
Accounting for Hyperparameter Tuning in Online Reinforcement
Learning

by

Anna Hakhverdyan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Anna Hakhverdyan, 2024

Abstract

Most work in online reinforcement learning (RL) tunes hyperparameters in an

o✏ine phase without accounting for the said interaction. This empirical method-

ology is a reasonable approach to assess how well algorithms can perform but is

limited when evaluating algorithms for practical deployment in the real world.

In many applications, the environment is incompatible with exhaustive hyperpa-

rameter searches, and typical evaluations do not characterize how much data one

must use for such searches. We investigate how to do online tuning, where the

agent must select hyperparameters during interactions. Hyperparameter tuning

is part of the agent rather than a separate hidden phase. We layer the Bayesian

optimizer over standard RL algorithms and assess behaviour when tuning hyper-

parameters online. We show the expected result - this strategy’s success depends

on the environment and the algorithm. We introduce a way of tuning that miti-

gates wasteful resetting and shows that it can achieve comparable but not better

performance levels than the default values, highlighting the need for further de-

velopment.

ii

Preface

No parts of this thesis have been published yet.

iii

The bird fights its way out of the egg. The egg is the world.

– Demian, Hermann Hesse.

iv

To my parents, brother, and little Levon

for being the anchor to my existence.

v

Acknowledgements

I would like to begin my acknowledgments by expressing my gratitude to my

supervisor, Martha White, for her unwavering support and mentorship during

the past two years at the University of Alberta. Her contributions to our project

and guidance regarding my future career have been invaluable. Through her

detailed feedback, I have greatly improved my ability to approach questions and

enhance my writing skills. I am incredibly thankful to have had her as my

supervisor. I would also like to thank Adam White for his assistance in deepening

my understanding of the empirical design of Reinforcement Learning algorithms.

I want to extend my gratitude to my uno�cial supervisor and a great friend,

Andrew Patterson, who had a profound influence on shaping my abilities as both

a researcher and an engineer. He taught me how to approach, assess, and start to

answer research questions. He was a constant help and support for the duration

of my degree, leaving me excited by the possibilities after all our meetings. Thank

you for being patient with me, and I look forward to working with you again in

the future.

I also want to thank Marlos Machado, Rich Sutton, and Mike Bowling for

giving me their time and energy to answer my mostly non-trivial inquiries. Your

patience and unbounded knowledge helped me clarify the questions I had in

my mind while teaching me ways to view a problem more intuitively and from

di↵erent perspectives.

I am incredibly thankful to my lab mates and many great friends in the

Reinforcement Learning and Artificial Intelligence (RLAI) Lab and Alberta Ma-

chine Intelligence Institute (AMII) for the community, guidance, and support

during my time as a graduate student at the University of Alberta. I want to

vi

thank Manan Tomar, Rohini Das, Parham Panahi, Shibhansh Dohare, Yazeed

Mahmoud, Abrar Fahim, Vlad Tkachuk, Jordan Coblin, Suyog Chandramouli,

Farzane Aminmansour, Khurram Javed, Esraa Elelimy, Golnaz Mesbahi, Alex

Lewandowski, Olya Mastikhina, Haseeb Shah, Han Wang, Kushagra Chandak,

Prabhat Nagarajan, Fernando Hernandez-Garcia, Aidan Bush, Jiamin He, Es-

raa Saleh, Jacob Adkins, Mohamed Ayman Mohamed, Abhishek Naik and many

more people that impacted me one way or another.

I am also incredibly grateful for two particular lifelong friends, Kevin Roice

and Diego Gomez, for their friendship and support during my time in Edmonton.

Thank you for being a family to me, which I am sure will stay the same even

when we are miles apart.

And finally, I want to thank my family for all the love and support they gave

me during our time apart. You were the reason for me to enjoy the good days

and push through the hard ones. Thank you for being by my side.

vii

Contents

Abstract ii

Preface iii

Acknowledgements vi

List of Tables x

List of Figures xi

List of Algorithms xviii

1 Introduction 1

2 Background 8

2.1 Reinforcement Learning . 8

2.1.1 Value Function and Policy Learning 9

2.1.2 Online Reinforcement Learning 11

2.1.3 RL-Glue Interface . 12

2.2 Hyperparameter Tuning . 13

2.2.1 Hyperparameter Sweeping or Grid Search 15

2.2.2 Random Search . 15

viii

2.2.3 Bayesian Optimization . 16

2.2.4 Other HPO Methods . 18

3 Tuning is Hard Under Many Hyperparameters 21

4 Online Tuning with Resets 26

5 Online Tuning without Resets 37

6 Never-ending Reinforcement Learning 45

6.1 Flower-picker Environment . 46

6.2 Online Tuning in Flower-picker 48

7 Conclusions and Future Work 50

References 52

Appendix 61

A Design Choices and Hyperparameter Values Used in the Experiments 61

A.1 Details on the Environments 63

B Tuning is Hard in the Cartpole Environment 63

C Results with Resetting . 64

D Results without Resetting . 65

D.1 Total AUC Results for PPO 68

D.2 Final Performance Results for SAC and PPO 69

ix

List of Tables

A.1 Hyperparameter values and ranges for SAC, PPO, and DDQN. . . 62

x

List of Figures

1.1 Contrasting the typical hidden tuning setting (left) with the pro-

posed online tuning setting (right). The online tuning setting re-

quires the tuning to be a part of the agent, as it must tune the

hyperparameters online. Hidden tuning layers the tuning of the

hyperparameters outside of the agent-environment interaction, al-

lowing a separate search to be performed. 5

2.1 The agent-environment interaction loop in reinforcement learning.

The agent takes action at in the environment given the current

state st, receives reward rt+1, and sees the next state st+1. The

agent then uses this information to update its policy ⇡ and con-

tinues interacting with the environment. 9

2.2 The RL Glue interface between the agent and the environment.

The agent selects actions based on the states it receives from the

environment, and the environment generates states and rewards

based on the actions taken by the agent. The RL Glue interface

provides a standardized communication path for the agent and the

environment. 13

2.3 The usual hyperparameter tuning process. The agent uses di↵erent

hyperparameter configurations and evaluates performance for each

set of hyperparameters (the gray rectangle) independently. The

best hyperparameter configuration is selected based on the final

performance. 14

xi

2.4 Visual representation of the hyperparameter tuning methods. Grid

search (left) evaluates all possible combinations of hyperparame-

ters, random search (middle) samples hyperparameters randomly

from a predefined distribution, and the Bayesian optimization pro-

cess (right) models the relationship between hyperparameters and

the objective function to select the next set of hyperparameters to

evaluate. 17

3.1 Distribution plots of the highest average return achieved by the

DDQN agent in the Mountain Car environment over five seeds.

The agent tries 5, 10, 20, and 50 di↵erent hyperparameter con-

figurations. The hyperparameters tuned are the learning rate ↵,

discount factor �, exploration rate ✏, batch size, and di↵erent com-

binations using those hyperparameters. The light blue depicts the

random search, while the dark blue shows the Bayesian optimiza-

tion. The red dotted line shows the expected performance of a

well-performing agent, which is -150. The x-axis shows the num-

ber of hyperparameters tuned. The y-axis shows the average return

of the agent. The maximum episode length is 500. 25

4.1 SAC in HalfCheetah using default hyperparameters versus online

tuning of the stepsize using BO with resets. The leftmost figure

depicts the average performance of the SAC agent with the default

hyperparameters provided in the literature. In the middle, we show

an example of our proposed online tuning strategy, where we have

3M steps as a budget. We stop tuning the hyperparameters after

the 2M mark (the dotted line) and run the last million steps with

the best hyperparameter configuration found. The last plot shows

the learning rates chosen by the optimizer in the first 2M steps for

each of the individual runs of the second plot. The dark line shows

the values tested for one seed and the yellow star points to the

best learning rate picked. The shaded area is a 95% bootstrapped

confidence interval of 20 independent runs. 28

xii

4.2 SAC in HalfCheetah and Walker2D environments using two di↵er-

ent stopping conditions while tuning one and many hyperparame-

ters. Each agent had an overall 3 million steps budget, and each

hyperparameter had a 200K trial length. The gray dotted line

depicts the timestep when the agent stops testing di↵erent hyper-

parameters and deploys the best configuration found. The blue line

corresponds to the agents that had to tune one hyperparameter,

while the red line depicts the agents with many hyperparameters.

Note that SAC with default hyperparameters reaches scores of ap-

proximately 2000 and 800 in HalfCheetah and Walker2D, respec-

tively. The shaded area is a 95% bootstrapped confidence interval

of 20 independent runs. 30

4.3 SAC (red) and PPO (blue) algorithms in multiple Mujoco envi-

ronments. In the first column, we have the performance of the al-

gorithms with the default hyperparameters. The second and third

columns show the algorithms’ performances within the 3 million

budget, where we stop hyperparameter optimization after 1M steps

with the di↵erence of tuning one and many hyperparameters. The

dotted line depicts the timestep the agent started deployment with

the best hyperparameter configuration found. The shaded area is

a 95% bootstrapped confidence interval of 20 independent runs. . 32

4.4 SAC (red) and PPO (blue) agents in multiple Mujoco environ-

ments with 200K and 500K trial lengths. The first row shows the

agents’ performance in all five Mujoco environments with the 200K

trial length. The second row shows the performance with the 500K

trial length. To make the comparison fair, we give an equivalent

budget in both cases and let them deploy the best hyperparameter

configuration found in the last 1M steps. The dotted line depicts

the timestep agents start using the best hyperparameter configu-

ration found. The shaded area is a 95% bootstrapped confidence

interval of 20 independent runs. 34

xiii

4.5 SAC (red) and PPO (blue) agents in multiple Mujoco environ-

ments with 200K and 500K trial lengths with a total budget of

10M steps. The first row shows the agents’ performance in all five

Mujoco environments with the 200K trail length. The second row

shows the performance with the 500K trail length. We use the last

1M steps to deploy the best hyperparameter configuration found.

The dotted line depicts the timestep agents start the deployment

with the best hyperparameter configuration found. The shaded

area is a 95% bootstrapped confidence interval of 10 independent

runs. 35

5.1 SAC in HalfCheetah, with three di↵erent online tuning strategies:

agent state resets with no deployment period (Algorithm 1), a

simple sharing of the agent state, and smarter sharing of the agent

state (Algorithm 2). The shaded area is a 95% bootstrapped con-

fidence interval over 20 di↵erent runs. 40

5.2 Box plots of the total AUC for the 3M evaluation budget for SAC

agents tuning many hyperparameters in three di↵erent settings for

all Mujoco environments showing the results for agents that reset

with 1M and 2M stopping conditions and agents that share their

state after each hyperparameter configuration. 41

5.3 SAC agent in multiple Mujoco environments with 200K and 500K

trial lengths. The first row shows the average performance in all

five Mujoco environments with the 200K trail length. The second

row shows the performance with the 500K trail length. In both

cases, we give the same budget of 5M steps. The shaded area is a

95% bootstrapped confidence interval of 20 independent runs. . . 42

5.4 SAC agent in multiple Mujoco environments with 200K and 500K

trial lengths with a total budget of 10M steps. The first row shows

the agents’ performance in all five Mujoco environments with the

200K trail length. The second row shows the performance with

the 500K trail length. The shaded area is a 95% bootstrapped

confidence interval of 10 independent runs. 43

xiv

5.5 Individual runs of 200K trial length runs for 10M steps. The first

row has the results for all Mujoco environments tried for seed 1,

and the second row has the results for seed 7. 43

6.1 Example of the environment. The blue dot is the agent. The red

and green squares are objects that give some reward when collected. 46

6.2 The performance of 3 individual seeds of SAC agent trained for

50M steps. 47

6.3 In the Flower-picker environment, we evaluate SAC and PPO

agents for over 1 million steps in a 15x15 grid environment us-

ing the non-resetting paradigm, with each trial consisting of 50K

steps. The results are 95% bootstrapped confidence intervals based

on 20 independent runs. 48

6.4 SAC and PPO agents are evaluated for 10 million steps in a 15x15

grid. Each trial consists of 50K steps. The results show the indi-

vidual runs of 3 independent seeds. 49

B.1 Distribution plots of the highest average return achieved by the

DDQN agent in the Cartpole environment over 5 seeds. The y-

axis shows the average return, while the x-axis shows the number

of trials. The dotted line depicts the average good performance,

which is 180. 64

xv

C.1 SAC (red) and PPO (blue) algorithms in multiple Mujoco envi-

ronments. In the first column, we have the performance of the

algorithms with default hyperparameters. The second and third

columns show the algorithms’ performances within the 3 million

budget, where we stop hyperparameter optimization after 1M steps

with the di↵erence of tuning one and many hyperparameters. The

last two columns are the performance of the algorithms when we

stop at 2M steps, letting it try 10 hyperparameter configurations

instead of 5 as in the 1M stopping condition. The dotted line de-

picts the timestep agent started deploying the best hyperparame-

ters it has seen. The shaded area is a 95% bootstrapped confidence

interval over 20 di↵erent runs. 65

D.1 The results for the SAC algorithm in Mujoco environments using

the non-resetting paradigm. The red line shows the performance

of agents for a 5M online interaction budget where we share the

weight on some conditions, while the blue line is the performance of

the agents that share their knowledge naively from configuration

to configuration in the same budget. The plots in the first row

correspond to the setting where we only tune the learning rate,

and in the second row when we tune all 5 hyperparameters. 66

D.2 PPO in a variety of Mujoco environments. The red line shows

the performance of smart sharing agents for a 5M budget, while

the blue line is the performance of the naive sharing agents for

the same budget. The plots in the first row correspond to tuning

only the learning rate, and in the second row when we tune all 7

hyperparameters. 67

D.3 PPO agent in multiple Mujoco environments with 200K and 500K

trial lengths with a total budget of 10M steps. The first row shows

the performance of the agents in all five Mujoco environments with

the 200K trail length. The second row shows the performance with

the 500K trail length. The shaded area is a 95% bootstrapped

confidence interval of 10 independent runs. 67

xvi

D.4 Depiction of individual runs of 200K trial length runs (first row)

and 500K trial length (second row) for 10M steps. The first row

has the results for all Mujoco environments tried for seed 1, and

the second row has the results for seed 7. 68

D.5 Box plots of the total AUC of the PPO algorithm for the 3M eval-

uation budget tuning 7 hyperparameters in three di↵erent settings

for all the Mujoco environments. 69

D.6 Box plots of the final performances of the SAC(top) and PPO (bot-

tom) algorithms for the 3M evaluation budget tuning 7 hyperpa-

rameters in three di↵erent settings for all the Mujoco environments

testbeds. 69

xvii

List of Algorithms

1 Online tuning with resets . 27

2 Online tuning without resets 39

xviii

Chapter 1

Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) is a field of machine learn-

ing focusing on sequential decision-making: how agents learn to make decisions

by learning from the experience of interaction with some environment. The agent

receives a state from the environment and takes action in response. The environ-

ment then provides the agent with a new state conditioned on the chosen action

and a reward signal, which the agent uses to learn how to act in the environment.

The agent’s goal is to maximize the cumulative reward by making decisions that

lead to high rewards.

There are di↵erent ways one can approach the designing of RL agents. In this

study, we consider the online reinforcement learning setting, where the agent

learns as it “lives” in the environment. Its life starts at some point with no prior

knowledge about the world it interacts with, and it navigates it by making a

series of decisions. The agent does not have access to a simulator, so it cannot

learn in parallel on multiple copies of the environment simultaneously nor reset

arbitrarily. In this setting, the evaluation of the agents starts from the beginning

of the learning, as we prefer agents that start performing well early, as opposed

1

to only caring about producing agents that perform optimally at the end of

the training phase, as in this case, the training phase is the agent’s lifetime.

This single lifetime-focused problem of the online RL setting reflects many real-

world deployment scenarios, such as recommendation systems, robot learning, or

process control (Afsar et al., 2022; Gu et al., 2017; Luo et al., 2022; Janjua et al.,

2023; Lawrence et al., 2024). Even though there are many potential use cases of

online RL, many limitations prevent us from deploying agents in this manner.

One of the prominent bottlenecks for the agents that learn online is dealing

with the numerous hyperparameters that most algorithms have, like the learning

rate, target network refresh rate, or exploration parameters, to name a few. A

natural question arises: how should one select these hyperparameters? One op-

tion is to use the default hyperparameter values from publicly available packages

(Ra�n et al., 2021; Castro et al., 2018). However, there is no guarantee that these

hyperparameters will perform well for the setting we are interested in - hyperpa-

rameters that performed well in one problem may not achieve good results in the

other one (Obando-Ceron et al., 2024). Imagine two di↵erent problem settings:

one where the agent starts in a state where it can collect rewards right away

and another where the agent needs to explore its surroundings before it can start

collecting rewards. The hyperparameters that work well for the first problem

may result in undermining the performance of the second one. The first agent

may need a higher learning rate and lower exploration rate, while the second

may need a lower learning rate and higher exploration rate. If we use the default

hyperparameters, we may set the same hyperparameters for both agents, which

may lead to poor performance for either. These default hyperparameters were

most likely carefully tuned for a popular RL benchmark, like Mujoco (Todorov

et al., 2012) or Atari (Bellemare et al., 2013), which may not look anything like

the problem at hand - radically di↵erent hyperparameters may be required for

2

di↵erent benchmark problems (Patterson et al., 2024b).

Let us consider tuning one of the hyperparameters that most agents have, the

learning rate, to control the priority distribution of users on a High-performance

computing (HPC) cluster. Testing di↵erent learning rates requires restarting the

RL agent’s learning for each value and letting it run for some time to understand

whether it is a performant hyperparameter value. During that time, the RL

agent may encounter a value that is not performing well, thus doing a poor job of

assigning priorities to the users’ schedules, potentially messing with the workflow

of many for days.

Ideally, this hyperparameter tuning process should be a part of the agent,

making it easier to account for the hyperparameter tuning and use all the envi-

ronment interactions for learning in the environment. Especially if the RL agents

can be more sample e�cient, they won’t need too many data points to find a per-

formant hyperparameter configuration, letting them start controlling the system

e↵ectively immediately and receive as much reward as possible. Though obvi-

ous, online tuning is not the current standard - we do not design algorithms for

this setting. Instead, most tune the hyperparameters in a separate non-observable

phase - one not reported nor accounted for in the final performances stated. Such

hidden tuning can be acceptable empirical practice if the goal is to understand

our algorithms’ final performances in a scenario that can be run numerous times

in parallel copies while doing an exhaustive hyperparameter search, which is not

a feasible expectation in the real world.

Moreover, several inadvertent consequences are coming from doing the hidden

tuning. The main issue is that it allows the researchers to avoid developing

deployable algorithms, consequently encouraging the use of an increasing number

of hyperparameters because adding more hyperparameters improves performance

3

at no cost. However, the more hyperparameters we have to tune, the harder it

becomes to use these algorithms in an online manner: for example, adding an

entropy coe�cient to the algorithms aids in exploration, but it is another hard-

to-tune hyperparameter in the pool of many. Further, the hidden tuning obscures

how much data one needs to get high performance, making it hard to use the

results from the literature to decide which algorithms will work in real-world

problems. Standard empirical results end up being less pertinent.

In contrast, in online tuning, all environment interactions count, and the

agents are evaluated based on how quickly they begin to perform well without

a separate hidden phase. There can be a few reasons why agents will start per-

forming better fast. First, an agent may have fewer hyperparameters to tune

and can settle on a performant setting of those hyperparameters faster. If an

agent has no hyperparameters, which is the ideal case, we won’t need any tun-

ing, and it will focus on learning right away! Second, an agent might have less

sensitivity to its hyperparameters, making identifying a reasonable setting eas-

ier. Related to this, the agent might leverage meta-learning strategies, relying

on meta-hyperparameters that could be easier to tune (Sutton, 1992; White &

White, 2016; Xu et al., 2018b). Third, an agent might reuse prior data, like

one gathered under previous hyperparameter configurations, to better infer what

hyperparameters to try next. In the online setting, this sequential optimization

paradigm would be the one to consider the most, as we want the agents to improve

continually using all the data gathered throughout their lifetime.

In the online tuning setting, the hyperparameter tuning phase is an explicit

part of the overall agent interaction with the environment - no additional inter-

action with the environment, only the amount of the given budget. This online

tuning setting (intentionally) blurs the line between tuning and learning. We

illustrate the di↵erence between online and hidden tuning in fig. 1.1.

4

Figure 1.1: Contrasting the typical hidden tuning setting (left) with the proposed
online tuning setting (right). The online tuning setting requires the tuning to
be a part of the agent, as it must tune the hyperparameters online. Hidden
tuning layers the tuning of the hyperparameters outside of the agent-environment
interaction, allowing a separate search to be performed.

Throughout the thesis, we investigate how to tune hyperparameters in online

reinforcement learning. We introduce a generic online hyperparameter tuning

approach that can be layered on any existing algorithm. We go through the

details of di↵erent tuning methods and motivate standard Bayesian optimization

as the tuner to convert RL algorithms with numerous hyperparameters into one

that tunes its hyperparameters online. Although this approach can be a naive

layering, which leads to suboptimal behaviors, it provides a default strategy to

test algorithms in this new setting, enabling comparisons to previous algorithms

in a budgeted way. This approach allows us to assess the state of the field and

understand how sensitive our algorithms are for online tuning while also providing

a baseline approach for online tuning algorithms. This budgeted approach is

also a way to fairer and more reproducible comparisons (Khetarpal et al., 2018)

between di↵erent algorithms, as it is not clear how much data is used to tune the

hyperparameters in the hidden tuning setting.

We show the behavior of Soft Actor-critic (SAC) (Haarnoja et al., 2018) and

Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithms in sev-

5

eral popular Mujoco (Todorov et al., 2012) environments. For the first part of

the experiments, we use some portion of the given total budget to tune the hy-

perparameters by resetting the agent and the environment before trying a new

hyperparameter configuration, mimicking the hidden tuning. We use a Bayesian

optimizer as a meta-learner to give the agent the next set of hyperparameter

values to try. We find that given small enough ranges and hyperparameter trials,

SAC can start performing as well as or sometimes better than the performance

we get when using the default hyperparameters, while PPO struggles to find

a good set of hyperparameter values within the same budget, suggesting that

more hyperparameters make it harder to find a performant solution, which is

a limitation of current algorithms as we discuss in chapter 3. However, using

di↵erent environments helps us see that the hyperparameters also depend on the

environments, proving the unreliability of default hyperparameters.

We also provide a simple modification to the previous experiment setup to

mitigate the wasteful resetting of the agents. We use the total budget to tune

and learn simultaneously by sharing the learned knowledge of the agent from

configuration to configuration using some simple conditions. We show that this

naive approach can achieve similar performance levels to the case where we reset

the agents in the same set of Mujoco environments when using specific algorithms.

We also tried this simple methodology in a continuing reinforcement learning

environment, where there is no end, and we saw similar results to the episodic

cases.

The contributions of the thesis can be summarized as follows:

• We introduce a new evaluation paradigm that eliminates the hidden hyper-

parameter tuning phase by tuning hyperparameters online within a given

budget.

6

• With online tuning, we can achieve results comparable to or better than de-

fault settings in Mujoco environments, but these performance levels depend

on environment specifics, algorithms, and the number of hyperparameters

those algorithms have.

• We propose a simple non-resetting methodology, which performs similarly

to resetting approaches but only works for the SAC agent in episodic and

continuing environments.

7

Chapter 2

Background

In this chapter, we define Reinforcement Learning (RL), emphasizing the online

setting, where the agent interacts with the environment directly. We then review

the techniques used in the literature to tune the hyperparameters for the RL

agents and illustrate the pros and cons of each approach and its use case in the

online setting. We will dive into the details of the hyperparameter tuning meth-

ods, including hyperparameter sweeping, random search, Bayesian optimization,

and other methods used in most machine learning fields. We will also discuss spe-

cific methods like population-based training, meta-gradient methods, and other

techniques. Finally, we will discuss which methods may be a good fit for the

online setting despite the challenges of tuning the hyperparameters online.

2.1 Reinforcement Learning

Reinforcement learning embodies the problem of learning to make decisions by

interacting with an environment modeled as a reward-agnostic Markov-decision

process (MDP). MDPs are defined by a tuple hS,A,Pi, where S is the state

8

space, A is the action space and transition probability map P , which maps a

state-action pair, (s, a), to a state distribution, P(·|s, a). With this formulation,

the agent interacts with the environment, seeing state st 2 S, taking action

at 2 A, seeing new state st+1 2 S, and receiving reward rt+1. Its goal is to learn

a policy function ⇡ : S ! A that maps state to actions, which maximizes the

expected cumulative reward. We can see the agent-environment interaction in

fig. 2.1.

Figure 2.1: The agent-environment interaction loop in reinforcement learning.
The agent takes action at in the environment given the current state st, receives
reward rt+1, and sees the next state st+1. The agent then uses this information
to update its policy ⇡ and continues interacting with the environment.

2.1.1 Value Function and Policy Learning

To learn the policy ⇡ that maps states to actions, we usually learn value functions

- functions of states that estimate the expected cumulative reward the agent can

get at that given state when it follows the current policy ⇡ after that, which is

called policy evaluation.

v⇡(s)
.
= E⇡[Gt|St = s] = E⇡

"
1X

k=0

�kRt+k+1|St = s

#
, for all s 2 S

9

One can also estimate the value functions by learning action-value functions,

which estimate the expected return one can get after taking action a in state s:

q⇡(s, a)
.
= E⇡[Gt|St = s, At = a] = E⇡

"
1X

k=0

�kRt+k+1|St = s, At = a

#

The value of the state is the expectation of the action-value function over all

possible actions:

v⇡(s)
.
=

X

a

⇡(s, a)q⇡(s, a), for all s 2 S

Having an updated value function, we can apply policy improvement to update

our current policy, acting greedily according to the updated value function. The

new greedy policy takes at each state the action that appears best according to

q⇡(s, a).

⇡0(s)
.
= argmax

a
q⇡(s, a) = argmax

a
E[Rt+1 + �v⇡(St+1)|St = s, At = a]

Generalized policy iteration (GPI), which iteratively does policy evaluation

and policy improvement, improves the agent’s policy. Although there are nu-

merous GPI algorithms in the literature, the most used and popular one is the

Q-learning. Q-Learning uses TD-error, usually denoted with �, to update the

value functions. TD error is the di↵erence between the current estimate and the

estimate of the next state. So, it tells us how much the agent’s estimate was o↵

for the value of the current state. With an approximate value function V ⇡ v⇡,

we can calculate TD-error as follows:

�t = Rt+1 + �V (St+1)� V (St)

10

Q-learning is an o↵-policy method where we learn the value function from a

policy that is di↵erent from the one we want to improve. Q-learning update rule

with approximation of action-value function Q ⇡ q⇡ is given by:

Q(St, At) Q(St, At) + ↵


Rt+1 + �max

a2A
Q(St+1, a)�Q(St, At)

�

Sarsa is an example of an on-policy method, where we learn the value function

from the same policy we want to improve. Sarsa update rule is given by:

Q(St, At) Q(St, At) + ↵ [Rt+1 + �Q(St+1, At+1)�Q(St, At)]

The di↵erence between the two methods is how they update the value func-

tion. Sarsa updates the value function based on the next action the agent will

take while Q-learning updates the value function based on the best action the

agent can take.

2.1.2 Online Reinforcement Learning

In online reinforcement learning, the agent interacts with the environment di-

rectly, updating its policy based on the observations and rewards it receives. The

agent learns online, meaning it learns while interacting with the environment,

without a separate training phase.

We separate the online setting into two categories: episodic and continuing. In

the episodic setting, the agent interacts with the environment for a fixed number

of episodes, while in the continuing setting, the agent interacts indefinitely. In

the episodic case, the agent has a total budget of interaction T (global step

count), generating a trajectory ⌧ of interaction over this lifetime (in this case,

11

the trajectories are the episodes) and is evaluated based on some performance

measure g(⌧) over the entire lifetime, which can be the average (discounted)

return per step of the performance measure over the lifetime. Namely, if the

agent is currently in episode n that started at timestep tn with a duration of L,

the (discounted) return is Gn =
PL

t=tn
�tRt+1 for that episode, then the overall

performance g(⌧) = 1
N

PN
n=1 Gn where N is the number of episodes seen in the

lifetime T .

For the continuing setting, a typical measure of performance is the average

reward g(⌧) = 1
T

PT
t=1 rt, where T is the number of steps taken in the environ-

ment.

2.1.3 RL-Glue Interface

As shown in fig. 2.1, the agent interacts with the environment by acting and

receiving observations and rewards. Most of the time, these parts are separate,

and the agent and the environment need a way to communicate by developing

interactive programs. RL-Glue (Tanner & White, 2009) helps with achieving

that.

RL-Glue is a software framework designed to help researchers create and eval-

uate reinforcement learning algorithms in a standardized manner. It focuses on

online, single-agent reinforcement learning problems, specifying how agents and

environments should interact by organizing their components to follow specific

communication rules, the problem set we are considering throughout the thesis.

The RL-Glue interface includes four main components: the agent, the environ-

ment, the RL Glue interface, and the experiment. The agent chooses actions

based on the observations received from the environment, while the latter gener-

ates new observations and rewards based on the agent’s actions. The experiment

12

part manages the experiment’s execution, including the sequence of interactions

between the agent and the environment, and evaluates the agent’s performance.

The RL-Glue program facilitates communication between the agent and envi-

ronment in response to commands from the experiment program. This interface

allows researchers to easily compare di↵erent algorithms and environments and

test their algorithms on various problems. The RL-Glue interface is in fig. 2.2.

Figure 2.2: The RL Glue interface between the agent and the environment. The
agent selects actions based on the states it receives from the environment, and
the environment generates states and rewards based on the actions taken by the
agent. The RL Glue interface provides a standardized communication path for
the agent and the environment.

We use this interface to evaluate the agent’s performance online, where the

agent interacts with the environment directly. The interface allows us to assess

the agent’s performance based on the interaction with the environment and to

tune the hyperparameters online.

2.2 Hyperparameter Tuning

Hyperparameter tuning (Feurer & Hutter, 2019) is an essential step in training

all machine learning models, including reinforcement learning agents, which, in

13

Figure 2.3: The usual hyperparameter tuning process. The agent uses di↵erent
hyperparameter configurations and evaluates performance for each set of hyper-
parameters (the gray rectangle) independently. The best hyperparameter config-
uration is selected based on the final performance.

most cases, takes place as the most computationally expensive part of the training

process. Hyperparameters are values set before or during the learning process,

such as the learning rate ↵, which controls the speed of learning, the discount

factor � used in calculating the return Gi, which the agents try to maximize, or

the exploration rate ✏ in the case of Q-learning-based algorithms, which controls

the agent’s exploration-exploitation trade-o↵. Mostly, these parameters are not

learned during training but are set before the learning starts and can signifi-

cantly a↵ect the model’s performance. A good set of hyperparameters can get to

near-optimal performance, while a poor set of hyperparameters can lead to bad

performance or even failure to learn (Obando-Ceron et al., 2024). Thus, agent

designers often spend significant time and computation tuning numerous hyper-

parameters to get the best possible agents in their limited budget. A depiction

of the hyperparameter tuning process is in fig. 2.3.

There are numerous methods for tuning hyperparameters in the literature,

including ones used in many machine learning disciplines, like hyperparameter

14

sweeping or grid search, random search, Bayesian optimization, and other more

specific tuning methods. Each method has advantages and disadvantages, and

the choice of method depends on the problem we face and the resources available,

which we will discuss next.

2.2.1 Hyperparameter Sweeping or Grid Search

Hyperparameter sweeping, or grid search is a straightforward method for tuning

hyperparameters. It involves defining a grid of hyperparameters to search over

and evaluate the model’s performance for each combination of hyperparameters.

The grid search method is easy to implement and can search over a wide range of

hyperparameters. However, grid search is computationally expensive, especially

when searching over many hyperparameters or when the hyperparameters have

a wide range of values. If we want to evaluate N hyperparameters, each with K

possible values, we would need to try out KN combinations, which can become

computationally impractical for large N and K. Grid search is also ine�cient, as

it does not consider the results of previous evaluations when selecting the next

set of hyperparameters to evaluate, even though this weakness makes it easy to

parallelize.

2.2.2 Random Search

Random search (Bergstra & Bengio, 2012) is an alternative to grid search that, in-

stead of splitting the hyperparameter space into a grid and evaluating all possible

combinations, randomly samples hyperparameters from a predefined distribution,

usually uniform, in a given range. Random search can explore a di↵erent set of

hyperparameter values than the ones specified by the grid. Random search is

15

easy to implement and can run parallel to speed up the search process. How-

ever, a random search is still ine�cient, as it does not consider the results of

previous evaluations when selecting the next set of hyperparameters to evaluate,

requiring numerous hyperparameter configurations to find a performant set of

hyperparameter values. So, grid and random search are ine�cient in computa-

tional resources and time, especially in the online setting, where the agent must

learn while interacting with the environment, and all the data is valuable.

2.2.3 Bayesian Optimization

Bayesian optimization (BO) (Snoek et al., 2012) is a more advanced method for

tuning hyperparameters that uses a probabilistic model to model the relation-

ship between hyperparameters and some objective function, which in our case

is the average performance of the agent given the hyperparameter configuration.

Bayesian optimization is an iterative process that uses the results of previous

evaluations to select the next set of hyperparameters to evaluate.

Assume we run an algorithm with hyperparameter h 2 H, a set of all possi-

ble combinations of the hyperparameters, in the given environment to generate

a trajectory ⌧ . Let g(⌧) be the average performance for that trajectory, and

G(h)
.
= g(⌧) is the random variable. Let’s define the true v(h) = E[G(h)], the

expected value across all trajectories that we could have seen when using h due to

stochasticity in the environment and the policy, and other factors, like the hard-

ware used. The Bayesian optimizer tries to model the expected return E[G|h]

and chooses a point in the objective function we want to approximate. In the

case of RL, it is to pick a hyperparameter configuration that will maximize the

return v(h):

h⇤ = argmax
h2H

v(h)

16

Figure 2.4: Visual representation of the hyperparameter tuning methods. Grid
search (left) evaluates all possible combinations of hyperparameters, random
search (middle) samples hyperparameters randomly from a predefined distri-
bution, and the Bayesian optimization process (right) models the relationship
between hyperparameters and the objective function to select the next set of hy-
perparameters to evaluate.

As we can see in fig. 2.4, Bayesian optimization is more computationally

e�cient than grid search and random search, as it can explore the hyperpa-

rameter space more e↵ectively and requires fewer evaluations to find the best

set of hyperparameters. Its most prominent advantage is that it can model the

relationship between hyperparameters and the objective function and use this

information to select the next set of hyperparameters to evaluate. Sometimes,

only a few samples are enough for the BO to model the function well. However,

Bayesian optimization has its hyperparameters to tune, like the kernel function,

the acquisition function, and the number of samples to evaluate, which can a↵ect

the performance of the optimization process. However, thanks to the extensive

literature on Bayesian optimization (Balandat et al., 2020; Falkner et al., 2018;

Springenberg et al., 2016; Lizotte et al., 2007), many libraries provide easy-to-use

interfaces for implementing Bayesian optimization (Bergstra et al., 2013; Akiba

et al., 2019; Lindauer et al., 2022). Overall, for online tuning, Bayesian optimiza-

tion can be the most e↵ective method for tuning hyperparameters, as it can find

the best set of hyperparameters with fewer evaluations in a sequential process,

which we need in the online setting.

17

We use the TPESampler (Watanabe, 2023) from the Optuna (Akiba et al.,

2019) software package in all of our experiments in this thesis. TPE, or Tree-

structured Parzen Estimator, optimizes hyperparameters by dividing the search

space into high-performing and low-performing groups. It then uses Parzen esti-

mators, a technique for estimating probability distributions by placing ”bumps”

on data points, to model the likelihood of hyperparameters belonging to each

group. Based on these models, TPE selects new hyperparameters to evaluate, fo-

cusing on those with the highest expected improvement. This process iteratively

refines its estimates as it explores the hyperparameter space. One of the benefits

of this method is that it works with all types of hyperparameters - integers, floats,

and categorical variables, making tuning all the hyperparameters possible.

2.2.4 Other HPO Methods

There is extensive literature on using HPO methods specifically targeted for RL,

a subfield often called Auto RL (Parker-Holder et al., 2022). The non-stationary

nature of the RL setting makes the hyperparameter tuning process even more

di�cult. As the agent learns, the optimal hyperparameters may change, and

the hyperparameters that were performant at the beginning of the training may

not be optimal at the end. This non-stationarity can make finding the best set

of hyperparameters di�cult, as the agent’s performance may change over time.

Thus, AutoRL methods are the starting point for developing HPO methods that

address issues present in RL.

One of the well-known methods is evolutionary algorithms, which mimic the

process of natural selection to search for the best set of hyperparameters. These

methods use a population of agents to search for the best set of hyperparameters,

and they evolve the population over time to find the best set of hyperparameters.

18

A popular evolutionary algorithm is the population-based training (PBT)

(Jaderberg et al., 2017; Parker-Holder et al., 2020; Parker-Holder et al., 2024;

Wan et al., 2022; Parker-Holder et al., 2020) methods. These methods use a pop-

ulation of agents to search for the best set of hyperparameters. They parallelize

the computation of hyperparameters by running di↵erent configurations simulta-

neously for some interval, rank the agents according to their return, replace the

worst ones with the best ones, and perturb the hyperparameters on the newly

replaced ones. After some time, these methods converge to a set of performant

hyperparameter configurations. Although parallelizable and easy to use, these

methods do not apply to the online tuning paradigm as this setting is sequential

and non-parallelizable. Also, there is no guarantee that the algorithm can find a

good set of hyperparameters in the set budget.

Some studies consider the interaction between the noise and instability in the

RL setting and standard HPO methods (Eimer et al., 2022, 2023; Hertel et al.,

2020). One work adapts PBT to the online setting by sharing experience (replay

bu↵ers) across the population of agents to find an optimal policy (Franke et al.,

2021) more quickly. We similarly reuse experience for tuning the hyperparameters

online in chapter 5, sequentially, not in parallel.

Some specific ideas could benefit the online tuning setting. Nguyen et al.

(2020) uses information during training deep learning systems to assess perfor-

mance and accounts for the cost of running additional training steps when de-

ciding whether to test a hyperparameter. Other work similarly tries to avoid

running expensive learning systems to completion by predicting performance us-

ing smaller datasets (Klein et al., 2017) or terminating early (Makarova et al.,

2022). Such approaches still su↵er from issues like sample ine�ciency and tuning

the agents for the starting point of the training, which is not ideal for the online

RL, especially in the never-ending learning setting. Similar issues arise in one

19

of our experiments, Bayesian optimization with resets, which we will discuss in

depth in chapter 4.

Some work avoids hidden tuning, either by developing methods that don’t

have hyperparameters (Jacobsen & Cutkosky, 2022) or exploiting o✏ine data and

simulators (Wang et al., 2022). Ultimately, a hyperparameter-free algorithm is an

ideal approach for the online tuning setting because it can immediately learn from

all available interactions rather than wasting interaction with the environment

to find hyperparameters. A long-standing goal in RL is to develop automatic

approaches for hyperparameters, typically for specific hyperparameters like the

learning rate (Jacobsen et al., 2019; Kearney et al., 2018, 2019; Mahmood et al.,

2012; Degris et al., 2024) or the eligibility trace parameter �(Javed et al., 2024).

There are a few works considering more general approaches to tune multiple

hyperparameters at once, some using meta gradient descent (Xu et al., 2018a;

Flennerhag et al., 2022), using o↵-policy learning to assess multiple policies (Paul

et al., 2020), or methods that tune themselves (Zahavy et al., 2020), which is

unfortunately limited to a few hyperparameter values. The other set of works

that avoid hidden tuning is typically motivated by real-world deployment and

leverages o✏ine data or simulators to tune before deploying a fully specified agent

into the real world (Letham & Bakshy, 2019; Zhang et al., 2021; Wang et al., 2022;

Kiran & Ozyildirim, 2018). These approaches are essentially hyperparameter-free

because we can deploy a fully specified agent without tuning. Though laudable,

these algorithms need more development, and in fact, the online tuning setting

is the right place to develop and test these approaches, which in turn will allow

for a fair comparison of existing methods that have many hyperparameters.

20

Chapter 3

Tuning is Hard Under Many

Hyperparameters

Hyperparameter tuning is a grueling problem in any field of Machine learning,

which is more of a headache in Reinforcement learning as there are a lot more

hyperparameters that a↵ect the performance of RL agents by quite a large margin

- the problem is even more evident as the data used by the agents di↵ers due to

the stochasticity of both the environment and the agent.

One of the hard-to-tune and environment-specific hyperparameters is the

learning rate ↵ - a hyperparameter responsible for how much information from

the gradients will pass to the networks and how fast or slow the networks learn.

Thus, if the learning rate value is too small, the networks will take ages to learn,

and too large of a value will make the networks diverge. Besides, the discount

factor � and the exploration rate ✏ are also hard to tune as they a↵ect the learn-

ing of the agent immensely - how much an agent can explore is proportional to

how well and fast it can find a proper solution, same happens with how much

into the future can the agent see. Thus, in this section, we tune each of these

21

hyperparameters and their di↵erent combinations to see how they interplay with

each other and if there is any di↵erence in the final performance of the agent

when we add more and more hyperparameters to tune. The overall goal of the

experiments is to see whether the current tuning practices are good contenders

for finding a satisfactory hyperparameter value on a limited budget.

Let us look at how hyperparameters of RL algorithms a↵ect the performance

in the Mountain Car environment. The environment is simple - the agent has to

learn to drive a car up a hill. The agent receives a reward of -1 on each step it

takes to reach the goal, and the episode ends when the agent reaches the goal at

the top of the hill. The agent has three actions to choose from - push left, push

right, or do nothing. The agent receives a reward of 0 when it reaches the goal.

The optimal behavior of the agent is to drive up the hill by using the momentum

it gets from the push-right action. We consider the agent performs well in this

environment when the agent reaches an average return of -150 over 100 episodes

(Patterson et al., 2024a). The agent takes 500 as the maximum episode length.

As an agent, we use the DDQN (Van Hasselt et al., 2016) algorithm, a variant

of the DQN algorithm (Mnih et al., 2015) that uses two separate networks to

estimate the Q-values, one for target Q-values and one for current Q-values,

mitigating the overestimation issue present in DQN. The default DDQN agent

has a lot of hyperparameters - namely, 13 that we account for in our studies.

As you can imagine, tuning an agent with that many hyperparameters can be

di�cult, and we show that in this section. All the default hyperparameter values

and ranges for all algorithms in all environments are in table A.1.

We consider tuning up to 4 di↵erent hyperparameters - learning rate ↵, dis-

count factor �, exploration rate ✏, and the batch size. All the other hyper-

parameters have the default values used in Ceron & Castro (2021). We con-

22

sider the following hyperparameter ranges for the DDQN agent: learning rate

↵: [0.0001, 0.001], discount factor �: [0.9, 0.99], exploration rate ✏: [0.1, 0.9], and

batch size: [32, 128]. We compare the average performance when we tune only

one hyperparameter, two hyperparameters, and three hyperparameters. We use

Random search and Bayesian optimization to tune the hyperparameters.

We plot the performance of the DDQN agent in four di↵erent scenarios - the

agent will try 5, 10, 20, and 50 di↵erent hyperparameter configurations using five

di↵erent seeds while keeping track of the best performance it saw during those

trials. It has 100K timesteps to evaluate each hyperparameter configuration and

keep the score it got in the final 50% of its steps - we only consider the average

return of the last 50K steps. For the Bayesian optimizer (BO), we use Optuna

(Akiba et al., 2019). For each of the seeds, we allow the BO to have 3 test or

warmup runs, where it usually tries out the values at the boundaries. After we

evaluate a hyperparameter configuration in the environment, we give the data

to the BO, which uses it to suggest better configurations to maximize the final

return.

In fig. 3.1, we show the distribution plots of the maximum returns the DDQN

agent got for separate runs. As we can see, tuning just one hyperparameter is

an easy task, which, of course, depends on the assumption that other hyperpa-

rameters with default values are reasonably good and that the hyperparameter

selection range is relatively small. In this case, BO finds a performant hyper-

parameter configuration even within five trials, outperforming random search,

which is a consistent result across all the environments we tried, presented in ap-

pendix (fig. B.1). If we look closely at the results, we can see that the Bayesian

optimizer finds a better hyperparameter configuration than the random search in

all the cases. Also, interestingly, depending on the hyperparameter, even when

we tune only one, the number of configurations to try to get to good performance

23

increases, meaning that the hyperparameter is quite sensitive to tune, like ✏, for

which random search struggles to find a plausible solution for, but Optuna finds

a performant solution from the very start. These results reiterate the assumption

that using Bayesian optimization algorithms fits hyperparameter tuning in RL

agents.

But when we increase the number of hyperparameters for the search algo-

rithms to tune, it requires more and more trials to find a well-performing hyper-

parameter configuration - it needs more than 20 trials to achieve the expected

behavior of a good-performing agent shown in the red dotted line. These results

suggest that hyperparameter tuning gets increasingly complex as we grow the

number of hyperparameters to tune. Even though the Bayesian optimizer finds

a better hyperparameter configuration faster than the random search, it still re-

quires many trials to find a well-performing hyperparameter configuration when

we increase the number of hyperparameters to be tuned. These results suggest

that hyperparameter tuning is a problem in RL, and we need to think of bet-

ter ways to tune hyperparameters in RL agents or spend time and energy on

developing agents with fewer or no hyperparameters to tune.

In the online setting, in which we are interested in the thesis, we care about

sequential performance more than the final performance. Thus, according to

the results in fig. 3.1, we can see that the Bayesian optimizer finds a better

hyperparameter configuration than the random search in all the cases. The results

in this section suggest that using Bayesian optimization algorithms is a better

choice for hyperparameter tuning in RL agents. Thus, we will use Optuna search

to conduct online hyperparameter tuning experiments in the upcoming sections.

24

5 10 20 50
500

400

300

200

100

0

Number of trials

Av
er

ag
e

re
tu

rn

5 10 20 50
500

400

300

200

100

0

5 10 20 50
500

400

300

200

100

0

5 10 20 50
500

400

300

200

100

0

Learning rate +

5 10 20 50
500

400

300

200

100

0
Learning rate + batch size +

5 10 20 50
500

400

300

200

100

0
Learning rate + +

Random search
Optuna search

Learning rate

Figure 3.1: Distribution plots of the highest average return achieved by the
DDQN agent in the Mountain Car environment over five seeds. The agent tries
5, 10, 20, and 50 di↵erent hyperparameter configurations. The hyperparameters
tuned are the learning rate ↵, discount factor �, exploration rate ✏, batch size,
and di↵erent combinations using those hyperparameters. The light blue depicts
the random search, while the dark blue shows the Bayesian optimization. The red
dotted line shows the expected performance of a well-performing agent, which is
-150. The x-axis shows the number of hyperparameters tuned. The y-axis shows
the average return of the agent. The maximum episode length is 500.

25

Chapter 4

Online Tuning with Resets

In this chapter, we tune the hyperparameters in an online setting as described

in chapter 2. Before the agent begins interacting with the environment, it has

a budget for environment interaction. The agent must sequentially select and

evaluate hyperparameters within this budget. The agent uses initial interaction

to tune hyperparameters and settles on a choice for the remainder of learning.

This approach di↵ers from hidden tuning, where one tunes the hyperparameters

in one phase and evaluates the agent in another.

For this chapter, we consider the version of online tuning where we reset

the agent and the environment after each hyperparameter evaluation. It is a

simplified and sequential version of the hidden tuning phase, where we train the

agent with a hyperparameter setting for a fixed number of steps, then reset the

agent and the environment and evaluate it with a new hyperparameter setting.

As the hyperparameters are evaluated sequentially in the online tuning set-

ting, the obvious and the most straightforward way to tune the hyperparameters

is to use Bayesian Optimization (BO), as we can reuse the performance data of

the previous runs to select a better hyperparameter configuration that will lead to

26

better performance. Of course, we can also use other methods mentioned in chap-

ter 2, but, as we established, most are not as e�cient and suited for sequential

decision-making as BO.

The key to applying BO to the online tuning setting is how much interaction

we should use to tune the hyperparameters. When searching for hyperparame-

ters in the usual hidden tuning setting, this trade-o↵ does not arise because all

the allocated online interaction steps use the hyperparameter configuration found

during the hidden tuning phase. But, in the online setting, the agent or agent de-

signer has to select (a) how long to test each hyperparameter before resetting the

agent and the environment and testing a new hyperparameter and (b) the max-

imum percentage of the lifetime to dedicate to testing di↵erent hyperparameter

settings. The summary of this generic approach is in algorithm 1.

Algorithm 1 Online tuning with resets

Input: RL Algorithm Alg, hyperparameter set H, global steps T , tuning
steps M , trial length L
Initialize: Bayesian Optimizer (BO), max-perf = �1, best-h = None, max
tuning iterations = M/L
h random point from H

for i = 1 to max tuning iterations do
Run Alg with h for L steps to get performance G
Add (h, G) to the Optimizer
If max-perf < G, then set best-h = h and max-perf = G
Reset Alg (reinitialize weights, clear bu↵er, clear the optimizer state, reset
environment, etc.)
Get next h 2 H from the BO

end for
Run Alg with best-h for the remaining T �M steps

Let us consider an example. The agent designer has a budget of 3M steps to

give for interaction with the environment, and they want to tune the hyperpa-

rameters for 2M steps, as the agent designer believes that 2M steps are enough

to find a good hyperparameter setting. They will use the last 1M steps to de-

27

ploy the best hyperparameter setting found. The agent has 5 hyperparameters

to tune, and they decide to test each setting for 200K steps. Combining these

two, the agent has 10 hyperparameter settings in total to test in the given 2M

steps budget. This is a small number of hyperparameter configurations to test,

which may not be enough to find an optimal value. Doing a grid search on a

cross-product of even 2 choices per hyperparameter would already take testing

25 = 32 hyperparameter settings, but the agent designer has no budget to try this

method. However, with correlations between hyperparameters, meaning the ease

of tuning hyperparameters together, the agent designer hopes that testing as few

as 10 hyperparameter settings will be enough to find reasonable hyperparameters.

Figure 4.1: SAC in HalfCheetah using default hyperparameters versus online tun-
ing of the stepsize using BO with resets. The leftmost figure depicts the average
performance of the SAC agent with the default hyperparameters provided in the
literature. In the middle, we show an example of our proposed online tuning
strategy, where we have 3M steps as a budget. We stop tuning the hyperpa-
rameters after the 2M mark (the dotted line) and run the last million steps with
the best hyperparameter configuration found. The last plot shows the learning
rates chosen by the optimizer in the first 2M steps for each of the individual runs
of the second plot. The dark line shows the values tested for one seed and the
yellow star points to the best learning rate picked. The shaded area is a 95%
bootstrapped confidence interval of 20 independent runs.

We visualize such an experiment in fig. 4.1, where we show the performance

of the SAC agent in HalfCheetah, a well-used environment in the Mujoco physics

engine where the agent has to learn to control a half-cheetah to run as fast as

possible. We compare the performance of the SAC agent with the default hy-

28

perparameters provided in the literature and also show the values of the learning

rate hyperparameter chosen during the interaction. As we can see, when tuning

only the learning rate, the agent can find a better configuration than the default

hyperparameters in just 2M steps. We set the budget of the default hyperparam-

eters runs to the same amount as the evaluation steps given to the SAC agent to

make the comparison fair. We also visualize the sequence of values tested in each

run. It is worth noting how much the chosen learning rate value can vary between

runs. Unlike hidden tuning, there is not one value used for all the independent

runs; each run may have a unique stepsize. This is one of the key di↵erences

between hidden and online tuning, as we treat each agent individually rather

than as a part of the population, which is an important feature in real-world

applications.

Now, we evaluate the online tuning with the resets using SAC and PPO agents

in five di↵erent Mujoco environments - Ant, HalfCheetah, Hopper, Walker2D,

and Reacher. For this set of experiments, we let Optuna do no warmup trials

- it starts with a random value in that given range and starts the optimization

process.

As we consider the online setting, we don’t train PPO with parallel copies

of the environment; it is single-stream, an interaction with just one instance of

the environment. As in the previous example, we give all the agents an overall

budget of 3 million online steps, L = 200K evaluation steps or trial length for

each hyperparameter setting, and use two di↵erent stopping conditions: after

1 million steps and after 2 million steps. In other words, the agent can test

5 hyperparameter settings in the first setting, and in the second, it tests 10.

We compare the agent’s performance with the default hyperparameters and the

online tuning strategy.

29

We additionally consider the e↵ect of the number of hyperparameters that

are tuned. For SAC, we test two scenarios: tuning only the learning rate (one

hyperparameter) and tuning five hyperparameters: the learning rate, the discount

factor �, the entropy coe�cient, the target refresh coe�cient ⌧ , and the reward

scale. PPO, on the other hand, has 7 hyperparameters to tune: the learning rate,

the discount factor �, the GAE parameter �, the entropy coe�cient, the value

function coe�cient, the clip parameter, and the gradient normalization clipping

factor. When tuning only the stepsize, we leave the remaining hyperparameters at

the defaults. For details on the hyperparameter ranges and additional experiment

details, see appendix A.

Figure 4.2: SAC in HalfCheetah and Walker2D environments using two di↵erent
stopping conditions while tuning one and many hyperparameters. Each agent
had an overall 3 million steps budget, and each hyperparameter had a 200K trial
length. The gray dotted line depicts the timestep when the agent stops testing
di↵erent hyperparameters and deploys the best configuration found. The blue line
corresponds to the agents that had to tune one hyperparameter, while the red
line depicts the agents with many hyperparameters. Note that SAC with default
hyperparameters reaches scores of approximately 2000 and 800 in HalfCheetah
and Walker2D, respectively. The shaded area is a 95% bootstrapped confidence
interval of 20 independent runs.

We first examine the e↵ect of tuning one hyperparameter versus many for SAC

on HalfCheetah and Walker2D environments, shown in fig. 4.2. We selected these

two from the five Mujoco environments to highlight a case where tuning more

hyperparameters was slightly better and a case where it was notably worse. In

some cases, the flexibility to tune more hyperparameters can improve performance

30

because the agent doesn’t need to be close to the defaults; however, this tuning

has to be feasible within the allocated time online. If the agent needs to test many

hyperparameter settings to find a good one, then the increased flexibility can be

harmful. We see in HalfCheetah that there is a slight performance improvement

even when tuning for 1 million steps, and this e↵ect is even more stark when

tuning for 2 million steps. The further improvement makes sense, given that the

agent can test 2x as many configurations, getting even more performance gains.

In Walker2D, on the other hand, the increased flexibility is detrimental.

Next, we investigate the performance of both PPO and SAC agents in all five

Mujoco environments. From the results in fig. 4.3, we can see that it is generally

more di�cult to tune the hyperparameters for PPO online, and it often performs

substantially worse than SAC. When only tuning the learning rate, PPO’s per-

formance is comparable to SAC, but when we tune seven hyperparameters, the

performance drops significantly, making the gap between the agents noticeable.

These results can be due to PPO having more hyperparameters to tune, the hy-

perparameters being more sensitive to the environment, or the given trial length

being too short to find good hyperparameters. SAC, on the other hand, appears

less sensitive to its hyperparameters than PPO, and this online tuning regime

makes this advantage apparent. Hidden tuning, on the other hand, might mask

this di↵erence and potentially even give preference to PPO, which exposes more

hyperparameters to tune during a hidden tuning phase. The results are qualita-

tively similar for stopping at 1 million and 2 million steps, so we include only 1

million in the main body in fig. 4.3 and the additional results for stopping at 2

million steps in the appendix, in fig. C.1.

One of the hard choices made in the previous experiment is the trial length for

each hyperparameter configuration we got from the Bayesian optimizer. It can

be considered another hyperparameter added to the list of many hyperparam-

31

Figure 4.3: SAC (red) and PPO (blue) algorithms in multiple Mujoco environ-
ments. In the first column, we have the performance of the algorithms with the
default hyperparameters. The second and third columns show the algorithms’
performances within the 3 million budget, where we stop hyperparameter opti-
mization after 1M steps with the di↵erence of tuning one and many hyperparam-
eters. The dotted line depicts the timestep the agent started deployment with
the best hyperparameter configuration found. The shaded area is a 95% boot-
strapped confidence interval of 20 independent runs.

32

eters that the agent designer should choose before starting the agent’s training

process. Thus, with the upcoming experiments, we want to see whether there

is any impact on the performance if we let the agent try each hyperparameter

for 500K steps instead of 200K with the same budget as in the previous exper-

iment. This idea is motivated by the fact that depending on the algorithm we

train the agents, the time to get to good performance can vary significantly. As

SAC updates its policy more frequently than PPO, it might need less time to get

to a good performance for the Bayesian optimizer to find better hyperparameter

configurations. PPO agents, on the other hand, might need more time to get

to comparable performance, and the 200K trial length might not be enough for

the optimizer to suggest a better hyperparameter configuration. Thus, we opted

to test the same experiment with an equivalent budget but with a longer trial

length. We chose the trial length of 500K, as PPO agents achieve reasonable per-

formance after 500K steps in the environment (Schulman et al., 2017; Freeman

et al., 2021b).

As before, we consider two scenarios: one with enough budget to test 5 hy-

perparameters and the other with 10. Thus, as we give the trial length of 500K,

the budget for the agent will be 3.5M and 6M steps, respectively, where the agent

uses the chosen hypers for the last 1M steps. We compare the performance of

500K trial length agents with the 200K ones and show the results in fig. 4.4.

We observe that agents with a trial length of 500K steps perform slightly bet-

ter than those with a 200K trial length across all environments. This di↵erence

is particularly noticeable for the PPO agent, which, as a trajectory-based algo-

rithm, requires more time to update its networks with additional trajectories to

achieve good performance. Despite this, the PPO agent still cannot outperform

the SAC agent, which updates with every environment step. This finding aligns

with previous results, where the SAC agent was less sensitive to hyperparameters

33

million steps million steps million steps million steps million steps

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

Figure 4.4: SAC (red) and PPO (blue) agents in multiple Mujoco environments
with 200K and 500K trial lengths. The first row shows the agents’ performance in
all five Mujoco environments with the 200K trial length. The second row shows
the performance with the 500K trial length. To make the comparison fair, we give
an equivalent budget in both cases and let them deploy the best hyperparameter
configuration found in the last 1M steps. The dotted line depicts the timestep
agents start using the best hyperparameter configuration found. The shaded area
is a 95% bootstrapped confidence interval of 20 independent runs.

than the PPO agent. Although the SAC agent also experiences a slight perfor-

mance boost with increased trial length, the improvement is insignificant. These

results indicate that while trial length is a hyperparameter, it does not impact

performance as much as the number of hyperparameters to tune. Consequently,

agent designers may prefer shorter trial lengths to test more hyperparameters

within a given budget.

Next, we will examine whether increasing the agent’s budget a↵ects perfor-

mance. We will conduct the same experiment as before, but now the agent will

have a budget of 10M steps, with the final 1M steps used to deploy the best

hyperparameter configuration found. The results are in fig. 4.5.

The results for 10M steps are comparable to the one in fig. 4.4, and only

in some environments do we see slight di↵erences. After letting the agents try

more hyperparameters, we can see that the SAC agent gets better than the de-

fault performance on Ant and HalfCheetah environments. We also see a slight

34

million steps million steps million steps million steps million steps

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

Figure 4.5: SAC (red) and PPO (blue) agents in multiple Mujoco environments
with 200K and 500K trial lengths with a total budget of 10M steps. The first
row shows the agents’ performance in all five Mujoco environments with the 200K
trail length. The second row shows the performance with the 500K trail length.
We use the last 1M steps to deploy the best hyperparameter configuration found.
The dotted line depicts the timestep agents start the deployment with the best
hyperparameter configuration found. The shaded area is a 95% bootstrapped
confidence interval of 10 independent runs.

improvement in Walker2D and Reacher environments, even in PPO agents, sug-

gesting what we had in mind so far: the hardness of the tuning depends on both

the environment and the agent algorithms, and the more hyperparameters we

have, the harder it is for us to tune all of them in a given budget. One thing to

notice is that on the later trials of 200K trial length runs, the optimizer starts

suggesting values that most likely will lead to better performance gains, which

we want in the long run.

In this chapter, we discussed what can be a naive but e↵ective way to tune

the many hyperparameters that the agents we design have. We showed that we

can tune them sequentially and get comparable or better performances than the

default hyperparameters provided in the literature. But, these gains depend on

the number of hyperparameter configurations we try and the length of each trial.

As we showed in chapter 3, we need to try many configurations of hyperparame-

ters to get to performant ones, which is quite visible when we compare the results

35

of fig. 4.2 with fig. 4.5. However, this naive extension of tuning the hyperparam-

eters can be e↵ective in most simulators we use to report the performance of new

agents we design, and using this extension will limit the consumption of time and

computation, leading to fairer comparisons as it comes with particular problems

that make the shortcomings of the algorithms visible.

36

Chapter 5

Online Tuning without Resets

In this chapter, we explore the idea of online hyperparameter tuning in rein-

forcement learning, where we do not reset the agent’s and environment’s state

after each hyperparameter setting. From the above chapter, you may have felt

that resetting the agent’s state after each hyperparameter setting is wasteful -

we throw away all the learning and the data in the bu↵er accumulated by the

agent throughout its lifetime. In the online setting, such data ine�ciency is

unacceptable - we want the agent to continually improve by adapting its hyper-

parameters. Also, resetting the agent’s and the environment’s state may not be

feasible in some settings, like never-ending learning, where the agent must learn

continuously.

Thus, we present a naive extension of the algorithm from the previous section

to a setting where we do not reset the agent’s and environment’s state after

each hyperparameter setting. The approach is simple but not optimal - a mere

starting point going forward in the online setting. Despite its many limitations,

this extension can perform as well as the standard o✏ine tuning approaches. It

is generalizable to di↵erent agents and environments, making it useful when the

37

agent cannot reset its state or the environment has no start state.

The idea is simple: we don’t reset the agent’s and environment’s state after

each hyperparameter setting, and it continues to learn with the given weights and

bu↵er, allowing the agent to adapt and improve continually. In the pseudocode

algorithm 1, this would involve removing the line that resets the agent and the

environment and the maximum number of tuning iterations. However, there

is an issue with this naive extension: some hyperparameters may result in poor

performance, especially in the early stages of learning, as the optimizer may select

speculative hyperparameters like the edge values to approximate the underlying

function, which can lead to poor weights. It may be harder to continue learning

from this poor state for a new hyperparameter setting, as it may prevent the

agent from further improvement and lead to an unfair assessment of the new

hyperparameter setting. We modify the algorithm slightly in an attempt to

mitigate this problem.

The modification involves reverting to the previous weights if the new hy-

perparameter setting causes a drop in performance. In the first step, the agent

selects a hyperparameter configuration, runs for L steps, and gets a performance

estimate G. If this performance is below an acceptable threshold for the prob-

lem, the agent reinitializes the weights and the bu↵er. Otherwise, it continues

from the last weights and bu↵er and selects a new hyperparameter setting. If,

after running again for L steps, the agent obtains a performance estimate lower

than the previous one by some threshold (e.g., 10% worse), then it reverts to

those previous weights and bu↵er. The role of the threshold is to avoid resetting

simply due to some stochasticity. Also, in early learning, it is unlikely for the

performance of a reasonable hyperparameter setting to be worse than the one in

the resetting case as it gets to learn starting from a better initial point (policy,

bu↵er, weights).

38

Algorithm 2 Online tuning without resets

Input: RL Algorithm Alg, hyperparameter set H, evaluation steps M
Initialize: Bayesian Optimizer (BO), RL internal state B, last-perf = �1
h random from H

while Interacting with the environment do
Run Alg starting using B with h for M steps to get performance G and a
new RL internal state B0

Add (h, G) to the Optimizer
If G > 0.9 ⇤ last-perf then set B = B0, last-perf = G
Get next h 2 H from the Optimizer

end while

This modification is not perfectly robust to reverting the agent’s state to a

set of weights and bu↵ers that make learning hard. But, again, our goal here

is not to provide an optimal algorithm but a simple default to facilitate the

future development of algorithms for this online tuning setting. Our goal is to

understand the benefits of starting to tailor algorithms, moving from the naive

application of BO to one more specifically designed for the online setting. The

pseudocode for this naive extension is in algorithm 2.

Now, let’s look at the results of applying this approach to the same Mujoco

environments as in the previous chapter. We hypothesize that avoiding resetting

should allow the agent to obtain comparable or better performance than the

resetting one. The experiment setup and details are the same as the resetting

case.

We first examine the di↵erence in the performance of agents that reset (algo-

rithm 1) and don’t reset (algorithm 2) in fig. 5.1. We also include a variant of

an agent that doesn’t reset - one that shares all the data from hyperparameter

configuration to configuration. We can see that the naive variant (the middle

figure) fails at 500k steps and does not recover, proving that bad hyperparam-

eters can lead to poor weights that prevent further learning. The agent that

39

million steps million steps million steps

av
er

ag
e

re
tu

rn

Figure 5.1: SAC in HalfCheetah, with three di↵erent online tuning strategies:
agent state resets with no deployment period (Algorithm 1), a simple sharing
of the agent state, and smarter sharing of the agent state (Algorithm 2). The
shaded area is a 95% bootstrapped confidence interval over 20 di↵erent runs.

doesn’t reset (rightmost figure) significantly outperforms the resetting results,

steadily improving with time. However, this algorithm does need to recognize if

a hyperparameter choice has led to poor weights to continue from an early set of

weights, and this check is a limitation of this naive extension as it can be very

environment-specific.

Next, we present SAC’s performance for all five Mujoco environments in

fig. 5.2 tested in the previous chapter. For this plot, we show the total area

under the curve (AUC) over 3 million steps for agents that reset when stopping

after 1 million steps and after 2 million steps (fig. C.1) and agents that don’t.

To make the AUC comparable across the environments, we normalize everything

between 0 and 1. We normalize it according to the highest and the lowest values

we can get on the given budget in each environment. For example, for all of the

runs in the HalfCheetah environment, we can see that no run went above 3500

and lower than -500, which we use as the maximum and minimum numbers to

normalize the data according to this equation:

X =
X �min value

max value�min value

40

Figure 5.2: Box plots of the total AUC for the 3M evaluation budget for SAC
agents tuning many hyperparameters in three di↵erent settings for all Mujoco
environments showing the results for agents that reset with 1M and 2M stopping
conditions and agents that share their state after each hyperparameter configu-
ration.

Figure 5.2 shows that the proposed approach gets comparable overall perfor-

mance as both resetting evaluation settings we tried in the previous chapter in all

environments for 3M steps tried. SAC agents that don’t reset with even the most

naive augmentation on top increase their performance as they live on, performing

comparably to the performance of the default hyperparameters.

Now, let’s investigate if di↵erent trial lengths for hyperparameters impact per-

formance similar to our approach in the previous chapter. We compare the agents’

performance in the Mujoco environments using 200K and 500K trial lengths, pro-

viding an equivalent budget for both sets of agents. This experiment aims to de-

termine whether allowing agents to test the hyperparameters for longer improves

overall performance. We hypothesize that agents with shorter trial lengths will

perform better, as they can evaluate more hyperparameters within the same time

frame and quickly recover from poor hyperparameter settings.

As shown in fig. 5.3, agents with a 200K trial length outperform those with

a 500K trial length across all environments, though only by a small margin,

consistent results from the previous section. These intriguing results indicate

41

million steps million steps million steps million steps million steps

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

Figure 5.3: SAC agent in multiple Mujoco environments with 200K and 500K
trial lengths. The first row shows the average performance in all five Mujoco
environments with the 200K trail length. The second row shows the performance
with the 500K trail length. In both cases, we give the same budget of 5M steps.
The shaded area is a 95% bootstrapped confidence interval of 20 independent
runs.

that even though agents with shorter trial lengths can test more hyperparameters

and quickly discard poor ones, they do not significantly outperform agents with

fewer hyperparameter trials. It may suggest a tradeo↵: agents with a 500K trial

length might spend more time with suboptimal hyperparameters but also have

more time to learn from good hyperparameter settings.

To further understand the impact of trial length on agent performance in this

non-resetting setting, we do another experiment where agents interact with the

environment for twice as long, 10M steps, and compare performance with 200K

and 500K trial lengths. The results of this experiment are in fig. 5.4.

As anticipated, when the agent tests more hyperparameter values, it can ad-

just more quickly, preventing a drop in performance. Although performance drop

does not occur in the 500K trial length scenario either, visually, it may appear so

due to the inclusion of interactions with poor hyperparameters. Overall, agents

with shorter trial lengths seem to correct themselves more, as evident in the

Hopper and Walker2d environments. However, the performance variance is quite

42

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

million steps million steps million steps million steps million steps

Figure 5.4: SAC agent in multiple Mujoco environments with 200K and 500K
trial lengths with a total budget of 10M steps. The first row shows the agents’
performance in all five Mujoco environments with the 200K trail length. The
second row shows the performance with the 500K trail length. The shaded area
is a 95% bootstrapped confidence interval of 10 independent runs.

large, as indicated by the substantial shaded area in the plots. To better under-

stand individual agent performance, we plot them individually. Good single-seed

performance is crucial because, in real-world applications, we typically rely on a

single agent to interact with the environment, whether a robot or an intelligent

agent in a water treatment plant.

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

million steps million steps million steps million steps million steps

Figure 5.5: Individual runs of 200K trial length runs for 10M steps. The first row
has the results for all Mujoco environments tried for seed 1, and the second row
has the results for seed 7.

Figure 5.5 illustrates the performance of SAC using two di↵erent seeds: 1

and 7. Even when it is the same agent in the same environment, depending on

43

the seed, the performance can di↵er due to di↵erent initialization according to

the seed. It is especially critical in the non-resetting case, where initial weight

configurations play a role. If the agent starts with poorly performing weights,

achieving good performance becomes di�cult in this non-stationary Bayesian

Optimization (BO) setting, leading to discrepancies in the independent runs,

highlighting that, while this naive extension might work in some instances, it is

not consistently reliable.

You may have also noticed that we didn’t include the results for PPO agents

in this section, as this approach does have the same impact on PPO agents as on

SAC agents. Several factors might contribute to the cause of PPO not benefitting

from this strategy, but two significant reasons stand out. First, PPO has more

hyperparameters, making tuning more challenging. Second, PPO uses a clipped

surrogate objective for training, which prevents the network weights from drifting

too far from each other. It, in response, can cause the weights to remain close

to their initial values, making PPO more sensitive to the initial weights and

hindering performance in this naive sharing setting. The results for PPO are

presented in the appendix fig. D.2, fig. D.3, and fig. D.4.

In conclusion, this sharing algorithm is the most straightforward extension

of the resetting setting to be more apt to the online RL. Although this method

is imperfect and only works in specific cases, it shows some progress toward

designing algorithms or tuning methods that can adapt to environmental changes

and tune and evaluate simultaneously.

44

Chapter 6

Never-ending Reinforcement

Learning

Continual or never-ending RL (Khetarpal et al., 2022) is a subfield of RL that

focuses on agents that learn continually without any resets. In this chapter, we

explore the idea of online hyperparameter tuning in this never-ending setting,

where the agent lives on and continues to learn in an environment that never

ends. This setting is critical for the future of RL, as it is more realistic and closer

to real-world applications.

Despite the importance of this setting, there is no good testbed. Some envi-

ronment benchmarks can work in a never-ending setting include Crafter (Hafner,

2021), Nethack (Küttler et al., 2020), MineCraft (Guss et al., 2021), and robotics

simulators (Wo lczyk et al., 2021). Unfortunately, these domains are either costly

to run or require massive agent architectures, posing problems in terms of com-

putational access and compatibility with the long-running experiments necessary

for never-ending learning.

Another option is Jelly Bean World (JBW) (Platanios et al., 2019), a foraging

45

domain where an agent explores an infinite grid world collecting jellybeans and

avoiding onions. However, as new patches of the environment are procedurally

generated, it results in an unbounded memory footprint, making long-running

learning experiments impractical.

Given the lack of fast continuing environments, we developed a configurable

and lightweight testbed for never-ending RL called Flower-picker: a finite grid-

world where the agent collects flowers and avoids thorns. In this chapter, we

apply the online tuning approach to this new environment to demonstrate the

challenges of online tuning in a never-ending setting.

6.1 Flower-picker Environment

We introduce the Flower-picker environment, a never-ending grid world that re-

quires exploration and adaptation to non-stationarity. It is a seemingly infinite

environment containing collectible items.

Figure 6.1: Example of the en-
vironment. The blue dot is
the agent. The red and green
squares are objects that give
some reward when collected.

The world size defines the grid size of the

entire world. The environment wraps around

itself to simulate an infinite world from the

agent’s point of view. Instead of being a sim-

ple grid with boundaries, it is a torus where the

agent can travel indefinitely in any direction.

Figure 6.1 shows example configurations of

the Flower-picker environment. The blue dot

represents the agent. The green squares rep-

resent rewarding objects, referred to as flow-

ers, while the red squares represent harmful

46

objects, referred to as thorns. Both flowers and thorns are collectible items that

provide rewards of Rflower and Rthorn, set to 1 and �1, respectively, in our ex-

periments. The actions are {up, down, left, right}, moving the agent in the

corresponding cardinal direction. The agent gets 0 as a reward for every step

taken in the environment.

The agent’s observation at each step is a tensor of binary values corresponding

to the state of each cell in its field of view, i.e., whether a cell is occupied or empty.

The observations are agent-centered, meaning the agent is always at the center

of the observation. The observation tensor has a shape of (world size, world size,

unique items), where each layer corresponds to a di↵erent item type, making the

environment fully observable to the agent.

0 25M 50M

0.02

0.03

0.08

0.13

0.18

Random
SAC

Figure 6.2: The performance of 3 in-
dividual seeds of SAC agent trained
for 50M steps.

We use a simple configuration of the

environment to test the online-tuning

paradigm. In this setup, the ratio of flow-

ers is relatively high, making it easier for

the agent to find flowers by simply explor-

ing the environment. Additionally, after

collection, objects respawn at random, un-

occupied locations. Despite being a simple

configuration, it remains a challenging en-

vironment for the agent, testing its ability

to explore di↵erent areas of the world.

We use a 15x15 environment, where 5% of the grid cells contain flowers and

10% thorns. The agent receives +1 as a reward for collecting a flower and -1 for

collecting a thorn. The observation is a tensor of binary values representing the

status of each cell in its field of view, i.e., whether a cell is occupied or empty.

47

The observation tensor has a shape of (15, 15, 2), where each layer corresponds

to a di↵erent item type. The performance of the SAC agent for this environment

configuration is around 0.15, as shown in fig. 6.2.

6.2 Online Tuning in Flower-picker

We use the online tuning method outlined in chapter 5 for the Flower-picker

environment introduced earlier. The results, shown in fig. 6.3, indicate that this

method successfully identifies nearly optimal hyperparameters for the SAC agent

in the environment. However, as observed in previous experiments, the PPO

agent has di�culty improving the performance, consistent with the findings in

chapter 5.

Figure 6.3: In the Flower-picker environment, we evaluate SAC and PPO agents
for over 1 million steps in a 15x15 grid environment using the non-resetting
paradigm, with each trial consisting of 50K steps. The results are 95% boot-
strapped confidence intervals based on 20 independent runs.

Next, we evaluate the online tuning approach in the environment with an

extended training duration of 10 million steps. The outcomes of this experiment

are in fig. 6.4 where we showcase the individual runs of the agents.

The results are consistent with 1M results - the SAC agent gets to near-

48

Figure 6.4: SAC and PPO agents are evaluated for 10 million steps in a 15x15
grid. Each trial consists of 50K steps. The results show the individual runs of 3
independent seeds.

optimal results after 10M steps, while PPO agents can’t seem to learn much,

being any better than a random agent. If we look closely, the individual runs

displayed in the fig. 6.4 show that the SAC agents get the same value as in the

fig. 6.2. These results illustrate that even though this naive extension of online

tuning works on selective agents, namely SAC agents from our experiments, seeing

their separate runs in this continuing environment where we share the weights, the

bu↵er, and the optimizer state shows that developing methods that tune and learn

simultaneously using online tuning methodology is necessary in the environments

where the agent has a single lifetime and that we should investigate and make

better algorithms.

49

Chapter 7

Conclusions and Future Work

We introduced a novel evaluation paradigm that eliminates the hidden hyperpa-

rameter tuning phase typically used in reinforcement learning. Instead, we tune

the agent’s hyperparameters online within a given budget, dynamically adjusting

them as the process unfolds. We use Bayesian Optimization as a meta-learner to

provide the RL algorithm with hyperparameter configurations to try out sequen-

tially. We found that, even with periodic resets, our approach achieves results

comparable to or even better than the default settings in multiple Mujoco envi-

ronments. However, our results also show that hyperparameters depend on the

environment, the ranges we define, the number of hyperparameters, and the trial

counts, making the algorithms with more hyperparameters to tune, like PPO,

struggle in this paradigm. Lastly, we propose a basic methodology for not reset-

ting, which achieves performance levels similar to resetting approaches, marking

a step towards e↵ective data utilization in scenarios where learning is within

a single lifetime. We also introduce a configurable and lightweight testbed for

never-ending RL called Flower-picker and apply the online tuning approach to

show the benefits of online tuning in a never-ending setting.

50

Even though we showcase that the proposed online paradigm is a great start-

ing point, this is still the beginning of using hyperparameter tuning as part of on-

line evaluation. The non-resetting approach we propose does not perform better

than the resetting ones, opening up an avenue to try and make better algorithms

to outperform the current approach. Additionally, the Bayesian Optimization

algorithms are not for non-stationary cases, and as we add more non-stationarity

by sharing the weights and bu↵er, this raises the need to develop sequential

decision-making algorithms that account for the changes in the agent’s state.

We also want to contribute to the reproducibility and fairness of the results by

budgeting the interactions with the environment.

In the future, we plan to explore how the algorithm will behave if we add

additional constraints to the Bayesian optimizer in the form of changes in the

network or the agent’s performance. We also plan to explore more advanced

Bayesian Optimization algorithms that can handle non-stationarity better, like

using neural networks as an acquisition function. Lastly, we plan to use more

complex environments and algorithms to see how the online tuning approach

behaves in more challenging scenarios.

51

References

Afsar, M. M., Crump, T., and Far, B. Reinforcement learning based recommender

systems: A survey. ACM Computing Surveys, 2022.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. Optuna: A next-

generation hyperparameter optimization framework. In International Confer-

ence on Knowledge Discovery & Data Mining, 2019.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and

Bakshy, E. Botorch: A framework for e�cient monte-carlo bayesian optimiza-

tion. Advances in Neural Information Processing Systems, 33, 2020.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47, 2013.

Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13, 2012.

Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyper-

parameter optimization in hundreds of dimensions for vision architectures. In

International Conference on Machine Learning, volume 28, 2013.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G.

52

Dopamine: A research framework for deep reinforcement learning. arXiv

preprint arXiv:1812.06110, 2018.

Ceron, J. S. O. and Castro, P. S. Revisiting rainbow: Promoting more insightful

and inclusive deep reinforcement learning research. In International Conference

on Machine Learning, 2021.

Degris, T., Javed, K., Sharifnassab, A., Liu, Y., and Sutton, R. Step-size opti-

mization for continual learning. arXiv preprint arXiv:2401.17401, 2024.

Eimer, T., Benjamins, C., and Lindauer, M. Hyperparameters in contextual rl

are highly situational. arXiv preprint arXiv:2212.10876, 2022.

Eimer, T., Lindauer, M., and Raileanu, R. Hyperparameters in reinforcement

Learning and how to tune them. In International Conference on Machine

Learning, 2023.

Falkner, S., Klein, A., and Hutter, F. Bohb: Robust and e�cient hyperparameter

optimization at scale. In International Conference on Machine Learning, 2018.

Feurer, M. and Hutter, F. Hyperparameter optimization. Automated machine

learning, 2019.

Flennerhag, S., Schroecker, Y., Zahavy, T., van Hasselt, H., Silver, D., and Singh,

S. Bootstrapped meta-learning. In International Conference on Learning Rep-

resentations, 2022.

Franke, J. K., Köhler, G., Biedenkapp, A., and Hutter, F. Sample-e�cient auto-

mated deep reinforcement learning. In International Conference on Learning

Representations, 2021.

53

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem,

O. Brax - a di↵erentiable physics engine for large scale rigid body simulation,

2021a.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem, O.

Brax - a di↵erentiable physics engine for large scale rigid body simulation. In

Advances on Neural Information Processing Systems Datasets and Benchmarks

Track, 2021b.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep reinforcement learning for

robotic manipulation with asynchronous o↵-policy updates. In 2017 IEEE

international conference on robotics and automation (ICRA), 2017.

Guss, W. H., Castro, M. Y., Devlin, S., Houghton, B., Kuno, N. S., Loomis, C.,

Milani, S., Mohanty, S., Nakata, K., Salakhutdinov, R., et al. The minerl 2020

competition on sample e�cient reinforcement learning using human priors.

arXiv preprint arXiv:2101.11071, 2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: O↵-policy

maximum entropy deep reinforcement learning with a stochastic actor. In

International Conference on Machine Learning, 2018.

Hafner, D. Benchmarking the spectrum of agent capabilities. In International

Conference on Learning Representations, 2021.

Hertel, L., Baldi, P., and Gillen, D. L. Quantity vs. Quality: On hyperparameter

optimization for deep reinforcement learning. arXiv preprint arXiv:2007.14604,

2020.

Jacobsen, A. and Cutkosky, A. Parameter-free mirror descent. In Conference on

Learning Theory, 2022.

54

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A., and White, M. Meta-

descent for online, continual prediction. In Association for the Advancement

of Artificial Intelligenc, volume 33, 2019.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J.,

Razavi, A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., Fernando,

C., and Kavukcuoglu, K. Population based rraining of neural networks. arXiv

preprint arxiv:1711.09846, 2017.

Janjua, M. K., Shah, H., White, M., Miahi, E., Machado, M. C., and White, A.

Gvfs in the real world: making predictions online for water treatment. Machine

Learning, 2023.

Javed, K., Sharifnassab, A., and Sutton, R. S. Swifttd: A fast and robust algo-

rithm for temporal di↵erence learning. In Reinforcement Learning Conference,

2024.

Kearney, A., Veeriah, V., Travnik, J. B., Sutton, R. S., and Pilarski, P. M.

TIDBD: adapting temporal-di↵erence step-sizes through stochastic meta-

descent. In Advances on Neural Information Processing Systems, 2018.

Kearney, A., Veeriah, V., Travnik, J. B., Pilarski, P. M., and Sutton, R. S.

Learning feature relevance through step size adaptation in temporal-di↵erence

learning. arXiv preprint arxiv:1903.03252, 2019.

Khetarpal, K., Ahmed, Z., Cianflone, A., Islam, R., and Pineau, J. Re-evaluate:

Reproducibility in evaluating reinforcement learning algorithms. International

Conference on Machine Learning Reproducibility in ML Workshop, 2018.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. Towards continual reinforce-

ment learning: A review and perspectives. Journal of Artificial Intelligence

Research, 75, 2022.

55

Kiran, M. and Ozyildirim, M. Hyperparameter tuning for deep reinforcement

learning applications, 2018.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. Fast bayesian

optimization of machine learning hyperparameters on large datasets. In Inter-

national Conference on Artificial Intelligence and Statistics, 2017.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici, M., Grefenstette, E.,

and Rocktäschel, T. The nethack learning environment. Advances in Neural

Information Processing Systems, 2020.

Lange, R. T. gymnax: A JAX-based reinforcement learning environment library,

2022.

Lawrence, N. P., Damarla, S. K., Kim, J. W., Tulsyan, A., Amjad, F., Wang, K.,

Chachuat, B., Lee, J. M., Huang, B., and Gopaluni, R. B. Machine learning

for industrial sensing and control: A survey and practical perspective. Control

Engineering Practice, 145, 2024.

Letham, B. and Bakshy, E. Bayesian optimization for policy search via online-

o✏ine experimentation. Journal of Machine Learning Research, 20, 2019.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Ben-

jamins, C., Ruhkopf, T., Sass, R., and Hutter, F. Smac3: A versatile bayesian

optimization package for hyperparameter optimization. Journal of Machine

Learning Research, 23, 2022.

Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. Automatic gait opti-

mization with gaussian process regression. In International Joint Conference

on Artifical Intelligence, 2007.

56

Luo, J., Paduraru, C., Voicu, O., Chervonyi, Y., Munns, S., Li, J., Qian, C.,

Dutta, P., Davis, J. Q., Wu, N., et al. Controlling commercial cooling systems

using reinforcement learning. arXiv preprint arXiv:2211.07357, 2022.

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M. Tuning-free step-

size adaptation. In International Conference on Acoustics, Speech and Signal

Processing, 2012.

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J. B., Krause, A.,

Seeger, M., and Archambeau, C. Automatic termination for hyperparameter

optimization. In International Conference on Automated Machine Learning,

2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beat-

tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,

S., and Hassabis, D. Human-level control through deep reinforcement learning.

Nature, 518, 2015.

Nguyen, V., Schulze, S., and Osborne, M. Bayesian optimization for iterative

learning. Advances in Neural Information Processing Systems, 33, 2020.

Obando-Ceron, J., Araújo, J. G., Courville, A., and Castro, P. S. On the consis-

tency of hyper-parameter selection in value-based deep reinforcement learning.

In Reinforcement Learning Conference, 2024.

Parker-Holder, J., Nguyen, V., and Roberts, S. One-shot bayes opt withproba-

bilistic population based training. arXiv preprint arxiv:2002.02518, 2020.

Parker-Holder, J., Nguyen, V., and Roberts, S. J. Provably e�cient online hy-

perparameter optimization with population-based bandits. Advances in Neural

Information Processing Systems, 33, 2020.

57

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T.,

Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., and Lindauer,

M. Automated reinforcement learning (autorl): A survey and open problems.

Journal of Artificial Intelligence Research, 74, 2022.

Parker-Holder, J., Nguyen, V., Desai, S., and Roberts, S. Tuning mixed input

hyperparameters on the fly for e�cient population based autorl. In Advances

in Neural Information Processing Systems, 2024.

Patterson, A., Neumann, S., Kumaraswamy, R., White, M., and White, A. The

cross-environment hyperparameter setting benchmark for reinforcement learn-

ing. In Reinforcement Learning Conference, 2024a.

Patterson, A., Neumann, S., White, M., and White, A. Empirical design in

reinforcement learning. Journal of Machine Learning Research, 2024b.

Paul, S., Kurin, V., and Whiteson, S. Fast e�cient hyperparameter tuning for

policy gradients. Advances in Neural Information Processing Systems, 33, 2020.

Platanios, E. A., Saparov, A., and Mitchell, T. Jelly bean world: A testbed for

never-ending learning. In International Conference on Learning Representa-

tions, 2019.

Ra�n, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N.

Stable-baselines3: reliable reinforcement learning implementations. Journal of

Machine Learning Research, 22, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal

policy optimization algorithms. arXiv preprint arxiv:1707.06347, 2017.

Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization

58

of machine learning algorithms. Advances in Neural Information Processing

Systems, 25, 2012.

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F. Bayesian optimiza-

tion with robust bayesian neural networks. Advances in Neural Information

Processing Systems, 29, 2016.

Sutton, R. S. Adapting bias by gradient descent: An incremental version of delta-

bar-delta. In The Association for the Advancement of Artificial Intelligence,

volume 92, 1992.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT

press, 2018.

Tanner, B. and White, A. Rl-glue: Language-independent software for

reinforcement-learning experiments. Journal of Machine Learning Research,

10, 2009.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based

control. In International Conference on Intelligent Robots and Systems, 2012.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with

double q-learning. In Association for the Advancement of Artificial Intelligenc,

volume 30, 2016.

Wan, X., Lu, C., Parker-Holder, J., Ball, P. J., Nguyen, V., Ru, B., and Os-

borne, M. Bayesian generational population-based training. In International

Conference on Automated Machine Learning, 2022.

Wang, H., Sakhadeo, A., White, A. M., Bell, J. M., Liu, V., Zhao, X., Liu, P.,

Kozuno, T., Fyshe, A., and White, M. No more pesky hyperparameters: O✏ine

59

hyperparameter tuning for RL. Transactions on Machine Learning Research,

2022.

Watanabe, S. Tree-structured parzen estimator: Understanding its algorithm

components and their roles for better empirical performance. arXiv preprint

arXiv:2304.11127, 2023.

White, M. and White, A. A greedy approach to sdapting the trace parameter

for temporal di↵erence learning. In International Conference on Autonomous

Agents & Multiagent Systems, 2016.

Wo lczyk, M., Zajac, M., Pascanu, R., Kuciński, L., and Mi loś, P. Continual

world: A robotic benchmark for continual reinforcement learning. Advances in

Neural Information Processing Systems, 2021.

Xu, Z., van Hasselt, H., and Silver, D. Meta-gradient reinforcement learning. In

Advances on Neural Information Processing Systems, 2018a.

Xu, Z., van Hasselt, H. P., and Silver, D. Meta-gradient reinforcement learning.

Advances in Neural Information Processing Systems, 31, 2018b.

Zahavy, T., Xu, Z., Veeriah, V., Hessel, M., Oh, J., van Hasselt, H. P., Silver,

D., and Singh, S. A self-tuning actor-critic algorithm. Advances in Neural

Information Processing Systems, 33, 2020.

Zhang, B., Rajan, R., Pineda, L., Lambert, N., Biedenkapp, A., Chua, K., Hutter,

F., and Calandra, R. On the importance of hyperparameter optimization for

model-based reinforcement learning. In International Conference on Artificial

Intelligence and Statistics, 2021.

Zhou, H., Lin, Z., Li, J., Fu, Q., Yang, W., and Ye, D. Revisiting discrete soft

actor-critic. arXiv preprint arXiv:2209.10081, 2022.

60

Appendix

A Design Choices and Hyperparameter Values

Used in the Experiments

All the hyperparameter ranges and values for all algorithms in all environments

can be seen in table A.1. We consider 3 di↵erent RL algorithms - SAC, PPO,

and DDQN. SAC is for continuous action spaces, but we extended it to work

with discrete action spaces (Zhou et al., 2022). All the hyperparameter ranges

listed below are chosen according to the standard values used in hyperparameter

sweeping, like not too big of a learning rate or small discount factor �. We applied

log-uniform scaling to the learning rate and � values for the tuner to prefer values

at the edges of the given ranges more.

We tune only a subset of all the hyperparameters as we separate algorithm-

specific and compute-specific hyperparameters. For example, we let the bu↵er

size or the network architecture stay the same as this hyperparameter depends on

the budget the experiment designer can give. Meanwhile, depending on the envi-

ronment, the algorithm-specific values may change - like the amount of gradient

clipping in PPO - so we tune the ones the experimenter may not have enough

intuition about.

61

Table A.1: Hyperparameter values and ranges for SAC, PPO, and DDQN.

Parameter Value Ranges

Shared

optimizer Adam
nonlinearity ReLU
learning rate 1e� 2/ 3 · 10�4 log([1e� 6, 0.1])
discount (�) 0.99 log([0.9, 1])
number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 64

SAC

target smoothing coe�cient (⌧) 0.005 [1e� 4, 0.1]
target update interval 1
update frequency 1
reward scale 1 / 5 [1, 20]
entropy coe�cient 0.2 [1e� 4, 0.3]
replay bu↵er size 106 / 103

start updates 500 / 103

normalize observations False
normalize rewards False

PPO

nonlinearity Tanh
GAE � 0.8 / 0.95 [0.7, 1]
PPO clip ✏ 0.1 / 0.2 [0.1, 0.8]
value loss coe�cient 0.5 [0.1, 1]
entropy coe�cient 0.0 [0.0, 0.5]
gradient clip 0.5 [0.1, 1]
update epochs 4
rollout steps 256 / 2048
normalize observations True
normalize rewards True

DDQN

target smoothing coe�cient (⌧) 0.005 [1e� 4, 0.1]
target update interval 1
update frequency 1
replay bu↵er size 106 / 103

start updates 500 / 103

normalize observations False
normalize rewards False

62

A.1 Details on the Environments

For all Mujoco and Classic control experiments, we used jit-compiled versions of

the environments, namely the Brax (Freeman et al., 2021a) and Gymnax (Lange,

2022) packages, which made our experiments quite fast - it took about 2.5 hours

to get 5M steps in Mujoco using brax.

B Tuning is Hard in the Cartpole Environment

In this section, we present the results for the same experiment as in the section for

the DDQN algorithm in the Cartpole environment. The Cartpole environment

is another classic reinforcement learning problem where an agent must balance a

pole on a moving cart. It is an episodic environment, with each episode having

a maximum length of 200. If we do not limit the episodes to some steps, this

environment can be used as a continuing environment. In the Cartpole environ-

ment, the agent receives a reward of +1 for each step the pole remains upright,

with the episode ending if the pole falls beyond a certain angle or the cart moves

o↵-screen. The maximum possible reward is 200 per episode, corresponding to

the 200 environment step limit.

As in the fig. 3.1, we show the distribution plots of the highest average return

achieved by the DDQN agent over 5 di↵erent seeds. The x-axis shows the average

return, while the y-axis is the number of trials. The dotted line depicts the

average performance, which in this case is 180. As we can see from the plot, we

get consistent results for the Mountain car environment in the chapter 3. The

more hyperparameters we have, the more hyperparameter configurations we need

to try to achieve good overall performance over all the seeds.

63

Number of trials

Av
er

ag
e

re
tu

rn

Learning rate + Learning rate + batch size + Learning rate + +

Learning rate

5 10 20 50
0

25

50

75

100

125

150

175

200

5 10 20 50
0

25

50

75

100

125

150

175

200

5 10 20 50
0

25

50

75

100

125

150

175

200

5 10 20 50
0

25

50

75

100

125

150

175

200

5 10 20 50
0

25

50

75

100

125

150

175

200

5 10 20 50
0

25

50

75

100

125

150

175

200

Random search
Optuna search

Figure B.1: Distribution plots of the highest average return achieved by the
DDQN agent in the Cartpole environment over 5 seeds. The y-axis shows the
average return, while the x-axis shows the number of trials. The dotted line
depicts the average good performance, which is 180.

C Results with Resetting

The results for the SAC and PPO algorithms for both 1M and 2M stopping

conditions tuning one and many hyperparameters. The blue curve depicts PPO’s

performance over 20 seeds, while the red curve is SAC.

64

Figure C.1: SAC (red) and PPO (blue) algorithms in multiple Mujoco environ-
ments. In the first column, we have the performance of the algorithms with
default hyperparameters. The second and third columns show the algorithms’
performances within the 3 million budget, where we stop hyperparameter opti-
mization after 1M steps with the di↵erence of tuning one and many hyperpa-
rameters. The last two columns are the performance of the algorithms when
we stop at 2M steps, letting it try 10 hyperparameter configurations instead of
5 as in the 1M stopping condition. The dotted line depicts the timestep agent
started deploying the best hyperparameters it has seen. The shaded area is a
95% bootstrapped confidence interval over 20 di↵erent runs.

D Results without Resetting

In this section, we present the plots for SAC and PPO algorithms in the non-

resetting paradigm we introduced in the chapter 5. In fig. D.1, we show the

65

results of the SAC agent tuning its hyperparameters without resetting, for 5M

global steps. As we can see from the plot, in almost all cases, the agent gets to

good performance after 3M steps but keeps slowly increasing its performance.

million stepsmillion steps million steps million steps million steps

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

Figure D.1: The results for the SAC algorithm in Mujoco environments using the
non-resetting paradigm. The red line shows the performance of agents for a 5M
online interaction budget where we share the weight on some conditions, while
the blue line is the performance of the agents that share their knowledge naively
from configuration to configuration in the same budget. The plots in the first
row correspond to the setting where we only tune the learning rate, and in the
second row when we tune all 5 hyperparameters.

Even though conditional sharing helps SAC to perform better over time, the

same results are not visible in PPO. Interestingly, in PPO, it seems like both

sharing methods behave similarly. This can result from having a clipped surrogate

objective that doesn’t let the parameters drift too far away from each other, even

when we change the hyperparameters. This means that we can achieve better

performance if we design algorithms that take into account the change from one

hyperparameter to another, or PPO may have a harder time tuning its many

hyperparameters. The same can be seen in PPO results where the agents had

10M steps of total budget as depicted in fig. D.3.

And the plots of the individual runs of the PPO agents for seeds 1 and 7. We

only plot the performances for the Reacher environment, as PPO seems to have

some benefits from sharing the accumulated knowledge on a condition only here.

66

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

million steps million steps million steps million steps million steps

Figure D.2: PPO in a variety of Mujoco environments. The red line shows the
performance of smart sharing agents for a 5M budget, while the blue line is the
performance of the naive sharing agents for the same budget. The plots in the
first row correspond to tuning only the learning rate, and in the second row when
we tune all 7 hyperparameters.

million steps million steps million steps million steps million steps

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

Figure D.3: PPO agent in multiple Mujoco environments with 200K and 500K
trial lengths with a total budget of 10M steps. The first row shows the perfor-
mance of the agents in all five Mujoco environments with the 200K trail length.
The second row shows the performance with the 500K trail length. The shaded
area is a 95% bootstrapped confidence interval of 10 independent runs.

This result may indicate that, for PPO, we may need longer trial lengths as it

may get to good performance levels later than SAC due to its trajectory-based

learning rules.

67

av
er

ag
e

re
tu

rn
av

er
ag

e
re

tu
rn

million steps million steps

Figure D.4: Depiction of individual runs of 200K trial length runs (first row) and
500K trial length (second row) for 10M steps. The first row has the results for
all Mujoco environments tried for seed 1, and the second row has the results for
seed 7.

D.1 Total AUC Results for PPO

The total AUC for PPO in Mujoco environments. In all plots, we evaluate for

3M steps tuning 7 hyperparameters. The first 2 box plots are the performances

for stopping at 1M (light pink) and 2M (blue) steps. The last (bright pink)

boxplot is where we share the agent’s state while considering the performance of

the previous agent.

As we can see from the plots, the smart sharing approach is not as e↵ective

in PPO as it is in SAC. Especially in the Hopper and Walker environments, the

smart sharing approach does not perform as well as the resetting agents. This

again shows that the algorithm’s design is crucial in the online tuning setting.

68

Figure D.5: Box plots of the total AUC of the PPO algorithm for the 3M eval-
uation budget tuning 7 hyperparameters in three di↵erent settings for all the
Mujoco environments.

D.2 Final Performance Results for SAC and PPO

Figure D.6: Box plots of the final performances of the SAC(top) and PPO (bot-
tom) algorithms for the 3M evaluation budget tuning 7 hyperparameters in three
di↵erent settings for all the Mujoco environments testbeds.

69

	Abstract
	Preface
	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background
	Reinforcement Learning
	Value Function and Policy Learning
	Online Reinforcement Learning
	RL-Glue Interface

	Hyperparameter Tuning
	Hyperparameter Sweeping or Grid Search
	Random Search
	Bayesian Optimization
	Other HPO Methods

	Tuning is Hard Under Many Hyperparameters
	Online Tuning with Resets
	Online Tuning without Resets
	Never-ending Reinforcement Learning
	Flower-picker Environment
	Online Tuning in Flower-picker

	Conclusions and Future Work
	References
	Appendix
	Design Choices and Hyperparameter Values Used in the Experiments
	Details on the Environments

	Tuning is Hard in the Cartpole Environment
	Results with Resetting
	Results without Resetting
	Total AUC Results for PPO
	Final Performance Results for SAC and PPO

