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ABSTRACT S

An intuitive trial-and-error approach to history-matching can be
costly and time-consuming. Considerable efforts have therefore been
made to autoqate history-matching procedures for implementation on high-
speed computers.

Several suth automatic history-matching methoés havé been reported,
but, because their effectiveness and reliability remain to be
demons%F;ted, they have not been well-received by practising reservoir
engineers.

This study efﬁmines presently available automatic history-matching -
algorithms, discusses those that appear most viable, and explores the
fundamental ;g;fnesses of these methods. In addfzjon, the existence of
alternative approaches to solving the inverse problem for analogous, but

less complex, situations is noted.

e
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NOMENCLATURE
ENGLI SH ,
B = formation volume factor, m315m3
cr = rock compressibility, Pa‘l
D = depth, measured vertically positi&e downwards, m
g = acceleration due to gravity, m/s2
K = absolute permeability, m2
' k. =vrelative permeability, fraction
cho = gas-oil capillary pressure, Pa
Peow * 0i1-water capil’ary pressure, Pa
Pf = phase pressure, Pa
qf' = phase fluid production(-)/injectien(+) rate, sm3/s
Reo * solubility of .gas in 1i§u1d phase, smgfsmg
Rew = solubility of gas in water phase, 5m3/5m3
S¢ = phase saturation, fraction
t = time, s
V, - bulk volume, m3
xga = mole fraction of oil, water, or gas fn agueous phase
xgy = mole fraction of oil, water, or gas 1n.11quid phase
xey = mole fraction of oil, water, or gas in vapour phase

(1x)



Greek

st = time step, tM™1 -4, s

AX,Ay,AZ = block dimensions in x,y,z directions, m

p = viscosity, Paes

density, kg/m3

o=
7 = molar density, kgsmaie/MB

® = potential, Pa

¢ = porosity, fraction )

Subscripts

a = aqueous phase

f = phase

g = gas

i,j,k = x,y,z direction nodal subscripts
1 = liquid phase

o'= ofl

v = vapour

w = water

x,y,Z = X,¥,z directions

Superscripts

n = present time level index

n+1 = advanced time level index

(x)



- CHAPTER ONE
) | INTRODUCTION ‘

Increasingly sophisticated high-speed computing capabilities and
attendan;;ﬁéve1apmeﬂt of efficient numerical algorithms have made it
possible to utilize complex mathematical models for analysis,
di$é1nament; and management of petroleum reservoirs. Such models can
represent the simultaneous flow of oil, water, and gas, and tne mitual
interactions of these fluids, within the porous and permeable strata
which comprise a reservoir.

A reservoir simulator is used, first and foremost, for predicting'
the volume of oil recoverable by various production schemes. A wide
‘spectrum of different operating parameters can thus be tested; and
provided that the geology of the reservoir is known in sufficient
detail, and a good estimate of the porosity and permeability of the rock
can be made, the simu?atian results can then be used to formulate an
optimal development strategy for a particular field.

Rough estimates of the rock properties may be obtained from
analysis of core samples taken from the reservoir. However, due to high
costs of drilling on closely spaced centres - e.Q., 15-20 m apart - the
number of samples, is usually small; and for a large reservoir which is
1ikely to be heterogeneous, such estimates are, at best, littie more
than educated guesses. Some refinement of the estimates is possible if
chef known data - i.e. the performance nistories of the reservoir - are
incorporated. Such so-called 'historysmatzhigé‘ (or 'inverse

simulation') involves using a reservoir simulator to 'adjust', within
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s;t bounds, fuiure production/injection and pressure parameters to
;31ugs consistent with previous reservoir behaviour. More specifically,
it reqyires iterative computer simulatifns, with each run adjusting the
primary input data (porosity, permeability, and relative permeability)
until an acceptable 'match’ has been abta{ned;
While the concept of history-matching is straightforward, the
' a;hﬂevgment of a good match is difficult, primarily because of thé non-
Iﬁﬁﬁueness of the solution (see, e.g., Chapter 2). In practice, any
history-match therefore seeks to determine the 'best' set of inpﬁt

£

parameters E}thin pre-determined bounds (which are~usually based on
restimates from core samples).

Although history-matching is frequently performed by reservoir
engineers on an intuitive, tafal-and-error basis, considerahle efforts
have been made to d255gn ‘automatic' history-matching algorithms, i.e.,
to program, in some fashion, a computer to determine An optimal set.of
PESEPIQ%FFQEFEMEEEFSS -But despite these atteﬂpts to simaIifi (and speed

up) ‘the entire history-matching procedure, extant technigues appear not

ta.,' “been well-peceived by practising rgservoir engineers - possibly
due to perceived sha%:coming; of such techniques. This study therefore
examines the various, presently available, automatic history«matching
’algﬂriéhms, and evaluates their relative merits-and weaknesses as viable

alternatives to non-automatic techniques.



CHAPTER TWO

I

REVIEW OF THE LITERATUR

First attempts to estimate the geological properties of a petroleum
reservoir for use in reservoir simulation studies were reported by
Kruger (1961). He emphasized the importance of obtaining agreement
between calculated and observed pressure histories, and suggested that
reservoir properties be adjusted by small, successive égrturbatians,
with a simulator run yndertaken after each iteration in order to
determine systematically an 'acceptable' match.

Nelson k1962) provided a short analysis of the paper by Kruger
(19615, and in particular, discussed conditions necessary to insure a
un{que and réa]gstic determination of the permeability distribution.

Efforts te automate this procedure, and thug exploit the speed and
5ff1c1enqy of. computers, were inftiated by Jacquard (1964), dnd were
predicated on the mathematics of an electrical resistance - capacitance
network (known as an 'electric analyzer'). After demonstrating the
close sihf]arity between such a network and a reservoir model, Jacquard
developed a method, for interpreting pressure history data in terms of
geological properties throughout a reservoir. The paper provides sample
calculations of permgabiiit{es for a simple, single-well reservoir with
radial-circular heterogeneity, and indicates é pronounced sensitiviti of

“results to minor variations in reservoir prggéurg.
Jacquard & Jaiﬁ (1965) extended this technique, with the aid of

- | ]
least-squares methods, to the case of a two-dimensional reservoir, For

this purpose, the reservoir was divided into zones, each of which sés



assumed to have a constant permeability. (Similar zonation was

—

subseqdint]y adopted by other authors of automatic history-matching
algorithms in order to reduce the number of unknown parameters.) The
study used a reservoir simulator to generate an ‘observed’' pressure
history, and then employed these data to compute reservoir parameters.
It was found that, while retaining the original zonation led taa
excellent reconstitution of the reservoir, alternative zonations yielded
poor estimates of reservoir properties.

Dupuy (1968) pursued the work of chaua%d & Jain (1965), and found
instabilities reflected in the fact that calculated permeabilities
frequently oscillated fra@ one iteration to the next. He also noted
that certain permeabilities were unrealistically high, and suggested the
solution technique emplayed be ccuﬁ1ea with imposition of some limiting
values.

Janns (1966), following the recommendations of Kruger (1961),
Jacquard (1964), and Jacquard & Jain (1965), proposed the use of
nonlinear regression analysis as means for selecting adjustment factors
for reservoir parameters. An adaptation of the method of steepest
descent, the technique was based on an analysis of effects that small,
successive perturbations in each zone exert on performance histories
predicted by a simulator. while the method was designed to handle:
single-phase flow, Jahns pointed out that it would also be suitable for
multiphase flow if saturation changes were re\at1§e1y small. Jahns was,
incidentally, the first to consider the adjustment of porosity as well
as permeability, and further recognized the non-uniqueness of his

geological estimates. The paper applied the algorithm to two actual
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reservoirs; and, in both cases, the average computed properties compared
favorably with the, albeit sparse, available data. It should be noted,
however, that there was a tendency to predict rather extreme values -
according to Jahns, due to the short-term performance history used in
his calculations.

Nelson (1;53) approached the problem of determining reservoir
permeability by incorporating an energqy dissipation analysis. He
examined the equation for single-phase flow, and reduced the resulting
first—arder;partiai differential equation in the unknown permeability to
a system of characteristic equations; and this was then used to obtain a
differential expression for permeability as a function of the known
pressure distribution. For steady flow, for which the expression could
be integrated, direct calculation of the permeabtlity distribution along
successive streamlines was possible. However, although this method
produced excellent results for several single-phase test reservoirs, it
is now of little practical value: the need for additional estimation of
porosity, modelling of three-dimensional systems - and, most important,
modelling of multiphase flgw (where relative permeabilities must also be
estimated) - leads to mathematical equations that are too complex to be
solved by this method.

The work of Coats et al. (1970) led to the use of random selection
of reservoir properties in a set of computer simulations. Assuming
linear relationships between matching errors and reservoir properties,
and calculating the coefficients for this relation by least-squares
methods, these investigators employed 1i{near programming to minimize the

error and thﬂ§25§;;mate both the reservoir porosity and permeability.

&
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In several test cases, including a study of a two-phase reservoir, this
procedure led to acceptable results. But although the System is
basically nonlinear (Jacquard, 1964; Dupuy, 1968), the error-parameter
relationship can be fairly well approximated with a linear function,
especially where reservoirs possess relatively high porosities and
permeabtilities (Slater & Durrer, 1971; Carter et al., 1974). The
principal advantage of the method of Coats et al. appears to lie in fits
ability to guarantee a global minimum error, as opposed to the local
minima obtained by use of nonlinear optimization techniques.

Basing their work on the same general principles as Jacquard
(1964), Dupuy (1968), and Coats et al. (1970), Slater & Durrer (1971)
used error-weighted gradients and a linear programming formulation to
systematically reduce differences between observed and calculated
performance histories. In these studies, interference relationships
were determ}ﬁed from the effects on performance histories of
successively altering reservoir parameters. The interference
relationships were then weighted and used to adjust the reservoir
parameters. Slater & Durrer also discussed the impracticality of
achieving a perfect match, especially when the accuracy of performance
history measurements is questionable, and suggested reasonable
guidelines for assessing when an acceptable match has been obtained.
Examples involving hypothetical, single-phase reservoirs indicated a
strong tendency to prediction of extreme values, and studies of actual
reservoirs yielded poor results. Slater & Durrer consequently concluded

that “in true reservoirs, where there exist uncertainties in pressure



7-

measurements and the choice of a simulation model, a matching process is
Tuch more complicated.” )

A similar approach was employed by Thomas et al. (1972), who based
their method on the classical Gauss-Newton least-squares procedure and
parameter constraints, and made provision for handling highly nonlinear
cases. They worked with data provided for three sample history-
matchings used by Jahns (1966) and Coats et al. (1970) in order to
compare methods and results, and found that while their algorithm in
most cases required fewer simulator runs, it yielded matches almost

identical to ‘previously determined ones.

Boberg et al. (1973), using a variation of the a1gér1thm by Thomas
et al. [1972), were able to improve the stability of the numerical
solution, and reported reasonable results for a complex Middle East
oil1field.

Veatch & Thomas (1971) developed a novel direct method for handling
the history-matching problem by treating the finite difference analogues
of the partial differential equations for multiphase flow as avsystem of
linear equations 1in the unknown reservoir properties, The technique is
applicable to multiphase, compressible flow in heterogeneous reservoirs,
and capable of calculating reservoir parameters in a single computer
run. In addition, it contains provisions for constructing 'best’
estimates where no unique solutions can be computed. However,
relatively complete performance histories over varying periods of time
are required as input data; and {n most practical cases, where such data
are lacking, it becomes necessary to employ interpolation schemes.

Results of studies on several hypothetical reservoirs presented by



Veatch & Thomas were promising, but the method has not received
widespread attention, and little commentary on the paper exists.

Carter et al. (1974), primarily expanding the work of Jacquard
(1964) and Jacquard & Jain (1965), focussed attention on the method by
which differences between observed and calculated performance histories
are used to adjust reservoir properties, and also introduced two
modified, itera;f;z;1inear programming procedures. As a result, a
method was dgsﬂgned for handling history-matching in situations where
more reservoir pafﬁmeters must be determined than are observed (known as
an ‘underdetermined' problem)., Several examples of single-phase
reservoirs were presented, and these indicated that linear programming
formulations are able to yield reasonable estimates of reservoir
parameters., For the case of underdetermined performance matching
problem, a modified 1inear programming technique also produced
acéeptabie results.,

Chavent et al. (1973) and Chen et al. (1974) approached automatic
history-matching by making use of optimal control theory, and estimated
reservoir properties by continuous functions rather than as discrete
values. Case studies in both papers were limited to single-phase
reservoirs, for which the necessary governing equations could be easily
derived. The method compared favourably with standard, constant-zone
gradient methods (such as those used by Slater & Durrer, 1971; Thomas et
al., 1972; and Carter et al., 1974), and on average, reduced the
required computer time.

Hassérman et al. (1975) applied the optimal control methods of
Chavent et al. (1973) and Chen et al., (1974) in an attempt to treat

multiphase flow problems. Multiplication of the porosity and
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permeability terms by saturatiqn-dependent'terms (obtained from running
a multiphase simulator) seemed to transform, in effect, a multiphase
reservoir to a 'pseudo’ single-phase reservoir. However, while
app1icatﬁon of this techniqi‘,to field reservoirs yielded acceptable
results, none of the three studies cited above made any attempt to
investigate the non-unique aspects of the solution in the context of
optimal control theory. Nor did they discuss the likelihood of
computing only a local minimum matching error.

An initfal study of history-matching in two-phase petroleum
reservoirs was reported by van den Bosch & Seinfeld (1977), who
investigated the feasibility of estimating two-phase reservoir
properties, and considered a simple, hypothetical reservoir with radial-
circular symmetry, incompressible flow, and a central producing well.
Qualitative and quantitative results suggested that the ability to
estimate reservoir parameters depends on the type of flow within the
reservoir, and evidenced non-uniqueness in the solutions of the history-
matching problem. .

A technique for history-matching based on estimation by Bayesian
statistical methods was introduced by Gavalas et al. (1976). Analysis
of a hypothetical, one-dimensional, single-phase reservoir indicated
that estimation by such technigues produce§ better results than history-
matching algorithms using zonation procedures. However, the accuracy of
Bayesian estimates depends on the validity of the prior statistics (of
reservoir properties) employed; and in practical situations, where
detailed geological data are lacking, the procedure appears to be no
more reliable, and probably less so, than earlier automatic history-

matching methods.
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Shah et al. (1978) presented 2 general analysis of errors arising
in history-matching, with particular emphasis on error variation between
Bayesian and constant-zone estimation techniques. From consideration of
a hypothetical, one-dimensional, single-phase reservoir, they concluded
that zonation techniques are clearly preferable when the location of
zone boundaries is indicated by geological data. In cases where only
sparse data on reservoir properties are available, neither Bayesian nor
zonation procedures can be employed with much confidence.

Watson et al. (1980) further extended the optimal control algorithm
of Chavent et al. (1973) and Chen et al. (1974) for automatic history-
matching in two-phase reservoirs. They developed an algorithm for
estimating relative permeability, as well as porosity and absolute
aermeag11ity, Studies on hypothetical reservoirs produced reasogéblg
estimates of reservoir properties. But the equations required for two-
phase reservoir history-matching in this manner are extremely complex;
and while it is theoretically possible to extend the algorithm to three-
phase flow, practical considerations would seem to negate the

feasibility of such a study. k g

By miite . e . meE L pm. b g



CHAPTER THREE
DEVELOPMENT OF A PETROLEUM RESERVOIR SIMULATOR
Since a petroleum reservoir simulator is used as an essential

component of automatic history-matching algorithms as well as for

generating data that test the reliability of such algorithms, it is
necessary to develop a suitable simulator before considering extant
automatic history-matching technigues. This section discusses the
construction of a three-phase (oil, water, gas), three-dimensional,
compressible flow reservoir simulator in which oil is assumed to be non-

volatible (such a simulator is known as a 'black oil’ simulator).

Formulation of the Hqthgmgticaliﬁgde1

A mathematical model that simulates multiphase, multi-dimensional
fluid flow in a petroleum reservoir is conveniently based on Darcy's
equation of flow and on the law of conservation of mass (known as the
‘equation of continuity') as applied to each phase. These governing
relations have been established by Muskat (1949), Collins (1961).
Scheidegger (1974), Thomas (1982), and others.

Proceeding from these bases, a reservoir simulator for the present
study was developed by assuming that

(1) flow is laminar, viscous, and irrotational; .

(2) the ;]cu process is isothermal;

(3) a thermodynamic equilibrium exists among the three phases;

(4) relative permeability curves adequately depict multiphase

flow;



(5) phase interchanges are restricted to gas solution and
- release from oil and water; and -
(6) the reservoir consists of a continuous porous medium which
is externally bounded by an impermeable surface 6?1_2;,
there is no fluid flow across the outer boundaries of the-
reservoir).
The resulting simulator allows for effects of grgv1t¥i capillarity,
fluid viscosity, relative permeabilities, gas sclubiiity, and reservoir
heterogeneity. ;

Consider a three-dimensional reservoir of variable thickness in the
x,y,z framework of a Cartesian éeﬂédinate system, and let this reservoir
contain a distribution of line sources and sinks (i.e., production and
injection wells, respectively) oriented parallel to the z-axis, whose
strengths are given as functions of time and location.

The general molar balance equation for each component 1 flowing
in the oil (11quid), water (aqueous), and gas (vapour) phases through a

porous medium is given by

&
kk kk kk q
_ I'J - ra o rv — i
e(xyy Ty M+ Xy o Pa Yt X4y T o, %0, ) AXAyAZ
\ , a v
a _ _ — _ B —_ B —_ ) s
= 5t (001 ByS) *+ %5055 * XqyhySy) ] (3.1)

where ¢

] ax -

1o +g3a%; + Ei%f , and the potential gradient for any
phase f 1{s given by '

V'Ef = vﬁf - Efgvﬂ -



‘ 13.

Assuming that phase 1nterchan!!% are restricted to the solution and

release of gas from ofl and water, the mole fractions Xga. Xgys Xyl »

and x,, are all zero. The non-zero mole fractions are given by

L. . fogsc
"o

g! ol °
- ?,
. w,sc¢ )
“wfa

and

Substituting these values into the appropriate forms of Equation (3.1)

yields the following phase equations for the simultaneous flow of oil,

water, and gas:

011 phase
kk * s
q.
ro Q 3 ., 0 A e
Tp "%0) * wayer T ot (P E) (3.22)
Water phase
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Gas phase .
Kk Kk Kk R q + R_a.+a.
q. *+ R, +Qq
ro r™w r sO 0 Sw'w g
ve(R v, + R e+ w )+
S0 3B, O sw WO Wy 9 axdyhz
\ S, 5, S
< FloRe R, )] O

If the porous(égg}ﬁﬁ‘;#vzﬁe reservoir is assumed to be fully

saturated by the three phases, and preferentially water wet at the oil-

water interface, the phase saturations are related by

S° + S, * Sg -'1 , (3.3) |

and the capillary pressures by

, (3.4)

cho(sw,sg) *Pg - Py (3.5)

The ,unknowns {n the model are the pressure and saturations. Moreover,

* »

*
if any one of the three other unknowns (qo,q ,q.) 1in a block

w' g
containing a source or sink is specified, the other two can be

determined by making use of the relative mobility relationships

y
»

9% Kro Myt

-1 L (306‘)

a, "bao K w

and
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-
q k u B
2. _S%_ _g_ﬂ . (3.6b)
ag Yo°0 r

Thus, a model which describes the flow mechanics of a petroleum
reservoir is therefore provided by using the coupled Equations (3.2) in
combination with Equations (3.3) - (3.6) and appropriate initial,
boundary, and source-sink conditions. (For further discussion on
development of this basic model, see, for example, Peaceman, 1969;

Thomas, 1982; or Bird et al., 1960.)

Method of Solution X

Due largely to the nonlinear nature of the system of partial
differential equations, no analytical solution of Equations (3.2) is
possible (Jacquard, 1964; Dupuy, 1968). Consequently, the technique of
‘finite differences is frequently employed to obtain a numerical
solution. (Finite differences have been extensively used in the
petroleum industry for solving problems in porous media flow, and have
yielded results that stand in good accord with experimental data.)

To utilize finite differences in ;he present case, the petroleum
reservoir is defined by a block-centred grid that discretf‘es space
variables, and the time continuum is subdivided into increments. Areal
and cross-sectional sketches of a typical grid representation are shown
in Figures 1 and 2. It 1is not necessary for ihe reservoir partitions to
be equally spaced, and the blocks need not even be rectamgular:
depending upon the geological structure of the reservoir, circular,
Eriangular. or curvilinear blocks may be used to more closely represent

it (see Figure 3).
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The partial derivatives in Equations (3.2) are then expressed as
algebraic finite difference equations for each grid-block; and after
'linearizing' them by freezing the coefficients over each time step, the
resulting system of simultaneous equations can be solved repeatedly to
obtain pressures, saturations, and flow rates at the desired advanced
time levels and locations. Note that whereas an analytical solution
requires the partial differential equations to be satisfied at every
point in the domain, results of the finite difference approach are
limited to pre-defined points in space and time, and subject to errors
which depend on the magnitudes of the chosen increments, as well as
subject to truncation and roundoff errors incurred by the finite word
length of the computer.

The accuracy and effectiveness of the reservoir model is obviously
improved if the number of grid-blocks is increased (and a better
definitior of the resefvoir is provided). But a larger number of blocks
rapidly increases computational difficulties; and given the heavy
demands on machine time, it is essential to utilize the most efficient
solution techniques. A single simulation may involve the solution of
several hundred simultaneous equations up to several thousand times.

Within the general framework of the fintte difference approach,
there exist two basic iterative methods of obtaining a numerical
solution to the multiphase flow problem. The first of these, used in
the present study, is thg so-called 'implicit pressure-explicit
saturagiﬂn' method (hereafter referred to as the 'IMPES'). In this, all
variables except one of the phase pressures (usually the oil pressure)

are eliminated by use of the phase, saturation and capillary pressure
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"equations. The resulting second-order equation, containing the unknown
oil pressure, is then applied to each §r1d-block. and the system of
equations thus obtained is solved for the ofl pressure at the advanced
time level for all blocks. Thereafter, rearrangement of the original
partial differential equations for the oil and water phases yields the
new 01l and water saturations at each block. The water and gas phase
pressures are obtained from the capillary pressure equations, and gas
saturations are calculated from the saturation constraint equation.

The other presently available solution method of which many
variations exist, is known as the 'implicit' or 'simultaneous solution’
method. This uses the saturation and capillary pressure equations to
eliminate saturation terms from the right hand side of the three partial
differential phase equations. The resulting three equations, which
contain the phase pressures at the advanced time level as unknowns, are
then written for each grid-block, and solved simultaneously. Note that
while the implicit method is more stable (i.e., allows the use of a
larger time increment) than the IMPES dbthod, it requires a three times
larger number of equations to be solved, and hence greatly increases the
demand for computer time. (Chappelear & Rogers, 1973; Weinstein et al.
1970).

H

Derivation of the Numerical Model

v

In order to translate the partial differential equations derived in
Equation (3.2) to their algebraic finite difference analogues, it is

convenient to rewrite them as follows:



011 phase

Water phase

Ak k oD . Ak k. a Akk od
d (x x rw w 3 Yy rv w ™ w . *
3_( E ax ) -ax y( QHE' §§E]’Ay az( gwE Y3 37 )02 R
i B 5'
= Vb g?(i=§§) , (3.7b)
w
Gas phase
;_( X xre "o Axikxkl‘g aﬁw + Axkxkr EE)-AX
2x\'s0 ax sw '*wgn ax bgBg  OX
Ak k. 2 Ak k_ a0 Ak k. 2
Els(n EJ;%%ELE 9, w_ ¥ r ;_Jl).Ay
dy*: so B9 ay W Wy 3y - [T dy
3 2°2%r0 %% A;kzkrw o0, R Azkﬁkrg zzg) AZ
3z' 50 Y sWw LB z I )
i w WL o} ug 9 3z
S S
* A : 0 W
* Roolo * Ry &, + 95 = Vp ele(Ry 7= + Ry, L) * Eg)] '
(

where the bulk volume Vb = AxAyAz , and Ax = AyAZ , Ay = AXAZ
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The simplest method of ordering blocks in a three-dimensional grid,
such as has been used in the present study, identifies each cell by the
subscripts 1, j, and k (increasing in the normal «x-, y- and z-
directions, respectively). Figures 4 and 5 illustrate this ordering
sCheme.
Applying finite difference approximation techniques to Equations

(3.7) then yields:

011 phase

3

N ~l o on n . ml n
a(T_ap. -T:"a D)+ a (T p. -T''a,0)
xt o “x"o 0,°x y ayby ) 0 y"
+ 4 (T a Ak JUUA D) + RN ( sg] (3.8a)
82470 %P0 "0 %" % bt \® F /e oo
z 2z )
Water phase
<N . ml on. n ol .0 :
Ax( w SPw ﬁTﬁ,AxD) Ay(T\j, ByPuw T AyD)
X X y -
T+l L ' S-" [ R b )
+ 4 ( w 0P, ETH AED) +qQ = ngt(Q §a) . (3.8b)
I : 'z " - w
Gas phase
"
o ml n 1l o,n 1l ..n
A (Tn apT " A DeT" B p. =T' A D+T" A p. =T "a_D)
x' 0g "x"0 o9, wg X'wW wg X" g x'g 9, X
el .0 n . ml .n n el n
A =T , . D+T =T D
By o9, ¥Po ~Tog wg “YPw “Twg By g 4P 9,y )
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Figure 4. Conventional Identification of Blocks in Three-Dimensional
Grid
<+ + +
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J;l + + -+
i=l i=2 i=]3

Figure 5. Numbering System For Blocks in Three-Dimensional Grid.



23.
+ Az( A;p T'n AVD*TH, 7 rH-l n D+ T

1..n .
R NS LN A (AU
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where the difference operator (in any direction r, any block b) is
defined by

8. (a.8.8)

ae172(Boe17By) = Fyo1/2(BpByy) -
Terms that account for the relative ease of fluid flow between grid-
blacks are given by the 'transmissibilities'.

For example

2 A k k.
o . phadak Ctelgk Tk Telgk
°%1+1/2,4,k K, o OMe1,5,k Kx By 5.k
141723k k0 “eldk Melgk
Yo"o [1+1/2,5,k

where, since u = u (p,) . B,= B (p,) ,
BoBolie1/2 4k = Ho(P - )8, (P
070 '1+1/2,3,k ~ 0oy 10 4y

and

)
0 %41/2,4,k

1 n
*( +p_ )
%141/2,5 .,k "7 1+1.3 kK 21,5,k
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TN {f flow is from block i+1 to t
"ro, SN | n
n 1*1‘j‘k (v.'z.%*lljlk}g‘ljlk)
Ko . : ]
“1+1/2,3.k " if flow is from block i1 to i+1
ro, ;. , n n
1,3,k (viz. °1.j.k>°1*1,jik)

Ed

Also, for notational convenience, the symbols "'" and “g" are used to

append transmissibility terms. For example,

and

To implement the IMPES solution method, the three phase equations
(Equations (3.8)) are combined, with the aid of the saturation and
capillary pressure equations (Equations (3.3) - (3.5)), in order to
obtain a single equation in the unknown oil pressure.

Consider, first, the expansion of the right hand side of the oil

phase equation (Equation (3.8a)):

SQ Yy SD n+1 S n
Vpy (@ g:) =gxlleg) - (o gg) I
v _
- alsg ) ™ " #)"(sg" - 5o)}

v g1
bl ¢l 1 (', Ml N0 "0 Lroml oon
B — —_— T o= = = -
5 ¢ (g ey e J & ——0'(p "-p)
o BG
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. Bn"ig*l-s';)} . (3.92)

where the chord slop; “i1n §g defined as

n*l n
-a

() =51
T,

-

Similarly, for the right hand side of the water phase-equation (Equation

(3.8b)),
A L o
Vp o, (0 3—3) - H{SZ“&’"(;;) (o -9y) ¢ ‘;T (o5 -pg) ¢ :F(
. w H
(3.9b)
and, since
' 1.1, , Ly
@ ="l @

the right hand side of the gas phase equation (Equation (3.8c)) becomes

S S S
0 w q .
Vo [o(Ro 5 *. Rsw B * FS)]
Y 4 0 w g
v . o
R __b'n+1n*1 1,1 ' .1 o 1l n
At{so o s0 (’B:) * E,ﬁ Rsn](pa ’pa)
0
Sn*l n .
+ /" o , .l o n n 4 , ml
s0 gn ¢ (po 'pa) ¥ Rsa ‘E’n'(sa ‘Sa)
0 )
mleonel, 1 ' 1 , nl n
* Sw [st (F) * ? RSH](pH 'pw)
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g B
g
"+l Ny
» sy} (3.9¢)
B; g 9

Observe that all terms in these expansions are taken at any grid-block
with index (i,j,k).

Substitution of Equations (3.4) and (3.5) into the above eliminates
dependence on water and gas phase pressures at the n time level. To
eliminate saturation terms at the n time level, Equétians (3.8)
combined with the expansions (3.9) are rearranged so that the right hand

sides only contain terms in (S"*liS")i The resulting right hand side

ex@rgssiaﬁs for each phase equation are then

011 phase

Water phase \
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Gas phase

R" 32(5"*1 ")+ " 412(5"’1 S") . ;1(3"*1 S")
-So) A\ Tw’ TRt gl

Y Bn

0 0 Sw
0 Bw

9

Multiplying the oil phase equation (Equation (3.8a)) by

Pﬁ-g"
g" s0 , .
9

4

the water phase equation (Equation (3.8b)) by

B g0

LA M
gh ¥
9

summing together with Equation (3.8c), and applying Equation (3.3)

causes the right hand side terms to vanish:

(E; R" )21(5n+1 s™ & (E; Q" }22( n+1 Sn)
8" ° Tso g" 0’ 8" T TswigntTw -
q (o} o] w
n
n 1l on n ~l N e+l
* Rsan(So 'So) * st(sw 'Sw) * éﬁ{sg -$
0 g

o 9

n ; i}
- L{(SMI+ST1+Sn+1) - (Sn*sﬂ*sn)} - D 7
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Since calculating the changes in 0il pressures rather than the oil

pressures themselves reduces round-off error, def’ne

nel n
E - D »

5p -
Of gk %1,k 1,0k

and, in a notation convenient for computer implementation,

sum of the three phase equations can then be written in the form

the resulting
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Writing Equation (3.10) for each grid-block, and ordering the grid
as in Figure 6, then yields a system of 1inear ~equations of the formg
Ax = b, where A 1{s the coefficient matrix containing 2Z, B, D, E, F,
H, S (see Figgfé 7)# x 1is the column vector of the unknown &p
terms, and b is the column vector containing the 9,5,k terms. (For

alternative ordering schemes, see Price & Coats, 1974).

Once the phase—pressures have been cal ated for each grid-block,
a2

it is possible\to calculate the phase satur ns explicitly by means of

the original difference equations. nt.of the oil and water.

phase equations (Equations (3.8a) and (3.8b)) yields

y: yo o,y
n.n
¢ S
n+l on * 0
* Az(Tg 8,Py T'g8,0) + ) + =5}
z B
0
\ n
]/l el Ny . @, ¢l N 1
x {‘ ( ) ( 0 —pﬂ) * ?(pa pﬂ) * ﬁ} ot *
s ¢



Figure 6.
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32,

9 10 11 12

k=1 5 6 - 8
1 2 3 4

21 22 23 24

k=2 17 18 19 20
13 14 15 16

Normal Ordering For Grid System

L

Coefficient Matrix For Nohna11y Or
Grid System

-

dered Three-Dimensional

/



33.

n+1 At n+1 n n+1 n
. -T:Ma D) + a, (T apr =T s D)
{V; X W, y "y 'y w v y
p3 5,Py “'w 8 Y n
2z 2 B'
¥
1,1 (' ,n+l 1 .n '+l on n -1
« (" ) () -pg) - (Prow=cow)) * -;;(po -pp) + :;} .
w w

The gas phase saturations can then be determined by means of Equation
(3.3). |

Since the coefficients of Equation (3.10) are dependent on both the
unknown pressures and saturations, the solution cess must be carried
out by .iteration. Initial estimates of pressures/ saturations, and
production/injection rates are made (usually based on éraphical
extrapolation schemes), and the resultant calcp1atéh~ya1ues in each
grid-block are compared with these estimates. If conQbrgence to a
solution (within a prescribed tolerance) has nof been Pbtained,
calculations are repeated with these latest value§ ATternatively, a
material balance is established, and if acceptable\\tﬂe calculations
advance to the next time step. I[f the material balance is unreasonable;
the time step is diminished, and pressures, saturations, and |

production/injection rates are recalculated. The material balance

check, defined as

_ Net change in mass over time interval
M8 = ATN%{ mass throughput =1,

is valuable as a test of the principle of conservation of mass, as well
as an independent check on the accuracy of the finite difference

so1ut{on.
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Further fnformation on reservoir simulator development can be found
in publications by Craft and Hawkins, 1959; Peaceman, 1969; Ford, 1971;

Thomas, 1982; and Farouq Ali, 1980.

Computational Procedure

A computer program to solve the numerical model for a petroleum
reservoir, as developed in the preceding section, was written and coded
in FORTRAN 1V language, and run on an Amndahl 470 computer under the MTS
operating system. The program is composed of a series of short, well-
defined sections, each responsible for solving a specific part of the
problem, and contains two subroutines to allow for interpolation of data
by cubic splines. The program may be briefly described as follows:

Initially, the program reads in and prints out all required
}éservo1r parameters, time-invariant data and program flags that assign
various options to a particular simulation. Thereafter, the constant
| parts of the transmissibility terms are calculated (with the no-flow
condition at the outer boundaries of the reservoir being represented by
zero transmissibilities at the boundary points); the jnitial estimates
of fluid properties are made; and pressure and saturation distributions
are produced. The first major loop is then set up, and provides for
advancement to the next time level when a solution for the present time
has been obtained. The remainder of the transmissibility terms, as well
as the coefficients Z, B, D, F, H, and S, are subsequently calculated.
The second major loop fs started to provide for further iteration when
convergence to a solution has not been attained. Fluid properties are

updated to the extrapolated time level, and the E coefficient and
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a4,§,k terms are determined. After sa1v1n§ for the pressure and
caturation distributions, a check determines if the solutions have
converged. If so, a mass balance check is performed, and if acceptable,
the pressure and saturation distributions, together with the
production/injection rates and mass balances, are printed out. A time
increment is selected:; all reservoir properties are updated; pressure
and saturation distributions are gxtriba1ated to the next time level;
and the program returns to the outer loop. If the tests for convergence
or the mass balance checks are unacceptable, the program updates
properties to the latest estimates and returns to the inner loop. A
maximum number of iterations is prescribed to account for the
pqssib11ityaaf an oscillating solution, and if exceeded, the program
breaks the loop to print a warning message.

A flow chart of the éamputg} program is presented in Figure 8.
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CHAPTER FOUR
LINEAR PROGRAMMING METHODS
FOR AUTOMATIC HISTORY-MATCHING

As noted in Chapter 2 (Review of, the Literature), the first
automatic history-matching algorithm that yielded feasible estimates of
reservoir properties for practical field situations was developed by
Coats et al. (1970), who employed a combinatton of least-squares and
linear programming methods. While more §émp1ez automatic history-
matching algorithms, often based onglinear programming, were designed in
later years, these did not significantly improve the ortginal technigue
(Slater & Durrer, 1971; Thomas et al., 1972; Carter et al. 1974); and
nonlinear optimization techniques could not guarantee attainment of a
globaily minimum matching error (Wasserman et al., 1975). Furthermore,
although | y system of partial differential equations, which constitutes
~the reservolir model is basically nonlinear, studies by Carter et al,
(1970) support the contention of Coats et al. (1970) that the matching
error-parameter relationship could be adequately approximated by a
linear function, especially where reservoirs possess relatively high
porosities and permeabilities (Slater & Durrer, 1971).

Since the work of Coats et al. (1970) has attracted much attention
- and most authors who cansidgreqiit obtained supporting evidsngi and
acknowledged the technique as at least a basically practical approach to
automatic history-matching - it is pertinent to analyze the algocivw

further in order to determine its validity more precisely.

-39 -
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De;jiyratic;n of ;he,ﬂga‘r‘itﬁi
As developed by Coats et al. (1970), the least-squares, 1inear

rithm for automatic history-matching is derived as

programming algo

follows:

Let xj (jil.z,-g;;d)

represent the porosity and permeability
parameters that constitute the reservoir description data.

In order to

reduce the number of these unknowns, the reservoir is partitioned into
%anes (based on existing geological data), which are each assumed to
possess constant porosity and permeability. Now, let d;
(i=1,2,...,1) represent performance data (pressure distributions,
with Ebserveé performance data denoted by

production/injection rates),
d?bs and calculated data (from simulator runs employing various values
of xj} denoted by dgalc The matching error set, e, , is defined

by
- _ .obs calc
Ei = di = d'i M

set of

i
and the history-matching problem lies in determining a
¥
description parameters, ‘j , which will minimize some norm of this
One notes here that, in order to utilize optimization

error set.
techniques, the number of performance data must exceed the number of
I >J. For each x to be

reservoir description parameters, i.e.,
estimated, it is also necessary to impose upper and lower bounds, _
and X471, respectively (and based on existing geciagicél

data), such that 0 < xi1

denoted X4y
ixjixju.



A total of N simulations are then performed, each using a
different set of random description parameters, Xxj. These random
parameters, denoted x; for each run r (r=1,2,...,N), generate the
calculated performance data, d$a!c,r , and the resulting matching
errors, c: . For any run r , each xg is selected using a uniform
random number generator, so that

r

X, = X

¥ il + R(x

)
_where R is a random number between 0 and 1.

On the supposition that the matching error, e, , is a single-
valued function of the reservoir description parameters, Coats et al.
(1970) chose to model this dependence by 2 linear relationship, and
justified the approximation by pointing to the reasonable success of the
resultant history-matching algorithm. They thus defined the relation
between the matching errors and reservoir descgépt1an parameters as

(4.1)

™

—n

L1
L=

e

e

Wk
b

K

-

where 1 = 1,2,...,1, and xg = 1,
A procedure for determining the unknown 2, in Equation (4.1) was
then developed by making use of a Teast-squares approach. For each

run r, the deviation D: is defined as
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where ¢ = d>° - ¢1C T, 1= 12,0000, and roe 1,200 0N, The
N 2 7 ‘
sum ] (ﬁﬁ) is then minimized (differentiate and set to zero) to

yield
jzotz gy e Lepen s (8.2

where 1 =1,2,...,1 , and n = 0,1,2,...5J. An alternative derivation
of Equation (4.2) is provided in the Appendix.

For each i, Equation (4.2) represents J + 1 simultaneous linear
equations in the J + 1 unknowns a40,3{]s-++134] ¢ It is helpful to

expand Equation (4.2), for any 1, by writing

N N N

, N
na=0: (JxxT)a,_+ (] xxD)a ., 4ot (] x"xT)a, = ¥ elx!
re] 00 o re] © 1711 'rel © J7TH 170
n=1: ( % x"x )a, o+ ( E x"x")a + ; Ja, , = E e xf
”11.0 o ﬁil 1 1 * 1J ﬁlﬂ 1
n=J: ( E x"x") ( E aTx"a,, +.oeet ( % x"x")a, = g e"x" .
LXa%eo T L LR P T 1

Note that the coefficients of the ay 4 terms are constant with respect .
to the index i, and that this method essentially decouples the equations
for each ¢, from those of every other e, .

To solve for the unknown a5, define a; and ¢y as the céiumn

vectors (a1°,a11,...,gid)' and (éig.éil,..i,cid)‘i respectively, and .
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the matrix B cohtaining the bnj coefficients, where
N

N )
rr s ror
Toafxl o, ez Loegxy
ral " J in el i"n

b
for 1 = 1,2,...,1, and n = 0,1,2,..,J.

Then
a, = E‘{g; . (4.3)

and repeated application of Equation (4.3) for 1 = 1,2,...,1 yields
the entire set of ay4- Since the bﬂj coefficients are independent

of i, the matrix B need be calculated only once and stored. Note
that if the matrix B {s found to be non-invertible, it is necessary to
rerun the random number generator until an acceptable set of values is
obtained. !

Equation (4.1) gives

%
€, = A, :X;
7 e 13 )

where the a;y are now known, and the inverse problem of determining a
L4 V 7 * ]

best set of reservoir description paramters, xj , is therefore reduced

to minimizing some norm of the errors subject to the constraints

0« xj] < xj "xju . Coats et al. (1970) chose to mintmize
I

with the goal of eliminating negative porosity and permeability

estimates.



In order to utilize a }inear programming solution technique for
minimizing Equation (4.4)," ¢; 1is expressed in terms of slack
variables: ‘

Ei = X&I*i - RJ+1 1Y 1 = 1;2iiii;l L

Combining this with Equation (4.1) then yields
a

fo ¥ Xaei = Foelsd

where {1 = 1,2,...,1. Also, gquatiqn (4.4) becomes

1
St 12“"&1*1’ - Xgeql oo

and by the triangle inequality, an upper bound on S is minimized when

I I
y x o+ T x
jag SHIHE g

attains a minimum value. Note that, since

1 J S { 1
lizlx.]*l*“i - glxd*i! <S5« izlxdﬂ*i * ig—x\}#i ’

44,

upper and lower bound for S can be computed. The linear programming

problem can cagseéueﬁtiy be formulated as follows:

I I
Minimize 1§1§J*I*i + 1§1xd*i

subject to the constraints ¢
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(1) aj5 + Xgei = Xgal+i * jj{la‘jxJ =0, 1=1,2,...,]
(11) Xy = Xy * X3e2[+j " 0o - y J = 1,2,...,J
(iit) X§1 = X5 * Xpgu20sj T 0 » J=L,2,..04d
(1v) Xj 2 0 | ,y J=1,2,...,21 + %J .

=

The total of 2I + 3J variables are defined as

Reservoir description parameters:

‘J s J = 1,2,»..,\]

Slack variables for errors, €

XJalr XJe200ccs XJelr XJalals XJe1a200000 %3421

Stack variables for upper bound constraints on the Xyt

XJ+21+1° Xgs2l+20°°°0 X2J+21

Slack variables for lower bound constraints on the xj:

X2)+21+41 X2J421+42s°°°> X33421 *

Solution by the simplex method, which then furnishes a best set of

estimates for the reservoir description parameters, is straightforward.



46.

Computational Procedure

A computer program for implementing the automatic history-matching
algorithm of Coats et al. (1970) was written, coded ¥n FORTRAN IV
1anguage; and run on an Amdahl 470 computer under the MTS operating
system. As the algorithm required a petroleum reservoir simulator, the
program was designed to be compatible with the simulator developed in
Chapter 3.

The program reads the initial reservoir data, including the
observed performance data, d?bs , and the constraints on the
description parameters to be estimated. A loop, enclosing the entire
simulator, then uses a random number generator to select the reservoir

porosities and permeabilities, xg , and calculates the performance

cale,r
i

Using the description parameters, x§ , and the errors z: , the

data, d , and the errors, E: , for a specified number of runs.
matrix B and vector c; are then set up, and the a4 j coefficients
are calculated. Thereafter, the coefficient matrix of the constraint
equations for the linear programming problem is determined, and solution
by the simplex method subsequently yields the best estimates of the
reservoir description properties.

A flow chart of the computer program is presented fn Figure 9, -



( Start )

Read Input Data

—3

by Random Pracess

Select Porosities and Permeabilities

Run Reservoir Simulator

Calculate Errors, g?

for Run r
No - B
Check if
— = - - r>N
Yes
Figure 9.

Flow Diagram of Computational Procedure

47.
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Set Up Matrix B

and Vector Cj
Determine aj Coefficients
Set up Matrix Containing
Coefficients of Constraint

Equations
Solve the Linear
Programming Problem

Figure 9. (Continued)
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Discuss ion

Although the experimental results repofted by Coats et al. (1970),
gIater & Durrer (1971), Thomas et al. (1972), and Carter et al. (1974)
indicate that the automatic history-matching method proposed by Coats et
al. (1970) produces reasonable estimates of reservoir description
parameters, it is pertinent to examine the theoretical foundation of the
aiger{thm_

Without benefit of an experimental test of the algorithm, the
assumed linear functional dependence of matching errors on reservoir
description parameters, and the subsequent reasoning for deriving the
automatic history-matching procedure, may, 2 priori, be expected to
yield poor results.

Consider, first, the method by which the 3y coefficients are
determined. In least-squares calculations, the assumption of an

approximate linear behaviour implies that

where a is a constant, x {s a set of reservoir description
parameters, and dE31€Q§) are the ca1cu13tgd:pgrformance data based’aﬁ
the description parameters provided. For the complex system of nonlinear
partial differential equations that describe the flow mechanics of a
petroleum reservoir, such simple linear dependence would, intuitively,
appear unlikely. That experimental testing of numerous reservoir
simulators under various practical field situations has shown the
;pprgximatioﬁ and resulting linear programming solution to be generally

valid (Coats et al., 1970;
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Slater & Durrer, 1971; Thomas et il" 1972; Carter et al., 1974) could
be attributed largely to the re1at%bgg1nsensit1vity of a reservoir
simulator - i.e., a fairly wide range of reservoir description
| parameters will yield similar calculated performance data (Coats, 1969).
Furthermore, according to Slater & Durrer (1971), a linear functional
dependence appears to be particularly suitable when the reservoir

possesses relatively high porosities and permeabilities. Note that,

since the reservoir description parameters for each run, x; , are

multiplied in pairs (see Equation (4.2)), it appears that there is some

cancellation of the error in solving for the LER coefficients.
Secondly, consider the statement of the linear functional

relationship between the matching error (for any point of observation)

and the reservoir description parameters as given in Equation (4.1):

SR S U o AR oV

where Xy (j=1,2,...,J) are the reservoir description parameters, the
matching error, e , is given.by € = d%S _ 4€a1¢ | ang 4ObS  apg gcdlc
are, respectively, the observed and caiculated performance data at any
point (which depend on the reservoir desériptinﬁ!parameters)g

For convenience, let xy and x represent the column vectors
containing the true and estimated reservoir description parameters,
respectively. Then the model on which Coats et al. base their algorithm
is

(4.5)
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where a 1is the column vector of coefficients to be determined, & s

a random error, t is the independent time variable, and y represents
all other independent and dependent reservoir parameters not included in

Xy and  Xx. Rewriting Equation (4.5) yields

,ea1c(§

dgbs(iT-L:t) = d T‘i‘t)* iiT + &5 . (4-6)

1

Now, since an estimate of the reservoir description parameters, x,

must be used to replace the unknown true parameters, Xy, the model given

by Equations=(4.5) becomes, in practice,

dgbs(iTnl!t) - dca]c(iniit) -a'x ' (4.7)

which, ideally, should be nearly zero. Substituting Equation (4.6) into

(4.7) yields

dﬁﬂ]é( Cah‘;(i

Xpotot) + a'xp v 8- d WLet) - A%

or, on rearranging terms,

dca1c(§I,£gt) - dgaic(gil,t) + 2 (xyx) + 5. (4.8)
It {s evident that this expression will, in general, and regardless of
the value of the a;; coefffcients, approach zero only when x = xr.
Because the algorithm of Coats et al. uses a reservoir simulator
with several different sets of estimated description parameters, it is,
of caurie, quite possible that the expression given by (4.8) ytelds a

result close to zero. If the ;f are selectad such that they are
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centred about the true reservoir description parameters, Xxry, the error
in estimating xy can be balanced. Thus, if the bounds on the x" are
symmetrical about xy (1.e., for each j, X3y = *§ =Xy - 351); the
random number generator will ensure a fairly even distribution of the
x" about xy, and the mode] presented in Equation (4.5) should be

reasonable.

Experimental results support this argument. As noted above, the
success of the methdd developed by Coats et al. is well-documented in
numerous case studies; and these indicate that the algorithm also yields
satisf;ctory results for multiphase flow as well as when alternative
zonation patterns a}e emp loyed.

In practical situations, it is not 1ikely that bounds on the
reservoir description parameters (estimated from available geola§1;a1
;ata) will be absolutely (or even approximately) symmetrical about the .
true description parameters. In that case, the algorithm of Coats et
al. tends & most exclusively to choose as reservoir description
estimates.the extremal, bounding values. Results obtained by Dr. S.M.
Farouq Ali and students at Pennsylvania State University (1973) evidence
this characteristic problem. Working w;th a hypothetical, two-
dimensional gas reservoir consisting of six zones, it was desired to
determine the absolute permeabilities. The available performance data
and initial reservoir data, as well as bounds on the unknown
permeabilities, are listed in Table 1, and the zonation is shown in
Figure 10. (Note the asymmetry of the imposed bounds about the true
reservoir permeabi]ities_) Results of five different app]icat1ansjof
the automatic history-matching algorithm, and the true resérvgir

permeabilities, are provided: in Table 2.



TABLE 1

RESERVOIR DATA AND PERMEABILITY BOUNDS
Well Location: (2,2)
Production Rate: 0.3277 m3/s
A1l blocks of equal size: ax = Ay = 267 m
Thickness: 9.14 m
Temperature: 360°K
Porosfty: 0.20
Initial Pressure: 3447.4 kPa

Time (days) Pressure at Well (kPa)
100 : 3226.7
200 3062.0
300 2898.6
400 2734.5
500 2569.7
& 600 2402.8
700 2233.9
800 2063.6
900 1889.9
1000 1714.0
1100 ' 1534.1

Permeability Bounds (wn’)

0.049 < ky < 0.296
0.987 < kp < 4.935
0.099 < < 0.493
0.197 < kq < 0.296
0.987 < kg < 5.922
0.010 < < 9.869
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Zone I(Ki)
+ +

Zone S(ks)

Reservoir Zonation
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. Run

Zone

Zone
lone
Zone
Zone

Zone

5
6

fl

0.296*

2.061
0.493*

0.987*

3.878

TABLE 2

ESTIMATED PERMEABILITIES

#2

0.049*
1.433

0.493*
0.197*
0.987+

0.010*

* {ndicates an extremal value

#3

0.049*
0.987*
0.099*
0.197*
0.987*

0.010*

(pnz)
#

0.049*
4.935*
0.493*
0.296*
0.987*
0.010*

TRUE PERMEABILITIES (n?)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Zone 6

0.099
1.974
0,099
0.148

2.467

0.0001

o

#5

0.049*
0.987*
0.099*
0.197*
1.135

0.010*

55.
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Further analysis of the problem of isyﬂnetric;l béunds was carried
out using the computer programs developed in Chapter 3 and in earlier
sections of Chapter 4. Considering a hypothetical, twa:di;ensiaﬂQI,
three-phase petroleum reservoir consisting of six zones, four
applications of the algorithm of Coats et al. were used to estimate the
absolute permeabilities. The first used bounds symmetrical about the
true reservoir permeability; the second employed some asymmetrical
bounds: the third used asymmetrical bounds entirely; and the fourth used
intervals not containing the true permeabilities. The available
performance and 1nitia1 reservoir data and bounds on the unknown
permeabiities are summarized in Table 3, and the zonation is shown in
Figure 11. Results of the study are set out in Table 4, One observes
that, as stated earlier, the history-matching algorithm selects extreme
values the more frequently the less symmetrical the bounds on the
permeabilities become about the trye resefva{r permeabilities.

Coats et al. noted that, even in the case of symmetrical bounds
(which they and all others exclusively employed in tests), the algorithm
often chooses at least one or two reservoir description parameters at
their upper or lower limits. They therefore suggested that repeated
passes could, if desired, be made with shifted limits on the necessary
parameters until all estimated values lie within specified bounds.
Haﬁevef, they point out that it is far more convenient to choose bounds
representing a reasonable range, apply the algorithm once, and accept
any resulting extremal v;iues selected.

i



Sy

0.1
0.2
0.3
- 0.4
0.5
0.6
0.7
0.8
0.86

011-wWater

Krw
0

0.0016
0.081

0.0259
0.0672
0.1000
0.1400
0.2000
0.2500

Keow Pcow(P2)

1
0.875
0.735
0.590
0.420
0.210
0.070
0.016

0

28344
655
496
421
352
283
214
145
76

TABLE 3
RESERVOIR DATA AND PERMEABILITY BOUNDS

So,

0.1
0.2

D;B

0.4
0.5
D-E

0.7
0.8

0.89

011-Gas

krg  Xrog

0.520 1
0.410 0.009
0.310 0,031
0.220 0.062
0.140 0.110
0.0680 0.190
0.030 0.335
0.005 0.570
0

1

Relative Permeabilities and Capillary Bounds

PCQD(Pa)
31144
462
290
138
-7
-152
-297
-44]

-586

57.

where k.., is the relative pEFﬁgabif?t¥)cf oil in the oil-water system,

and

and Sg = 1 = Syir = So,

rog

where

S

02

is the relative permeability of oil in the oil-gas system;

{s the oil saturation in the two-

phase gas-oil system, with irreducible water present.

p(kP,) Bo(m3/sm3) Bw(m3/sm3)

Formation Volume Factors, Fluid Viscosities, Gas Solubility

0 1.0000
1379 1.1160
2758 1.1245
4137 1.1375
5516 1.1500
6853 1.1623
11032 1.1569
15168 1.1569

1.0000
1.0000

0.99354

Eg(mB/smB) ko (mPa s) Rs“(sm3/sm3)Rsa(sm3/sm

1.0000
0.0845
0.0413
0.0270
0.0198
0.0156
0.0091
0.0065

3.700
3.050
2.879
2.622
2.470
f2.390
2.545
2.700

0
13.53
19.77
25.11
30.10
34,91
34.91
34,91

L

3



TABLE 3 (continued)

Mg * 0.0167 mPaes; n = 0.43 mPa.s
"cp = 0.5x10-6 kPa~1 ’
Initial porosity: 0.09
Inttial pressure: 3000 kPa
Initial oil saturation: 0.70
Initial water saturation: 0.30
Po sc = 806 kg/m § g, (o = 1109 ka/m ; pg o * 1.2815 kg/m3
Well locations: (1,4); (3,1); (3,3); (3,5); (5,2); (5,6); (6,4)
011 production rate in each well: 9;2:10‘5 m3/s
Thickness: 12 m
Depth of block (1,4): 2060 m
Dip: 7° downward in positive x-direction
Bubble point pressure: 6853 kPa

Dimensions (m)

Axy = 1500 Ay, = 500
ax, = 1200 ayp, = 200
Axq = 2000 ayy = 500
Axgq = 500 Ayq = 100
Axg = 500 ayg = 1500
axg = 200 Ayg = 100
N\
Performance Data: 272 days; N = 12 runs

Well Block Pressure (kPa)

(1,4) 2822

(3,1) 2975

(3,3) 2991

(3,5) 3007

(5,2) 3169

(5,6) 3133

(6,4) 3408



Case 1 (symmetrical)

0.3
0.6
0.1
0.3
0.2
0.1

Case 3 (asymmetrical)

0.2
0.7
0.35
0.2
0.1
0.4

<

<

<

<

<

<

<

<

<

<

1.0
0.7
1.5
1.4

0.9

< 0.7

<

<

1.2
0.7
1.1
0.9

0.9

TABLE 3 (Continued)
Permeability Bounds (mmz)
Case 2 (partially symmetrical)
0.1 < ky < 0.7
0.2 < kg ¢ 1.1
0.2 < kg ¢ 1.4

0.4 < kg < 0.9

Case 4 (non-inclusive)
0.7 < ky < 1.5
0.2 < kp ¢ 0.6
0.8 < ky < 1.0
0.2 < kg < 0.8
1.0 ¢ ES < l.4

0.6 < ks < 0.9

59.
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Zone 3(k3)

-
®

lone 6(k6)

Reservoir Zonation
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lone
Zone
Zone
Zone
Zone

lone

Case

" ESTIMATED AND TRUE PERMEABILITIES (wnl)

#l

0.620
1.0*

0.376
0.921
0.819
0.483

#2
0.651
0.7*
0.7*
1.1*
0.711

0.779

==

* indicatés an extremal value

TABLE 4

#4
0.7+
0.6*
0.8*
0.8*
1.0*

0.6*

True
0.6
0.8
0.4
0.9
0.8

0.5

61.



In practice, it seems therefore appropriate to use the automatic
history-matching algorithm of Coats et al. (1970) for single-phase flow,
and multiphase flow where relative permeability curves are well
defined. If it results in selection of most of the extremal values, a
readjustment of the bounding values should produce reasonable data on 2
supplementary pass. The relative insensitivity of a reservoir simulator
taisma11 changes in permeability appears to enhance the acceptability of
the results obtained by use of this algorithm. The reason for this is
that small variations in parameter estimates will have little effect on

future performance predictions made by the simulator.

=tad
B
. ‘1:{“"‘;—_ .



A DIRECT APPROACH TO AUTOMATIC HISTORY-MATCHING

In 1972, Veatch & Thomas published an entirely new approach to
automatic history-matching. While previous (and subsequent) methods for
automati; history-matching resemble the algorithm of Coats et al.
(197D). in that they are essentially ex post facte techniques (1.e.,
after numerous simulations using different 1n1tial data, various
optimization and/or statistical methods based on comparisons of the
known performance history with the results of the simulations are
employed to determine acceptable estimates of the reservoir description
parameters), Veatch & Thomas developed an easily implemented direct
method for inverse reservoir simulation that substantially reduces the
demand for computer time.

By treating the finite difference analogues of the partié}ff
differéntial equations which model multiphase flow as a system of
equations in the unknown reservoir description parameters, and employing
performance histories over several periods of time as input data, it is
possible to determine directly the description parameters in a single
’ccmpufér run. The particular advantage of this method is that it does
not require impiementgtian gf a reservoir simulator, and thus eliminates
computational {naccuracies arising from inherent inadequacies of the
simulator. [t should also be observed that the equations are solved
directly, and that the solution method is therefore applicable to
multiphase, compressible flow in heteroganeous reservoirs. Additionally,
Veatch & Thomas included provisions for constructing 'best’ estimates of
reservoir description parameters in cases where no unique solutions can
be computed.

- 63 -
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Veatch & Thomas' direct method for automatic history-matching
represents a considerable saving in time and effort 16 handling such
problems, and appears to have the potential to produce superior
estimates of reservoir description parameters. Since, as indicated 1in
the literature review, this procedure has so far attracted little

comment, it is a matter of some interest to analyze it here as an

alternative to Coats et al.'s algorithm,

Derivation of the Algorithm

Using the standard technique for representing a petroleum reservoir
as a gﬂ?§-51cck system, any partial differential phase equation required
for describing the flow mechanics in any block (i,j) in a two-
dimensional areal reservoir may be written in the form

-

_ n _ n . . . 1
(X% Dia12.5 = FD5o172,5 * Taky)y ey - (V)¢ 5172
- (Phe)y g m-af (5.1)

where the permgabiiitiés and porosity are unknown, End the X“,!W‘ and
PN are coefficients containing relative QEFmeabilities; formation
volume factors, fluid viscosities, spatial increments, and petent1a?s:
all at time level n (cf., for the case of three-phase flow, the
equations derived in Chapter 3.) These coefficients, as well as the
q" terms, depend on Both the pressure and saturation distriéutians
throughout the grid-block sysiem at several points in time; and since

the only firm sources of information lie 1in blocks containing production

or 1njeét1an wells, various interpolation schemes must be employed to
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estimate the required pressure and saturation distributions in the
remaindgr of the reservoir.

Theoretically, a solution to any one phase equation should satisfy
all other phasé equations, and Veatch & Thomas consequently based their
algorithm on a single, arbitrarily chosen phase equation. The use of
Equation (5.1) for any phase, when combined with known reservoir
pressure and saturation distributions at several points in time (which
must be at least as numerous as one plus the number of unknowns in each
block) thus results in a linear system of equations in the unknown
reservoir description parameters.

Veatch & Thomas offered a detailed discussion of the matrix form of
the resulting linear system of equations (which is of the familiar Ax =
b form), and suggested solving it in a least-squares sense by applying
Householder transformations (see Householder, 1965). They observed that
singular, nearly-sinqular, and il1-conditioned systems of equations led
to non-unique solutidhs, and identified such cases from analysis of the
diagonal elements of the matrix of coefficients.

Moreover, Veatch & Thomas chose to assign permeability values to
the faces, rather than the centres, of each grid block (1.e., k, 'ﬁas to
be defined at (i+1/2,j) and (i-1/2,j) rather than at (i,j)), and the
history-matching problem consequently contained five, rather than two,
unknowns in any block. Given the large number of unknowns over an
entire reservoir grid system, they suggested that only small groups of
blocks be treated initially in order to construct local‘soluticns. And
since the most accurate pressure and saturation information on the
reservoir lies in blocks containing production or injection wells, they

further recommended that the inftial computations be focussed about the

well blocks.
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Thus, Veatch & Thomas' history-matching algorithm begins by making an
initial pass over the entire réserVair in order to establish égé systems
of equations about each well block. Each system of ;quaticns is then
tested for uniqueness; and if a unique solution can be computed, the
reservoir description parameters are calculated. The systems of
equations associated with the periphery of each block for which a unique
solution was found are thereafter determined. f? these systems produce
unique solutions, the reservoir description parameters are computed, and
the areas are gradually and uniformly enlarged over the reservoir until
all possible unique solutions are obtained. If no unique solution can
be found, the algorithm begins a ncni&ﬁique construction of the
solution. The computations in that case resemble the previous automatic
history-matching algorithms, in that they require the imposition of
upper ;ﬁd lower bounds on the rcser;nir description parameters, and are
based on least-squares techniques in which the error in estimation is to
some degree minimized.

In tests of their algorithm on 'several hypothetical reservoirs,
Vveatch & Thomds found generally excellent agreement between actual and
computed reservoir description parameters in th;vcase of incompressible
flow, for which unfque solutions could be dbtained. $ut when non-unique
solutions were encauﬁtered.‘they conceded that "there is no assurance
that the results of {Ee prediction phase will be reliable", and, "as the
prediction is made farther into the future, the results become even
worse.” The one example of compressible flow treated by Veatch & Thomas
led to a non-unique solution, and implementation of a bounded least-
squares tEEhniqué produced reasonable results. However, as in the case

of the automatic history-matching algorithm of Coats et al. (1970) the

(s



apparent success of the history-match ﬁjs due to imposition of
symmetrical bounds about the true values of the reservoir description

parameters.

Discussion

While Veatch & Thomas' method for automatic history-matching 1s
potentially usefu1,'1t contains several inherent weaknesses. [ts main
disadvantage is its tendency to be very sensitiv! to the input pressure
distributicﬂs.h (Such sensitivity to minor variations in reservoir
pressure was observed as early as 1964 by Jacquard. ) This {is
illustrated by 2 simplified version of the direct method app\ied to a
hypothetical reservoir.

Consider the oil phase equation appropriate for modelling three-

phase flow (Equation (3.7a)):

Ak Kk “ Ak k_ 2
a ,/,xxro 0 5 ¢ ro 3o
=— Ax =—=sl—%———=g%-
x( (T ax ) ady* (T 53 )Ay
“ Ak _k i S
) k. k¥
- d ,z 2z ro 0 . 3 0
T w8y OZ Jaz + a5 = Vp 3E(* EQ) .

(5.2)
For convenience, suppose the reserveir 1s two-dimensional, and
ky * ky = k throughout the reservoir. Then, for any given block
(1,3), Equation (5.2) may be written by finite difference techniques as
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where the various terms are as defined in Chapter 3.

To simplify the problem further, assume that the porosity is known,
so that Equation (5.3) contains the permeability as the only unknown,
Knowledge of pressure and saturation distributions at two points in time
will then suffice for estimating the permeability in each grid-block
throughout the reservoir.

A three-phase, two-dimensional areal reservoir, divided into a 7xJ
grid-block system, was employed in the sample calculations. All |
necessary 1nput data, including the true reservoir permeabilities and
¢he pressure and saturation distributions at two time points, are shown
in Table 5. To test the sensitivity of Equation (5.3) to the pressure
distribution, the pressures at the first time step were perturbed in
various blocks by increments as small as 6.895 kPa (1 psi). When the
pressure values in each block (i,j), i = 1,2,3; j = 1,2,3,4 were
increased by 6.895 kPa, the resulting permeability estimates in those
and surrounding blocks were strongly affected, with some estimates "
displaying shifts in the range of 0.7 umz ‘ta 1.8 ung In fact, the
solution generated several negative estimates of permeability.

It is possible to provide an heuristic argument to demonstrate the

sensitivity of Equation (5.3) to pressure distributions. Consider the

coefficient on the left hand side of Equatton (5.3):
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TABLE 5
RESERVOIR DATA "

well locations: (1,7); (4,1); (4,4); (7,7)
011 production rates: 9.2x10"° m3/s in blocks (1,7),(4,1),(7,7)

1.9x10"4 m3/s 1n block (4,4)
Excluded blocks: (1,1); (7,1)
A1l blocks of equal size: Ax = Ay = 30.5m
Thickness: 12.2 m
Porosity: 0.2
Depth below sea level: 305 m ‘
Initial otl pressure: 13100 kPa
Permeability: 0.296 un?
Initial ofl saturation: 0.550
Initial gas saturation: 0.050

011 Pressure Distribution (60 days)

11356 11383 11397 11397 11397 11383 11356

11383 11390 11397 11397 11397 11390 11383

11397 11397 11397 11390 11397 11397 11397

11404 11404 11390 11363 11390 11404 11404

11411 11411 11397 11390 11397 11411 11411

11418 11411 11404 11397 11404 11411 11418
0 11411 11397 11383 11397 11411 0

011 Saturation Distribution (60 days)

0.507 0.535 0.51¢ 0.509 0.510 0.535 0.507
0.518 0.501  0.509  0.515 0.509 0.501 0.518
0.514 0.508 0.501 0.524 0.501 0.508 0.514
0.509 0.511 0.59  0.523 0.559 0.511 0.509
0.512 0.511 0.500 ~ 0.525 0.500 0.511 0.512
0.513 0.510 0.502 0.522 0.502 0.510 0.513

0 0.509 0.521 0.508 0.521 0.509 0



0.401
0.402
0.401
0.401
0.401
0.401

10384
10411
10425
10439
10439
10446

8. 495
0.492
0.492
0.488
0.491
0.492

TABLE 5 (Continued)

Water Saturation Distribution (60 Days)

0.402
0.401
0.401
0.401
0.401
0.401
0.401

10411
10418
10425
10432
10439
10439
10439

0i1

<

0.401
0.401
0.401
0.403
0.401
0.401
0.402

Pressure

10425
10425
10425
10418
10432
10432
10425

0.401
0.401
0.402
0.399
0.402
0.402
0.401

0.401
0.401
0.401
0.403
0.401
0.401
0.402

0.402
0.401
0.401
0.401
0.401
0.401
0.40}

0.401

0.402

0.401

0.401

0.401

0.401
0

Distribution (100 days)

10425
10425
10418
10390
10418
10425
10404

10425
10425
10425
10418
10432
10432
10425

10411
10418
10425
10432
10439
10439
10439

10384

10411

10425

10439

10439

10446
0

0i1 Saturation Distribution (100 days)

0.502
0.480
0.487
0.488
0.489
0.488
0.486

° 0.487

0.487
0.479
0.516
0.480
0.481
0.494

0.486
0.492
0.494
0.501
0.493
0.492
0.492

0.487

0.487

0.479
0.516
0.480
0.481
0.494

0.502
0.480
0.487
0.488
0.489
0.488
0.486

0.495

0.492

0.492

0.488

0.491

0.492
0

10.
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In those parts of the reservoir in which the pressure distribution tends
to be uniform, this expression will approximate zero. Since each kiij
is determined by divi&ing this value into the right hand side constant
of Equation (5.3), it is evident that small changes in the value could
have a significant effect on the outcome of the history-match. This
point was noted by Veatch & Thomas: “The greatest deviations ncc%rrgd
in the farthest regions from the wells whe;e the pressure distributions
from one time to the next are not significantly perturbed. As a
consequence we begin to see the effects of ill-conditioning where small
errors in the coefficient matrix are greatly magnified in the solution
vector."”

The sensitivity of this direct history-matching method to the
pressure distributions was further corroborated during personal
communication with Dr. G;H. Thomas .

Although the direct method for automatic history-matching is
advantageous in that it performs indepeﬁdentIy of a reservoir simulator,
{ts sensitivity appears to render it ineffective as a viable approach to
automatic history-matching 1&=DFEC£%EE] situations, where utilization of
various interpolation schemes can lead to widéiy differgntiestimatgd

pressure distributions.



CHAPTER SIX

. SOME MATHEMATICAL CONSIDERATIONS
&
Theoretical Suitabflity of Darcy's Equation of Flow

As discussed in Chapter 3, mathematical models simulating
multiphase, multi-dimensional fluid flow in a petroleum reservqir are
ultimately based on Darcy's equation of flow (used in conjunction with
the law of conservation of mass). The effectiveness of this equation as
the fundamental re1ati@nship'gcvern1ng fluid flow behaviour in porous
media has been established by experimental testing, and a large body of
supporting material (applied to actual field situations) is readily
available (see, for example, Muskat, 1949; Collins, 1961; Scheidegger,
1974: or Thomas, 1982). But equally important for the sigﬁificancé of
the matheﬁig;z;T model is that Darcy's equation of flow has some
theoretical foundations.

In 1975, Houpeurt described a method - first published in 1955 in
Revue de 1'Institut Frangais du Pétrole - by which Darcy's gquatign of
flow could be deduced from theoretical considerations of thé Navier-
Stokes equations of motion.

In Cartesian coordinates, the Navier-Stokes equatiéns of mgtjaé for

an incompressible fluid with constant viscosity may be written as

»
i,
Du _-d2p ., ¢ , 2
POE" ax T Y
v . -3, ¢ 2
QE ay*Fy*pVV .
and .
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%, Fz + pvzﬁ .

mi
P Ot Y

x, y, and z

u, v, and w are the velocities in the

where u,
directions, respectively, F is a vector of body force density, and

3 s i v il
*UEX*VEY*HEZ .

D" =
ot ~ 3t

The law of conservatfon of mass (or the equation of continuity) is, for
this case,
U L v, W _ 45 .

—_— i = —_—
y oz

ax dy

For stegdyistate.F1u1d flow,

aai—:giawna
at ot ot :

Furthermore, assuming flow to be isothermal, laminar, viscous, and one-

dimensional along the x-axis, the equation of continuity in the absence
of external body forces is simply

2u
ax

and the Navier-Stokes equations reduce to

\ an 2 2
_1_ EE = ié a u ., a u
p Ox p(ayz ! azz) ’
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'D)h—l
ﬁyhg
]
(=

and i
1%,
p 0z 0 .
which may be combined and written as
i 2 2
d ! ) £
ﬁ = u(ﬁa* u + j’ u’) - (6-1)
h dy 0z _

Houpeurt then deéit with two particular cases of flow. In the
first instance, he considered flow along the x-direction through a three
dimensional semi-infinite strip, defined by 0 < x <L , =<y <=,

-e/2 < z < e/2 , so that Equation (6.1) coyld be written as

, 2 :
%% = u% . (6.2)
’ dz” .

Since the two terms in Equation (6.2) depend upon different variables,
each term may be set equal to a constant and integrated. For the

boundary conditions
Xgoiﬂipi

x=L,p=P (Pp¢py)

and



u=20,2z=+¢

~ol

integration of each term of Equation (6.2) yields

and

Calculation of the output of fluid per unit time, q, over a distance

b along the strip _yfeids

e/2
q= ZID budz

2 p,-pP,
, e 172
befIz:é=I—é .
\

i.e., this is the fluid. output per unit time through the cross-sectional
area be. For a porous medium with porosity ¢ , the total output of

fluid per unit time across the strip, Q , is then given by

(6.3)

“where A is the total cross-sectional area along the strip.
In the second instance, Houpeurt considered flow through a

cylindrical porous medium, and, by methods similar to those used above



derived
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0= Adp o=, | (6.4)

b

where r {s the radius of the cylinder.

Comparison of Equations (6.3) and (6.4) then led Houpeurt to
suggest that, for any cross-sectional area A of a porous medium
through which the direction of flow is normal, the effect of a pressure

gradient on the output of fluid per unit time, q, would be of the form
k d
q A';a% ’

where - k 1is a constant. This is, in fact, the result obtained
experimentally by Darcy in 1856.

The preceding arguments allow the observation that the problem of
obtaining a fundamental expression for f1uid flow in a porous medium
reduces, essentially, to determining the macroscopic behaviour of a
_porous medium wh:;h exhibits microscopic heterogeneity. In other words,
since the problem lies in the existence of two widely differing length
scales, or 'scales of variation' (the smaller relating to heterogeneity,
and the larger to macroscopic behaviour), the objective must be a
characterization of the large scale behaviour of the medium by
eliminating small scale variation from the known equations which
describe flow behaviour on a small scale (i.e., the Navier-Stokes 7
equations of motion). 4

In recent years, several systematic, rigorous methods for dealing
with such problems have been developed. These are based on various |

1]

averaging techniques, in&]uding spatial, temporal, and stochastic
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averaging. In 1977, Keller developed the so-called 'two-space method’,

or 'method af(ﬁﬁ1tTﬁ+i,sca1es , as means for deriving simplified
1
equations. Tha,méthod can handle large amplitude variations in the

\

coefficients whigh\may uc§§r over a small length scale, and Keller

clearly 111ustrated‘tha technique by applying {t to a boundary value

and then used this approShh to d rive Darcy s equation of flow "from the

NiviEFsStQKEE equations. Tﬁ\ fg])cw1ng {s a brief description of the

tua;ipace method as a@p1ted by Keller to flow through a porous medium.
Consider an equation with caefficient§ that vary on-a small spatial
scale. These coefficients are first represented by writing them as
functians'cf x/e , where x* is a position vector and ¢ a small
parameter proportional to the length scaié; That this will cause a
function f(x/e) to be subject to rapid variation is evident by noting

that "its derivative with respect to x, f.e.

1

is large for small values of ¢ , even though f' may be bounded.

For a flow of a compressible, viscous fluid through a porous -
medium, let denate the ratio of the pore diameter to the macroscopic
‘scald, The relationships governing flow behaviour on the microscopic
scale (i.e., tn the interior of the pores) are then the NavierfStakes

eqaatHDHSsoﬁ motion, the equation of continuity, and the equation of

state, namely:
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s ) = e w(F eI f, (6.5)
’%%4» Ve(pu) = 0 , - (6.6)

and
e = p(p) (6.7)

where o, b, u, and u are, respectively, the fluid density, pressure,

%flocity. and viscosity coefficient, and f 1is the external body force

per uait volume. In addition, it is assumed that u = 0 on the surface
of the pores, to account for viscosity effects.

Keller first introduced the variables y and < , defined by

y = x/e ,
T = t/ellz .

and wrote u, u, p, P, and f in the forms

u = %

(X,,Y,T,E), ’ b

e G

& .
p = p(X,y.t,€)
LA

p = S(Xoy’tne) ’
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and | : -
f = ?(x;y,igg) .

Note that o, s small of order ;3/2 , 1.e., the viscosity decreases
proportioﬁal1y to the decrease in pore size. Also, the powers of ¢
employed vary among application of the two-space methods to different
problems. There is no formula to determine appropriate powers, and
intuition or trial-and-error must be used té choose powers that provide
acceptable final results. (For further references to this problem, see,
e.g., Bensoussan et al. (1978), Chap. 2; Kogelman & Keller (1973); or
Larsen (1975).) Replacing v by Vv ¢ %@y , and substituting the above
variables into Equations (655):66.7) yields

AER Te(v,rev,)T] = -y +9 )7

y

+ E[(vy-t—:vx)z + %(vy*gvx)(vy*:vx)iﬁ + 7., (6.8)
%E* (vy*svx)-(?ii‘) =0 , (6.9)
and
p = plp) - o (6.10)

Assuming that u, p, P, and T have a regular dependence upon e .

they can be expanded into

b i
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Tty stee) = U (Xaes) + eup(xay,s) + ofe) o (6.11)

E = pD + gpl +* Q(;) " (5;12)

P=p,+ epy+ofe), ' (6.13)
and )

(8 fo + efy + ofe) . (6.14)

Substituting (6;i1)—(6i14) into Equations (6.8)-(6.10), and equating

coefficients of the lowest power of ¢ 1in each equation yields

Vypg(x;y,f) =0,

bpg o
3 + Vyi(p un) =0 (6.15)

and

pe * P(Py) -

Similarly, equating coefficients for the next Towest pcﬁe;‘bf € gives

(auo +u Vu )= -vp, + ﬁ(vz v d99 )u
Po B "o 'y'0 Py b Ty g Tyt

BT vy’(poul*plun) + Vlpgug) = 0

L
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"‘ P = pp(PQypi .

4

A

From here, Keller proceeded ia.deteﬁiine the varfiables upon which
each function depends, and after averaging (i.e., integrating over a
large domain, D, of the fluid, dividing!the integral by the volume V
of D, and letting D and V tend to iéfiﬁity); obtained two relations

which gefieralize Darty's law for nonlinear, time-dependent, compressible

flows:
.
\D(xlt) = ﬁ[i;f;pﬂgfg = vxpg] :
. Hm ﬁj ux,y, f-pg o - WP M
and , v
. L)

1 1 Q

1 .
= limyg IDP[!,];T,pn.fa - vxpgjdy .
Vo ' xTo™

where the solutions to (6.15) and (6.16) are written as functionals of

Po aég f@ -lvxpo in the form

»

a "Q(X:J:’F) L(!:.Y T-P : VVP ] *

14



and
Py(x,y,3) = P(x.y,t.pn.foivxﬂgl
s _

With these relationships in mind, Keller then considered severatl
special cases which more closely resemble the usual form of Darcy's
equation - flow of incompressible fluid, steady incompressible flow with
constant viscosity, and steady compressible flow. In the case of
steady, incompressible flow, the simplified equation is the Darcy
equation of flow in one of its common forms:

K(x)[f (x) - v,p,(x)]

o

=
w—

»”>
—~—

]

where K(x) 1s the cross-sectional area normal to the direction of
flow. '

Thus, based on the equations governing flow on the microscopic
level, it is possible to obtatm, from purely theoretical considerations,

a characterization of large scale flow behaviour in a porous medium.

Alternative Approaches to the Inverse Pr§b1gﬁ

As shown in Chapter 2, petroleum engineers have devoted
considerable efforts to the development of feasible automatic methods
that solve the inverse problem. But analogous inverse problems also
occur frequently in science, mgdiciné, and engineering, and a large body
of knowledge exists elsewhere in the 11teratu;e (see, for example,
Kagiwad:. 1974; Carasso & Stone, 1975; or references provided by Sagar
et al., 1975. More e:tensive reference 1istings may be fqund 1i!¥ayne

(1975) and Tikhonov & Arsenin (1977).) "
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A somewhat less complex version of the problem of parameter
identification in an underground reservoir arises when considering
groundwater flow. The equation modelling such flow is very similar to
that which models single-phase flow in a petroleum reservoir; and
numerous papers seeking to determine the spatially varying coefficients
of permeabilty and porosity are to be found in journals of water

resources and hydrology. It is interesting to note that most of these
attempts follow direct approaches, rather than the ex post facto methods
almost exclusively used by petroleum engineers.

Proposed methods for solving the inverse problem (often for the
steady-state condition only) 1nclude: linear programming (Kleinecke,
1971), automatic solutions (Emsellem & de Marsily, 1971), use of
subjective information (Lovell et al., 1972; Nutbrown, 1975), Ga?ert;n
solutions (Frinq/& Pinder, 1973), finite elements (Neuman, 1973), direct
1dent1f1§aticnf;ased on approximated derivatives of the depéﬁéent
variable (Sagar et al., 1975; Yakowitz & Noren, 1976), and quadratic
programming (Chang & Yeh, 199s). Howgvér, there is little discussion of
the sensitivity of calculated solutions to the required input data and
few practical Ease\studies have been reported.

A common feature of these direct algorithms is that they demand
prior knowledge of the derivatives of the dependent variable (i.e., the
pressure) over at least a portion of the reservoir. In two papers
published in 1981, Richter studied the inverse problem for underground
reservoirs using such input data, and‘an:1yzed ﬁassible solutions and

‘solution sensitivity under various conditions.
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In one paper, Richter (1981a) considered the basic equation which
models groundwater flow and flow of :amaanent§ in a petroleum reservoir,
i.e.,

3u [+] du d ;B
B3t " 3k ‘ﬁ) fayleay) O

where u represents the pressure, q 1is a source/sink term, o 15 a
transmissibility term containing reservoir permeability (a>0), B 15 a
storage term containing reservoir porosity (g > 0), and a« and B are
considered to be functions of the spatial coordinates. The inverse
problem then centres on identification of a and B from observed
values of u and q.

Under steady-state conditions, the partial differential equation is

14

reduced to the hyperbolic equation

VaeW + au = -q , Xxe¢ QCR
< _ ! )
and in a systematic theoretical analysis of this problem, Richter
employed a direct approach (1.e.? a method involving an approximate
solution of the hyperbolic equation). But for estimating a , $his has
severe practical limitations since it requires knowledge of the
derivatives of u.

Richter considered the problem under four different conditions:

(1) fAnfglw| >0,

(11) infoau >0 ,

*
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(111) infgtﬂx{l?ul,m}] >0, and
(tv) 1anLmax{|Vu\.|Au|}] >0 .

Under each of the first tﬁree conditions, he showed that a unigue
solution a exists for any a., provided that the initial data
(prescribed values along a portion of aQ ) are appropriately épecified.
and that a depends continuously onq , Vu , and Au. He also

b3
described the cases for which the fourth condition will lead to a unique

solution.

Examining the first condition, which implies the existence of non-
_tnters;cting characteristics, Richter was able to derive a bound which
defines the sensitivity of a solution a to perturbations in q and
u. He noted, however, that the bound is of little practical welue,
since the measured pressures upon which the bound condition fis based are
not known with sufficient accuracy. As well, the bound suggests that an
acceptable estimate of a 1s possible only if the observed u is
sufficiently precise to allow accurate approximation of Au .

The second condition allows for intersecting characteristics, which
occur in the neighbourhood of a source or sink (a 'point of
degene%@cy‘)- In this case, Richter showed that there is a preferred
sense of direction along the characteristics, i.e., depending upon the
initialistgrting point, the solution is drawn along the characteristics
toward either the boundary or the point of degeneracy. .

Considering the third condition, which allows for the vanishing of

"the first erder derivatives at points where Au is of the same sign
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(thus, u cannot contain both maxima and minima in Q ), Richter
d1scus;;:“:‘e difficulty of prescribing q ;nd boundary conditions on

u which wilr_guarantee that the forward solution satisfies |vu| > 0 and
s > 0 throughout Q . However, by combining results for the first two
conditions, he derived a statement that brovided for the possibility of
a unique solution. It should be noted that some difficulty was
encountered in reproducing the proof of this statement,

Richter then proposed a particularly useful set of test conditions
for measuring u , and, under these conditions, showed that a unique
solution a exists for the hyperbolic problem without requiriﬁg Cauchy
data. He also obtained a bound on the stability of the solution in

terms of a , q , and relevant properties of Q.

- In a companioa paper, Richter (1981b) devéloped a finite difference

method for approximating the solution a numerically, and proved tiht,
under the third condition, the solution does in fact converge. '

e
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CHAPTER SEVEN
) SUHH§RY AND CONCLUSIONS ’

An intuitive, trial-and-error approach to histﬁryiqatghing c;n;be
costly and:time-consuming. In an attéﬂ@t to reduce these factors,
considerable efforts have been made to automate the history-matching
procedure fof 1mp1émentatigﬁ on high-speed computers; andfseverai
methods based on ex post facto techniques have been devgiapedifar this
purpose.

This study examined presently available automatic htstory-matching
algorithms reported in journals of petroleum enginéering; discussed the
viability of each; and explored the fundamental weaknesses of the two
most promising methods_ In addition, the existence of alternative
approaches to solving the inverse problem for analogous, but less '
complex, situations was noted.

As discussed in Chapter 2, thé automatic history-matching
algorithms available to petroleum engineers inva\vé t

(a) iterative adjustment and regression analysis (Kruger, 1961;

Jacquard & Jain, 1965; Jahns, 1966; Dupuy, 1968),

(b) 1inear and nonlinear programmwing techniques (Coats et al.
1970; Slater & Durrer, 1971; Thomas et al., 1972; Boberg et
al. 1973; Carter et al., 1974), ‘

(4) energy dissipation analysis (Nelson, 1968),

(d) optimal control theory (Chen et al., 1974: Chavent et al.,
1973;'Qasserman et al., 1975; Watson et al., 1980),

(e) direct soluti@ml(viatch & Thomas, 1971), and

.(f) Bayesian estimation (Gavalas et al., 1976).

Al
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These pubTications generally treat only single-phase or pseudo
single-phase incompressible reservoir flbw. although many would appear
to be‘satisfactory for multiphase flow. A twd-phase, incoppressible flow
problem was 1;vestigated by'van den Bosch & Seinfeld (1977), but
solution methods are suitable only for one-dimensional flow. Veatch &
Thomas (1971) developed a direct method for automatic history-matching
which is, theoretically, applicable to multiphase, compressible f]aﬁ;

\However, for proper consideration of any multiphase flow problem, it is
necessary to have knowledge of the relative permeabilities (which are
utilized in the reservoir.gimh]ator of ex post facto techniques, or, in’
the case o* Veatch & Thoma;, directly in the phase equations being
solved). While geological sémples provide some rough estimate of these
values, any history-matching probiem should_ipcorporate determination of
the relative permeabilities as well as the ;izz}btg permeabilities and
pqrosit1es.

The most serious problem encountered in automatic history-matching
is the tendency to construct 111-cond1tiqud systems of equations (i.e.,
for the problem Ax = b, small relative cﬁanges in the matrix A or
vector b produce large relative errors in the solution vector x). By
the very nature of the history-matching problem, inherent uncertainties
‘ex1st in both A and b because they are based on a measured
performance history. Further error inevitably arises from the finite
word length of the computer. As Rust and Burrus (1972) noted: “the
presence of these errors makes'1t impossible to obtain a meaningful
solution by simply applying one of the classical methods to the system

by itself. Moreover, if all we know s the system itself, there is no

’



nontlasgical method that will gi;e a mganiné?;i solution”® ?see also
Tikhonov and Arsenin, (1977)). The hfstory-matching prcb]eﬁ can
therefore be ‘treated only by incorporating some a priori 1ﬁfqrmatign
about the solution vector x. But due to the gross inaccuracy of any
ge&]ogica1 estimates (based on scarce physical data), even this
requirement cannot be adequately satisfied.

It is obvious, then, that chreﬁt automatic Histﬂryématﬁhing
metgods are unsatisfactory. ’As expressed bngﬂberg et al. (1973), as
well as by Dr. G.W. Thomas during personal communication, such methods
are simply not competitivé with manual techniques which an experienced
reservoir engineer might em@iéy; and practising reservoir engineers
consequently continue history-matching on a trial-and-error basis, with
good judgeﬁent and intuition providing reasonably reliable Fésuiﬁs. It
would appear, then, that the determination of effective and reliable
§olutiens to the inverse problem requires development of improved
methods for estimatin§ the geological structure and properties of the
reservoir, and/or adaptation of sophisticated mathematical techniques to

allow for a more thorough theoretical treatment of the entire problem.
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APPENDI X :

Alternative Derivation of Equations {4.2)

for any 1, and a total of N runs, Equation (4.1) yields
{
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Now, mu1t1ﬁﬁy each of the N equations by its respective coefficient
of a4 and add the resulting equations. ,Simi1£f11,imu1t1ply each of
the N equations by its respective coefficient of ayy, and add these
resulting equations. Continuing this process for each;coefficient of
IR j=0,1,2,...,9, yields a total of J»+ 1 simultaneous equations

identical to Equation (4.2).

N



