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Abstract: Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to
the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of
renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are
presented. Also discussed are various application areas, and future directions in this research area. A comprehensive resource
for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

1Introduction
The aim of this series of papers is to present the incorporation of
the transient stability constraints in a traditional optimal power
flow (OPF) formulation. Assessing transient stability is an
important analysis in power engineering to decide preventive
control actions or corrective remedial action schemes. Interfacing it
with an OPF, the defacto steady-state optimisation tool, is both
mathematically challenging and computationally rigorous.
Research in this area, also termed as the transient stability
constrained OPF (TSC-OPF) problem, has resulted in the
investigation of various approaches to solve this problem. Part I of
this series of papers provided an in-depth overview of dynamic
optimisation-based methods for solving TSC-OPF. Several variants
of the interior point method (IPM), which have been used for
solving the resultant non-linear optimisation problem, were also
discussed.

This paper continues the discussion on techniques for solving
TSC-OPF by presenting two other categories of approaches; single
machine equivalent (SIME), and computational intelligence (CI),
which have demonstrated unique advantages and have been widely
investigated in the literature. The basic motivations of these two
categories of approaches are to focus the two following extreme
variants of TSC-OPF problem, compared with conventional
dynamic optimisation-based approaches reviewed in the Part I.

SIME-based approaches are developed for the situations that
only rotor-angle stability is concerned, therefore it is possible to
utilise equivalent single machine model to simplify the
formulation. In contrast, CI-based approaches are commonly
adopted when the formulation becomes too complicated or too
large to be handled by existing approaches. A derivative-free, self-
adaptable, black-box approach is preferred in such situations,
where CI algorithms exactly fit the requirement.

As a bridge connecting steady-state operation decision making,
and transient-state performance, TSC-OPF is capable of being
extended to various applications in different fields of power system
planning, operation and control, especially when power system
dynamic performance and its criteria are observed as an emerging
limiting factor. Many examples available in the literature are
classified in this survey paper to demonstrate the extensive
applicability of TSC-OPF problems.

This paper is organised as follows: Section 2 summarises the
SIME approach for solving TSC-OPF and details the steps
involved in obtaining the single machine equivalent and its stability

assessment. Section 3 provides an overview of two
computationally intelligent approaches: metaheuristics
optimisation and artificial neural networks (ANNs), and provides a
literature survey of these approaches for solving TSC-OPF. Various
applications of TSC-OPF formulation in its standard form as
described in part I, or its variants, are discussed in Section 4. Some
of the future research directions in this area are postulated in
Section 5. In addition, the Appendix provides a comprehensive
resource for the literature available in this area, publicly available
test systems, and numerical libraries.

2SIME approach
SIME is a hybrid temporal-direct method: temporal, since it relies
on multi-machine system evolution with time, and direct, like the
extended equal area criterion from which it originates [1]. The
underlying idea of SIME is to reduce a multi-machine system into
an equivalent one-machine-infinite-bus (OMIB) representation at
each time step of the time-domain simulation and to calculate its
stability margin. The advantage of the SIME approach, as
compared with time-domain simulations, is that it provides a
deterministic measure of the stability of the post-disturbance
trajectory. Thus, when the instability criterion is met the time-
domain simulation can be terminated. The SIME approach
comprises the following three main steps.

i. At each step of the post-fault trajectory, SIME first group
machines into ‘critical machines’ (CMs), which are responsible for
loss of synchronism, and ‘non-CMs’ (NMs). This is based on the
proposition that the mechanism of loss of synchronism in a power
system originates from the irrevocable separation of the CM and
NM [1]. In order to identify the CMs and NMs, the rotor angles of
all machines at each time step of the post-disturbance trajectory are
sorted in decreasing order. The largest rotor angular deviations
between any two machines are used as a demarcation to create the
two groups of machines.

ii. Next, an OMIB equivalent is created from the centre of
inertia (COI) equivalent of the two machine groups. With subscript
C to denote the critical group and N for the non-critical group, the
rotor angles for the COI equivalent of the two groups are as
follows:
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δC(t) = MC
−1 ∑

k ∈ C

Mkδk(t),

δN(t) = MN
−1 ∑

j ∈ N

M jδj(t)
(1)

The speeds ωC(t) and ωN(t) can be computed similarly. In the
above formulae, one has the following inertia equivalents:

MC = ∑
k ∈ C

Mk, MN = ∑
j ∈ N

M j

With the two equivalents thus defined, the rotor angle and speed of
the equivalent OMIB are given as follows:

δ(t) = δC(t) − δN(t)

ω(t) = ωC(t) − ωN(t)
(2)

The mechanical power Pm(t) and electrical power Pe(t) of the
equivalent OMIB are

Pm(t) = M MC
−1 ∑

k ∈ C

Pmk(t) − MN
−1 ∑

j ∈ N

Pm j(t)

Pe(t) = M MC
−1 ∑

k ∈ C

Pek(t) − MN
−1 ∑

j ∈ N

Pe j(t)

(3)

with the accelerating power given by the following:

Pa(t) = Pm(t) − Pe(t) (4)

In the above expressions, M denotes the equivalent OMIB inertia
coefficient:

M =
MCMN

MC + MN
(5)

3) Fig. 1a shows the variation of OMIB electrical power Pe with
respect to the rotor angle δ for the fault-on trajectory for two
stability scenarios. If the instability criterion (6) is satisfied at some
time tu, the candidate OMIB is declared as the critical OMIB
equivalent. This time tu also corresponds to the time at which the
electrical power Pe(t) and mechanical power Pm(t) intersect each
other at angle δu as shown in Fig. 1b. The unstable margin is
computed by using (7), where ω(tu) is the rotor speed at tu

Pa(tu) = Pm(tu) − Pe(tu) = 0, Ṗa(tu) > 0 (6)

ηu = − M(ω(tu))
2/2 (7)

For marginally stable cases, the stable margin is computed by
(8), where δr is the rotor angle at time tr at which δ starts

decreasing and Pa < 0. The angle δr is also referred to as the return
angle

ηst = ∫
δu

δr

Pa(tr) dδ (8)

Equation (8) can be approximated by a triangular or a curve-fitting
method as detailed in [1].

SIME has been employed in a variety of TSC-OPF applications
of which optimal preventive generator rescheduling [2–5] and
maximising available transfer capacity [1, 6] have been the most
researched. A detailed discussion of the SIME concepts and the
associated applications – preventive and corrective control, open-
loop and closed-loop emergency control, and others – is given in
[7].

Compared with dynamic optimisation-based approaches, the
SIME approach of providing a direct measure of system instability
(unstable margin). Thus, the instability margin can be implicitly
incorporated as a transient stability constraint. For instance,
transient stability constraints provided by SIME are directly
expressed in terms of the power limits of the CMs. Since these are
constraints already considered in the conventional optimal power
flow model [(1)–(4) of the companion paper], this approach does
not need to consider the sets of dynamic and stability constraints.
In this way, this approach has never been limited by the size of the
system and by the modelling detail, and has been successfully used
to optimise large realistic systems reported in [1–3, 6, 7].

Another advantage of SIME is that it provides the time at which
the instability occurs thus yielding a termination time for the TSC-
OPF time-domain integration. SIME also implicitly provides the
limit on the rotor angle of the OMIB, δ+, that one may use in the
transient stability constraint. Pizano-Martinez et al. [4] use a
simultaneous discretisation approach along with SIME to solve the
TSC-OPF problem. In their approach, the simulation end time is
set to tu calculated by using the SIME approach when an unstable
margin is detected. Further, they use only a transient stability
constraint for time tu instead of a constraint for each time step. This
transient stability constraint is given by the following:

δUT(tu) − δCT(tu) − Th ≤ 0 (9)

Here δUT and δCT are the OMIB rotor angles for the unstable case
and the marginally stable case, respectively, and Th is a ‘desired’
deviation threshold. This desired deviation threshold is an
additional cushion for maintaining stability so that the system is
operated well within the marginally stable angle δCT(tu). δCT(tu),
being dependent on the prevailing operating practices, differs from
one system to another. The ‘desired’ threshold used in [4] is 1 × 
10−4. In [5], their approach is improved by constraining the rotor
angle deviation only at the initial time t0 as follows:

δUT(t0) − δsh(t0) − Th ≤ 0 (10)

Here δsh(t0) is the OMIB rotor angle that results in a stable case.
This rotor angle is computed by using the SIME sensitivity
analysis described in detail in [1]. Thus, this approach results in an
optimisation problem involving only the steady-state OPF
constraints and a single constraint on the initial condition of
dynamic state variables. We note that in both approaches, Pizano-
Martinez et al. solve the optimisation separately to compute the
initial operating point and then perform a time-domain simulation
complemented by SIME. In [8], it was shown that this approach
could consider detailed modelling of the power system.

Zárate-Minano et al. [9] use the SIME approach in conjunction
with the simultaneous approach as their solution, similar to [4]. A
difference is that their formulation has transient stability constraints
at each time-step. They also use a reduced admittance matrix, Ybus,
to reduce the dimensions of the variables to be solved. Xia et al.
[10] propose the use of minimum kinetic energy for normal
unstable cases or the minimum accelerating power distance for
extreme unstable cases as a stability performance index, obtained

Fig. 1 OMIB P − δ trajectory for
(a) Unstable case, decelerating area Adec < accelerating area Aacc, (b) Stable case
Adec > Aacc
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from SIME simulation. This index is then integrated as a stability
constraint in an OPF formulation.

However, SIME may face convergence issues due to identifying
different OMIB equivalents during the TSC-OPF iterations. The
reason is the OMIB equivalent system structure (composition of
the CMs and NMs groups) may change during the stabilisation
procedure. These discontinuities may invalidate the TSC-OPF
procedure with uncertain renewable energy generation output.
Since the transient stability constraint (9) is set with the initial
operation point, during restarting the stabilisation procedure, as
detailed in [4], it is difficult to get a converge result with the
changed OMIB structure.

3CI approaches
Adaptation and self-organisation are two main features that make
an algorithm computationally intelligent. Adaptation is the ability
of an algorithm to change or evolve its parameters to better meet its
objectives, while self-organisation is a system's attempt to organise
itself into different complex structures [11].

For the sake of brevity, consider a simplified transient stability
constraint as (11), where x represents steady-state operating
condition to be optimised by TSC-OPF. The function g(x) indicates
the transient stability assessment conclusion based on the operating
condition x given a certain contingency. Different approaches may
use slightly different forms of such function, but the concept is
similar

g(x) =
1 (unstable)

0 (stable)
(11)

Therefore, the formulation of TSC-OPF can be re-written as (12),
where SC is the set of contingencies. f (x) is the objective function
similar to the ones in other approaches surveyed in this paper. x
may be also subjected to other steady-state constraints, e.g. line
flow or bus voltage constraints, which are not explicitly shown

min
x

f (x)

s . t . gk(x) = 0, ∀k ∈ SC

(12)

Due to the complexity of transient stability, it is commonly
difficult, if not possible, to establish the analytic expression of g(x).
Its sensitivity w.r.t. x is also sometimes difficult to obtain, due to
various aspects like large dimension, ill-condition, discontinuity
and so on. The idea of CI-based approaches is to treat g(x) as a
black-box and investigate its input/output behaviour, instead of
looking at its detailed mathematical model.

Following this idea, the following two categories of CI-based
approaches are surveyed: meta-heuristics-based approach and
ANNs-based approach.

ANNs are another paradigm of CI, inspired by the massively
parallel structure of the mammalian brain. Classification, clustering
and pattern recognition, are some applications of ANNs.

3.1 Metaheuristic optimisation algorithms

Metaheuristics is a problem-independent algorithm framework that
provides a higher-level set of strategies, compared with heuristic
algorithms, to solve optimisation problems [12]. In other words,
instead of using simple strategies such as trial and error to find the
solution to a problem, metaheuristics provides higher-level global
optimisers that organise and guide the search process to reach to
the global solution. As it does not depend any property of the
optimisation problem, it can be easily utilised to solve TSC-OPF
problem like (12).

Metaheuristics-based approaches commonly address the
following unconstrained optimisation formulation, after
introducing a sufficient large barrier coefficient μ

F(x) = f (x) + μ ∑
k ∈ SC

gk(x) (13)

The idea of metaheuristic methods is to perform direct search in the
space of x, it evaluates the values of F(x) using a series of attempts
on x and then determines which new x to try next time. Such
iteration continues until a sufficiently good solution is found. Such
direct search process only depends on the evaluation of F(x) and
does not require any knowledge of the convexity, non-linearity,
discontinuity, uncertainty of the function studied. This is root
reason behind why it has been widely used to solve TSC-OPF.

Generally, a meta-heuristic method includes the following three
steps:

i. Find an initial guess of x0.
ii. Evaluate the value of yk given xk in kth iteration, where yk is the

function value as

yk = F(xk) (14)
iii. If yk is sufficiently good, then return it as the optimal solution,

otherwise determine xk + 1 to be evaluated in next iteration

xk + 1 = h(xk, yk) (15)
iv. where the function h(x, y) denotes to the strategy used to

update x.

It is observed that many variants can be developed following
the framework shown above. First, one is able to evaluate and
update a single x one-by-one or multiple x in a batch, which can be
parallelised in nature. Second, the strategy implemented in function
h(x, y) can be inspired by the advancement in other disciplines,
such as the progress of evolution or the behaviour of a swarm and
so on.

Evolutionary algorithms are designed based on the principles of
Darwinian evolution and take advantage of genetic mechanisms
such as mutation, crossover, recombination and selection of the
best individuals. Genetic algorithms, evolutionary programming,
and differential evolution are examples of evolutionary
optimisation algorithms. With a genetic algorithm an initial
population of chromosomes (individuals) is evolved at each
iteration of the algorithm, employing genetic mechanisms. At each
iteration, the fitness of each individual is assessed, the most
promising individuals are selected to build the new population, and
crossover and mutation are applied to the population. The
algorithm terminates once a criterion (e.g. maximum number of
iterations) is fulfilled. Evolutionary programming is similar to
genetic algorithms, but some differences between the two methods
do exist. For example, the crossover operator is not used in
evolutionary programming. Differential evolution is another
member of the evolutionary optimisation family in which the
mutation and recombination operators are utilised to evolve the
candidate solution. However, as a parallel direct search method,
differential evolution employs np d-dimensional parameter vectors
xi, G, i ∈ 0, 1, …, np − 1 as the population at each iteration. The
algorithm generates a new parameter vector by adding a scaled
difference between two population vectors to a third vector. If the
resulting vector offers a better objective value than a selected
vector in the population, it will replace that selected vector in the
next iteration.

Swarm-based optimisation algorithms are inspired by the
intelligent and organised behaviour of different types of animals,
such as insects and birds in search for food. Particle swarm
optimisation (PSO) is an important member of this family. PSO
works based on exchanging data between different particles of a
swarm that are exploring the search space. Each particle is
represented by using a velocity and a position vector. The velocity
and position vectors of each particle are updated at each iteration
with respect to the particle's best visited position, pbest, and the best
solution the swarm has ever encountered, gbest. The final solution to
the problem is the value of gbest after the last iteration.

Problem independence is an important characteristic of
metaheuristic algorithms. This feature makes them good candidates
for solving the non-linear TSC-OPF problem. The application of
metaheuristic algorithms for solving TSC-OPF has been studied in
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several articles. This includes applying genetic algorithms [13]
differential evolution [14] and PSO [15] to TSC-OPF problem. In
these studies the objective function typically has been to minimise
generation cost. Some of the recent developments on the
application of CI for solving TSC-OPF include (a) population
based methods: micro-PSO method [16], NSGA-II [17], self-
adaptive differential evolution [18], krill herd algorithm [19], (b)
direct search methods: improved group search optimisation [20],
pattern search [21], and (c) support vector machine: support vector
machines (SVMs) are used to classify whether an operating
condition satisfies predefined transient contingencies in [22].

In order to handle the power flow and transient stability
constraints, a penalty function approach is used [i.e. μ in the
illustrative example of (13)]. Based on this method, a penalty term
is defined for each constraint. If a constraint is satisfied, its penalty
term will be zero, otherwise the penalty term will be a positive
value proportional to the amount of constraint violation. The
penalty term of each constraint is multiplied by a large enough
positive (scaling) value and added to the objective function.
Therefore, in order to minimise the penalty terms, the optimiser is
forced to search inside the feasible region for the optimal solution,
otherwise the added penalty terms to the objective function will
produce large constraint violation values. We note here that,
although, the solution of TSC-OPF, and in general SCOPF, by
metaheuristics is a promising research area, its practical
applicability and scalability still needs to be proven.

3.2 Artificial neural networks

ANNs simulate the massively interconnected parallel structure of
the brain using simple interconnected nervous cells called neurons.
This simulation is presented by two main structural components in
a typical ANN: connection weights and processing elements [11].
An ANN can contain several layers of processing elements in
which each processing element in each layer calculates its output
value based on an activating function and the weighted outputs of
the previous layer. If the weighted summation of the input values to
a processing element exceeds a threshold, its output is activated.
Training (adaptation) plays the major role in the behaviour of
ANNs. Once an ANN has been designed, it must be trained. Based
on the supervised training strategy [11], a set of input–output data
is provided for training the ANN. The ANN uses the dataset to
adjust the weights of its internal connections based on a method
such as back-propagation of the error between the desired and
computed output through the system. The trained ANN is then
tested for accuracy by using another set of input–output data. If the
testing results are satisfactory, the ANN is ready to use.

For the problem of TSC-OPF (12), ANN can be used to
describe the transient stability constraint g(x). ANN utilises one or
more hidden layers to emulate the relationship from the inputs,
including generator power, tie line power, or fault clearing time and
so on, to the output, i.e. the value of g(x). After training using
sufficient amount of samples obtained by transient stability
assessment computation, an ANN shown in Fig. 2 can be
established to quickly estimate transient stability performance
given any values or combinations of inputs. Therefore, one is able
to significantly speed up the modelling and solving of TSC-OPF
problems based on the trained ANN. 

This idea was originally developed to provide an online
estimation of the stability condition of the system for TSC-OPF

study, so as to reduce the computationally expensive numerical
stability analysis. ANNs are used in [23] to evaluate the sensitivity
of the transient energy function with respect to the generators’
output power, emfs, and machine inertia constants. The estimation
is then included in the economic dispatch problem and solved by
using a gradient-based method. In [24] ANNs alongside
evolutionary programming have been employed to solve the TSC-
OPF problem. In both approaches, evolutionary programming is
used for optimising the objective function while the ANN estimates
the degree of stability of each individual of the population.

4Applications of TSC-OPF
TSC-OPF can be used either for preventive control or for
corrective/remedial action schemes. We highlight six TSC-OPF
applications that have been extensively investigated within the
power system research community.

4.1 Optimal generation scheduling

One important application widely investigated in the literature is of
preventive control through optimal generation rescheduling for
maintaining certain transient stability criteria. This task is
traditionally achieved by a conventional OPF or a steady-state
security constrained OPF formulation. Stability assessment is
commonly performed in offline study and ignored in online
operation, which increases the risk of instability or even blackouts.
In order to find an OPF solution that satisfies stability constraints, a
trial-and-error method that is not only computationally
cumbersome but also can miss ‘optimal solutions’ [25] and
produce discrimination among market players in stressed power
systems [26]. The TSC-OPF formulation with minimisation of
generation cost as the objective function is used for optimal
generation rescheduling.

4.2 Dynamic available transfer capability (ACT)

As steady-state OPF is one of the approaches to determine the ATC
of a transmission line or a corridor. Similarly, when dynamic
constraints are considered in ATC calculation, it comes to the
concept of dynamic ATC, which can be solved by TSC-OPF. In
this application, the transfer capability of the studied assets is
maximised while ensuring that the transient response after a large
disturbance remains stable. Dynamic ATC addresses post-
contingency transient stability and leads to a more secure ATC
estimation for system operation. Hiskens et al. [27] and Zhang et
al. [28] explain the concept of dynamic ATC and present
supporting results.

4.3 Dynamic reactive power dispatch

Dynamic VAR devices, such as SVCs and Flexible Alternating
Current Transmission Systems (FACTS) devices, supply reactive
power locally to ensure acceptable transient voltage performance
and short-term voltage stability following a severe disturbance.
These devices can be used to mitigate short-term voltage stability
issues, such as fault-induced delayed voltage recovery (FIDVR),
near inductive load centres. Moreover, their capacity can be used
for steady-state reactive power compensation to lower line losses.
With appropriate transient voltage stability constraints incorporated
in TSC-OPF formulation, for example as done in [29], the short-

Fig. 2 Illustration of using ANN to emulate g(x) for a TSC-OPF problem
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term voltage stability performance can be improved by
appropriately sizing and dispatching dynamic VAR devices. Geng
et al. [30] provide an example of dynamic reactive power reserve
dispatch using a TSC-OPF formulation.

4.4 Dynamic VAR allocation

As stated in Section 4.3, TSC-OPF formulation is able to dispatch
dynamic VAR devices in order to achieve better short-term voltage
stability performance. Similarly, it is able to assist system planning
engineers to select candidate sites for installing dynamic VAR
devices, which is addressed in [25], Tiwari and Ajjarapu [32], and
Paramsivam et al. [33]. During the allocation of these devices, one
has to consider system dynamics after dynamic reactive power
compensation devices are installed on candidate sites. To this end,
an extended TSC-OPF formulation is constructed with binary
variables deciding dynamic VAR location.

4.5 Location marginal price (LMP) calculations

LMP calculations, dual variables of an OPF solution, form the
fundamental pricing mechanism for electricity markets. Similar
concept can be established in TSC-OPF solution, where the price
of transient stability is investigated. Nguyen et al. [34] extend the
OPF formulation by including transient stability constraints to
calculate nodal price and their components, taking into account the
cost for maintaining transient stability. In their formulation, they
also consider the contribution of FACTS devices to LMP
calculation.

4.6 Emergency control

TSC-OPF operates power system in a preventive manner; that is,
the steady-state operating condition is adjusted in order to keep
system transient response stable after a large disturbance in the
predefined contingency set. If an unpredictable fault occurs,
however, corrective actions, such as load shedding and generator
tripping, must be taken in order to ensure post-fault rotor angle
stability. In this decision-making process, a transient stability
constrained emergency control (TSCEC) problem has to be solved.
The formulation of TSCEC is also similar to TSC-OPF: they share
the same dynamic constraint incorporation technique and
optimisation algorithm.

Jiang et al. [35] utilise an orthogonal collocation discretisation-
based reduced-space IPM algorithm to solve an emergency control
problem with a first-swing stability consideration. Wang et al. [36]
propose a risk-based coordinating framework for preventive and
corrective control with transient stability constraints. High-risk and
low-risk contingencies are considered in generation rescheduling-
based preventive control and load shedding corrective control.
Transient stability performance is shown to be enhanced by this
coordination strategy.

5Future directions
TSC-OPF is an extremely challenging problem, both
mathematically and computationally, coupling different power
system time-scales. It has been explored by power system
researchers over the last two decades with a variety of solution
approaches and applications of TSC-OPF been devised. Yet, there
are still many advances needed to be made on TSC-OPF to make it
practically viable for industry use. We highlight a few future
directions for TSC-OPF to improve its robustness and
computational efficiency, expand its use in new applications, and
address practical limitations. In addition, we also provide the
advancements made by researchers in this space.

5.1 TSC-OPF coupled unit commitment

While TSC-OPF has been hitherto used for coupling transient
constraints in optimal power flow, its expansion to a unit
commitment is an interesting research topic, particularly to assess
the impacts of switching quick start units. The application of TSC-
OPF for unit commitment explodes the mathematical complexity

due to the combination of a mixed-integer (for committing units
and their integer constraints such as start-up/shut-down) and
dynamic optimisation (TSC-OPF) formulation. Jiang et al. [37]
have attempted to solve the TSCUC problem by formulating
transient stability constraints for each period in unit commitment.
Their solution approach is based on an augmented Lagrangian
relaxation algorithm that decomposes the problem into a master
dynamic programming problem to handle mixed-integer variables
and a set of TSC-OPF problems for different time periods.
Reduced-space IPM-based simultaneous discretisation is utilised to
solve each subproblem. Also, since these TSC-OPF subproblems
are independent of each other, they are processed in parallel
processing units.

5.2 Practical application in electricity markets

Currently, ISOs uses a DC-based economic dispatch for market
operations due to its robustness and, more importantly, the
confidence operators have in its approach. Usage of an ACOPF for
market operations is still being debated in the industry with a few
ISOs warming up to the idea of piloting an ACOPF solution
(though there are concerns expressed for cases where ACOPF
diverges and does not provide a solution). Not only does TSC-OPF
carry the same adoption issues of ACOPF but further expands it
due to the inclusion of transient constraints. Before even surmising
the adoption of TSC-OPF in a market environment, important
questions such as (a) how to quantify the risk of instability under
low-probability high-impact contingencies and allocated additional
operational cost caused by stability constraints, and (b) how to
decide locational marginal prices for TSC-OPF, need to be
addressed. The authors of [34, 38] have sketched out interesting
ideas in this direction. Other issues for TSC-OPF adoption with
respect to its algorithm robustness and computational complexity
must be tackled to make it a practical solution.

5.3 Dynamic parameter estimation

Application of TSC-OPF for estimation of system and model
parameters is a very timely topic with the increasing penetration of
sensors, particularly phasor measurement units, and distributed
energy resources. The parameter estimation with TSC-OPF
problem inherits a similar formulation [39] and solution technique
[29]. A best fit for the model parameters can be estimated by
minimising the difference between the observed measurements and
model response. Hiskens [31] uses a trajectory sensitivity analysis
approach for dynamic parameter estimation from system wide
measurements. Choi et al. [40] focus on identifying the parameters
for dynamic load models, among multiple chosen candidate
models, akin to a grey box estimation approach.

5.4 Uncertainty quantification

Power system is witnessing a great paradigm shift due to the
increasing penetration of variable and intermittent renewable
energy resources and price-responsive loads resulting in the
transition from deterministic to stochastic approaches for decision
making. Understanding the impact of stochasticity on stability and
its application to economic dispatch (e.g. preventive TSC-OPF
with high penetration of renewables) is an unexplored territory,
though researchers are exploring methods to address uncertainty in
steady-state voltage stability and small-signal stability-constrained
OPF, using boundary-based methods [41, 42].

5.5 Parallel computing

Since TSC-OPF is a computationally intensive problem, especially
with the consideration of multiple contingencies, parallel
computing techniques to accelerate the solution process is a natural
fit. Several efforts to accelerate the TSC-OPF solution have been
undertaken by the power system community in the recent past.

Cai et al. [14] use differential evolution as optimisation
algorithm and divide overall population into several sub-
populations evenly among processing units on a Beowulf cluster.
Since the computations of subpopulations (i.e. power flow

3190 IET Gener. Transm. Distrib., 2017, Vol. 11 Iss. 12, pp. 3186-3193
© The Institution of Engineering and Technology 2017

READ O
NLY



calculation and transient stability assessment) are done
simultaneously, the overall computation time is reduced by this
simple but effective parallelisation.

Based on a similar multi-core CPU based Beowulf cluster,
Geng and Jiang [43] present a two-level parallel decomposition
approach for a simultaneous discretisation-based multi-contingency
TSC-OPF problem. Their approach involves dividing the
contingency list in the first level followed by a multi-threaded
solution approach for each contingency. The effectiveness of the
proposed parallel algorithm is benchmarked with 16 nodes with
128 CPU cores using test cases up to 2746 buses and 16
contingencies. In [30], Geng et al. parallelise the multiple-shooting
method for TSC-OPF with each computing task comprised of a
time-domain simulation and trajectory sensitivity analysis on
different shooting intervals.

Parallel and distributed computing approaches for solving the
security constrained optimal power problem [44] (without
transients) are also applicable for the TSC-OPF problem (with
contingencies) as it has a similar problem structure.

5.6 Modelling complexity and extreme events

Transient stability analysis is becoming more challenging because
of the need for simulating various practical behaviours of power
system dynamics, including response of high-order dynamic device
models (e.g. FACTS, HVDC – high-voltage, direct current and
renewable generations) and complicated system-level responses
(e.g. cascading failures and protection schemes). Calle et al. [45]
address an HVDC–line-commutated converters (LCC) link in a
TSCOPF formulation for a practical transmission system. Different
recovery patterns of the HVDC link after a severe fault are
evaluated. This highlights one of the extended applications of TSC-
OPF. Modelling these behaviours in a TSC-OPF formulation is a
difficult task, and the majority of the work done in this area has
used simplified dynamic models. Interfacing with industry-proven
simulation tools is a practical and efficient way to tackle this
problem, as shown in [1–3, 6, 7]. However, most existing power
system time-domain simulation tools lack the feature of trajectory
sensitivity analysis, which is an essential algorithmic component in
incorporating dynamic constraints for TSC-OPF problems. Further
efforts must be taken to develop this feature in an efficient and
seamless way for existing simulation tools.

6Conclusions
This paper presented a survey of the SIME and computationally
intelligent approaches for solving the TSC-OPF problem.
Extensive applications of TSC-OPF in various fields of power
system analysis were discussed. We highlighted potential future
research areas in this domain and provided an extensive list of
references. Information on publicly available data for test systems
and relevant numerical libraries are listed.

In summary, transient stability-constrained optimal power flow
problem is a challenging problem that is both computationally
intensive and mathematically rigorous. TSC-OPF offers an
effective and efficient solution for power system decision-making
when dynamic performance becomes a major concern. Intensive
research efforts to address different aspects of TSC-OPF solution
techniques are needed in order to make TSC-OPF a practical
operational tool in the industry.
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9Appendix

9.1 Summary of different solution approaches

Table 1 (overleaf) provides a comprehensive literature resource for
the solution of TSC-OPF problem. 

9.2 Available test system data

• IEEE 9-bus system: Data for test 9-bus system is available in
[65]. This system has three generators, three loads, and nine
transmission lines. The generators are modelled as a fourth-
order dynamic model describing its mechanical and electrical
equations. Each generator is equipped with an IEEE-T1 exciter
model.

• IEEE 39-bus system: This IEEE 39-bus system consists of n
generators, n loads, and n transmission lines. The steady-state
data and generator costs can be obtained from [66]. The
dynamic data is available in [67].

• Reduced regional Chinese system: The reduced regional
Chinese power system available in [51] consists of 36 buses, 7
synchronous generators, 1 synchronous compensator and 26
transmission lines. Synchronous machines are represented by a
third-order detailed model, and each of them is equipped with a
fourth-order model excitation system.

• Japanese power system test cases: Institute of Electrical
Engineers in Japan (IEEJ) [68] provides network and dynamic
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data for four power system test cases comprising of 10 and 30
machines. These models possess the distinctive characteristics
of Japanese power systems and have been developed with the

objective of providing common system models for engineers
and researchers in power system engineering.

9.3 Numerical libraries resources

• Dynamic optimisation: CasADi [69], MUSCOD-II [70], TACO
[71].

• Optimisation modelling platform: AMPL [72], GAMS [73].
• Automatic differentiation: ADC [74], ADIC [75], CppAD [76],

ADOL-C [77].
• Non-linear optimisation: Ipopt [78], KNITRO [79], MOOCHO

[80], SNOPT [81], HQP [82].
• Time-domain simulation: PETSc [83], SUNDIALS [84].

Table 1 Summary of different solution approaches
Solution approach References
simultaneous discretisation [26, 43, 46–49]
constraint transcription [50–55]
SIME [2, 4–7, 9, 56]
CI [13–15, 23, 24]
sensitivity based [34, 57, 58]
transient energy function [59–64]
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