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Abstract

Genetic algorithms �GAs� are probabilistic search algorithms that are loosely based
on biological evolution� Analyzing genetic algorithms has proven di	cult� for a vari�
ety of reasons� but a landscape paradigm that rigorously models the search of GAs has
become increasingly popular in their analysis� So far much of this analysis concerns
binary representations� where each member of the population is a binary string� In
this thesis we consider using ��ary representations
using strings where each charac�
ter can be one of � characters
and conduct a theoretical and empirical study of the
resulting ��ary landscapes�
In terms of theory� we discuss the types of landscape graphs produced by various

��ary crossover and ��ary mutation operators� We relate these landscapes to a com�
mon class of graphs� the ��ary hypercubes� We then generalize a binary mutation�
crossover isomorphism to higher alphabets and use this isomorphism to show that
��ary crossover can simulate ��ary mutation� Since crossover can simulate mutation�
crossover must be at least as powerful as mutation� in the sense of computational
power� Because this ��ary mutation�crossover isomorphism is closely related to an
��ary Gray code� extending our simulation to �hyper orders� is a generalization of
iterating the landscape
s representation �and thus the landscape� using this ��ary
Gray code� If we repeatedly apply this Gray code� the landscapes will eventually
cycle� We prove a theorem on the maximum number of landscapes produced when
this Gray code is iterated�
We explore the long path problem for ��ary mutation and ��ary crossover� We

construct exponentially long distance�preserving paths for ��ary mutation� improving
on a previous method� We also construct exponentially long distance�preserving paths
for crossover between two complementary binary strings� and discuss the problem of
creating long distance�preserving paths for populations greater than two�
In Chapter �� we create the schizophrenic function� a function designed to discrim�

inate between mutation and crossover� This function has two optima classes� and is
constructed in such a way that mutation should �nd one optimum� crossover the
other� Empirical tests show that the schizophrenic function is a useful but imperfect
tool� More importantly� these tests o�er insight into how crossover works�
Finally� we show how to generate an ��ary Gray code e	ciently in sequence �con�

stant amortized time per codeword�� We generalize this Gray code to �multary�
strings� and generalize our algorithm to generate this code in constant amortized
time per codeword�
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Chapter �

Introduction

We divide our introduction into three sections� In the �rst� we provide some motiva�
tion for studying ��ary landscapes and landscapes in general� This is done by showing
that many search algorithms� including genetic algorithms �GAs� and hill climbers�
can be modelled using the landscape paradigm� In the second� we give some necessary
background material on landscapes� Finally� we provide an overview of this thesis�

��� Motivation

Genetic algorithms ���� ��� ��� �GAs� are a diverse class of probabilistic algorithms
that are loosely based on biological evolution� In this thesis we consider� for the most
part� using GAs to optimize functions� That is� we have a function f � S� � R�
where S � f�� �� � � � � �� �g and R is the set of real numbers� and we want to �nd an
optimal or near�optimal string x � S��
Since there is no precise de�nition of what does or does not constitute a GA� we

instead list four distinguishing features that encompass most GAs� the domain of the
function to be optimized is represented by strings� which are akin to chromosomes
in biological genetics� the GA maintains a population of these strings� a multiset of
the representation space� each string has a �tness� a measure of the worth of the
solution represented by the string� the populations are changed� or evolved� using
genetic operators such as mutation or crossover� biased by the �tness of the strings�
Mutation� in its most general form� takes a single string� picks certain characters

of that string� and randomly replaces those characters with new characters� For
example� the string ����� can be mutated to ������ Crossover takes two strings
x � x�x� � � � x� and y � y�y� � � � y� and produces the strings x� and y� where �x�i � xi
and y�i � yi� or �x�i � yi and y�i � xi�� Crossover is sometimes called recombination�
These common features can be combined to form a generic �template� GA�

�� Create an �initial� population of strings� This initial subset is often chosen
randomly� but this need not be the case�

�� Assign each string a �tness value using a �tness function� f���

�



Create an initial random� n�string population�
While �not done� f

Repeat f �� create new population ��
� Stochastically select two parent strings from the old
population �with replacement�� The probability a string
is selected is an increasing function of its �tness�

� With some crossover probability� pc� cross this
pair to make a pair of children� With some mutation
probability� pm� mutate each character of each child�

� Add the children to the new population�
g until �� n children strings have been produced��
Replace old population with children�
Drop one string from population if n is odd�

g

Figure ���� Outline of a simple genetic algorithm� based on Mitchell ���� pp� �������

�� Create a new population by applying various genetic operators� such as mutation
and crossover� to the old population� biased by the �tness of the strings�

By iterating steps � and �� the population will evolve over time�
An in�nite number of algorithms will �t into the generic template just given� but

most GAs can be represented by a simple genetic algorithm �see Figure ����� While
many GAs are based on this simple GA� some are not� Some non�traditional genetic
algorithms include CHC ���� and GENITOR ����� The CHC algorithm merges the
old population with the new� keeping the n most �t strings in the merged population�
GENITOR replaces the least �t string of the population with a newly generated
string i� the new string has a higher �tness than the old� GIGA and NQ�GIGA� two
of the GAs used in this thesis� are also not based on simple GAs� See Appendix B
for descriptions of GIGA� NQ�GIGA� and some other related search algorithms�
Analyzing genetic algorithms has proven di	cult� This is amply demonstrated

by the controversy over whether crossover is more powerful than mutation� or vice
versa ����� There are two main camps in the GA community� those who believe that
crossover is the power behind GAs while mutation is just a secondary operator� used
only to introduce variation into the population� and those who believe that crossover
is not needed or is intrinsically less powerful than mutation� �In addition to these two
traditional opinions about crossover and mutation� there is a view that holds that both
mutation and crossover are useful search operators ������ This crossover�mutation de�
bate is important because� as some have noted ���� ���� GAs are usually distinguished
from other evolutionary algorithms by using populations with crossover� If crossover
is not useful� then GAs themselves may not be useful as function optimizers�
Part of the di	culty with this mutation�crossover debate is that it is hard to

de�ne precisely what it means for one operator to be more powerful than another� One
possible approach is to try both mutation and crossover on a suite of test functions� If
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one does better than another� then that can be taken as evidence that that operator is
more powerful on those functions� In this way� classes of problems may be discovered
that seem easier for one operator than for another� For instance� Fogel and Atmar ����
�nd that mutation is more useful than crossover on a particular class of functions�
and further make the claim that crossover �cannot be the hallmark of a broadly useful
algorithm��� There is a danger in extrapolating from one class of functions to the
general case� tests on a suite of functions say little about functions or problems not
modelled in that suite� However� experiments can help determine where crossover
seems to be useful� Eshelman and Scha�er ���� suggest that crossover is useful� but
only in a small niche of problems� Jones ���� suggests that even when the addition
of crossover seems to help the search� it may just be doing a macro�mutation� and so
crossover
s niche may be even smaller than it appears�
While useful� experiments alone cannot answer the mutation�crossover debate�

because there are many possible crossover operators� mutation operators� and imple�
mentations that the researcher has to choose from� and each choice may a�ect the
results dramatically� It may be that mutation is better than one type of crossover op�
erator yet worse than another� Or crossover may be potentially better than mutation�
but an algorithm may not use that potential�
For these reasons� this debate has also been addressed theoretically� Spears ����

analyzes crossover and mutation in terms of their ability to construct and disrupt
useful information� and Culberson ��� uses an isomorphism between mutation and
crossover to compare their relative search capabilities� Part of this thesis extends the
work of Culberson to further address the mutation�crossover debate�
Another example of the di	culty in analyzing GAs can be seen in the analysis of

GAs on Royal Road functions ���� ��� ���� The Royal Road functions are� intuitively�
better suited to crossover than mutation� However� when tested� a mutation hill
climber outperformed a traditional GA ����� even though an �idealized� GA has been
theoretically shown to be faster than the mutation hill climber �by a linear factor��
Thus� crossover has the potential to do better than mutation� but an algorithm may
not use this potential even though it uses crossover� Interestingly� GIGA performs
very well on the Royal Road functions ����
There are many other examples of analysis gone wrong in the GA literature� For

example� Davis ���� notes that a simple mutation hill climber often outperformed
GAs on a suite of test functions designed to demonstrate the power of GAs� Grefen�
stette ���� observes that certain classes of problems that are supposed to be easy for
GAs are actually hard� and some classes that are supposed to be hard are actually
easy�
One of the reasons analyzing GAs can be di	cult is that there are many di�erent

genetic algorithms and an analysis of one may not apply to another� It is tempting to
think that because di�erent GAs may share much in common �e�g�� use of populations
and similar operators� an analysis will carry over from one to the other� However�
an analysis of a particular GA may become irrelevant if the algorithm is modi�ed�

�They use mutation and crossover on real�valued strings� and so their results say little about
discrete forms of mutation and crossover� just as our analysis says little about real�valued operators�
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even slightly� For example� we have shown ���� that small changes in search strategy
�elitism vs� non�elitism� full�neighbourhood sampling vs� partial�neighbourhood sam�
pling� can make a problem go from being easy to exponentially di	cult� An analysis
may often be robust� but extrapolation must be done with caution�
Even if we restrict our focus to one genetic algorithm� further di	culties result

because GAs are applied to many problems� and it is often expected that any analysis
should apply to all possible problems� This �black box� mind�set
i�e�� treat the
�tness function as a black box module separate from the GA
is an analytical dead�
end since an analysis on one problem may not carry over to another� It is impossible
using the �black box� or �blind� model of search to do better on average than a
random enumerative search over all problems� This is noted as early as ���� by
Rawlins ����� and is proven formally by Wolpert and Macready ����� Culberson ���
gives a more intuitive perspective on the limitations of blind search� This means we
cannot separate the problem from the algorithm� the two are intertwined� and any
analysis must take both into account�
GAs are also very complex� which adds further di	culty� For instance� we may be

forced to make several abstractions in order to simplify the analysis� It is possible that
the assumptions may be incorrect� and while our analysis on the simpli�ed problem
may be correct� it may not apply to the more general instance�
Landscapes ��� ��� are one possible approach to analyzing genetic algorithms� In

the landscape paradigm� all probabilistic searches can be seen as wandering through
some space of possible solutions� or search space� A search can be represented by a
graph where each node in the graph represents some point in the search space� For
GAs� for instance� each possible population is a point in the search space� The search
algorithm moves through this landscape by applying various operators� and these
operators de�ne edges in the graph� That is� they de�ne how the landscape can be
traversed� Each node is labelled with its �tness value� Thus we can speak of various
landscape features such as paths� peaks� and slopes� etc��

The landscape paradigm does not solve the problem of GA analysis� but it does
give a precise model to work with which is important since it is easy to prove theorems
that are not tied to any algorithm� It is also relatively easy to simplify the model�
Some other advantages of using landscapes are�

� Landscapes are very general and can be used for almost any search problem�
Techniques developed for GAs and hill climbers may also apply to other algo�
rithms� For instance� Jones notes that the �elds of AI and Operations Research
have views of search that are related to landscapes �����

� Landscapes allow us to divide the analysis of most search algorithms into two
main components ����� the landscape� and the navigation strategy �how the
algorithm traverses the landscape graph��

� Landscapes fall into classes� and analysis can be applied to those classes�

�We leave the de�nitions for the next section�
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The second point is useful� since there are often �natural� operations that de�ne
a landscape� The features of this landscape may a�ect which navigation strategy
should be used� For example� di�erent navigation strategies
working on the same
landscape
can result in either linear or exponential performance �����
The last point is especially important� Being able to lump landscapes into classes

instead of having to consider all landscapes at once or only a single landscape at a
time allows us to get an analysis of GAs that is general but that is not so general as
to be useless�
Most landscape analysis so far has only examined landscapes based on binary

string representations� If we change our representation to ��ary strings� then di�erent
landscapes result� and these landscapes may be more suitable for searching than their
binary counterparts� At the very least� studying ��ary landscapes and landscapes in
general should lead to a better understanding of GAs�
Finally� much of our analysis is closely connected to graph theory since landscapes

are graphs with a �tness measure on the vertices �and� possibly� probabilities on the
edges�� Some of our results may be of interest to non�GA researchers� For example�
we explore the problem of generalizing distance�preserving paths� known in the GA
community as the long path problem� to ��ary hypercubes� In Chapter � we prove
a theorem on the number of unique codes produced when an ��ary Gray code is
iterated� and in Appendix A� we prove that this ��ary code really is a Gray code and
develop an algorithm to generate it e	ciently in sequence �constant amortized time
per code word�� We further generalize this code and code generation algorithm to
include a class of �multary� Gray codes�

��� Landscape Background

A landscape is an abstract way of viewing many search algorithms� Because land�
scapes are commonly misused it is prudent to de�ne what we mean by a landscape�
We will also de�ne several measures and features of landscapes� The reader may also
wish to see Jones
s thesis ���� or Culberson ��� for similar de�nitions� We base some
of our de�nitions on the two former works and also use some of the de�nitions from
the paper� �On Searching ��ary Hypercubes and Related Graphs� �����
For simplicity we restrict our discussion of landscapes to algorithms that work on

length �� ��ary strings� For example� if x � x�x� � � �x� is an ��ary string� then each
character of x �the xis� can take one of � characters� We use the character set f�� ��
� � �� ���g� The search space is the set of all possible populations� where each member
of a population is an ��ary� length � string� Each population in this search space is
represented by a vertex v in the landscape�
Each vertex is labelled with the �tness of the population represented by this vertex�

g�v�� The �tness function on strings� f��� and the �tness function on the population�
g��� are equivalent only when the population is of size one� although g�� is usually
based on f��� For example� the �tness of a population could be the maximum �tness
of all strings within the population� In e�ect� g�� assigns a �height� to each vertex�
the goal of a search algorithm �when maximizing� is to �nd the highest such point�
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Two vertices v and w are connected by an edge i� the population represented by
w is a result of applying a genetic operator to v� Thus the operators induce edges in
the graph� It is possible to model algorithms that apply more than one operator at a
step by treating these operators as a single compositive �population� operator�
We illustrate what we mean by population operators inducing edges in the land�

scape graph using a simple example on binary strings� Consider an algorithm that
maintains a population of three strings� and generates a new population by uni�
formly applying one�point mutation� one�point crossover�� or both to the old popula�
tion� Then the populations v� � f������ ������ �����g� v� � f������ ������ �����g�
v� � f������ ������ �����g and v� � f������ ������ �����g are four points in the
search space� Further� v� and v� are connected by the one�point mutation operator
�mutate the second string�� v� and v� are connected by the one�point crossover oper�
ator �cross the �rst and third strings�� and v� is connected to v�� v�� and v� �mutation
and crossover on v�� crossover on v�� mutation on v��� However� if our algorithm only
applied one�point crossover or one�point mutation to the population �not both at the
same time� then there would be no edge between v� and v��
Each edge �v�w� is labelled with the probability that an operator produces w from

v� this is di�erent than the probability that a speci�c search algorithm will move from
v to w� For example� if g�v� � g�w�� then an elitist algorithm will never move from
v to w� but a non�elitist algorithm might�
Thus a landscape can be represented as a graph G � �V�E� with population �tness

function g�� on the vertices in V and probabilities on the edges� There are directed
and undirected landscapes� but in this thesis we only consider operators that de�ne
undirected landscapes� since we use symmetric operators and populations of constant
size� �Crossover between two strings to produce one child will not produce symmetric
landscapes� Jones
s landscapes ���� is more general than Culberson
s ��� in that such
crossover types and the resulting directed landscapes are modelled�� Further� if the
operators used generate all the neighbours of a vertex v with equal probability� then
we do not need to label edges with probabilities� This will frequently be the case� We
call the graph underlying a landscape the landscape graph�
Given two vertices in the landscape� say v� and vi� there is a path between them i�

there is a sequence of vertices v�� v�� � � � � vi�� such that �j� � � j � i� �vj� vj��� � E�
The length of a path is the number of edges contained within the path� Let N�v� be
the set of neighbours of v� The degree of a landscape graph is maxv�V jN�v�j� The
distance� dist�v�w�� between two points v and w is the length of the shortest path
between them� The diameter is maxv�w�V dist�v�w�� Two points are connected i�
there is a path between them� A region in the landscape graph is a set of points that
induce a connected subgraph� Let X be a region� Then N�X� � fv � w � X� �v�w� �
E� v �� Xg� that is� we overload N�� to work on points and regions�
Recall that g�� gives the �tness of the vertices in the landscape� A region X is a

peak i� �v � X��w � N�X�� g�v� � c and g�w� � c where c is a constant� A peak is

�These are de�ned formally in Chapter �� One�point mutation takes a string and mutates a
single character� One�point crossover takes two strings� picks a crossover point� and exchanges the
tail�ends of the strings to produce two children� the two children then replace their parents�

�



Generate initial population v
While �not done� f

� generate some subset S of N�v� 	 v
� let v � maxvi�S g�vi�

g

Table ���� Outline of a generic hill climbing algorithm�

optimal i� it has at least as high a �tness value as any point not in the peak� A peak
is a false optimum i� it is not optimal� A path p � vi� vi��� � � � � vj �with start vi� is
strictly increasing i� g�vk� � g�vk����k� i � k � j�
In summary� a landscape is a graph� where each vertex represents a population�

Edges in the graph are induced by genetic or �population� operators� and g�� takes
the vertices of a landscape graph and assigns a �height� to them� which gives us the
landscape paradigm� As well� an edge �v�w� may be labelled with the probability
that the operator produces w from v�
Almost any probabilistic search algorithm can be analyzed using landscapes� where

the algorithm walks along the landscape graph� an edge at a time� This means that
even GAs can be seen as doing a local search� Further� this landscape view has no
�magic� operators� the landscape of a GA is not the binary hypercube and crossover
does not �warp� or �jump� through this space� Instead� both mutation and crossover
are modelled together�
The landscape for a GA can be very complex� and so we usually reduce its com�

plexity by making abstractions or simpli�cations� This will usually be done by study�
ing the graphs induced by a single genetic operator on minimal populations� and
conducting experiments with search algorithms on these simpli�ed landscapes �e�g��
using simple hill climbers�� See Table ��� for an outline of a generic hill climber� If v
is included in S� then the hill climber is elitist� otherwise it is non�elitist� An elitist
hill climber that only moves uphill is strictly elitist� This de�nition allows even some
population�based search algorithms to be viewed as hill climbers�

��� Overview of this Thesis

In this thesis we conduct a theoretical and empirical analysis of ��ary landscapes
for genetic algorithms� We do this from an algorithmic point of view� in which the
search of GAs is modelled as searching graphs� We use the term landscape for this
combination of graph and �tness of the graph vertices�
Having decided to use ��ary strings to represent members of our population� in

Chapter � we examine the landscape graphs induced by several variants of ��ary
crossover and ��ary mutation� We also show that ��ary mutation searches an ��ary
hypercube� and because of this� we discuss some properties of the hypercube� We then
show in Chapter � that ��ary mutation is isomorphic to a form of ��ary crossover�
This is a generalization of a binary crossover�mutation isomorphism ����
This generalized isomorphism can be used �Chapter �� to show that a GA or hill
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climber that uses mutation and crossover can be simulated by one that uses only
crossover� Additional operators can be included in this simulation� This shows that
crossover is at least as powerful as mutation in the sense of computational power�
and suggests that the old question� �Which is better� crossover or mutation�� should
be replaced with two new questions� �Are the various operators being used to their
potential�� and �Which operator is better suited to a particular problem�� The
technique underlying this simulation can be extended to hyper�orders �hyper�order
simulation�� and this analysis illustrates the complexity of crossover�
A special case of this hyper�order simulation leads to the notion of iterating an

��ary Gray code� That is� we start with the code representing the natural numbers
of base �� length �� and repeatedly apply a Gray code mapping until the code cycles�
We iterate this Gray code in Chapter � and prove a theorem on the number of unique
codes produced when this Gray code is iterated� Alternatively� we can view iterating
strings under this Gray code mapping as iterating the representation or� equivalently�
the landscape of a GA or hill climber� This theorem gives the maximum number of
landscapes produced when iterated under the Gray code�
In Chapter � we discuss the long path problem for ��ary mutation and show how

to construct these paths� Our construction gives a new lower bound on the maximum
length of distance�preserving paths in ��ary hypercubes� We also develop long paths
for ��ary crossover� We create an exponentially long distance�preserving path for
crossover between a complementary pair of binary strings� We then try extending
these long paths to bigger populations and do some tests on the resulting landscapes�
The results are interesting in that crossover appears to follow exponentially long
paths� However� these results are preliminary�
Having developed some theory about ��ary mutation and ��ary crossover
in

particular� having shown that crossover is potentially as powerful as mutation
we
develop the schizophrenic function in Chapter �� This function has two optima classes�
and is constructed in such a way that mutation should �nd one optimum� crossover
the other� our goal is to construct a function able to discriminate between searches
that use crossover well� and those that do not use crossover at all or do not use it
well� Empirical tests for � � � and � � � show that the schizophrenic function is a
useful but imperfect tool�
In Chapter � we give a quick survey of some previous landscape analysis in GAs�

We conclude our thesis in Chapter �� We prove in Appendix A that the code of
Sharma and Khanna ���� really is a Gray code� and give an algorithm that generates
each code word of it in sequence in constant amortized time� We generalize this ��
ary Gray code to a �multary� Gray code� and generalize our constant amortized time
code generation algorithm for this multary code�
In Appendix B� we describe some of the algorithms used throughout this thesis

to test our various conjectures� This includes descriptions of GIGA� a crossover�only
GA� NQ�GIGA� a modi�cation of GIGA� GAC ����� a traditional genetic algorithm�
and a mutation hill climber�
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Chapter �

Landscapes Induced by Mutation

and Crossover

��� Search Space Structures and Some Notation

In this chapter we describe the landscapes induced by a single genetic operator on
minimal populations� A population is considered minimal if� when an operator is
applied� all the strings in the population must be used �i�e�� there is no selection of
strings from within the population�� For example� a minimal population for one�point
mutation consists of a single string� For one�point crossover� a minimal population
consists of two strings� We discuss the landscapes of ��ary mutation and several
variants of ��ary crossover� We call these landscape graphs on minimal populations
search space structures �SSSs�� as done by Culberson ����
There are several reasons for focusing on minimal population sizes in this initial

analysis�

�� The landscapes generated by operators on minimal populations are much sim�
pler than those with larger populations� Thus� any analysis of �simpli�ed�
landscapes can be seen as a �rst step towards an analysis of more complex
landscapes�

�� These landscapes� in certain cases� may relate to more general landscapes�

�� There may be graph�theoretic properties of these landscapes that are worthy of
individual study�

�� The landscapes examined in this section correspond to the landscapes of some
simple hill climbers� and so our analysis will at least apply to hill climbers� even
if it does not always extend to GAs�

�� Comparing test results from minimal populations and non�minimal populations
can o�er insight into how population and crossover interact in GAs�

These search space structures require some additional notation� Throughout this
thesis� most of the mathematical derivations and equations are carried out under a
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�nite abelian� group with � elements and identity �� If x is an element in the group�
then x�� is the inverse of x� The group operator is 
�
At certain points in this thesis we will restrict our discussion to the group �addition

mod ��� or Z�� Rather than writing �x� y� mod � or �x� y� mod �� we will write
x�y and x�y� respectively� The value of � will be implicit�
We will also sometimes write x 
 y as � x �y or � y �x� For example� x 
 y 
 z��

could be written as � x �y�z�� � We will also apply this notation to strings� when
convenient� Consider

� xixi��xi�� � � �xj��xj �n � where i � j

as a substitute for

� xi �n� xi�� �n� xi�� �n � � � � xj�� �n� xj �n

or

�xi 
 n��xi�� 
 n��xi�� 
 n� � � � �xj�� 
 n��xj 
 n�

This shorthand notation is used later to de�ne several types of ��ary crossover�
We �rst discuss mutation�based search space structures� followed by crossover�

based search space structures� In the last section we discuss ��ary hypercube graphs
and some of their properties� and relate hypercubes to both mutation and crossover
search space structures�

��� Landscape Graphs for ��ary Mutation

One�point binary mutation can be speci�ed by denoting which bit gets mutated� i�e��
the position k of that bit� On a string x � x�x� � � �x�� a one�point binary mutation
at k is equivalent to complementing xk� and leaving all other bits in x unchanged�
More rigorously� one�point binary mutation at k on x creates a new string x� such
that x�k �� xk� and �i� such that i �� k� x�i � xi� As an example of one�point binary
mutation� the string ������ can be mutated at k � � to get the string �������

One�point binary mutation can be generalized to ��ary strings by specifying both
the position of mutation and the new value at that position� When � � �� one�
point mutation reduces to one�point binary mutation� Rather than speaking of what
the mutated character changes to� we introduce the symbol  � which refers to what
the mutated character changes by �e�g��  � x�k
x

��
k �� For example� if � � � and

x � ����� and we mutate x to x� at k � � for  � �� then x� � ��������� � ������
We focus on one�point mutation in this thesis� even though there are an in�nite

number of di�erent mutation types� Two common mutation types are k�point muta�
tion where up to k points are mutated and uniform mutation where each character is
mutated with probability pm� � � pm � �� We choose one�point mutation because it
is simple and can be used to implement most common mutation types� Its landscapes

�The group operator is commutative�
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can also be similar to those of other mutation types� for example� uniform mutation
with pm � ��� will mutate one character on average� Thus there may be some sim�
ilarity between searches that use uniform mutation with low probabilities and those
that use one�point mutation�
The one�point mutation SSS is de�ned on a population of size one� Two strings are

adjacent in the search space structure i� they di�er in exactly one character� In this
thesis we make the assumption that the character to be mutated is chosen uniformly�
this means we do not need probabilities on edges� This is the usual implementation
of one�point mutation� We will refer to the SSS for mutation on ��ary� ��character
strings by the notation HM��� �� 
��

��� Landscape Graphs for ��ary Crossover

In this section we will de�ne two types of crossover�

�� one�point crossover �normal crossover between two strings�� and

�� one�point ���
� crossover �crossover between � strings� driven by 
��

and discuss their search spaces structures�

One�point Crossover SSS

One�point crossover on two strings x � x�x� � � �x� and y � y�y� � � � y� at crossover
point k� � � k � �� produces the strings x� � x� � � � xkyk�� � � � y� and
y� � y� � � � ykxk�� � � �x�� It is possible to de�ne other crossover operators in terms
of one�point crossover� for example� two�point crossover at k�� k� on x and y is equiv�
alent to doing a one�point crossover on x and y at k�� followed by a crossover at
k��
For an example� consider crossing the pair of strings�

�����

�����

at crossover point k � �� which yields the strings�

�����

�����

Not all crossovers in this SSS produce a change� For instance� crossing the strings
above at positions k � � or k � � produces no change�
The one�point crossover SSS is de�ned by two strings x and y� The vertices consist

of all the pairs �x�� y�� such that x�i � xi and y�i � yi� or x�i � yi and y�i � xi��i� � �
i � �� In this SSS� any point �x� y� in the search space� is connected by an edge to
another point �x�� y�� i� �x� y� can be crossed �once� to get �x�� y��� This search space
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Figure ���� Example one�point crossover SSS� The loops have probability ���� all
other edges have probability ��� �assuming crossover point is chosen uniformly��

is connected� and is equivalent to the search space resulting from taking an initial
pair of strings �x� y� and repeatedly applying one�point crossover to them�
Jones ���� gives an alternative simpli�ed crossover landscape� the vertices consist

of all possible pairs of strings� with edges de�ned by one�point crossover� This land�
scape is not connected but consists of many connected components� where each com�
ponent is a one�point crossover SSS� The number of one�point SSSs in Jones
s land�

scape is given by
P�

h��

�
�
h

��
�
�

�h
which is approximately ���

�
�
�

�
�� since

P�
h��

�
�
h

��
�
�

�h
�

���
�
�
�

�
��� For the binary case� there are roughly �� one�point crossover SSSs in Jones
s

landscape�
See Figure ��� for an example one�point crossover SSS� The probabilities on the

edges of a one�point crossover SSS are not equal unless the strings are identical or
have equally spaced di�ering characters separated by equal�sized blocks of identical
characters� A one�point crossover SSS will have self�loops only if the �rst or last
character in each string are the same�

One�point 
��
� Crossover SSS

In this section we use the shorthand notation described previously to de�ne one�point
���
� crossover� These crossover types are used in the next two chapters to show that
one�point crossover can simulate discrete mutation� That is� we will show that one�
point ���
� crossover can simulate ��ary mutation and that one�point crossover can
simulate ���
� crossover� implying �by transitivity� that one�point crossover simulates
��ary mutation�
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Recall that 
 is a �nite abelian group operator� Then one�point ���
� crossover
acts on a set of � strings�

� x�x� � � �xkxk�� � � �x� ��

� x�x� � � �xkxk�� � � �x� ��
���

� x�x� � � �xkxk�� � � �x� ����

Given this set of strings� one�point ���
� crossover with  and crossover point k gives
the set of strings�

� x�x� � � �xk ��� xk�� � � �x� � 
� x�x� � � �xk ��� xk�� � � �x� � 
�

���
� x�x� � � �xk ����� xk�� � � �x� � 
�����

In other words� one�point ���
� crossover picks a crossover point k� and permutes the
tail ends of the strings by applying  to each character in the tail�
One�point ����� crossover is one�point rotational crossover �so named because the

tail ends of the strings rotate upwards by  rows�� For the binary case� rotational
crossover is just crossover between complementary strings� In the following examples�
the vertical bars mark the crossover point� The complementary binary pair

������j����

������j����

becomes the following pair after one�point rotational crossover at k � ��

������j����

������j����

Consider the following set of strings� for �� ��

�������j����

�������j����

�������j����

�������j����

Rotational crossover at k � � with  � � gives the following strings�

�������j����

�������j����

�������j����

�������j����

��




 � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Table ���� Product table for the Klein ��group�

Using a group other than Z� will generate other types of multi�string crossovers�
For example� consider the Klein ��group �its group product is given in Table �����
Then� letting 
 be the Klein ��group operator� one�point ���
� crossover on the strings

�����j���

�����j���

�����j���

�����j���

at k � � with  � � produces the strings

�����j���

�����j���

�����j���

�����j���

The one�point ���
� crossover SSS is de�ned on populations of � strings� where
each string has length ���� The vertices consist of the sets fx�� x ��� � � � � � x ����g
for all strings x such that x � �x�x� � � �x���� Two sets of � strings are adjacent in
the search space structure i� one can be derived from the other by a single one�point
���
� crossover operation� We use the notation HX��� �� 
� to refer to the graph of
the one�point crossover SSS for ��� ���character strings�

��� Hypercubes and Some Properties of Hyper�

cubes

The Hamming distance between two ��ary strings x � x�x� � � �x� and y � y�y� � � � y�
is

h d�x� y� �
�X

i��

�
�� if xi �� yi
�� otherwise

For example� the strings ����� and ����� have a Hamming distance of one� while the
strings ���� and ���� have a Hamming distance of three�
The Hamming �binary� hypercube of dimension � is a graph that consists of all

the binary numbers of length � as vertices� Given any two vertices x and y� there is
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Figure ���� The one �l�� two �c�� and three �r� dimensional Hamming hypercubes�

1 2

0

11 21 00 12 22

10 20

01 02

Figure ���� Some ��ary hypercubes� the ������cube �l�� and the ������cube �r��

an edge �x�y� i� h d�x� y� � �� For example� the string ��� is connected to the strings
���� ���� and ��� in the three�dimensional Hamming hypercube� The hypercube is
an undirected graph� See Figure ��� for some example Hamming hypercubes� See
Harary� et al� ���� for an alternative set de�nition of the binary hypercube and a
survey on hypercube theory�
The hypercube can be generalized for strings that have ��ary characters� The

hypercube of dimension �� base � is a graph that has �� vertices �all the ��ary strings
of length ��� Two vertices x and y are connected by an edge �x�y� i� h d�x� y� � �� For
example� the vertices ���� and ���� would be connected in a hypercube of length ��
As with the Hamming hypercube� base � hypercubes are undirected� When referring
to hypercubes� we will sometimes use the notation ������cube for the hypercube of
dimension �� base � as a shorthand� See Figure ��� for two example ��ary hypercubes�
For more on ������hypercubes� the reader may wish to read the paper by Barasch� et
al� ����
The search space structures discussed in the previous two sections are isomorphic

to hypercubes or closely related to them� One�point mutation can be de�ned in terms
of the Hamming distance between a string x and the mutated string x�� since one�
point mutation on x to get x� always gives h d�x� x�� � �� Therefore� the one�point
mutation SSS� HM ��� �� 
�� is isomorphic to the ������cube�
The crossover search space structures are also related to hypercubes� For the one�

point crossover SSS� when two length � strings have a Hamming distance of h� their
SSS is equivalent to searching on the ��h�� Hamming hypercube ��� if the �rst and
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last character in each string are di�erent� and the ��h�� Hamming hypercube with
self�loops� otherwise� The one�point ���
� crossover SSS for strings of length �� � is
isomorphic to the ������cube� This isomorphism is proven in the next chapter�
Given that ������cubes occur often in GA and hill climber landscape analysis�

it should prove bene�cial to note some measures of these graphs that may a�ect
the performance �or limit the performance� of our various search algorithms� Some
example measures include�

� maximum number of false optima

� longest distance�preserving paths

� degree vs� diameter trade�o� in landscape graphs

Several of these measures have been discussed in the literature� For example� the
maximum number of false optima on a hypercube landscape is ���� ����� The longest
possible distance�preserving path is exponential �in �� for the Hamming hypercube ����
���� and exponentially long paths for one�point mutation have been implemented ����
��� ��� ���� Exponentially long paths can still occur in hypercubes� for � � �� but the
maximum length of these paths is reduced ����� We discuss this �longest distance�
preserving path� problem in Chapter ��
The ������cube
s diameter� the maximum distance between any two vertices� is ��

Its degree� the maximum number of neighbours of any vertex� is ������� Notice that
n � �� and so � � log� n� This can also be written as � �

lnn
ln�
� In general� we want a

diameter and degree that are not too small and not too large ��� ���� and in certain
situations it may be useful to minimize degree�diameter ���� for a given number of
vertices n� For example� the degree�diameter of a complete graph is n�� and that of
a cycle graph is n� much worse than the degree�diameter product for the hypercube�
�� � �� log�� n� A hypercube of � � � is a complete graph and so not all hypercubes
have desirable degree�diameter trade�o�s� The degree�diameter product is minimized
for � � � �����

��



Chapter �

Generalized Crossover�Mutation

Isomorphism

In this chapter we prove that the one�point ��� 
� crossover SSS� HX��� �� 
�� is
isomorphic to the one�point ��ary mutation SSS� HM��� �� 
�� That is� the search
space structures of both operators are ������cubes�
This isomorphism has several uses�

� It can illustrate key points about crossover
s landscapes�

� It can be used to show that crossover can simulate mutation �next chapter��

� It can be used to create long paths for crossover �Chapter ��� and in the con�
struction of discriminating functions �Chapter ���

��� The Binary Crossover�Mutation Isomorphism

De�ne the mapping I to be�

I�x� � �a� !a�

ai �

�
� if i � �
xi���ai�� � � i � �� �

It can be shown ��� that I is an isomorphism between the search spaces induced by
one�point binary mutation on a string of length � and one�point binary crossover on
two complementary strings of length �� ��
Culberson ��� uses this isomorphism to transform functions that are hard �or

easy� for one�point binary mutation to functions that are hard �or easy� for one�point
crossover on a complementary pair of strings� He also uses it to illustrate key points
about the one�point binary crossover SSS by allowing a complex operator� crossover�
to be expressed in terms of a simpler operator� mutation�
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��� An ��ary Crossover�Mutation Isomorphism

We can generalize the binary crossover�mutation isomorphism to an ��ary crossover�
mutation isomorphism� that is� we show that one�point ���
� crossover is isomorphic
to one�point ��ary mutation�
The changes in I are that the � symbol becomes the 
 symbol� and that the

isomorphism maps a string x of length � to � strings of length � � �� The new
generalized I and I�� mappings are

J �x� � �a�� a ��� � � � � � a �����

ai �

�
� if i � �
xi��
ai�� � � i � � � �

and

J ����a�� a ��� � � � � � a ������ � x

xi � �ai��
a
��
i �� � � i � �

When � � �� these mappings reduce to I�� and I� Note that xi also equals� ai�� �m


�� ai �m���� � � i � �� � � m � �� �� since the �m�s cancel� This mapping is also
one�one and onto�
As an example of J for higher alphabets� let x � ����� for �� �� and let 
 � ��

Then J �x� is equal to

����j��

����j��

����j��

����j��

����j��

If x is mutated to x�� where x� � ����� �k � �� � ��� then J �x�� is

����j��

����j��

����j��

����j��

����j��

This mutation is equivalent to a rotational crossover� and indeed� ��ary mutation is
isomorphic to an ���
��crossover� The following theorem and proof were presented in
the paper� �On Searching ��ary Hypercubes and Related Graphs� �����

Theorem ����� The mapping J is an isomorphism from HM ��� �� 
� to HX��� �� 
��
That is� a mutation of  at k on an ��ary string is equivalent to one�point ���
�
crossover at k with tail permutation  on the � strings generated by J �

��



Proof�
�Theorem �������
Assume �x� y� is an edge in HM ��� �� 
�� Then xk �� yk for some k� � � k � � and

xi � yi for all i �� k� Let

J �x� � �a�� a ��� � � � � � a �����

J �y� � �b�� b ��� � � � � � b �����

Simple induction shows that

bi � ai� for � � i � k

We will now show through induction that

bk�i �� ak�i �yk
x��k
� for k � � � k � i � �� �

Basis�

bk�� � ak
yk

� yk
x
��
k 
�ak
xk�

� yk
x
��
k 
ak��

� � ak�� �yk
x��k

Induction Step �IS��
Induction Hypothesis �IH�� assume bk�i �� ak�i �yk
x��k

for k � � � k � i � �� ��

Then

bk�i�� � bk�i
xk�i

� yk
x
��
k 
ak�i
xk�i by IH

� yk
x
��
k 
ak�i
a

��
k�i
ak�i��

� yk
x
��
k 
ak�i��

� � ak�i�� �yk
x��k

Therefore �by Basis and IS�

b � a� � � � ak � ak�� � � � al�� �yk
x��k

� b �� � � a� � � � ak ��� ak�� � � � a��� �yk
x��k

�

���
���

� b ���� � � a� � � � ak ����� ak�� � � � al�� �yk
x��k

�����

Since  � yk
x
��
k � one�point mutation of  at position k is isomorphic to one�

point ���
� crossover at k on strings of length � � � with permutation of  � �Recall
that J is one�one and onto��

��



This isomorphism generalizes for k�point mutation �up to k�mutations�� which is
isomorphic to k�point ��� 
� crossover� As well� ��ary uniform mutation is isomorphic
to uniform ���
� crossover� It is noted ��� that two adjacent one�point binary crossover
operations on complementary strings mimics mutation in that both strings seem to
undergo a mutation between the adjacent crossover points� this also applies to J
except that the adjacent crossovers must have a  permutation followed by a  ��

permutation�
For another example of one�point ���
� crossover� let 
 be the Klein�� group

operator �see Table ����� In this case� the isomorphism maps a single string to four
pseudo�complementary strings� For example�

��j���

��j���

���� �

��j���

��j���

As with the previous isomorphism� a mutation on a string x appears to be a
crossover under J �x�� If we mutate the � to a � in the above example we get�

��j���

��j���

���� �

��j���

��j���

If we think of � and � as being complementary and � and � as being complementary�
then we can think of J �x� as a mapping from a single string x to two pairs of strings�
the pair that starts with � and � and the pair that starts with � and �� A pair is
always complementary� It is noted ���� that this crossover type is similar to the DNA
code �in a very limited way�� It may be possible that this may be the �rst step
towards an algebra for DNA��

�We warn the reader that this last paragraph is speculation�
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Chapter �

On the Power of Crossover and

Mutation

In this chapter we discuss the question of which is more powerful� discrete crossover
or discrete mutation� To help answer this question we use the generalized crossover�
mutation isomorphism of the previous chapter to show that crossover can simulate
discrete mutation� and further show that crossover can simulate crossover and muta�
tion in combination� This means that crossover is at least as powerful as mutation� in
the sense of computability� This simulation can be achieved in linear space and time�
We also discuss generalizations of this simulation� and this leads to the notion of

hyper�order crossovers and hyper�order mutations� These hyper�order operators can
help demonstrate the complexity of regular crossover�
Finally� our work suggests that the question of which operator is more powerful

should be rephrased into at least two questions� �Are the various operators being
used to their potential�� and� if so� �Which operator� crossover or mutation� is better
suited to a particular problem��

��� Introduction

There has been much debate in the GA community on whether the crossover oper�
ator is inherently more powerful than the mutation operator or vice versa ����� In
this chapter� we consider the relative �power� of one�point crossover and one�point
mutation� We attack this problem by showing that one�point crossover can simulate
one�point mutation� and thus is at least as computationally powerful as one�point
mutation� By saying crossover can simulate mutation� we mean that a GA that uses
mutation and crossover can be replaced with a computationally equivalent one that
uses only crossover and no mutation� that is� crossover can be used to implement an
operator isomorphic to mutation�
While our simulation will focus on one�point crossover and one�point mutation�

it will be much more general in that we will be able to show that discrete mutation
can be simulated by one�point crossover� By discrete mutation� we mean a mutation
operator that can be expressed as some number of one�point mutations on strings
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I

I

Figure ���� One�point crossover can simulate two�point crossover� I is the identity
mapping�

made up of discrete ���ary� characters� Discrete mutation includes k�point mutation
and uniform mutation� Our results� however� will not apply to all mutation types�
e�g�� mutation on real numbers�
We can demonstrate what we mean by one operator simulating another by showing

schematically how one�point crossover can simulate two�point crossover in Figure ����
There are two ways one�point crossover can simulate two�point crossover�

�� one�point crossover can be used in the implementation of a two�point crossover
operator �simulation�� and

�� two strings may be crossed� evaluated� then crossed again �mimicry��

For this chapter our focus will be on simulation� but we will also discuss mimicry�
which can occur in GAs and hill climbers�
To show one operator simulates another� we must show that the states of the

objects being acted on �in our case� strings� remain in correspondence� That is� there
must be a ��� and onto mapping between the objects
 initial and end states� in our
example we used the identity mapping I� but in a more complex simulation� the
objects can be di�erent or even of di�erent types� as long as there is a mapping that
makes the initial and end states correspond� This will be the case in our simulation�
strings will correspond to sets of strings�
We can also convert any algorithm that uses both mutation and crossover to an

equivalent one� a hyper GA �HGA�� that uses only crossover� If we use more general
crossover types on the set representations� where the general crossovers include the
highly restricted crossovers used in our simulation� then HGAs will still include GAs
but the converse will not be true� HGAs will have actions that cannot be simulated
by a GA� That is� crossover can do whatever mutation can do and more� even when
both mutation and crossover are used� This will help demonstrate the complexity
�and power� of crossover with respect to mutation� The cost to using these �relaxed�
HGAs is an increase in the size of the neighbourhood in the landscape�
To show that one�point crossover can simulate discrete mutation� we will show

that ���
� crossover can simulate one�point mutation� Since one�point crossover can
simulate one�point ���
� crossover and one�point mutation can simulate discrete mu�
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tation� this will imply �by transitivity� that one�point crossover simulates discrete
mutation�

��� Simulating Mutation Using Crossover

To show that one�point crossover can simulate discrete mutation� we �rst show that
one�point ���
� crossover can simulate one�point mutation� In this section we only
consider search algorithms that use mutation on ��ary strings �e�g�� mutation hill
climbers�� in the next section� we show how algorithms that use mutation and other
operators �e�g�� GAs� can be simulated�
The �rst step in creating a modi�ed algorithm is to change the basic search objects�

We convert each individual string x into the set of strings given by the generalized
crossover�mutation isomorphism of Chapter ��

J �x� � �a�� a ��� � � � � � a �����

ai �

�
� if i � �
xi�� 
 ai�� � � i � � � �

Each set of strings directly corresponds to the string that generated it� this means
each set of strings� for simulation purposes� is atomic� Thus our population of strings
has been replaced with a population of sets of strings�
The second step in the simulation is then to replace all calls to the mutation

operator with calls to the ���
� crossover operator� This must be the same group
operator as the one used to generate the sets of strings� For example� if � � �� it
would be incorrect to generate the sets of strings using the Klein ��group operator�
and then use rotational crossover �
����
The third and �nal step is to alter the �tness function f to a new �tness function

f �� where f ��� � f�J ������ If S is the set of strings representing the string x� or
S � J �x�� then f ��S� � f�x��
Doing these three steps will convert a search algorithm that uses mutation on

strings to a computationally equivalent one that uses no mutation whatsoever� One�
point crossover can simulate one�point ���
� crossover in at most � � � crossover
operations� which implies crossover can simulate one�point ���
� crossover� �The
sequence of one�point crossover operations that simulates one�point ���
� crossover
does not depend on the particular strings in the population�� By transitivity� crossover
can simulate mutation� This simulation is computationally e	cient since the required
�extra� space is ���n��� where n is the population size�
It is also easy to see that discrete mutation can be simulated by one�point crossover�

since one�point mutation can simulate discrete mutation� Some common examples of
discrete mutation are uniform mutation and k�point mutation�
Instead of using a strict sequence of one�point crossover operations to simulate a

one�point ���
� crossover� we can use a more general crossover type that includes �i�e��
can mimic� rotational crossover� For example� using one�point crossover� for � � ��
on a rotational crossover population can mimic one�point ���
� crossover and thus
can mimic mutation� but also includes operations that cannot be directly mimicked
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by mutation� The structure of this �relaxed� crossover SSS is related to the mutation
SSS� For instance� if there is a monotonic path in the mutation SSS� then there is
also a monotonic path in the �relaxed� crossover SSS�
Although it is trivially true that mutation can simulate crossover �if crossover on x

and y gives x� and y�� just mutate x to x� and y to y��� this simulation is weaker in that
the character values of x and y must be used in the simulation and that it is a non�
obvious form of mutation� Crossover appears to be more powerful than mutation�
in some sense� as there appears to be no �natural� method for using mutation to
simulate one�point crossover�

��� Including Other Operators in Our Simulation

In the previous section� we showed how to construct a crossover�only algorithm that
is computationally equivalent to an algorithm that uses mutation� If the original
algorithm uses other operators� it is easy enough to simulate these operators with a
few minor alterations� For example� imagine the original algorithm is a GA that uses
both mutation and crossover� One�point crossover is easily simulated� To do this�
convert the sets of strings to their single�string representations� do the crossover� and
then convert them back into their corresponding sets of strings� This can be done for
any operator� and can be seen as an indirect approach�
Another� more direct� approach would be to �nd a new operator that acted on

the set representation that was isomorphic to the old operator on the single string
representation� We will do this for one�point crossover� in fact� it will be shown
that one�point crossover on two sets of strings can simulate crossover between single
strings� To do this we de�ne another crossover type� �rst�order crossover� First�
order crossover is a crossover operation applied on the �a�� a ��� � � � � � a ����� and
�b�� b ��� � � � � � b ����� strings at k� � � k � l� to give two new ordered sets of
strings �a�� � a� ��� � � � � � a� ����� and �b�� � b� ��� � � � � � b� ������ where

a� � a� � � � ak�� � bk�� � � � b��� �ak���b
��

k��

and

b� � b� � � � bk�� � ak�� � � � a��� �bk���a
��

k��

and � a� �i and � b� �i� � � i � ��� can be determined from a� and b�� respectively�

Lemma ����� One�point crossover at k between x and y is isomorphic to �rst�order
crossover at k � � between J �x� and J �y��

The following proof takes two arbritrary ��ary strings of length �� crosses them at
some k to get two new strings x� and y�� and then notes how J �x� is di�erent from
J �x��� Any such observations will apply to y and y� under J by symmetry�

Proof�
�Lemma ������

��



Let J �x� � �a�� a ��� � � � � � a ����� and J �y� � �b�� b ��� � � � � � b ������
One�point crossover between x and y at k where � � k � � yields

x� � x� � � �xkyk�� � � � y�

y� � y� � � � ykxk�� � � �x�

Then let a� � J �x�� and b� � J �y���
Inductive use �omitted� of J gives b�� � � � b

�
k�� � b� � � � bk���

We now show that b�k�i �� ak�i �bk���a
��

k��
for k � � � k � i � � � ��

Basis�

b�k�� � bk�� 
 xk��
� bk�� 
 a

��
k�� 
 ak��

� � ak�� �bk���a
��

k��

Induction Step �IS��
Induction Hypothesis �IH�� assume b�k�i �� ak�i �bk���a

��

k��
� for k�� � k� i � ����

Then

b�k�i�� � b�k�i 
 xk�i

� bk�� 
 a
��
k�� 
 ak�i 
 xk�i by IH

� bk�� 
 a
��
k�� 
 ak�i 
 a

��
k�i 
 ak�i��

� bk�� 
 a
��
k�� 
 ak�i��

� � ak�i�� �bk���a
��

k��

And therefore b�k�� � � � b
�
l�� �� ak�� � � � a��� �bk���a

��

k��
by Basis and IS� Thus�

b� � b� � � � bk�� � ak�� � � � a��� �bk���a
��

k��

which is �rst�order one�point crossover between �a�� a ��� � � � � � a ����� and �b��
b ��� � � � � � b ������

This means �rst�order crossover between J �x� and J �y� is isomorphic to crossover
between x and y� and that �rst�order crossover can simulate crossover� As in the
previous section� we must use the same group operator� 
� in each stage of the simu�
lation� One�point crossover can in turn simulate �rst�order crossover in at most ����
crossover operations� Thus any GA that uses both mutation and crossover can be
simulated by one that only uses crossover�
For an example of �rst�order crossover between complementary binary strings�

consider crossing

����j���

����j���
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with

����j���

����j���

at k � �� We can immediately determine that the two new sets are

����j���

����j���

and

����j���

����j���

��� Hyper�Order Simulation

One�point ���
� crossover and �rst�order crossover are useful in showing that crossover
can simulate discrete mutation� and are also useful in that they can help illustrate
key ideas about crossover
s landscapes� For example� the isomorphism between mu�
tation and crossover on binary strings can be used ��� to show that crossover between
complementary binary strings searches a hypercube ���� of dimension � � �� If the
two strings are not complementary� but have a Hamming distance of h� then crossover
searches a hypercube �possibly with self�loops� of dimension �� h� ��
New insights into crossover
s landscapes can be gained by iterating J � By iterating

J � we mean mapping a string x under J to get a set of � strings� and then mapping
each of these � strings under J to get � sets of � strings and so on� We can express
this by the following notation� J ��x� � f x g� and J i�x� � fJ �a� for each a �
J i���x� � for i � � g� When 
 � �� iterating J turns out to be highly similar
to iterating the ��ary Gray code of Sharma and Khanna ����� an unsurprising fact
considering that a slight change in J �� will generate this Gray code� if J �x� � �a��
a ��� � � � � � a ������ where x � x�x� � � � x�� then a�a� � � � a��� �dropping a�� is the
inverse Gray code element for x�
We can now de�ne i�order mutation and i�order crossover� i�order mutation is the

change in J i�x� when x is mutated� and i�order crossover is the change in J i�x� and
J i�y� when x and y are crossed� Thus one�point ���
� crossover is �rst�order muta�
tion� and a one�point mutation is ��order mutation� Zero�order crossover is crossover
between two arbitrary strings x and y� For the binary case� ��order crossover is a
generalization of a ��order mutation� since ��order mutation is a crossover between
complementary strings� and i�order crossover is a generalization of �i� ���order mu�
tation�
For an example of i�order mutation� consider the string x � ���� mapped twice
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under J

���� �
���j��
���j��

����j��

 ����j��

� ����j��
����j��

If a mutation is done on x� say at k � �� then this is equivalent to crossing ������� ������
at k � �� but we know from the previous subsection that crossing two strings ���order
crossover� is equivalent to �rst�order crossover at k��� With the mutation the levels
become

��!�� � �����
���j��
���j��

����j��

 ����j��

� ����j��
����j��

It turns out that i�order mutation� i � �� can be simulated by crossover� and that
i�order crossover� i � �� can also be simulated by crossover�

Lemma ����� i�order mutation for i � � can be simulated by crossover�

The proof uses induction on i� The induction hypothesis says that for all strings
a � J i���x� there is a string b also in J i���x� such that mutating x at k to get x� will
cause a to be crossed with b� generating the string a� � a�a� � � � ak�i��bk�i�� � � � b��i��
in J i���x��� From this we will show that J �a�� can be simulated by one�point
crossover between J �a� and J �b�� which will prove the lemma� The case i � �
is covered by the isomorphism J ���

Proof�
�Lemma ������
Basis �i � ��� by the isomorphism J ��� That is� a mutation on any string x at k of
 to get x� is isomorphic to a one�point ���
� crossover on J �x� at k� which in turn
can be simulated by one�point crossover� Thus for any string a � J �x� there is also
a string b � J �x� such that there is a string a� � a�a� � � � akbk�� � � � b��� in J �x���

Induction Step �i � ���
Induction Hypothesis �IH�� assume �i����order mutation can be simulated by crossover�
Let a � a�a� � � � a��i�� be a string in J i���x�� and by the IH we know that a

mutation on x at k of  causes a to be crossed with the tail�end of another string� say
b � b�b� � � � b��i�� to generate a new �crossed� string a� � a� � � � ak�i��bk�i�� � � � bk�i���
We must now show that any string in J �a� can be crossed with some string from

J �b� to get a string in J �a��� Showing this will prove the lemma�
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Let J �a� generate the following set of strings�

� g�g� � � � g��i ��

� g�g� � � � g��i ��
���

� g�g� � � � g��i ����

Simple induction shows that gj � a�
 � � �
aj� j � �� and g� � �� Induction also shows
that J �a�� generates the set of strings

� g�g� � � � gk�i��hk�i � � �h��i ��

� g�g� � � � gk�i��hk�i � � �h��i ��
���

� g�g� � � � gk�i��hk�i � � �h��i ����

where hj � gk�i�� 
 bk�i 
 � � � 
 bj� k� i � j � �� i� Since gk�i�� is a factor in each hj�
the tail ends of J �a�� �the hj 
s� will be a permutation of the tail ends of J �b�� This
can be seen by noting that if J �b� generates the strings

� d�d� � � � dk�i��dk�i � � � d��i ��

� d�d� � � � dk�i��dk�i � � � d��i ��
���

� d�d� � � � dk�i��dk�i � � � d��i ����

where dj � dk�i�� 
 bk�i 
 � � � 
 bj� k� i � j � �� i� That is� hj � �d
��
k�i�� 
 gk�i���
dj�

Thus any string generated by J �a�� can be seen as a crossover between a string
in J �a� and J �b��

This proof shows that crossover can simulate i�order mutation� Moreover� since
i�order mutation on strings of length � � i is isomorphic to mutation on � length
strings� this shows that large populations of strings with crossover can interact to
search a hypercube�
It can also be easily shown that crossover can simulate i�order crossover� The

proof is virtually the same� except that zero�order crossover is the basis� As with
i�order mutation� i�order crossover can be used to show that large populations under
crossover can search a hypercube�
Our results only show that crossover� in large and small populations� can search

a hypercube� we do not think it likely that these restricted quasi�crossovers occur
often �if ever� in GAs� However� they show crossover is much harder to analyze
than mutation� and also help demonstrate the complexity of regular crossover �i�e��
to simplify crossover to the level of mutation� we need highly constrained crossovers��
It is also possible that hyper�order mimicry can be used in the construction of long
path landscapes for crossover and to create other interesting functions�
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��� Conclusion

In this chapter we showed that one�point crossover is at least as computationally
powerful as discrete mutation� since one�point crossover can simulate discrete muta�
tion� One�point crossover can also simulate both mutation and crossover� Further�
this simulation generalizes to hyper�order crossovers and hyper�order mutations� By
showing that one�point crossover can simulate i�order crossover �i � �� and i�order
mutation �i � ��� we showed that crossover in large populations can potentially search
a hypercube�
Since these crossover types are so restrictive� they also help demonstrate the com�

plexity and power of crossover� That is� if we use a more general type of crossover
�e�g�� one�point crossover� that includes one�point ���
� crossover� then this �relaxed�
HGA will be able to mimic a GA but the GA will be unable to simulate the �relaxed�
HGA� That is� crossover can do everything crossover and mutation can do and more�
�This may seem paradoxical� but we are using larger populations in the HGA�� We
can iterate this process� i�e�� make HGAs of HGAs and so on� which demonstrates the
additional power and complexity of using larger populations� These relaxed HGAs
are not without cost� they have larger neighbourhoods to search�
This chapter addressed the crossover�mutation debates by showing that crossover

is at least as powerful as mutation because crossover can simulate mutation� This
does not mean that all implementations of crossover will use the potential of crossover�
and though the relaxed�crossover neighbourhoods are less restrictive and thus broader
in scope� a more focussed search may be better� Although crossover and mutation
both are powerful search operators� which operator is better may also depend on the
speci�c problem� The old question� �Which is better� crossover or mutation�� should
be replaced with two new questions� �Are the various operators being used to their
potential�� and �Which operator is better suited to a particular problem��
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Chapter �

Iterating an ��ary Gray Code

In this chapter we prove a theorem on the number of unique codes produced when
the ��ary Gray code mapping of Sharma and Khanna ���� is iteratively applied to an
��ary� dimension � code� that is� starting with an ��ary� dimension � code� repeatedly
apply the permutation given by Sharma and Khanna
s mapping� From this theorem�
it is easy to show there are ���q� unique codes generated from this mapping� where
q is the number of unique primes in �� To prove this theorem we show that any base
�� dimension � code word will cycle in O��q� iterations of this Gray code mapping�
and that this upper bound is attained� This theorem is a generalization of a theorem
proven by Culberson ��� for the binary case�
The work of this chapter is a special case of hyper�order mimicry dealt with in

the previous chapter� It can also be recast into GA theory� if we think of iterating a
search space using this Gray code �i�e�� iterating the representation� but keeping the
same genetic operators�� Our work will also show that iterating a search space �and
thus iterating a landscape� with the Gray code of Sharma and Khanna will generate
O��q� unique landscapes�

��� Gray Codes

An ��ary Gray ���� code of dimension � is a sequence of �� unique ��ary� length �
strings such that any two adjacent code words have a Hamming distance of one� Gray
codes can be used to reduce errors when an analog signal is converted to a digital
signal� they can be used in distributed memory architectures that are based on the
��ary hypercubes ���� and can be used in various combinatorial applications ���� Gray
codes also prove the existence of Hamiltonian paths on the hypercube graphs� and
demonstrate the existence of Hamiltonian circuits if the Gray code is cyclic ����� �For
any Gray code on an ��ary hypercube of length �� there are ��"���" equivalent Gray
codes that can be obtained by permuting the characters �� �� � � � � � in each column�
and permuting each column��
The Gray code discussed in this section will be represented by G��� ��� We will

sometimes use subscripts to refer to speci�c words in G��� ��� For example� G���� �� �
���� G���� �� � ���� and G���� �� � ����
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A cyclic Gray code has the additional property that the Hamming distance of the
�rst and last numbers in the Gray code is also one� G��� �� is a cyclic Gray code� and
has the special property that if g � Gi��� �� and h � G�i��� mod ����� �� di�er in their
kth character� then hk � gk���
We can de�ne G��� �� in terms of a function that maps the base �� dimension �

integers� N ��� ��� to G��� ��� For example� if x is the base �� dimension � represen�
tation of the nonnegative integer i� then this function will map x to Gi��� ��� This
mapping was given in ����� and we give the same mapping in a slightly altered form�
The mapping is denoted by K and its inverse by K��� Let an element in G��� ��

be represented by the string g � g�g� � � � g� and its corresponding base � integer be
represented by the string x � x�x� � � � x�� The mappings are then de�ned as

K�x� � �g�

gi �

�
x� if i � �
xi�xi�� � � i � �

and

K���g� � �x�

xi �

�
g� if i � �
gi�xi�� � � i � �

G��� �� is the binary re#ected Gray code� Both K and K�� can be computed in
parallel� That is� gi can be written in terms of x� and xi can be written in terms of g�
For instance� xi � g��g�� � � ��gi� See Figure ��� for two examples of this Gray code�
Sharma and Khanna ���� discussed the structure of this Gray code� and described
several other methods for generating it� including a direct method� They did further
work ���� on this Gray code� as well� For another ��ary Gray code� the reader may
wish to see Barasch� et al� ���� A good discussion of the binary re#ected Gray code
and some of its uses is given by Bitner� et al� ����

��� Iterating the Gray Code G��� ��

In this section we prove a theorem on the number of unique codes produced when
N ��� �� is iteratively mapped using K��� That is� we start with N ��� �� and re�
peatedly apply the permutation given by K��� Let N i

j��� �� � K���N i��
j ��� ��� and

N �
j ��� �� � N j��� ��� Iteratively applying K

�� to each code word can be seen as

iterating G��� ��� since N ���� �� � G��� ��� �This can also be seen as iterating a land�
scape� that is� the representation of a GA or hill climber is a code� and by iterating
this code�representation� we iterate the landscape��
We want to know the number of unique codes that can be generated by iterating

N ��� ��� or more formally � for what i � � does N i��� �� � N ��� �� such that �j� � �
j � i�N j��� �� �� N ��� ���
The following theorem follows easily from Theorem ����� �proven in Section �����
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N ��� �� K G��� ��
��� ��� ���
��� ��� ���
��� ��� ���
��� ��� ���
��� ��� ���
��� ��� ���
��� ��� ���
��� ��� ���

N ��� �� K G��� �� N ��� �� K G��� ��
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ���

Table ���� Two example Gray codes� � � � and � � � �l�� and � � � and � � � �r��

Theorem ����� Let � � � and � � pn�� pn�� � � � pnq
q where pi is prime� pi �� pj for

i �� j� �prime decomposition� and for each pi� set hi such that phi��i � � � phii � Then
K�� will generate m � ph��n���� ph��n���� � � � phq�nq��

q unique codes�

Proof�
We know� from Theorem ������ that for any string x� xm � x� We also know that
this upper bound is attained for any string such that x� �� �� GCD�x�� �� � �� and
� � �� Since this is true for some strings �e�g�� any string whose �rst character is ���
we know that iterating N ��� �� gives m unique codes�

If � � � then m � �� for � � �� �q � m � ��q� where q is the number of unique
prime factors in �� This implies that the maximum number of codes generated is
���q����� and also implies that using K�� to iterate a search space will produce O��q�
unique search spaces�

��� Iterating Strings Using K��

In this section we will prove a theorem on the cycles induced when an ��ary� dimension
� string is iterated� We will use the notation xi � K�i�x� � K���K��i����x�� and
x� � K��x� � x� We use subscripts to refer to a particular character in x� For
example� if x � x� � ������ then x�� � ��
A cycle on string x consists of the sequence x�� x�� � � � � xi��� where xi � x� and

�j such that � � j � i� xj �� x�� Since there are a �nite number of strings with base
�� length �� we know that the length of any cycle must be �nite� The following cycle
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theorem gives an upper bound on the cycle length of any string x� and gives the
actual cycle length when GCD�x�� ��� � and x� �� ��

Theorem ����� Let � � � and � � pn�� pn�� � � � pnq
q where pi is prime� pi �� pj for

i �� j� �prime decomposition� and for each pi� set hi such that phi��i � � � phii � If
m � ph��n���� ph��n���� � � � phq�nq��

q � then xm � x� and if x� �� � and GCD�x�� ��� �

then for any � � m� � m�xm
�

�� x�

Given any ��ary string and a number m as described in Theorem ������ mapping
the string with the inverse Gray code mapping m times will cause the iterated string
to return to its original value� If x� �� � and GCD�x�� ��� � then m is the smallest
integer for which the code word will cycle� For example� if x � ���� and �� �� then
x� � ����� x� � ����� x� � ����� x� � ����� which implies that m � �� The special
case of this theorem for � � � is proven by Culberson ����
Before proving this theorem� we will prove a number of lemmas� Also note that

all summations in this chapter are taken mod ��

Lemma �����

xij � xij���x
i��
j � i � �� � � j � �

Proof�
From the de�nition of K���

Lemma �����

x�j � x��x�� � � ��xj� � � j � �

and

xi� � x�� i � �

Proof�
Both statements follow from Lemma ������

Lemma �����

xij �
jX

k��

�
i� j � k � �

j � k

�
xk� � � j � �� i � �

Proof�

Basis�
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Lemma ����� is the Basis� and it can be seen that both of the statements in
Lemma ����� are special cases of Lemma ������

Induction Step�
I�H� assume Lemma ����� is true for xij�� and x

i��
j �

We know from Lemma ����� that

xij � xij���x
i��
j

and applying the induction hypothesis yields

xij �
j��X
k��

�
i� j � k � �

j � k � �

�
xk�

jX
k��

�
i� j � k � �

j � k

�
xk

We now add the kth terms� � � k � j � � which gives us�
i� j � k � �

j � k � �

�
xk�

�
i� j � k � �

j � k

�
xk

which is equal to �
i� j � k � �

j � k

�
xk

which satis�es Lemma ������ The xj term occurs only once� and also satis�es Lemma������

We now introduce the notation cij�k� where � � k � j� cij�k refers to the coe	cient
of the kth term of the equation given in Lemma ����� for xij� That is

cij�k �

�
i� j � k � �

j � k

�

Lemma ����� Let x � x�x� � � �x� be any ��ary string� If �j� � � j � �� cij�� �
��mod��� then xi � x�

Proof�

To show xi � x we must show that �j� � � j � �� xij � xj� Note that xi� � x��
thus we need only consider an arbitrary j� � � j � ��
Assume �j �� � � j� � �� cij��� � ��mod��� Then

xij �
jX

k��

cij�kxk

� �
j��X
k��

cij�kxk��c
i
j�jxj

� �
j��X
k��

cij�kxk��xj

��



since cij�j � �� But since

cij�k � cij�k���� � �

the summation is equal to ��mod��� and xij � xj�

Lemma ����� Let x � x�x� � � �x� be any ��ary string such that x� �� � and GCD�x�� ���
�� If �j� � � j � � such that cij�� �� ��mod��� then xi �� x�

Proof�

Assume x� �� �� GCD�x�� ��� �� and cij�� �� ��mod��� for some j� � � j � ��
If ci��� �� ��mod��� then xi� � ix��x� �� x� and we are done� Otherwise� cij�� ��
��mod��� for some j� � � j � � and that cij��� � ��mod��� for j

�� � � j � � j� Then

xij � �
j��X
k��

cij�kxk��xj

but note that

cij�k � cij�k����
� ���k� � � k � j

which means that

xij � cij��x��xj

since all the other terms are congruent to zero� Since cij�� �� ��mod��� x
i
j �� xj�

Lemma ����� shows that �nding an m that sets cmj�� � ��mod�� for � � j � �
implies that xm � x� Lemma ����� shows that if we choose the smallest such m that
sets cmj�� � ��mod�� for � � j � � and x� �� � and GCD�x�� ��� �� then xm

�

�� x� for
� � m� � m� Our goal then will be to set the cmj�� terms to zero �mod��� picking the
smallest such m that does so�
We now prove Theorem ������ To do this we use induction on j� and within the

inductive proof� we will use the fact that cmj�� �
m�j��
j�� cmj����� Since m increases with �

we will use the notation mj� which refers to the cycle upper bound length on strings
of length j� If j � i� then mj will be a multiple of mi� Let pi be a prime divisor of ��
Since hi also varies with �� we use the notation hi�j within the proof�

Proof�
�Theorem ������
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Basis �j����

cm�

��� � m���m� � �

We pick the minimumm� that will set m� � ��mod��� or m� � � � pn�� pn�� � � � pnq
q �

It is easy to see that Theorem ����� is satis�ed for j � �� and that cm�

��� has ni
factors of pi� � � i � q� In this case hi�� � ��

Induction Step �j � ���
For the induction step we need only consider an arbritrary prime pi� � � i � q�

I�H��� Assume setting mj�� as in Theorem ����� will set c
mj��

j��� � ��mod����j�� � �
j� � j�
I�H��� Assume j�� � C�p

d
i �� �where pi does not divide C�� d � hi�j��� implies c

mj��

j����

has ni � hi�j�� � � � d factors of pi�
I�H�� is needed because we must know how many factors of pi are in c

mj��

j����� if

we know this� then using the fact that c
mj��

j�� � mj���j��
j��

c
mj��

j���� we can determine the

number of pi factors that are in c
mj��

j�� � If there are ni or more such factors� for each i�
then c

mj��

j�� � ��mod�� and it is su	cient to set mj � mj��� otherwise� mj must be
increased �while still being a multiple of mj���� This leads to two cases�

�� j � C�p
d�

i � �� � � d� � hi�j��

�� j � pd
�

i � �� d
� � hi�j��

where C� contains no factors of pi For each case we must now show that I�H�� and
I�H�� hold for j�

Case � �j � C�p
d�

i � �� � � d� � hi�j����

Recall that c
mj��

j�� � mj���j��
j�� c

mj��

j����� In this case mj�� � j � � will have d factors
of pi and j � � will have d� factors of pi� and the total number of factors of pi will be
ni�hi�j�����d�d�d� � ni�hi�j�����d�� Setting mj � mj�� �and hi�j � hi�j���
corresponds to Theorem ������ I�H�� holds for j since we need at least ni factors of pi
in c

mj��

j� � and this is the case� I�H�� also holds�

Case � �j � pd
�

i � �� d
� � hi�j����

In this case it can be easily seen that c
mj��

j�� has ni � � factors of pi� but ni factors
are needed� We must show that setting mj � pimj�� �as in Theorem ������ i�e��
hi�j � hi�j�� � �� will make c

mj

j�� have exactly one more factor of pi than c
mj��

j�� � while
leaving the number of all other prime factors unchanged� Then�

c
mj

j�� �
�mj � j � ���mj � j � �� � � � �mj�

�j � ��"

and

c
mj��

j�� �
�mj�� � j � ���mj�� � j � �� � � � �mj���

�j � ��"
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The denominator of c
mj

j�� is equal to that of c
mj��

j�� � and so the denominators have the
same number of factors of pi� Thus we need only consider the numerator� Consider an
arbritrary factor of the numerator of c

mj

j�� � mj � k� where � � k � j � �� In the k � �
case� c

mj

j�� has an extra factor of pi� When k is non�zero� there are no extra factors of
ps� � � s � q� There are two cases to consider� ps �� pi and ps � pi� For the �rst case�
j � � � p

hs�j
s which means that mj � k � �psE � F �pts and mj�� � k � �psE � � F ��pts

where F and F � have no factors of ps� which means that the number of ps factors is
unchanged when k �� �� For the latter case a similar argument su	ces� but uses the
fact that j � � � p

hi�j��
i �since j � p

hi�j��
i � ���

When x� �� � or GCD�x�� ���� �� the m of Theorem ����� may be larger than the
cycle length of x �though m will be a multiple of x
s cycle length�� For an example
x where Theorem ����� describes the cycle length consider x � ������ for � � ���
In this case m � ���� as the theorem states� The strings ��� and ���� for � � � are
two examples of strings whose minimum cycle lengths are � which is less than the m
of Theorem ������

��� Conclusion

In this chapter we discussed the problem of iteratively applying the inverse Gray
code mapping to strings� and showed that a cycle on any string x will have length
in O��q� where � is the length of x and q is the number of unique primes in �� If
GCD�x�� �� � � and x� �� �� then x has a cycle length in ���q�� This implies that
the number of unique codes generated by iterating N ��� �� �or any ��ary� dimension
� code� using K�� is ���q�� This implies that using K�� to iterate a search space will
yield O��q� unique search spaces�
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Chapter �

Long Paths for ��ary Mutation and

Crossover

In this chapter we discuss distance�preserving paths for ��ary crossover and ��ary
mutation� A path P � v�� v�� � � � � vn is simple i� �vi� vj� � � i � j � n� vi �� vj� A
simple path P � v�� v�� � � � � vn in a graph G is k�distance�preserving� DP �k�� i� for
any two vertices i� j � P that are t steps apart on the path� dist�i� j� � min�t� k � ��
For the binary hypercube� both simple paths and DP �k� paths can be exponential in
length ���� ����
Since landscapes are graphs� it may be worthwhile trying to �nd these �long paths�

or bounds on them for a particular landscape graph� This is done for the binary one�
point mutation landscape �the Hamming hypercube� by Horn� et al� ���� ��� ���� They
construct a unimodal �no false optima and a single optimum� landscape that is hard
for mutation by sloping the �tness of all points not in the path towards the start of
the path and then making the DP ��� path strictly increasing� This makes any elitist
algorithm on this landscape follow the slope towards the start of the path� eventually
falling onto the path �not necessarily at the start�� followed by constant progress to
the optimum �the end of the path��
In the worst case� such a hill climber does an exponential amount of work� start

the hill climber on the �rst vertex on the path� it is then forced to follow the path
to the end� and since this DP ��� path is exponential in �� the hill climber will take
an exponential amount of time� Horn� et al�� also show empirically that an elitist
hill climber that starts on a random vertex �chosen uniformly� takes an exponential
amount of time on average to �nd the optimum� Long paths have also been used to
discriminate between di�erent types of elitist hill climbers �����
The results of Horn� et al�� are interesting because they show how bad a suppos�

edly easy �e�g�� unimodal� landscape can be� In this chapter we extend the DP ���
path construction to ��ary hypercubes� and explore the problem of creating distance�
preserving paths for crossover� We present the counter�intuitive result that crossover
can have DP �k� paths�
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��� Long Paths for ��ary Mutation

Long paths have previously been considered for the ��ary hypercubes ����� While
these paths are exponential in length� a better construction is possible� Let P be a
path� which can be represented by the list of strings in P � Let the �rst string in P
be FIRST�P � and the last be LAST�P �� Let the reversal of P be denoted by P �
for example� if P � f��� ��� ��g� then P � f��� ��� ��g� The concatenation of two or
more lists p�� p�� � � � � pn will be given by fp�� p�� � � � � png� Finally� given a path P � the
notation cP � where c is a character� means that c is prepended to every string in P �
Using the above notation� we can now de�ne our ��ary DP ��� paths for the ��ary

hypercube� The construction given is a generalization of the construction of Horn� et
al� ����� and when � � �� our construction reduces to theirs� Let P� be a path on the
��� ���cube �where � is odd�� Then

P��� � f��P��

��LAST�P���

��P ��

��FIRST�P���

��P��
���

��� ���� � ��FIRST�P���

��� ���� � ��P�g

if � is odd� otherwise�

P��� � f��P��

��LAST�P���

��P ��

��FIRST�P���

��P��
���

��� ����� ��LAST�P���

��� ����� ��P �g

The basis for this path is P� � f�� �g� Thus a DP ��� path on strings of length �� �
consists of � sub�paths connected by �� � �bridge� points� A DP �k� construction is
also easy to derive� Given a length �� k�distance�preserving path P � an �� k�� path
can be constructed by making � copies of P � say Pc� where c � �� �� � � � � � � �� and
appending ccc � � � c �k � � c�s� to Pc� Then connect each sub�path Pc to the sub�path
Pc�� using a bridge point� The base path is f ��� g�
Let jP�j be the length of a path on ��character strings� Then jP���j � �jP�j�����

with basis jP�j � � and jP�j � ����� Solving this recurrence yields jP�j � ��
���
� �� if
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� is odd�� Thus theseDP ��� paths are exponential in �� and are longer than a previous
��ary DP ��� path construction ����� This construction also lends credence to the view
that the fraction of the search space �for this construction� O�������� contained in
a DP ��� path will decrease with � ����� This seems a reasonable conjecture� since
increasing � increases the degree of each vertex� for each vertex used in the path�
more must be excluded�
We can use this DP ��� path to construct a landscape that is unimodal but ex�

ponentially hard for an elitist hill climbing algorithm that uses only one�point ��ary
mutation� The landscape construction is similar to that done by Horn� et al� ����� Let
the summation function� f	�x� �

P�
i�� xi� Since the �rst point on the path is always

the all�zeroes string� giving any point x not on the path the value �� � ��� � f	�x�
will lead a hill climber towards the start of the path� If a point is on the path P � then
that point
s �tness value is ��� ���� x
s position in P � We give the pseudo�code for
the �tness function that generates the landscape of Figure ���� The last string in the
path will be � for the base path� otherwise� it will be �� � ���� � ���� � � � � for even
� and �� � ����� �� � � � �� � ��� for odd ��
In the worst case� an elitist hill climber will be forced to do an exponential amount

of work to reach the optimum �e�g�� start on the �rst vertex of the path�� We show
empirically that an elitist hill climber on this landscape will be expected to take ex�
ponential time on average to �nd the optimum� where the initial vertex is chosen
uniformly� See Figure ��� for the results of running our mutation hill climbing algo�
rithm� MHC �see Appendix B�� on this landscape for � � �� �� �� �� Clearly� MHC
takes exponential time on average �the estimated standard deviations were small�� It
seems reasonable that any elitist hill climber on this landscape will take exponential
time on average� since the overall fraction of the search space contained in the path
decreases exponentially in �� this means that a hill climber should be less likely to
skip the �rst vertex in the path and take �large� short�cuts�

��� Long Paths for Crossover

In this section we discuss constructing distance�preserving paths for crossover land�
scapes� We �rst discuss long paths for binary one�point crossover� We create a
DP ��� path for one�point crossover on a complementary pair of strings� and sug�
gest how DP ��� paths can be constructed for the one�point crossover SSS� We then
try extending these long paths to bigger populations by creating a �naive� long path
landscape for crossover and do some tests on this landscape� These results are prelim�
inary but interesting in that� even with non�minimal populations� crossover appears
to follow exponentially long paths� We then discuss long paths for ��ary crossover
and possible future research directions�

�We can construct a DP ��� path for even � � 	 by ignoring the �rst character in a string� and
constructing an �� � path on the remaining characters�
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GLOBAL boolean onpath�

�� If x in path� return x
s position� else set onpath to false� ��
int path�position�x� �� �� f

char c � x��

�� basis ��
if �x �� ����� return ��
if �x �� ����� return ��

�� possibly in path ��
if �x �� ccx�x� � � � x�� f

if �even�c�� return �c�jP���j� ���path�position�x� � � � x�� �� �� ����
else return �c�jP���j���� jP���j���path�position�x� � � �x�� ���� ����

g

�� must be a bridge point� or not in path��
if �even�c�� f

if �x �� �c�c � ����� or
�even��� and x �� �c�c� ���� � ���� � ���� � � � ���� or
�odd��� and x �� �c�c� ���� � ���� � �� � � � ��� �������

return ��c� ���jP���j� ��� ���
g else f

if �x �� �c�c � ����� or x �� �c�c� ���� � � � ����
return ��c� ���jP���j� ��� ���

g

onpath�false�
return ���

g

�� Compute �tness of string x ���ary mutation long path�� ��
int string��tness�x� �� �� f

int temp�

onpath�true�
temp�path�position�x� �� ���
if �onpath� return ��� � ��� � temp��
else return ���� ��� � f	�x���

g

Figure ���� Fitness function for ��ary mutation long path�
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Figure ���� Testing the ��ary mutation long path landscape using MHC�n �
�� �� trials�point�F � �� elitism�� The maximumnumber of evaluations was �������
and the MHC always found the end of path except for the � � �� point for � � � �in
this case it found the path �� out of �� times�� Standard deviations were relatively
low with respect to the mean�

����� Binary Crossover

As a �rst step to constructing distance�preserving paths for one�point crossover land�
scapes� we can use the fact that one�point crossover between two complementary
strings is isomorphic to the Hamming hypercube� and thus isomorphic to one�point
mutation� This means we can construct a DP ��� path in the one�point �� � ����
crossover SSS for even � � �� The �tness function that generates a unimodal long
path landscape can be based on the ��ary mutation long path �tness function� e�g��
if x is a string in the one�point �� � ���� crossover SSS� then the �tness of x is given
by string��tness�I���x� x�� �� �� ��� We used GIGA on a pair of complementary
strings as our crossover hill climber� Test results are shown in Figure ��� and are
clearly exponential�
It is also possible to construct DP ��� paths for the binary one�point crossover

SSS� the landscape for a �possibly� non�complementary pair of binary strings under
crossover� This can be done by recalling that two strings with Hamming distance h
search a hypercube �possibly with self�loops� of dimension ��h��� and constructing
a path for the ��h� � hypercube� This construction� however� would depend on the
strings used� that is� two pairs of strings may both have Hamming distance h� but
if the pairs are complementary in di�erent locations� then they require di�erent long
path constructions�
Thus� for trivial crossover populations �n � ��� constructing DP ��� paths for one�

point crossover are easy� This is a nice result� but crossover is rarely used on trivial
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Figure ���� Testing the binary crossover long path landscape on minimal populations
�i�e�� complementary pair of strings�� GIGA was used as our crossover hill climber
�n � �� � � �� �� trials� F � �� elitism��

populations� Is it possible to construct a non�trivial population� crossover landscape
that forces an elitist search algorithm �on this landscape� to follow a long path� Our
�rst attempt to construct such a landscape
is to use GIGA with bigger populations� and using the �tness function
string��tness�I���x� x���� ���� as in the DP ��� path for the one�point �� � ����
SSS� We term this the �naive� crossover long path landscape� This landscape poten�
tially has exponentially long paths� e�g�� on a complementary pair�
This landscape may or may not have a DP ��� path� and we do not attempt to �nd

one� It is also not unimodal� In this section we concern ourselves with the average
number of �tness evaluations used by GIGA to �nd an optimal string� as this should
re#ect on the length of the path GIGA followed to get to the optimal point in the
landscape�� Rather than worrying whether this landscape is unimodal� we instead
measure the probability that GIGA does not �nd the optimal point �e�g�� hits a false
optimum�� We want paths that are long on average and a landscape with few �or an
insigni�cant number� of false optima�
GIGA
s parameter
s were F � �� � � �� elitism� ��� trials�point� and max

evals�������� Default GIGA parameters are listed in Appendix B� Table B��� This
�naive� long path crossover landscape was tested for n � �� �� and ��� We only in�
clude trials that ended in a successful run �where an optimal population was found��

�There are actually many optimal points� e�g�� any population with an optimal member string�
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The results are in Figures ��� and ���� The results are interesting� and may or may
not be exponential� For n � ��� the plot appears exponential but levels o� after
� � ��� which is not shown� This levelling is likely because GIGA needed more
evaluations to �nd the longer paths� that is� the paths were so long that more than
������ evaluations were required to reach the end of the path� This is supported by
the fact that GIGA was �nding paths that used ������ evaluations� A solution to
this would be to run GIGA until the maximum string is found or a false optimum
is hit �to check this GIGA would �rst have to be converted into a strictly elitist hill
climber� otherwise� GIGA might follow cycles�� Also� the bottom plot in Figure ���
suggests that the probability of hitting a false optimum increases with increasing �
and decreases with increasing n�
We include some results from the n � �� � � �� tests that may help the reader get

a picture of how GIGA is searching on this landscape� In the �rst �see Figure �����
GIGA �almost certainly� gets stuck on a false optimum �maximum �tness is ����
The next set of results �Figure ���� shows an experiment where GIGA quickly found
the maximum and made large improvements �jumps� in the value of the best string
found� Here is an example of population helping the search� The last set of results
�Figure ���� is interesting because it shows GIGA making small improvements �where
the �tness increases by ��� followed by a leap in �tness value� followed by yet more
small improvements to an optimal point�
While these experiments are interesting� there is a potential problem that should

be noted� Because GIGA is not a strict hill climber� it can wander in plateaus and
thus can follow cycles� This means the average number of evaluations may not be a
true re#ection of the path length� However� this did not seem to be a problem in our
tests�
The problem of hitting false optima may �possibly� be reduced by using a more

general mating strategy in GIGA� for instance� GIGA could be altered to select non�
adjacent as well as adjacent pairs to mate� This could possibly eliminate many of the
false optima�

����� Some Possible Future Research Directions

Because �general� crossover hill climbers can be very complex� �nding exponentially
long DP ��� paths appears to be very di	cult� It may be possible� for some speci�c
class of populations� to give an inductive DP ��� construction that is exponentially
long� however� it would be much harder �nding a construction for general populations�
of the sort that are likely to appear initially in a GA� Di�erent hill climbers would
also require di�erent constructions�

DP ��� paths for �general� hill climbers can be generated using a brute force
method� e�g�� start with some initial population� and follow a DP ��� path� This is
not a practical algorithm for large �� and theDP ��� paths that are generated need not
be exponential in length� Indeed� some algorithms may not even have exponentially
long DP ��� paths on larger populations�
Because of this apparent di	culty� we focus on possible research directions for

further exploring the long path problem�
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Figure ���� Testing the �naive� long path crossover landscape using GIGA w� elitism�
n � � �top�� n � � �bottom�� Standard deviations were high� generally close to the
mean in size�
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Figure ���� Example run on �naive� crossover long path landscape� n � �� � � ���
This experiment demonstrates GIGA probably getting stuck on a false optimum�
�Optimum is ����
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Final Results�

Figure ���� Example run on �naive� crossover long path landscape �n � �� � �
���� This experiment is an example where GIGA quickly �nds the maximum string
�Optimum is ����
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Figure ���� Example run on �naive� crossover long path landscape �n � �� � � ����
This experiment shows a longer path� i�e�� GIGA makes small improvements�
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Binary Crossover Long Paths

While it seems di	cult to construct DP ��� paths for general populations� it may be
possible to construct landscapes that are virtually DP ��� paths� that is� a hill climber
on one of the landscapes may be forced to follow an exponentially long path most or
all of the time for most populations� This was the goal taken when constructing the
�naive� crossover landscape�
On the �naive� crossover landscape we wanted to demonstrate exponential be�

haviour in the average case� but we can probably get better long path landscapes if
we only consider a worst case analysis� That is� we generate a long path landscape
for each initial population�
There are many ways this could be done� One obvious method is to pick the �rst

two strings of the population and construct a long path on their complementary bits�
The path is created so that these strings are initially on the path� The value of a
string is � if it is not in the path and not in the initial population� � if it is in the
initial population and not on the path� and � plus its position in the path� otherwise�
For large enough �� it seems unlikely that crossover between any strings but the �rst
two will produce a �tness greater than zero� There will be populations in which this
is not true� even populations in which two strings not on the path can be crossed
�once� to reach the optimal point� however� for most reasonably�sized populations�
this sort of behaviour should be rare� because the path is exponentially small with
respect to the size of the representation space ����� A similar method could also be
used for ��ary one�point crossover�

��ary Crossover Long Paths

In this subsubsection we consider using a crossover hill climber similar to GIGA�
except that there is no sorting of any kind� implicit or explicit� that is� the �rst
character of each string is �rooted� in place�
Exponential DP ��� paths are easy to derive for one�point ���
� crossover� To do

this just use J �� and the ��ary mutation long path �tness function� as was done for
the binary case in the previous subsection� An example DP ��� path for � � �� � � �
under one�point ���
� crossover �rotational crossover� is�

���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ����

DP ��� paths can also be constructed for the ��ary one�point crossover SSS by
constructing a DP ��� path on the Hamming hypercube of dimension � � h � ��
where h is the Hamming distance between the two ��ary strings in this search space
structure�
There are several ways long path landscapes could be constructed for ��ary one�

point crossover� and we give two possible methods� In the �rst� we could use pop�
ulations of size � generated by random rotation� and let the �tness of a string be
the position of the string in the one�point ���
� crossover SSS long path� Any string
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not in this path would have �tness of �� For example� the strings ����� ����� and
���� would all have �tness �� The optimal strings ����� ����� and ���� would have
a �tness of ��
Using one�point crossover on this population may force an elitist crossover hill

climber to follow a long path �there are de�nitely exponentially long paths since one�
point crossover can simulate one�point ���
� crossover�� However� a crossover search
mating only adjacent pairs may get stuck on a false optima� The following is an
example of this� �The number above each population is the maximum value of any
string in the population��

� � � �
���� ���� ���� ����
���� ���� ���� ����
���� ���� ���� ����

If the �rst and last strings could be mated� then this would not be a false optima�
Choosing non�adjacent pairs as well as adjacent pairs would also eliminate this prob�
lem�
If a crossover search algorithm would have to simulate one�point ���
� crossover

in lock�step� then this would be a DP ��� path� However� this is not the case� To see
this consider the following example�

� � � � � � � � �
���� ���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ����

Since crossover can take short�cuts� this is not a DP ��� path and there may be false
optima� However� it may also be that� while there are many paths to the optimal
point� each path is exponential in length� or exponential in length on average�
The other type of long path landscape parallels the �naive� crossover landscape

for binary strings� That is� we could use J ���� and the �tness function for the ��ary
long path mutation landscape on population sizes greater than ��

��� Conclusion

In this chapter we discussed the long path problem for ��ary mutation and ��ary
crossover� We constructed exponentially long DP ��� paths for one�point ��ary mu�
tation� and created a strictly increasing landscape for one�point ��ary mutation such
that the �tness of points not on the DP ��� path are sloped towards the start of the
path� Test results show that a mutation hill climber starting at a random vertex
�chosen uniformly� takes exponential time on average to reach the end of the path�
Thus this landscape is exponentially hard in both the worst and average cases�
We then created an exponentially long DP ��� path for crossover between a com�

plementary pair of binary strings� and constructed a long path landscape for crossover�
A crossover hill climber took exponential time on average to reach the end of the path�
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The �tness function for the crossover long path between complementary strings
was used to create a �naive� crossover long path class of landscapes for crossover
on non�minimal populations� The results are interesting
GIGA appears to follow
exponentially long paths on average
but non�conclusive�
Methods for making long paths for ��ary one�point crossover were also discussed�

but most of this is left for future work� Hyper�order crossovers and hyper�order
mutations may also be used to construct interesting� potential long path landscapes�
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Chapter �

Schizophrenic Functions

In this chapter we create the schizophrenic function� This function has two classes of
optima� and is constructed in such a way that searches using mutation are expected to
�nd one optima class� searches using crossover the other� That is� it is a function that
should be able to discriminate between searches that use mutation or crossover� There
is a long history of discriminating functions in the GA literature� Some examples
include the Royal Road functions ����� the long path problems ���� ��� ��� ���� and
others ����
We expect that the schizophrenic function will have several uses� Researchers can

use it to compare how well their genetic algorithms use crossover and mutation and to
study what factors a�ect crossover and mutation� We use the schizophrenic function
for both purposes�
There are twomain sections to this chapter� In the �rst� we de�ne the schizophrenic

function in the binary case� The work here is related to the work by Culberson ��� ���
In the next section� we de�ne an ��ary schizophrenic function� For both sections� we
run various test cases to o�er support for �and� it turns out� some evidence contrary
to� our original expectations� All in all� we feel that the schizophrenic function is a
useful but imperfect tool�

��� The Binary Schizophrenic Function

Culberson ��� argues that traditional genetic algorithms are more heavily reliant upon
mutation than crossover and do not use crossover well �e�g�� converged populations
make crossover ine�ective as a search operator�� and several papers in the literature
support this view ����� We use the schizophrenic function to provide additional evi�
dence for this� Analyzing the test results also o�ers insight into how population and
crossover can interact in GIGA�
We test the schizophrenic function on four di�erent probabilistic search algorithms

�see Appendix B�� a one�point mutation hill climber �MHC�� a traditional genetic
algorithm �TGA�� the gene invariant genetic algorithm �GIGA�� and an extension
to GIGA �NQ�GIGA�� thus testing the notion that the schizophrenic function can
discriminate between searches that use crossover well �GIGA�NQ�GIGA� and those
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that do not use crossover �MHC� or do not use it well �TGA�� Our tests will focus
on GIGA and its extension� NQ�GIGA� and by doing so we analyze how population
and crossover interact in GIGA�
Although we only de�ne and test one schizophrenic function� there are many

classes of schizophrenic functions� and many functions can become the basis of a
schizophrenic class� Schizophrenic functions could also be designed to discriminate
between genetic operators other than crossover and mutation� or to discriminate more
than two operators� say mutation� crossover� and inversion� They can also be used to
explore the e�ects of multiple levels �or iterations� of Gray coding�

����� Function Transformations Using Isomorphisms

Recall that I is given by�

I�x� � �a� !a�

ai �

�
� if i � �
xi���ai�� � � i � �� �

and is an isomorphism between the landscapes induced by one�point binary mutation
on a string of length � and one�point binary crossover on two complementary strings
of length �� � ����
This isomorphism can be used to transform functions that have certain properties

with respect to a mutation�based search to functions that have those same properties
with respect to a crossover�based search on a complementary pair of strings� If�
for instance� a mutation�based search �nds a function f hard� we can construct an
equally hard function f � for crossover using I� We can go the other direction using
its inverse� Culberson ��� uses this isomorphism to create functions that discriminate
between mutation� and crossover�based searches�
We stress that this isomorphism is between mutation on a single string and

crossover on a pair of complementary strings� when the population size is not mini�
mal ��� for crossover� �� for mutation� the isomorphism can �break�� For example�
a hard function for mutation transformed into a hard function for crossover on a
complementary pair may not be hard for crossover on populations greater than two�

����� De�nition of the Binary Schizophrenic Function

The ones�counting �or ones�max� or unitation� function is

fu�x� �
�X

i��

xi

and the transitions�counting function is

ft�y� �
�X

i��

yi�yi��

��



where x and y are both binary strings of length ��
The ones�counting function is easy for one�point mutation hill climbers� because

the landscape is strictly increasing� and the longest �increasing� path is of length ��
For similar reasons� k�point mutation for small k and uniform mutation for small
pm� pm � ���� should also �nd the ones�counting function easy� Note that ft�x� �
ft�!x� � fu�I���x� !x��� � � �� which means that one�point crossover on a pair of
complementary strings will �nd the transitions�counting function as easy as one�point
mutation �nds the ones�counting function ����
The ones�counting function is easy for one�point mutation but di	cult for one�

point crossover ���� as crossover has exponential in h false optima on the one�point
crossover SSS landscape given by the ones�counting function� where h is the Hamming
distance of the two strings being crossed� These false optima appear to make the prob�
lem hard for crossover� �Two�point crossover does not have these false optima� since
two adjacent crossovers can mimic a mutation�� The transitions�counting function
is easy for crossover but hard for mutation� because there are large plateaus in the
one�point mutation SSS landscape for the transitions function� and doing mutation
at a higher rate makes the problem even harder�
When the populations are non�minimal� crossover can �nd the ones�counting func�

tion relatively easy� For example� in GIGA ��� high��t ones�substrings became concen�
trated at the bottom of the population� the average Hamming distance of these strings
was reduced� and the search became easy� In this case bigger population searches did
not echo the minimal population searches� However� the transitions�counting function
is still easy for bigger populations ����
Using the transitions� and ones�counting functions we can construct a binary

schizophrenic function�

bSchizo�x� �

� P�
i�� xi�xi��� if x� � �P�
i�� xi� otherwise

It takes a binary string x of length �� � � �� There are two possible optima when
x� � �� ���� � � � � and ��� � � � �� and two when x� � �� ������� � � � and ������� � � ��
The four optima each have the value of � � �� and both halves of the domain have
the same quantity of functional values� In e�ect� the domain has been split between
two di�erent functions� one that is easy for crossover and hard for mutation� and
one that is easy for mutation and hard for crossover �on minimal populations�� We
expect that a crossover�based search will have a di	cult time �nding a mutation
optima even on non�minimal populations� because the search algorithm will have a
hard time concentrating ones�strings since there will be equally �t transitions�strings
interspersed between them�
We conjecture that searches using crossover will �nd the crossover half of the

landscape easier than the mutation half� and so will usually �nd one of the crossover
optima �the optima where x� � �� before they �nd the mutation optima� In the same
way� mutation�based searches will �nd the mutation half of the landscape easier to
climb� and will usually �nd one of the mutation optima before a crossover optima�
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GIGA� �n � �� � � �� ���� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

���� �� � ��� �
����� �� � ��� �

MHC� �n � �� � � �� ���� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

���� �� ��� ��� �
����� �� ��� �� ���
����� �� ��� �� ���

Table ���� Testing the binary schizophrenic function� minimal populations� GIGA
�top� and MHC �bottom��

����� Testing the Binary Schizophrenic Function

When testing the binary schizophrenic function we split the tests into those that use
minimal and non�minimal populations� We do this for two reasons�

�� Non�minimal populations �break� the mutation�crossover isomorphism
results
on minimal populations may not apply to larger populations�

�� Di�erences between the minimal and non�minimal population test results can
o�er insight into how population and crossover interact in GAs�

Minimal Populations

To test the conjecture that a search using mutation will �nd a mutation optimum and
a search using crossover will �nd a crossover optimum� we tested GIGA on the binary
schizophrenic function on a population of two complementary binary strings� Since
the strings are complementary� it is possible for crossover to �nd any length � string�
For these experiments we modi�ed GIGA to record whether the �rst optimum found
was a mutation or crossover optimum� Our de�nition of best pair was the maximum
�tness value of either of the strings in the pair� GIGA also has an option for explicit
sorting� which we did not use� For testing the mutation half of the conjecture� we
used our mutation hill climber� MHC� with one�point mutation on a population of
one string�
The results for GIGA and the MHC are summarized in Table ���� These results

support our conjecture� at least for the minimal populations that we used� However�
the results are clearly not symmetric� There are at least two reasonable explanations
for this�
The �rst explanation is that the mutation string could be in either the mutation�

or crossover�half of the landscape but not both� while crossover always had a string in
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GIGA �n � ��� � � �� ��� trials� F��� elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� ��� ��� �
����� �� �� ��� �
����� �� � ��� �

GIGA �n � ��� � � �� ��� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� ��� ��� �
����� �� ��� �� ���
����� �� �� � ���

Table ���� GIGA on the binary schizophrenic function� non�minimal populations�
elitism �top� and non�elitism �bottom��

each of the mutation� and crossover�halves of the landscape �non�symmetric switch��
A symmetric switch could be designed by using the �rst two bits of the string� rather
than the single bit currently used as the switch� If the bits were a transition �e�g�� ��
or ��� the string would be in the crossover�half of the landscape� otherwise� it would
be in the mutation�half of the landscape� This means crossover would be able to
activate the switch� This switch is not perfectly symmetric� however� since crossover
only has one crossover point that activates the switch� while mutation can mutate
either the �rst or second bits�
The second explanation is that� while crossover �nds the crossover�half of the

landscape as easy as mutation �nds the mutation�half of the landscape� crossover
may �nd the mutation�half of the landscape harder than mutation �nds its crossover�
half of the landscape� �The functions are not symmetric��

Non�minimal Populations� GIGA

For non�minimal populations we �rst used GIGA with elitism� Both types of optima
can now occur in the population� but we only kept track of the �rst occurrence� The
results are in Table ��� �top� and seem to support our conjecture that crossover has
a harder time �nding optimal mutation strings than optimal crossover strings� This
seems to be because the mutation strings cannot be concentrated together since there
are both highly �t crossover� and mutation�strings interspersed in the bottom of the
array� Thus a crossover search is forced to work at the level of the one�point crossover
SSS�
However� if elitism is not used� then the results are very di�erent� See Table ���

�bottom�� For string lengths of ��� crossover �nds the crossover half of the domain
easier� while for strings of length �� crossover �nds the mutation half easier�
We o�er a possible explanation for these results� With both elitism and non�
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elitism� highly �t strings tend to be shu%ed towards the bottom of the array� These
high��t strings include strings containing mostly ones �mutation strings� and strings
where the number of ones and zeroes are roughly equal �crossover strings�� This
means there will be fewer zeroes in the bottom of the array� Generally� crossing
highly �t mutation and crossover strings together will tend to produce strings with
lower �tness� and so elitism ensures that there is little exchange between these strings�
With non�elitism� however� these strings can be crossed� and this is what can make a
non�elitist search better on a mutation string� To see this� consider a sub�string of a
high��t mutation string� say ���������� If it is crossed just before the zero and just
after� then there is a probability of about ��� that those two crossovers will appear as
a mutation �if we assume that �t mutation and crossover strings are equally likely��
With a highly �t crossover string requiring a zero in a certain position� there is only
a probability of about ��� that two adjacent crossovers will produce a zero at that
position� There can also be a shortage of zeroes in certain character positions near
the bottom of the array� which can add further di	culty for �nding crossover optima�
This explanation also seems to be supported by tests with GIGA where we varied

family size and string length �see Figure ����� Notice that GIGA �nds the most
mutation optima when F is small relative to �� Increasing the family size tends to
make GIGA �nd the crossover optima more frequently� because increasing the family
size mimics elitism� and the larger the family� the better elitism is mimicked� This
mimicry is imperfect� if no improvement can be made� e�g�� a false optimum� then a
pair of children with value lower than their parents must be chosen� This is important
when two highly��t crossover and mutation strings are being crossed� since the larger
the family� the higher the probability that a child pair will have been crossed at
a crossover point near �� This happens because crossing two such strings near the
middle or front will produce strings with much lower �tness than strings crossed near
the end�

Non�Minimal Populations� TGA and NQ�GIGA

We use GAC ���� as our representative TGA� It uses proportional �tness to select
which individuals reproduce� We used one�point crossover at varying crossover rates
and uniform mutation at varying mutation rates� We modi�ed GAC to record which
optima type was found �rst as well as the average number of evaluations to �nd
the �rst optima� Each experiment ran for a maximum of ��� ��� evaluations� See
Figure ���� The results clearly show that GAC �nds the mutation optima much more
frequently than the crossover optima� regardless of the crossover and mutation rate�
Consider the plot of the number of mutation optima found� Mutation dominates

the search� since as the mutation rate increases� the number of mutation optima found
decreases� Changing crossover rates has little consistent e�ect on this plot other than
making the search slightly easier for high mutation rates� Thus mutation dominates
the search of the optima that are� by far� found most frequently�
Finally� we wanted to see if GIGA could be modi�ed to use both crossover and

mutation e�ectively� We did this by encoding two extra parameters into GIGA� a
mutation and a crossover rate� We refer to this modi�ed GIGA as NQ�GIGA �Not
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Quite GIGA�� NQ�GIGA uses the same defaults as GIGA� The maximum number of
evaluations is ��� ���� as with GAC� See Figure ����
These plots show that increasing the mutation rate increases the number of mu�

tation optima found� while increasing the crossover rate increases the number of
crossover optima found� This provides further evidence that �with elitism� at least�
the schizophrenic function can discriminate between mutation and crossover� even
when used together�

��� A Generalized Schizophrenic Function

In this section we use the generalized isomorphism J to construct a schizophrenic
function for one�point mutation and one�point crossover on ��ary strings� �� ��

����� The Summation Function

We will construct our schizophrenic function based on the summation function� f	�x��
where

f	�x� �
�X

i��

xi

This function is easy for one�point mutation for the same reason that ones�counting
is easy for one�point binary mutation� When �� �� f	�x� is just the ones�counting
function�
The summation function for one�point rotational crossover will have exponential

false optima by a construction similar to that used in ���� For example� the strings

�����

�����

�����

�����

�����

represent a false optimum� since any rotational crossover will produce a set of strings
whose maximum value is lower than before the crossover� While rotational crossover
may be of interest mathematically� there is little incentive in constructing a schizophrenic
function for it since it is never used in the GA community� Instead� we wish to con�
struct a schizophrenic function that can discriminate between one�point mutation
and one�point crossover between two ��ary strings� This should be possible by noting
that the summation function has exponential false optima for one�point crossover�
For example� the following strings represent a false optimum

�����

�����
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since their maximum value will decrease after a crossover�
To construct the generalized schizophrenic function� we use J to transform the

summation function into a function that is easy for rotational crossover� That is� if
the population is a�� a ��� � � � � � a ����� then the �tness of a population is given by
f	�J ���a�� a ��� � � � � � a ������� The �tness of the population can also be given by
fs�� a �i� �

P�
j�� aj�aj�� for any i� Using fs��� the shift function� with one�point ��

ary crossover will hopefully generate a landscape easy for crossover� Inspection shows
that the shift function has large plateaus on the one�point ��ary mutation SSS�

����� A Generalized Schizophrenic Function

The generalized schizophrenic function can be constructed in much the same way as
the binary schizophrenic function was created� We just split the domain into two
halves� and then apply a variant of the summation function to one of the halves
and the transformed summation function� fs��� to the other half� Our new de�nition
becomes�

Schizo�x� �� �

���
��
P�

i�� xi�xi��� if � � x� � b�
� cP�

i�� xi� if b
�
�
c � x� � �b

�
�
c

�� otherwise

This generalized de�nition is compatible with the binary de�nition�
When � is odd� the domain cannot be split into two equal halves� since x� can

range from � to � � �� To get around this �when � is odd� we give any string with
x� � �� � a value of zero� and the rest of the domain can then be split evenly�

����� Testing the Generalized Schizophrenic Function

To test the generalized schizophrenic function� we chose � � �� We used GIGA and
our MHC to do the tests� The MHC used a single ��ary string� and a thousand
experiments were done for each case� The results are listed in Table ��� �top�� and
seem very comparable to the binary MHC
s results�
In our tests with GIGA� we had to ensure that every possible character could occur

in every possible string location� To do this� we used at least � strings in GIGA
s
population� We only did ��� experiments for each case� The results are included
in Table ��� �bottom�� GIGA found a crossover optima much more frequently than
a mutation optima� However� the results are not similar �i�e�� found an optima less
often� to the binary schizophrenic case� This is likely because we were not using
rotational crossover� and thus we cannot expect one�point crossover to �nd the shift
function as easy as one�point rotational crossover would �nd it�
We did tests with GIGA on populations of size ��� with and without elitism� See

Table ���� The results are very comparable to those that we did with the binary
schizophrenic function on bigger populations�
We also tested the generalized schizophrenic function with NQ�GIGA while vary�

ing the mutation and crossover rates� The maximum number of evaluations was
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MHC� �n � �� � � �� ���� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� ��� �� �
����� �� ��� �� �
����� �� ��� � ��
������ �� �� � ���

GIGA� �n � �� � � �� ��� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� �� ��� ��
����� �� � �� ���
����� �� � � ���

Table ���� Testing the ��ary schizophrenic function on minimal populations with
� � �� MHC �top�� and GIGA �bottom��

GIGA� �n � ��� � � �� ��� trials� F��� elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� ��� ��� �
����� �� �� ��� ��
����� �� �� ��� ���

GIGA� �n � ��� � � �� ��� trials� F��� non�elitism�
MAX $ mutation $ crossover no
EVALS � optima optima optima

����� �� ��� ��� �
����� �� ��� �� �
����� �� ��� � ��

Table ���� GIGA on the schizophrenic function� non�minimal populations� elitism
�top�� and non�elitism �bottom��
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��� ���� See Figure ��� for graphs of number of mutation optima and crossover op�
tima found� Again� the results are comparable to those in the binary case�

��� Conclusion

The schizophrenic function appears able to discriminate betweenmutation and crossover
in certain situations �elitism� but not in others �non�elitism with small family size��
This is probably because the schizophrenic function is biased so that more ones than
zeroes are concentrated towards the bottom of the population array� and that non�
elitism can take advantage of this� We do not expect that this �or any� schizophrenic
function can always discriminate between mutation and crossover based searches� for
example� a crossover�based search that separated the mutation and crossover strings
into two independent population pools would easily �nd mutation optima if it used
a GIGA�like mating scheme� However� it may work on many di�erent algorithms�
We have also shown that the ��ary schizophrenic function induces landscapes with
behaviours similar to its binary counterpart�

����� Future Work

It should be possible to make a better schizophrenic function� one that avoids the
problem of one�point crossover with non�elitism being able to simulate one�point
mutation� by noting that the majority function� fm�x� � j�$�s in x� � �$�s in x�j�
has many false optima in the one�point crossover SSS� It was also empirically shown
to be hard for one�point crossover with non�minimal populations ���� and is also easy
for the one�point mutation SSS� Since mutation strings now consist of strings with
either mostly zeroes or mostly ones� the bias of having a concentrated number of
ones near the bottom of the array would be eliminated if the schizophrenic function
replaced its summation function with the majority function� Whether this is in fact
an improvement needs to be tested� It should also be easy to generalize this new
schizophrenic function to ��ary strings�
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Chapter �

Related Work

In this chapter we give a brief survey on landscape theory� analysis� and construction�
We do not give a review of Gray codes� but reading Section ��� followed by Appendix A
will su	ce as one�

	�� Landscapes De
nitions That Include Crossover

Many papers in the GA literature use the concept of �tness landscape� but often these
landscapes are the one�point mutation SSS ����� and so do not represent the search
of genetic algorithms� For instance� mutation is often viewed as a local operator
that moves on this landscape� while crossover warps through this landscape� In other
words� the mutation SSS has nothing to say about crossover�
Only recently have models of landscapes been proposed that include crossover�

Culberson proposes a rigorous landscape model ��� �� that can explicitly model the
search of GAs� where each population is a vertex in the graph and the algorithm
via its operators de�nes edges in the landscape� He also notes that these landscapes
will be too complex in general� and so simpli�cations may need to be made� For
instance� he analyzes both the binary mutation SSSs� and crossover landscapes for a
complementary pair of binary strings�
Jones ���� also introduces a model of landscapes that includes crossover� He

de�nes a landscape L as the �ve�tuple �R� �� f�F � �F�� where R is the representation�
� is an operator �possibly a composition of operators�� f is the �tness function
f �multisetof�R�� F � and F is a set and �F is a partial order over F � Jones also
o�ers a simpli�ed view of the search of �traditional� GAs� a GA moves on several
landscapes �a mutation landscape� a crossover landscape� and a selection landscape��
Jones
s and Culberson
s landscapes are nearly equivalent in that in both can be

interpreted as representing each population as a vertex and operators induce edges
in the graph� Jones includes edge probabilities in his de�nition� however�
A variant landscape based on hypergraphs has been introduced by Gitcho� and

Wagner ����� Rather than having each vertex corresponding to a population� each
vertex is a single string� and edges are generalized edges �e�g�� a generalized edge
between two strings a and b consists of the set of all strings that can be formed by
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crossover between a and b�� Gitcho� and Wagner show that the strings in any gener�
alized edge form a cycle when strings with a Hamming distance of one are connected�
and are �also connected in the corresponding hypercube of the point mutation space��
and suggest that because of this recombination spaces have the same metric �Ham�
ming distance� as mutation SSSs� However� in the one�point mutation SSS� Hamming
distance de�nes distance between two strings� while the Hamming distance for recom�
bination spaces �as used by Gitcho� and Wagner� are just abstract quantities� with
no relation to distance in the landscape� Regardless� hypergraphs are an interesting
abstraction that may be of interest�
In this thesis we use landscapes where each population is a vertex� and operators

induce edges in the graph� because this approach seems more intuitive� It can also
be rigorous� in that the search can be modelled completely�
Simpli�cations are often required when studying landscapes� because GAs are

very complex algorithms that induce very complex landscapes� However� simpli�ed
landscapes are not the landscapes searched by GAs� but only abstractions� These
landscapes may relate to the search of GAs� but any analysis of simpli�ed landscapes
should be supported empirically� Sometimes simpli�ed landscapes are not enough�
For example� Culberson ��� notes that ones�counting is hard �exponentially many false
optima� for crossover on the one�point crossover SSS� However� ones�counting is not
hard on larger populations �for GIGA�� In this case� a population�based landscape
analysis that takes into account how GIGA works is required�
Even if the simpli�ed landscape is adequate� it will still be bene�cial to maintain

an overlying view of the complete landscape as searched by the GA� Otherwise� key
concepts may be missed or misunderstood�

	�� Various Methods Used in Analyzing Landscapes

There are several ways a particular landscape or class of landscapes can be studied�
One is to measure statistics based on a landscape and the other is to analyze a
landscape theoretically�
Two main types of statistical measures have been used to analyze GA�induced

landscapes� �� �tness correlation of genetic operators� and �� random walk correla�
tions� The �rst attempts to measure the correlation between the �tness of parents and
their children� the assumption being that if high��t parents produce high��t children�
then GAs will perform well� This is explored by Manderick� et al� ����� Mathias and
Whitley ����� and Dzubera and Whitley ���� who measure the correlation between
randomly chosen parents� Grefenstette ���� calls this a static measure and notes that
high�valued parents may not be sampled� and that the sample may not re#ect the
populations seen by a GA� To remedy this� he introduces a dynamic measure as well�
that is� he measures the correlation between parents and children� where the parents
have actually been created by the GA�
Another statistic is based on a random walk� do a random walk� and compute

the correlation between the �tness at time t and time t � i� This can be used to
give an estimate of how �rugged� �how many false optima are in the landscape� a
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landscape is� This approach has been taken by Manderick� et al� ����� Hordijk �����
and Stadler ����� Manderick� et al�� however� use random mutations which means
they use the landscape of a hill climber� but apply this analysis to GAs� This is
problematic� Crossover can do random walks if two parents produce two children
rather than a single child� so random walk analysis is not limited to mutation SSSs�
However� there are smooth landscapes that are hard ����� and rugged landscapes that
are easy ����� These statistical measures may be useful in analysis� but they should
be used cautiously� A further di	culty with these approaches is that it is possible
for the same landscape to vary in di	culty �exponentially� with di�erent navigation
strategies �����
Another interesting statistical approach has been taken by Jones ����� where he

measures the correlation between the �tness of a string and the distance �Hamming�
of that string to the optimal� �Jones notes that Hamming distance is not the real
distance metric of GAs� but is a �rst approximation�� He found that landscapes with a
strong negative correlation tend to be easy for GAs� while ones with a strong positive
correlation tend to be hard� It is interesting that Hamming distance� the distance
for mutation� proved such a good measure of problem di	culty for GAs� this further
supports the claims of Culberson ��� that traditional GAs do not use crossover well
but rely on mutation for search�
Jones ���� o�ers another approach to analyzing problems called �reverse hill climb�

ing�� In reverse hill climbing� the basin of attraction �hill� around a point for a strictly
elitist �in practical situations� hill climber can be traversed and measured� He gives
a procedure that computes the size of this hill and the probability that the hill is
reached from any point� This can be a powerful tool to analyze problem di	culty�
once a global �or local� optima is found�
A theoretical approach can also be used to study landscapes� That is� it may be

possible to derive bounds on a particular landscape� or prove some expected level
of performance� In �On Searching ��ary Hypercubes� ���� certain characteristics
of hypercubes are explored both theoretically and experimentally� For example� we
show that the ��ary hypercube has a maximum of n�� peaks� Stadler ���� relates
points of graph theory to landscapes� Chapters ��� and Appendix A of this thesis are
theoretical analyses of landscapes �Appendix A explores Gray codes� but this can be
related to Hamiltonian paths and cycles in multary�based graphs��

	�� Discriminating Functions� and Interesting Land�

scape Constructions

Another approach to analyzing GAs is landscape construction� For instance� there are
many functions that are designed to test certain ideas about how genetic operators
work� These discriminating functions may be easy� in theory� for one genetic operator
while hard for another� A landscape construction can also be used to exhibit examples
of easy or di	cult problems� or to demonstrate counter�intuitive behaviour�
Many of these discriminating functions have been discussed elsewhere in this the�
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sis� so we keep this overview short� Culberson ��� uses a binary mutation�crossover
isomorphism to convert hard functions for mutation into hard functions �on a com�
plementary pair� for crossover� and vice versa� The schizophrenic function is related
to this work� and can be seen as an attempt at constructing a discriminating function
for mutation and crossover�
The Royal Road functions ���� ��� ��� were designed to be easy for crossover but

hard for mutation� although a mutation hill climber outperformed a traditional genetic
algorithm ����� Interestingly� an idealized genetic algorithm was later proven to be
faster than the hill climber by a linear factor� on average� This also demonstrated the
point that an operator may have a certain potential� but that the algorithm may not
use the potential of an operator� The Royal Roads are also an example of high�level
crossover landscape analysis in GAs�
Horn� et al� ���� ��� ��� introduces the long path landscapes� unimodal but ex�

ponentially di	cult landscapes for elitist mutation hill climbers� These functions
discriminate between mutation and crossover� since mutation takes exponential time
to �nd the optimal point� while crossover �with large populations� has much less trou�
ble� These landscapes are discussed further in Chapter �� in which we discuss long
path landscapes for ��ary mutation and crossover� Long paths have also been used
to discriminate between di�erent types of navigation strategy �����
Another interesting landscape is the maximally multimodal landscapes of Horn

and Goldberg ����� These landscapes are constructed on the mutation SSS and have
the maximum number of false optima ������� but are easy for many non�elitist hill
climbers� This shows that while many false optima may make a landscape di	cult�
this is not always the case�
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Chapter 	

Conclusion

In this thesis we studied several ��ary landscapes� We used the landscape paradigm
because it can be rigorous� yet is easy to simplify to a manageable level of complexity�
We looked at several simpli�ed landscapes �search space structures� induced by

various forms of ��ary mutation and ��ary crossover on minimal populations� These
search space structures are related to ��ary hypercubes�
Using an isomorphism between ��ary crossover and ��ary mutation� we showed

that crossover is at least as powerful as mutation� since one�point crossover can sim�
ulate mutation� This simulation also suggests that crossover is more powerful than
mutation� in some sense� in that it is more general �larger neighbourhoods�� This
addresses the crossover�mutation debate� A special case of this simulation leads to
the notion of iterating an ��ary Gray code� In Chapter � we prove an upper bound
on the maximumnumber of unique landscapes produced when a landscape is iterated
using this Gray code�
We explored the long path problem in Chapter � for crossover and ��ary mutation�

We developed exponentially long distance�preserving paths for ��ary mutation and
crossover on a complementary pair� Some work was done on extending these long
paths to crossover on larger populations� and the results are interesting if preliminary�
We also introduced the schizophrenic function� a function that can sometimes

discriminate between mutation and crossover based searches� Analyzing the test
results on the schizophrenic function proved instructive in understanding some of the
complex ways in which population�based searches can di�er from minimal population
searches�
Finally� in Appendix A� we gave an algorithm for generating the ��ary Gray code

of Sharma and Khanna ���� in constant amortized time per code word� This Gray code
is generalized to a multary Gray code� and a simple generalization of our algorithm
generates this multary code in constant amortized time per code word�
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Appendix A

Proof of Gray Code
 and an

E�cient Algorithm to Generate it

in Sequence

In this appendix we prove that G��� �� really is a Gray code� This proof will form
the basis of an algorithm that can generate the Gray code in sequence in ����� time
�amortized constant time per codeword�� This code and algorithm will be further
generalized in Section A��� See Section ��� for a de�nition and overview of Gray
codes�
Bitner� et al� ��� describe several uses of being able to list a Gray code e	ciently�

First� an ��bit string can represent a set� Listing all the bit strings will list all possible
sets� In certain codes �e�g�� the base �� dimension � integers� adjacent codewords may
di�er in as many as � bits� If the cost of adding or deleting elements to the set is
high� then we would prefer a listing that only changes one element at a time� a Gray
code� Changing one element may also simplify algorithms that use these sets� Other
uses they describe are in listing compositions of integers and listing all permutations
of a multiset�

A�� Proof of Gray Code

Recall that

K�x� � �g�

gi �

�
x� if i � �
xi�xi�� � � i � �

is an isomorphism between the natural numbers of length �� base � and G��� �� �����
First� we note that K is one�one and onto �this is easily proven�� Then� to prove

G��� �� is a cyclic Gray code� we need only show that Gx��� �� and G�x��� mod ����� ��
di�er in only one character�

Theorem A���� G��� ��� � � �� � � �� is a Gray code� Further� if Gx��� �� and
G�x��� mod ����� �� di�er at character j� then G�x��� mod ���j��� �� � Gx�j��� �����
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Proof Outline� Take successive ��ary� length � numbers x and x� where x� � x � ��
If K�x� � g and K�x�� � g�� then show that g and g� di�er in only one character
location� i�e�� there exists an i such that gi �� g�i and for all j �� i� gj � g�j� Also� it
will be shown that g�i � gi���

Proof�
�Theorem A�����
There are two cases�

�� � an i� � � i � �� such that xi � � � � and �j � i� xj � � � �

�� �i� � � i � �� xi � �� � �Cyclic case�

CASE �� There �i� � � i � �� such that xi � � � � and �j � i� xj � � � �� This
implies that x� � x� � � � xi���xi � ��� � � � ��
Let K�x� � g � g�g� � � � g�� Simple induction shows that g�� � � � g

�
i�� � g� � � � gi��� if

i �� ��
If i � � then

g�i � x�i
� xi��

� gi��

else

g�i � x�i�x
�

i��

� �xi����xi��
� �xi�xi�����

� gi��

Now show that g�j � gj� for i� � � j � ��

g�j � x�j�x
�
j��

� xj���xj����

� xj�xj��

� gj

Hence� we have shown that g� only di�ers from g in one character location� and
hence case ��
CASE � �Cyclical�� We know x � �� � �� � � � �� � �� and x� � � � � � �� Then

g� � � � � �� g�� � � and for any j such that � � j � �� gj � �� � ����� � �� � �
and gi � ��� � �� This implies that gi � g�i� and hence case ��
Since K is one�one and onto� case � shows that G��� �� is a Gray code� and case �

shows that it is cyclic� Further� this proof also shows that K�N i��� ��� � Gi��� ���
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A�� The Transition Sequence T ��� ��

Any word of G��� �� can be generated by mapping N ��� �� under K� but this is less
e	cient than need be �takes ���� time per codeword� if we want to compute each Gray
code word in sequence� If this is the case� then a better way to generate the words
of G��� �� is to �gure out the transition sequence T ��� ��� The transition sequence
T ��� �� is just the ordered list of the positions of changing characters in G��� ��� A
subscript i will refer to the position of the character change between the Gi����� ��
and Gi��� ��� For example� T ���� �� will be the position of the character that changes
as we go from G���� �� to G���� ��� However� instead of numbering the positions from
left to right� as is done in the rest of this thesis� T i��� �� will refer to the position of
the changed character starting from the right and going to the left� As an example�
the transition sequence T ��� �� is ���������������� See Figure ��� for the Gray code
given by this transition sequence �i�e�� G��� ����
For G��� �� �binary re#ected Gray code� an e	cient ����� algorithm is given in ���

that will generate the each Gray code word in sequence� For some Gray codes with
� � � it is not always enough just to have a transition sequence� it must be determined
not only which character changes� but what the character changes to� For example�
given the general Gray code number ���� �� � ��� say� and that position � will
change� we do not necessarily know what the � will change to� With G��� l� this is
no problem� the character will change by �� mod �� In our example� if ���� was a
number in G���� �� and the next transition was position �� then we know that the
next character in G���� �� will be �������� � �����
It is possible to get the transition sequence T � from N ��� �� without fully pro�

cessing each number in N ��� ���

Lemma A���� T i��� �� is the position of the �rst non�zero character �starting from
the right� in N ��� ���

Proof�
By looking at the proof of Theorem A����� we can see that the T i��� �� is the position
of the �rst non�zero character �starting from the right� in N i��� ��� � � i � �� � ��

We can use this lemma to make an e	cient algorithm that generates the code
words of G��� �� in sequence in ������ See Figure A�� for this algorithm� This
algorithm is e	cient� since the inner while loop iterates in constant amortized time
�although it can be as bad as ���� time for producing any one codeword��

Lemma A���� Algorithm A�� runs in time ������

Proof�
�Lemma A�����
To show this� we need only show that the while loop takes constant time� on

average� Let the integer i� � � i � �� � � represent the ith string in G��� ��� Then
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void GenerateGray��� �� f

int g������� �� holds Gray code word ��
int n������� �� holds ��ary representation of naturals ��
int i�

�� Initialize g�� and n�� ��
for �i � �� i � �� i��� f

g�i����
n�i����

g

��
� Generate Gray code� to do this add one to n��� the
� number of carries plus one will be the next transition
� position�
��
while ��� f

i � ��
while ���n��� i� ���� �� f

n��� i� ��� ��
i���
if �i � �� goto �nished�

g
g��� i� �� � �g��� i� ����� mod��

g�

�nished�

g

Figure A��� An algorithm for generating G��� �� code words in ����� time� Notice
that the index �� i�� can be replaced with just i� if x� becomes the least signi�cant
character rather than the most signi�cant�
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the average time spent in the while loop is

P����
i�� �i
��

where �i is the number of carries plus one� when one is added to N i��� ��� It can be
shown inductively that this is equivalent to

�
�

�
������

� � �

�

���X
i��

�
�

�
�i��i �A���

which is less than

�X
i��

�
�

�
�i��i �A���

We now want to show that the series given by Equation A�� is bounded by a
constant� To do this� we will use the fact that

Pk
i�� a

i � ak����
a��

� Let x � ���� Then

�X
i��

�
�

�
�i��i �

�X
i��

xi��i �
�X

i��

xi��i

�
d

dx

�X
i��

Z
xi��i

�
d

dx

�X
i��

xi

�
d

dx
f
x��� � �

x� �
g

�
��� � � � �

������ � ���
�

�

���� � ���

Because �������
���������� is always negative� the inner while loop does a constant amount

of work on average�

Thus the while loop will do an amortized upper bound of � �
����

� iterations� This

upper bound is high since we dropped a factor of ���
�
from ��� terms of Equation A��

to get Equation A��� A closer approximation to the true number of iterations� amor�
tized� for large � is ���

�
� �
���
�� � �

���
� Both the upper bound and the approximation

decrease with �� This algorithm seems quite comparable to the one presented by
Bitner� et al� ��� in terms of overall speed and simplicity� although their algorithm
is constant time per codeword while ours is only constant time amortized� However�
our algorithm easily generalizes to the ��ary Gray code of Sharma and Khanna �����
Further� it is easy generalized to work on multary codes �next section��
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It is also possible to de�ne the transition sequence T � for G��� �� recursively�

in terms of �� �� and T ���� The transition sequence is given by T � �

��� timesz 	
 �
�� �� � � � � ��

and T � �

��� timesz 	
 �
�T ������T ����� � � � �T �����T ���� This is also done by Sharma and Khanna�

although our work is done independently� Further� Sharma and Khanna
s de�nition
is slightly di�erent and is inconsistent� in the base case �� � ��� their transition
sequence consists of � � � ones� and thus their transition sequence carries the �rst
element of the Gray code to the last� however� when � � �� their transition sequence is
cyclic� i�e�� it carries the �rst Gray code element cyclically through the code to itself�
As a �nal note� K and K�� can be modi�ed to work on ��ary numbers with

positions starting at the right and going to the left� Such a de�nition is given by
Sharma and Khanna �����

A�� An Extension to G��� �� and Another Genera�

tion Algorithm

Let Nmult���� ��� � � � � ��� represent the code where the �rst character �from the left�
can have one of �� characters� the second can have one of �� characters� and so
on� The order of this code is de�ned by x is before y �x and y are two code�
words� i� before�x� y�� where before�xi � � �x�� yi � � � y���xi � yi or �xi � yi and
before�xi�� � � �x�� yi�� � � � y���� The basis is before�xi� yi� � xi � yi� This is just
the natural ordering� We call a code where each character can have a di�erent � a
multary code� as done by Field ����� Multary codes can represent multisets� there are
� element types i� i � �� �� � � � � �� and each xi in the codeword x denotes the number
of times element i is represented in the multiset� for a maximum of �i � �� Listing
Nmult���� ��� � � � � ��� gives all the possible multisets where each element i can be rep�
resented up to �i�� times� However� as with a binary or ��ary natural ordering� two
consecutive codewords can have a Hamming distance greater than one�
It is possible to get a generalized Gray code� Gmult���� ��� � � � � ��� for these multary

codes� One such possible code is a generalization of the ��ary Gray code of Sharma
and Khanna ����� To see this� modify K to be

K�x� � �g�

gi �

�
x� if i � �
�xi � xi��� mod �i � � i � �

and K�� to be

K���g� � �x�

xi �

�
g� if i � �
�gi � xi��� mod �i � � i � �

We assume the generalized de�nition throughout the rest of this chapter� K is an
isomorphism between Nmult���� ��� � � � � ��� and Gmult���� ��� � � � � ����
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To show K is one�one� pick two strings x and x� such that x �� x�� Then x and x�

must di�er in some �rst character� say xi �� x�i� Let g � K�x� and g� � K�x��� and
assume g� � g� It is easy to prove that gi �� g�i� a contradiction� To show K is onto
pick an arbritrary g� We must show that there is a �legal� x such that g � K�x��
This is can be done by setting g� � x� and progressing inductively�
The proof that Gmult���� ��� � � � � ��� is a Gray code is virtually identical to the

proof of Theorem A����� except that the cyclic case does not hold in general� However�
if g and g� are two adjacent words in Gmult���� ��� � � � � ��� such that g is before g� and
gi �� g�i� then g

�
i � �gi � �� mod �i�

We can even generalize Algorithm A�� to produce these Gray code words in con�
stant amortized time per code word� The generalizations are quite simple �e�g�� the
procedure takes an array of ��� � � � ���� The code generation algorithm will be espe�
cially e	cient if �i � �j for i � j�
A �loop�free� algorithm is given by Williamson ���� p� �������� that also generates

a �di�erent� multary Gray code� However� our algorithm seems simpler� both in
implementation and documentation� and our algorithm also seems comparable in
terms of e	ciency�
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Appendix B

Description Of Search Algorithms

Used in This Thesis

Gene Invariant Genetic Algorithm 
GIGA�

GIGA is a genetic algorithm that uses only crossover� It works by maintaining a pop�
ulation of n strings in an array� and iteratively picking two adjacent strings tomate� A
mating involves generating F �family size� children pairs by applying crossover to the
parents� and then replacing the parents with the best pair of children �non�elitism��
or the best pair including the children and the parents �elitism��
When a pair is chosen to replace the parents� the lower valued string is inserted

above the higher valued string� over time� the population becomes roughly sorted�
high value strings near the bottom of the array� low value strings near the top� We
call this implicit sorting� GIGA also has an option to explicitly sort the population
by �tness value after each mating� but this was never used�
Using only crossover ensures that the set of characters in any column of the matrix

remains invariant� preventing convergence in the usual sense� Since mutation is not
used� search can only be achieved through propagation of sub�strings through the
population�
GIGA has several parameters� and we used several default parameter settings

throughout this thesis �see Table B���� Unbiased adjacent selection means that� for
each mating� the �adjacent� parents are chosen uniformly from the n�� possible pairs

Unbiased adjacent selection�
Random rotation�
Maximum of pair�
One�point crossover�

No explicit sorting of population�
No gray encoding�

Epsilon � ��� �e�g�� not used��

Table B��� Default GIGA parameter settings used throughout this thesis�
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Create initial population
While �current $ evals � some maximum number of evals� f

Select a pair of parents to mate�
Produce a family of o�spring pairs using crossover�
Select the best o�spring pair�
Replace parents with best pair�

g

Table B��� Outline of GIGA

of parents�
Random rotation generates the �rst string of the population randomly� It then

produces the next � � � strings by adding i mod � to each character of the original
string� for the next i strings� i � �� � � � � � � �� This process is then repeated as long
as strings still need to be generated� For � � � and n � �� if our initial string is
������ then we would get the strings ������ ������ and ������ At this point the �fth
string would be created randomly� say ������ and the sixth and �nal string would be
������ When n � � and � � �� random rotation generates a complementary pair of
strings� If n � �� then random rotation ensures that� for a given character position�
every possible character occurs at that position�

Maximum of pairmeans that the �tness of a pair of strings is the maximum�tness
of the strings in the pair� While GIGA can be seen as sifting sub�strings through the
population� this de�nition of best pair means it can also be viewed as a hill climber�
even for population sizes greater than two� because the family actually represents
F di�erent populations� Here the �tness of a population is not always equal to the
maximal �tness of the strings within the population� but depends on all the strings
within the population�
For a more in�depth explanation of GIGA� the reader may wish to see GIGA
s

documentation ���� Our version of GIGA only di�ers from this version in that it halts
after a maximum number of �tness evaluations� rather than a maximum number of
matings� See Table B�� for an outline of the GIGA program� This table is based on
a table given by Culberson ����

Mutation Hill Climber 
MHC�

Our mutation hill climber uses one�point mutation on a single ��ary string� The
population initially consists of a single randomly generated string� See Table B�� for
an outline of MHC�
MHC copies the parent string to F children strings� and then applies one�point

mutation to each child� With non�elitism� the �ttest child replaces the parent string�
with elitism� the �ttest child replaces the parent string only if its �tness is greater
than or equal to its parent
s �tness� As with GIGA� each such generation is referred
to as a mating�
There are other types of mutation hill climbers� MHC was used because its search
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Randomly initialize parent string�
While �current $ evals � some maximum number of evals� f

Produce a family of o�spring strings using one�point mutation�
Select the best o�spring string�
Replace parent string with best string�

g

Table B��� Outline of MHC

is isomorphic to GIGA
s when GIGA uses random rotation� � � �� and n � ��

Not Quite�GIGA 
NQ�GIGA�

NQ�GIGA �Not Quite GIGA� is the same as GIGA� except that one�point mutation
has been added to the algorithm� This was done by encoding two extra parameters
into GIGA� a mutation and a crossover rate� Given a pair that had been selected� the
crossover rate is the probability that the pair will be crossed� The mutation rate is
the probability that each string in the pair undergoes one�point mutation� NQ�GIGA
uses the same defaults �see Table B��� as GIGA�

Traditional Genetic Algorithm 
TGA�

A traditional genetic algorithm �like the simple GA� but slightly less general� gener�
ates an initial n member population� where each string is generated randomly� This
population is evolved by creating a new population from the old� by selecting pairs of
strings from the old population and applying uniform mutation �where each character
is mutated with probability pm� and crossing these two strings with some probability
pc to produce one or two children strings which are then added to the new popula�
tion� This step is repeated until the new population is generated� The new population
replaces the old� Going from an old population to a new population is called a gener�
ation� Strings are chosen stochastically for mating� the higher the �tness of a string�
the greater its chance of being chosen for mating�
There are many possible �traditional genetic algorithms�� and we use GAC ����

as our representative TGA� It uses proportional �tness to select which individuals
reproduce� Proportional �tness means that an individual x is expected to be mated
f�x��� times� where � is the average �tness of the old population� The crossover rate
is the probability that a selected pair will be crossed� One�point crossover is used�
Because populations are small �small sample size� and high��t strings can be

involved in several matings in the next generation
s production while low��t strings
may not be mated at all �loss of diversity�� populations tend to rapidly become
converged when proportional �tness is used� If a population converges too quickly
�premature convergence�� so that the average Hamming distance between each string
is very small �i�e�� all strings are highly similar�� then crossover can become ine�ective�
This problem is well�known in the GA community� and there is evidence ��� ��� that
mutation is the driving force behind traditional GAs for this very reason�
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