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Abstract

Estimating the amount of effort required for developing a software system is one of the 

most important project management concerns. This thesis has thoroughly investigated the 

multiple regression and neural networks in effort estimation, built efficient reduced 

models while the predicting accuracy is guaranteed, and identified the most significant 

factors among independent variables.

It has been found that neural networks used as effort estimators are more accurate but less 

repeatable, while multiple regression is less accurate but repeatable.

When building more efficient reduced models, linear techniques and genetic algorithms 

are employed for feature set selection; linear techniques are straightforward but less 

efficient especially when the number of dataset attributes is large. Genetic algorithms are 

more efficient for feature set selection. The most significant factors identified in the 

optimal reduced model are especially important for managers in making decisions in the 

early stage of software development.
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Chapter 1 Introduction

1.1. Literature Research

The principal components of project costs consist of hardware costs, travel and training 

costs, and effort costs (the costs of paying software engineers, usually measured in man- 

months or man-hours). This thesis focuses on the effort costs estimation, especially in the 

early development stages. In the beginning of a new software project, the project 

manager needs to be able to estimate the effort cost and evaluate how accurate the 

estimation is. This is a crucial but difficult task. Therefore, it requires significant effort to 

correctly estimate software project development effort. However, in real world, this 

process is often neglected. Until now there is still no simple way to accurately estimate 

software development effort.

Most people working in the software industry recognize that developing software to 

predictable schedules is a risky business. Some data in a 1995 study by the Standish 

Group showed that on average only 16% of software projects are completed successfully 

(all specified features delivered on-time and budget). 31% were canceled, and the 

remaining 53% projects were dramatically over budget and schedule, and delivered less 

functionality than originally specified. While the reasons for these failures and near 

failures are diverse, the most common reasons are:

• Specifying incomplete or unclear requirements

• Failing to adjust schedules when scope changes

• Setting development schedules that are too aggressive

• Insufficient resources.

l
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These failures are due to lack of data and poor effort estimation. Effective software 

estimation combined with sound project management discipline can solve many of these 

problems.

The size of a software project in terms of the development effort and schedule can be 

estimated using mathematical models based on data from software projects that have 

already been completed. The results from these models can be refined using various 

tuning parameters such as technical complexity of the product, experience of the 

development team, and maturity of the development process. The results of the 

estimation process will provide project managers with a range of options and 

probabilities for the likely project timelines and levels of effort required to achieve them. 

Armed with this piece of information, project managers are able to make 

recommendations to senior management and help minimize the project risk by setting 

realistic development schedules, and making appropriate feature tradeoff. However, 

software estimation is not an exact science, therefore, it is important to refine the estimate 

and the project schedule as the product becomes more explicitly defined during the 

requirements and design stages.

Effective effort estimation is one of the most important software development activities, 

however, it is also one of the most difficult. Underestimating a project will lead to 

understaffing, insufficient quality assurance, and too short a schedule. That in turn can 

lead to staff burnout, low quality, loss of credibility as deadlines are missed, and 

inefficient development effort. Overestimating a project is equally bad. According to 

Parkinson's Law, work expands to fill available time. As a result, projects that can be
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completed in a much shorter time frame will take longer to complete if more time is 

given. An accurate and robust estimate is a critical part of an efficient software project. 

Software engineering studies found that software projects effort estimated using 

automated estimation software are more accurate than that estimated using manual 

methods. Estimates based on historical data from an organization are more accurate than 

estimates based on rules of thumb or educated guesswork. Automated estimation tools 

often allow software projects to be delivered at lower cost than manual methods do. 

Despite extensive research efforts to understand the factors contributing to the success of 

software projects [3,4,5], many software development projects are still failing and such 

research is likely to continue until the development process is under better control [4]. 

For example, in 1994, 31% of all corporate software development projects resulted in 

cancellation [14]. A more recent study found that 20% of software projects failed, and 

46% experienced cost and schedule overruns or products with significantly reduced 

functionality [15]. Troubled projects can cause developers to suffer long hours of unpaid 

overtime, lack of motivation, and burnout, leading to excessive staff turnover and its 

associated costs.

More comprehensive review of different techniques for effort estimation has also been 

discussed in the literatures [16,17,18]. The popular approaches include: algorithmic and 

parametric models, expert judgment, formal and informal reasoning by analogy, price-to- 

win, top-down, bottom-up, rules of thumb, and available capability. According to Boehm

[1], three acceptable methods can be distinguished: the expert method, the analogy 

method, and the use of software cost estimation models.
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1.1.1 Algorithmic and Parametric Models

There have been a number of estimation models produced over the past three decades. 

These efforts can be classified into (1) model-based techniques, (2) expertise-based 

techniques, (3) learning-oriented techniques, and (4) dynamic techniques [10]. Most 

software development effort estimators are model-based with well-known examples 

including COCOMO [1], function points analysis (FPA) [11] and SLIM [12]. SLIM uses 

linear programming to consider the constraints of development effort, but its estimates 

are very sensitive to technical factors, and it is not suitable for small projects. FPA 

estimates need only the detailed specification of the early stage, it is more accurate than 

the estimates of lines of source code since it is independent of language and layout, but 

FPA counting is quite subjective and it is hard to automate. In model-based techniques, 

the development effort is defined as a function of variables representing the most 

important cost drivers of the project.

In the software engineering industry, the Constructive Cost Model (COCOMO) 

introduced by Barry Boehm [1] for software effort estimation is one of the most popular 

project management tools. The main focus in COCOMO is on estimating the effects of 

the 15 cost drivers, together with software size, on development effort. COCOMO is a 

collection of three sub models: basic, intermediate and detailed. The intermediate model 

is of interest in this thesis. Its predictions of required effort (measured in Person-Months 

-  PM) are based primarily on the estimate of the software project's size (measured in 

Thousands of Source Lines of Code -  KSLOC):

Effort = A *EAF * (Size) B (1-1)

4
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Where EAF is the Effort Adjustment Factor derived from the 15 cost drivers, and A and B 

are constants derived from the development mode and application type.

There are three development modes: organic, semi-detached, and embedded. Organic 

mode is used when the constraints upon project development are mild and the given 

project has been preceded by a number of similar projects that could assist in defining the 

agenda of development. Embedded mode is used for projects that have very tightly 

defined constraints. These projects cannot rely on previously completed projects. Semi

detached mode is used for projects where constraints are greater than the organic mode, 

but there still remains some flexibility. These projects may only be preceded by a few 

similar projects. The relationship between development modes and the coefficients is 

illustrated below.

Table 1-1 Coefficients determined by development modes

Development Mode A B

Organic 3.2 1.05

Embedded 2.8 1.20

Semi-detached 3.0 1.12

In COCOMO model, there are 15 cost drivers under the four main categories [1]. Taking 

software size into consideration, there are altogether 16 attributes needed for effort 

estimation. COCOMO is transparent, and the estimator can see how it works, the drivers 

are particularly helpful for the estimator to understand the impacts of the drivers on the 

effort. However, the estimate models need to be calibrated to each individual 

measurement environment, and the estimate accuracy is still variable even after

5
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calibration, it is very hard to estimate the software size in the early stage of development, 

it is also extremely vulnerable for managers to misclassify the development mode of the 

new project, the success of estimation heavily depends on the historical data, which is not 

available in the early stage of project development. Moreover, it is quite possible that 

some of these cost driver factors may be correlated when contributing to the effort 

estimation. This correlation may even affect the accuracy of the model.

1.1.2 Learning-Oriented Estimation

More recently, machine learning models have been developed in the area of cost 

estimation. In [19,20,21,22,23], a Case-Based Reasoning (CBR) approach is adopted in 

constructing a cost model for the latter stages of the development life cycle. Delany [24] 

also uses a CBR approach applied early in development life cycle.

Artificial neural network (ANN) is the most commonly used learning-oriented estimator 

for estimating software development effort [13], and back-propagation is the most 

commonly used learning algorithm in ANN. Flexibility, objectivity, correctness and 

computational economy are the desirable features that make this combination attractive 

for data modeling application. An overview of the ANN with back-propagation algorithm 

is described in [5].

Srinivasan [25] builds a variety of models including neural networks, regression trees, 

COCOMO, and SLIM. The training set consists of COCOMO data (63 projects from 

different applications). The training models are tested against the Kemerer’s COMOMO 

data (15 projects, mainly business applications). The regression trees outperformed the
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COCOMO and the SLIM model; the neural networks and function point-based prediction 

models outperformed regression trees.

Samson [26] applies neural network models to predict effort from software sizing using 

COCOMO-81 data, the neural network models produced better results than COCOMO- 

81. Wittig et al. [27] estimated development effort using a neural network model. They 

achieved impressive results of 75 percent accuracy pred(25). Boettieher [28] conducted 

more than 33,000 different neural network experiments on empirical data collected from 

separate corporate domains. The experiments assessed the contribution of different 

metrics to programming effort. The research produced a cross-validation rate of 73.26% 

in terms of pred (30). Hodgkinson [29] adopted a top-town approach using neurofuzzy 

cost estimator in predicting project effort, the results were comparable to other techniques 

including least-square multiple linear regressions, estimation via analogy, and neural 

networks.

1.1.3 Expert Judgment

Expert judgment is widely used as an estimation method. It involves consulting with one 

or more experts. One or more experts in both software development and the application 

domain use their experience to predict software costs. Process iterates until some 

consensus is reached. The advantages are that it is relatively inexpensive and may be 

accurate if the experts have direct experience in similar systems. The disadvantage is that 

it can be very inaccurate if there is no or few real expert.
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1.1.4 Estimation by Analogy

Estimation by analogy involves reasoning by analogy, using experience with one or more 

completed projects to relate actual cost and development time to the cost and 

development time of the new project. The effort of a project is computed by comparing 

the project to a similar project in the same application domain. The results can be 

accurate if sufficient project data is available; however, it is impossible to employ this 

method if no comparable project has been tackled before, and it also needs a 

systematically maintained cost database.

1.2. Proposed Research Work

From the literatures above, each method has its strengths and weaknesses; estimation 

should be based on several methods. Pricing to win is sometimes the only applicable 

method. If these do not return approximately the same result, and there is insufficient 

information available, some action should be taken to find out more in order to make 

more accurate estimates. Poor effort estimation is the most significant factor to cause the 

failure, and data scarcity in the early stage of software development is the main cause of 

poor effort estimation. The recent research is focused on machine learning methods, 

especially neural networks, which have the abilities to deal with domain complexity and 

to generalize, along with adaptability, flexibility and parallelism. The goals of this thesis 

is:
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Accurately predict the efforts required for a new software development process.

This is the first step; accuracy should be the fundamental requirements for all the 

estimation models, otherwise, estimated results are not reliable.

Building reduced efficient models and identifying the major factors contributing to 

the software development estimation.

Identifying the most significant factors will be helpful for managers to make decisions in 

the early stages of software development, as proposed in the following sections, there are 

many successful methods to build such reduced models. Software managers would 

benefit from a reduced model considering only the most significant factors contributing 

to the success of the software systems, especially in the early stage of development. At 

the same time, such reduced model must remain accurate, since its major function is to 

predict the effort needed for new software projects. The goal of this thesis is to provide a 

reduced yet accurate model for effort estimation in the second step. To achieve this goal, 

the most significant attributes must be identified among the attributes of the original 

COCOMO model using data mining methods [6,7,8,9].
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1.3. Methods of the Proposed Research

1.3.1 Model Reduction

The major factors contributing to the success of software systems fall into seven 

categories [3,4]: (1) management, (2) customers and users, (3) requirements, (4) 

estimation, scheduling, (5) project manager, (6) software development process, and (7) 

development personnel. The approach described in this thesis is based on four categories 

adopted from [1], which is summarized in following: (1) project attributes, (2) personnel 

attributes, (3) computer attributes, and (4) product attributes. These two classification 

systems are actually overlapping to some extent. For example, the project manager and 

development personnel in the first system can be classified into personnel attributes in the 

latter system, which also includes the analysts and programmers aside from project 

managers and development personnel.

There are several multiple regression methods for building efficient reduced linear 

models that can be used for effort prediction. Based on the full regression model that 

associates the dependent variable effort to all 16 explanatory variables in the COCOMO 

data, efficient reduced models can be devised using methods such as forward selection, 

backward elimination, stepwise selection, stepwise selection with maximum R 

improvement, and minimum R2 improvement. All these variable selection methods are 

only suitable for building linear models.
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1.3.2 Evaluating Performance of Models

A key factor in selecting a software estimation model is the accuracy of its predictions. In 

order to compare the performance of multiple regression models with that of the NN 

simulation, the mean magnitude of relative error (MMRE) and Pred(25) are employed to 

determine the effort prediction accuracy. The MMRE is determined as:

where Efforta is the actual effort, and Efforte is the estimated effort. The lower the 

MMRE, the more accurate the estimation. Pred(25) indicates the percentage of 

predictions with error less than 25 percent of the actual value. The higher the Pred(25), 

the more accurate the estimation is.

1.3.3 Real Value Coding Genetic Algorithms

Genetic Algorithms (GAs) may deal successfully with a wide range of domains. The 

reasons for this success are: 1). GAs can solve hard problems quickly and reliably, 2) 

GAs are easy to interface with existing simulations and models, 3) GAs are extensible 

and 4) GAs are easy to hybridize.In other words, GAs are robust.

The basic genetic algorithm is as follows:

1. [Start] Generate random population of n chromosomes (suitable solutions for the

2. [Fitness] Evaluate the fitness/(3c) of each chromosome x  in the population

3. [New population] Create a new population by repeating following steps until the 

new population is complete

MMRE (1-2)

problem)

n
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3a. [Selection] Select two parent chromosomes from a population according 

to their fitness (the better fitness, the bigger chance to be selected)

3b. [Crossover] With a crossover probability cross over the parents to form 

new offspring (children). If no crossover was performed, offspring is the exact 

copy of parents.

3c. [Mutation] With a mutation probability mutate new offspring at each 

locus (position in chromosome).

3d. [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population

6. [Loop] Go to step 2

1.4. Summary

To accurately predict the software development effort is still the most difficult and 

important task for project managers. This thesis has reported the current situations, the 

solutions/suggestions, their advantages and disadvantages in software effort estimation, 

and tries to identify the most significant factors contributing to the success of software 

development effort estimation in the early life cycle. According to previous research, 

machine learning methods especially neural networks and genetic algorithms are the 

promising methods to solve the difficulties in data scarcity and thus improve the effort

12
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estimation. The proposed methods should be accurate, simple to use, more efficient in

software development effort estimation.
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Chapter 2 Multiple Regression Models and Reduced Models

2.1 Introduction

Single regression techniques use two variables to predict a best fit line for a certain set of 

data. This is not always reliable as there are often many conditions that should be 

accounted for when drawing the best fit line. Multiple regression can be used to account 

for these extra variables. The advantages of using multiple regression are numerous. If 

more relevant data is included, a more accurate and reliable prediction can be made. 

Multiple regression shares all the assumptions of other types of correlation. The 

relationships between variables have to be linear. Other types of regression can be used 

to determine quadratic, exponential, cubic, and other forms, but are beyond the scope of 

this thesis. There must be the same level of relationship throughout the range of the 

independent variables. Finally, each variable should be chosen to fit the model being 

tested. The exclusion of important contributing variables or the inclusion of extraneous 

variables can change the best fit line and provide erroneous predictions.

We can expect that using multiple regression will provide an accurate equation to 

represent the COCOMO dataset. Using more variables decreases the chance for error, 

and increases the reliability of the equation itself.

Two practical considerations that should be noted are the choice of the number of 

variables and the importance of residual analysis. The number of variables used can 

significantly affect the outcome of the regression model. Each variable must be chosen 

carefully to make certain that the variable is not extraneous. Also, with the addition of 

more variables, more observations need to be obtained so that the estimates of the 

regression line are probably stable and likely to replicate.
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2.2 Methodology

Multiple regression methods will be employed to build the regression models for 

predicting the projects’ effort: first build the full regression model with all 16 explanatory 

variables relating to the dependent variable effort and then based on that, build some 

efficient reduced models. The techniques for building reduced models include linear 

procedures such as forward selection, backward elimination, stepwise selection, 

Maximum R improvement, and Minimum R improvement.

2.2.1 Overview of Multiple Linear Regression

A multiple linear regression problem can be stated as follows:

If the Xj are varied and the n values Yx, Y2,..., Y of Y are observed, then we write:

Yi = P o + Pixn + ••• + PP-x\p-\ + £i 0  = 1,2,..., n) (2-1)

where xy is the ith value of Xj. Writing these n equations in matrix form we have:

■2 _

X10 ... x

X2Q X21 ... X3
l , p - l

xn ■" x n ,p -l

' P i *
-

4- %

y pp- i S .

or:

Y = Xj3 + £

where x10 = x20 =... = xn0 = 1

(2-2)

We call the n x p  matrix X the regression matrix, each Y; a response variable, Y the 

response vector, and Xj the predictor variable.

18
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Parameter Calculation by Least Squares Minimization

The method o f least squares consists of minimizing ^ e f  with respect to P . Setting

6=X f ,  it is minimized:

subject to:

e 'e= \\Y -0 \

0eW[X] = { y .y  = xp}

(2-3)

(2-4)

Let be the least squares estimate of P . The fitted regression X  p  is denoted by:

T = [<?,)] (2-5)

The elements of e = [7 -  XP] are called the residuals. The value of:

RSS = e'e = [Y - X p ] ' ( Y - X p )  (2-6)

is called the residual sum o f squares. The matrix:

R =

X11 x 12 x l , p - l  

X2I X22 ” ■ X2 , p - 1

Xnl Xa2 ■■■ x a ,p - :

which is the regression matrix without the first column of Is, is called the predictor data

matrix.

Model Variance

The variance of the model is defined to be the variance of e . The statistic:

,2 RSSS 1 = (2-7)
n — p

is an unbiased estimator of this variance.
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Parameter Dispersion (Variance-Covariance) Matrix

The dispersion matrix for the parameter estimates ft  is the matrix

D (A  = (cov$ , A ] )  (2-8)

where c o v [$ ,^ ] is  the covariance of ^ an d  f t , . The dispersion matrix is calculated 

according to the formula:

D(ft) = S 2( X ' X y l (2-9)

where S is the estimated variance, as defined above, and X and X’ are the regression 

matrix and its transpose, respectively.

Significance of the Model (Overall F Statistic)

The overall F  statistic is a statistic for testing the null hypothesis =... = f$ x = 0. It is 

defined by the equation:

F  = - f ---------------------  (2-10)
K n - p )

i—1

where Y = — ]T YJ
n ;=i

This statistic follows an F distribution with (p-1) and (n-p) degrees of freedom. 

p-Value of the Model
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The p-value is the probability of seeing the value of the F statistic for a given linear 

regression if the null hypothesis:

A, = A  =o  (2-n)

is true.

Critical Value of the Model

The critical value of the F statistic for a specified significance level, a , is the value, v , 

of the F statistic such that if the F statistic calculated for the multiple linear regression is 

greater than v , we reject the hypothesis 

fio  =  A  =  — =  P p - 1 ~  0  at the significance level a .

Significance of Predictor Variables

Let f t j  be the estimate for element j  of the parameter vector J3. The T statistic for the 

parameter estimate fi/is  a statistic for testing the hypothesis that ^ = 0 .  It is calculated 

according to the formula:

AT=  ,   (2-12)

where ^ is the f 1 diagonal element of the dispersion matrix. This statistic is 

assumed to follow a T distribution with n-p degrees of freedom.

p-Values of Predictor Variables
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The /rvalue for each parameter estimate Pj is the probability of seeing the value of the

Pcalculated parameter using the formula T = —— J- if the hypothesis p . = Ois true.

Critical Values of Predictor Variables

The critical value of a parameter T statistic for a given level of significance a  is the value 

v j , such that if the absolute value of the T statistic calculated for a given parameter Pj is

greater than v , we reject the hypothesis Pj = 0 at the significance level a .

Prediction Intervals

Suppose we have calculated the parameter estimates P  for our linear regression problem. 

Suppose further that we have a vector of values, x, for the predictor variables. We may 

obtain an a  level confidence interval for the value, Y = x 'P  which is the value of the 

dependent of the observed variable predicted by our model, according to the formula:

x ' p ±  (S-Jx ' (X'Xylx)t(n - p ; a / 2) (2-13) 

where t ( n - p ; a /  2) is the value at a  H o i  the cumulative distribution function for a T 

distribution, S is the estimated variance, and X is the regression matrix.

2.2.2 Building Reduced Regression Models

In general, exhaustive search is the only technique guaranteed to find the predictor 

variable subset with the best evaluation criterion. It is often the ideal technique when the 

number of possible predictor variables is less than 20; note that this number depends to
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some degree on the computational complexity of evaluating a predictor variable subset. 

The problem with exhaustive search is that it is often a computationally intractable 

technique for more than 20 possible predictor variables. It is easy to see that there are 

2n-1 possible subsets, excluding the empty set, and exhaustive search must check them 

all. For regression models with 25 predictor variables, exhaustive search must check 

33,554,431 subsets, and this number doubles for each additional predictor variable 

considered. Clearly, exhaustive search is not always a practical technique, and other 

selection techniques may have to be considered.

Exhaustive search is not used in this thesis. Instead, the linear procedures such as forward 

selection, backward elimination, stepwise selection, Maximum R2 improvement, and 

Minimum R2 improvement are employed in feature selection among the 15 cost drivers 

plus the software size. Three criterions will be applied during the building of reduced 

models: 1) the R-square value of the reduced model should equal to or greater than 0.95; 

2) each of the predictor variable’s p  value is less than 0.05; and 3) the model’s p  value is 

less than 0.001. The reduced models that meet all the three criteria can only be selected to 

the optimal reduced models. If there are more than one such optimal models, always pick 

the one with highest R-square value as the best reduced model.

R-square is called the coefficient o f multiple determination, it is used to dedicate the 

goodness of fit of the multiple linear regression models. R-square can be calculated as the 

following:

i?2 = —  (2-14)
SST

where SSR is regression sum of squares, and SST is the total sum of squares.

Forward Selection
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Unlike exhaustive search, forward selection is always computationally tractable. Even in 

the worst case, it checks a much smaller number of subsets before finishing. This 

technique adds predictor variables and never deletes them. The starting subset in forward 

selection is the empty set. For a regression model with N possible predictor variables, the 

first step involves evaluating N predictor variable subsets, each consisting of a single 

predictor variable, and selecting the one with the highest evaluation criterion (R-square 

value). The next step selects from among N-l subsets, the next step from N-2 subsets, 

and so on. Even if all predictor variables are selected, at most N(N+l)/2 subsets are 

evaluated before the search ends.

The problem with forward selection is that, unlike exhaustive search, it is not guaranteed 

to find the subset with the highest evaluation criterion. In practice, however, many 

researchers have reported good results with forward selection [10]. This is not too 

surprising: it's not hard to show that forward selection will find the subset with the 

highest evaluation criterion when predictor variables are statistically independent and the 

observation variable is modeled as a linear combination of predictor variables. Actually, 

it still holds for an observation variable y and predictor variables xt such that

y = / ( £ & , )  (2-15)
i

where f() is any monotonic, continuously differentiable function. While statistical 

independence of predictor variables may be too much to expect for the regression 

problem you are trying to improve, it may become more feasible with more study into the 

predictor variables. You may discover certain preprocessing steps that can be performed 

to predictor variable data such that the predictor variables become nearly statistically 

independent.
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Backward Selection

Backward selection has computational properties that are similar to forward selection. 

The starting subset in backward selection includes all possible predictor variables. 

Predictor variables are deleted one at a time as long as this results in a subset with a 

higher evaluation criterion. Again, in the worst case, at most N(N+l)/2 subsets must be 

evaluated before the search ends. Like forward selection, backward selection is not 

guaranteed to find the subset with the highest evaluation criterion.

Some researchers prefer backward selection to forward selection when the predictor 

variables are far from statistically independent. In this case, starting the search with all 

predictor variables included allows the model to take predictor variable interactions into 

account. Forward selection will not add two predictor variables that together can explain 

the variations in the observation variable if, individually, the predictor variables are not 

helpful in explaining the variation. Backward selection, on the other hand, would already 

include both of these variables and would realize that it is a bad idea to delete either one. 

The disadvantage of backward selection is that one's confidence in subset evaluation 

criterion values tends to be lower than with forward selection. This is especially true 

when the number of rows in the predictor matrix is close to the number of possible 

predictor variables. In such a case, there are very few points that the regression model can 

use in order to determine its parameter values, and the function evaluation criterion will 

be sensitive to small changes to the predictor matrix data. When the ratio of predictor 

matrix rows to predictor variables is small, it is usually a better idea to use forward 

selection than backward selection.
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Stepwise Selection

Stepwise selection has been proposed as a technique that combines advantages of forward 

and backward selection. At any point in the search, a single predictor variable may be 

added or deleted. Commonly, the starting subset is the empty set. When we think in terms 

of a predictor variable subset's bit representation, stepwise selection allows one bit in the 

representation to be flipped at any point in the search. Therefore, since a subset's bit 

representation has N bits, each subset in the search graph for stepwise selection has N 

neighbors. If no bit is flipped more than once, at most N2subsets are evaluated before 

stepwise selection ends. There are, however, no guarantees that each bit will be flipped at 

most one time.

No strong theoretical results exist for comparing the effectiveness of stepwise selection 

against forward or backward selection. Stepwise selection evaluates more subsets than 

the other two techniques, so in practice it tends to produce better subsets [10]. Of course, 

the price that stepwise selection pays for finding better subsets is reduced computational 

speed: usually more subsets must be evaluated before the search ends.

The three stepwise methods described above typically fit only a small number of the 

possible models when the total number of explanatory variables is large. It is therefore 

possible to miss the best subset.

Two following recent modifications of the stepwise method are the maximum R2 

improvement and minimum R2 improvement methods. These two methods move 

sequentially from level to level where the level is the number of explanatory variables in 

the model.

26
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Variable Selection Procedure Using Maximum R2 Improvement

At each level the method attempts to switch variables that are included with variables that 

have been excluded. The maximum R improvement tries to switch an included variable 

with an excluded variable that provides the largest increase in R2. This process continues 

until no included variable can be switched that would increase R2.

The resulted model is said to be the best model for the level of explanatory variables. 

This model, however, is not necessarily the best variable model since not all variable 

models have been composed. The method then moves to the next level by adding the 

variable yielding the largest increase in R2.

Therefore, the models may be conditionally sub-optimal at its level, and the search may 

be conditionally exhaustive.

Variable Selection Procedure Using Minimum R2 Improvement

The minimum R2 improvement method procedure is similar to the maximum R2 method 

except at each step within each level the variable chosen for switching is the one 

providing the smallest increase in R2. The starting point at each level is the maximum R2 

model from the previous level. The reason for the choice of the model with minimum R2 

at each step within any level is to show the user a large number of reasonable models at 

each level. Typically for each switch the results of the regression are provided.

Therefore, the models may be conditionally sub-optimal at its level, and the search may 

be conditionally exhaustive.
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Both R2 improvement procedures are designed to produce a large number of possible 

regressions at each level. These two methods will tend to yield more possible solutions 

than the three original stepwise methods. In addition the minimum R2 method usually 

produces more solutions than the maximum R2 method [2].

2.3 Experimental Results and Analysis 

2 .3.1. Correlation Analysis between the Input Variables and Output

Correlation analysis measures the relationship between two variables; the degree of 

association is measured by a correlation coefficient, denoted by p. It is sometimes called 

Pearson’s correlation coefficient after its originator and is a measure of linear association. 

When comparing the correlation between two items, one item is called the "dependent" 

item and the other the "independent" item. The goal is to see if a change in the 

independent input (which is our cost drivers) will result in a change in the dependent 

item. It can be expressed by Equation (2-16):

C ovK ian ce jX j)

Where p xy is the correlation coefficient between the array X and array Y; Covariance 

(X,Y) can be calculated by Equation (2-17):

Covariance(X,Y) = ^ - x ' £ { x i -jUx)(y,. - n y) (2-17)
A i=i
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<jx , a y are the standard deviations of variables X and Y, N =63 here, xi, y i,jux,juy are

individual element of array X, Y, and the mean of X, and Y. The standard deviations can 

be calculated by Equation (2-18) and (2-19):

The correlation coefficient can range between ±1.0 (plus or minus one). A coefficient of 

+1.0, a "perfect positive correlation," means that changes in the independent item will 

result in an identical change in the dependent item. A coefficient of -1.0, a "perfect 

negative correlation," means that changes in the independent item will result in an 

identical change in the dependent item, but the change will be in the opposite direction. A 

coefficient of zero means there is no relationship between the two items and that a change 

in the independent item will have no effect in the dependent item.

A low correlation coefficient (e.g., less than ±0.10) suggests that the relationship between 

two items is weak or non-existent. A high correlation coefficient (i.e., closer to plus or 

minus one) indicates that the dependent variable will usually change when the 

independent variable (which is our cost drivers) changes.

The direction of the dependent variable's change depends on the sign of the coefficient. If 

the coefficient is a positive number, then the dependent variable will move in the same 

direction as the independent variable; if the coefficient is negative, then the dependent 

variable will move in the opposite direction of the independent variable.

(2-18)

(2-19)
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2.3.2 Applying Multiple Regression Directly on the COCOMO Dataset

First, we need to analyze the Pearson’s correlation coefficients of the matrix. From Table 

3, we can see that only SIZE, MODP and DATA are significant to Effort at the level of 

0.05, other explanatory variables seem to have very weak linear relationships with the 

dependent actual effort. From Table 4, we can further conclude that this linear model is 

very reluctant since the R-Square is low at 0.6384 and C (p) = 17.00. We can assume that 

a non-linear model between the dependent variable effort and other 16 explanatory 

variables should be more reasonable.
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Table 2-1. Pearson’s Correlation Matrix between the 16 Explanatory Variables 
and the Dependent Variable Effort _____

RELY DATA CPLX TIME STOR VOLT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED SIZE
Effo
rt

RELY 1

DATA -0.031 1

CPLX 0.559 -0.328 1

TIME 0.703 -0.097 0.487 1

STOR 0.654 -0.068 0.518 0.678 1

VIRT 0.303 -0.215 0.3131 0.445 0.416 1

TURN -0.015 0.163 -0.021 0.012 0.187 0.206 1

ACAP -0.444 0.152 -0.460 -0.323 -0.192 -0.156 0.130 1

AEXP -0.235 0.089 -0.120 -0.142 -0.209 0.061 0.015 0.377 1

PCAP -0.327 0.295 -0.451 -0.258 -0.179 -0.163 0.120 0.668 0.098 1

VEXP 0.138 -0.148 0.303 0.297 0.155 0.698 -0.030 -0.277 0.231 -0.202 1

LEXP 0.342 -0.250 0.480 0.442 0.372 0.692 0.038 -0.378 0.043 -0.307 0.797 1

MODP -0.216 0.129 -0.128 -0.080 0.108 0.136 0.499 0.384 -0.052 0.530 0.072 0.099 1

TOOL -0.041 -0.263 0.265 0.148 0.221 0.519 0.343 0.028 -0.146 0.031 0.429 0.437 0.471 1

SCED 0.117 -0.041 0.135 0.120 -0.060 0.254 0.094 0.091 0.352 -0.085 0.176 0.305 -0.020 0.141 1

SIZE 0.041 0.367 -0.201 -0.055 -0.035 -0.189 0.083 -0.138 -0.111 0.158 -0.079 -0.069 0.060 -0.168 -0.102 1

Effort 0.207 0.445 0.010 0.153 0.105 0.019 0.206 -0.148 -0.036 0.157 0.068 0.088 0.270 0.002 0.021 0.657 1

Table 2-2. Full Multiple Regression Model of the Dependent Variable Effort 
__________________ and the 16 Explanatory Variables__________________

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 16 130587330 8161708 5.00 <.0001
Error 46 75122690 1633102
Corrected Total 62 205710019

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept -12385 5814.20186 7409592 4.54 0.0385
SOFT_SIZE 6.09620 1.14781 46066903 2 8 . 2 1 < .0 0 0 1
RELY 1669.04182 1536.83438 1926165 1.18 0.2831
DATA 6483.60033 2710.96352 9341109 5 . 7 2 0 .0 2 0 9
CPLX 1194.52192 1262.02315 1463076 0.90 0.3488
TIME 1541.94229 1632.23866 1457412 0.89 0.3498
STOR -1891.12897 1639.71348 2172299 1.33 0.2547
VIRT 1478.71007 2465.60026 587400 0.36 0.5516
TURN -814.27555 2679.24966 150845 0.09 0.7626
ACAP -2332.65400 2033.51092 2148923 1.32 0.2573
AEXP 2324.33364 2028.79782 2143545 1.31 0.2579
PCAP 251.73075 1633.80136 38769 0.02 0.8782
VEXP -1596.37034 3989.74282 261451 0.16 0.6909
LEXP -1667.78613 6817.87138 97723 0.06 0.8078
MODP 4972.31237 2053.28572 9577041 5 . 8 6 0 .0 1 9 5
TOOL 759.12041 3050.92862 101105 0.06 0.8046
SCED -21.50974 2820.13779 95.00426 0.00 0.9939

*R-Square = 0 .6384  C(p) = 17.0000
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Such model may be used but the linear relationships between the dependent variable and 

the 16 explanatory variables are very poor, and it cannot meet the effort prediction 

objective expected when dealing with our COCOMO dataset. The variation of the model 

is only 63.84% since the R-Square is low at 0.6384. Thus we can assume that a non

linear model between the dependent variable Effort and other 16 explanatory variables by 

transferring the software size (size) to logarithm to size and logarithm to the dependent 

variable effort in Section 2.3.3.

2.3.3. Applying Multiple Regression Indirectly on the COCOMO Dataset

Although the relation between the dependent variable effort and the 16 explanatory 

variables especially the software size is regarded as nonlinear, the technique of linear 

regression can still be applied if the model can be written as a linear function of variables 

which themselves are nonlinear. Simple linear models involving variables such as log X, 

log Y, 1/Y, 1/X, X2 and Y2 are examples. There are a number of nonlinear functions 

relating effort to software size and other independent variables, which may be converted 

to a linear function by suitable transformations on Y (for our case, effort) and /or X (for 

our case, software size). This class of models is called intrinsically linear [2], Here we 

choose the format of: log 7  = Pa + log X. Other 15 explanatory variables do not

transform to logarithm form. After being transferred to logarithm size and logarithm 

effort, calculate the Pearson’s correlation coefficients matrix for the modified COCOMO 

dataset as Table 2-3.
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Table 2-3. Pearson’s Correlation Matrix between the 15 Explanatory Variables plus ln(size) and the
Dependent Variable ln(Effort) ______

RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED lnsize lneff

RELY 1

DATA -0.031 1

CPLX 0.559 -0.328 1

TIME 0.703 -0.097 0.488 1

STOR 0.654 -0.068 0.518 0.678 1

VIRT 0.303 -0.215 0.313 0.445 0.416 1

TURN -0.015 0.163 -0.021 0.012 0.187 0.206 1

ACAP -0.444 0.152 -0.460 -0.323 -0.192 -0.156 0.130 1

AEXP -0.235 0.089 -0.120 -0.142 -0.209 0.061 0.015 0.377 1

PCAP -0.327 0.295 -0.451 -0.258 -0.179 -0.163 0.120 0.668 0.098 1

VEXP 0.138 -0.148 0.303 0.297 0.155 0.698 -0.030 -0.277 0.231 -0.202 1

LEXP 0.342 -0.250 0.480 0.442 0.372 0.692 0.038 -0.378 0.043 -0.307 0.797 1

MODP -0.217 0.129 -0.128 -0.080 0.108 0.136 0.499 0.384 -0.052 0.530 0.072 0.099 1

TOOL -0.041 -0.263 0.265 0.148 0.221 0.519 0.343 0.028 -0.146 0.031 0.429 0.437 0.471 1

SCED 0.117 -0.041 0.135 0.120 -0.060 0.254 0.094 0.091 0.352 -0.085 0.176 0.305 -0.020 0.141 1

lnsize 0.057 0.546 -0.301 -0.009 -0.062 -0.182 0.255 -0.147 -0.204 0.129 -0.133 -0.149 0.061 -0.228 -0.167 1

lneff 0.310 0.514 -0.058 0.314 0.228 0.163 0.344 -0.066 -0.090 0.207 0.142 0.152 0.222 0.022 0.051 0.847 1

It can be seen from Table 2-3 that the relationships between the 15 explanatory variables 

have not been changed, but the ln(size) has become more significant to ln(effort) than 

that of size to effort. The correlation coefficient changes from 0.658 between effort vs. 

size to 0.847 between ln(effort) vs. In(size). Furthermore, the correlation coefficient 

between effort vs. DATA has grown to 0.514 between ln(effort) vs. DATA. From this 

point of view, it can be concluded that the logarithm transformation of software size and 

effort is suitable because the relationship between the significant explanatory variables 

and the dependent variable effort have become more significant.

The next step is to build the full and reduced regression model between the effort and size 

indirectly, using logarithm transferring methods as preprocessing techniques. The full 

multiple regression model is calculated and shown in Table 2-4, where some advantages
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are found by comparing the direct full multiple regression model in Table 2-2 with that of 

Table 2-4.

Table 2-4. Full Multiple Regression Model of the Dependent Variable 
 ln(Effort) and the 15 Explanatory Variables plus ln(size)_____

Analysis of Variance

Source DF
Sum of 
Squares

Mean
Square F Value Pr > F

Model 16 197.81292 12.36331 64.88 <■0001
Error 46 8.76514 0.19055
Corrected Total 62 206.57806

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept -17.01783 1.98405 14.01859 73 .57 <.0001
l n _ s i z e 1 .1 6 2 6 3 0 . 0 5 6 9 1 7 9 .5 1 7 5 9 4 1 7 . 3 1 < •0 0 0 1
RELY 1 .5 3 3 2 6 0 .5 2 5 3 3 1 . 6 2 3 2 1 8 . 5 2 0 .0 0 5 4
DATA 1.43248 1.00093 0.39028 2.05 0.1591
CPLX 0 .9 6 5 0 0 0 .4 3 8 8 3 0 . 9 2 1 4 5 4 . 8 4 0 .0 3 2 9
TIME 1 .6 2 2 7 2 0 .5 5 9 8 7 1 . 6 0 0 7 2 8 . 4 0 0 .0 0 5 7
STOR 0.25883 0.56066 0.04061 0.21 0.6465
VIRT 1.06389 0.83686 0.30796 1.62 0.2100
TURN -0.01419 0.97654 0.00004021 0.00 0.9885
ACAP 1 . 7 7 7 5 1 0 . 6 8 4 6 4 1 . 2 8 4 4 0 6 . 7 4 0 .0 1 2 6
AEXP 0.75896 0.70595 0.22024 1.16 0.2879
PCAP 1 . 4 9 8 1 6 0 .5 4 9 0 2 1 . 4 1 8 9 0 7 . 4 5 0 .0 0 9 0
VEXP 2.27808 1.36557 0.53029 2.78 0.1021
LEXP 0.54306 2.32562 0.01039 0.05 0.8164
MODP 0.51959 0.70262 0.10420 0.55 0.4634
TOOL 1.56479 1.05121 0.42221 2.22 0.1434
SCED 2 . 0 6 9 5 2 0 .9 6 5 0 6 0 . 8 7 6 2 6 4 . 6 0 0 .0 3 7 3

*R-Square = 0.9576 and c(p ) = 17.0000

From Table 2-4, it is clearly seen that the p-values of the explanatory variables ln_size, 

RELY, CPLX, TIME, ACAP, PCAP and SCED are significant at level of 0.05, thus they 

can make significant contributions to the dependent variable ln_effort, most of which 

could not be identified from the correlation matrix analysis from Table 2-3. Furthermore, 

the R-Square equals 0.9576, which means that 95.76% of the total variation can be 

covered in the model, this, again confirms the linear relationship between ln_effort and 

the explanatory variables.

Based on the above analysis, reduced model relating ln_effort with ln_size, RELY, 

CPLX, TIME, ACAP, PCAP and SCED could be calculated, as Table 2-5. This model is
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only the primary reduced multiple regression model, more effort should be done for the 

comparison of a series of reduced models in later sections, in order to find the potential 

outliers of the dataset and the optimal reduced regression model for more efficient 

prediction of effort of the COCOMO dataset.

Table 2-5. Reduced Multiple Regression Model of the Dependent Variable
ln(Effort) and the 6 Explanatory Variables plus ln(size)

source DF

A nalysis  o f  variance

Sum o f  Mean 
Squares square f value Pr > F

Model 7 187.44488 26.77784 76.98 <.0001
Error 55 19.13319 0.34788
Corrected Total 62 206.57806

ROOt MSE 0.58981 R-square 0.9074
Dependent Mean 4.82848 Adj R-Sq 0.8956
Coeff  Var 12.21524

Parameter Estimates

Parameter Standard Standardized
v a r ia b le Label DF Estimate Error t  value Pr > | t |

in te r c e p t in te r c e p t 1 -11.59607 1.44128 -8 .0 5 <.0001
ln _ s iz e 1n_si ze 1 1.16286 0.06148 18.91 <.0001
RELY RELY 1 0.83482 0.60682 1.38 0.1745
CPLX CPLX 1 1.53641 0.53590 2.87 0.0059
TIME TIME 1 2.82168 0.66059 4.27 <.0001
ACAP ACAP 1 1.57690 0.77511 2.03 0.0467
PCAP PCAP 1 2.01758 0.64565 3.12 0.0028
SCED SCED 1 3.49711 1.03829 3.37 0.0014

From Table 2-5, it can be clearly seen that only the p-value for the explanatory variable 

RELY is not significant, which is not consistent with the situation in the full model of 

regression relating effort with other 16 explanatory variables. The R-Square equals 

0.9074, compared with the R-Square equals 0.9576 in the full regression model, it is also 

good enough for the variation covered.
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2.3.4. Detection of Potential Outliers and the Influential Effects on the Reduced 

Regression Model for the Transformed COCOMO Dataset

The fitting of a multiple linear regression model to a sample of observations is not 

complete without an assessment of the sensitivity of the results to the observed data. 

Some observation can have large influence on the magnitude of the estimated 

coefficients, they may or may not be outliers. Some techniques have been developed to 

help identify outliers and influential observations.

A useful way of judging outliers is to determine whether the extreme point is within a 

predictable range, given a linear relationship that would be fitted without this extreme 

point. The standardized residuals, studentized residuals, Cook’s D, H-hat, the DFFITS 

family and COVRATIO statistic are measured, if they are higher for some observations 

than those of the most observations, it can be concluded that those observations are 

potential outliers, but their influence may or may not be significant to the model, it needs 

to delete the potential outliers and investigate their significance on the models, either one 

by one or delete all of the potential outliers at once. Table 2-6 shows the influence 

diagnostics for the reduced regression model for the transformed COCOMO dataset.
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Table 2-6. Influence Diagnostics for Reduced Model on the COCOMO Dataset

ohs
oep var predicted  std  Error 
1n _ e f fo r t  value Mean Predict

Std Error 
Residual Residual

Student
Residual - 2 -1  0 1 2

cook 's  D

1 7.6207 6.4071 0.2000 1.2136 0.555 2.187 **#* 0.078
2 7.3778 6.9631 0.1785 0.4147 0.562 0.738 * 0.007
3 5.4931 5.6328 0.1667 -0 .1397 0.566 -0 .247 0 .001
4 5.4806 6.0668 0.2438 -0 .5862 0.537 -1 .092 ** 0.031
5 3.4965 3.5299 0.1495 -0 .0334 0 .571 -0 .0586 0.000
6 3.7612 3.4341 0.3108 0.3271 0 .501 0.653 * 0.020
7 2.0794 2.7258 0.1580 -0 .6464 0.568 -1 .137 ** 0.013
8 6.9801 6.5538 0.3663 0.4263 0.462 0.922 •ft 0.067
9 6.0474 5.5730 0.1511 0.4744 0.570 0.832 * 0.006
10 5.7714 5.2062 0.2334 0.5653 0.542 1.044 0.025
11 5.3845 5.3206 0.2338 0.0639 0 .541 0.118 0.000
12 5.3033 5.5605 0.1380 -0 .2572 0.573 -0 .449 0 .001
13 4.3694 4.2655 0.1581 0.1039 0.568 0.183 0.000
14 4.2905 3.9147 0.2929 0.3758 0.512 0 .734 * 0.022
15 4.1109 4.2135 0.2500 -0 .1027 0.534 -0 .192 0 .001
16 3.6889 3.9294 0.2039 -0 .2405 0.553 -0 .435 0.003
17 2.1972 3.3161 0.2193 -1 .1189 0 .548 -2 .043 **** 0.084
18 9.3414 8.6574 0.1940 0.6840 0.557 1.228 ** 0.023
19 8.7948 8.8620 0.2364 -0 .0672 0.540 -0 .124 0.000
20 8.7641 8.4064 0.3010 0.3577 0.507 0.705 * 0.022
21 7.8059 7.2974 0.1776 0.5085 0.562 0 .904 * 0.010
22 6.5848 7.4243 0.2431 -0 .8395 0.537 -1 .562 *** 0.062
23 6.2897 6.3917 0.2357 -0 .1020 0 .541 -0 .1 8 9 0.001
24 6.1159 5.7598 0.1420 0.3561 0.572 0 .622 * 0.003
25 6.2596 5.7044 0.1298 0.5552 0.575 0 .965 * 0.006
26 5.9584 4.8836 0.1563 1.0748 0.569 1.890 0.034
27 4.4773 4.9171 0.1653 -0 .4398 0 .566 -0 .7 7 7 * 0.006
28 4.5850 4.0644 0.1393 0.5205 0.573 0 .908 * 0.006
29 1.9879 2.1525 0.2540 -0 .1647 0.532 -0 .309 0.003
30 1.7750 1.9045 0.2477 -0 .1295 0.535 -0 .242 0.002
31 6.9689 6.6728 0.2576 0.2960 0 .531 0 .558 * 0.009
32 6.5539 6.8383 0.2338 -0 .2844 0.542 -0 .525 * 0 .006
33 6.4052 6.6809 0.2141 -0 .2 7 5 6 0 .550 -0 .502 * 0.005
34 5.4381 5.4334 0.2286 0.004635 0.544 0.00852 0.000
35 4.4067 4.0926 0.2388 0.3141 0 .539 0.582 * 0.008
36 4.0073 4.2894 0.1661 -0 .2820 0 .566 -0 .4 9 8 0.003
37 3.8501 4.3853 0.2059 -0 .5351 0.553 -0 .9 6 8 * 0.016
38 2.4849 3.6107 0.2117 -1 .1258 0 .551 -2 .045 ***# 0.077
39 2.0794 1.9780 0.1900 0.1014 0.558 0.182 0.000
40 2.0794 2.5491 0.2718 -0 .4697 0.523 -0 .8 9 7 * 0 .027
41 1.7918 1.9223 0.2338 -0 .1305 0 .541 -0 .2 4 1 0 .001
42 3.8067 4.9132 0.1203 -1.1065 0 .577 -1 .9 1 6 #** 0.020
43 4.4188 4.6147 0.1177 -0 .1958 0 .578 -0 .3 3 9 0 .001
44 4.4659 4.9831 0.1150 -0 .5172 0 .578 -0 .8 9 4 * 0 .004
45 4.6634 4.9701 0.1183 -0 .3066 0 .578 -0 .5 3 1 * 0 .001
46 4.8363 5.5424 0.1795 -0 .7062 0.562 -1 .2 5 7 ** 0 .020
47 3.5835 3.6641 0.2546 -0 .0806 0.532 -0 .1 5 1 0 .001
48 7.1483 8.2801 0.2455 -1 .1318 0 .536 -2 .1 1 0 **** 0.117
49 5.0499 4.6409 0.2205 0.4089 0.547 0.748 * 0 .011
50 5.1705 4.8526 0.1670 0.3179 0 .566 0.562 * 0.003
51 4.8040 4.5527 0.2489 0.2513 0.535 0 .470 0 .006
52 3.7136 2.8046 0.1571 0.9090 0 .569 1.599 0 .024
53 2.6391 2.2856 0.2089 0.3534 0.552 0 .641 * 0.007
54 2.9957 2.4113 0.1632 0.5844 0.567 1.031 ** 0 .011
55 2.8904 2.3899 0.3082 0.5005 0.503 0.995 * 0 .046
56 6.8648 6.0127 0.1528 0.8522 0.570 1.496 ** 0 .020
57 5.4681 5.3283 0.2043 0.1398 0.553 0.253 0 .001
58 4.8675 6.0261 0.2917 -1 .1586 0 .513 -2 .2 6 0 0 .207
59 4.2485 4.7343 0.1246 -0 .4859 0 .576 -0 .843 * 0 .004
60 4.0431 3.5734 0.1324 0.4696 0.575 0 .817 * 0 .004
61 3.9120 4.2906 0.1231 -0 .3785 0 .577 -0 .6 5 6 * 0.002
62 3.6376 2.9753 0.2014 0.6623 0 .554 1.195 0 .024
63 2.7081 2.8567 0.1783 -0 .1487 0.562 -0 .2 6 4 0 .001
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Table 2-6. Inflnence Diagnostics for Reduced Model on the COCOMO Dataset (Cont.)

obs RStudent
Hat Diag 

H
Cov

Ratio DFFITS

1 2.2681 0.1150 0.6319 0.8177
2 0.7346 0.0916 1.1774 0.2333
3 -0 .2448 0.0799 1.2475 -0 .0721
4 -1 .0935 0.1709 1.1723 -0 .4964
5 -0 .0 5 8 1 0.0642 1.2370 -0.0152
6 0.6491 0.2777 1.5068 0.4025
7 -1 .1406 0.0718 1.0313 -0 .3171
8 0.9207 0.3856 1.6642 0.7295
9 0.8297 0.0657 1.1200 0.2199

10 1.0445 0.1566 1.1701 0.4501
11 0.1169 0.1571 1.3713 0.0505
12 -0 .4453 0.0548 1.1898 -0.1072
13 0.1813 0.0719 1.2418 0.0505
14 0.7309 0.2466 1.4207 0.4182
15 -0 .1905 0.1796 1.4041 -0 .0891
16 -0 .4313 0.1195 1.2796 -0 .1589
17 -2 .1064 0.1382 0.7145 -0 .8435
18 1.2338 0.1082 1.0396 0.4297
19 -0 .1233 0.1607 1.3767 -0 .0539
20 0.7019 0.2604 1.4561 0.4164
21 0.9026 0.0907 1.1298 0.2850
22 -1.5835 0.1699 0.9704 -0 .7164
23 -0 .1 8 7 1 0.1597 1.3711 -0 .0815
24 0.6186 0.0580 1.1619 0.1535
25 0.9644 0.0484 1.0617 0.2176
26 1.9365 0.0702 0.7279 0.5321
27 -0 .7739 0.0785 1.1507 -0 .2260
28 0.9068 0.0558 1.0869 0.2204
29 -0 .3068 0.1854 1.4021 -0 .1464
30 -0 .2399 0.1764 1.3942 -0 .1110
31 0.5544 0.1907 1.3675 0.2691
32 -0 .5217 0.1571 1.3198 -0.2252
33 -0 .4 9 8 1 0.1318 1.2858 -0 .1940
34 0.008447 0.1502 1.3628 0.0036
35 0.5788 0.1639 1.3182 0.2562
36 -0 .4949 0.0793 1.2131 -0.1452
37 -0 .9676 0.1219 1.1494 -0.3605
38 -2 .1080 0.1288 0.7061 -0 .8107
39 0.1800 0.1038 1.2861 0.0613
40 -0 .8956 0.2123 1.3066 -0 .4650
41 -0 .2390 0.1572 1.3625 -0 .1032
42 -1 .9656 0.0416 0.6952 -0 .4095
43 -0 .3 3 6 1 0.0398 1.1862 -0 .0684
44 -0.8925 0.0380 1.0708 -0 .1774
45 -0 .5272 0.0402 1.1581 -0 .1079
46 -1 .2637 0.0926 1.0109 -0 .4037
47 -0 .1501 0.1864 1.4186 -0 .0719
48 -2 .1813 0.1733 0.7128 -0 .9986
49 0.7445 0.1398 1.2407 0.3001
50 0.5585 0.0801 1.2023 0.1648
51 0.4666 0.1781 1.3644 0.2172
52 1.6224 0.0710 0.8518 0.4484
53 0.6373 0.1254 1.2471 0.2413
54 1.0317 0.0765 1.0728 0.2970
55 0.9951 0.2730 1.3774 0.6098
56 1.5133 0 .0671 0.8905 0.4059
57 0.2505 0.1200 1.3039 0.0925
58 -2 .3513 0.2446 0.7029 -1 .3380
59 -0 .8405 0.0447 1.0925 -0 .1817
60 0.8146 0.0504 1.1061 0.1877
61 -0 .6528 0.0436 1.1371 -0 .1394
62 1.1994 0.1166 1.0622 0.4357
63 -0.2622 0.0914 1.2617 -0 .0832
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Table 2-6. Infhience Diagnostics for Reduced Model on the COCOMO Dataset (Coat.)
DFBETAS

obs in te rc e p t ln _ s iz e RELY CPLX TIME ACAP PCAP SCED

1 -0 .1007 0.2558 0.1042 -0 .2653 0.0184 0.3958 -0.0977 -0.0233
2 0.0205 0.1650 -0.0327 -0 .0040 -0 .0042 0.0866 -0.0722 -0 .0424
3 -0 .0355 -0.0207 -0.0183 0.0345 0.0183 -0.0033 0.0298 0.0138
4 0.0953 -0 .0019 0.1011 0.0902 -0.1015 0.0568 -0 .3009 -0 .0438
5 -0 .0070 -0.0002 0.0017 0.0005 0.0014 -0.0082 0.0101 0.0064
6 -0 .0613 -0 .0821 -0.0147 0.0269 0.0482 0.1984 0.0728 -0 .1041
7 -0 .1342 0.1143 0.1768 -0 .0101 -0.0644 0.0081 -0.0095 0.0936
8 -0.1672 -0 .0699 -0.3875 -0 .0008 0.6120 -0 .3090 0.2957 0.0896
9 -0 .0122 0.0584 -0.0537 0.0984 0.1021 0.0664 -0.0443 -0 .0 9 6 1

10 0.0254 0.0242 0.3602 0.0746 -0 .2737 0.1336 -0 .0634 -0.1422
11 0.0024 0.0040 0.0401 0.0089 -0 .0307 0.0154 -0 .0074 -0 .0158
12 0.0356 -0.0464 -0 .0200 -0 .0670 0.0454 -0 .0270 0.0165 -0.0175
13 0.0225 0.0043 0.0069 0.0139 -0 .0170 -0 .0026 -0 .0189 -0 .0168
14 -0 .2284 0.0240 -0 .1231 0.2493 0.0511 0.0816 -0 .0740 0.1963
15 0.0424 0.0339 -0 .0419 0.0156 0.0086 0.0092 -0 .0107 -0.0542
16 -0.0202 0.0656 -0.1027 0.0150 0.0123 -0 .0266 0.0087 0.0662
17 -0 .1438 0.4488 -0.5289 0.1259 0.0596 -0 .0888 0.0149 0.3355
18 -0 .2294 0.3045 -0.1025 0.1121 0.1718 0.0042 0.0725 0.0993
19 -0 .0010 -0.0315 -0 .0059 0.0007 0.0073 0.0199 -0 .0156 -0 .0002
20 -0.1265 0.1244 0.1876 0.1059 -0 .1990 -0.1432 0.2226 0.0895
21 -0.0293 0.2151 -0.0604 0.1593 -0 .0416 0.0068 0.0410 -0 .0 4 2 1
22 0.3821 -0 .2181 0.0316 0.2015 -0 .1886 0.0460 0.0811 -0 .5547
23 0.0345 -0 .0168 -0.0227 0.0213 0.0212 0.0077 0.0075 -0 .0 6 6 1
24 0.0374 0.0577 -0.0378 -0 .0422 0.0400 0.0440 -0 .0420 -0 .0 4 2 1
25 -0.0852 0.1025 0.0175 0.1395 -0 .0537 0.0585 -0.0363 0.0363
26 0.1446 -0 .0086 -0.0555 -0 .3604 0.0753 -0.1275 -0.1425 0.1637
27 0.0847 0.0582 0.0159 0.0242 -0 .1506 -0.0488 -0 .0199 -0 .0076
28 0.0483 -0 .0164 0.0691 0.1013 -0 .0870 0.0481 -0 .0299 -0 .1029
29 0.0364 0.0456 0.0016 0.0289 0.0130 -0 .0379 0.0484 -0 .0872
30 0.0183 0.0495 0.0059 0.0320 0.0094 0.0060 0.0156 -0 .0750
31 0.0165 -0 .0101 0.0917 -0 .1436 0.1306 0.0427 -0 .0588 -0 .0736
32 -0.0672 -0 .0646 0.0584 0.0496 -0 .0008 0.1469 -0 .0770 -0 .0158
33 0.0322 -0 .0304 -0.0393 -0 .0121 -0 .0927 -0 .0657 0.0344 0.0734
34 -0 .0019 -0 .0001 0.0016 -0 .0009 -0.0012 0.0001 0.0003 0.0027
35 -0 .0140 0.0524 -0.1783 0.1893 0.0521 0.0519 0.0095 -0.0582
36 0.0095 0.0245 -0 .0199 0.0318 0.0053 -0 .0650 -0.0093 0.0164
37 -0 .2258 0.0375 -0 .0040 0.2771 -0.0193 0.0692 0.1101 0.0438
38 -0.3082 0.3022 0.0063 -0 .0142 0.2379 0.6532 -0 .5238 0 .0469
39 0.0460 -0 .0288 0.0037 -0 .0 1 1 1 -0 .0199 -0 .0223 -0 .0144 -0 .0143
40 -0 .0511 0.2214 -0.0103 -0 .1376 0.1283 0.2331 -0 .3479 0.0551
41 -0 .0510 0.0190 0.0012 0.0182 0.0057 -0 .0538 0.0824 0.0364
42 -0 .0831 -0 .1258 0.2007 -0 .1165 0.0634 0.1123 -0 .0278 -0 .0374
43 -0.0142 0.0084 -0.0104 -0 .0023 0.0349 0.0350 -0 .0340 -0 .0057
44 0.0197 -0 .0604 0.0964 -0 .0755 -0 .0296 -0 .0593 0.0129 0.0132
45 0.0083 -0.0435 0.0377 -0 .0529 0.0187 -0 .0383 0.0093 0.0059
46 0.0109 -0 .2549 0.1067 -0 .1 5 6 6 0.0470 -0.2552 0.2493 0.0373
47 -0.0163 -0.0152 0.0513 -0 .0347 -0.0032 0.0148 0.0134 -0 .0030
48 0.3457 -0.7442 0.0569 -0 .2104 0.0309 -0 .5956 0.1507 0.0167
49 0.1963 0.0117 0.0427 -0 .1720 -0.0545 -0 .0715 -0 .1291 -0 .0326
50 0.0554 -0.0402 0.0140 -0 .0 9 7 6 0.0920 0.0011 -0 .0398 -0 .0573
51 -0.0592 -0.0488 -0.0002 0.0407 -0 .0151 -0.0125 0.1607 -0 .0012
52 0.2653 -0 .2671 0.0379 -0 .2 7 0 6 -0 .0044 -0 .0254 -0 .0160 -0 .1363
53 0.0926 -0 .0938 -0.1245 -0 .0363 0.0572 -0 .1178 -0 .0334 0.0477
54 0.1394 -0 .2020 0.1245 -0 .0955 -0.0988 0.0155 0.0148 -0 .1105
55 0.2636 -0 .4061 0.0448 -0 .3958 0.0239 -0.4172 0.3336 -0 .0107
56 -0.2125 0.0504 -0.1173 0.1795 0.1785 -0 .0801 0.1953 0.0792
57 -0 .0676 0.0098 -0 .0140 0.0177 -0 .0010 0.0022 0.0139 0.0801
58 -0.0462 0.0719 0.1555 0.2477 -1.0255 -0 .0326 0.2845 0 .3576
59 -0.0064 -0 .0349 -0.0055 -0 .0943 0.0392 -0 .0910 0.0122 0.0867
60 -0.0127 -0 .0643 0.0625 0.0602 -0.0818 -0 .0016 0.0035 0.0215
61 -0.0633 -0.0222 -0 .0116 -0 .0467 0.0731 -0 .0167 0.0388 0.0537
62 0.1685 -0 .0035 -0 .2670 0.1749 0.0861 0.0025 -0 .1638 -0 .1199
63 -0 .0510 0.0389 -0 .0021 0.0065 0.0289 0.0574 -0.0243 0.0127

From Table 2-6, it can be seen that the standardized residuals, studentized residuals, 

Cook’s D, H-hat, the DFFITS family and COVRATIO statistic for observations 1,17, 38, 

48, 58 are much higher that those of other observations as highlighted in red in Table 2-6.
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Therefore, it can be concluded that observations 1, 17, 38,48, 58 are potential outliers for 

the reduced regression model for the transformed COCOMO dataset.

To conveniently compare the reduced models, the model with the presence of outliers is 

listed as Equation (2-20):

Ln_effort = -11.596 + 1.163*ln_size + 0.835*RELY + 1.536*CPLX 

+ 2.822*TIME +1.577* ACAP + 2.018*PCAP 

+ 3.497*SCED (2-20)

This model has R-Square equals 0.9074; only the coefficient of RELY is not significant 

at the level of 0.05.

After deleting the No.l observation, the reduced model becomes:

Ln_effort = -11.456 + 1.148* ln_size +0.774*RELY + 1.674*CPLX 

+ 2.810*TIME + 1.281*ACAP + 2.078*PCAP 

+ 3.521 *SCED (2-21)

This model has R-Square equals 0.9121; besides the coefficient of RELY is not 

significant at the level of 0.05; it also causes the coefficient of ACAP to be not significant 

at the level of 0.05; deleting No.l observation will result in a worse regression, therefore 

No. 1 observation is not an outlier but an influential point.

After deleting the No. 17 observation, the reduced model becomes:

Ln_effort = -11.395 + 1.136 * ln_size + 1.146 *RELY + 1.471 *CPLX 

+2.784*TIME + 1.644* ACAP + 2.008*PCAP 

+ 3.159*SCED (2-22)

This model has R-Square = 0.9114; deleting No. 17 observation will result in better 

regression: the coefficient of RELY is significant at the level of 0.10, other coefficients
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are all kept significant at level 0.05, the coefficient of RELY has greatly increased from 

0.83482 to 1.14619, other coefficients do not change significantly, so No. 17 observation 

is an outlier.

After deleting the No.38 observation, the reduced model becomes:

Ln_effort = -11.165+ 1.145 *ln_size + 0.831 * RELY + 1.544 *CPLX 

+ 2.669 * TIME + 1.086* ACAP + 2.346 * PCAC 

+ 3.450 * SCED (2-23)

This model has R-Square equals 0.9120; besides the coefficient of RELY is not 

significant at the level of 0.05 (status not changed); it also causes the coefficient of 

ACAP to be not significant at the level of 0.05 (status changed); deleting No.38 

observation will result in a worse regression, therefore No.38 observation is not an outlier 

but an influential point.

After deleting the No.48 observation, the reduced model becomes:

Ln_effort = -12.078 + 1.207 *ln_size + 0.801 * RELY + 1.646*CPLX 

+ 2.802 * TIME + 2.024 *ACAP + 1.923 * PCAP 

+ 3.480 * SCED (2-24)

This model has R-Square equals 0.9126; besides the coefficient of RELY is not 

significant at the level of 0.05 (status not changed); other coefficients do not change 

significantly; deleting No.48 observation has little impact on the original regression, 

therefore, No.48 observation is not an outlier but an influential point.

After deleting the No.58 observation, the reduced model becomes:

Ln_effort = -11.532 + 1.159*ln_size + 0.744 * RELY + 1.409*CPLX 

+ 3.473 * TIME + 1.601 * ACAP + 1.841 * PCAC
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+ 3.140* SCED (2-25)

This model has R-Square equals 0.9160; besides the coefficient of RELY is not 

significant at the level of 0.05 (status not changed); other coefficients do not change 

significantly; deleting No.58 observation has little impact on the original regression, 

therefore, No.58 observation is not an outlier but an influential point.

After deleting all No.l, 17, 38,48, 58 potential outliers, the reduced model becomes: 

Ln_effort = -11.072 + 1.126* ln_size + 0.999 * RELY + 1.546 * CPLX 

+ 3.294 * TIME + 1.207 * ACAP + 2.138* PCAC 

+ 2.708 * SCED (2-26)

This model has R-Square equals 0.9365, it has been enhanced; the coefficient of RELY is 

significant at the level of 0.10 (status changed); other coefficients have also changed 

significantly; deleting No.l, 17, 38, 48, 58 observations will result in positive 

improvement on the original regression, although not all No. 1, 17, 38, 48, 58 

observations are outliers, their influential impacts on the original regression model are 

significantly negative.

2.3.5. Detection of Potential Outliers and the Influential Effects on the Full 

Regression Model for the Transformed COCOMO Dataset

As listed in Section 2.3.2, the full regression model relating ln(Effort) to all 16 

explanatory variables for the transformed COCOMO dataset is shown as following: 

Ln_effort=-17.018 + 1.163*ln_size + 1.533*RELY + 1.433*DATA

+ 0.965*CPLX + 1.623*TIME + 0.259*STOR + 1.064*VIRT
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-0.0142*TURN+1.778*ACAP+0.759*AEXP+1.498*PCAP 

+2.278*VEXP+0.543*LEXP+0.520*MODP+1.565*TOOL 

+ 2.070*SCED (2-27)

This full regression model has R-Square = 0.9576; as it can be seen that there are only 

seven coefficients: ln_size, RELY, CPLX, TIME, ACAP, PCAP, SCED are significant to 

ln_effort at level of 0.05.

As the previously mentioned methods, that is, the standardized residuals, studentized 

residuals, Cook’s D, H-hat, the DFFITS family and COVRATIO statistic, if they are 

higher for some observations than those of the most observations, it is concluded that 

those observations are potential outliers, but their influence may or may not be significant 

to the model, it needs to delete the potential outliers and investigate their significance on 

the models, either one by one or delete all of the potential outliers at once. Just skip the 

influence diagnostics procedure for the full regression model for the transformed 

COCOMO dataset.

It can be detected that observations No. 17, No.55, and No.56 are potential outliers 

according to the techniques mentioned before.

After deleting observation No. 17, the model becomes Equation (2-28):

Ln_effort = -16.449+ 1.129 *ln_size + 1.749*RELY + 1.666*DATA

+0.850*CPLX+1.463*TIME + 0.679*STOR + 0.780*VIRT 

-0.417*TURN+1.832*ACAP+0.493*AEXP+ 1.372*PCAP 

+2.935*VEXP-0.430*LEXP+0.740*MODP+1.440*TOOL 

+ 2.208* SCED (2-28)
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This model has RMSE = 0.39965, R-Square = 0.9640; Compared to Equation (2-27), 

where R-Square = 0.9576, and seven coefficients: ln_size, RELY, CPLX, TIME, ACAP, 

PCAP, SCED are significant to ln_e£fort at level of 0.05, this model includes additional 

VEXP (p-value=0.0252) in the set of significant explanatory variables at level 0.05, the 

coefficients of DATA, VEXP TURN and STOR have been increased, while the 

coefficient of LEXP and ln_size have been decreased, but the overall impact of 

observation No. 17 on the original model is negative, therefore No. 17 is an outlier.

After deleting observation No.55, the model becomes Equation (2-29):

Ln_effort = -18.377+ 1.203 *ln_size + 1.484*RELY + 1.763*DATA

+ 1.447*CPLX + 1.576*TIME + 0.147*STOR + 1.236*VIRT 

-0.348*TURN+2.530*ACAP+ 0.703*AEXP + 1.134*PCAP 

+ 2.585*VEXP + 0.646*LEXP + 0.240*MODP + 1.389*TOOL 

+ 1.894*SCED (2-29)

This model has RMSE equals 0.407, R-Square = 0.9632; Compared to Equation (2-27), 

where R-Square = 0.9576, and seven coefficients: ln_size, RELY, CPLX, TIME, ACAP, 

PCAP, SCED are significant to ln_effort at level of 0.05, this model includes additional 

VEXP (p-value=0.0491) in the set of significant explanatory variables at level 0.05, the 

coefficients of ln_size, DATA, VEXP, TURN and STOR have been significantly 

increased, while the coefficient of LEXP and has been decreased, but the overall impact 

of observation No.55 on the original model is negative, therefore, No.55 is an outlier. 

After deleting observation No.56, the model becomes Equation (2-30):

Ln_effort = -16.378+ 1.158 *ln_size + 1.511*RELY + 1.739*DATA

+ 0.918*CPLX + 1.444*TIME + 0.327*STOR + 1.548*VIRT
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-0.234*TURN+1.718*ACAP+ 0.846* AEXP + 1.361*PCAP 

+ 1.923*VEXP + 0.0867*LEXP + 0.550*MODP + 1.490*TOOL 

+ 2.0028*SCED (2-30)

This model has RMSE equals 0.41739, R-Square = 0.9613; Compared to Equation (2- 

27), where R-Square equals 0.9576, and seven coefficients: ln_size, RELY, CPLX, 

TIME, ACAP, PCAP, SCED are significant to ln_effort at level of 0.05, this model 

includes the same elements in the set of significant explanatory variables at level 0.05, 

the coefficients of DATA, TURN and VIRT have been significantly increased, while the 

coefficient of ln_size, LEXP have been decreased, but observation No.56 has little impact 

on the original model therefore, No.56 is NOT an outlier.

After deleting observations No. 17, 55, and 56, the model becomes Equation (2-31): 

Ln_effort = -17.093+ 1.164 *ln_size + 1.662*RELY + 2.259*DATA

+ 1.253*CPLX + 1.253*TIME + 0.609*STOR + 1.453*VIRT 

-0.272*TURN+2.453*ACAP+ 0.554* AEXP + 0.913*PCAP 

+2.797* VEXP-0.712*LEXP + 0.496*MODP + 1.214*TOOL 

+ 1.967*SCED (2-31)

This model has RMSE equals 0.34761, R-Square equals 0.9729; Compared with 

Equation (2-27)—the model with potential outliers present, where R-Square = 0.9576, 

and seven coefficients: ln_size, RELY, CPLX, TIME, ACAP, PCAP, SCED are 

significant to ln_effort at the level of 0.05, this model includes the additional elements 

DATA, VIRT, VEXP in the set of significant explanatory variables at level 0.05, the 

coefficients of DATA, CPLX, STOR, VIRT, TURN, ACAP, PCAP, LEXP and VEXP
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have been significantly increased, the overall impact of observations No. 17, 55 and 56 

very significant to the original model.
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2.3.6 Variable Selection Results Using Forward Selection

Table 2-7 shows the summaries of the Forward Selection Procedure.

Table 2-7. Results of Forward Selection Procedure for Dependent Variable ln(Effort)
Step Variable Variables Estimated

Entered R2 Value in Model Coefficient P-value

s tep  1 ln _ s iz e  0.7168 1n_si ze 1.07654 <0.0001

step  2 VIRT 0.8209 ln _ s iz e 1.15253 <0.0001
VIRT 4.96783 <0.0001

Step 3 TIME 0.8599 TIME 2.49756 0.0002
VIRT 3.43123 0.0001
Ln_size 1.13151 <0.0001

Step 4 PCAP 0.8977 PCAP 2.22854 <0.0001
VIRT 3.53071 <0.0001
TIME 3.05498 <0.0001
ln _ s iz e 1.10018 <0.0001

step  5 SCED 0.9138 SCED 3.19650 0.0019
PCAP 2.27153 <0.0001
VIRT 3.08922 <0.0001
TIME 3.03505 <0.0001
1n_si ze 1.12092 <0.0001

Step 6 CPLX 0.9271 CPLX 1.36629 0.0023
SCED 3.16133 0.0010
PCAP 2.78768 <0.0001
VIRT 2.98766 <0.0001
TIME 2.38093 <0.0001
ln _ s iz e 1.16837 <0.0001

Step 7 ACAP 0.9347 ACAP 1.63184 0.0143
CPLX 1.69911 0.0002
SCED 2.68653 0.0038
PCAP 1.93169 0.0008
VIRT 3.08625 <0.0001
TIME 2.44299 <0.0001
1n_si ze 1.21800 <0.0001

step  8 VEXP 0.9420 VEXP 2.42132 0.0119
ACAP 1.98049 0.0026
CPLX 1.65426 0.0002
SCED 2.60165 0.0033
PCAP 1.84038 0.0008
VIRT 1.79934 0.0217
TIME 2.56868 <0.0001
ln _ s iz e 1.22346 <0.0001

s tep  9 RELY 0.9500 RELY 1.36987 0.0052
VEXP 3.09210 0.0012
PCAP 1.78497 0.0005
ACAP 2.33603 0.0003
SCED 2.36759 0.0044
CPLX 1.27407 0.0027
VIRT 1.51930 0.0395
TIME 1.73009 0.0017
ln _ s iz e 1.20180 <0.0001

step  10 MODP 0.9528 SCED 2.43220 0.0030
MODP 0.93486 0.0851
VEXP 3.06802 0.0011
PCAP 1.41512 0.0089
ACAP 2.22682 0.0004
VIRT 1.27322 0.0828
TIME 1.71011 0.0016
CPLX 1.12838 0.0075
RELY 1.51171 0.0022

1n _s ize 1.18975 <0.0001

*no other v a r i a b l e  met the  0 .05000 s ig n i f i c a n c e  l e v e l  fo r  entry  in to  the model.
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From Table 2-7 it can be seen that step 9 is the last step for the p-values for all the 

coefficients of all the 9 explanatory variables during the Forward Selection Procedure at 

the level significance of 0.05 (PIN). Step 10 to 14 can be continued if choosing PIN = 

0.5. Other further steps for the procedure are listed in Table 2-8.

Table 2-8. Summary of Forward Selection

step
vari able  
Entered vars in

Number
R-square

Parti al 
R-Square

Model
C(p) F value Pr > F

1 ln _ s iz e 1 0.7168 0.7168 248.066 154.37 <.0001
2 VIRT 2 0 .1041 0.8209 137.157 34.89 <.0001
3 TIME 3 0.0389 0.8599 96.9345 16.40 0.0002
4 PCAP 4 0.0379 0.8977 57.8774 21.48 <.0001
5 SCED 5 0.0161 0.9138 42.4140 10.66 0.0019
6 CPLX 6 0.0133 0.9271 30.0034 10.21 0.0023
7 ACAP 7 0.0076 0.9347 23.7715 6 .40 0.0143
8 VEXP 8 0.0073 0.9420 17.8750 6.78 0.0119
9 RELY 9 0.0080 0.9500 11.1974 8 .49 0.0052

10 MODP 10 0.0028 0.9528 10.1658 3.08 0.0851
11 DATA 11 0.0020 0.9548 10.0504 2 .20 0.1442
12 TOOL 12 0.0014 0.9562 10.5348 1.59 0.2126
13 AEXP 13 0.0011 0.9573 11.3286 1.28 0.2642

The final acceptable reduced model is shown in Table 2-9.

Table 2-9. The Optimal Reduced Regression Model for Forward Selection Procedure
A n a lys is  o f  v a rian ce

Sum o f Mean
Source DF Squares square F va lu e  Pr > F

Model 9 196.25094 21.80566 111. 91 <.0001
E rro r 53 10.32712 0.19485
Corrected T o ta l 62 206.57806

R-square = 0.9500  and C (p) = 11.1974

Param eter Standard
v a r ia b le Estim ate E rro r Type I I  SS F Value Pr > F

in te rc e p t -14.69863 1.21859 28.34937 145.49 <.0001
In  s iz e 1.20180 0.04650 130.13265 667.86 <.0001
RELY 1.36987 0.47025 1.65350 8 .49 0.0052
CPLX 1.27407 0.40438 1.93427 9.93 0.0027
TIME 1.73009 0.52402 2.12400 10.90 0.0017
VIRT 1.51930 0.71973 0.86826 4 .4 6 0.0395
ACAP 2.33603 0.60119 2.94193 15.10 0.0003
PCAP 1.78497 0.48495 2.63985 13.55 0.0005
VEXP 3.09210 0.90125 2.29362 11.77 0.0012
SCED 2.36759 0.79611 1.72335 8.84 0.0044

2.3.6 Variable Selection Results Using Backward Elimination

Table 2-10 and Table 2-11 show the summaries of the Backward Elimination Procedure.
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Table 2-10. Results of Backward Elimination Procedure for Dependent Variable ln(Effort)
Step Variable Variables Estimated

Removed R2 Value in Model Coefficient P-value

s tep  0 0 .9576  ln_size 1.16263 <.0001
RELY 1.53326 0.0054
DATA 1.43248 0.1591
CPLX 0.96500 0.0329
TIME 1.62272 0.0057
STOR 0.25883 0.6465
VIRT 1.06389 0.2100
TURN -0.01419 0.9885
ACAP 1.77751 0.0126
AEXP 0.75896 0.2879
PCAP 1.49816 0.0090
VEXP 2.27808 0.1021
LEXP 0.54306 0.8164
MODP 0.51959 0.4634
TOOL 1.56479 0.1434
SCED 2.06952 0.0373

Step 1 TURN 0.9576 ln_size 1.16233 <.0001
RELY 1.53321 0.0049
DATA 1.43220 0.1546
CPLX 0.96476 0.0310
TIME 1.62361 0.0050
STOR 0.25801 0.6423
VIRT 1.06052 0.1890
ACAP 1.77805 0.0115
AEXP 0.75627 0.2675
PCAP 1.49973 0.0071
VEXP 2.28316 0.0870
LEXP 0.54584 0.8129
MODP 0.51533 0.4188
TOOL 1.56112 0.1287
SCED 2.06869 0.0351

Step 2 LEXP 0.9575 ln_size 1.16283 <.0001
RELY 1.53225 0.0045
DATA 1.39224 0.1560
CPLX 0.97511 0.0270
TIME 1.62236 0.0046
STOR 0.28513 0.5963
VIRT 1.07735 0.1761
ACAP 1.75554 0.0109
AEXP 0.73633 0.2716
PCAP 1.49235 0.0067
VEXP 2.47811 0.0175
MODP 0.54571 0.3775
TOOL 1.54188 0.1283
SCED 2.15280 0.0177

Step 3 STOR 0.9573 ln_size
RELY
DATA
CPLX
TIME
VIRT
ACAP
AEXP
PCAP
VEXP
MODP
TOOL
SCED

1.16162
1.62678
1.44783
1.03083
1.72741
1.19050
1.81418
0.74223
1.44998
2.36363
0.62232
1.56314
1.99202

< . 0 0 0 1
0.0014
0.1353
0.0156
0.0013
0.1188
0.0074
0.2642
0.0072
0.0193
0.2976
0 . 1 2 0 1
0.0184
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Step 4 MODP 0.9563 In_size 1.16747 <■0001
RELY 1.59302 0.0017
DATA 1.54570 0.1100
CPLX 1.06682 0.0122
TIME 1.73054 0.0012
VIRT 1.20604 0.1144
ACAP 1.89422 0.0050
AEXP 0.69277 0.2961
PCAP 1.64830 0.0012
VEXP 2.37960 0.0186
TOOL 1.98843 0.0323
SCED 1.96164 0.0202

Step 5 AEXP 0.9553 ln_size 1.16086 <.0001
RELY 1.51301 0.0024
DATA 1.66929 0.0829
CPLX 1.10849 0.0091
TIME 1.72129 0.0013
VIRT 1.16092 0.1279
ACAP 2.18520 0.0005
PCAP 1.56599 0.0018
VEXP 2.84220 0.0021
TOOL 1.59053 0.0583
SCED 2.25510 0.0050

Step 6 VIRT 0.9532 ln_size 1.15781 <.0001
RELY 1.68007 0.0007
DATA 1.53923 0.1121
CPLX 1.00810 0.0171
TIME 1.85894 0.0005
ACAP 2.28405 0.0003
PCAP 1.52188 0.0026
VEXP 3.64636 <.0001
TOOL 2.04191 0.0114
SCED 2.38731 0.0033

S te p  7 BATA 0 .9 5 0 9  l n _ s i z e 1 .1 9 7 8 9 < •0 0 0 1
RELY 1 .7 3 7 8 2 0 .0 0 0 6
CPLX 0 .9 7 7 5 7 0 .0 2 2 2
TIME 1 .8 2 2 3 0 0 .0 0 0 8
ACAP 2 .3 9 5 9 1 0 .0 0 0 2
PCAP 1 .6 2 2 9 5 0 .0 0 1 5
VEXP 3 .7 3 3 0 5 < .0 0 0 1
TOOL 1 .8 1 8 2 8 0 .0 2 3 1
SCED 2 .4 7 1 1 5 0 .0 0 2 7

*All v a r ia b le s  l e f t  in  the  model are s i g n i f i c a n t  a t  the  0 .05000 l e v e l .

Table 2-11. Summary of Backward Elimination Procedure
Variable Number Partial Model

Step Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 TORN 15 0.0000 0.9576 15.0002 0. 00 0.9885
2 LEXP 14 0.0001 0.9575 13.0557 0. 06 0.8129
3 STOR 13 0.0003 0.9573 11.3286 0. 28 0.5963
4 MODP 12 0.0010 0.9563 10.3763 1. 11 0.2976
5 AEXP 11 0.0010 0.9553 9.4325 1. 11 0.2961
6 VIRT 10 0.0021 0.9532 9.7069 2.39 0.1279
7 DATA 9 0.0023 0.9509 10.2535 2 61 0.1121

From Table 2-10 and Table 2-11, it is clear that the backward elimination selection

procedure is more efficient than the forward selection procedure, since it only takes 7

steps to find a reduced model with higher R-square value (0.9509) in backward
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elimination selection procedure while in it takes 9 steps to find the reduced model with 

less R-square value (0.9500) in forward selection procedure, but missed the reduced 

model with higher R-square = 0.9509.

Table 2-12. Optimal Reduced Regression Model for Backward Elimination Procedure
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value :

Model 9 196.43079 21.82564 114..00
Error 53 10.14727 0.19146
Corrected Total 62 206.57806

R-Square = 0 .9 5 0 9  and C (p) = 1 0 .2 5 3 5

Parameter Standard
Variable Estimate Error Type II SS F1 Value Pr > F

Intercept -15.81859 1.24040 31.13756 162.63 <•0001
ln_size 1.19789 0.04591 130.32332 680.69 <.0001
RELY 1.73782 0.47279 2.58673 13 .51 0.0006
CPLX 0.97757 0.41490 1.06289 5.55 0.0222
TIME 1.82230 0.51142 2.43086 12.70 0.0008
ACAP 2.39591 0.59311 3.12418 16.32 0.0002
PCAP 1.62295 0.48435 2.14962 11.23 0.0015
VEXP 3.73305 0.72238 5.11292 26.71 <.0001
TOOL 1.81828 0.77713 1.04811 5.47 0.0231
SCED 2.47115 0.78480 1.89824 9.91 0.0027

2.3.7 Variable Selection Results Using Stepwise Selection (STEPWISE)

Table 2-13 shows the summaries of the Stepwise Procedure.
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Table 2-13. Results of Stepwise Selection Procedure for Dependent
Variable ln(Effort)

Step No. Variable
Entered R2 Value 
Or removed

Variables 
in Model

Estimated
Coefficient P-value

s te p  1 1n_size 0.7168 1n_si ze 1.07654 <0.0001

s t e p  2 VIRT 0.8209 1n_si ze 1.15253 <0.0001
VIRT 4.96783 <0.0001

s t e p  3 TIME 0.8599 ln _ s iz e 1.13151 <0.0001
TIME 2.49756 0.0002
VIRT 3.43123 0.0001

Step 4 PCAP 0.8977 ln _ s iz e 1.10018 <.0001
TIME 3.05498 <.0001
VIRT 3.53071 <.0001
PCAP 2.22854 <.0001

Step 5 SCED 0.9138 ln _ s iz e 1.12092 <.0001
TIME 3.03505 <.0001
VIRT 3.08922 <.0001
PCAP 2.27153 <.0001
SCED 3.19650 0.0019

Step 6 CPLX 0.9271 1n _s ize 1.16837 <.0001
CPLX 1.36629 0.0023
TIME 2.38093 <.0001
VIRT 2.98766 <.0001
PCAP 2.78768 <.0001
SCED 3.16133 0.0010

Step 7 ACAP 0.9347 ln _ s iz e 1.21800 <.0001
CPLX 1.69911 0.0002
TIME 2.44299 <.0001
VIRT 3.08625 <.0001
ACAP 1.63184 0.0143
PCAP 1.93169 0.0008
SCED 2.68653 0.0038

Step 8 VEXP 0.9420 1n_si ze 1.22346 <.0001
CPLX 1.65426 0.0002
TIME 2.56868 <.0001
VIRT 1.79934 0.0217
ACAP 1.98049 0.0026
PCAP 1.84038 0.0008
VEXP 2.42132 0.0119
SCED 2.60165 0.0033

Step 9 RELY 0.9500 ln _ s iz e 1.20180 <.0001
RELY 1.36987 0.0052
CPLX 1.27407 0.0027
TIME 1.73009 0.0017
VIRT 1.51930 0.0395
ACAP 2.33603 0.0003
PCAP 1.78497 0.0005
VEXP 3.09210 0.0012
SCED 2.36759 0.0044
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s tep  10 MODP 0.9528 ln _ s iz e
RELY
CPLX
TIME
VIRT
ACAP
PCAP
VEXP
MODP
SCED

1.18975
1.51171
1.12838
1.71011
1.27322
2.22682
1.41512
3.06802
0.93486
2.43220

<.0001
0.0022
0.0075
0.0016
0.0828
0.0004
0.0089
0.0011
0.0851
0.0030

step  11 DATA 0.9548 ln _ s iz e 1.15390 <.0001
RELY 1.41757 0.0038
DATA 1.39599 0.1442
CPLX 1.19083 0.0047
TIME 1.73564 0.0013
VIRT 1.43118 0.0521
ACAP 2.12171 0.0007
PCAP 1.34665 0.0119
VEXP 2.93063 0.0016
MODP 0.92139 0.0862
SCED 2.34560 0.0039

*A l 1 v a r ia b le s  l e f t  in  the model are s i g n i f i c a n t  a t  the 0.1500 l e v e l .

No other v a r ia b le  met the 0.1500 s ig n i f i c a n c e  le v e l  fo r  entry in to  th e  model.

Table 2-14. Summary of Stepwise Selection

v a r i abl e v a r ia b le Number P a r t ia l Model
step Entered Removed vars in  R-Square R-Square C(p) F Value Pr > F

1 1n_size 1 0.7168 0.7168 248.066 154.37 <.0001
2 VIRT 2 0.1041 0.8209 137.157 34.89 <.0001
3 TIME 3 0.0389 0.8599 96.9345 16.40 0.0002
4 PCAP 4 0.0379 0.8977 57.8774 21.48 <.0001
5 SCED 5 0.0161 0.9138 42.4140 10.66 0.0019
6 CPLX 6 0.0133 0.9271 30.0034 10.21 0.0023
7 ACAP 7 0.0076 0.9347 23.7715 6.40 0.0143
8 VEXP 8 0.0073 0.9420 17.8750 6.78 0.0119
9 RELY 9 0.0080 0.9500 11.1974 8 .49 0.0052

10 MODP 10 0.0028 0.9528 10.1658 3.08 0.0851
11 DATA 11 0.0020 0.9548 10.0504 2.20 0.1442

From Table 2-13 and Table 2-14, it is clear that the backward elimination selection 

procedure is more efficient than the stepwise selection procedure, which is very similar 

to forward selection procedure since the backward elimination selection procedure only 

takes 7 steps to find a reduced model with higher R-square value (0.9509) while in 

stepwise selection procedure it takes 9 steps to find the reduced model with less R-square 

value (0.9500), again stepwise selection procedure missed the reduced model with higher 

R-square = 0.9509.
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2.3.8 Variable Selection Results Using Maximum R2 Improvement (MAXR)

The maximum R 2 improvement technique does not settle on a single model. Instead, it 

tries to find the "best" one-variable model, the "best" two-variable model, and so forth, 

although it is not guaranteed to find the model with the largest R2 for each size. The 

MAXR method begins by finding the one-variable model producing the highest R2. Then 

another variable, the one that yields the greatest increase in R2, is added. Once the two- 

variable model is obtained, each of the variables in the model is compared with each 

variable not in the model. For each comparison, the MAXR method determines if 

removing one variable and replacing it with the other variable increases R2. After 

comparing all possible switches, the MAXR method makes the switch that produces the 

largest increase in R2. Comparisons begin again, and the process continues until the 

MAXR method finds that no switch can further increase R2. Thus, the two-variable model 

achieved is considered the "best" two-variable model the technique can find. Another 

variable is then added to the model, and the comparing-and-switching process is repeated 

to find the "best" three-variable model, and so forth.

The difference between the STEPWISE method and the MAXR method is that all 

switches are evaluated before any switch is made in the MAXR method. In the 

STEPWISE method, the "worst" variable may be removed without considering what 

adding the "best" remaining variable might accomplish. The MAXR method may require 

much more computer time than the STEPWISE method.

Table 2-15 shows the summaries of the Maximum R2 Improvement Procedure.
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Table 2-15. Results of Maximum R2 Improvement Procedure for Dependent Variable In(Effort)
Level Variables in Model R2 C(P)

1 ln_size 0.7168 248.0657
2 ln_size, 6 0 .8209 137.1573
3 ln_size, 6,4 0.8599 96.9345
4 ln_size, 6,4,10 0.8977 57.8774
5 ln_size, 6,4,10,15 0.9138 42.4140
6 ln_size, 6, 4,10, 15, 3 0 .9271 30.0034
7 ln_size, 6,4,10,15, 3,8 0.9347 23.7715
8 ln_size,4,10, 15,3,8,11 0.9360 22.3824
9 ln_size,4,10,15,1,8,11 0.9370 21.2729
10 ln_size, 4,13, 15,1,8,11 0.9393 18.7534
11 ln_size, 4,13, 15,1,8,11,3 0.9440 15.6914
12 ln_size, 4, 10,15,1,8,11,3 0.9458 13.7541
13 ln_size, 4, 10,15,1,8,11,3,14 0.9509 10.2535
14 ln_size, 4, 10,15,1,8,11,3,14,2 0.9532 9.7069
15 ln_size, 4, 10,15,1,8,11,3,14,2,6 0.9553 9.4325
16 ln_size, 4, 10,15,1,8,11,3,14,2,6,9 0.9563 10.3763
17 lnjsize, 4, 10, 15,1, 8,11, 3,14,2,6, 9,13 0.9573 11.3286
18 ln_size, 4, 10,15,1, 8,11,3,14,2,6,9,13, 5 0.9575 13.0557
19 ln_size, 4, 10,15,1, 8,11,3,14,2,6,9,13,5,12 0.9576 15.0002
20 ln_size, 4, 10,15,1, 8,11,3,14,2,6,9,13,5,12,7 0 .9576 17.0000

Table 2-16. Final Reduced Regression Model of Maximum R2 Improvement Procedure 
______________________ for Dependent Variable ln(Effort)______________________

A n alys is  o f  va rian ce

Sum o f Mean
Source DF Squares Square F va lue Pr > F

Model 9 196.43079 21.82564 114.00 < .0001
E rro r 53 10.14727 0.19146
C orrected  T o ta l 62 206.57806

v a r ia b le  TOOL E ntered: R- Square = 0 .9509  and C (p ) = 10.2535

Parameter standard
v a r ia b le Estim ate E rro r Type I I  SS F va lu e Pr > F

in te rc e p t -15 .81859 1.24040 31.13756 162.63 <.0001
1n_si ze 1.19789 0.04591 130.32332 680.69 <.0001
RELY 1.73782 0.47279 2.58673 13.51 0.0006
CPLX 0.97757 0.41490 1.06289 5.55 0.0222
TIME 1.82230 0.51142 2.43086 12.70 0.0008
ACAP 2.39591 0.59311 3.12418 16.32 0.0002
PCAP 1.62295 0.48435 2.14962 11.23 0.0015
VEXP 3.73305 0.72238 5.11292 26.71 <.0001
TOOL 1.81828 0.77713 1.04811 5.47 0 .0231
SCED 2.47115 0.78480 1.89824 9 .91 0.0027

Table 2-16 and Table 17 show that it only takes 13 steps to find a reduced model with R- 

square value of 0.9509, it is efficient compared with Minimum R Improvement.

2.3.9 Variable Selection Results Using Minimum R2 Improvement (MMR)

The MINR method closely resembles the MAXR method, but the switch chosen is the 

one that produces the smallest increase in R2. For a given number of variables in the
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model, the MAXR and MINR methods usually produce the same "best" model, but the 

MINR method considers more models of each size.

The starting point at each level is the maximum R model from the previous level. The 

reason for the choice of the model with minimum R at each step within any level is to 

show the user a large number of reasonable models at each level. Typically for each 

switch the results of the regression are provided. Both R2 improvement procedures are 

designed to produce a large number of possible regressions at each level. These two 

methods will tend to yield more possible solutions than the stepwise methods. In addition 

the minimum R2 method usually produces more solutions than the maximum R2 method. 

In our experiment, the maximum R2 method produces 20 steps while the minimum R2 

method produces 156 steps, not until step 123 can we find the optimal reduced regression 

model with 9 explanatory variables, R-Square is 0.9509 in the minimum R method. 

Table 2-17 summarizes the results of the minimum R2 method on our transformed 

COCOMO dataset.
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Table 2-17. Summary of the Minimum R2 Improvement Method
Number in Adjusted
Model R-Square R-Square C(p)

1 0.7168 0.7121 248.0657
1 0.2640 0.2519 738.9514
1 0.1181 0.1036 897.1347
1 0.0988 0.0840 918.0604
1 0.0960 0.0812 921.0367
1 0.0522 0.0367 968.5396
1 0.0492 0.0336 971.8104
1 0.0430 0.0273 978.5432
1 0.0266 0.0107 996.2654
1 0.0232 0.0072 999.9489
1 0.0201 0.0040 1003.355
1 0.0081 -.0082 1016.352
1 0.0043 -.0120 1020.422
1 0.0033 -.0130 1021.549
1 0.0026 -.0137 1022.272
1 0.0005 -.0159 1024.632
2 0.8209 0.8149 137.1573
2 0.8203 0.8143 137.8249
2 0.7961 0.7894 164.0036
2 0.7961 0.7893 164.0580
2 0.7853 0.7782 175.7256
2 0.7824 0.7751 178.9140
2 0.7655 0.7577 197.2502
2 0.7594 0.7514 203.8680
2 0.7551 0.7469 208.5159
2 0.7458 0.7373 218.6397
2 0.7341 0.7253 231.2196
2 0.7265 0.7174 239.4968
2 0.7239 0.7147 242.3580
2 0.7206 0.7113 245.9156
2 0.7203 0.7110 246.2420
2 0.3980 0.3779 595.6841
3 0.8599 0.8527 96.9345
3 0.8590 0.8518 97.9090
3 0.8559 0.8485 101.2510
3 0.8508 0.8432 106.7642
3 0.8508 0.8432 106.7888
3 0.8490 0.8414 108.6559
3 0.8484 0.8407 109.3253
3 0.8476 0.8398 110.2616
3 0.8453 0.8374 112.7039
3 0.8442 0.8362 113.9412
3 0.8432 0.8352 115.0350
3 0.8429 0.8350 115.2645
3 0.8423 0.8343 115.9720
3 0.8401 0.8319 118.4014
3 0.8380 0.8298 120.6265
3 0.8375 0.8293 121.1435
4 0.9032 0.8966 51.9164
4 0.8991 0.8921 56.4422
4 0.8980 0.8909 57.6321
4 0.8977 0.8907 57.8774
4 0.8961 0.8890 59.5990
4 0.8949 0.8876 60.9795
4 0.8938 0.8864 62.1632
4 0.8928 0.8854 63.2318
4 0.8927 0.8853 63.3524
4 0.8926 0.8852 63.3826
4 0.8886 0.8810 67.7346
4 0.8853 0.8774 71.3333
4 0.8850 0.8771 71.6715
4 0.8840 0.8760 72.7759
4 0.8830 0.8750 73.7936
4 0.8828 0.8748 74.0090

MSE S(p) Variables in Model

0.95919 0.01599 ln_size
2.49257 0.04154 2
2.98669 0.04978 7
3.05206 0.05087 4
3.06135 0.05102 1
3.20974 0.05350 5
3.21996 0.05367 13
3.24099 0.05402 10
3.29635 0.05494 6
3.30785 0.05513 11
3.31849 0.05531 12
3.35909 0.05598 9
3.37181 0.05620 8
3.37533 0.05626 3
3.37759 0.05629 15
3.38496 0.05642 14
0.61660 0.01045 ln_size, 6
0.61872 0.01049 ln_size, 4
0.70186 0.01190 ln_size, 5
0.70203 0.01190 ln_size, 12
0.73908 0.01253 ln_size. 1
0.74921 0.01270 ln_size, 11
0.80744 0.01369 ln_size, 14
0.82846 0.01404 ln_size. 3
0.84322 0.01429 ln_size, 15
0.87537 0.01484 ln_size. 13
0.91532 0.01551 ln_size. 7
0.94161 0.01596 ln_size, 10
0.95069 0.01611 ln_size. 9
0.96199 0.01630 ln_size, 2
0.96303 0.01632 ln_size, 8
2.07278 0.03513 2, 4
0.49069 0.00846 ln_size, 4, 6
0.49384 0.00851 ln_size, 4, 13
0.50463 0.00870 ln_size, 4, 10
0.52243 0.00901 ln_size. 4, 8
0.52251 0.00901 ln_size, 4, 14
0.52854 0.00911 ln_size, 1, 6
0.53071 0.00915 ln_size, 4, 11
0.53373 0.00920 ln_size. 5, 6
0.54162 0.00934 ln_size. 4, 15
0.54561 0.00941 ln_size, 4, 12
0.54915 0.00947 ln_size, 5, 11
0.54989 0.00948 ln_size. 5, 15
0.55217 0.00952 ln_size, 6, 10
0.56002 0.00966 ln_size, 1, 13
0.56720 0.00978 ln_size. 4, 9
0.56887 0.00981 ln_size, 1, 14
0.34468 0.00605 ln_size, 1, 8, 11
0.35955 0.00631 ln_size, 4, 8, 12
0.36346 0.00638 ln_size. 1, 8, 12
0.36426 0.00639 ln_size, 4, 6, 10
0.36992 0.00649 ln_size, 4, 8, 11
0.37446 0.00657 ln_size, 4, 10 12
0.37834 0.00664 ln_size. 4, 6, 8
0.38185 0.00670 ln_size, 1, 6, 8
0.38225 0.00671 ln_size. 1, 6, 10
0.38235 0.00671 ln_size, 4, 10 11
0.39665 0.00696 ln_size, 1, 10 11
0.40847 0.00717 ln_size, 1, 10 12
0.40958 0.00719 ln_size, 4, 6, 13
0.41321 0.00725 ln_size, 4, 13 15
0.41655 0.00731 ln_size, 4, 10 15
0.41726 0.00732 ln_size, 3, 6, 10

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2-17. Summary of the Minimiim R2 Improvement Method (cont.)
Humber in 
Model R-Square

Adjusted
R-Square C(p) MSE S{p) Variables in Model

5 0.9187
5 0.9182
5 0.9165
5 0.9156
5 0.9138
5 0.9136
5 0.9134
5 0.9129
5 0.9128
5 0.9121
5 0.9117
5 0.9116
5 0.9114
5 0.9114
5 0.9113
5 0.9106
6 0.9303
6 0.9302
6 0.9300
6 0.9276
6 0.9271
6 0.9270
6 0.9265
6 0.9265
6 0.9263
6 0.9259
6 0.9256
6 0.9248
6 0.9248
6 0.9243
6 0.9239
6 0.9237
7 0.9393
7 0.9370
7 0.9369
7 0.9363
7 0.9360
7 0.9359
7 0.9359
7 0.9357
7 0.9355
7 0.9352
7 0.9348
7 0.9347
7 0.9344
7 0.9344
7 0.9344
7 0.9340
8 0.9458
8 0.9457
8 0.9440
8 0.9436
8 0.9433
8 0.9432
8 0.9430
8 0.9420
8 0.9420
8 0.9417
8 0.9417
8 0.9417
8 0.9415
8 0.9414
8 0.9414
8 0.9413

0.9116
0.9110
0.9092
0.9082
0.9063
0.9060
0.9058
0.9053
0.9052
0.9044
0.9040
0.9038
0.9037
0.9036
0.9035
0.9028
0.9228
0.9227
0.9225
0.9198
0.9193
0.9192
0.9186
0.9186
0.9184
0.9179
0.9176
0.9168
0.9168
0.9162
0.9157
0.9156
0.9316
0.9290
0.9288
0.9282
0.9279
0.9278
0.9277
0.9275 
0.9273 
0.9270 
0.9265 
0.9264 
0.9261 
0.9261 
0.9260 
0.9256 
0.9378 
0.9377 
0.9357 
.9353 
.9349 
.9348 
.9346 
.9334 

0.9334 
0.9331 
0.9331 
0.9330 
0.9328 
0.9328 
0.9327 
0.9326

37.1373
37.6815
39.5181
40.5414
42.4140
42.6645
42.8729 
43.3776 
43.5207 
44.2778 
44.6976 
44.8610 
45.0090 
45.0822 
45.1745
45.8730 
26.6051 
26.6510 
26.8559 
29.5183 
30.0034 
30.1609 
30.6778 
30.7303 
30.9488 
31.3561 
31.6473 
32.4799 
32.5057 
33.0808 
33.5540 
33.6665 
18.7534 
21.2729 
21.4526 
22.0655 
22.3824 
22.4673 
22.4895 
22.7449 
22.9516 
23.2181 
23.7289 
23.7715 
24.0677 
24.0765 
24.1562 
24.5253 
13.7541 
13.8316 
15.6914 
16.1058 
16.5163 
16.6074 
16.7435 
17.8412 
17.8750 
18.2138 
18.2156 
18.2416 
18.4125 
18.4900 
18.5583 
18.6539

0.29464 0.00526 ln_size, 1, 4, 8, 11
0.29646 0.00529 ln_size, 1, 8, 11, 14
0.30260 0.00540 ln_size, 1, 8, 11, 13
0.30602 0.00546 ln_size, 5, 10 11, 15
0.31228 0.00558 ln_size. 4, 6, 10, 15
0.31311 0.00559 ln_size, 3, 4, 8, 11
0.31381 0.00560 ln_size, 1, 3, 8, 11
0.31550 0.00563 ln_size, 1, 4, 8, 12
0.31598 0.00564 ln_size, 4, 10 11, 15
0.31851 0.00569 ln_size, 3, 4, 6, 8
0.31991 0.00571 ln_size. 1, 6, 8, 11
0.32046 0.00572 ln_size, 1, 8, 12, 14
0.32095 0.00573 ln_size. 1, 5, 8, 11
0.32120 0.00574 ln_size, 3, 4, 6, 10
0.32150 0.00574 ln_size, 1, 7, 8, 11
0.32384 0.00578 ln_size, 1, 8, 11, 15
0.25726 0.00468 ln_size, 4, 5, 10, 11, 15
0.25741 0.00468 ln_size. 1, 4, 8, 11, 13
0.25811 0.00469 ln_size, 1, 4, 8, 11, 14
0.26717 0.00486 ln_size, 1, 5, 10, 11, 15
0.26882 0.00489 ln_size, 3, 4, 6, 10, 15
0.26935 0.00490 ln_size, 1, 4, 9, 10, 14
0.27111 0.00493 ln_size, 1, 4, 8, 10, 11
0.27129 0.00493 ln_size, 1, 3, 4, 8, 11
0.27203 0.00495 ln_size, 1, 4, 8, 11, 15
0.27342 0.00497 ln_size. 1, 4, 7, 8, 11
0.27441 0.00499 ln_size. 1, 8, 11, 13, 15
0.27724 0.00504 ln_size, 1, 4, 10, 11, 15
0.27733 0.00504 ln_size, 1, 8, 11, 14, 15
0.27929 0.00508 ln_size, 1, 5, 8, 11, 15
0.28090 0.00511 ln_size. 3, 4, 6, 8, 10
0.28128 0.00511 ln_size, 1, 8, 10, 11, 14
0.22780 0.00422 ln_size. 1, 4, 8, 11, 13, 15
0.23653 0.00438 ln_size, 1, 4, 8, 10, 11, 15
0.23715 0.00439 ln_size. 1, 4, 8, 11, 14, 15
0.23928 0.00443 ln_size, 1, 4, 8, 10, 11, 14
0.24037 0.00445 ln_size, 3, 4, 8, 10, 11, 15
0.24067 0.00446 ln_size. 1, 5, 8, 10, 11, 15
0.24075 0.00446 ln_size. 1, 3, 4, 8, 10, 11
0.24163 0.00447 ln_size. 1, 3, 4, 8, 11, 13
0.24235 0.00449 ln_size, 1, 4, 6, 9, 10, 14
0.24327 0.00450 ln_size, 1, 4, 9, o H to 14
0.24504 0.00454 ln_size, 4, 5, 8, 10, 11, 15
0.24519 0.00454 ln_size, 3, 4, 6, 8, 10, 15
0.24621 0.00456 ln_size, 1, 4, 5, 10, 11, 15
0.24624 0.00456 ln_size. 3, 4, 5, 10, 11, 15
0.24652 0.00457 ln_size, 1, 4, 7, 8, 10, 11
0.24780 0.00459 ln_size. 1, 3, 4, 8, 11, 14
0.20732 0.00391 ln_size. 1, 3, 4, 8, 10, 11, 15
0.20760 0.00392 ln_size, 1, 4, 8, 10, 11, 14 15
0.21416 0.00404 ln_size, 1, 3, 4, 8, 11, 13, 15
0.21562 0.00407 ln_size, 1, 4, 8, 10, 11, 13 , 15
0.21707 0.00410 ln_size, 3, 4, 5, 8, 10, 11, 15
0.21739 0.00410 ln_size, 1, 4, 5, 8, 10, 11, 15
0.21787 0.00411 ln_size, 1, 4, 7, 8, 10, 11, 15
0.22174 0.00418 ln_size. 1, 4, 8, 11, 13, 14, 15
0.22186 0.00419 ln_size, 3, 4, 6, 8, 10, 11, 15
0.22306 0.00421 ln_size, 1, 4, 8, 9, 10, 12, 14
0.22307 0.00421 ln_size, 1, 3, 4, 8, 10, 11, 14
0.22316 0.00421 ln_size, 1, 3, 4, 6, 8, 10, 11
0.22376 0.00422 ln_size, 1, 4, 8, 9, 10, 11, 14
0.22403 0.00423 ln_size. 1, 3, 5, 8, 10, 11, 15
0.22427 0.00423 ln_size. 1, 5, 8, 10, 11, 14 , 15
0.22461 0.00424 ln_size, 1, 3, 4, 7, 8, 10, 11
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Table 2-17. Summary of the Minimam R2 Improvement Method (cont.)

MSE S(p) Variables in Model

0 .1 9 1 4 6 0 .0 0 3 6 8 l n _ s i z e . 1 , 3 , 4 , 8 ,
0 .1 9 4 8 5 0 .0 0 3 7 5 l n _ s i z e . 1 , 3 . 4 , 6 ,
0 .1 9 5 0 2 0 .0 0 3 7 5 l n _ s i z e . 1, 3» 4 , a.
0.19580 0.00377 ln_size, 1, 3 4, 7,
0.19935 0.00383 ln_size, 1, 3 4, 5,
0.20061 0.00386 ln_size, 1, 4 5, 8,
0.20358 0.00392 ln_size. 1, 2 4, 8,
0.20479 0.00394 ln_size. 1, 4 8, 9,
0.20552 0.00395 ln_size. 1, 4 7, 8,
0.20562 0.00395 ln_size, 1, 4 8, 10
0.20645 0.00397 ln_size, 1, 2 3, 4,
0.20806 0.00400 ln_size. 1, 4 6, 8,
0.20855 0.00401 ln_size, 1, 3 4, 8,
0.20877 0.00401 ln_size. 1, 4 5, 8,
0.20951 0.00403 ln_size. 1, 4 8, 10
0.21012 0.00404 ln_size, 1, 4 5, 7,
0.18581 0.00364 ln_size. 1, 2 3, 4,
0.18749 0.00368 ln_size, 1, 3 4, 6,
0.18836 0.00369 ln_size, 1, 3 4, 6,
0.18914 0.00371 ln_size, 1, 3 4, 5,
0.19016 0.00373 ln_size. 1, 3 4, 7,
0.19040 0.00373 ln_size, 1, 3 4, 8,
0.19053 0.00374 ln_size. 1, 2 3, 4,
0.19055 0.00374 ln_size, 1, 3 4, 8,
0.19170 0.00376 ln_size, 1, 3 4, 6,
0.19338 0.00379 ln_size, 1, 3 4, 5,
0.19351 0.00379 ln_size, 1, 3 4, 5,
0.19368 0.00380 ln_size. 1, 2 3, 4,
0.19402 0.00380 ln_size, 1, 3 4, 5,
0.19420 0.00381 ln_size, 1, 3 4, 7,
0.19447 0.00381 ln_size. 1, 3 4, 8,
0.19458 0.00382 ln_size. 1, 2 3, 4,
0.18095 0.00362 ln_size, 1, 2 3, 4,
0.18326 0.00367 ln_size, 1, 2 3, 4,
0.18473 0.00369 ln_size, 1, 2 3, 4,
0.18540 0.00371 ln_size, 1, 2 3, 4,
0.18584 0.00372 ln_size, 1, 2 3, 4,
0.18615 0.00372 ln_size, 1, 2 3, 4,
0.18638 0.00373 ln_size, 1, 2 3, 6,
0.18755 0.00375 ln_size, 1, 3 4, 6,
0.18778 0.00376 ln_size. 1, 2 3, 4,
0.18798 0.00376 ln_size. 1, 3 4, 5,
0.18799 0.00376 ln_size. 1, 2 3, 4,
0.18850 0.00377 ln_size, 1, 3 4, 6,
0.18859 0.00377 ln_size, 1, 3 4, 5,
0.18884 0.00378 ln_size, 1, 3 4, 8,
0.18914 0.00378 ln_size. 1, 3 4, 5,
0.18937 0.00379 ln_size, 1, 3 4, 6,
0.18055 0.00368 lrt_size. 1, 2 3, 4,
0.18115 0.00370 ln_size. 1, 2 3, 4,
0.18244 0.00372 ln_size. 1, 2 3, 4,
0.18287 0.00373 ln_size, 1, 2 3, 4,
0.18383 0.00375 ln_size, 1, 2 3, 4,
0.18486 0.00377 ln_size, 1, 3 4, 6,
0.18493 0.00377 ln_size, 1, 2 3, 4,
0.18557 0.00379 ln_size, 1, 2 3, 4,
0.18562 0.00379 ln_size, 1, 2 3, 4,
0.18564 0.00379 ln_size. 1, 2 3, 4,
0.18596 0.00380 ln_size. 1, 2 3, 4,
0.18596 0.00380 ln_size, 1, 2 3, 4,
0.18632 0.00380 ln_size, 1, 2 3, 4,
0.18671 0.00381 ln_size, 1, 3 4, 5,
.18682 0.00381 ln_size, 1, 2 3, 4,
.18696 .00382 ln_size, 1, 2 3, 4,

Number 
In Model R2

Adjusted 
R2 C (p)

10 
10 
10 0 
10  0 
10  0 
10 0 
10 
10 
10 
10 
10 
10 
10 
10  0 
10  0 
10 
11 
11 
11 
11 
11 
11 0 
11 0 
11 0 
11 0 
11 0 
11 0 
11 0 
11 0 
11 0 
11 0
11 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 0 
12 
12 
12 
12 
12

.9 5 0 9

.9 5 0 0

.9 5 0 0

.9498

.9489

.9485

.9478

.9475

.9473

.9472

.9470

.9466

.9465

.9464

.9462

.9461

.9532

.9528

.9526

.9524

.9521

.9521

.9520

.9520

.9517

.9513

.9513

.9512

.9512

.9511

.9510

.9510

.9553

.9548

.9544

.9542

.9541

.9540

.9540

.9537

.9536

.9536

.9536

.9535

.9534

.9534

.9533

.9532

.9563

.9562

.9558

.9557

.9555

.9553

.9552

.9551

.9551

.9551

.9550

.9550

.9549

.9548

.9548

.9547

0 .9 4 2 5  10 . 
0 .9 4 1 5  11. 
0 .9 4 1 5  11 .
0.9412 11. 
0.9402 12. 
0.9398 12. 
0.9389 13. 
0.9385 13. 
0.9383 14. 
0.9383 14. 
0.9380 14. 
0.9376 14. 
0.9374 15. 
0.9373 15. 
0.9371 15. 
0.9369 15. 
0.9442 9.
0.9437 10. 
0.9435 10. 
0.9432 10. 
0.9429 10. 
0.9429 10. 
0.9428 10.

9428 11. 
9425 11,

0.9420 11.
0.9419 11. 
0.9419 11. 
0.9418 11, 
0.9417 11. 
0.9416 12. 
0.9416 12, 
0.9457 9.
0.9450 10. 
0.9446 10. 
0.9444 10. 
0.9442 10 
0.9441 10. 
0.9441 10. 
0.9437 11 
0.9436 11 
0.9436 11 
0.9436 11 
0.9434 11 
0.9434 11 
0.9433 11. 
0.9432 11. 

9432 11, 
9458 10, 
9456 10, 
9452 10, 
9451 10, 
9448 11, 

0.9445 11. 
0.9445 11, 
0.9443 11. 
0.9443 11. 
0.9443 11, 
0.9442 11. 
0.9442 11. 
0.9441 11. 
0.9440 11. 
0.9439 12. 
0.9439 12,

2 535
1974
2446
4626
4478
8003
6263
9627
1658
1931
4242
8722
0085
0696
2756
4446
7069
1658
4039
6155
8938
9598
9943
0017
3139
7724
8091
8552
9481
9973
0704
1002
4325
0504
4432
6214
7406
8230
8853
1993
2609
3144
3152
4511
4763
5437
6230
6841
3763
5348
8740
9852
2375
5090
5254
6944
7079
7117
7957
7975
8914
9936
0220
0592

1 0 , 1 1 , 1 4 , 15  
8 ,  1 0 , 1 1 , 15  
1 0 , 1 1 , 1 3 , 15
8, 10, 11, 15 
8, 10, 11, 15
1 0 ,
1 0 ,
1 0 ,
1 0 ,

, 11
8 , 
1 0 , 
1 0 , 
1 0 ,

. 11

11, 14, 15 
11, 14, 15 
11, 14, 15 
11, 14, 15 
13, 14, 15 

10, 11, 15 
11, 14, 15 
11, 12, 15 
11, 13, 15 
12, 14, 15

8, 10, 11, 15
8, 10, 11, 14, 15
8, 10, 11, 13 , 15
8, 10, 11, 14, 15
8, 10, 11, 14, 15
8, 10, 11, 14 , 15
9, 10, 11, 14, 15
6, 8, 10, 11, 15
10 11 , 13, 14, 15
7, 8, 10, 11, 15
6, 8, 10, 11, 15
8, 10, 11 , 13 , 15
8, 10, 11, 13 , 15
7, 8, 10, 11, 15
8, 10, 11, 13 , 15
10 11 , 12, 14, 15
7, 8, 10, 11, 15
6, 8, 10, 11, 14, 15
6, 8, 10, 11, 13, 15
5, 8, 10, 11, 14, 15
7, 8, 10, 11, 14, 15
8, 10, 11, 13 , 14 , 15
8, 9, 10, 11, 14, 15
8, 9, 10, 11, 14, 15
8, 10, 11, 13 , 14, 15
8, 10, 11, 12 , 14 , 15
8, 9, 10, 11, 14, 15
6, 7, 8, 10, 11, 15
8, 9, 10, 11, 13, 15
6, 8, 10, 11, 14, 15
9, 10, 11, 13 , 14, 15
6, 8, 10, 11, 13, 15
7, 8, 10, 11, 14, 15
6, 8, 9, 10, 11, 14, 15
6, 8, 10, 11, 13, 14, 15
5, 6, 8, 10, 11, 14, 15
6, 7, 8, 10, 11, 14, 15
6, 8, 10, 11, 12, 14, 15
8, 9, 10, 11, 13, 14, 15
5, 8, 9, 10, 11, 14, 15
6, 8, 9, 10, 11, 13, 15
5, 6, 8, 9, 10, 13, 15
8, 9, 10, 11, 13, 14, 15
5, 7, 8, 10, 11, 14, 15
6, 7, 8, 10, 11, 13, 15
5, 8, 10, 11, 13, 14, 15
6, 8, 9, 10, 11, 14, 15
6, 8, 10, 11, 12, 13, 15
7, 8, 9, 10, 11, 13, 15
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Table 2-17. Summary of the Minimum R2 Improvement Method (cont.)

Number Adjusted
In Model R2 R2 C (p) MSE S(p) Variables in Model

13 0.9573 0.9459 11.3286 0.18016 0.00375 ln_.size 1,2 3,4,6 8,9,10,11,13,14,15
13 0.9568 0.9454 11.8171 0.18206 0.00379 In..size 1,2 3,4,5 6,8,9,10,11,14,15
13 0.9566 0.9451 12.0367 0.18291 0.00381 In..size 1,2 3,4,6 8,9,10,11,12,14,15
13 0.9565 0.9449 12.1702 0.18343 0.00382 In..size 1,2 3,4,6 7,8,9,10,11,14,15
13 0.9564 0.9449 12.2424 0.18371 0.00383 In..size 1,2 3,4,5 6,8,10,11,13,14,15
13 0.9562 0.9446 12.4385 0.18447 0.00384 In..size 1,2 3,4,6 7,8,10,11,13,14,15
13 0.9562 0.9446 12.4923 0.18468 0.00385 In..size 1,2 3,4,6 8,10,11,12,13,14,15
13 0.9561 0.9445 12.5732 0.18500 0.00385 In..size 1,2 3,4,5 6,7,8,10,11,14,15
13 0.9559 0.9442 12.8032 0.18589 0.00387 in..size 1,2 3,4,6 7,8,10,11,12,14,15
13 0.9559 0.9442 12.8050 0.18590 0.00387 ln^size 1,2 3,4,5 6,8,10,11,12,14,15
13 0.9558 0.9441 12.8646 0.18613 0.00388 In..size 1,2 3,4,5 8,9,10,11,13,14,15
13 0.9557 0.9439 13.0484 0.18685 0.00389 In..size 1,3 4,5,6 8,9,10,11,13,14,15
13 0.9556 0.9438 13.1402 0.18720 0.00390 In..size 1,2 3,4,5 7,8,9,10,11,14,15
13 0.9555 0.9437 13.2676 0.18770 0.00391 In..size 1,2 3,4,5 8,9,10,11,12,14,15
13 0.9554 0.9436 13.3539 0.18803 0.00392 In..size 1,2 3,4,5 6,8,9,10,11,13,15
13 0.9554 0.9435 13.3964 0.18820 0.003921n_.size 1,2 3,4,8 9,10,11,12,13,14,15
14 0.9575 0.9451 13.0557 0.18283 0.00389 In..size 1,2 3,4,5 6,8,9,10,11,13,14,15
14 0.9574 0.9449 13.2142 0.18346 0.00390 In..size 1,2 3,4,6 8,9,10,11,12,13,14,15
14 0.9573 0.9448 13.3285 0.18391 0.00391 In..size 1,2 3,4,6 7,8,9,10,11,13,14,15
14 0.9570 0.9444 13.6515 0.18519 0.00394 In..size 1,2 3,4,5 6,8,9,10,11,12,14,15
14 0.9569 0.9443 13.7100 0.18543 0.00395 In..size 1,2 3,4,5 6,7,8,9,10,11,14,15
14 0.9568 0.9442 13.8575 0.18601 0.00396 In..size 1,2 3,4,6 7,8,9,10,11,12,14,15
14 0.9565 0.9438 14.1724 0.18726 0.00398 In..size 1,2 3,4,5 6,7,8,10,11,13,14,15
14 0.9564 0.9437 14.2328 0.18750 0.00399 In..size 1,2 3,4,5 6,8,10,11,12,13,14,15
14 0.9563 0.9435 14.3830 0.18810 0.00400 In..size 1,2 3,4,6 7,8,10,11,12,13,14,15
14 0.9562 0.9434 14.4978 0.18855 0.00401 In..size 1,2 3,4,5 6,7,8,10,11,12,14,15
14 0.9560 0.9431 14.7393 0.18951 0.00403 In..size 1,2 3,4,5 8,9,10,11,12,13,14,15
14 0.9560 0.9431 14.7552 0.18957 0.00403 In..size 1,2 3,4,5 7,8,9,10,11,13,14,15
14 0.9558 0.9429 14.8991 0.19015 0.00405 In..size 1,2 3,4,5 7,8,9,10,11,12,14,15
14 0.9557 0.9428 15.0482 0.19074 0.00406 In..size 1,3 4,5,6 7,8,9,10,11,13,14,15
14 0.9557 0.9428 15.0484 0.19074 0.00406 In..size 1,3 4,5,6 8,9,10,11,12,13,14,15
14 0.9556 0.9426 15.1643 0.19120 0.00407 In..size 1,2 3,4,7 8,9,10,11,12,13,14,15
15 0.9576 0.9440 15.0002 0.18649 0.00405 In..size 1,2 3,4,5 6,8,9,10,11,12,13,14,15
15 0.9575 0.9440 15.0545 0.18671 0.00406 In..size 1,2 3,4,5 6,7,8,9,10,11,13,14,15
15 0.9574 0.9438 15.2131 0.18736 0.00407 In..size 1,2 3,4,6 7,8,9,10,11,12,13,14,15
15 0.9571 0.9434 15.5469 0.18871 0.00410 In..size 1,2 3,4,5 6,7,8,9,10,11,12,14,15
15 0.9565 0.9426 16.1558 0.19118 0.00416 In..size 1,2 3,4,5 6,7,8,10,11,12,13,14,15
15 0.9561 0.9421 16.6162 0.19304 0.00420 In..size 1,2 3,4,5 7,8,9,10,11,12,13,14,15
15 0.9557 0.9415 17.0482 0.19480 0.00423 In..size 1,3 4,5,6 7,8,9,10,11,12,13,14,15
15 0.9555 0.9413 17.2158 0.19548 0.00425 In..size 1,2 3,4,5 6,7,8,9,10,11,12,13,15
15 0.9550 0.9406 17.7830 0.19778 0.00430 In..size 1,2 3,4,5 6,7,8,9,10,12,13,14,15
15 0.9533 0.9384 19.5987 0.20514 0.00446 In..size 1,2 3,4,5 6,7,8,9,10,11,12,13,14
15 0.9531 0.9381 19.8358 0.20610 0.00448 In..size 1,2 4,5,6 7,8,9,10,11,12,13,14,15
15 0.9514 0.9358 21.7406 0.21382 0.00465 In..size 1,2 3,4,5 6,7,9,10,11,12,13,14,15
15 0.9507 0.9350 22.4465 0.21668 0.00471 In..size 1,2 3,4,5 6,7,8,9,11,12,13,14,15
15 0.9498 0.9338 23.4007 0.22055 0.00479 In..size 1,2 3,5,6 7,8,9,10,11,12,13,14,15
15 0.9497 0.9337 23.5187 0.22103 0.00480 In..size 2,3 4,5,6 7,8,9,10,11,12,13,14,15
15 0.5726 0.4363 432.313 1.87836 0.04083 1,2,3,4 5,6, 7,8,9,10,11,12,13,14,15
16 0.9576 0.9428 17.0000 0.19055 0.00423 In..size 1,2 ,3,4,5 6,7,8,9,10,11,12,13,14,15

2.3.10. Final Optimal Reduced Regression Model

Among the many solutions provided by forward selection, backward elimination, 

stepwise selection, Maximum R2 improvement, and Minimum R2 improvement, the 

optimal reduced model must be selected so that it can provide the managers with
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reasonable suggestions. The selected reduced models must provide enough variations, in 

other words, the information loss must be at the most acceptable level. The selected 

reduced models must only contain most significant variables. By comparing all the 

results, the reduced model with 9 explanatory variables: ln_size, RELY, CPLX, TIME, 

ACAP, PCAP, VEXP, TOOL and SCED are chosen because the model’s R-Square = 

0.9509 >= 0.9500 is the highest in this level, the model’s F-test is significant (p value 

<0.0001), all the p-values of the estimate parameters are significant at the level of 0.05. 

Table 2-18 shows the final regression model of all procedures.

Table 2-18. Optimal Reduced Regression Model

A n alys is  o f  v a ria n c e

Sum o f Mean
source DF Squares Square F va lu e  Pr > F

Model 9 196.43079 21.82564 114. 00 <.0001
E rro r 53 10.14727 0.19146
C orrected  T o ta l 62 206.57806

R-Square = 0 .9509  and C(p) = 10.2535

Param eter Standard
v a r i ab le Estim ate E rro r Type I I  SS F V alue pr > F

in te rc e p t -15.81859 1.24040 31.13756 162.63 <.0001
ln _ s iz e 1.19789 0.04591 130.32332 680.69 <.0001
RELY 1.73782 0.47279 2.58673 13 .51 0.0006
CPLX 0.97757 0.41490 1.06289 5.55 0.0222
TIME 1.82230 0.51142 2.43086 12.70 0.0008
ACAP 2.39591 0.59311 3.12418 16.32 0.0002
PCAP 1.62295 0.48435 2.14962 11.23 0.0015
VEXP 3.73305 0.72238 5.11292 26.71 <.0001
TOOL 1.81828 0.77713 1.04811 5.47 0 .0231
SCED 2.47115 0.78480 1.89824 9 .9 1 0.0027

The final optimal regression model with only 9 explanatory variables of all procedures 

shows that its R-Square = 0.9509, which is very close to that of the full regression model 

with all 16 explanatory variables (0.9576). The most important factors in this model in 

descendent order are: ln_size, VEXP, ACAP, RELY, TIME, PCAP, SCED, TOOL and 

CPLX. The model can be expressed in Equation (2-32) and Equation (2-33):

LnJEffort = -15.819+ 1.198*ln_size + 1.738*RELY + 0.978*CPLX
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+ 1.822*TIME + 2.395*ACAP + 1.623*PCAP 

+ 3.733*VEXP + 1.818*TOOL + 2.471 *SCED

(2-32)

that is,

Effort = (size)1198 * exp(-15.819 + 1.738*RELY + 0.978*CPLX 

+ 1.822*TIME + 2.395*ACAP + 1.623*PCAP 

+ 3.733*VEXP + 1.818*TOOL + 2.471 *SCED)

(2-33)

The ln(Effort) vs. ln(size) , the estimated effort vs. actual effort of the final optimal 

reduced model and the full regression model are plotted in Figure 2-1 through Figure 2- 

4. From these plots, it is clear that the ln_Effort vs. ln_size are linear relations, it can be 

seen that all the slope values are fixed for the same model for ln(Effort) vs. ln(size) plots, 

the intercepts of the cluster of these linear relations are determined by their eight 

explanatory variables (cost drivers). The performance of the reduced model is very close 

to that of the full regression model.
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Figure 2-1. ln_Effort vs. ln_size Plot of the Reduced Multiple Regression Model
with 9 Explanatory Variables

8000 -
£  7000 -
0 I jtj 6000
■§ 5000
1 4000 -
2  3000 - 
§ 2000 '

1000

4000 6000 80000 10000 120002000
Actual Effort, PM

Figure 2-2. Regression Estimated Effort vs. Actual Effort by the Reduced Multiple Regression Model
with 9 Explanatory Variables
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Figure 2-3. ln_Effort vs. ln_size Plot of theFull Multiple Regression Model 
with All 16 Explanatory Variables
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Figure 2-4. Regression Estimated Effort vs. Actual Effort by the Full Multiple Regression Model
with All 16 Explanatory Variables
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2.4 Summary

The final optimal reduced regression model with only 9 explanatory variables of all 

procedures shows that its R-Square equals 0.9509, which is very close to that of the full 

regression model with all 16 explanatory variables (R-Square equals 0.9576). The most 

important 9 factors in this model in decreasing order are: ln_size, VEXP, ACAP, RELY, 

TIME, PCAP, SCED, TOOL and CPLX.

Since ln_Effort vs. ln_size is linear, it can be concluded that all the slope values are fixed 

for the same model for ln(Effort) vs. ln(size) plots, the intercepts of the cluster of lines 

are determined by their eight explanatory variables.

The performance of the obtained optimal reduced model is close to that of the full 

regression model.

There are several potential outliers for both the full regression model and the reduced 

models, but their effects are not significant and thus can be tolerated.
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Chapter 3 Using Neural Networks for Effort Estimation Modelling

3.1 Introduction

In software engineering, the Constructive Cost Model (COCOMO) described by Barry 

Boehm [1] for the software effort estimation is one of the most popular tools for project 

management. The COCOMO ’81 intermediate model makes its estimates of the required 

effort (measured in Person-Months -  PM) based primarily on the estimate of the project's 

software size (as measured in thousands of SLOC, KSLOC):

Effort = A *  EAF * (SIZE)8 (3-1)

Where

EAF Is the Effort Adjustment Factor derived from the 15 cost drivers 

A, B Are constants derived from the development modes.

As it could be referred to Appendix 1, there are 63 samples for the COCOMO dataset, 

and in each sample, there are 17 dimensions: 15 cost drivers (see Appendix 2) that 

determines the effort adjustment factor (EAF), plus the project software size and the 

actual effort. The application type and development mode determines the values of the 

coefficients A and B. The theoretical EAF is the product of the 15 cost drivers, but the 

actual target EAF is calculated by equation (1), using the actual software size and actual 

efforts, and the corresponding A, B. A and B are derived from three development modes: 

organic, semi-detached, and embedded. Organic mode is used to calculate the effort 

where the project constraints upon development are mild, in addition, the given project 

has been predated by a number of similar projects, that could assist in defining the agenda 

of development, in the case, A - 3.2, 5=1.05. Embedded mode is used for a project that
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has very tightly defined constraints, the project as a whole can not rely on the previous 

projects completed, in such case, .4=2.8, 5=1.20; Semi-detached mode is used for a 

project where the constraints for the project are greater than the organic mode, but there 

still remains some flexibility, the project may only be pre-dated by a few similar projects, 

for such situations, .4=3.0,5=1.12.

In order to investigate the local relationships between the 15 cost drivers and the 

corresponding actual EAF of the 63 samples in Appendix 1, the full connected neural 

networks with back-propagation (BP) training and take-one-out cross validation 

technique is used to predict the effort adjustment factor (EAF) — the only output unit of 

the networks. To see how well the neural networks simulated EAF match the actual 

targets, the estimated efforts are calculated according to Equation (3-1) based on the 

estimated EAF matrix. The number of hidden nodes within the only hidden layer will be 

determined experimentally. The goal is to accurately estimate the software efforts using 

simple and efficient neural networks instead of COCOMO stepwise regression.

3.2 Methodology

When the neural networks are built initially, the randomly generated weights and bias 

ranging from -1 to 1 in the hidden layer and the output layer are added to the network. 

Then the networks begin to be trained and the learning process works offline. The 15 cost 

drivers and 1 output variable from Appendix 1 are rescaled or normalized before they are 

read to the neural networks, in addition, an extra unit input (value =1.0) is added as the 

first dimension of the input space in each sample, in other words, there are totally 16
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input units, and one output unit for the networks. The simulation outputs are rescaled to 

real outputs before they are displayed and written to the output files.

The extreme form of n-fold cross validation technique is also called the take-one-out 

technique, with which could take one out of n (here n=63) samples as the testing set, 

while the rest corresponding n-1 (here, n-l=62) samples as the training set, therefore, 

there are 63 testing sets, and 63 training sets for the COCOMO dataset. For each pair of 

training set and testing set, there is the corresponding root mean squared error (RMSE) 

between the target and the neural networks output. RMSE can be calculated using 

equation (3-2):

Where N=63, target is the actual EAF in Appendix 1, NNOutput is output of EAF from 

the neural networks with back-propagation training and take-one-out cross validation.

This thesis will compare the performances of the neural networks with three types of 

activation functions used in the output layer and the hidden layer: the unipolar sigmoid 

function (Equation 3-3), bipolar (Equation 3-4) and linear function:

N
^ ( T  arg et -  NNOutput) ]

RMSE= ^
N

(3-2)

(3-3)

and bipolar sigmoid functions:

(3-4)
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Considering that there are only 63 samples in COCOMO dataset, it needs to simplify the 

networks architectures by limiting the number of hidden nodes fewer than or equal to 5, 

this thesis will focus on the neural networks using the unipolar sigmoid functions as 

transfer functions in the hidden layer, while using a linear transfer function f(x) = Ax in 

the output layer. In the experimental measurement, the experiments under the same 

conditions are duplicated five times and the experiment with median RMSE will be taken 

as the representative one. The estimated efforts calculated by Equation (3-1) will be 

compared with their corresponding actual efforts so that it could show how well the 

estimated efforts meet the actual efforts. The accuracy is usually defined in terms of 

mean magnitude of relative error (MMRE) and Pred (25), which calculates the 

percentage of predictions that fall within 25 percent of the actual values. The lower the 

MMRE, the more accurate the simulation; the higher the Pred (25), the more accurate the 

estimation. The MMRE can be calculated by Equation (3-5):

MMRE= ——x V
n  t r

100 ActualEffort -  EstimatedEffort P (3-5)
ActualEffort

The effects of the factors such as the learning rate constants, the number of hidden nodes, 

and the momentum and X on the RMSE and the learning process performance will be 

investigated.

The number of hidden nodes will be in the range from 5 to 20, and normalization of the 

inputs and outputs will be conducted according to Equation (3-6) and Equation (3-7): 

Normalized Input = (Actual Input-Minimum Input)/(Maximum Input-Minimum Input) (3-6)

Normalized Target=(Actual Target-Minimum Target)/(Maximum Target-Minimum Target) (3-7)

In other words, it needs to make the inputs and outputs in the range of [0,1].
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3.3 Experimental Results and Analysis

In order to obtain the optimal parameter combination, in the beginning, it needs to do 

explorative experiments under extreme parameter combination. Based on the explorative 

experiments’ results, a series of experiments will be conducted under various parameters 

in a proper range. The explorative experiment is conducted under the parameters: 

learning rate constant is 0.015, momentum = 0.1, epoch is 10,000, and the number of 

hidden nodes is 20, using bipolar sigmoid functions as transfer functions in both hidden 

layer and output layer, the results are as Figure 3-1 and Figure 3-2. From Figure 3-1, it 

can be seen that after 3,000 epochs training, the RMSE is very low (<0.02), so it could be 

assumed that the network be well trained at 3,000 cycles. From Figure 3-2, it is clear that 

after 10,000 epochs training, the relation of NN-simulation outputs VS actual outputs are 

on the linear function f(x) = x, which means that the simulation EAF matrix and targets 

(actual EAF matrix) are perfectly fit.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3-1. Learning Process with Bipolar Sigmoid Functions as Transfer Functions at LR=0.015

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
9.5 

9
8.5 

8
7.5 

7
6.5 

6
5.5 

5
4.5 

4
3.5 

3
2.5 

2
1.5 

1
0.5

0

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

^ a W M a W B M B M W a M M M M W B

rig*--* 4 » 'V is»-^.'?  <~r j. ~ ~  ^  -y  ■ ■*& ^*g»i ■̂ A* ^ > - t ,  i f A r  * -%g*~*^' -'■"^ 'y v ^ # i-j,s> .............................. !•>■». ^ ^ . . ...g— ->-» -̂  -*- £ --* • ^  •^-~ »--— 1

■■■■■■■■
T B B *■

■ n ■ s i i i —
■■

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

True Results

Figure 3-2. NN-Predicted EAF VS Actual EAF with Bipolar Sigmoid Functions as 

Transfer Functions after Epoch = 10000 

Based on the explorative experiments, the experiments fix the parameter combination:

epoch = 3000, momentum = 0.1.

The typical RMSE VS learning processes and the effort estimation results for the neural 

networks with bipolar/unipolar sigmoid functions as transfer functions in hidden layer 

and output layer are plotted as Figure 3-3 through Figure 3-6.
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Figure 3-3. Learning Process with Bipolar Sigmoid Functions as Transfer Functions

(Number of Hidden Node = 5)
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Figure 3-4. NN-Predicted Efforts VS Actual Efforts with Bipolar Sigmoid Functions 

as Transfer Functions (Number of Hidden Node =5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.2 
0.18 
0.16 
0.14

nj 0.12 
2 0.1 
a  0.08 

0.06 
0.04 
0.02 

0
0 500 1000 1500 2000 2500 3000

Epochs

Figure 3-5. Learning Process with Unipolar Sigmoid Functions as Transfer Functions

(Number of Hidden Node =5)
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Figure 3-6. NN-Predicted Efforts VS Actual Efforts with 

Unipolar Sigmoid Functions as Transfer Functions (Number of Hidden Node = 5)

From Figure 3-3 through Figure 3-6, it can be seen that the simulations are well fit for the 

networks with bipolar or unipolar sigmoid as transfer functions in hidden layer and
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output layer, the RMSE for EAF prediction, MMRE and Pred (25) for effort estimation 

are listed in Table 3-1.

Table 3-1. Comparison Performance of Networks with Bipolar and 

Unipolar Sigmoid as Transfer Functions

Transfer Bipolar- Bipolar Unipolar- Unipolar

\ T y p e Sigmoid Sigmoid Sigmoid Sigmoid

Error Type (1)* (2)* (1)* (2)*

MMRE, % 1.53 7.82 3.65 7.7

Pred (25), % 98.41 90.48 93.65 93.65

RMSE 0.0079 0.0105 0.0082 0.0097

Note: (1)* represents the networks with 20 hidden nodes, (2)* is the ones with 5 hidden nodes.

Table 3-1 shows that the performance for the networks with bipolar and unipolar sigmoid 

as transfer functions are excellent, the difference of both networks with 5 hidden nodes 

and 20 hidden nodes is little, so it can be concluded that the networks with both bipolar 

and unipolar sigmoid as transfer functions, when suited with appropriate parameters and 

normalization methods, can be a very efficient effort estimator. Networks architecture 

simplification and optimization heavily depends on experiments.

3.3.1 Using Linear Transfer Function in Output Layer and Unipolar Sigmoid 

Transfer Function in Hidden Layer

Based on the results obtained in Table 3-1, this thesis tries to build the neural networks 

by limiting' the number of hidden nodes, and using the unipolar sigmoid functions as
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transfer functions in the hidden layer, while using a linear transfer function in the output 

layer.

3.3.1.1 Effects of Learning Rate Constants and Number of Hidden Nodes

Based on the previous results, the following experiments fix the parameter combination: 

epoch = 3000, momentum = 0.1, and investigate the effects of learning rates and the 

number of hidden nodes on RMSE, the experimental results are listed in Table 3-2. From 

Table 3-2, it can be seen that by limiting the number of the hidden nodes fewer than or of 

5, the performance of networks is very sensitive to the learning rate constants, which are 

also limited in the lower level. With increasing hidden nodes number, the learning 

capability tends to be higher, when the number of hidden node equals 5 and the learning 

rate equals 0.02, the optimal RMSE converges to 0.107. However, when trying to 

increasing the learning rates higher than 0.1, the networks lose their learning abilities.
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Table 3-2. Effects of Learning Rates and Hidden Nodes on RMSE 

Using Linear Transfer Function in Output Layer

RMSE Hidden Layer Nodes Number

LR 2 3 4 5

0.005 1.705 0.429 0.1476 0.4435

0.010 1.711 1.714 0.4997 0.4411

0.015 0.4301 0.432 0.4346 0.1478

0.020 1.7069 0.431 0.4403 0.1071

0.025 1.7163 0.452 0.1428 0.4434

0.030 1.7159 0.439 0.1413 0.2283

0.035 1.7157 0.441 0.4467 0.1884

0.040 1.7162 0.444 0.4692 0.1871

0.10 0.454 1.127 0.5807 0.2108

0.15 1.897 1.972 2.0278 2.0278

Table 3-3. The Effects of Number of Hidden Node on RMS at Constant LR

Hidden Nodes 

Number

RMSE

(LR=0.02)

Learning

Process

Performance

RMSE

(LR=0.10)

Learning

Process

Performance

5 0.107 Stable 0.222 Unstable

8 0.0916 Unstable 0.818 Unstable

10 0.098 Unstable 2.0997 Not Convergent

12 0.0713 Unstable 2.0996 Not Convergent

15 0.0789 Stable 2.350 Not Convergent

20 0.0726 Stable 9.0017 Not Convergent
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Figure 3-7. RMSE VS Number of Hidden Nodes at LR=0.02
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Figure 3-8. RMSE VS Learning Rate Constants at Number of Hidden Nodes =5

3.3.1.2 Effects of Momentum

Since the performance of the networks is very sensitive to the learning rate constants, it 

needs to look for comprehensive means of momentum, A, and learning rate constants to
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control the learning processes. If the learning rate is too high, then learning can become 

unstable, that means the RMSE in learning curve oscillates, the net oscillates back and 

forth across the error minimum. One way to overcome this limitation is to alter the 

training rule from pure gradient descent to include a term that includes a proportion of 

last weight change [2,3,4]. The new rule is:

Aw 7(n)= 77xf (aJ )(t7 - y ; )x X / + momentum xAw/(n-i) (3-8)

Where r\ is the learning rate, t is target, y is the neuron output, X is the neuron inputs, 

f ' (a7) is the gradient descent of the transfer function, Aw7(n) is the current weight 

change, Aw 7 (n.i) is the last weight change. Thus, if the previous weight change was

large, the new weight change would be large too. That is, the weight change carries along 

some momentum to the next iteration, this has a tendency to smooth out small 

fluctuations in the error-weight space (it is a low-pass filter).

The fixed default parameter combination is: the number of hidden nodes is 5, epoch 

=3000, Learning rate =0.02. Investigate the effects of momentum on the networks 

RMSE. The experimental results are reported in Table 3-4.

Table 3-4. Effects of Momentum on the Networks Performance 

Using Linear Transfer Function in Output Layer at LR=0.02

Momentum

Values

RMSE 

(k =0.5)

Learning

Process

Performance

RMSE 

(k =1.0)

Learning

Process

Performance

0.0 0.431 Stable 0.369 Stable

0.1 0.110 Stable 0.107 Stable

0.2 0.168 Stable 0.173 Unstable

0.3 0.429 Unstable 0.207 Unstable
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Table 3-4 shows that momentum =0.1 and A,=1.0 will produce optimal performance: 

RMSE =0.107 and the learning process is stable. The momentum parameter determines 

how much of the previous weight change will be retained in the present weight change 

computation. Thus, weight changes can build up momentum over time if they all head in 

the same direction, which can speed up learning.

3.3.1.3 Effects of X  and Learning Rate Combination

With the increasing of X, the RMSE value convergence would be speed up at appropriate 

learning rates and momentums. Table 3-5 represents the effects of X on RMSE, which 

shows that at higher level of learning rate (LR=0.10), it may cause the side effects that do 

not help speed up the RMSE convergence process, furthermore, it would cause the 

network to lose their learning abilities.

Table 3-5 The Effects of X on RMSE at Constant LR

X RMSE

(LR=0.02)

Learning Process 

Performance

RMSE

(LR=0.10)

Learning Process 

Performance

0.1 0.428 Stable 0.320 Unstable

0.2 0.179 Stable 0.125 Unstable

0.3 0.133 Stable 0.197 Unstable

0.4 0.168 Stable 0.251 Unstable

0.5 0.110 Stable 0.505 Unstable

0.6 0.178 Stable 1.837 Not Convergent

1.0 0.107 Stable 1.925 Not Convergent
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3.3.2 Simulation Using Categorical Data instead of Numerical Data

In COCOMO’81, the cost drivers are ranked categorically to “very low”, “low”, 

“nominal”, “high”, “very high”, and “extra high” and their values are assigned 

accordingly. From Boehm’s book [1], Table 3-6 reports the corresponding relationships 

between the categorical and numerical data of the cost drivers. The numbers inside the 

parentheses are the corresponding categorical numbers shown in Appendix 3.
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Table 3-6 Relationships between Numerical and Categorical Input Variables for Appendix 3
Input Units and Explanations Ratings

Cost Drivers Very

Low

Low No

minal

High Very

High

Extra

High

Product Attributes

RELY: Required Software Reliability 0.75(1) 0.88(2) 1.00(3) 1.15(4) 1.40(5)

DATA: Data Base Size 0.94(1) 1.00(2) 1.08(3) 1.16(4)

CPLX: Product Complexity 0.70(1) 0.85(2) 1.00(3) 1.15(4) 1.30(5) 1.65(6)

Computer Attributes

TIME Execution Time Constraint 1.00(1) 1.11(2) 1.30(3) 1.66(4)

STOR: Main Storage Constraint 1.00(1) 1.06(2) 1.21(3) 1.56(4)

VTRT: Virtual Machine Volatility 0.87(1) 1.00(2) 1.15(3) 1.30(4)

TURN: Computer Turnaround Time 0.87(1) 1.00(2) 1.07(3) 1.15(4)

Personnel Attributes

ACAP: Analyst Capability 1.46(1) 1.19(2) 1.00(3) 0.86(4) 0.71(5)

AEXP: Applications Experience 1.29(1) 1.13(2) 1.00(3) 0.91(4) 0.82(5)

PCAP: Programmer Capability 1.42(1) 1.17(2) 1.00(3) 0.86(4) 0.70(5)

VEXP: Virtual Machine Experience 1.21(1) 1.10(2) 1.00(3) 0.90(4)

LEXP: Program Language Experience 1.14(1) 1.07(2) 1.00(3) 0.95(4)

Project Attributes

MODP: Modem Programming 

Practices

1.24(1) 1.10(2) 1.00(3) 0.91(4) 0.82(5)

TOOL: Use of Software Tools 1.24(1) 1.10(2) 1.00(3) 0.91(4) 0.83(5)

SCED: Development Schedule 1.23(1) 1.08(2) 1.00(3) 1.04(4) 1.10(5)

Based on the previous experimental results obtained from the networks using numerical 

input units and unipolar sigmoid function in hidden layer and linear function in output 

layer as transfer functions, the optimal parameters combination is: number of hidden
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nodes =5, learning rate =0.020, epoch=3000, Ar=1.0, and momentum=0.1. In this section, 

the optimal parameters combination is adopted except that the categorical input variables 

shown in Appendix 3 are used to replace the numerical input variables shown in 

Appendix 1. The experimental results are plotted as Figure 3-9 and Figure 3-10. From 

Figure 3-9, it can be seen that the RMSE of the learning process converges very fast and 

as low as 0.1 in about epoch =250, and the performance is very stable. The performance 

is much better than that of the same networks with the same structure but using numerical 

data as inputs.

The calculated RMSE = 0.0847 for EAF prediction, and MMRE = 4.95%, Pred(25) = 

92.06% for the effort estimation. The simulation results are very close to the targets.

0 500 1000 1500 2000 2500 3000

Epochs

Figure 3-9 Learning Process of Categorical Data Processing 

Networks with Linear Function as Output Layer Transfer Function at LR=0.02
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Figure 3-10 NN-Predicted Efforts VS Actual Efforts of Categorical Data Processing 

Networks with Linear Function as Output Layer Transfer Function at LR=0.02

3.3.3 Comparisons of Various Simulations with Optimal Parameters

For the convenience to compare the optimal performance under optimal parameter 

combination of the different architectures of networks, the results of predicting EAF and 

effort estimation are listed in Table 3-7. In the networks with bipolar sigmoid functions 

as transfer functions in both hidden layer and output layer, the optimal parameter 

combination is: learning rate = 0.05, epoch = 3000, momentum = 0.1, X =1.0; for 

networks with the unipolar sigmoid as transfer functions in both the hidden layer and 

output layer, the optimal parameter combination is: learning rate =0.95, epoch = 3000, 

momentum = 0.1, X =1.0; for the networks with unipolar sigmoid as transfer function in 

hidden layer and the linear function f(x) = X x as the transfer function in output layer, the 

optimal parameter combination is: learning rate =0.02, epoch = 3000, momentum = 0.1, X
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=1.0, number of hidden nodes = 5; please note that (1)* represents the number of hidden 

node =20, (2)* represents number of hidden node =5.

Table 3-7 Comparison of Performance of Networks with Various Transfer Functions

Transfer 

\ T y p e  

Error Type

Bipolar-

Sigmoid

(1)*

Bipolar

Sigmoid

(2)*

Unipolar-

Sigmoid

(1)*

Unipolar

Sigmoid

(2)*

Unipolar-

Linear

Function

Stepwise

Regression

(COCOMO)

MMRE, % 1.53 7.82 3.65 7.70 16.23 18.22

Pred(25),% 98.41 90.48 93.65 93.65 77.78 74.68

RMSE 0.0079 0.0105 0.0082 0.00968 0.107 0.174

Note: (1)* represents the networks with 20 hidden nodes, (2)* is the ones with 5 lidden nodes.

3.3 Summary

Experimental results showed that the performance of the neural networks with unipolar 

sigmoid in hidden layer and linear function in output layer as transfer function is affected 

by the investigated factors: learning rate constants, hidden nodes number, momentum, 

lambda values. One of the three factors: learning rate constants, momentum and lambda 

values can be helpful to speed up the learning processes and the RMSE convergence, but 

it is advisable to just control one of them and let other two factors be in lower or normal 

levels.

When using the bipolar sigmoid function as transfer function, the optimal parameter 

combinations are: epoch = 3000, momentum = 0.1, hidden nodes number = 20, learning 

rates = 0.05,1 = 1.0. The optimal RMSE between the predicted EAF and the target EAF 

is as low as 0.0080, the effort estimation MMRE is as low as 1.53%, and the Pred (25) is 

as high as 98.41%; For the neural networks with the unipolar sigmoid function as transfer
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function in both hidden layer and output layer, the optimal parameter combinations are: 

epoch = 3000, momentum = 0.1, hidden nodes number = 20, learning rates = 0.95, X = 

1.0, The optimal RMSE between the predicted EAF and the target EAF is as low as

0.00816, the effort estimation MMRE is as low as 3.65%, and the Pred (25) is as high as 

93.65%;. Both of the learning processes are very stable. When the number of hidden 

nodes is reduced to 5, the optimal RMSE between the predicted EAF and the target EAF 

is as low as 0.0105, the effort estimation MMRE is as low as 7.82%, and the Pred (25) is 

as high as 90.48% for networks with bipolar sigmoid as transfer functions. While for the 

networks with unipolar sigmoid as transfer functions in both layers, the optimal RMSE 

between the predicted EAF and the target EAF is as low as 0.00968, the effort estimation 

MMRE is as low as 7.70%, and the Pred (25) is as high as 93.65%. For the networks with 

unipolar sigmoid in hidden layer and linear function in output layer as transfer functions, 

the optimal parameter combination is: epoch = 3000, momentum = 0.1, hidden nodes 

number = 5, learning rates = 0.020, X = 1.0. The optimal RMSE between the predicted 

EAF and the target EAF is as low as 0.107, the effort estimation MMRE is as low as 

16.23%, and the Pred (25) is as high as 77.78%.

Based on the optimal parameters combination of the networks with unipolar sigmoid 

function in the hidden layer and the linear function in the output layer, use the categorical 

input variables instead of the continuous numerical input variables, the networks with 

categorical input variables outperform the ones with continuous numerical input 

variables.
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In the future, there is a great need to build more efficient, more powerful and more

simplified architectures networks to obtain more accurate effort estimation for real world

projects.
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Chapter 4 Optimal Attribute Subset Selection Using Genetic Algorithms

4.1 Introduction

Genetic Algorithms (GAs) may deal successfully with a wide range of domains. The 

reasons [1, 2, 3, 4] for this success are: 1). GAs can solve hard problems quickly and 

reliably, 2) GAs are easy to interface with existing simulations and models, 3) GAs are 

extensible and 4) GAs are easy to hybridize. In other words, GAs are robust.

There are many attribute selection methods for linear models, for example, in our 

previous research work in Chapter 2, some linear methods such as forward selection, 

backward elimination, stepwise selection were successfully employed to build the 

optimal reduced regression models for the COCOMO dataset, however, such an optimal 

regression reduced model is not necessary to be optimal in the nonlinear simulation, GAs 

are well known for the successful applications in attribute search and optimization, it can 

be concluded that GAs are efficient tools to reach the goals of this thesis: finding out the 

globally optimal subset of 8 attributes from the 15 cost drivers in COCOMO dataset. The 

software size as a fixed significant factor is added to the 8 optimal attributes, thus 

composes the 9 dependent variables/inputs in the reduced model of regression and neural 

network simulation.

4.2. Methodology of the Real-Valued Genetic Algorithms

The basic genetic algorithm is as follows:
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1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x  in the population

3. [New population] Create a new population by repeating following steps until the new 

population is complete

3a. [Selection] Select two parent chromosomes from a population according to 

their fitness (the better fitness, the bigger chance to be selected)

3b. [Crossover] With a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents.

3c. [Mutation] With a mutation probability mutate new offspring at each locus 

(position in chromosome).

3d. [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population

6. [Loop] Go to step 2
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Start

r

Set Max generations, population size, pool size, crossover rate, mutation rate

Create an initial population, Generation = 1

[___________________________ ________________

Evaluate all of the individuals

Selection of new population

Crossover ? Crossover

MutationMutation ?

Replacement, generation-H-

Figare 4-1 Flowchart of basic genetic algorithm

A. Initialization function: Create an initial population p of chromosomes at 

generation 1:

P is the population size. In the initial state, the first generation of chromosomes is 

randomly produced, according to the set population size, chromosome length, and the 

interval of each gene’s value. For example, if the population size = 100, chromosome 

length = 10, and the interval of each gene’s value is [0,1], there are 100 chromosomes in 

each generation, each chromosome looks like the following:
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Gene
Index

1 2 3 4 5 6 7 8 9 10

Gene
Value

0.657 0.0184 0.524 0.835 0.133 0.907 0.012 0.627 0.860 0.837

Figure 4-2 Sample of chromosome represented in real valued coded in [0,1]

The local time is a seed for the random generator function, srand(time(NULL)); the 

interval of the gene’s value is in [0,1], the constant RND can be defined as: #define RND 

((float) ran d ()/((flo a t) RAND_MAX+1)).

B. Evaluation fitness:

For each of the chromosome, the Evaluation function locates the gene’s position by 

taking the first 8 genes whose values are the first 8 largest from the total 15 genes in the 

case as shown in Figure 4-3. Call the function of Find Fitness where training relative 

error between the target and the actual output from the neural networks or multiple linear 

regression is returned to calculate the fitness of the chromosome. The fitness value and 

the corresponding chromosome with higher fitness will be fed to the next generation 

selection.

Index 6 9 10 4 1 8 3 5
Value 0.907 0.860 0.835 0.837 0.657 0.627 0.524 0.133

Figure 4-3 Sample of Chromosome with Optimal Subset of 8 Variables 

(Gene’s Indexes) from Figure 4-2

Foe example, in Figure 4-3, the corresponding variable subset = {6,9,10,4,1,8,3,5}, it is 

passed as pointer of array to the function of Find Fitness to calculate the training relative
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error between the target and the actual output using the neural networks or multiple linear 

regression.

C. Selection function:

First, all the chromosomes of the previous generation are copied to the temporary 

generation without any operations of crossover or mutation, they compose the first part of 

the temporary generation. The second part of the temporary generation is produced after 

applying tournament selection mechanism to the previous generation.

Tournament selection works in the following way: a pair of winners is selected separately 

from two groups of chromosomes among the population of previous generation. Each 

group has n (n>=2) group members are randomly picked up from the entire previous 

population of candidates. From the members of each group, the chromosome with the 

highest fitness value is the winner. The pair of winners in each group is passed to 

crossover if they are selected to be parents, otherwise they are directly subjected to 

mutation. In the temporary generation, the tournament selection process is repeatedly 

applied so as to obtain a breeding population that is equal in size to the original 

population of candidate chromosomes. By far, in the temporary generation there are twice 

of population size compared with the required population size. Therefore, the half of the 

chromosomes with best fitness values is selected. These selected chromosomes form the 

new population in the next generation.

For example, suppose that there are the following chromosomes with their corresponding 

fitness values:
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At A2 A3 A4 A5 A6 A7 A8 A9 A10
Chromosome 1, supposed that its Fitness = 108.89;

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
Chromosome 2, supposed that its Fitness = 100.23;

Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO
Chromosome 3, supposed that its Fitness = 98.34;

Figure 4-4 Samples of Chromosomes with Corresponding Fitness Values in a Pool 

Select chromosome 1 as the best in this group in Figure 4-4.

D. Crossover function:

The simple crossover mechanism is chosen: For each pair of the chromosomes selected to 

be crossover, at the random position, the second part of the chromosome is exchanged to 

the same positions of its partner chromosome.

Selection scheme for crossover: for each pair of chromosomes, randomly produces a 

real number in [0,1], compare it to the given crossover rate, if it is less than the latter, 

then this pair of chromosomes are selected as parents for crossover operation, otherwise, 

pass the pair to mutation operation directly without crossover.

Suppose that there are two parent chromosomes selected crossover, A and D.

A={A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}; D= {Dl, D2, D3, D4, D5, D6, D7, D8, 

D9, DIO}. Simple crossover generates a random number n from uniform distribution 

from 1 to 10 and creates two new chromosomes A’ and D’ as offspring. A’={A’l, A’2, 

A’3, A’4, A’5, A’6, A’7, A’8, A’9, A’10}; D’ = (D’l, D’2, D’3, D’4, D’5, D’6, D’7, 

D’8, D’9, D’10}.
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A,  =

D

A i, i < n 
D ^otherwise

D t , i  < n 
A . otherwise

(4  -  1)

(4  -  2 )

The simple crossover operation is shown in Figure 4-5.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
X

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

In the case of n = 7, the offspring is A’ and D’ as following:

A1 A2 A3 A4 A5 A6 D7 D8 D9 D10

D1 D2 D3 D4 D5 D6 A7 A8 A9 A10

Figure 4-5 Simple Crossover Operation

E. Mutation function:

The simple mutation mechanism is chosen: for each gene of all chromosomes after 

crossover or without crossover, at any given gene, randomly produces a real number in 

[0,1], compare it with the given mutation rate, for example, 0.05, if the given mutation 

rate p m -  0.05 is greater than the randomly produced real number U (0,1), the new 

chromosome’s gene value xi’ is assigned to 1.0-xi as shown in Figure 6, where in the 

locations of the two genes whose value is x4 and x7 the random number U (0,1) are 

supposed to produce and their values < the given mutation rate pm (0.05), then their 

genes’ values must be mutated to become (1.0-x4) and (1.0-x7), respectively. Otherwise, 

their genes’ values keep unchanged. Suppose that X is the original chromosome, X’ is the

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mutated chromosome; X = {xi, i=l,...,10}; X’ = {xi’, i = 1,...,10}, the procedure of 

mutation can be indicated as Equation (4-3).

\i$-xt, i fum<Pn 
\ otherwise

(4-3)

Original chromosome:
xl x2 x3 x4 x5 x6 x7 x8 x9 xlO

Mutated chromosome: sx
xl x2 x3 (1.0-x4) x5 x6 (1.0-x7) x8 x9 xlO

Figure 4-6 Mutation Operation

F. Find Fitness function:

Pass the suggested optimal subset of variables of each chromosome to the neural network 

to select the input nodes, the training relative error between the target and the actual 

output from the neural networks/or the multiple linear regression is returned to calculate 

the fitness value of the chromosome in the function Evaluation.

The relative training error root mean square of error (rmse) is defined as Equation (4-4) 

and the fitness is calculated using Equation (4-5):

rmse =

n

X(target,, -output,)2
j= i

n

fitness = 1000.0 x exp(-rmse)

(4-4)

(4-5)

It is important to note the distinction between the fitness and the objective scores. The 

objective score is the value returned by the objective function; it is the raw performance
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evaluation of a chromosome. The fitness score, on the other hand, is a rating by the 

genetic algorithm to determine the fitness of individuals for mating. The fitness score is 

typically obtained by a scaling of the raw objective scores. Here rmse is the objective 

score from the objective function (we used neural networks as objective function) for 

each chromosome, their values are real numbers less than 1.0 in our case; the lower the 

value of rmse, the better the performance of the chromosome. But they may sometimes 

be too close to be easily distinguished. Equation (4-5) is proposed to map fitness score 

between -rmse with exp function because exp function is a built-in continuous function 

that can map any point of -rmse to its unique corresponding fitness value in the domain of 

[0,1], 1000.0 is a scaling factor to ensure that the fitness value is in significantly 

difference so that it is easier for the genetic algorithm to tell whether a chromosome is 

better than the other based on fitness comparison.

G. Replacement function:

For each new generation, the chromosomes from previous generation and current 

generation are mixed to form a temporary generation, pick the best population size of 

chromosomes to the next generation.

H. Data Structures Used in Genetic Algorithm Implementations:

Although the use of user-defined data types (or records) will produce a slightly more 

elegant program, these will result in a program that is harder to understand. The 

population is held in a series of two-dimensional arrays with each array representing one 

chromosome of the population, the data type is “double” and the genes’ values are in
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[0,1]. The optimal subset of variables are integers from 0 to 14 and also, are two- 

dimensional arrays with each array presenting as an optimal subset of variables for one 

chromosome. It is also the subset of the input variables for neural networks in 

FindFitness function. The fitness values of the population of the chromosomes are held in 

one-dimensional array and the data type is “double”. For the best chromosome, use the 

arrays to record the chromosome, its fitness value, and its optimal subset of variables. 

These arrays are global for all functions in this program.

4.3 Experimental Results and Analysis

From related experience [1], combining the purpose this thesis to select 8 optimal cost 

drivers plus the project software size as the 9 most important attributes in the simplified 

model, it can narrow the experimental conditions as following:

Population Size =100; Maximum Generation = 100; Total Variables = 15; Number Of 

Selected Variables = 8; Crossover rate =0.75-0.95; Mutation rate =0.01-0.2.

4.3.1 Using Multiple Regression to Evaluate Fitness

From Figure 4-7 and Figure 4-8, it is clear to see that the GA’s best fitness and average 

fitness values are increased with generations, this confirms that the real valued coded GA 

always keeps the best chromosomes in the generation and next generation is better that 

the previous one. Table 4-1 reports the results for various crossover rates (CR) and 

mutation rates (MR).

In Table 4-1, the optimal sunset obtained by GA are the same as the final optimal one by 

linear techniques in Chapter 2, The most important 9 factors in this model are: ln_size,
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VEXP, ACAP, RELY, TIME, PCAP, SCED, TOOL and CPLX. It can be concluded that 

the optimal subset obtained by multiple linear regression in Chapter 2 is the globally 

optimal subset.

The interesting finding using GA and reduced regression models is that in the COCOMO 

dataset, personnel attributes are the most significant variables, followed by project 

attributes and product attributes. Computer attributes are least important in determining 

the software development effort. Therefore, human capabilities and project management 

skills are still the most significant factors in software development processes.

Table 4-1. Optimal Subset of Variables by GA Using Multiple Regression to Evaluate Fitness

Subset

Label

Optimal

Subset

GA

Parameters

GA-Mreg

RMSE*

Best

Fitness

Average

Fitness

Linear-search 1,3,4,8,10,11,14,15 NONE 0.174297 840.048 N/A

GA-Mreg-952 1,3,4,8,10,11,14,15 CR=0.95, MR=0.2 0.174297 840.048 830.748

GA-Mreg-951 1,3,4,8,10,11,14,15 CR=0.95, MR=0.1 0.174297 840.048 831.173

GA-Mreg-9501 1,3,4,8,10,11,14,15 CR=0.95,MR=0.01 0.174297 840.048 830.826

GA-Mreg-852 1,3,4,8,10,11,14,15 CR=0.85, MR=0.2 0.174297 840.048 832.557

GA-Mreg-851 1,3,4,8,10,11,14,15 CR=0.85, MR=0.1 0.174297 840.048 832.092

GA-Mreg-8501 1,3,4,8,10,11,14,15 CR=0.85, MR=0.01 0.174297 840.048 831.793

GA-Mreg-752 1,3,4,8,10,11,14,15 CR=0.75, MR=0.2 0.174297 840.048 835.004

GA-Mreg-751 1,3,4,8,10,11,14,15 CR=0.75, MR=0.1 0.174297 840.048 833.821

GA-Mreg-7501 1,3,4,8,10,11,14,15 CR=0.75, MR=0.01 0.174297 840.048 826.886

Each experiment of the nine different GA conditions can find the globally optimal subset, 

this globally optimal subset was also found by the linear regression techniques in Chapter 

2; it was also found that in each level of best fitness value before reaching 840.048, the
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corresponding optimal subsets have more common members with the globally optimal 

subset as their fitness values are closer to the 840.048.

Figure 4-9 is the reduced multiple regression model with the globally optimal subset 

found by GA with multiple regression as fitness function and Figure 4-10 is the full 

regression model, it can be seen that their performance in effort estimation is very close.

0 10 20 30 40 50 60 70 80 90 100

Generations

Figure 4-7 Typical Relations of Best Fitness VS Generations of 

GA Using Multiple Regression as Fitness Function
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Generations

Figure 4-8 Typical Relations of Average Fitness VS Generations of GA 

Using Multiple Regression as Fitness Function
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Figure 4-9 Typical Relations of Estimated Efforts VS Actual Efforts Using Reduced Multiple 

Regression With Optimal Subset of 9 Inputs Guided by GA
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Figure 4-10 Typical Relations of Estimated Efforts VS Actual Efforts Using Full Multiple 

Regression With 16 Explanatory Variables
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4.3.2 Using Neural Networks to Evaluate Fitness

Note that RMSE* in Table 4-2 is the results obtained from separately using neural 

networks with take-one-out cross validation in 3000 epochs, not from GA experiments, 

which are lower in GA since GA uses the network training RMSE in stead of using take- 

one-out cross validation.

From Table 4-2, it is clear that the subset of 8 variables selected as optimal members are 

different, these subsets are local optimal subsets but it is hard to tell if they are also 

globally optimal subsets. This phenomenon reveals that even the GA cannot locate the 

globally optimal subset of variables, this is because the evaluation of fitness by using 

neural networks is not repeatable. This slightly unstable performance of neural networks 

prevents the GA’s ability from locating the globally optimal subset.

Table 4-2. Optimal Subset of Variables by GA Using NN to Evaluate the Fitness

Subset Label GA Parameters Optimal Subset RMSE* Pred (25), % MMRE, %

Linear NONE 1,3,4,8,10,11,14,15 0.0316 76.19 18.75

GA-952 CR=0.95, MR=0.2 1,3,4,5,8,11,12,15 0.0359 65.08 22.90

GA-951 CR=0.95, MR=0.1 2,3,5,6,9,10,11,12 0.0464 60.32 28.50

GA-9501 CR=0.95, MR=0.01 6,7,9,11,12,13,14,15 0.0543 63.49 31.01

GA-852 CR=0.85, MR=0.2 1,2,4,5,6,7,9,12 0.0506 53.97 36.05

GA-851 CR=0.85, MR=0.1 2,4,7,8,10,11,12,14 0.0408 65.08 23.10

GA-8501 CR=0.85, MR=0.01 2,3,4,5,7,10,14,15 0.0461 58.73 28.80

GA-752 CR=0.75, MR=0.2 3,4,6,7,8,10,11,15 0.0394 65.08 24.85

GA-751 CR=0.75, MR=0.1 1,3,4,6,7,10,11,14 0.0372 63.49 23.27

GA-7501 CR=0.75, MR=0.01 2,6,7,8,10,11,12,14 0.0652 50.79 42.49
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Figure 4-12 Typical Relations of Average Fitness VS Generations 

by GA Using Neural Networks as Fitness Function
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Figure 4-13 Typical Relations of Estimated Efforts VS Actual Efforts Using Reduced NN Simulation 

With Optimal Subset of 9 Inputs Found by GA-NN

14000

12000

10000

8000

6000

4000

2000

2000 4000 6000 

Actual Efforts, PM
8000 10000 12000

Figure 4-14 Typical Relations of Estimated Efforts VS Actual Efforts Using Reduced NN Simulation 

With Optimal Subset of 9 Inputs Obtained by GA-Multiple Linear Regression
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It can also be seen that the typical subset’s performance in the reduced neural network 

simulation in Figure 4-13 is not good as that in Figure 4-14, this indicates that the optimal 

subset obtained by linear techniques in Chapter 2 is closer to the globally optimal subset.

It is obvious that it is the NN's unstable performance that causes the GA-NN’s inability to 

locate the globally optimal subset, such phenomenon was not found in GA-Multiple 

regression experiments. To solve this problem, replace the neural networks with multiple 

linear regression, whose fitness evaluation is completely repeatable when applied to the 

same data. The results are listed in Table 4-1. When comparing the performance of the 

GA using multiple regression with NN to evaluate the fitness in Figure 4-7, Figure 4-8, 

Figure 4-11 and Figure 4-12, respectively, it can be found that their GA’s performance is 

very similar: the best and the average fitness values increase with generations, this 

observation is reasonable and is expected for the GA.

4.3.3 Comparisons of Linear Methods and Genetic Algorithms on Feature 

Optimization

Variable selection procedures such as forward selection, backward elimination, stepwise 

selection, Maximum R2 improvement, and Minimum R2 improvement introduced in 

Chapter 2 are straightforward and efficient in identifying the most important factors if the 

number of original variables in full models is not too big, further more, it needs the users 

to apply intelligent constraints to find the globally optimal subset, and it is not guaranteed 

that all linear search techniques are able to find the globally optimal subset because of 

their limitations. For example, forward selection and stepwise selection can only find the 

local optimal subset. Regarding the GA for feature optimization, since it always keeps the 

best chromosomes during search optimal subset of features, and produces optimal subsets
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randomly and not constrained to linear directions, it is more efficient when the input 

space is complex and the number of explanatory factors is large, sooner or later, the 

globally optimal chromosome can be found if the fitness function is repeatable.

Table 4-3 and Table 4-4 listed the typical effort estimation and their performances by 

various models, the experimental results show that the NN simulation outperforms the 

regression models. Flexibility, objectivity, correctness and computational economy are 

desirable features that make neural networks attractive as a learning-oriented estimator 

for software development effort. However, using NN to evaluate the fitness in GA is not 

suitable because of its slightly unstable performance, while multiple regression is 

repeatable to evaluate the GA fitness and it is suitable to be hired by GA to evaluate the 

fitness.
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Table 4-3. Typical Effort Estimation Using Different Models

Software
Project

#

Actual
Effort,

PM

COCOMO’81
Intermediate
Estimation

Full
Neural Networks 

Simulation

Reduced 
Neural Networks 

Simulation

Full 
Multiple Linear 

Regression

Reduced 
Multiple Linear 

Regression
18 11400 11056 8150.67 11595.83 7348.65 5815.92
19 6600 7764 6377.42 9906.47 6100.41 6669.29
20 6400 6536 6963.04 6495.71 7435.68 6527.79
21 2455 1836 2803.28 1633.86 1362.62 1262.69
1 2040 2218 2028.97 1902.69 1925.07 1490.15
2 1600 1770 1895.53 1271.36 1213.75 930.94

31 1063 962 1365.11 1347.63 1252.80 1193.68
56 958 537 1006.71 838.40 396.65 505.99
22 724 733 867.56 866.60 804.52 953.67
33 605 529 496.54 409.25 539.39 403.94
25 523 430 470.55 523.10 327.96 326.97
9 423 397 377.52 420.76 299.75 312.94

26 387 339 299.84 337.03 232.78 236.17
34 230 201 239.65 231.87 251.83 280.51
50 176 193 162.29 157.97 162.55 178.65
28 98 133 93.75 89.50 131.25 97.50
44 87 130 77.87 77.08 106.09 94.94
14 73 60 71.60 74.79 64.38 58.85
15 61 52 57.66 59.71 93.74 111.66
36 55 33 60.64 55.11 50.96 51.53
6 43 30 43.06 55.07 31.98 30.95

47 36 33 35.70 43.78 32.53 39.08
54 20 14 19.48 19.62 13.65 15.14
55 18 7.5 17.97 16.05 7.13 7.62
7 8 9.8 7.89 6.61 8.48 8.19

Table 4-4. Comparison of Performance of Different Models

Model Full Reduced Full Reduced COCOMO’81
Regression Regression NN NN Intermediate

MMRE, % 30.36 33.88 8.94 17.94 18.74
Pred (25), % 58.73 55.56 90.48 74.60 74.68

4.4 Summary

The reduced multiple regression models for effort estimation proposed in this thesis are 

straightforward and much simpler to use, with only slightly lower prediction accuracy
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than that obtained using COCOMO’81 intermediate model. The variable selection 

procedures such as forward selection, backward elimination, stepwise selection, 

Maximum R2 improvement, and Minimum R2 improvement are efficient in identifying 

the most significant factors contributing to software development effort. Therefore, it is 

especially important for managers to be aware of these factors in making decisions in the 

early stage of software development.

The experimental results show that the NN simulation outperforms the regression models 

for effort estimation. Flexibility, objectivity, correctness and computational economy are 

desirable features that make neural networks attractive as a learning-oriented estimator 

for software development effort. However, using NN to evaluate the fitness in GA is not 

suitable because of NN’s slightly unstable performance, multiple regression is more 

suitable as a tool to evaluate the GA fitness.
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Chapter 5 Conclusions and Future Work

5.1 Conclusions

There are three main contributions of this thesis:

It has thoroughly investigated the performance of multiple regression models and neural 

networks in effort estimation. It has successfully built efficient reduced models providing 

high predicting accuracy. It has identified the most significant factors among the original 

set of independent variables.

5.1.1 Multiple Regression Models and Reduced Models

The full regression model is successfully built using the available COCOMO dataset with 

16 independent variables related to the effort estimation. The full regression model is 

more straightforward and simple to use and its performance is compatible to that of the 

COCOMO’81 intermediate model, with only slightly lower prediction accuracy.

To build more efficient models for effort estimation, the traditional linear variable 

selection procedures such as forward selection, backward elimination, stepwise selection, 

Maximum R2 improvement, and Minimum R2 improvement are employed and they are 

found to be efficient in identifying the most significant factors contributing to software 

development effort. The performance of the optimal reduced regression model is very 

close to that of the full regression model.

Experimental results also showed that there are several potential outliers for both the full 

regression model and the reduced models, but their effects are not significant and thus 

can be ignored.
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5.1.2 Neural Networks Simulations

Performance of the neural networks with unipolar sigmoid in hidden layer and linear 

function in output layer as transfer functions is affected by the investigated factors: 

learning rate constants, the number of hidden nodes, momentum, and the lambda values. 

Three factors: learning rate constants, momentum and lambda values, can be instrumental 

to speed up the learning processes and the RMSE convergence, but it is advisable to 

control only one of them and let the other two factors be in lower or normal levels.

When using the bipolar sigmoid function as transfer function in both hidden layer and 

output layer, the optimal parameter combinations found are: epoch = 3000, momentum = 

0.1, the number of hidden nodes = 20, learning rate = 0.05, X = 1.0. For the neural 

networks with the unipolar sigmoid function as transfer function in both hidden layer and 

output layer, the optimal parameter combinations are: epoch = 3000, momentum = 0.1, 

number of hidden nodes = 20, learning rate = 0.95, X = 1.0. The learning processes of 

both networks are stable under the optimal parameter combinations. When the number of 

hidden nodes is reduced to 5, the optimal parameter combination is: epoch = 3000, 

momentum = 0.1, learning rates = 0.020, X = 1.0. Based on the optimal parameters 

combination of the networks with unipolar sigmoid function in the hidden layer and the 

linear function in the output layer, the networks with categorical input variables 

outperform the ones with continuous numerical input variables.

The experimental results showed that the neural networks used as effort estimators 

outperform the regression models for effort estimation. Flexibility, objectivity, 

correctness and computational economy are desirable features that make neural networks
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attractive as a learning-oriented estimator for software development effort. However, 

optimal parameter combinations of neural networks have to be found, and the simulations 

are less repeatable.

5.1.3 Feature Selection and Optimization Using Linear and Non-linear Search 

Methods

Building more efficient models and identifying the most significant factors among 

variables are the focuses in this thesis. Traditional linear techniques and genetic 

algorithms are employed for the feature set selection of the potential significant variables. 

Linear techniques are straightforward but less efficient when the number of dataset 

attributes is large. Genetic algorithms are more efficient for feature set selection, and thus 

more powerful to build the optimal reduced models.

The nine most important factors identified in this globally optimal model in decreasing 

order are: ln_size, VEXP, ACAP, RELY, TIME, PCAP, SCED, TOOL and CPLX. Those 

factors belong to various categories of attributes in the COCOMO dataset.

The interesting findings in this thesis are that human capabilities in project management 

are the most important, followed by project attributes and product attributes, while the 

computer attributes contribute least in determining the software development effort. 

Therefore, it is especially important for managers to be aware of these factors in making 

decisions in the early stage of software development.
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5.2 Future Work

Building More Efficient Models. The models in this step should be more capable of 

preprocessing the collected data, ensures the data reliability of data and results and avoids 

the unstable performance in effort estimation, shorten the learning time in neural 

networks training.

Building More Interpretable Models. The models should be able to produce a set of 

rules that are clear to understand and use. The relationships among the attributes in the 

models should be clearly explained and the effort estimation is repeatable based on the 

high accuracy. The models should be integrated for data preprocessing, data mining and 

highly intelligent and automated for users.
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Appendices

Appendix 1 COCOMO Dataset with 63 Projects and 17 Dimensions

Var
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VE
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LE
-XP

MO
-DP
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SC
-ED

Soft
-ware
Size

ACT
Effort

EAF
Target

1 0.88 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1 1 1.24 1.1 1.04 113 2040 2.505
2 0.88 1.16 0.85 1 1.06 1 1.07 1 0.91 1 0.9 0.95 1.1 1 1 293 1600 0.626
3 1 1.16 0.85 1 1 0.87 0.94 0.86 0.82 0.86 0.9 0.95 0.91 0.91 1 132 243 0.342
4 0.75 1.16 0.7 1 1 0.87 1 1.19 0.91 1.42 1 0.95 1.24 1 1.04 60 240 1.019
5 0.88 0.94 1 1 1 0.87 1 1 1 0.86 0.9 0.95 1.24 1 1 16 33 0.561
6 0.75 1 0.85 1 1.21 1 1 1.46 1 1.42 0.9 0.95 1.24 1.1 1 4 43 3.134
7 0.75 1 1 1 1 0.87 0.87 1 1 1 0.9 0.95 0.91 0.91 1 6.9 8 0.329
8 1.15 0.94 1.3 1.66 1.56 1.3 1 0.71 0.91 1 1.21 1.14 1.1 1.1 1.08 22 1075 9.405
9 1.15 0.94 1.3 1.3 1.21 1.15 1 0.86 1 0.86 1.1 1.07 0.91 1 1 30 423 2.551
10 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 29 321 2.016
11 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 32 218 1.217
12 1.15 0.94 1.3 1.11 1.06 1 1 0.86 0.82 0.86 1 0.95 0.91 1 1.08 37 201 0.942
13 1.15 0.94 1.3 1.11 1.06 1.15 1 0.71 1 0.7 1.1 1 0.82 1 1 25 79 0.593
14 1.15 0.94 1.65 1.3 1.56 1.15 1 0.86 1 0.7 1.1 1.07 1.1 1.24 1.23 3 73 7.109
15 1.4 0.94 1.3 1.3 1.06 1.15 0.87 0.86 1.13 0.86 1.21 1.14 0.91 1 1.23 3.9 61 4.253
16 1.4 1 1.3 1.3 1.56 1 0.87 0.86 1 0.86 1 1 1 1 1 6.1 40 1.631
17 1.4 1 1.3 1.3 1.56 1 0.87 0.86 0.82 0.86 1 1 1 1 1 3.6 9 0.691
18 1.15 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1 1 1.24 1.1 1.08 320 11400 4.014
19 1.15 1.08 1 1.11 1.21 0.87 0.94 0.71 0.91 1 1 1 0.91 0.91 1 1150 6600 0.501
20 1.4 1.08 1.3 1.11 1.21 1.15 1.07 0.71 0.82 1.08 1.1 1.07 1.24 1 1.08 299 6400 3.600
21 1 1.16 1.15 1.06 1.14 0.87 0.87 0.86 1 1 1 1 0.91 0.91 1 252 2455 1.151
22 1.15 1 1 1.27 1.06 1 1 0.86 0.82 0.86 0.9 1 0.91 1 1.23 118 724 0.844
23 1.15 1 1 1.08 1.06 1 1 0.86 0.82 0.86 0.9 1 1 1 1.23 77 539 1.049
24 0.88 1 0.85 1.06 1.06 1 0.87 1 1.29 1 1.1 0.95 0.82 0.83 1 90 453 0.978
25 1.15 1.16 1.3 1.15 1.06 1 0.87 0.86 1 0.86 1.1 1 0.82 0.91 1.08 38 523 2.375
26 0.94 1 0.85 1.07 1.06 1.15 1.07 0.86 1 0.86 1.1 1 0.91 1.1 1.08 48 387 1.328
27 1.15 0.94 1.15 1.35 1.21 1 0.87 1 1 1 1 1 0.82 1.1 1.08 9.4 88 2.136
28 1.15 1.08 1.3 1.11 1.21 1.15 1.07 0.86 1 0.86 1.1 1.07 1.1 1.1 1 13 98 2.072
29 0.88 1 1 1 1 1 1 1.1 1.29 0.86 1 1 0.91 0.91 1.23 2.14 7.3 1.046
30 0.88 1 1 1 1 1 1 1 1.29 0.86 1 1 0.91 0.91 1.23 1.98 5.9 0.928
31 1.4 1.08 1 1.48 1.56 1.15 1.07 0.86 0.82 0.86 1.1 1.07 1 1 1 62 1063 2.682
32 0.88 1.08 0.85 1 1 1 1 0.71 0.82 1 1 1 1.1 1.1 1 390 702 0.293
33 1.4 1.08 1.3 1.48 1.56 1.15 0.94 0.86 0.82 0.86 0.9 1 0.91 0.91 1 42 605 2.436
34 1.15 1.08 1 1.06 1 1 0.87 1 1 1 1 1 0.91 1.1 1.23 23 230 1.908
35 0.75 0.94 1.3 1.06 1.21 1.15 1 1 0.91 1 1.1 1 1.24 1.24 1 13 82 1.349
36 0.88 1.08 0.85 1 1 0.87 0.87 1.19 1 1.17 0.9 0.95 1 0.91 1.04 15 55 0.883
37 0.88 0.94 0.7 1 1.06 1 1 0.86 0.82 0.86 1 1 1 1 1 60 47 0.200
38 1 1 1.15 1 1 0.87 0.87 0.71 0.91 1 0.9 0.95 0.82 0.91 1 15 12 0.218
39 1 1 1.15 1 1 0.87 1 0.71 0.82 0.7 1 0.95 0.91 1.1 1 6.2 8 0.368
40 1 0.94 1.3 1 1 1 0.87 0.86 0.82 1.17 1 1 1.1 1 1 3 8 0.789
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41 0.88 0.94 1 1 1 0.87 0.87 1 0.82 0.7 0.9 0.95 0.91 0.91 1 5.3 6 0.326
42 0.88 1.04 1.07 1 1.06 0.87 1.07 0.86 1 0.93 0.9 0.95 0.95 0.95 1.04 45.5 45 0.255
43 1 1.04 1.07 1 1.21 0.87 1.07 0.86 1 1 0.9 0.95 1 1 1.04 28.6 83 0.770
44 0.88 1.04 1.07 1.06 1.21 0.87 1.07 1 1 1 0.9 0.95 1.1 1 1.04 30.6 87 0.749
45 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 1 0.9 0.95 1 0.95 1.04 35 106 0.792
46 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 0.86 0.9 0.95 1 1 1.04 73 126 0.435
47 0.75 0.94 1.3 1 1 0.87 0.87 0.71 0.82 0.7 1.1 1.07 1.1 1 1.04 23 36 0.418
48 0.88 0.94 0.85 1 1 0.87 1 1.19 0.91 1.17 0.9 0.95 1.1 1 1.04 464 1272 0.437
49 1 1 0.85 1 1 1 0.87 0.71 1 0.7 1.1 1 0.82 0.91 1 91 156 0.333
50 1.15 1 1 1.3 1.21 1 0.87 0.86 1 0.86 1.1 1 1 1 1 24 176 1.387
51 0.88 1 1 1 1 1 1.15 1.19 1 1.42 1 0.95 1.24 1.1 1.04 10 122 3.398
52 0.88 0.94 0.85 1 1.06 1.15 1 1 1 1 1.1 1.07 1.24 1.1 1 8.2 41 1.407
53 0.88 0.94 1.15 1.11 1.21 1.3 1 0.71 1 0.7 1.1 1.07 1 1.1 1.08 5.3 14 0.721
54 1 0.94 1 1 1.06 1.15 0.87 1 0.82 1 1 0.95 0.91 1.1 1 4.4 20 1.319
55 0.88 0.94 0.7 1 1 0.87 0.87 0.86 0.82 1.17 0.9 0.95 1.1 1 1 6.3 18 0.814
56 1.15 0.94 1.3 1.3 1.21 1 1 0.86 0.91 1 1.1 1.07 1.1 1.1 1.08 27 958 6.555
57 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.1 1.07 1.1 1.1 1.23 17 237 2.825
58 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9 0.95 0.91 1 1 25 130 0.976
59 1 0.94 1.15 1.06 1.06 1 0.87 1 1 1 1 1 0.91 1 1 23 70 0.813
60 1.15 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.86 1.1 1.07 1.1 1.1 1.08 6.7 57 2.417
61 1 0.94 1.15 1 1 0.87 0.87 0.86 1 0.86 0.9 1 0.82 1 1 28 50 0.472
62 0.88 0.94 1.3 1.11 1.21 1.15 1 0.78 0.82 0.7 1.21 1.14 0.91 1.24 1 9.1 38 1.068
63 1 0.94 1.15 1 1 1 0.87 0.71 0.82 0.86 1 1 0.82 1 1 10 15 0.338
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Appendix 2. Attribute Number, Name and Their Meanings

Attribute # Cost Drivers

Product Attributes

1 RELY: Required Software Reliability

2 DATA: Data Base Size

3 CPLX: Product Complexity

Computer Attributes

4 TIME: Execution Time Constraint

5 STOR: Main Storage Constraint

6 VIRT: Virtual Machine Volatility

7 TURN: Computer Turnaround Time

Personnel Attributes

8 ACAP: Analyst Capability

9 AEXP: Applications Experience

10 PCAP: Programmer Capability

11 VEXP: Virtual Machine Experience

12 LEXP: Program Language Experience

Project Attributes

13 MODP: Modem Programming Practices

14 TOOL: Use of Software Tools

15 SCED: Development Schedule
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Appendix 3. Categorical Data of 15 Input Variables in Appendix 3

Var
1

Var
2

Var
3

Var
4

Var
5

Var
6

Var
7

Var
8

Var
9

Var
10

Var
11

Var
12

Var
13

Var
14

Var
15

Var
16

Var
17

Proj RE DA CP Tt ST VI TU AC AE PC VE LE MO TO SC
Soft

-ware ACT EAF
# -LY -TA -LX -ME -OR -RT -RN -AP -XP -AP -XP -XP -DP -OL -ED Size Effort Target

1 2 4 1 1 2 3 3 2 2 2 2 3 1 2 4 113 2040 2.505

2 2 4 2 1 2 2 3 3 4 3 4 4 2 3 3 293 1600 0.626

3 3 4 2 1 1 1 1 4 4 4 4 4 4 4 3 132 243 0.342

4 1 4 1 1 1 1 2 2 4 1 3 4 1 3 4 60 240 1.019

5 2 1 3 1 1 1 2 3 3 4 4 4 1 3 3 16 33 0.561

6 1 2 2 1 3 2 2 1 3 1 4 4 1 2 3 4 43 3.134

7 1 2 3 1 1 1 1 3 3 3 4 4 4 4 3 6.9 8 0.329

8 4 1 5 4 4 4 2 5 4 3 1 1 2 2 2 22 1075 9.405

9 4 1 5 3 3 3 2 4 3 4 2 2 4 3 3 30 423 2.551

10 5 1 5 2 4 2 3 4 5 4 4 3 3 3 3 29 321 2.016

11 5 1 5 2 4 2 3 4 5 4 4 3 3 3 3 32 218 1.217

12 4 1 5 2 2 2 2 4 5 4 3 4 4 3 2 37 201 0.942

13 4 1 5 2 2 3 2 5 3 5 2 3 5 3 3 25 79 0.593

14 4 1 6 3 4 3 2 4 3 5 2 2 2 1 1 3 73 7.109

15 5 1 5 3 2 3 1 4 2 4 1 1 4 3 1 3.9 61 4.253

16 5 2 5 3 4 2 1 4 3 4 3 3 3 3 3 6.1 40 1.631

17 5 2 5 3 4 2 1 4 5 4 3 3 3 3 3 3.6 9 0.691

18 4 4 4 3 3 2 3 4 3 3 3 3 1 2 2 320 11400 4.014

19 4 3 3 2 3 1 1 5 4 3 3 3 4 4 3 1150 6600 0.501

20 5 3 5 2 3 3 3 5 5 2 2 2 1 3 2 299 6400 3.600

21 3 4 4 2 3 1 1 4 3 3 3 3 4 4 3 252 2455 1.151

22 4 2 3 3 2 2 2 4 5 4 4 3 4 3 1 118 724 0.844

23 4 2 3 2 2 2 2 4 5 4 4 3 3 3 1 77 539 1.049

24 2 2 2 2 2 2 1 3 1 3 2 4 5 5 3 90 453 0.978

25 4 4 5 2 2 2 1 4 3 4 2 3 5 4 2 38 523 2.375

26 2 2 2 2 2 3 3 4 3 4 2 3 4 2 2 48 387 1.328

27 4 1 4 3 3 2 1 3 3 3 3 3 5 2 2 9.4 88 2.136

28 4 3 5 2 3 3 3 4 3 4 2 2 2 2 3 13 98 2.072

29 2 2 3 1 1 2 2 2 1 4 3 3 4 4 1 2.14 7.3 1.046

30 2 2 3 1 1 2 2 3 1 4 3 3 4 4 1 1.98 5.9 0.928

31 5 3 3 4 4 3 3 4 5 4 2 2 3 3 3 62 1063 2.682

32 2 3 2 1 1 2 2 5 5 3 3 3 2 2 3 390 702 0.293

33 5 3 5 4 4 3 1 4 5 4 4 3 4 4 3 42 605 2.436

34 4 3 3 2 1 2 1 3 3 3 3 3 4 2 1 23 230 1.908

35 1 1 5 2 3 3 2 3 4 3 2 3 1 I 3 13 82 1.349

36 2 3 2 1 1 1 1 2 3 2 4 4 3 4 4 15 55 0.883

37 2 1 1 1 2 2 2 4 5 4 3 3 3 3 3 60 47 0.200

38 3 2 4 1 1 1 I 5 4 3 4 4 5 4 3 15 12 0.218

39 3 2 4 1 1 1 2 5 5 5 3 4 4 2 3 6.2 8 0.368
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40 3 1 5 1 1 2 1 4 5 2 3 3 2 3 3 3 8 0.789
41 2 1 3 1 1 1 1 3 5 5 4 4 4 4 3 5.3 6 0.326
42 2 3 4 1 2 1 3 4 3 4 4 4 4 4 4 45.5 45 0.255
43 3 3 4 1 3 1 3 4 3 3 4 4 3 3 4 28.6 83 0.770
44 2 3 4 2 3 1 3 3 3 3 4 4 2 3 4 30.6 87 0.749
45 2 3 4 1 2 1 3 3 3 3 4 4 3 4 4 35 106 0.792
46 2 3 4 1 2 1 3 3 3 4 4 4 3 3 4 73 126 0.435
47 1 1 5 1 1 1 1 5 5 5 2 2 2 3 4 23 36 0.418
48 2 1 2 1 1 1 2 2 4 2 4 4 2 3 4 464 1272 0.437
49 3 2 2 1 1 2 1 5 3 5 2 3 5 4 3 91 156 0.333
50 4 2 3 3 3 2 1 4 3 4 2 3 3 3 3 24 176 1.387
51 2 2 3 1 1 2 4 2 3 1 3 4 1 2 4 10 122 3.398
52 2 1 2 1 2 3 2 3 3 3 2 2 1 2 3 8.2 41 1.407
53 2 1 4 2 3 4 2 5 3 5 2 2 3 2 2 5.3 14 0.721
54 3 1 3 1 2 3 1 3 5 3 3 4 4 2 3 4.4 20 1.319
55 2 1 1 1 1 1 4 5 2 4 4 2 3 3 6.3 18 0.814
56 4 1 5 3 3 2 2 4 4 3 2 2 2 2 2 27 958 6.555
57 3 1 4 2 3 4 2 3 3 3 2 2 2 2 1 17 237 2.825
58 5 1 5 4 3 2 2 5 5 5 4 4 4 3 3 25 130 0.976
59 3 1 4 2 2 2 1 3 3 3 3 3 4 3 3 23 70 0.813
60 4 1 5 2 2 2 2 4 2 4 2 2 2 2 2 6.7 57 2.417
61 3 1 4 1 1 1 1 4 3 4 4 3 5 3 3 28 50 0.472
62 2 1 5 2 3 3 2 5 5 5 1 1 4 1 3 9.1 38 1.068
63 3 1 4 1 1 2 1 5 5 4 3 3 5 3 3 10 15 0.338
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