
Bulletin of Mathematical Biology (2022) 84:90
https://doi.org/10.1007/s11538-022-01047-x

ORIG INAL ART ICLE

From Policy to Prediction: Forecasting COVID-19 Dynamics
Under Imperfect Vaccination

Xiunan Wang1,2 · Hao Wang1 · Pouria Ramazi3 · Kyeongah Nah1,4 ·
Mark Lewis1,5

Received: 5 January 2022 / Accepted: 23 June 2022 / Published online: 20 July 2022
© The Author(s), under exclusive licence to Society for Mathematical Biology 2022

Abstract
Understanding the joint impact of vaccination and non-pharmaceutical interventions
on COVID-19 development is important for making public health decisions that con-
trol the pandemic. Recently, we created a method in forecasting the daily number of
confirmed cases of infectious diseases by combining a mechanistic ordinary differen-
tial equation (ODE) model for infectious classes and a generalized boosting machine
learning model (GBM) for predicting how public health policies and mobility data
affect the transmission rate in the ODE model (Wang et al. in Bull Math Biol 84:57,
2022). In this paper, we extend the method to the post-vaccination period, accord-
ingly obtain a retrospective forecast of COVID-19 daily confirmed cases in the US,
and identify the relative influence of the policies used as the predictor variables. In
particular, our ODE model contains both partially and fully vaccinated compartments
and accounts for the breakthrough cases, that is, vaccinated individuals can still get
infected. Our results indicate that the inclusion of data on non-pharmaceutical inter-
ventions can significantly improve the accuracy of the predictions. With the use of
policy data, the model predicts the number of daily infected cases up to 35 days in
the future, with an average mean absolute percentage error of 20.15%, which is fur-
ther improved to 14.88% if combined with human mobility data. Moreover, the most
influential predictor variables are the policies of restrictions on gatherings, testing
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and school closing. The modeling approach used in this work can help policymakers
design control measures as variant strains threaten public health in the future.

Keywords Inverse method · COVID-19 modeling · Vaccination ·
Non-pharmaceutical interventions · Generalized boosting machine learning model

1 Introduction

Since COVID-19 was characterized as a pandemic by World Health Organization
(WHO) on March 11, 2020, it has spread to 224 countries and territories. The United
States is the country most affected by COVID-19, with 20,629,998 confirmed cases
and 369,897 deaths by the end of December 2020 (https://www.worldometers.info/
coronavirus/country/us/). Mass vaccination against COVID-19 started on December
20, 2020, in the US. As of December 13, 2021, 72.6% of the US population have
received at least one dose of vaccine, 60.9% have been fully vaccinated, and 16.5%
have been given a booster shot (Ritchie et al. 2020). Except another small peak in
April, the weekly number of new cases kept decreasing nearly monotonically, since
mid-January 2021 until June 2021 (Ritchie et al. 2020), which brought a faint hope
that the COVID-19 pandemic might be brought under control soon, although this
hope has been dashed by the emergence of new COVID-19 variants. Indeed, even
when vaccines are available, control of COVID-19 indispensably relies on some non-
pharmaceutical interventions (NPIs), such as testing, contact tracing, facial coverings,
protection of elderly people, school closing, workplace closing, cancellation of public
events, restrictions on gatherings, public transport closing, stay at home requirements
(Ritchie et al. 2020). Thus, it is necessary and urgent to understand the joint impact
of vaccination and NPIs on COVID-19 spread in order to provide guidance for poli-
cymakers to control the pandemic.

Transmission dynamics is a useful tool to serve this purpose, as it can assess both
the direct and indirect impact of vaccinations on the disease spread (Eichner et al.
2017; Halloran et al. 1991). Dynamical models have been used in studying COVID-
19 vaccine prioritization, hypothetical vaccination strategies or the resource allocation,
such as the intensity of NPIs needed to balance with a restricted number of vaccines
available (Bubar et al. 2021; Brett and Rohani 2020; Buckner et al. 2021; Saad-Roy
et al. 2020;MacIntyre et al. 2021;Matrajt et al. 2021; Han et al. 2021; Li et al. 2020). In
terms of the future projection, the majority of studies provide only qualitative insights
rather than quantitative estimates. Quantitative forecasting of the future transmission
in the post-vaccination era can be realized only if we predict the number of COVID-19
confirmed cases based on vaccination and NPI policy data.

In our recent pre-vaccination modeling work (Wang et al. 2022), we employed a
hypothesis-free machine-learning algorithm to estimate the transmission rate based
on NPI data, and in turn forecast the daily number of confirmed cases in the US for the
pre-vaccination period using a mechanistic disease model. We also investigated the
impact of different types of policy and mobility data on the predictions and found that
restrictions on gatherings is the most influential variable (Wang et al. 2022). In this
paper, we use the samemethod as inWang et al. (2022) tomake a retrospective forecast
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of the daily number of confirmed cases in the US for the post-vaccination period and
investigate the joint impact of vaccination and NPIs. More specifically, we build a
hybrid model consisting of a mechanistic ordinary differential equation (ODE) and a
generalized boosting machine learning model (GBM). The ODE model contains two
vaccinated compartments: partially vaccinated and fully vaccinated, and it accounts
for the case that vaccinated individuals can still get infected. Then, the impact of
vaccination is reflected implicitly when the ODE model gives simulation results. The
NPIs serve as predictor variables of the GBM to predict the transmission rate. Before
we run GBM to make predictions, we use the inverse method that we created in Wang
et al. (2022) to obtain a time series of daily transmission rates which are fed into GBM
as the response variable. The GBM is trained based on these predictor and response
variable data and produces predictions of future transmission rates given future NPIs.
Using the predicted transmission rates from the GBM, the ODE model gives the
predicted number of daily confirmed cases. In Wang et al. (2022), we have shown
that including NPI policy data can greatly improve the accuracy of the predictions.
We were curious to see whether this is also the case for the post-vaccination period.
To this end, in addition to the scenario where only policies are used as the predictors
of the GBM, we have considered two other scenarios where human mobility is also
used. This forecasting approach capturing the joint impact of vaccination and NPIs
can hopefully be applied to other countries that are suffering terrible situations caused
by SARS-CoV-2 and its variant strains as well as other infectious diseases.

The remaining paper is organized as follows. In Sect. 2, we present data collection,
model formulation, parameter estimation, and prediction methodology. In Sect. 3, we
present the results. In Sect. 4, we provide concluding remarks and propose possible
future work.

2 Methods

2.1 Data Collection

In this study, we collected daily data from April 4, 2020, to April 5, 2021, that cover
part of both pre-vaccination and post-vaccination periods in the US. We obtained the
number of confirmed cases of COVID-19, the number of partially vaccinated and
fully vaccinated individuals in the US and policy indices in each state of the US from
the website of Our World in Data (Ritchie et al. 2020) (https://ourworldindata.org/
coronavirus), the six categories of humanmobility data in theUS from the official web-
site of Google (https://www.google.com/covid19/mobility/), and deaths, recovered
and active cases in the US from the worldometer website (https://www.worldometers.
info/coronavirus/country/us/). All data used in this study are metric. In order to mit-
igate the inaccuracy induced by under-reporting, etc. (for example, during weekends
the number of daily confirmed cases is usually under-reported), we used the 7-day
averaged epidemiological data (i.e., the average of the current day and the last 6 days)
in the simulation.

We derived the nationwide time-series index data for containment policies (begin-
ning with “C") and health policies (beginning with “H") by taking an average of
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Fig. 1 Policy and mobility data in the US from April 4, 2020, to April 5, 2021

the corresponding policy indices over all the 50 US states as well as Washington
D.C., weighted by their populations. The containment policies included school clos-
ing (denoted by C1), workplace closing (C2), cancel public events (C3), restrictions on
gatherings (C4), close public transport (C5), stay at home requirements (C6), restric-
tions on internal movement (C7), and international travel controls (C8). The health
policies included public information campaigns (H1), testing policies (H2), contact
tracing (H3), facial coverings (H6), vaccination delivery policy (H7), and protection of
elderly people (H8). The labels H4 and H5 represent emergency investment in health-
care and investment in vaccines, respectively, which are not available (Ritchie et al.
2020). Note that in addition to those policy data in our pre-vaccination work (Wang
et al. 2022), here we take into account the vaccination delivery policy (H7) as well
since we focus on the post-vaccination case in the current paper. Human mobility data
included changes of mobility trends (%), compared to the baseline level 0, in retail
and recreation (M1), grocery and pharmacy (M2), parks (M3), transit stations (M4),
workplaces (M5), and residential (M6). The time series of these 14 policy indices and
human mobility data are shown in Fig. 1.

2.2 Model Formulation

Ourmodel extends the SEIAR (Susceptibles, Exposed, symptomatic Infected, Asymp-
tomatic infected, Removed) model in Wang et al. (2022) by incorporating two new
compartments: the individuals who are partially vaccinated (denoted by V1), and the
individuals who are fully vaccinated (V2) (see Fig. 2).

The susceptible individuals getting their first dose of vaccineswill enter the V1 com-
partment, and the individuals in the V1 compartment will enter the V2 compartment
if they are fully vaccinated. According to CDC statistics, a small part of vaccinated
individuals can still get infected, which is the so-called breakthrough cases (https://
www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.html). We
describe such breakthrough cases by incorporating incidence terms in the equations
of V1 and V2, with relative risks of infection being ε1 and ε2, respectively, for partially
vaccinated and fully vaccinated individuals, due to imperfect vaccination protection.
Therefore, the susceptible individuals (S), the partially vaccinated individuals (V1),
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Fig. 2 Flowchart of the transmission dynamics with vaccination

and the fully vaccinated individuals (V2) will all enter the exposed compartment (E)
if they are infected by symptomatic infected individuals (I), asymptomatic infected
individuals (A), or the exposed individuals (E). The transmission rate is β(t), and the
relative transmissibility of asymptomatic infected and exposed individuals compared
to symptomatic infected individuals are θA and θE , respectively. The average incuba-
tion period is 1/δ days. Once the incubation period ends, a proportion p of the exposed
individuals become asymptomatic infected and the rest proportion 1−p become symp-
tomatic infected. The disease induced death rate is μ(t). It takes an average of 1/rI
days and 1/rA days for symptomatic and asymptomatic infected individuals to recover,
respectively. The model is given by the following system of differential equations:

dS(t)

dt
= −β(t)S(t)(I (t) + θE E(t) + θA A(t))

N
− η(t)S(t),

dE(t)

dt
= β(t)(S(t) + ε1V1(t) + ε2V2(t))(I (t) + θE E(t) + θA A(t))

N
− δE(t),

dI (t)

dt
= (1− p)δE(t) − (μ(t) + rI )I (t),

dA(t)

dt
= pδE(t) − rA A(t),

dR(t)

dt
= rI I (t) + rA A(t),

dV1(t)

dt
= η(t)S(t) − γ (t)V1(t) − ε1β(t)V1(t)(I (t) + θE E(t) + θA A(t))

N
,

dV2(t)

dt
= γ (t)V1(t) − ε2β(t)V2(t)(I (t) + θE E(t) + θA A(t))

N
.

(1)

2.3 Parameter Estimation

The constant parameter values are taken from the literature. The total US population
N is expected to be 331, 449, 281 by US Census Bureau on April 1, 2020 (US Census
Bureau 2021). Since the incubation period ranges from 2 to 14 days and has a mean of
about 5 days (Linton et al. 2020), we assume that δ = 1/5 per day. According to Byrne
et al. (2020), asymptomatic individuals has an approximate median infectious period
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of 6.5 to 9.5 days, and the average duration from symptom onset to clearance is about
13.4 days based on a meta-analysis of serial testing. Then it is reasonable to assume
that rI = 1/13.4 per day and rA = 1/8 per day. Gao et al. (2021) discovered that 76%
of seropositive infections were accompanied by no symptoms based on a study among
34857 participants in China. In addition, they found that the relative transmissibility
varied from 0.35 to 0.58 for asymptomatic cases and was 0.63 for pre-symptomatic
cases. Thus, we assume that p = 0.76, θE = 0.63, θA = 0.47. The two new constant
parameters ε1 and ε2 were estimated according to vaccine efficacy, which is generally
reported as a relative risk reduction (RRR). Ourmethod used the relative risk (RR), i.e.,
the ratio of attack rates with and without vaccination to get RRR, which equals 1-RR
(Olliaro et al. 2021). The RRR of the Pfizer–BioNTech BNT162b2 mRNA vaccine
beginning 7 days after the first dose to before the second dose is 68.5%, and the RRR
of Pfizer after 7 days of the second dose is 94.8% (Skowronski and De Serres 2021).
Since most people in the US take the Pfizer and Moderna vaccines which have similar
efficacy (Olliaro et al. 2021), we use the RRR of first- and second-dose Pfizer vaccine
to approximate the values of ε1 and ε2, which leads to ε1 = 1 − 0.685 = 0.315 and
ε2 = 1− 0.948 = 0.052.

The death rate on day i (denoted byμ[i]) is estimated using the following formula:

μ[i] = #new deaths on day i

#currently infected individuals on day i
.

The first-dose vaccination rate on day i (denoted by η[i]) is estimated by the fol-
lowing formula:

η[i] = #individuals who received their first dose vaccine on day i

#susceptible individuals on day i
,

where the number of susceptible individuals on day i equals the total population N
minus the number of all infected individuals on and before day i (regardless of whether
recovered or not) and then minus the number of individuals who have been vaccinated
before day i .

The second-dose vaccination rate on day i (denoted by γ [i]) is given by

γ [i] = #individuals who received their second dose vaccine on day i

#individuals who are partially vaccinated on day i − 1
.

To estimate the time-varying transmission rate, we used the inverse method that we
created in Wang et al. (2022) which is motivated by Kong et al. (2015) and Pollicott
et al. (2012).We started by obtaining the time series of E(t) from the term (1− p)δE(t)
which can be approximated by the notification data. We use S[k], E[k], I [k], A[k],
R[k], V1[k], V2[k] to represent the values of variables in model (1), D[k] to represent
the cumulative deaths, and y[k] to be the notification data, on the k-th day of study.
Then we have

E[k] = y[k]
(1− p)δ

, k = 1, 2, 3, . . . , K ,
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Table 1 Parameter interpretation and values

Parameter Interpretation Value

β(t) Transmission rate See Fig. 4

N Total population of US 331,449,281

θE Relative transmissibility of exposed individuals 0.63

θA Relative transmissibility of asymptomatic individuals 0.47

η(t) First dose vaccination rate See Fig. 3 (a)

γ (t) Second dose vaccination rate See Fig. 3 (b)

1/δ Incubation period 5 days

p Proportion of asymptomatic infections 0.76

μ(t) Death rate of symptomatic infected individuals See Fig. 5

rI Recovery rate of symptomatic infected individuals 1/13.4 day−1

rA Recovery rate of asymptomatic infected individuals 1/8 day−1

ε1 Relative risk of infection for partially vaccinated individuals 0.315

ε2 Relative risk of infection for fully vaccinated individuals 0.052

where K is the length of the vector of notification data. We can obtain the time
series data of V1[k] and V2[k], k = 1, 2, 3, . . . , K , and the initial values S[1],
I [1], R[1], D[1] from reporting (Ritchie et al. 2020) (https://www.worldometers.
info/coronavirus/country/us/). We assume that A[1] = 0.76I [1]/0.24 according to
Gao et al. (2021). It follows that

I [i] = I [i − 1] + (1− p)δE[i − 1] − (μ[i − 1] + rI )I [i − 1],
A[i] = A[i − 1] + pδE[i − 1] − rA A[i − 1],
R[i] = R[i − 1] + rI I [i − 1] + rA A[i − 1],
D[i] = D[i − 1] + μ[i − 1]I [i − 1],
S[i] = N − E[i] − I [i] − A[i] − R[i] − D[i] − V1[i] − V2[i],

for i = 2, 3, . . . K .
Next we add up the S-equation, V1-equation and V2-equation to obtain

d(S(t) + V1(t) + V2(t))

dt
= −β(t)(S(t) + ε1V1(t) + ε2V2(t))(I (t) + θE E(t) + θA A(t))

N
.

Substituting the time series of S(t), V1(t), V2(t), I (t), E(t) and A(t) into the above
equation, we can solve for β(t):

β[i − 1] = − N (S[i] + V1[i] + V2[i] − S[i − 1] − V1[i − 1] − V2[i − 1])
((S[i − 1] + ε1V1[i − 1] + ε2V2[i − 1])(θE E[i − 1] + θA A[i − 1] + I [i − 1])) , i = 2, 3, . . . , K ,

andwe can approximate β[K ] by the value of β[K−1]. The interpretations and values
of all the parameters are given in Table 1.
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2.4 Prediction

We implemented three GBMswith different predictor variables to explore the relation-
ship between the transmission rate and policy and/or mobility variables, and determine
which factorsmostly affect the transmission rateβ(t) according to their relative impor-
tance. Our main interest was in the GBM with all the 14 types of policy data (C1–C8,
H1–H3, H6–H8) as predictor variables since the model with policy only has the power
of prediction. The second GBM involves the mobility variables (M1–M6) only and it
is used to explore the direct impact of human mobility on the prediction of the trans-
mission rate. The last GBM incorporates all the mobility variables (M1–M6) together
with four policy variables (H2, H3, H6, H7), aiming to investigate the joint impact of
human mobility and policy on the prediction. Note that for the last GBM, we did not
include the other policies since they are considered to have direct impact on human
mobility and hence it may be unreasonable to put them together with the mobility as
predictor variables when we want to change some of the policies, whereas we do not
know how the mobility varies accordingly. By comparing the simulation results of
these different GBMs, we were also able to see whether better predictions occur when
mobility data are included.

The gbm package and predict function in R were used in the implementation
of the gradient boosting machine learning. To evaluate model performance in making
future predictions, we divided the dataset into a training and test dataset, where the
model is calibrated using the training dataset and is then evaluated based on its pre-
dictions over the test dataset. As this is a time-series prediction task, the division was
done temporally, where the beginning “chunk” of the data is taken as the training and
the remaining chunk as the test dataset (Ramazi et al. 2021b, a). Moreover, to increase
evaluation reliability, several training and test durations were considered. Focusing
on the effect of vaccination on the COVID-19 dynamics, we needed all the test dura-
tions to cover a part of post-vaccination period. To this end, we fixed the start data
of training at April 4, 2020, and let the training duration vary from 231 days to 329
days by an increment of 7 days, and meanwhile fix each test duration at 35 days. Then
the earliest test duration was from November 21, 2020, to December 25, 2020, which
covers 6 days of the post-vaccination period, and the latest test duration consists of
post-vaccination days from February 27, 2021, to April 2, 2021, as shown in Table 2.

The training dataset consisted of the transmission rate on each day obtained by
the inverse method as the response variable and policy and/or mobility daily data
as the predictor variables. For the first GBM, all the 14 types of policy data (C1–
C8, H1–H3, H6–H8) on each day were provided as the predictor variables. For the
second GBM, all the 6 types of mobility daily data (M1–M6) acted as the predictor
variables. The training dataset of the third GBM contained all the mobility data (M1–
M6) and the policy data H2, H3, H6, H7 as the predictor variables. For the testing
dataset, we provided the trained GBMs with policy and/or mobility data to get the
predicted transmission rate on each day of the test duration. Using the trained and
tested transmission rate time series, we plotted the curve (1−p)δE(t) of the SEIARVV
model (1) and compared the simulated resultswith notification data of dailyCOVID-19
confirmed cases.
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Table 2 Training and testing durations

Train length (days) Train duration Test duration

231 April 4, 2020, to November 20, 2020 November 21, 2020, to
December 25, 2020

238 April 4, 2020, to November 27, 2020 November 28, 2020, to January 1,
2021

245 April 4, 2020, to December 4, 2020 December 5, 2020, to January 8,
2021

252 April 4, 2020, to December 11, 2020 December 12, 2020, to January
15, 2021

259 April 4, 2020, to December 18, 2020 December 19, 2020, to January
22, 2021

266 April 4, 2020, to December 25, 2020 December 26, 2020, to January
29, 2021

273 April 4, 2020, to January 1, 2021 January 2, 2021, to February 5,
2021

280 April 4, 2020, to January 8, 2021 January 9, 2021, to February 12,
2021

287 April 4, 2020, to January 15, 2021 January 16, 2021, to February 19,
2021

294 April 4, 2020, to January 22, 2021 January 23, 2021, to February 26,
2021

301 April 4, 2020, to January 29, 2021 January 30, 2021, to March 5,
2021

308 April 4, 2020, to February 5, 2021 February 6, 2021, to March 12,
2021

315 April 4, 2020, to February 12, 2021 February 13, 2021, to March 19,
2021

322 April 4, 2020, to February 19, 2021 February 20, 2021, to March 26,
2021

329 April 4, 2020, to February 26, 2021 February 27, 2021, to April 2,
2021

The performance evaluation measures MAE (i.e., mean absolute error) and MAPE
(i.e., mean absolute percentage error) were utilized to evaluate the differences between
the predicted and actual numbers of confirmed cases, and the differences between the
transmission rates predicted by GBMs and those derived from the inverse method.
The formulas of MAE and MAPE are given by

MAE = 1

n

n∑

i=1

|zi − xi |, MAPE = 1

n

n∑

i=1

∣∣∣∣
zi − xi

xi

∣∣∣∣ ,

where xi is the i th component of the vector of actual values, zi is the i-th component
of the vector of prediction values, and n is the total number of data instances. To
obtain smaller MAE and MAPE, the GBMs were tuned with the number of trees,
the distribution of response variable, the stochastic gradient descent, the depth of
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Fig. 3 First and second dose vaccination rates from April 4, 2020, to April 5, 2021

Fig. 4 Transmission rate obtained by inverse method and the fitting with notification data from April 4,
2020, to April 5, 2021

interaction, the learning rate, and the minimum number of observations allowed in the
trees’ terminal nodes.

It is intriguing and important to know which predictors are more influential in
training the GBM. We explored this by using the summary function in R which
produces a bar plot showing the values and ranking of the relative influence of each
predictor variable.

3 Results

The curves for the time-varying vaccination rates, the transmission rate obtained by
the inverse method, and the death rate are shown in Figs. 3, 4, and 5, respectively. The
GBMs based on the training and testing datasets perform better (i.e., lower MAE and
MAPE) when the number of trees is 1000, the stochastic gradient descent parameter
is 0.9, the depth of interaction is 30, the learning rate is 0.01, the minimum number
of observations allowed in the trees’ terminal nodes is 10, and the response variable
has a Gaussian distribution.
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Fig. 5 Death rate of symptomatic infected individuals from April 4, 2020, to April 5, 2021

Table 3 Averaged MAE and MAPE of the fittings with notification data

Data used in GBM Averaged MAE Averaged MAPE

Policy data C1–C8, H1–H3, H6–H8 24145.99 20.15%

Mobility data M1–M6 30197.89 26.85%

Mobility data M1–M6 and policy data H2,H3,H6,H7 21200.27 14.88%

The averaged MAE and MAPE for the predictions of daily confirmed cases corre-
sponding to the three GBMs across all different training durations are given in Table
3. The MAE and MAPE corresponding to different training durations are presented in
Table 4. The averaged MAE and MAPE of GBM with mobility only are higher than
the other two GBMs involving policies as predictor variables. The lowest averaged
MAE and MAPE are obtained for the GBM which has both mobility and some of the
policies as predictors. However, as shown in Table 4, the MAE and MAPE for the
model with mobility only are not always the largest, and the MAE and MAPE for the
model with both mobility and policy variables are not always the smallest for some
specific training duration. The best prediction result based on each GBM is shown in
Fig. 6 (MAPE=5.20%), Fig. 8 (MAPE=3.86%), and Fig. 10 (MAPE=4.99%), respec-
tively. Some other selected training and testing results about the transmission rates as
well as the fittings with notification data of daily confirmed cases corresponding to
the training durations are presented in supplementary Figs. 12 and 14 for the model
with policy as the only predictors, in supplementary Figs. 16 and 18 for the model
with mobility as the only predictors, and in supplementary Figs. 20, 22 and 24 for
the model with both mobility and policy as predictors (see Appendix). We can see
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Fig. 6 Using policy data C1–C8, H1–H3, H6–H8, train 245 days from April 4, 2020, to December 4, 2020;
test 35 days from December 5, 2020, to January 8, 2021

Fig. 7 Relative influence of policy variables C1–C8, H1–H3, H6–H8 when trained for 245 days from April
4, 2020, to December 4, 2020

that the fittings with the transmission rate and the notification data of daily confirmed
cases for the training part (orange curves in these figures) are almost perfect including
the fitting with peaks and troughs. Although the MAPEs for the predictions of the
transmission rates are not very small (greater than 10%), the MAPEs are quite small
(smaller than 6.5% ) for some predictions of notification data (see the yellow curves
in Figs. 6, 8, 10 and supplementary Figs. 16, 18, 20). In Figs. 6, 8 and supplementary
Figs. 16, 18, 20, even if the training is based on pre-vaccination data, the predictions
for post-vaccination confirmed cases have very small MAPEs: 5.20%, 3.86%, 3.88%,
5.76%, 6.34%, respectively. Besides, the yellow curves in the right panels of Fig. 6 and
supplementary Figs. 16, 18, 20 replicate the trend of increasing to a local maximum
and decreasing from the local maximum to a local minimum.
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Fig. 8 Using mobility data M1–M6, train 231 days from April 4, 2020, to November 20, 2020; test 35 days
from November 21, 2020, to December 25, 2020

Fig. 9 Relative influence of mobility variables M1–M6 when trained for 231 days from April 4, 2020, to
November 20, 2020

Fig. 10 Using mobility data M1–M6 and policy data H2, H3, H6, H7, train 315 days from April 4, 2020,
to February 12, 2021; test 35 days from February 13, 2021, to March 19, 2021

The relative influence of each policy variable in training the first GBM is shown in
Fig. 7, supplementary Figs. 13, 15 when the model is trained for 245 days, 273 days,
308 days, respectively. From these figures we can see that restrictions on gatherings is
the most influential policy when the model is trained for 245 days, which is consistent
with the finding of our pre-vaccination paper (Wang et al. 2022). However, the most
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Fig. 11 Relative influence of mobility variables M1–M6 and policy variables H2, H3, H6, H7 when trained
for 315 days from April 4, 2020, to February 12, 2021

influential predictor variable is school closing when the model is trained for 273 days
and becomes testing policies when the model is trained for 308 days. Note that in both
these two cases, post-vaccination data are involved in the training and restrictions
on gatherings is the second most influential predictor variable. When the model is
trained for 245 days, the relative influence of the vaccination delivery policy H7 is
0 as the training set involves only pre-vaccination data in this case. The vaccination
delivery policy H7 becomes increasingly important as the training involves more post-
vaccination data, with the relative influence increasing from 0.62% when trained for
273 days to 1.24% when trained for 308 days (see supplementary Figs. 13, 15). The
relative influence of the mobility variables in training the second GBM for 231 days,
238 days, and 245 days is given in Fig. 9, supplementary Figs. 17, 19, respectively. For
all these training sets, human mobility in parks is always the most important variable,
followed by retail and recreation and workplaces, whereas residential mobility has the
least influence on training the model. The relative influence of the mobility variables
M1–M6 and the policies H2, H3, H6, H7 in training the third GBM, corresponding
to training durations of 315 days, 245 days, 294 days, 308 days, are presented in
Fig. 11, supplementary Figs. 21, 23, 25, respectively. When mobility data and part of
the policy data are put together for training, the leading influential variable is always
testing policy H2 with a weight of around 50% in relative influence when the GBM
is trained for 315 days. Similar to the GBM with policy predictors only, the ranking
of vaccination delivery policy H7 increases when more post-vaccination days are
included in the training dataset. The rankings of the mobility variables also change
when the model is trained for different lengths of days.
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4 Discussion

In this paper, we constructed a hybrid model by combining an ODEmodel with a vari-
able transmission rate, motivated by the mechanisms of COVID-19 transmission and
vaccination dynamics, coupled to a GBM, which provides a machine learning algo-
rithm to forecast the transmission rate based on policy and/or mobility data. In our
mechanistic model, we considered both partially vaccinated and fully vaccinated com-
partments in addition to the susceptible, exposed, symptomatic infected, asymptomatic
infected and recovered compartments. In particular, we incorporated incidence terms
in the vaccinated compartment equations to directly model the fact that vaccinated
individuals can still get infected, which has rarely been studied by previous mathe-
matical models with vaccination (Brett and Rohani 2020; MacIntyre et al. 2021; Li
et al. 2020). The key step to link the ODE and GBM models is to obtain the time-
varying transmission rate by the inverse method that we created in Wang et al. (2022).
This time-varying transmission rate can produce an almost perfect fit with the notifica-
tion data of confirmed cases, which increases the chance of a good fitting using GBM.
We trained the GBMs to fit the transmission rate obtained by the inverse method with
policy and/or mobility data and predicted future transmission rate based on future pol-
icy and/or mobility data as well as the training experience. Then we used the trained
and predicted transmission rate to plot solution curves of the mechanistic model to
make predictions of the number of daily confirmed cases.

The prediction performancewas evaluated bymean absolute error (MAE) andmean
absolute percentage error (MAPE) measures. We found that the GBM trained on data
on both mobility and some of the policies (testing, contact tracing, facial coverings,
and vaccination delivery) is more efficient in establishing an association between the
transmission rate and predictor variables than the GBM trained based on policy or
mobility data only. The performance of the GBM with only mobility data performs
the worst. Therefore, to model the impact of the preventive policies on the disease
spread, mobility data appears to be insufficient. Other factors, such as facial covering,
must be included.

We also investigated the importance of the predictor variables and found that restric-
tions on gatherings, testing policies and school closing are the most influential on
training the GBM compared to other NPIs, which is consistent with their leading roles
in training the pre-vaccination model (Wang et al. 2022). This further emphasizes
the importance of these NPIs even under vaccination. For the GBM with both policy
and mobility as predictors, the rankings of the relative influence of the three policy
variables testing, facial coverings and contact tracing are the same for both pre- and
post-vaccination cases (Wang et al. 2022) except when trained for 294 days where
contact tracing is a little more important than facial coverings. For the GBM with
mobility as the only predictors, mobility trend in parks is always the most influential
factor regardless of the vaccination situation (Wanget al. 2022). For the pre-vaccination
case, the second most influential variable is workplaces (Wang et al. 2022). For the
post-vaccination case, the second most influential variable becomes retail and recre-
ation.

The conclusions on the predictors are at the country scale. For example, mobility
trend in parks may not be the most influential factor in every state of the US; however,
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when making predictions for the whole country—as in our model—the mean of the
mobility trend in parks over all states becomesmost influential. Indeed, different states
have adopted differentmitigation policies (Haratian et al. 2021), and this heterogeneity
must be taken into account for state or even county-level analysis.

Since predictions are made based on the training experience, investigation of rel-
ative influence of predictor variables in training the model can help us get closer to
the mechanisms behind predictions. Although our machine-learning compartment is
correlation based, which prevents causal statements on the relationship between gath-
erings restrictions and the transmission rate, our finding highlights the possibility of
such causal relationship and motivates future work in this direction. Indeed, some
research works have already tried to estimate the effects of different control measures
or mobility on COVID-19 transmission dynamics (see Badr et al. 2020; Chinazzi et al.
2020; Xue et al. 2021; Lai et al. 2020; Koo et al. 2020) and the references therein). Our
relative influence results indicate that the vaccine delivery policy is not so important in
training the model. However, there is no disparity regarding the importance of incor-
porating vaccination in a model (see, e.g., MacIntyre et al. 2021; Patel et al. 2021)
because the vaccine delivery policy only describes the availability of vaccines such
as to what extent or scale the vaccines are distributed or donated to a region (Ritchie
et al. 2020). It may not represent how many people are actually getting vaccinated so
it has no relation to either vaccination rate or cumulative vaccinated proportion.

For future work, it would be interesting to consider different infected compart-
ments representing individuals infected with different strains of the virus. One can
also study immunity waning cases where recovered and vaccinated individuals return
to the susceptible compartment after a period of time. This aspect should be impor-
tant in long-term forecasting. In addition to susceptible individuals, exposed and
asymptomatic infected individuals who are unaware of their infections and recov-
ered individuals can all get vaccinated, which will result in a new post-vaccination
mechanistic model. Moreover, it is informative to compare the COVID-19 dynam-
ics in different states of the US using fine-scale datasets (Haratian et al. 2021) or in
other countries in the world. Parameter uncertainty and identifiability are also worth
investigating for this novel inverse method plus machine learning approach. Themeth-
ods used in this work could be applied in the study of some other infectious disease
transmission dynamics as well, especially when vaccination is implemented.

Supplementary Information The online version contains supplementary material available at https://doi.
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