. '
The discretized system state and consequently, the computational
o ‘ . : ’

R
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—

. ) . i ’ - T -
A effort increases linearly‘with'the number of stace variables. This is

" a very important feature of this technique that enables it to deal with
highly complicated problems. For example, -in Pereira, 1985 [25], the

number of the system states increases exponentially with the number of
4 :

’

state variables. =

. J . : : N
-The hard constraints (Section 3.3, Chapter III) have covered two
egsential tgpes: . _ .

&\

- (1) - constraints that enforce feasibility due to ‘physical. and/or
techniéal features in the system, and -
(ij constraints that guatantee a completei satisfaction of the
.cohttqctual agreements and reéulations related to flood control,

wildlife, fisheries rgquirementé, water quality, recreatiomnal use, etc.

x

Table 14  gives a comparison between our results and ‘the results from

L4

applying the B.P.A. rule-curves.

® Table 14

<>

-

* Comparison between the energy capability measured when applying
the result$ of our technique to those obtained from the B.P.A.

rule curves

V:Pétiqd | ' Average Power 1o GW
1st.1o-month‘éritiéal‘ﬁetiod’ : 7’12.373 T 12.59%
‘-“f ‘next - 12 ‘month critical period T :il'édi..n.‘. o 12051
“next 12 m;nth critical period'ﬁ-;:‘I2.3iii\:';j o 12.21I
" next 8 month critical periodf}-ﬁ,?125163{ ,..f:"* 13 974‘.
Total energy In GWH T 372512 - 398 89T .
»Avgrage;power in GW N | \12.155vi525'?}_;i{125725 . ‘
 The X increase ‘ 5.7% YZ*A;;;j_ffirigj.‘-‘

L

o~ : . o
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5.8 Conclusions L

A presentation has been made to illustrate the solution technique

for the half-monthly operating policy of a multireeervoir—tree

connected hydro—electric power system. The technique 1s applied to the;

B.P.A. hydro system. The problem 13 believed to be one of the largest
hydro—electric nonlinear problems attempted considering the number of

variables and linear and nonlinear, equality  and inequality

constraints. i,\ } e

In this study the intent was to-use‘a'much more accurate model

‘than the one used in Chaptér IV. . It 1is assumed here that the WCF 1s a

quadratic ,function of the average storage and that the .tailwater
- . _ |

elevation 1is variable and depends on the total release (and 1is

calculated using cubic spline curve fitting). Maximum = draft

v

‘specifications at various B.P.A.- plants  (which impose nonlinear

" inequality constraints on the technique) are taken into actount in this

¥

task, and the relation between the storage and the forebay elevation is

U

considered nonlinear and computed using cubic spline curve fitting.

Theg problem is formulated as a minimum norm problem in the

o

framework of functilonal analysié.optimiiation techniques. We formulate

Fhe_-problem‘ by conetructing a 'costlfunction in which vthe_'total
generation of all the plants is wmaximized. Tocast this costb function
~ into quadratic.form psesudo-state variablee are defined.‘_The augmented
cost function is composed by adjoining all equality constraints to the
original cost function via Lagrange multipliers and’ all the inequality
constraints~via Kuhn—Tucker multipliers. Finally, all tetms’ of equal

. i 7 u \’1 .
order are. collected tO*fOIm a’ norm and the solution 1s subsequently

Hb
K RN

obtained by applying the'minimum norm formulation .technique.".

L
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- The basic feature of this new procedure is 1its ability to
automatically produce a maximum hydro?generatiou while satisfying

constraints. The technique overcomes the influence of starting points’

and 1s able to combine methodology and experience to end with the

A
system global maximum. .
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CHAPTER‘VI : 5
Efficient Load'Following'Scheduling for Lérge-Scale.Hydfb System
Power éystems have steadily grown in size and complexity. :Sméll
_ hydroelectric systems.,have been replaced;by laf&e and complicated
networks with multiple fuel generation. Thié has guided the
;gkimization fechqiqﬁes ;owjld mixed éuel generation scheduling‘ or
considering other sources of generation by Sﬁ%tractiné the value of
these‘regources from the firm load. |

This chapter will deal with the problem of scheduling the hydro-
. . e ! . \ ‘ -
release to obtain the best operating policy:for the system under study,

where best means maximum and most ~uniform power surplus while
satisfying the various environmental, physical, legal, and coﬁtractualf

constraints.  The algorithm- consideﬁs the géneration ffomu each
reservoir as -a quadratic function of theistqfage times the discharge

through the turbine. Tailwater elevation 1is considéred variable and a

function of the total release. A nonlinear relationship between = the
storagé and forebay elevation 1s assumed add . solved “‘using suitable
cubic spline curve fitting. Maximum draft constraints have imposed a

nonlinear state dependent inequality constraint type to 'the proposed

\ ., P ’ .
technique. : ; ) _ e
. .

Critical periqd (CP) optimization is used to help in determining,

the operation that méximizes ‘tﬁe average CP’ generafion, ~ shaped
L ) ) . » ,
uniformly to the load; while meeting hard constraints and balancing any -

" . violations of soft conéﬁf&iﬁté.‘A The model does this by-véfying the

léﬁoragé‘ contents of 311 projects. and all periods so as to meet the
given load, or.theﬁ"déﬁeﬁdable hydtdgeneration".
Dependable hydrdggnerétion 1s calculated by subtracting. from- the

‘total firm load a nearly.uniform amount rep;éééﬁting the required

-
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thermal, nuclear, solar, wind, wave, and other resources in the system.

. . - . o
The remaining, dependable load, must be met with the hydro gemeration

under all historical streamflow conditions, this 1s called dependable

-

.hydrogeneration. The historical streamflow sequence which will produce

7

"only the dependable hydrogeneration 1s called the critical flow; the

duration of this sequence 1s called the critical period The. rule— :

curve operation will never draw below these levels except to serve firm
lo;d so that ‘no curtaillment of‘firm load isnecessary unless a sequence
woree than that of the historical record occurs..

The“availability of limited amounts of hydroelectric energy in the
form of stored ' water in gpe system reservoirs,‘ makes the optimal
operation problem very complex because it ‘creates a-link ‘between an
operating-decision in a given stage and the future consequences of this
decision. In other words{  1f we deplete the stocks of hydroelectric‘ai
energy, and low inflow volumea occur, it may be neceseary to use very

expensive thermal generation.in the'future or even fail to supply the

load. On the other hand Tif we_ keep the reservoir levels high through'

‘ ~a more intensive uge of thermal generation and high . inflow - volumes

occur, there may be spillage in the system, which means a waste of

energy, and consequently, higher operating‘cost. So, the availability

a
of the fuel natural water inflow, must itself be forecasted

6.1 Background
The hydro‘éystem sc¢heduling prGBIem (HSSP) is mainly to determine

the water releaqfs from the reservoirs and the flows through the power
-l NN

houses so as to maximize the values of the total;wenergy generation and.
® .

assure most uniform surplus subject to a’ number of constraints.N“'Thepf
latter'include;environmentalqonsiderations irrigational demaunds,  flood
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control limitation, water quality requirement, fisheries, ‘navigational

N ‘ ' : .
demands, recreational use reéquirements,. operational practices,

.

contractual obligations. and other water use législatioﬁ. The -

determination of optimal schedules entails the.solution of a highly.

”

nonlinear problem thle accommbdatﬁng;agroqp'of ii;ear and nonlinear,

equality ‘and inequality constraints.

L - .

A wide variety of techroiques for solving such problems have been

réported in the 1itefature. Christensen, El-Hawary, and Soliman

[1,2,70] ;§é¢_RosentQal'I60] have presented a comprehensive survey for

the problémfdﬁﬁmultiréservoir, multiberiod deterministic or stochastic

inflow, and nonseparable benefit. In the literature, the solution of

o

the problem has been done using linear [21] quadratic [26], onlinear

proggamming [7,9,47.50,54.68], or using dynamic ’ programming
>[14,15;16.18,21,5f,52]. ' The approach in [7] is to transform a generail

nonlinear program formulation of the HSSP into an optimizatibn problem
. o .

" with a nonlineaf.'objectiVe and only linear constraints.. All the

>

ﬁonlinear const?aints are éxpressed as penélty terms and are added to
‘the :origiﬁal ogjective function. - This approach [7] is éoﬁéidefed és
the first successful attempt. to solve aflafgé_HSSP'with“a‘ nonlinear
optimization technique [68]}. However, ghe computati§pai.t1mes réporteé

»

are rather lengthy..

V’}m}AngEher'~pdtewgfthy: aﬁplic;tion of the large scale nonlinear

Y

T o . i 5.1“ A‘
'ptog#amming' techniques 1s the methodology deyeloped by Hanscom et al.

f67];'a simpler model without any nonlinear constraints 13'emp1deq_ahddg

N

a large—scale schedﬁling’pfobiem is solved within léés time than that

-

Jrgygaken by ilicks et ;l. [7]..

Ik ura -and Gross [68] present a  hydro scheduling problem
3 . . L

.

o)
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formulation and a method of solution to this problem as a nonlinear

programming problem. * The maximum turbine discharge constraint is

approximated ‘by a pgece-wise linear function. A nonlinear'constraint
for forced spill is treated as a penalty factor.’ The‘resultingkproblem
has _a nonlinear objective function with linear codstraints- and 1s
solved using standard mathématical programming packages.‘ A network

fiow algerithm 1s used to provide a good" starting point for the

standard_ programming packages. In these works [68] ‘they> have
. . v =3

.

distinguished between forced and controllable spills. I disagree with

them = I think that the , authors' ‘proposed model of spill 'isA

unnecessarily complex. Practically, 1f the storage, Xk L’ computed
. ) ’

~with maximum possiple controlled release exceeds the reservoir

capacity, xk,i’ all excess water; Xk,ika,i’_ will be released to

avoid jeopardizing the.dam. This operation policy can be modeled more

! ’

simply than proposed by the authors. The total reservolr release can
" .
be defined as the sum of controlled and uncountrolled release. A’ large

pénalty can be assigned to uncontrolled:'release. This should force the-

N . ‘ . - » .
uncontrolled release to be zero unless the' upper bound reservoir

«\ B hﬁ-\\,‘

Usinghthis method [68], ,Ikura and Gross have found in some cases

 that the ratio between computational time required to solve thelir

problem using coa nonlinear programming technique associated with a

gcheme for determining a good starting point, to that without - any
, , ] . .

-scheme for determining a starting point is roughly 1:2. Thus, inidases

of practical interest,'tne use of a suitable,scheme tb-determine‘first

a good 'starting pointiresultsin halving the computational time. In

“other words,l'the, overall solution time in their method is reduced by -

?

v
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~ about 50%, usiﬁg(a godd'starting point determined by the application of

7linear network flow algorithm.

~

’

The dynamic programming formulation -[62] converts the HSSP with a °

. 9
high dimensional state space into a sequence of problems with 1lower

dimensional state spaces. » In almost all dynamic programming ‘
techniques, the co@putational requirements increase exponentially with

the }ncrea§érof the dimend®mgn of the problem. Murray and Yokowitz [69]

“have successfully - run the HSSP with a ‘memory and computational

7

requirementd that grow only és nz'and n3; fespectively instead of
exponenﬁially with'n. C ‘

The solution method used by Rosenthal [49] makes good use of the
underlying network‘structure of the hfdro system scheduling problem.
The formulation ﬁéé a general nonlinear objective with linear netwérk
flow constralints. Thé algorithm uses the solution of én integer
prégramming problem to determine the search dlrectioﬁ.A

This éhapterﬁpresénts’an efficlent élternative based on functioqal
analysis and the ﬁ}gfgaﬁxggxm formulation technique. The ability of
fhis téqhnique ;o produce the maximum energy capability with a uniform
surpius’ power . whilé _combletely éatisfying all the system hafé
constraints is evidenf and the results éhOW mﬁch promise.

6.2 \¥roblem Description “
The primary objective 1im the operation of ~a hydro electric -

3

genefation system 1s to use the water in the most efficient way, while

‘_satisfying all constraints‘imposed by legai contractual obligafions,

physical 'éharacteristics and operating‘ﬁolicies. Theboptimal ' water
release- §éhedple3'are determined. at each fesgrvoir 80 as to meet ‘this.
goal. Due to the~1arge—scale;nétWork,structuresof hydro systems of

Tt
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practical interest, determination of such _schedules entails the

solution of rather comnlex problems. In this‘cbapter a stochastic
model of the hydroelectric generation system and a 'computationally
efficient method to solve the hydro system scheduling problem will be
presented. The intended application of the ' scheduler is to the
planning- of theh operatipn strategy over ,a epecified period, the

critical period.

The\ initial amount of storage in each.reservoir and the expected
}

natural inflows into each stream during eachvperiod are'assumed to be
! [}

known. All the hydro system reservolrs must be full at the beginning

of the critical period unless drafting for ninimum flow or flood

control. The forecasts of nat§ - Inflows ‘are obtained using

- histor?!~al rainfall, river meas X 8, and snow survey data.‘ The
demand for water, typically for irrigational purposes, 18 also assumed
‘to be known at each location in each subperiod. The travel tide from
one hydro- facility to another 1is not taken into acfount since the
transportation delays are very much smaller than the duration of each

period (half a month). ‘ ‘ -

In this chapter, the generation from each reservoir will be

considered as a quadratic function of the storage times the release

through power house.."Tailwater elevation 1is counsidered variable and

calculated each time knowing the total release and using . tipical

fileld measured tables of tailwater elevation versus total release. The

storage 1is considered as a nonlinear‘function of the €levation and
-accounted for wusing a suitable cubic spline curve fitting. All
ivconstraints of'all types, linear , nonlinear, equality and inequaiity

are considered. And then, .a load following problem where the objective

L
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¢ 18 to maximize the total energy capability 6f'thé system and to assure
~

the most uniform surplus power to.the system after satisfying the given

load aﬁd’éll given hard constraints is presented.

The ﬁydfo system load following'pfobleﬁ'is formulg;ed as a large-—
scalé noniinear prbblem and then golvéd ﬁsing the minimum nérm
formulation 1in the f:amework of functional analysis.l
6.3 Problem Formulation { - .

The' system uﬁder study consists of n reservoirs on different
brancﬁes of a rivér-in an arbitrary topqlogicalu configuration, this
rep:eseﬁts the general case. The pfoblem is ﬁo find ‘the discharge
Uk,i’ .i 1s the period nqmber{ i=1,...,m, and k is the project ngmber,
k=1,...,m subject to satisfying the following conditions:

(1) The total generation from the whole system over the.'optimization
intervals 1s a maximum. | ) :
tZ) The generation satisfiesthe given load (dependable 1load) during

each périod of the optimization horizon.
‘(3) Surplus power 1s as uniform as possible.

(4) The plant k expected energy generation'during the time interQal 1
ra
t

depends on the head an&‘the flow through the' power house (an example of

such a relation is shown in Fig. 4 . Fhe generation will be taken

as:

T o L R RIS W, D)

: -. 2 ’ (
+ 1/4Yk,i'Uk,i'(Xk,1+xk,i-l) 6.1)

[N

d

Xk,i 1s the storage of plant k‘at the end of a perlod ti; ak,i’ Bk,i én
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Y.y are. functions of the tailwater elevation. To Calculate the
]

values of Gk T Bk L’ and Yk\i for a reservolr at a given period i'
(a) we calculate first the value of the storage Xk i; the -discharge
»

and the spill S

2through the turbine Uk N

k, i’

(b) from the table of total discharge versus tallwa ter elevation
(Uk+sk vg TWEk) we-calculate the corresponding tallwater - elevation
TWEk 1 using a suitable cubic spline subroutine, Appendix 1,

(c) we comstruct a hew table between the storage and the head (Xk vs
Hk) using the field measured table of -~the Mstorage versus forebay

“ v .

elevation (Xk vs Ek) and the calculated tailwater , elevation; Hkégkq.
TWEi,i’ . e =

(d) we match the (%k vs'Hk) table with the_fieli4measured table of the

v

water conversion factor versus the effective hecad (WCF, vs Hk) using a

k
suitable cubic spline subroutine to conclude with a new table of the
storage versus the water conversion factor (X vs WCF ),

~

‘(e) we calculate qk 1 k 4 and Yk i for the (Xk vs WCF ) table using
. 4 least squares curve fitting subroutine.
- During _these processes, more weight has- been given to the points
in each tabla which satisfy the boundary constraints.
Using the average in Eq. (6.1) helps to avoid underestimation 1n
the corresponding. generation Iiduring» rising "water .levels and
overestimation during‘falling water'levels.
The symbol E stands for the expected value.
(5) The water conservation 'eduation for each reservoir may be
adeduately described by the continuity-type differencedeqhation.as:
';"Xk;ika,1—1+INFk,i+ rng Ur;i_Uk,if"rng: S:;i’sk,i’
B : ' - (6.2)
B :
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v

’

'Rk ia the sét of plants immeaiately upstream of plantbk, INFk 1 is the
N ] : ’

expected naﬁural inflow for plant k during a period 1. The expected

‘natural inflows are considered as .statistically independent random

- =

véfiables. \

(6) To _éatisfy multifpqup§g_stre%m use requirgments sucﬁv\as flood
control navigation, irrigéfioﬁ, fishing, water quality, recreationalfﬂ
: , _ .

L .3 . .
activities, and other purposes 1f any,‘the plant variables must satisfy

thg-followihg inequality constraints:

O

(a) upper and?lower bounds on reservoir contents,

S Ek,i 5 Xk}1'5-ik,i o (6.3)

)

—

1

§k i and Zk , are defined to satisfyvflobd control constraints ahd;4
oy ] . :

physical limits on the reservolr contents.

(b) upper and lower boﬁndsaon reservoir and run-of-river plant

~outflow, '
Y SV SV g SRR
T and U, are défined to satisfy the  system ~saf€fy ahd. the
k,1i . —k,1 € e ‘ A

}*use requiremenﬁs and coordination agrgements“améng
various ownerships.‘ e

multipurpose * strea

- -

"(¢) maximum draft|constraints to prevent amy excessive soil erosion

around the reservolir . : L o .
- \ '\ * . ) . . ' : o ‘ ‘ - .

Be,1m1 7 gk’,i; B, - L - (6.5)
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Ek’i'is the forebay ele;etion ef plant k at the end of a period 1i. Bk
15' the maximum draft requirement for plant k. - Here, 'we reform thisg -
equation to be an equation of the storage rather than the forebay
elevation. This 1s done by equating forebay elevation with a quadratic
function of the. storage

- : i
2

B, Tt et Kt Ek‘fka,i ' (6.6)

‘ Ges Yo and-~€k‘are plant k constants calculated using the (Ek vs Xk)

. -~
table and a least squares curve fitting subroutine.

-

(6.5) then can’ be written as

K 17K, Xk 1-1~ Xk 1 <o (6.7)

"
~

Eq. (6.75 takes care of draft constraints and;it is e.noniinear state
dependent inequality:conétraint.- |

7 Each station is reduced to a single equive}entAinput/oﬁtput curve
to reduce the number of variables in the optimization. process.

(8) Storagé‘ﬁlants dictatevhow the 1mm%diate down stfeam"run;of—river
plants operatef : |

¢)) 'The'spiliﬁusually causes a negative éeneration sfnce it raises the
tailwater elevation which eventually decreases the effective net head.
vThe net effect is dependent on the design of the hydro-plant.

- (10) The results of‘the algorithm can be used to alloeate the half-
monthly generation targets for each plant in the hydro—-systen. These
_.targets arejthen further fefined into daily and fitally hourly ‘targets

in real-time. operation. .
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6.4 Uniforam Surplus Power | ¥/
The‘ objective 18 to determline the optimal release that maximizes
the average criticalvperiod generation, shaped‘uniformly to the load,
while meeting hard conétraints\ahd balancing.the violation, if any, of

soft constraints. There are many techniques that' can handle this

problem such as:
m n '

(1) Maximize ) ) G s y .. (6.8)
i=1 k=1 ’ ’

- subject to satlisfying the equality and the inequality constraints and

subject to satisfying the following "inequality constéaints ¢
Y g . -% -C>0.0, f=1,....m (6.9)
ket i = :
) ] a 4

%l is the dependable load during a periqd i

C is a constant to repr%sent the exbected surplus energy and
calculated each iteration S0 as to assure, 1if sqtisfied, the most
unifor; surplus power during the optimization horizon., In Eq. (6.9)

inequality 1s preferred than the equality because the _total surplus

' energy ariable from iteration to iteration so, it is diffulct to

predict tue v4&ﬁg/6f C exactly. Also, due to the characteristics of
the problem, and as we will see, when we apply the technique to a
system 1n operation, that it 1s almost 1mpéssible to have a completelj

uniform shrplds power due to,many hard constraints which have to be

satisfied first.

(25 ‘Maximize

m .
' ) \ 0 _eny2
Lot -Z G , ="M 6 -0 | (6.10)
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subject to satisfying the equality and inequality constraints.n hTréVF

i

1s a comstant Lo :ep:esént a penalty factor during a peribd i. The

value of m, may have different values as the solgﬁibniconverges to the

optimum value. Thg value of Ty

-

it may affect the main probfem of maximizing .the total ’gnefgy

pfoduction and also ni should be greater than zero. From my experience
0.0<7,<0.6 ’ ' o (6.11)

(3) maximize

m n :
| T S (6.12)
i=1 k=1 ot »,

‘ subject< to éatisfying the equality and inequality constraiﬁts and

subject to satisfying the following inequality ébnstfaints:

Ui S0 g Sy : (6.13)

~

Yt £ L

Kﬁl

4 (6.14)

Eqs. (6.13) and (6.14) wi}l be handled as soft constraints as mentioned

and ik 1 will not only
’ ’ .

before in Chapter IV. Here, the value of 6k {
R . ’

be detérmined according to the recommended 'ranges from the experience

»

gained from- dealing with the system, but also determined so that

equation (6.9) will be -verified. e

(4) combination of methods (1) and (3)

I have worked through all these methods and I have found that
. . .

should not take a Iafge value becayse -

x>
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method (§)~-15 ti - best one among others that gives maximimum encirgy

and;the most,uniqum sufplu3 power in an acceptdble computing time. -

> T -

Iﬁ'summary,_the'objecpive-is to maxiﬁize

JRE( ]} Loos (6.15) ., .
' k=1 i=l PR N AU
.subjecf, to satisfying the equality constraints of Eq. (6 2) and e ;f 

- inequality coqstraints of Egs- (6.3), (6.4), (6.7), and (6. 9), and to
-satisfying td'ihe maximum’extent the soft constraints of Eqs. (6.13)

~and (6‘14) AlsoI to donsider‘diffefent relations‘of-the variables

that have been given(chrough the field measured tables.

6.5 Minimum Norm Form&iation L ' _af

IR

Substituting from Eq. (6 1) and (6 .2) inCO Eq (6;15);fohe:obtains,i )

m

J=E( izl [bk 1Y, i+dk 10, 1%k, 11/ 2% 1
L U U XU I
T ( rZRk 1 k,;TTk,;_Xk,i k1 ( rZRihgl_ ki
+1/b oy, WU (T v )
k,1 Uk, 1" B
. 2 ) . . ’ X
* Y, 10k, 1%, 1-1 1 o (6.16) -

where

bk,i-ak,i+¥/28k’i.(INFk’i+ rZRk sr’i-sk’i)

+1/4 v, . [INF. 24C

) +2 INF
k,1i k,i reR,

r 1 k i k i°

« s -8 .) , \ (6.17)
reRk r,i k,i
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e, 1™, 1M N, g CINFy ot rZRk r,1 5k, 1) | (6.18)
! . & Ca

If we define the following pseudo variables such that

= 2 .. . ' ¢
L 21 X 11 - - | (6.19)

and . B -

Tr T VO L U ) (6-20)

reRk

" Eq. (6.16) can be written as

-

me

2T J=E( izl [bk,i'uk,i+dk?};uk,ika,ijlf}/de{ika,i'
0] Ur,i'Uk,1)+Yk,i'xk,i'T +l/4Yk g k .
reR ) . _
O T A S _ , »
Fole O Ve, 17,00, 10 10,1 1) (6.20)

rst . , —
The augménted.cost function, J, is obtained by adjoining to the cost 7
‘function in (6.21) the equality constraints of Eq. (6.2) via Lagrange

"multipliers and the "inequality consyraints of Eqs. (6.3), (6.4),

wA. . . .
(6.7), and (6.9) via Kuhn-Tucker multi%liers;one thus obtains

/ Y
A m n ‘ ' .
JEl 121 (1=my) 'kzl 17U, 149 10k 1%, 111/ 29 o0y e
A : - -

( 1 U
reRk

£, 0, 0, 1%k, 10 Tk, 1+1/4 Yk i‘Tk 1

, _ .
1

) Ur’i_ur,i)hk,i‘zk,ih ¥ [xk’i (-)(k’iﬂ(k 1 PINR 4+ Y U

reRk k=1 ‘ 22 reRk
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2 i
T -, - - o
U it LSS0 (T, enC L Uy
’reRk : ) re
6) ) )+ 3 (-z, +X 2}+e 1.ghk -u, ,)
ka0 U2 PR oy ey ,17%,1

- / 2 . s 3 . -
/\/" M A R T I PR WP

2

SOPREE | )
? e 1 K PFo e 7Ky
fe (% 2% D))l 4e])] (6.22)
kK 1-1 K 1°08y < (6.
In the abov uation A, 1 'x 2 andxa 3 aréLa range multipli
n the above eq v Mot Mt Me, 1 grange multipliers

which will be determined in suﬁh a way that the corresponding equality

_ : 1 2 3 4 , _
constralnts must be satisfied. ek,i , ek,i 3 ek,i s ek,i s Ok,i,vand

Ty are Kuhn~-Tucker multipliers. They are equal to zero 1f. the
constralnts are satisfled and greater than zero 1f the constraints are
violated.

Eq. (6.22) can be written in the following form.

i m
e |

(l—ﬂi).(bT(I),U(I)+dT(I).U(I).E.X(I—fé
i=1 L

#1/2.45(D) 0D HM U@+ (D) X(I-1) H.T(T)
#1745 (D) T(D) HM U+ (D) 0D H.2(D) ] ‘

+A1T(I).{-X(I)+X(I—1)+INF(I)+M.U(I)

+M.s(15]+A2T(I).(-r(1)+u(1).ﬁ.u.u(l)}



h,.: (. _y !

+g Teny. (—z(I)+x<I—1) ﬁ'x(I 1)]+e <r) U(I)

L

&

+8, (1) X(D+oT (D). (p. H. [X(T-1)-X(D)].

v

+g.§;[x(Ijl)Jﬁlx(l—l)—x(l)‘ﬁ.x(l)]}]
r// .
where the following are nxl vectors

1,1;62’1...,bk’i,...,bn’i]

¢

b(I)'éol.[b

o0 L)

U(I)’col.[Ul,i,Uz’i,..;,Uk%i,. it

X(I)=col. [Xl 1 2,1""’Xk,1"'°’xn,i}

d(I)?col.[dl’i;dz,i,...,dk,i,...,dn’i}

Y<I)=COl.[Yl,i’Y2,i’.”’Yk,i’...’Yn‘,i}'

Z(I)’col;[zl,i,zz,i,...,Zk’i,zn,i]

v

o(I)=col. [al L 2,1""’ak,1’f"’dn,i] -

'
2

7

. .

B(I)—col{sl 1’21’000’%(1,.l.’8 ,i}

WDI=eolalyy 4y gorees Wy goeresVy 4)

1 1 1

Al(I)-col {Al 1 ,Az T i.,Ak,i ,...,An’i ]

a9 .

(6.23)

(6.24)

(6.25)
(6.26) -

(6.27)

(6.28)

(6.29)
(6.30)
(6.31)

(6.32)

(6.33)



S(I)-COL'FSI;E’SZ,i"'°’Sk,i""*Sn,i] B (6.97)
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- 2 2 2 2 co
AZ(I) col.{)\l’i ,Az’i ""’Ak,i ""’An,i ) (6.34)
N1 3 3 3 3 . 1

A3(I)]—col.{llyi ’AZ,i ,...,Ak’i , .,An’i_} (6.35)
. 1 1 1 1
el(I) col.{el,i 189 4 2teeaf g ereefy ) (6.36)
: . 2 2 2 2 N
ez(I) col.[el’i ,ez’1 ""’ék,i ,...,en’1 ) (6.37)
- 3 3 3 3 A
e3(I) COl'[el,i 89 1 ’f"’ek,i seeesey g ) (6.38)
) , )
4 4 4 4 : :
e4(;) col.{el’1 ,ez’i ,...,ek‘,1 ""’en,i ) (6.39)
- 1 I | 1
_81(1) (:01.[81,i ,62,1 ""’ek,i ,’...,9[1,1 ) (6.40)‘
} 2 2 - 2 . 2 Vi '
6, (Dmeol. (8) ;5,8 1 %heen8 (5hei8 %) (6.41)
) 1
. 2
T(D=eol. (T) 4\Ty sseeesTy poeeesTy ) | (6.42)
G(I)'COl'[Ol;i?GZ,i’f"’Ok,i""’onbi] _ (6.43)
P =0l (¥, ¥y, ene, b yenn, ) : (6.44)
€ =col.[ 8,5y, eury §yeeny b ] - (6.45)
INP(I)-COl.[INFl,i’INFZ,i’.."INFk,i’.'.’INFn,i]‘ A(6.46)

e
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2

k

‘and M 1s an nzn matrix where the diagonal elements aré'equal—to (-1,

and the other elements véry between (one) and (zero) dependiﬁg on the
. LY ' .
topological arrangement of the regérvoiré as explaiﬁed in the example

‘ \

. : . . Y
"given 1in Chapter IV. i 1s a vector matrix in which the  vector index
varies from 1 to n, . while the matrix dimension of H is nxn, {3], as
. N A4 r;

’

explained 1in Chapter V. Moreover, the values ofAE)k 11 and ek 12 aﬁi\
N Do . > N

defined as

S

e A (6.48). )
2 3 4 .
- - 6.49
%,1 T %k,1 %,1 ( )
Constant terms are dropped from Eq. (6.23). The values of
. om m A - .
o ax= ] faenaxaene) M xm
Ci=1 ‘ i=1 ,
. T L ’ ,‘A
- 3, (0).X(0) * C (6.50)
,\] .
T T,y T T,y T
I8, (D.X(D)= ] 6,"(I=1).X(I-1)+8," (m) .X(m)
i=1 _ i=1 -
T . o . ’
o - 8, (0).X(0) . (6,51)
b oo (D). H.X(I)= | 0 (I-1).¥.H.X(I-1)
i=1 i=1 ‘
+ 0 () b H.X(m)= 0" (0) . . H.X(0) (6.52)
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b oT(n.eHx(D.Hx) @ ,
121

= 5L(I-1).5.H.X(I-1).H.X(I~1)
+ o (m).£.H.X(m) . H.X(m)

- oT(0).£.H.x(0) .H.X(0) . | | (6.53)

3

Also, defining the follbwing vectors
WD = [XNI-1) 0D TN 2R : (6.54)

_ xl<x>-x1(1-1)+92<141>—wT.ﬁ.[ocz)—o(x-lj]-
(1=1,).b(I)+6 <§>+MT AL (D)

i7° 1 1
R(I)= (6.55)

- AZ(I)
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L{D)= -

> 1 >
.yuAHv .H MAHIﬁHV.QAHv.m

+£.H.[o(1)-0(1-1) ].H

1 , > 1 T >
IN.C.L;V.QAHV.E Nﬁnawv.a (I).H.M

1 T >
,*NCI:HV MTLH.A(T)

- 1 T >
.*M.VN (I) .H.M
1 T >
+M.Z .m.yNAHv .

wﬁlﬁv.ic.m ~ wcnfv.%:v.m.z

0 wﬁ-@.ic.m

WCIﬂ.Hv (D) m

1 T 2>
MAHlawv.x Hoy (D)

1 . >
Mﬁ,lde v(I).H

(6.56)
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we obtain the augmented cost function
:

F= T () X(m)+8," (m) . X(m)=0" (@) .v.H.X ()

- ~

- o' (@) . HX () X

+

| ~8

» T

W (D) LD WD D). WD) ) : (6.57)
1 )

cogstant parts have been dropped from equation (6.57).
Equation (6.57) 1s.composed of a boundary part and a discrete
. 1ntegral part}> these are -independent of each oth r'so, Eq. (6.57) can

. .
J

be written

. . (6.58)

where

Ve
3,23 () X(@)+ 8, () X(@)~ T(m). V.0 X (m) )
- o' (m). &.H.X(m) .H.X(m) T (6.59)
o ’
and
‘.
m i . ) ' o
R SR AR Te0 T LIESRVIESS (6.60)

If we defiie the vector V(I) such that .
/ '

/

I
)
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V(I)'L-I(I).R(I)’ o (6.61)

1

then, the augmented cost’ function in Eq. (6.60) can be written as

m ' i
7= 121 (WCD+1/2v(D 1T (D) . [WCD)+1/29(T)]

- 1/4v(D) 1D WD) (6.62)

V(I) and L(I) are iﬁdependent of W(I) :hen,/é;opping the constant terms

/

from Eq. (6.59) we obtain

)

Tp™ 12y (NCD+1/2veD 1T (D) WD+ /29D 1)  (6.63)

Equation (6.63) defines a norm in Hilbert space; hence, we can rewrite

it as

J,= ||w(1)+1/2v(1)l|L<I) o ~  (6.64)

6.6 The Optimal Solution

To\péximize J in Eq. (6.58) we will maximize each term_separétel§,
i.e.,

-

~

_ ﬂMax.& = Max.jl + Max.J2 . : .
o (6.65)
: (m),W(I)] [X(m)] - WD)}~

( : o
The maximum of J; 1s achieved when
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A @8 = O ()28 B B ()= 0 (6.66)
The maximum of 32 of Eq. (6.64) is achieved when

T N@+L/29 (D=0 1
\r_~ . o .. ey
' ’ :i/"'\. b . .

substituting from Eq. (6.58) intoiEq. (6:64), we obtain j(

(6.67)

d ~ i ’ . R . 1‘ V : . . ’
x(1>+z.g<1>.wgﬁbfg S - (6.68)
| ¢ S : o -
. . 8 £} s X : - :',.'.' o ‘
Writing the above equation explicitly using Eqs. (6.54)," (6.55), - and
o L ; T T o
(6.56) and  adding the equality coastraints in Eqs. (6.2), (6.17),

(6.18), (6.19), (6:20), (6.48), and (6.49), we get-

ra

~

) xl(l)>xi(1=1)+62t1—1)—¢T.§}(0(1)—0(1—1)]
420D HX(IA ) ke E (00D =0 (1-1)) HX(E-1)

1= (D 1D HBDH1-7(D 17 (D B0 (6.69)

E

[1=rCD)]bCI)+8 (D4+M A (IR 1-7(1)].d(D) H.X(I-1)

;%!2[l-ﬂ915].d?(I).H.H.U(I)%l/Z[l—”(I)].HT.gud(I).U(I)
/ .

"

#,1 (DM H (DB

9

\;:fffj[l-ﬂ(l)].MT.ﬁ.Y(I).T(I)+[l—W(I)].Y(I).E.Z(I)fg “

(6.70)
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=2 (I H[1=T(1) ). (1) H.X(I-1)

/A=D1 EM(D =0 o (6.71)
Sy (D+1=1(D 17D H.0(D) = 0 | (6.72)
X(DHX(I-1)+INF (D). U(T)+H.8(1)=0 (s.77

=b(I)+a(1)+1/2.8(I).H. (INF(I)+M.8(1)}

+1/6.(D.H. (INE(D . IP(D+8 70 7(0) Hom.8(D)

-

-

+2.INF(I) .H.M.5(I)) =0 | | (6.74)
-a<1)+s<1>+y<1>.E.rxur<1>+ﬁfs<1))fg - (6.75)
~Z(DHX(I-1).H.X(I-1) = 0 - ‘ " (6.76)

‘pj . . Ja
~I(IDHB(D) HMU(D) = 0 - L (6.77)
=8 (D+e, (D-e (1) = 0 | \ ' | (6.78)
'-62'-('I)+eﬁk -, (D) -Q | (6.79)

We -also have the following limits on Kuhn-Tucker values



— A

0.0

>0.0

0.0

>0.0

0.0

>0.0

0.0

>0.0

© 0.0

>0.0

if

if

“1f

if

if

(6.80)

(6.81)

X, 125 1

(6.82)

Xk,1<§k,i.

Xy, 1551
(6.83)

X, .2

K, 17%,1

b, ¢ ~ £ (X L= <
U KL 19178, 00 B im1 Res D

.

' 2. 2=
D 17RO K- 1

(6.84)
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n
' ( 0.0 Z Gy, 17%42C

™= if ; (6.85)

n .
- >0.0 A ) G, -t .<C

Equations (6.69) to (6.85) with Equation (6.66) completely specifﬁ’
optimal‘solution. |
6.7 Algorithm for Solution
Given a system of n reservoirs conﬁected like a tree (this can fit
" any arbitrary topological arrangement), the expeéfed vaiues of natural
inflows, INFk,i’ the initial storage, Xk,o’ usuaily all reservoirs a?e
full -at the beginning of the critical Leriod (Xk,o;ik"o) unless
drafting for minimum flow or flood contrgl, and the tables whicﬁ
speclfy the relationships between the variables at each plant in the
system‘and d fferent types of equality and.inequality oastraints:
1) assume Iinitial value fdr Xk,i’
é) check the limits on Xk 4> 8O that
1 R, 1%, 1 1ot X 1’X \

( X, 1>Xk i Xk,iaxk,i {

14
]

k=l,..,0; 1=1,...,m

3) assume the spill’at the beginning ) equal to zerd, i.e.
Sk’i'0.0. k=l,...,n; i=4,,..,m

4) calculate the outflow Uk 1 using the water conservation equation
> . .

U, 1™ R 1 R 1o PIVE ot D e

re
¢ Rk'

To do so, start at the beginning of any branch. Then, go to the
next'ddwnéstream piant till the end of that branch. Then, go to

the next branch and so on._



5)

6)

7)

8)

check the limits on_Uk 1’ so- that
b

if Uk,i<gk,i let 1) uk,ifgk,i’ and
i{1) calculate the corresponding value of Xk 1
b g

using the water conservation equationm.

Uk,i let 1) U U 17 and

1 K,i k,

Uk,i>

"41) calculate the corresponding value of Xk 1
H
- using .ne water conservation equation

check thg limits on Xk,i_

X K, et DX K po

11) calculate the corresponding value of U

k,1
using the water conservation equation, and

1
1
-ii)ek,i > 0.0 ‘ .

'if % %1 ;Et 1 Xk,ifik,i

{1) calculate the corresponding value of Sk 4
’
using the water conservation equation, and

i11)e, 12>o.0
>

. . 2 2\ =
1f Wk'(xk,1—1‘xk,1)+€k'(xk,1—1~"Xk,; )>D,

let ¢ >0.0 ) .

k,1 ]

-

if Xk and/or U satisfy the boundary constraints given 1in
1 k,1 , |
equations (6.80) :o (6.84), then the corresponding values of Kuhn—

Tucker multipliers will be set equal to zero.

‘calculate the corresponding value of the tailwater elevation

TWEk 1 using the field measured table of tﬁe discharge versus
, , ;

tailwater elevation (Uk+S

Kk V8 TWEk) usiﬁg a cubic spline

sgbroutine, Appendix 1.

-

ccnétruct;,a new ;able;between the storage and the head (Xk vs

Hk'i) using the field measured table of the storage versus forebay
’

199



9)

10)

11)

12)

22)

200

elevation where Hk i-Ek TWEk A -
2

match the (Xk vs Hk i) table with the field measured table of the
water conversion factor versus the effective head, (WCFk vs Hk)
using a suitable cublc spline subroutine to conclude with a new

table of the storage versus the water ‘conversion factor (X

Kk VS
WCFk) 1 .
: ; b W
calculate ak,i’ Bk,i’ and Yk,i for the‘(Xk vs CFk)i table uging

a least squares curve fitting subroutine

calculate the total energy generation G k=1l,..,0; 1i=1,...,m,

K,1
where '

3
~

8

G, 1 %, 1 Loy (#1728 (R MR 1)+1/4Yk 1% 1%, 141

‘ y o
calculate the value of & L and 8 2 using Eqs. (6.78) and

k,1 k,1
(6.79) given the values. of Ve and £k calculate the valug>of Xk ml,
. b
k=1l,...,n using Eq. (6.66)

calculate the values of = i=i,...,m using Eq. (6.85)

i
calculate_kk 12 k=1,...,n; i=l;...,m, using Eq. (6.71)
’ .
calculate Ak 13 k=1,...,n; i=1 . ,m, using Eq. (6.72)
. » b

calculate the value of Z, 1 k=l,...,n0; 1=1,...,m using Eq. (6.76)

’

calculate the value of T k=l,...,n; i=i,...,m; using Eq. (6.77)

k,1i
calculate the value of bk,i k=l,...,n; 1=1,...,m, using Eq. (6.74)
caléulate'dk;i k'l,...,n; i=l,...,m using Eq. (6.75)
calculate Ak,il k-l,...;n.and i=m-1, m—2,...;1>(backyard) g?ven
the value 6f Ré’ml, step 8, using Eq. (6.69)

calculate the new value of Xk 1
b



23)

24)
25)

- 26)

27)

K(I-1)=([1-7 (1) ].d(D) - B) " . ([1-n¢I) 1. [BCI)+ (1) .H.X(I-1)

]

+1/2.a%D Hu0(D+1/240 F.a(D . u+1/6 M5By (D) . T(D

+Y(1).ﬁ.z(1)]+él(1)+MT.kl(1)+A2T(I).ﬁ.M.U(I)

+ MT.E.%Z(I).U(I)}

check the boundary conditions on Xk»irféo that
) b

1E X 3751 Y8t X ™Ry

if X <X let X =X

k,1=%,1 k,1 —k,1
let Sk i=0.0 k=l,...,n; i=1,...,m.
’ : {
calculate Uk 1 using the water conservation equation
b

check the limits on Uk 4> SO that
= b

ifU <Y , 1) letU and

k,1 9,10 _
11) calculate the corresponding value of Xk 1
b

using the water comservation equation

1f > 1) let U , and

Ue, 17,1 1,1 0k, 1

i1) calculate the corresponding value of X 4
. . b
using the water conservation equation

check the limits on Xk {» SO that
b

if Xk;1<5k,1 1) 1let Xk,i=zk,i

11) calculate the corresponding value of kaé
. L
vusing the water conservation equation, and

1 —
1it)let ek,i >Of0

1f X_ ,OX i) let X

K,1” %k, 1 k1 %k, 10

11) calculate the corresponding value of U 4 -

’

using the water conservation equation

2

111)let ek,i

>0.0

201
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’ 2 2 o ‘
if wk'(xk,i-l Xk,i)+€k'(xk,i-l xk,i )>Uk let Ok,i>0'0
28) calculate the total gederation Gk 1 k=l,...,n; i=l,...,m after
. ?
calculating th? values of L Bk,i and Vi1 (steps 7 to 11)

29) calculate the value of the objective function, J, where

m n
J = Z ) c;k,i

i=l1 k=1 S -

30) 1if the solution converges toward a better solution, then continue
(go to step 12) until qao significant changes occur  from
iteration to iteration. »
1f the solultion diverges then
1) stop the calculation .

ii). use the results obtained to modify the controlling soft
constraints 6k’i'and %k’i,'gnd
1i1) repeat the calculation (start at step 1). .
por) ’ i ) e

6.8 Application to the B,P.A. Hydro System
The problem of.éhe load following optimization of the B.P.A. hydro

system 18 carried on considering all the requirements proposed in this

chapter. As We can see in Figs. 13 and 14 the essential need for

a ioad following optimization technique. Pig. 13 compares the
’ i

‘dependable load and the corresponding hydro generation obtained from

the givzn rule curves used in the B.P.A. hydro corporation. By "the
dependable 1load” we mean the value of load obtained after subtracting_

from the total firm load an amount representing the required thermal,

nuclear, solar, wind, wave and other sources of power generation. The

fulfilment of this dependable load means no curtailment of firm load is

202
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necessary and no need to lmport an expensive energy to meet the

deficit. In PFig. 15.- the  cost or profit arising " from W, {is

i
representéd by the function Ci called the energy deficit generation
cost. Fig. 14 presents the resulting total generation versus the

load using the results obtained.from Chapte§ V during each period. And

Fig. 16 presents the same comparison for the 1load following
algorithm presented in this chapter. A-comparison,Between Figs. 13,
14, and 16  proves the capability of this algorithm to maximize thp

e

total energy genetated‘while it guarantees the most uniform surplus
power. |

In Fig. 16 thére 1s some nonuniformity which cannot be avoided
due to the imposed constﬁhint;ibﬁ ghe scheduling process. One of’ the
major causes of the nonuniformity is the water . budéet requirement
(Chapter IIi);' ~ For example, the requé;ed minimum flow at Grand Coulee
and Priest Raplids Dams jumps from 50;000 or 60,000 CFS to 134,000 CFS
during May to satisfy the Water Budget minimum flow on the :%olumbia
Rfvéz. This 'makés the .total generation during May peak more than
during any other period and causevthié unavoidable nonuniformity.

In thé:programming process,.we have compiled six projects in pairs
to decrease thé computational effort as dilscussed in‘Chapter IV. Also,
a 'specilal subroutine is made to suit the special configuration of thg
Canal Plant Dam, Fig. 9, and the required distribution of the
water budget between the Canal Plant and Corra Linn Dams, fable 126.
Furthermore, a special subroutine 1s made to calcﬁlate the -

corresponding tailwater for a given release to Yale and . Upper . Baker

[y

Dams because of the sharp changes occurring in their field = measured

tables, Fig. 12.
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L
In TableIIS, we compare the amount of the unifofm surplus poﬁeﬂ
obtained by B.P.A, rule curves and that obtained in Chapter V to that
obtained using the load following algorithm in this chapter. .In Table
15 a comparison o{//%he average power generated by the B.P.A. /%ule
cur&es results, the calculated results in Chapter' V, and that obtained
'gy the load following techﬁique is.presénted. In Table 17 a comparison

of the total energy capability for the B;P.A. rule curves results, the

results of Chapter V and the load following results.
Table| 15

A:comparison‘pf the violation of the minimum discharge requirement,
the spill, and the amount of the uniform surplus power for the

B.P.A. rule curves results, the results of Chapter V, and that using

the load following techhique.

U ,<U Spillage Uniform Surplus

kol =, Power .
B.P.A. rule this happens 68 P
curve results times during the Z Sk 1=4.378E6 -3,828.2MW
' 84 critical period  k,i ’ (deficit)
for the 88 project 3
ng,i-uk’i=48;845.8
Uk,l >Uk,i
Chapter V | Z.gk’i—uk’i=o.o | _Z S, ¢"L-77386 —6,903.7MW .
results U. sy k,i (deflcit)
~*,i “k,1
, - Z_ z. > )

Load U -u .=0.0 S, .=1.774E6 709.4MW
following k,i Tk, k,i k,1 (surplus)
. U |

results *k,1>Uk,1
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Table 16

A comparison of the average power generated between

7
/

the B.P.A. rule curve results, tHe calculated results of Chapter

"~ ..V, and the load following results. ) -
. .
Period // Average Power Generated by
from to | B.P.A. Chapter load
: v following

Sept. 1,1928  June 31,1929 12.373 12.594 13.044
July 1,1929  Jume 31,1930 11.801 12.511 12.377
July 1,1930 June 31,1931 -12.321 12.211 12.669 . °

July 1,1931  Feb. 29,1932 12.163  13.974  12.464

{

Table 17
A comparison of the total energy capability for the B.P.A.
rule curve results, the results of Chapter V, and the load

following results.

Comparison of B.P.A. Chapter V Load following
Total Energy (GWH) . 372,512 389,981 . 387,258
Average power (GW) 12.155 : 12.725 12.636
% increase over P 4.689% 3.967%
the B.P.A. ' o :
e
“)
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‘6.9 Conclusions
I have presented a very general framework for the formulation and
solution of‘the hydro “system scheduling problem.  The framework allows -
for the incorporation of virtually all types of constraints tﬁét' are
~ imposed in the.plaﬂhing and the actuélppperation bf hydro systéms. fhe
RN

valgﬁrithm déscribed'id this chapter proves its‘ability to produce tﬁe
‘maximum generation with the rost uniform sdgglué power. "‘The algorithm
accurately dodélsl many of the hydro-plant parameters and consrrainrs_
and optimizés tﬂe’srhgdpies by me&né of functional analysis and .the

minimqq norﬁ formulatioﬂ technique%
| in this'cﬁéprer, the ,generation froﬁiéééh reservolr is conéidered_
;s a quadratic function of the stprage times the_dischargeéthrough the
'turbiné. ‘_Tailwater elevatibn is t;ken as a‘nonlinear function of the
total release. - Férebay eleQatron'.is considered“ as a_-ronlinear

f\~¢£gssfion of the storage. o _ . oo
N - R .
e

» Also in this.chaptér, the;development’and ma jor ¢haracteristics of

the“'romputatioqally efficient solution methodology are’ described and
some of the pitfglls in applying such a‘technique to a relativel& large

~ system are presented. Tyﬁical,numerical results for an actual hydro

o

system illustrate the capabilities of the proposed solution scheme.
The .basic feature of this new procedure is 1ts ability to produce
‘ _ 1 . c

the maximum uniform surp}us, which satisfies the systemi constraints.
The procédure can compute the systenm parameters for hundreds of sets of
rule curves of 51 run~of-river pIantsaﬁd 37_réservoirs and 96 time

periods.. Furthermore, from the results obtained, it is;‘f dent that )

T

.
~

&Y

o

this technique shows much promise.
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CHAPTER VII

CONCLUDING REMARKS'

7.1 Conclusions _‘ ‘ _ ) >

In this thesis, a pteseﬁtation has been made to illustréte the
solution for thefhalf monthly operating poliz;lof a multiresefvoir tree

‘connected hydro power system. The proposed solutioﬁ has been done by‘
one-ét-a—time method étarting from the end reservoir or run-of-river
plant of éacﬁ branch and taking one branch at a time.

The ,problem' is 'fo%mulated‘ as a minimum 'norm problem ~in the
framework of fﬁnctional analysis and .the equafions obtained afe
. K ‘ . , :
noniihear_ discrete time equatilons. ’fhe time beriqd used in the 1long
range modellng 1is half a month; therefore, short range‘ﬁnyaulic and.
electrotechnique effects are not takenlinto conqidera;ion. |

The tree -system 1s the gene;al case .of Dams' topology which

.adequatgly' speéifiés a real .system and | fits any  arbitrary
configuration. llt is.an improvement over the methods which deal only
with independené riyers,paréllel codnect;ons,with resef#oirs connected
in series.; |

The techniqie preng;s a4 very géneral framgwork for tne
formulation'aqd égiution of the hydro éysfem scheduiing probleﬁ.. This
framework ‘allows for ,the»accémmodation of allitypgs.;of'ﬂconstraints 3
imposed 1in the planning and due to the actual operation of uthé .hydto
systems. The algorithm described proves 1its abil%ty to produce vtﬁe

maximum generation with the most uniform surplus power.

Also, we present_sbme of the pitfalls in applying such a . .techniqug
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to a relatively large system. The application of the tac-aique 1is
carried_ out for two systems; a nine reservolr systém and ne B.P.A.
hyéro system. The prob..u of schd&duling the operation ofithé_ B.P.A.
hydro system is oné of the largest problems of its kind that has +5éen
solVedb to date. It involves abproximigely 271,462 variables,_'a;
nonlinear objective fuﬁct}on, 8,43? line;% eduatidns,.4l,760 iinear and
nonlinear‘typé of inequality constraints, bmany auxiliarg relationshiﬁs
aﬁd' v J968'tables. Because of the large problem size, sbecial
precautions had to be taken to insure cor'ergénce of the coméutational_
technique, computationél accuracy, and efficienéy.t Conslderable data
hgndling problems also had to be Bvercome; The final results depend
upon‘the accurate representafion of the reservoir, run of. river, and
thé. hydro‘Aunit models coupled with the constant, vvariéble 'téilwater
elevagion, lineér éuadiatic w;ter conversion factor as a function of
the storage, or linear dr nonlihear forebay eiev#tion as a function of
the storﬁge; - |

" The schedﬁliﬁg probléﬁ is fully specified by subjecting storages,
pens;ock releasés, spillages, aﬁdltotal releases to a set of lipeaf ani
nonlinear coﬁstraints. Constraiﬁtstlay two importang/Eoles in this
;fudy: (1) £hey enforceVEeasibility due to physical and/or technical
- features 1in the system; and (2) guarantee thatfunctions qthér thaﬁ :
power generation are adequately fulfilled, b& introducing suitable
cdnétraintér on penstock releases, spiiléges,> and storéges S0 as ﬁb
sétisfy 'c§ntractual agfeementé and regulagions related _fo flood

control, wildlife, irrigation, navigation, fisherieSﬂ and water quality

requirements, etc.
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1
In this thesis we solve a highly nonlincia. pioblem '-considerin\g all

the effects of

1) Reservoirs  on dependent rivers,

E .2) Multi-valleys, , .
~3) All linear and nonlinear, equality and inequality constraints,

4) Tailwater elevation depends on the total release,

3) Draft constraints,

6) The generation is a nonlinear function of the outflow ' through the
turbine and the -effective head. The latter is a nonlinear function-of the
storage, ' '

7) Large problem with 88 projects and 96 time period.

This ‘new technique is independent of the starting points and able
to combine methodology and experience. ‘

The basic feature of this new procedure is gfs abiiity to produce
the maximum wuniform power surplus, while satisfying the ' system
c.nstraints. It 1s evident from the results obtained that> this
technique shows much promise.

7.2 Suggestions for Further Research

The minimum norm formulat;on employed in this investigation"has
demonstratedi the capabilityvof‘solving complex power system scheduling
problems. For example, the long-term optimal séheduling for realistic
systems haying thermal, hydro, and nucleir power plants as a varilable
sourcé may be possible to éolve using the same technique.

It may be possible to solve the short;term ébtimal operé;ion for
the,h?dro and hydro*thermal systems using the results obtained from the
long;term opﬁimal‘operation forythé same system. In this’szudy | the
system losses and thé time delay of water flow may be taken iﬁto

o

account.
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Appendix I

Cubic Splines

v

A spline approximation 1s a plecewise p61ynomial approximation.

This means that a function f(x) is defined on an interval a < x < b

’

and Wwe want to approximate f(xz) on that interval by a function g(x)

which 1s obtained as ﬁ?llows:‘ We partition a <x < b, that 1s, we

subdivide it Into subintervals with common end points (nodes)
a = x, < 3 < X, <eon¥ X, = b,

and we require that g(x) in these subintervals. is- given by> cubic
polynomial, one polynomial per subintervai, such that at lihose
endpolnts g(x) is differentiable. Hence, instead of épproximating f(x)
by a single pdlynomﬁél/ on the entire interval a <x £ b,  we . now
aﬁproximate f(x) by k polynomials. —The cubic spline g(x) ona { x < b
is a 'continuous function whicP  has continuous first andl second
derivatives’evrywhere in that interval. Also, we have"

;

,(XO) = f(xo), g(xl)_= f(xl);..J,g(xk) = f(xk).

Hence, by using the cubic spline we guéragtee that the interpolation of
'x(3) is exactly £(j) and the interpolation of x(j+§) will be a suiﬁaﬁle
value Qf'f on the cubic curve between the points j and j+l. This suits
ammbst ’all_ the field measured tables we fit except two tables for

Pléﬁtg number 5/78 and 77/1018. Inthese two tables thglfield measured
‘daté given indiCafes a shatﬁ change iﬁ tailwater variation againstithe

total release. Hence, for these two curves, a cubic spline has been
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used in the first part which indicates a continuous first and second

derivative and for the other part a linear curve fitting is used Fig. 12.



