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ABSTRACT

The occurrence of floods causing extznsive property damage and in some cascs,
loss of life has made the need to curb or control floods in the floodplain a high priority in
many places. To effectively carry out any meaningful control or management of floods,
there is a great need for computational models that can accurately predict the stage-
discharge relationship in rivers with floodplains.

In past studics the conventional stage-discharge pi.is. :tion methods in compound
channels have been found either to underestimate or overestimate floodplain discharge
when small depths occur on the floodplain. In this research study, a model based on the
St. Venant equations of flow, with incorporation of terms to account for the momentum
transfer phenomenon, was developed. For the main channel, the fuil dynamic equations
were used, while in the floodplains a diffusive model was used. Both included mass and
momentum transfer terms. The resulting model was called the "coupled characteristic-
dissipative-Galerkin 1-D mode!” (CCDG 1-D model). The resulting equations were
solved by the characteristic-dissipative-Galerkin (CDG) finite element method. This
numerical technique was adopted over traditional finite difference schemes because the
finitc element method can handle subcritical and supercritical flow reaches
simultancously. The CDG method was chosen in particular because of its robust ability to
provide accurate solutions for highly dynamic events.

Results from the CCDG 1-D model obtained when simulating steady and
unsteady fiow in compound channels were compared to observed experimental data. The
steady state results in straight compound channels clearly showed that the CCDG 1-D
model predicted the stage-discharge relationship as well as any existing method used to
compute compound channel flow. This was especially truc for low depths in the
floodplain. The unsteady results showed that the inclusion of apparent shear had marginal

effect.



The CCDG 1-D model was also able to simulate such practical problems as
theflow through a dike breache and steady flow in a meandering compound channel.
However, before the proposed formulation can be applied to natural channels with
confidence, ficld data is required to determine how variance of river aspect ratios,
channel shape, relative roughness and sediment transport affect the flow in compound

channels.
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Vx component of the lateral out flow velocity in x-direction
AV difference of average velocity of the main channel and floodplain
w lateral velocity

w upwinding matrix

X longitudinal direction coordinate

Ax computational distance step

z vertical coordinate

Zy..Zg trapezoidal cross-sestion slope notations

o kinematic wave speed coefficient

nodal values of sclution vector

Y specific weight of water
®; a floodplain apparent shear force index
@, a main channel apparent shear force index

6 implicitness
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LIST OF SYMBOLS (continued)
average apparent shear stress at the interface between main channel and
floodplain
main channel boundary shear stress
floodplain boundary shear stress
undisturbed boundary shear stress in the floodplain
density of water

upwinding coefficient in cdg 1-D scheme



1.0 INTRODUCTION

Extensive development in river floodplains has made the nced to minimize the
potential for overbank flooding a high priority in many countrics. Despite recent moves
to limit floodplain development the fact remains that, in many arcas, people and property
are at tremendous risk from floods. This situation presents three practical problems for
water resources engineers. First, they must be able to identify thosc arcas of the
floodplain which are at risks from floods. Second, they must be able to assess the impact
of flood mitigation schemes, such as dikes, on flood hydrographs and flood levels, not
only to design these mitigation works, but also to assess the effects of such schemes on
unprotected areas both upstrcam (due to potential backwater effects) and downstream
(due to the loss of flood storage area, and therefore reduced flood peak attenuation). New
or extended flood mitigation schemes necessitate a new analysis to reassess both the
adequacy of existing works and the increased impact on unprotected areas. Third, as the
1993 flood disaster in the midwestern United States has illustrated, engincers have to he
able to provide updated flood forecasting information under situations when such flood
control schemes fail (Williams, 1994).

Over the past three decades, extensive research efforts have been directed to the
problem of quantifying the stage-discharge rclationship in channels with inundated
floodplains. Although great advances have been made in the understanding of the flow
interactions between the main channel and the floodplains, most of these investigations
have concentrated on steady flow situations. In practice, unsteady flow analyses are
generally based on “hydrologic™ flood routing techniques, with the use of “hydraulic”
flood routing techniques generally reserved for very dynamic floods, such as those
resulting from a dam break or an ice jam release. Furthermore, these dynamic models

have been lim" od to one-dimensional analyses of open channels flow . Such modcls are



incapable of handling flow situations in which floodplain flows are independent of the
flow in the main channels, such as when dikes are overtopped and/or breached.

This study addresses this need by presenting a formulation of the problem which
considers a channel and its inundated floodplains as three separate yet interdependent
conveyance channels. The channel flow is modelled with the full (dynamic) one-
dimensional equations of open channel flow, while the floodplains are modelled with
diffusive wave equations. Interdependence between the channel and floodplains is
established through mass and longitudinal momentum transfer functions. These
momentum transfer functions include both convective momentum transport as well as the
apparent shear force generated along the interfaces between the main channel and the
floodplains. The proposed formulation provides for significantly less computational time
as compared to a full two-dimensional dynamic model of a channel with floodplains.

The validity of the propused formulation is established for steady flow situations
through comparisons to observed laboratory experiments on compound channel flows in
trapezoidal sections by Prinos and Townsend (1984), and Wallingford (1992).
Comparisons to the results of existing calculation techniques are also provided.

The ability of the model to simulate unsteady flow in an open channel is then
verified through a comparison with laboratory experiments conducted by Treske (1980)
in a straight channel. Comparisons to the performance of more conventional one-
dimensional models arc also provided for comparative purposes. Next, the unique
capabilitics of the proposed formulation are illustrated for two practical situations. A
hypothetical scenario involving floodplain inundation through a breached dike is
simulated, illustrating the ability of the model to handle independent flow situations in
the channel and floodplain. Finally, the unique ability of the formulation to model steady
flow in a meandering channel and its floodplain is illustrated and compared with flume

data collected by Smith (1978).



2.0 LITERATURE REVIEW
2.1 Introduction

This chapter examines past rescarch into the flow in channels with inundated
floodplains, beginning in section 2.2 with an overview of the gecomorphic characteristics
of rivers that define the practical situations encountered. A review of the investigations
into the steady flow problem is presented in scction 2.3, beginning with an overview off
experimental studies of the flow characteristics in both straight and meandering channels
with inundated floodplains. An overview of the steady flow analysis techniques currently
used in pracuce, is also presented. Section 2.4 presents a summary of the rescarch to date
into unsteady tlow modelling, including variations on the one-dimensional open channel
flow equations. Finally sections 2.5 and 2.6 outlines the framework used in kandling the
mass and momentum transfer associated with interaction of flow between the main

channel and the floodplain.

2.2 Practical Considerations in Modelling Channels with Floodplains

An examination of types of channel and floodplain gecometries is necessary in
order to define the situations to be modeled. This is done most directly by considering the
planform geometry of the river channel and the relation of the channel to the valley wall.

R e:s a2 generally classified as young, mature or old (Schumn, 1963). "Young"
rivers, that is rivers in the early stages of development tend to be relatively straight and
confined within valley walls (Brice, 1964). The top of the valley wall typically exceeds
all flood stages, so the channel never expericnces overbank flow.,

As rivers mature they begin to meander, eventually eroding the valley wall and
widening the river valley. "Mature” rivers develop floodplains in the process but at this
early stage these floodplains arc discontinuous, alternating from bank to bank as the
meandering channel impinges on the valley wall (Brice, 1964). If the valley wall is

relatively inerodible, floodplain development and channel widening may be inhibited,
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leading to the development of confined meanders, as illustrated in Figure 2.1(a).
Although the loops of the meanders are distoried by the confining va'ley walls, such
channels are often surprisingly regular (Brice, 1964).

Mature rivers present a difficuit modelling problem, becausc of these
discontinuous floodplains. When the flow exceeds bankful, water passes fron: one
floodplain, across the channel to the other floodplain. In this situation two complexitics
must be considercd. First, the flow in the floodplain tends to be subjected to a steeper
gradient than that in the channel, because of the greater distance traveled through the
meandering channel for a similar drop in elevation (Leopold, Wolman, and Milier, 1964)

The ratio of these slopes is defined as the sinuosity of the channel.

Channel length _ Valley Slope [2.1]
Valley len>th  Channel bed slope '

Sinuosity =

The second complexity to be considered involves the fact that the flow in the channel is
not aligned with the flow in the floodplain, particularly at the cross-over, where the
difference may be as much as 900

Rivers are described as "old" when they have reached the stage of floodplain
development where the valley walls have little or no influence on meander development
(Brice, 1964). The planform pattern in this case tends to depend upon the homogeneity
of the alluvium through which the river flows as well as the river gradient. If the alluvium
is fairly homogeneous, then regular meanders may develop as illustrated in Figure 2.1(b)
(Leopold, et al. 1964). Otherwise the meander pattern may be irregular with
discontinuous loops (Brice, 1964), as the river meanders through alluvium of varying
degrees of erodibility. This pattern is illustrated in Figure 2.1 (¢). In cases where the river
valley allows a high degree of channel migration, tortuous meanders may develop (Ritter,
1978). This feature is easily distinguished by the elongated and distorted meander loops

which tend to cross the valley at ang!=s in excess of 90° (Kellerhalls, Church, and Bray
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1976) as illustrated in Figure 2.1 (d). This means that during floods that exceed banktul,
the channel flow would have a velocity component against that of the floodplain flow.

Old rivers, particularly those with tortuous meander pattern as characterized by a
high degree of lateral shifting and the floodplaing are usually scarred with oxbow lakes
resulting from the cutoff of tight meander loops (Chorley et al. 1984) usually during
major floods. These scars form depressions in the floodplain but do net coniribute to
effective flow arca (because they are no longer connected with the channel). However,
they may enhance floodplain storage, if they are not already full of water prior (o
overbank flooding.

Other river types, identified by the planform pattern include braided (Brice, 1964),
anabranching (Brice, 1964) and anastomosing rivers (Morisawa, 1985). These river types
are not considered here bec  se they involve multi-channel networks.

Another important ¢ »ideration in modelling flood flows when the floodplain is
inundated arises because of the different roughness associated with the channel and the
floodplains, as well as the difterent flow depth (the floodplain flow being generally
shallower). Channel roughness values depend upon the type of bed material as well as
any bedforms that might be present. For rivers with sand beds, the Mannings roughness,
n, of the channel generally ranges from 0.025 to .033 (Chow, 1959) and may be affected
by changes in flow stage as a result of changing bedforms (Simons, Li and Associates,
1982). When the bed material consists of gravel and or boulders, the channel n is
generally higher ranging from (.03 to 0.050 (Chow, 1959). Vegetation along the channcl
banks may reduce the capacity of the river flow. However, this cffect is generally
marginal except in rivers of low aspect ratio (Simons et al. 1982). Floodplains gencrally
have higher n values because they are usually vegetated with pasture, crops, bushes and
trees, or contain structures associated with floodplain development. The n values can
range from 0.03 for a floodplain with pasture to (.12 for floodplains containing heavy

bush (Chow, 1959).
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Rougher floodplain cover and shallower floodplain depths mean that the relative
roughness in the floodplain tends to be considerably higher than in the main channel.
Conscquently, velocities in the fl dplain are typically much smaller than in the channel
(Chow, 1959). The interacticn between the slower floodplain flow and the faster channel
flow results in momentum transfer between the channel and floodplains and an associated
decrease in overall conveyance capacity. This interaction and momentum exchange leads
to a reduction in discharge in the main channel and an increase of discharge in the
floodplain (Sellin, 1964; Prinos and Townsend, 1984) compared to the case where for the
same stage there is no flow interaction.

Floodplain development and flood control structures, such as dikes (or levees),
and flood walls form an integral part of many river channels (Williams, 1994). These
flood control structures protect development in the floodplain by confining flood flows to
the channel arca. They present an additional complexity because of the need to assess the
effects of the structures themselves on the flocd peak (given that overbank storage and
associated attenuation of the flood peak have been eliminated). Aiso, as was seen during

the Mississippi River flood of 1993, dynamic models capable of assessing the effects of

structure failures are also needed (Williams, 1994).

2.3 Steady Flow in Channels with Floodplains
2.3.1 Introduction

The majority of the research in this area has focused on experimental studies and
steady flow situation< heginning with Sellin (1964) and continuing through to the
present. Table 2.1 provides a summary of the various types of compound channels used
by different researchers in their laboratory investigations where, as illustrated 1n Figure
2.2: H is the flow depth in the main channel; B is width of the channel bottom, Hy the
depth of flow on the floodplain; By the width of the floodplain bottom; and Ty, the total

top width. The table shows that most of the experimental investigations were donc on
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straight rectangular compound channels, with only a few done on trapezoidal and
meandering channels. In Table 2.1, it is shown that most of the flows in both the main
channel and floodplain had Reynolds numbers of about 104, This means that these flows
were not fully turbulent. For those who used meandering channels, the sinuosity ranged
from 1.2 10 3 which reflects typical meandering rivers (Kicly, 1989). Table 2.1 also
shows that some of the compound channels had two symmetrical floodplains and others
had only one floodplain. It also shows that the Wallingford research facility (1992) used
the largest compound channels in which channel aspect ratios (B/H) ranged between 4.9
t0 9.4 and relative depths (H/Hj) ranged from 2 to 20. It also has large floodplains with
Bg/H; being about 6.7. All researchers used physical models with low aspect ratios
compared to real world rivers. For example, a river the like North Saskatchewan at
Edmonton has an aspect ratio of about 100 for a two year {lood (Kellerhalls, Neil and

Bray, 1972).

2.3.2 Flow Characteristics in Straight Channels With Inundated Floodplains
2.3.2.1 Velocity Distribution

The velocity distributions in channels with floodplains have been investigated by
Scllin (1964), Rajaratnam and Ahmadi (1979, 81), Ervine and Baird (1982), Prinos,
Townsend and Tavoularies (1985), Wormleaton and Hadjipanos (1985), Kawahara
(1985), Myers (1987), McKeogh, Kiely and Javan (1989), and Murota, Fukuhara and
Seta (1990). A summary of their findings is presented below.

Sellin (1964) presented velocities in the form of isovel pattemns, documenting that
the region of highest velocity in the compound channel flow was skewed from the center
of the main channel towards one of the banks. He explained this as b.ing caused by the
momentum transfer between the main channel and the floodplain. Rajaratnam and
Ahmadi (1979, 81) reported on the behavior of the depth averaged velocity, finding that it

decreased towards the banks from a maximum value at the centerline; increased slightly
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at the beginning of the floodplain; and then reduced to some undisturbed value towards
the banks of the floodplain, as illustrated in Figure 2.3. Similar observations were noted
by Prinos et al. (1985) and McKeogh ez al. (1989). At low overbank depths, the depth
averaged velocity profiles showed a steep velocity gradient across the interface between
the main channel and the floodplain (Kiely. 1989). This velocity gradient reduced as the
depth on the floodplain increased (Kiely, 1989). Itis generally accepted that the effect of
interaction is to reduce the velocities in the main channel and increase the velocities in

the floodplain, in comparison with non-interacting conditions.

2.3.2.2 Shear Siress Distribution

Investigations of boundary shear stress in straight compound channcls have been
undertaken by several authors. These include Ghosh and Jena (1971), Myers and Elsawy
(1975), and Rajaratnam and Ahmadi (1979, 81), Knight and Hamed ( © ), Nalluri and
Judi (1985), Holden and James (1989).

Using a smooth and artificially roughened rectangular compound straight channel,
Ghosh and Jena (1971) showed that shear stress distribution is distinctly non-uniform in
character. A typical boundary shear stress distribution, as reported by Rajaratnam and
Ahmadi (1979, 81), is illustrated in Figure 2.4. For smooth surfaces, the maximum side
shear stress was found to be located at some distance from the free surface of the main
channel and the maximum bed shear stress shifted from the center towards the corner of
the main channel bed. On the floodplain portion, the maximum bed shear stress occurred
ncar the junction of the floodplain and the main channel.

Myers and Elsawy (1975) made a similar observation. They also found that a
decrease of about 22% in bed shear occurred in the main channel while an increase of up
to 260% in floodplain bed shear occurred at low overbank flows as compared to the case

when there was no flow interaction. Rajaratnam and Ahmadi (1979, 81) also found that
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the flow interact:.-a between the main channel and the floodplain increased bed shear
stresses in the floodplain and redured bed shear stresses in the main channel.

Holden and James (1989) further investigated lateral shear stress profiles in both
rectangular and trapezoidal compound cross-scctions. They observed that as the flow
depth increased, the maximum shear suess for the floodplain shifted from near the
junction to the floodplain a short distance away. They also found that the shape of the
bank slope affected the interaction between the main channcl and the floodplain flows.
They observed that, the intensity of interaction for a given flow decreased slightly as the

slope became milder and increased as the slope became steeper.

2.3.2.3 Apparent Shear Stress

This type of shear stress acts along the junction of the main channel and the
floodplain during compound channel flow. Rajaratnam and Ahmadi (1981) called this
type of shear stress "turbulent mean shear stress”. Investigations of apparent shear stress
has been documented by Cruft (1965), Myers (1978), Wormleaton, Alien and Hadjipanos
(1982), Knight, Demetriou and Hamed (1983) and Prinos and Townsend (1984). The
apparent shear stress causes an apparent shear force that opposes the flow motion in the
main channel and assists floodplain flow. Myers (1978) defined this apparent shear force
as the force due to the momentum transfer from the main channel to the floodplain. Itis a
measure of the net effect of viscous shear and turbulence together with the action of the
vortices transferring momentum from the main channel to the floodplain(s).

Other researchers, such as Kawahara and Tamai (1989) used the concept of
apparent shear stress to explain the significance of sccondary currents in momentum
transfer. Quantifying apparent shear stress is the main problem in understanding
floodplain and main channel interaction. At present no one method is widely accepied to

quantify the apparent shear stress.
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2.3.2.4 Flow Interaction Mechanisms

The typical energy loss mechanisms in open channel flow are bed and wall
friction. However, in compound channel flow, the interaction of slow moving flow in the
floodplain and the faster main channel flow introduces an interactive flow mechanism.
Scllin (1964) established that there are vortices rotating about vertical axes at the
interface of a main channel and the floodplain during compound flow. Imamoto and
Ishigaki (1989), and Tominaga, Nezu and Ezaki (1989) further observed that apart from
the vortices identificd by Sellin, vortices with longitudinal axes also existed. These
vortices generally assisted in the transfer of momentum from the fast moving main
channel flow into the slower moving floodplain flow. Both the floodplain and the main
channel zones were affected by the turbulence mixing which resulted from the interaction
of flow. The extent of the sub-regions affected, was found to depend on the channc:
aspect ratio. Rajaratnam and Ahmadi (1979) found that the width of this mixing layer, or
interacting zone, was approximately six times the bank height, with most of it
apportioned to the main channel.

The intcractive flow mechanisms in straight, compound channels have been
investigated by Kawahara and Tamai (1989), Tominaga (1989), Imamoto and Ishigaki
(1989) and Kicly (1989). They all established that secondary currents contribute to the
turbulent shear stress (apparent shear stress) at the interface of the main channel and the
floodplain. Kawahara and Tamai (1989) suggested that momentum transfer was made up
of two components; advection by secondary flow and turbulent diffusion due to the

veloeity gradient. They defined momentum transfer in the following way

j puw dy —J uw dv ToHy [2.2]

M, = momentum transfar;
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Hy = floodplain depth;

u = longitudinal velocity;
w = lateral velocity;
y = vertical ordinate;

p(:zz_"i;?) = turbulent shear stress; and

Tu = apparent shear stress.

Kawahara and Tamai (1989) found that the magnitudes of the secondary curreits
were in the order of 2% - 4% of the longitudinal velocity. At high flows, advection was
found to dominate over turbulent diffusion throughout the entire depth of the floodplain.
Their experiments showed that at relatively low depths, diffusion action transported
about one half of the total momentum into the floodplain. This was because the lateral
difference of the longitudinal velocity was large. Kawahara and Tamai (1989) also found
that when the water depth increased, the advection component of the secondary flow
decreased and the apparent shear stress diminished. The total momentum transfer also
decreased. Kawahara and Tamai further observed that when the floodplain roughness was
increased (relative to the channel), the turbulent diffusion component of sccondary flow
increased, resulting in an increase in apparent shear stress was the result. Kiely (1989)
found that therc were higher turbulence values on the floodplain bed than on the main
channel bed. He suggested that these high turbulence values contributed to the retardation

of velocity in the interaction region of the main channel.

2.3.2.5 Stage-Discharge Relationship

The need to know the stage-discharge relationships for rivers and canals in all
situations is very important. Sellin (1964) and Zhcleznyakov (1971) were the first to
identify the anomaly in the stage-discharge relationship as the flow just exceeds bank
level. Sellin (1964) found that for low overbank depths, the discharge reduced below that

of bankful depths. He also noted that, as the floodplain depth continued to increase the
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discharge again hegan to increase. Smith (1978) and Wormleaton et al. (1982) noted the
same observation as Sellin. Bhowmik and Demissie (1982) analyzed field data on floods

for several streams in the United States and also observed a similar trend.

2.3.3 Flow Characteristics in Meandering Channels with Inundated Floodplains
2.3.3.1 Velocity Distribution

Investigations of velocity distributions in meandering compound channels have
been limited, with mest of the work done in smooth compound channels. The few
rescarchers who have tried 1o study the velocity distribution in a meandering compound
channel are Toebes and Sooky (1967), James and Brown (1977), Sinith (1978), Ahmadi
(1979), McKeogh et al. (1989) and Kiely (1989). Figure 2.5 shows the notation used in
reviewing meandering compound channels.

Toches and Sooky (1967) carried out investigations on a meandering compound
channel with floodplain depths, H/Hy= 1.2 to 1.5. They presented details of isovel
patterns, velocity vector distributions and secondary current patterns. Toebes and Sooky
found that high velocity values occurred close to the inner bends of the main channel
which differs from those observed in real world rivers. They explained this anomaly as
being caused by geometric dissimilarities between the model and real rivers. The cross-
section shape in the bend of a real river is nearly triangular, rather than rectangular, due
to sediment deposition on the inside bend. This promotes an increase in velocity at the
outside banks and a velocity decrease at the inside bank. By observing the directions of
the velocity vectors, Toebes and Sooky showed that the dominant direction of floodplain
flow was in the strecamwise direction although flow exchanges occurred between the
meandering channel and the floodplain.

James and Brown (1977) carried out investigations on a meandering compound
channel with floodplain depths, H/Hy= 5.0 to 11.0. They reported that the depth averaged

velocity profile changed dramatically throughout the meandering compound channel. The
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velocities were found to accelerate in diverging floodplain arcas and to decelerate in
converging floodplain arcas. A study of surface currents by Toebes and Sooky (1967)
indicated that flow was exchanged between floodplain and the meanderir g channcl. At
the cross-over section of the meandering channel, the highest velocit es were on the
diverging section of the floodplain. Rajaratnam and Ahmadi (1979) in a study of
compound channel flow with a meandering channel for floodplain depths, H/Hy = 31t
3.5, established th=* the main channel was not exclusively the location of high velocities
at all sections. From contour plots of velocities, they showed that the highest velocities
were located on the floodplain adjacent to the inside bend of the meandering channel.

McKeogh and Kiely, (1989) in their investigation of a meandering compound
channel with floodplain depths, H/Hy= 2.0 to 2.3 also observed that the maximum
velocity was on the floodplain adjacent to the inside bend. They found that the
longitudinal velocities in the main channel were typically lower than those on the
floodplains. The low velocities in the meandering channel are the result of flow
expansion and contraction, horizontal shearing and the development of sceenduiy
currents taking place in the meandering cross-over sections. The longitudinal velocities
on the floodplain at the outer bend were much lower than their opposite floodplain
velocities. McKeogh and Kicly described the distribution of velocities at the cross-over
section as very complex with contraction and expansion behaviors near the meander
floodplain junctions. Their findings on the velocities vectors distributions were similar to

those of Toebes and Sooky (1967).

2.3.3.2 Shear Stress Distribution
The number of studics on shear stress distribution in meandering channcls is very
limited. One such study is that of Ghosh and Kar (1975), who evaluated the boundary
shear stress in a smooth meandering channel for floodplsin depths, H/Hp = 1.4 10 2.3.

Using velocity isovels, they constructed boundary shear distributions at two distinct
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sections of a meandering compound channel: the bend; and the cross-over section, as
illustrated in Figure 2.6. Their results, when compared to those of straight compound
sections, had a few notable features. For the flow in the bend, the side shear distribution
was asymmetric and the maximum bed shear distribution in the meandcring channel was
skewed to the inside of the bend. The maximum floodplain bed shear was found ou iise
floodplain away from the outside bend junction. For the cross-over section, the fioodplain
hed shear stresses values were generally higher than those of the main channel. Ghosh
and Kar explained this behavior of the shear stress distribution as being caused by large

scale effects of secondary circulation on the flow.

2.3.3.3 Flow Interaction Mechanisms

The flow interaction mechanism in meandering compound channels has been
investigated by Kicly (1989). Kicly suggested that in addition to the interaction flow
mechanisms found in straight compound channels, horizontal shearing; and flow
cxpansion and contraction are unique to the meandering flow structure. These flow
interaction mechanisms make meandering compound channel flows highly complex and
much more difficult to analyze. Figure 2.7 show a representation of these interaction flow
mechanisms as observed by Ervine, Willets, Sellin and Lorena (1993). It is noted that the
vortex due to the hend has oposite rotation to the vortex caused hy flow separation over
the bank.

For in-bank meandering flow, secondary currents are driven by the imbalance
between the centrifugal force and the transverse pressure force generated by super-
elevation of the water surface. For overbank meandering flow, the overbank secondary
currents are caused by the intense shear layer across the interface of the outer bend Kiely,
(1989). The strength of secondary currents in overbank flow is much stronger than the

secondary flow mechanism of in-bank flow (Imamoto and Ishikaki, 1989).
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Horizontal shearing occurs when the flows in the main channel, both below and

above bank level are impinged upon by the fleodplain flow causing a horizontal shear
layer between the upper and lower parts of the main channel. Flow expansion and
contraction occur at the cross-over between two bends. Kiely (1989) observed that when
the flow from one side of the floodplain impinged onto deeper main channel flow, it led
to flow expansion. When the flow crossed over, the flow over the main channel
encountered an abrupt rise on re-entering the other side of the floodplain, which caused

low contraction.

2.3.3.4 Stage-Discharge Relationship

The conveyance capability of the main channel and floodplain in compound
meanaering channels is greatly affected by channel sinuosity, the size of the meander
belt, and the channel aspect and depth ratios. The stage-discharge relationship in
meandering compound channels has been researched by the U.S Army Corps of
Engineers (1956), Toebes and Sooky (1967), Smith (1978) and Kicly (1989). Tocbes and
Sooky (1967) found that, for the meandering channel with floodplains described in Table
2.1, the main channel and the floodplain conveyed about roughly the same amount of
flow. The in-bank main channel conveyed about 38% of the flow, the main channel
above bank level conveyed about 13% while the wide floodplains conveyed about 33%
and the narrow floodplain conveyed about 15% of the total flow. Kiely (1989) also
observed that for the meandering compound channel stated in Table 2.1, the floodplain
and main channel conveyed about the same amount of flow.

Smith (1978) noted in a study of meandering compound channel flow that, as the
stage increased above bankful depth, the net percentage of total flow carried by the main
channel decreased. He also showed that once the floodplain flow was deep, it dominated
the flow in the meandering channel. Smith {1978) also found that greater stages would

occur if the meandering main channel was absent. The U.S. Army Corps of Engincers
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(1956) established that increased floodplain roughness, as compared to the channel.
reduced discharges in both straight and meandering channels. They also showed that

channel discharges reduced by about 8% - 10% when sinuosity increased from 1.2 10 1.4.

2.3.4 Calculation Techniques for Compound Channels

2.3.4.1 Iniroduction

When solving for flow in natural channels with inundated floodplains, the flow
scction is generally treated either as a composite channel or a compound channel. A
composite channel consists of a flow section where the Manning (or Chezy) roughness
coefficient can rcasonably be considered constant across the cross-section (Chow, 1959).
A situation where this would be justified occurs when the flow in the floodplain or valley
is significantly larger than the flow in the river channel of the flow section, as illustrated
in Figure 2.8 (a). However, when the main channel conveys a significant portion of the
total flow, as illustrated in Figure 2.8 (b), then the section is better represented by a
compound channel. In this case, the channel is divided into the left floodplain, the main
channel, and the right floodplain (Chow, 1959) with the conveyance characteristics of

cach subsection considered separately. These two methods are further examined in the

following scctions.

2.3.4.2 Composite Channel Method

This method treats the whole compound channel as a single unit. The roughness
across the flow scction is represented by the roughness of the floodplain (Chow, 1959).
For uniform flow, the ".iannings equation (or the Chezy equation) can be used to compute
the discharge. If the Mannings equation is used, then the discharge is calculated as

follows:

0, = 1 A, R¥ S7?  (S.I version) [2.3]
n
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where:

A, =total flow arca of channel and floodplains;

n = Mannings coefficient for the floodplain or valley;
o) = total discharge;
R, = hydraulic radius of the whole scction (A/P); and
P, = wetted perimeter of the whole section;
Sr = longitudinal friction slope.

This method works well as long as the flow depth in the main channel remains
relatively small compared to the flow in the floodplain or valley, and if the floodplains
have comparable roughness. However once the flow in the main channel becomes
significant, the method starts to underestimate the discharge. This is because the use of
the floodplain roughness to represent the main channel underestimates the conveyance

the main channel.

2.4.4.3 Compound Channel Method

In cases where the channel and the floodplain carry comparable proportions of the
flow, a compound section comprised of a main channel and floodplain zoncs may be
considered (Wormleaton et al. 1982; and Prinos and Townsend, 1984). This method docs
not use the roughness of the floodplain as the roughness for the whole channel but rather
an cquivalent roughness, n, , based on the main channcl roughness and floodplain
roughness. This equivalent roughness is then used in equation [2.3] to calculate the
discharge in the compound channel. Chow (1959) suggested three methods of calculating
an equivalent roughness, cach based on different assumptions. These methods together
with the assumptions made in their derivation, are shown in Table 2.2, where: n is
Mannings roughness; n,the equivalent roughness; k equal to 1 represents the left
floodplain, equal to 2 represents the main channel, equal to 3 rcpresents the right

floodplain; n, the Mannings roughness n for kth sub-section; Py the wetted perimeter for
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kth sub-scction; P the compound channel wetted perimeter;S, the main channel friction
slope; Sp, Sc the main channel bed slope; S the left floodplain bed slope; S, the right
floodplain bed slope; R the compound channel hydraulic radius; R, the mair channel
hydraulic radius; Ry the left floodplain hydraulic radius; R, the right floodplain hydraulic
radius; O the total compound section discharge; Q. the discharge in the main channel
sub-section; Q; the discharge in the left floodplain sub-section; Q, the discharge in the
right floodplain sub-scction; V. the average main channel sub-section velocity; Vi the
average left floodplain sub-section velocity; V, the average right floodplain sub-section
velocity; anc  the average compound channel velocity. Some authors refer to these as
variations of 'single channel methods' (Prinos and Townsend, 1984).

Another method, which has been referred to as the 'divided channel method'
(Smith, 1978: Prinos and Townsend, 1984), also considers separate roughness values in
the main channcl and floodplains. The Manning formula is applied separately to the main
channel and the floodplains and the resulting discharges are summed to obtain the total
compound discharge. In fact, it can be shown that the 'single channel method’ (3) is, in
fact, equivalent to this 'divided channel method'. Since all of these methods assume the
division of the compound channel into main channel and floodplain zones, in this study,
they will be referred to as ‘divided channel methods'.

As shown in Table 2.2, divided channel methods (1) and (2) generally
underestimate the discharge, while divided channel method (3) yxenerally overestimates
the discharge. The magnitude of the overestimation or underestin...iion of discharge is
i~ :tly proportional to the compound channel roughness. The discharge estimation errors
shown in Table 2.2 for the three methods were established from experimental daia
obscerved by Prinos and Townsend (1984). It is stressed that the assumptions under which
these methods are derived are not entirely correct. The assumption of equal bed slopes for
the three channel sections is not always correct because the floodplains may have larger

slopes than the main channel (because of channel sinuosity). The assumption of the
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average floodplain velocity being equal to the main channel velocity in divided channel
methods (1) and (2) is also not reasonable. This is because as stated carlier, the
floodplains tend to have a higher relative roughness than the main channel and, therefore,
a lower average flow velocity. As the least unrealistic of the three divided channel
methods, (3) has gained almost universal acceptance. For example, both the HEC-2 (U.S.
Army Corps of Engincers, 1982) and DAMBRK (Fread, 1988) computational models use
divided channel method (3) to compute the stage-discharge relationship in rivers with

floodplains.

2.3.4.4 Dividing the Compound Channel

Dividing the compound channel into three distinet zones takes care of variations
in roughness between the main channel and the floodplain zones but neglects the
phenomenon which generates an apparent shear at the interface. Rajaratnam and Ahmadi
(1979) and Wormleaton et al. (1982) suggested various ways of dividing the compound
channel to ciher limit the effect of the apparent shear or to include it. Horizontal division
at bankf..! depth, vertical division at the edges of the main channel or diagonal (inclined)
division can be adopted (Wormleaton er al. 1982). Figurc 2.9 illustrates these
alternatives.

One suggestion has been to include the vertical lines dividing the main channcl
and its floodplains in the channel wetted perimeter, as a means o1 upproximating the
effects of apparent shear from the floodplains resisting the channel flow. It has been
found that this approach still overestimates the discharge at low floodplain depths (Prinos
and Townsend, 1984), though not as significantly as when this additional wetted
perimeter is excluded from the calculation. However, Wormleaton et al. (1982)
demonstrated that the inclusion of the vertical boundary interface in the calculation of the

wetted perimeter for the main channel did not significantly improve results.
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Rajaratnam and Ahmadi (1979) suggested that the effcct of the apparent shear
could be avoided by adopting various channel divisions along shear free boundaries.
They suggested that depending on the ratio of the total depth (H) to the depth of flow in
the floodpiain (Hp), horizontal division or vertical division may be appropriate. When this
ratio H/Hy is much larger than unity, then the introduction of shear-free vertical
boundarics as extensions of the banks of the main channel are more appropriate. When
H/His only slightly larger than unity, a horizontal plane as an extension of the floodplain
hed is a better method. The use of vertical divisions when H/Hyis much larger than unity
is considered appropriate because the difference in velocities in the floodplain and the
main channel will probably be great while for H/H, slightly greater than unity, the depths
in both scctions are comparable and the difference in velocities between the main channel
and floodplain will generally be small. However Wormleaton ef al. (1982) found that the
horizontal method tends to underestimate the discharge at higher flow depths.

Wormleaton and Merret (1990) further investigated the zero-shear interface
approach and suggested a diagonal interface joining the banks of the main channel and
the too of flow at the center line of the main channel. However for wide channels,
diagonal division may not be reasonable because the adopted line of zero shear may not
approximate the actual value in the field. Their results showed that this method performed
better than the previous two methods when used to determine the total discharge.
However, Wormleaton and Merret (1990) found that none of the threc methods
performed well in predicting individual main channel and floodplain components of flow.
The performance of the vertical and diagonal methods improved when the floodplains
were narrow while the horizontal method was more accurate when the floodplains were
wider. In general, the vertical method was found to give the highest discharge and the
horizontal method the lowest discharge.

Because of the inadequacies of the traditional methods for discharge calculation

of compound channel flew, many researchers have agreed that the flow interaction and
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momentum transfer occurring between the main channel and the floodplain need o be
taken into consideration. The momentum transfer mechanism generated in the region of
high shear flow at the interaction region has the effect of reducing local and mean
velocities, boundary shear stress and discharge in the main channel while increasing those
properties in the floodplain zone ncar the junction. The next section reviews the progress
that has been made in the alternative approach of incorporating the apparent shear stress

into the discharge calculation.

2.3.5 Incorporating Apparent Shear Stress in Discharge Calculation
2.3.5.1 Introduction

Several methods which take into account the shear stress in the interface for the
calculation of compound channel discharge have been proposed. Among those who have
examined this problem include, Wormleaton er al. (1982), Ervine and Baird (1982),
Noutsopoulos and Hadjipanos (1983), Knight and Hamed (1984), Princs and Townsend
(1984), Dracos and Hardegger (1987), Wormleaton and Merrett (1990), Stephenson and
Kolovopoulos (1991) and Christodoulou (1992). Of the many approaches presented, two
seem (o have gained the greatest acceptance: the force balance method and the @-index

method.

2.3.5.2 Force Balance Method

Ervine and Baird (1982) and Prinos and Townsend (1984) suggested that,
because there is a momentum drain from the main channel into the floodplain, the only
way the compound channel flow remains in equilibrium is through the balance of the
forces involved. Using a control volume formulation, one can establish the steady
uniform flow discharge through a compound channel. Figure 2.10 shows the control

volumes that can be considered.
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Figure 2.10 shows that the compound channel is divided into three sections: one

control volume is the main channel and two contro! volumes are the floodplain sections.

In cach control volume, three forces are shown as acting on each sub-section. These

forces are the body force, the boundary shear force and the apparent shear force. In the

steady state condition, these forces balance within each subsection.

The total discharge (Q,) for a compound channel, when accounting for momentum

transfer using this method, is given as:
Q=AV.+2A,V,

where the main channel velocity can be derived as:

8 ZT,,H/]
Ve=y|—| YR Se———=
\/;fr[y P"

while the floodplain velocity can be shown to be equal to:

8 ZTaH/
Vy= ——[YRJS:-J + ]
\[pff P,

where:

O = total discharge;

Ac = arca of main channel section;

Ve = average main channel velocity;
Ay =arca of floodplain section;

Ve = average velocity in the floodplain;
fe = main channel friction factor;

p = fluid density;

[2.4]

[2.5]

[2.6]



R = hydraulic radius of the main channel;
So = main channel bed slope;

Ta = apparent shear stress;

Hy = floodplain {low depth;

P. = main channcl wetted perimeter;

I = floodplain friction factor;

Sor = floodplain bed slope;
Ry = hydraulic radius in the floodplain; and

Py = wetted perimeter in the floodplain.

Although this method accounts for momentum transfer, the apparent shear stress
(1,) is needed to evaluate the average velocitics. A few empirical methods have been
developed to evaluate the apparent shear stress. These methods are presented in section

2.4.3.

2.3.5.3 ¢-index Method

This method is based on an index that characterizes the degree of interaction
between the main channel and floodplain sub-sections. It was first introduced by
Radojkovic and Djordevic (1976) and later adopted by Wormleaton and Merrett (1990).
The ¢-index in the main channel is defined as the ratio of the boundary shear force to the
weight component of the fluid in the flow direction. The apparent shear force is taken into

consideration through the value of 7,.

The ¢-indices for the main channel and the floodplain are given as follows:

0, =1-2—-L [2.7]
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A
g, =1+-=(1-0,) [2.8]
/
where:
Om = is the main channel index; and
o = is the floodplain index.

The discharges of the subsections and the total discharge Qq are then computed as

Tollows:
0 =0 o) [2.9]
Q=0 o/’ [2.10]
0=0+0 [2.11]

where Q. and Q'/ arc the main channel and the floodplain discharges with no interaction
respectively.

QO and Q', may be cvaluated using the Manning formula. The predicted
compound tlow using cquations [2.9] and [2.10] have been found by Wormleaton and
Merrett (1990) and Christodulou (1992) to compare well with various experimental data.
As in the force balance method, this method requires the evaluation of the apparent shear

Stress, T

2.3.5.4 Determination of Apparent Shear Stress (7;)

The magnitude of the apparent shear stress on the vertical interface has been
indirectly determined in several experimental studies where measvrements of boundary
shear distribution allowed the solution of equation [2.12]. This equation was derived

based on a balance of forces for uniform flow:



= }'Arsn”' rrPc
2H;

Ta
This method has been used by Myers (1978), Ervine and Baird (1982) and Prinos
and Towns2nd (1984). Knight and Demetriou (1983) have expressed the apparent shear
stress as a percentage of the tota! boundary shear stress in smooth channels. Rajaratnam

and Ahmadi (1981) also proposed an expression for the turbulent mean shear (apparent

shear stress) for a compound channe® with one floodplain as a function of the undisturbed

floodplain boundary shear stress ( 7,.), found near the outside edge of the floodplain:

2
T, = ().]5(;11:1—— 1] T, valid for 22< H/H <7.4 [2.13]
!
where:
H = main channcl depth;

H, = depth of tloodplain, and
T,. = undisturbed boundary shear stress in the floodplain.
Wormleaton et al. (1982) proposed an expression for symmetrical rectangular channels

with smooth or roughened bundaries:

3.123 0.727
e H
1,=13.84(AV)’ "‘”(——) ( B ) valid for 23S H/H, 9.0 [2.14]

H, T.-B
Where:
T, = total width of the compound channcl;
B = bed width of main channel; and
AV = velocity difference between the main channel and the floodplain.

When Wormleaton er al. (1982) compared results generated from the above equation to
those obtained through experimental work, the agreement was quite good.
Prinos and Townsend (1984) proposed a similar equation for symmetrical

compound channels with a trapezoidal main channel:
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1.12¢ 0.514

o[ H B .

't,,=().874(AV) (——) valid for 3.0< H/HISII.Z [2.15]
H; Tw-~B

Equation [2.15] also gave reasonable agreement with observed data. Others who
have suggestcd empirical relations include Wormleaton and Merret (1990) and
Christodoulou (1992). Using a large scale experimental facility, Wormleaton and Merret
(1990) proposed the following cxpression:

0.354
T, = 3325 AV“"’(-HL] (T, - B)""” valid for 20<H/H, <200 [2.16]

!

Christodeulou (1992) proposed a rather different expression from the previous

rescarchers:

t,==pC, AV’ validfor 19SH/H <9.3 [2.17]

| —

Where Cy, is the apparent friction factor at the interface between the main channel and

floodplain.
For a symmetrical smooth channel, Christodoulou determined that Cy, can be
cxpressed as:

Cp= 0.01% [2.18]

Christodoulou found equation [2.18] to hold for 6<H,/H, <1 and 1.7<T,/B< 6.7

and for H, /B=0.5. He is also found that equation [2.18] could not be extended to
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asymmetrical compound channels. He found that asymmetric channels had a much
stronger interaction between the floodplain and the main channel and equation [2.18]
underestimated the value of Cy, considerably, He concluded that more studics were
required to obtained a generalized relation for Cg, for non-symmetric shapes.

Equations [2.14], [2,15] and [2.16] suggest that the apparent shear is proportional
to (T, - B)*” , (T, —B)y"* and (T, - B)**"°. This is contradictory. Since equations
[2.17] and {2.18] suggest that the apparent shear is proportional to T,. then equation [2.16]
is probably more reasonable. The exponents for the ratio of H/Hy ramges from (.354 10
3.123 while those for AV range from 0.882 to 2. This scem to suggest that these relations

of apparent shear stress are influenced by the experimental set up adopted.

2.4 Unsteady Flow in Compound Channels
2.4.1 introduction

Although a steady flow approximation may be reasonable or valid for & large
number of practical situations, an unsteady flow analysis is essential in many situations,
for example, when conducting inundation studics or cvaluations of the impact of flooed
mitigation structures on flood waves, particularly when they fail. Although much
progress has been made in the study of open channel flow modelling and in particular

hydraulic flood routing, considerable limitations remain.

2.4.2 Investigations of Unsteady flow in Compound Channels

Experimental research involving unsteady flow tests in compound channels are
almost non-existent. To the author's knowledge, only two such experimental studies have
been conducted to date, one by (Treske, 1980) and the other by Rashid and Chaudhry,
(1993). The data by Rashid and Chaudhry (1993) could not be obatined for this study,

therefore Treske 's data were used. Treske conducted some tests in a 210 m long flume
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for both straight and meandering channels. His data, limited to details of the outflow
hydrographs has been used for verification purposes in this thesis.

Ficld data is also limited. Although severe floods involving inundated floodplains
occur frequently, data collection during such events is normally limited to high water
mark surveys and discharge measurements at selected sites. The lack of detailed field
data can be attributed to the difficulty and expense associated with the collection of
research quality data at a time when resources are normally stretched to the limit by the

emergency at hand.
2.4.3 Current Modeliing Techniques for Unsteady Flow in Compound Channels

One-dimensional modelling of unsteady compound flow has been investigated by
Radojkovic (1976); Fread, (1976, 1988); Ervine and Ellis (1987); Stephenson and
Kovopovoulos (1990); and Abida and Townsend (1994). The dynamic wave models,
used in dam breach inundation studies, are generally based on the 'divided channel
methods' discussed in the last section. These solve a formulation of the St. Venant
equations, as developed by St Venant in 1871 for one-dimensional unsteady flow,
consisting of continuity and longitudinal momentum equations (Cunge et al. 1980). For a

channel without lateral inflow or outflow, the continuity equation is given as:

_ﬁﬁ + 8_Q =) [2.19]

ot ox

Where: Q is the discharge; and A is the cross section flow area. Q is defined as the
volume of water passing through a cross section per unit time.

The longitudinal momentum eqaation is given as:

0, AN, JH_ o
>t o +gA &x-_gA(S" Sy [2.20]



where:
g = is the acceleration due to gravity,
H = depth of flow ;
So = longitudinal channel bed slope;
Sy = longitudinal friction slopc;
t = temporal coordinate;
X = longitudinal distance; and
1% = cross-scction longitudinal average velocity.

In equations [2.19] and [2.20], the first two terms describe temporal and local
acceleration, respectively. They are often referred to as the inertial terms (Ferrick, 1985).
The third term represents the net longitudinal pressure force acting on the control volume.
The next two terms reflect the effects of gravity and friction in the longitudinal direction,
respectively.

Recent researchers (DeLong, 1986; Fread, 1988) have sought to develop
adaptations of these equations which would take into account practical and natural factors
such as channel sinuosity, ineffective floodplain zones, and lateral intlows of mass or

momentum, as evidenced by the formulation solved in the NWS DAMBRK (Fread,

1988) model:
%, 9(ArA), (2.21]
ox or
a(;'"tQ)+ I Qai/A)+ gA(gg+s,+s,)+ L=0 [2.22]
where:
A, = the inactive flow arca (off-channel storage);

S¢,Sm = sinuosity factors which vary with stage (DeLong, 1986) ;

the momentum correction coefficient;

o ™
] I

= the expansion-contraction slope; and
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L = the momentum contribution of lateral inflows.

Although this model has a provision for lateral inflow and outflow, this only
applics to lateral inflows in to and out of the compound channel, and not between the
channel and its floodplains. Therefore, despite such enhanceinents to the basic eguations,
such models cannot consider situations where the flow in the floodplain is independent of
that in the channel; for example when a dike is overtopped and/or breached and the flow
does not return to the main channel. In fact, the floodplain inundation can even begin
from a downstrcam low-dike location, such that floodplain waters actually flow in an
upstream dircction at least for a certain period of time (Cunge et al. 1980).  Another
practical example often occurs at river confluences, where the floodplain flow of the
tributary enters the larger river's floodplain. 'Divided channel models' also cannot take
into account the convective transport of momentum in to and out of a channel
meandering through inundated floodplains.

An carly alternative to these dynamic 'divided channel' models, were the pseudo
two-dimensional models (Cunge et al. 1980) in which floodplains were either treated as
storage arcas (Yevjevich, 1975) or were divided into a number of cells (or storage basins)
which communicated with neighbor cells and or the main channel through selected
“hydraulic laws" neglecting inertial forces (Abbott and Cunge, 1975). For example,
Zanobetti, Lorgere, Preismann and Cunge, (1970) employed this cell-type modelling in
the Mckong floodplain study. These two-dimensicnal models, though capable of
modelling floodplain storage and flow losses entirely independent of the main channel,
could not incorporate dynamic terms, Therefore, the equations modelled for the channel
had to neglect inertial terms as well (Cunge et al. 1980).

Even if momentum transfer due to flow interaction is shown not to have
significant impact on unsteady compound flow, modelling of mass exchang: betwceen thc
main channel and floodplain have significant implications in modelling overtopping and

breached dikes. The possibility of using one-dimensional models in modelling
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meandering compound channels could be enhanced if mass flow exchange between the
floodplain and main channel were to be included. Although recent models by Stephenson
and Kovopovoulos (1990) and Abida and Townsend (1¢/4) include the effect of flow
interaction, they have not allowed for the exchange of mass between the main channel
and the floodplain.

At present, fully two-dimensional dynamic models of compound channel flow are
the subject of much research (Lec and Froclich, 1986). However, the computational
overhead for such models is gencrally quite high in comparison to one-dimensional
models. Therefore, these are not yet a practical alternative for flood routing over long
distances. In the following chapter a new model formulation is presented that seeks to
include the effects of flow interaction with mass flow exchange being allowed between
the main channel and floodplain. The procedure adopted in this study in the
determination of mass transfer between the main channel and floodplain is discussed

below.

2.5 Mass Transfer Between the Main Channel and Floodplain
2.5.1 Introduction

In the model, the channel and floodplain equations must be linked through mass
transfer equations which represent the net transfer of water from the channel to the
floodplains for rising stage and discharge, and the flow back into the channel from the
floodplains for falling stage and discharge. As there is very little data available regarding
this mass transfer process. an approximate model of mass transfer must be considered.

Two approaches were used in this study, as discussed below.



2.5.2 Flow From the Main Channel to Floodplain
2.5.2.1 Linking Model

The mass conservation link between the inundated floodplain and the main
chanrel is important in channel overflow representation for unsteady flows. When the
overflow occurs at defined points along the bank and the length of the overflow section is
short relative to the river length, then a weir section could be used to link the flow in the
main channel and the floodplain as shown as in Figure 2.11 (Cunge, et al. 1980). In this
case the weir section in the model would be defined by the crest elevation, width, and
discharge cocfficient which represent the physical situation as closely as possible (Cunge
et al. 1980). The discharge calculation is based on the difference in the water level
hetween the main channel and the floodplain.

When there are no well defined overflow sections, because there is a general
spilling from the channel to the floodplain along the bank, the modelling problem is more
complex. This situation is shown in Figure 2.12(a). Cunge er al. (1980) suggest two
methods to © +* we  this problem. If the computational points are closely spaced, then
the best approa . .» that which links the computational points in the main channel to each
computational point in the floodplain. Figure 2.12(b) shows this option. The close
computational points allow for true representation of flow depth changes along the
channcel in the longitudinal direction.

If the computational points are far apart, Cunge er al. (1980) proposes that the
best way to link the main channel and the floodplain, is by linking about four
computational points in the floodplain with one computational point in the main channel.
Figures 2.12 (c) illustrates this approach. Cunge et al. (1980} point out that, a very long
weir crest can lead to a situation where a small increase in the water surface elevation in
the river could provoke a sudden large discharge to the floodplain which may violate the
continuity equation. This could possibly lead to computational instabilities or could

totally falsify the details of the flood overflows.
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In this model. the ‘one-to-one’ approach, illustrated in Figure 2,12 (1 aas been

uscd to conncct the floodplain and the main channel. In modelling the ‘one-to-one’
approach, a weir approximation is used to hink the main channel and the inundated
floodplain. Possible weir relations connecting the main channel and floodplain are

discussed in the next sections.

2.5.2.2 Weir Discharge Estimation
2.5.2.2.1 Modular Flow

When the flow above the crest of a weir is dependent on the upstream depth only,
the flow is said to be modular. Modular flow normally occur in perfect weirs as shown in
Figure 2.13.

Govinda Rae and Muralidhar, (1963) classified the flow over weirs as a function
of (H)/B,.) as shown in Table 2.3, where: Hj is the head over the weir and B, is the
width of the weir in the longitudinal direction (as shown in Figure 2.13).

The discharge relationship for weirs is usuaily expressed as:

2 )
g= Cd—?- 2¢H,”" (Lukshmana Rao, 1675) [2.23]
where:
Cq = discharge cocfficient;
q = discharge over the weir per unit weir length, L,
L = the length of the weir, equal to the width o1 approach channel.

The coefficient of discharge is the main pa-ai:ter used to differentiate weir
types. Some widely used coefficients of discharge for sharp crested weirs are
summarized in Table 2.4.

To compare the discharge coefficients for broad crested weirs, equation [2.23] is
reformulated as:

g=C,H,"* (Govinda Rao and Muralidhar, 1963) -.24]
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where C; is the coetficient of discharge accounting for the effect of approach velocity.
C; has been determined empirically by many researchers, and a few of these equations
are shown in Tahle 2.5.

When modelling using a weir to link the main channel and floodplain, the
floodplain will form part of the weir crest (width of the weir and the bank of the river
forms the step or height of the weir (P). The flow in the river above the bank (H)) is
represented by typical depths in the floodplain. Typical parameters for rivers and
floodplains in UK rivers (Samuels, 1985) shown in Table 2.6, are used to establish the
possible kind of weir to use as a model.

The value of H,/B,, for typical floodplains is about 6.002 which lies in the very
very long crested range. Tt is also feasible that for small widths and large depths in the
floodplain, the value H /B, would mostly lie in the broad cresied range. Therefore long
and broad crested weirs are possible models to use in estimating lateral discharge if
H,/B,. is the only parameter to consider. However, other factors like submergence and

flow angle into the floodplain also have to be considered.

2.5.2.2.2 Effect of Submergence (Non Modular Flow)

Most of the floodplain inundation and flow back into the river will probably be in
the non-modular range (submerged), therefore the effects of submergence on the flow
over broad or long crested weirs is examined.

When the discharge of a weir depends on both the upstream and downstream
heads as shown in Figure 2.14, the flow is said to be in the non-modular range cr
submerged.

The cffect of submergence on flow in a broad crested has been investigated by
Smith. (1959); Kandaswamy and Rajaratnam (1959) and Clemmens e? al. (1984). Smith
(1959) investigated the effect of submergence as function of Froude number and

upstream and downstream depths and preseated the following formula:
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H HY
g=H"" g[z. 86-2.96—10.027 +0.99]1— [2.25)
L H H

i )

On comparing with equation {2.24], it can be seen that:

1
C = \/ g!:Z. 86 - 2.96 %ﬂ-}{a 027 +0. 991%} (2.26]

1 i

Kandaswamy and Rajaratnam (1959), expressed the non-modular discharge as:

q=dq.f [2.27]
where:

Gm = modular discharge and

f = a reduction factor dependent on Hy/H)).

They established that £ varied from 1.0 to 0.4 for values of Hy/H, ranging from 0.4 o
1.0.

Rijn (1990) suggested using the following relation:

g=C,H[2¢(H, -H,)]" [2.28]
C, in cquation [2.28] accounts for losses duc to expansion of flow at the downstream part
of the weir. He suggested a Cy of 0.9 for a rough weir with a sharp bottom transition, and
1.3 for a smooth weir with a rounded bottom transition.
Clemmens e «l. (1984) defined a limiting submergence factor called the maodular
limit (ML), that divides the non-submerged conditions (modular flow) and the submerged

conditions (non-modular flow) on a broad crested weir. This limit is defined as:

ML = i {2.29]
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For ML lcss than (1.8, they said the flow is modular (not submerged) and the perfect weir
equations should be applied while for ML above 0.8, the imperfect weir equation should
be used (Clemmens er al. 1984). Ramamurthy, Tim and Rao (1988) said this value of ML

is equal to .73 while Hager (1994) set it 2t 0.75 for a broad crested weir.

2.5.2.2.3 Effect of Flow Angle

The application of a perfect broad or long crested weir in approximating the
spilling of flow into the floodplain may overestimate the lateral discharge for the
following reasons. The discharge estimation using a weir assumes the flow approach is
perpendicular to the weir and yet the spilling of flow from the main channel into the
floodplain is expected to be at angle and only part of the flow in the main channel spills
into the floodplain. Therefore a side weir flow model should be considered a possible
model to estimate the lateral discharge.

A side weir, also known as a lateral weir, is a free over-flow weir set into the side
of a channel as shown in Figure 2.15. The weir allows part of the flow to spill over the
side when the surface of the flow in the channel rises above the weir crest.

In the basic approach, the flow through a side weir is assumed to be
approximately two-dimensional and the pressure in the channel is assumed to
approximately hydrostatic despite some curvature anid irregularity of the water surface
(El-Khasab and Smith. 1976). Although the flow over the side weir crest is at an angle
with the direction normal to the weir, a conventional weir equation per unit length is
normally used (Subramanya and Awasthy, 1972; Smith, 1973; El-Khasab and Smith,

1976; Kumar and Pathak, 1987; and Cheong, 1991). It is normally written as:

i )
q= —“;C,,\/EE (H-H)" [2.30]

where:

Ca = the side weir discharge coefficient,
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H,  =side weir height; and

H = the water surface elevation, which varics in the longitudinal direction as

illustrated in Figure 2.15.

In the . wysis of side weirs, it is normally assumed that cpecific encrgy is
constant across the side length (Subramanya and Awasthy, 1972; Smith, 1973; El-Khasab
and Smith, 1976; and Cheong, 1991). Th' means that, the longitudinal component of the
velocity of the spill over is equal tc. - -age channel velocity (El-Khasab and Smith,
1976).

Most of the studics done on side weirs have been on sharp crested weirs. The
contributions by Ackers (1957), Collinge (1957), Frazer, (1957), Subramanya et al.
(1972) and El-Khasab and Smith, (1976), Ranga Raju, Prasad, and Gupta (1979), Cheong
(1991), and Manivannan and Satyanarayana (1994) arc all on side weirs with sharp
crested shapes. As in the previous analysis on sharp and broad crested weirs, the value of
the weir discharge coefficient has been the major focus of research.

Ackers (1957) suggested that for subcritical flow, Cq is cqual tc 0.625 it H is
measured at a remote distance from the plane of the weir (towards the center of the main
channel) and 0.725 if measured at the plance of the side sharp crested weir. For
supercritical flow, he found Cg to be about 0.36 - 0.08F, where F is the Froude number
at section 1 shown in Figure 2.15. Some contributions on discharge coefficient for the
side sharp crested weir are summarized in Table 2.7.

If spilling into the floodplain is assumed to occur over a broad or long crested
weir, then the best modelling side weir would be one with a broad crested shape. Side
weirs of broad crested shape seemed to have received minimal attention. Ranga Raju et
al. (1979) extended the results obtained for a side sharp crested weir o obtain the
discharge coefficient for a side broad crested weir also shown in Table 2.7.

The effect of flow submergence on side weirs scems also not to have received any

attention as no information was found in a literature scarch.



38
2.5.2.2.4 Effects of Sloped Upstream Face

The upstrecam face of a broad crested weir infiuences the coefficient of discharge
C, (Rao et al. 1988, and Bos, 1989). Most of the coefficients shown in Table 2.6 are for a
vertical upstream face. Normally the upstream face of the weir is rounded to offer a
streamline transition of the flow into the crest of the weir and an increase in the
coefficient of discharge. However when the upstrearn face has a significant slope beyond
the small rounding of the nose as shown in Figure 2.16, Arunachalam (1964) suggests

that an additional effect of the slope be included in the normal coefficient C;.
Arunachalam (1964) found that the coefficient of discharge, C; (where the
velocity approach conditions have been lumped into the C; coefficient) decreased with
steeper slope of the upstream face of the weir. This means that for a vertical upstream
face, the coefficient of discharge C; is the lowest while large slopes have larger valnes of
C,. He suggested that Cy for a weir with any side slope can be given by the following

cquation:

C,=C +4C,+AC, [2.31]
where:
Cs = the discharge coefficient for a weir having a vertical upstream face and a

sloping downstream face of 1:1;
AC, = cffect of change in the upstream slope; and

AC; = eifect of change in the downstream slope.

Arunachalam, (1964), established that for flow in the modular limit and

H . . - -
/g < 2.2, an approximate relation for determining AC,, is given as:

AC, =0.085, +0.08 [2.32]

where S, is the upstream weir face slope.
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Equation [2.32] is valid for values of S, more than 1/3:1. When Su=0), AC, is alsc cqual
to zero. Arunachalam, (1964) also found that when H;/ Bw < 0.4 (flow over a broad and

long crest weir) and the downstream slope is more than the critical slope, any further

increase in the downstream slope shows no effect at all.

2.5.3 Selection of the Discharge Coefficient

To estimate the lateral discharge into the floodplain, sever.  factors are
considered. The spilling of flow into the floodplain occurs at an angle and there is no
constriction of flow as normally witnessed in a sidc weir. Therefore while they may be
energy losses when the flow goes through a side weir, the spilling into the floodplain is
associated with almost no less of energy.

If H)/B,, of a weir is the only criterion considered, then estimation of the lateral
outflow should be made using long and broad crested weirs. However because of the
need to consider the sgilling of the flow at an angle, side weirs should also be considered.
From the literature search, it became apparent that most of the studies on side weirs have
been on side weirs of sharp crested shape. Only one study, that of Ranga Raju (1979) was
on side weirs of broad crested shape.

The discharge coefficient for sharp crested weirs depends on the ratio of the weir
head to the height of the weir (H/F’) as shown in Figures 2.17 (a) and 2.17 (b) while Cy
for broad crested weirs is influenced by the ratio of the weir head! to the width of the
weir (in the flow direction), H;/B,, as shown in Figurc 2.18(a). Figures 2.17 (¢) and
2.18 (b) show that the Froude number is the major factor influencing discharpe
coefficients for side weirs.

The discharge coefficients for sharp and broad crested weirs gencrally show a
close agreement as shown in Figures 2.17 (a), 2.17 (b) and 2.18 (a) while the estimation
of coefficient of discharge for the side weirs shows a wide disagreement as shown in

Figures 2.17 (c) and 2.18 (b) . This means that whatever method adopted for estimating
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the lateral discharge will only give an approximate value. Furthermore, while the effect of
submergence of sharp and broad crestcd has been researched, the effect of submergence
on side weirs seems not to have been investigated. Clearly the problem of mass exchange
hetween the floodplain and the main channel is a combination of flow in the modular and
non-modular range. This then calls for usirg side weirs (broad crested shape) equations
thai account for the angle of spilling and oad crested weirs equations that account for
some form of submergence. Alternatively, a range of Cy values could be determined and
tested for sensitivity on the estimation of discharge.

Since only onc equation developed for side weir of broad crested shape was
available and no information on submergence of side crested weirs were found, it was
decided that a range of Cvalues from 1.45 (which covered the lower range of C; values)
to 1.90 (for high values) be used for estimating lateral outflow into the floodplain in order

Lo assess the sensitivity of the model to this parameter.

2.5.4 Overtopping and Breaching of Dikes

Since part of this study was to consider flow over flood structures like dikes, the
flow over a dike or a breaching dike is essentially treated as flow over a side weir with
top width using the equations shown in Tables 2.5 and 2.7. If H;/B,, is less or equal to 0.4
then a broad crested weir could be used to approximate the flow, whereas if it is greater
than 0.4 then a side weir of sharp crested shape may be considered as a possible model to
determine the flow discharge ( G'ovinda Rao and Muralidhar, 1963).

A dike breach can also be treated as some sort of end-weir of broad crested shape
as shown in Figure 2.19. Muralidhar (1964) investigated flow over an end weir with a top

width and came up with an end weir discharge coefficient, C, which he defined as:

C.=CA 12.33]
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A = a multiplier accounting for lateral spreading of the nappe.

The variation of A with Hy/B,,. is givenas:

A=0. 01810g(—ﬁ—’)+ 1.048 for long cresicd weir range [2.34]
1
(H, :
A=0. 151(;— +1.021 for broad crested weir range 12.35])
H, : .
A=1084-0.014 -E- for the narrow crested weir range [2.36]

The use of A was found to increase the discharge coefficient €1 by up to 8%..

The use of the end-weir discharge coefficicn! does not take into effect the case
where the flow through a breached dike is at an angle. Therefore for this study, the
equation developed for side weirs for a broad crested shape was considerd more

appropriatc.

2.5.5 Flow From Floodplain to Channel

The flow from the floodplain into the river happens during flood recession or
subsidence. Figure 2.20 shows an illustration of flow from the floodplain into the river.

To estimate the lateral discharge into the river, a side weir with zero height (Hy,=
0) is probably the best choice, as there is no step but a fall. Although an end depth weir
could be a possible model, it is not considered because only part of the flow spills into the
river at an angle, while the rest continue in the downstream direction. A side weir of the
sharp crested shape -« 1 “gval choice because the water spills over an cdge. Therefore
the side weir equations for side weirs of zero height as tabulated in Table 2.7 should be
ansi-.able as models to estimate the flow. Although the Froude number affects the value
of C, for side weirs of sharp crested shape, most of the coefficients lic in the range (.45
to 0.65 as shov:~ .n Figure 2.17 (c) for the range of Froude numbers of 0 to about 0.3,

This range of Froude numbers covers most of the expected flow in the floodplain.
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Therefore for lateral inflow from the floodplain to the main channel, it was deemed

rcasonable to assurne Cy values of 0.45 to 0.65 with sensitivity tests being carried out.

2.5.6 A New Method For Estimating the Lateral Flow Into The Floodplain
2.5.6.1 Flow into Inunudated Ficodplain

A new method developed by Shome (1995) to estimate the lateral discharge to the
floodplain was also considered. This method involves setting vn a contr:i -olume
extending from the edge of the river to the edge of the floodplain widtii, as shown in
Figure 2.21, and applying conservation of lateral momentum.
where:Hy is the floodplain depth at any place along the floodplain width; H3 the
floodplain edge depth; y any arbitrary distance in the lateral direction; and By the total

floodplain width.

Applying conservation of lateral momentum | ields:

P -P,+M,=F, [2.37]
where:

P = the pressure force at the bank interface;

P; = the pressure force at the end of the control volume in the floodplain;

M, = lateral momentum into the floodplain; and

F; = the boundary shear force on the floodplain.

If it is assumed that the lateral momentum into floodplain is zero, equation [2.37] reduces

to:

[2.38]

It further it is assumed that the water surface varies linearly across the floodplain. This

means that the floodplain depth can be expressed in terms of H; and H, as:



H, = H,+H,
2
expressing:
2
and
p,= 1
then

F =P -P, =§(Hf - HI)

r

The boundary shear force in the floodplain is defined as-

B,

where:
T = boudary shear stress. It is defined as:.
4%
T = ECT
where:
vV =the longitudinal velocity;
w = lateral velocity; and
Cs = Chezy's nondimensional coefficient.

The lateral velocity W is assumed to vary linearly as:

ww{,-:’.}&(,_ij
B, | H/\ B,
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[2.39]

[2.40]

[2.41]

[2.42]

[2.43]

[2.44]

[2.45]



and V can he defined using Chezy's equation as:

V= C.JgRS,,, =C,\gH,S,, for wide channels [2.46]
where:

Sor = longitudinal friction slope in the floodplain; and

R =hydraulic radius of the floodplain wetted section.

Then equation [2.44] becomes:

p gSnf q y
T, == l-= 247
e \/H/[ ij 247
Dcfining
'S
2= C‘ s [2.48]

Then equation [2.43] becomes:

8
X4, y
F,.= Lt | = |d .
: J H,( BIJ(_V [2.49]
o N

and integration yiclds:

i
Xela ¥ | xq B
Fr - V- = — . [2.50]

N T

Equating cquation [2.50] and [2.42], yields (after some rearrangement):

_ 40 H}?(H, - H,) [2.51)

B.\S,

{.
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2.5.6.2 Flow into a Partialiy Inundated Floodplain

When the floodplain is partially dry, the control volume extends to the floodplain
as shown in Figure ? 22, where: B, is effective flow width in the floodplain.

A force b... ¢ in the control volume extending to the wetted surface in the
floodplain is set up as:
P;=F; [2.52]
Itis noted that there is only ene pressure force (P;) that balances the boundary shear

force (F4).

P, is given by equation [2.40] . cstated below for casy reference.
2
P, = _yl?{,_ [2.40]

Boundary shear force is defined as:

Bl
F,= j“ T dy [2.53]

where B, is given by the following relation:

H!
B,=2-LB,
Hl

[2.54)

The floodplain boundary shear stress (7y) is given by equation [2.44] and the floodplain
longitudinal velocity (V) is defined by equation [2.46]. Thesc equntions are restated

below for casy reference.

-

2.44
G [2.44]

Ty

V =C.,[gRS, = C.\[ghS,, for wide channcls [2.46)



The lateral velocity (W) is defined for this control volume as:

where, gy 1s expressed as:

gy = q,,(l— ;Z-J

Therefore W becomes:

wede| - L
h B

o

where A is assumed to be defined by the . clation:

/::H,(/-lJ
B,

46

[2.55)

[2.56]

[2.57]

[2.58]

Substituting equations [2.46]; [2.57] ; and [2.58] into equation [2.44]: the floodplain

boundary shear stress Ty takes the form of:

’S, ’. 172
7, =8y q,,(l— "1

' CH, B, )

and the floodplain boundary shear force becomes:

A, B,p gS q 172
F=| d\'=J ———"—’——"(1—1) dy
r 7«
J,, 0 C.1/H, B,

Integrating the above equation yields Fras:

[2.59]

[2.60]
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z p‘\ gSnf qn Bl'

F,=——"—Fr 2.61
=T [2.61]
and equating P; = F; yiclds g, as:
? Y X 2’
'——LH'” 12.62]

q, =3 !
8 B.\|S, H,
Equation [2.51] and [2.62] wcre then used to estimate lateral flow into the

floodplain and compared “vith the other conventional weir equations shown carlicer.

2.6 Momentum Transfer Between the Main Channel and Floodplain Flow

When the tlow spills into or out of the floodplain, the lateral convective
momentum V,g, is conveyed into and out of the floodplamn through the lateral discharge
g.

For tlow from the main channel to the main floodplain, V, would be defined as:

V=V [2.63]
where, V is the average channel velocity and for flow from the floodplain to the main

channel, it is given as:
Vi=Vy [2.64)

where Vyis the average velocity in either floodplain.

The flow interaction momentum transfer between the main channel and the
floodplain is accomplished through the apparent shear stresses. The momentum transfer
term developed for steady state is also assumed to apply to unsteady flow. My is defined

as:
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M, =1H, [2.65]

The value of the apparent shear stress can be based one of the relations given in

cquations [2.13] to [2.17]. These equations are requoted here for easy reference.

Rajaratnam and Ahmadi (1979)

2
r,,:()./ﬁ'(Hi—z) 7, validfor 22<H/H, 7.4 2.13)

/

Wormleaton et al. (1982)

3123 1.727
0.X82 H B Ty k
r.=1384(av) | — valid for 23<H/H, <9.0 [2.14]
Tw - B

!

Prinos and Townsend (1984)

1129 0514

[T H ( B . . )

r,,:().874([..\,’) (——) valid for 3.0< H/H,SII.Z [2.15]
H: \Tw— B

Wormleaton and Merret (1990)

0.354
T =3325 A\’”'”[;—ll—-] (T, - B)*" validfor 20S H/H, <20.0 [2.16]

I3
4

Christodoulou (1992)



1 >
7,=5pC, AV

valid for L9<SH/H, <93

40
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Table 2.2 Munnings cquivalent roughness for compound channcels.

Method 1

Method 2

Mecthod 3

273

k=3
a2
z P.n;
!

n=-—-

/2

k=3 !
2
2 P
—|

n

P R 574

€ ‘ R, =13 i
P, [ P, ‘E:' PR, /i
] TR
Assumptions: Assumptions: Assumptions:

(HV,=V. =V =V
(2) §,=5,=8,=§,=5,

(1) total force resisting
motion is equal to the sum
of the subsection resisting
forces

2)V,=V. =V =V
(3) R=R =R =R

ME=G+0.+0,
(2) §,=8,=5,=5,=5,

Q; error: -10% to -25%

(the underestimation increases
with increasing n )

Qg crror: -15% to -40%

(the underestimation increases
with increasingn )

Q; error: +10% o +35%

(the overestimation increases
with increasing n )




Table 2.3 Classification of weirs by Govinda Rao and Muralidhar, (1963)

Values of H;/B,, Type of Weir
H
0< ‘B‘]‘ 0.1 Long crested

W

().l<—H—'S().4
B

n

Broad crested

().4<%—S 151019

W

(upper limit depends on Hj/P)

Narrow crested

H—’—Zl..ﬁm 1.9
B

w

(L.ower limit depends on Hy/P)

Sharp crested

Table 2.4 Discharge coefficients for sharp crested weirs.

Sharp Crest
Author Discharge Coefficient Valid Range
2 H
Bazin (1898) C, = 0.608+ 0.334] —2 0<—L<6
‘ H,+P
Rehbock (1929) Cd=0.611+0.08%-’- u<.111)1.<6
Kandaswamy
372 H
and Rouse C =1,06(1+—P— —l;'-Z 15
d Hl
(1957)
Swamee (1988) All ranges

C, =1 06[(

8.15P+H,

14.14P V”+( H )’-‘TH

H+P
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Table 2.5 Discharge cocfficients for long, narrow and broad crested weirs.

Long Crested Weirs

Author

Discharge Coefficicnt

Valid Range

Govinda Rao,

Muralidhar,

C =1 79[3 (fg—')m)

"

()<-’i'-.<_().i
B

»w

(1963) .
0.5 H,
Swamece, CI ’.::E? 2g(().5+01(£;—’—] } 'éj(()l
(1988) ’ -

Narrow Crested Weirs

Govinda Rao

H,
& Muralidhar, C =1 79(0‘ 64 [%]+ 2 63J 0.45< e SLS
(1963) !
2 H 045<Hicys
Swamee, C1='?'\/Z§—' 0.5+0.11 Bl sl
(1988) ) v

Broad Crested Weirs

Govinda Rao, C =1 79[0. 15[—;-1—1 +2 82] o< %— =04
& Muralidhar, w
(1963)
Clemmens. C, = fﬂi/z—g -0.07 h ?_(Z g)“ 0.1< ﬁiiBZﬁ <10
Reploge and w 3\3 ”
Boss, (1984)
Swamee, 01< -11-{-{-’- <04

(1988)

w

N2
C = [o.5+ 0. 05(%) J%ﬁz




Table 2.6 Typical floodplain parameters for UK rivers (Samuels, 1985)

Parameter River Floodplain
range typical range typical
Width, m 510200 30 010 2000 500
Depth of flow, m o 10 5 Ow4d 1
Velocity, m/s 0513 1 Oto2 0.3
Longitudinal 0.0l 10 0.01 to
Surface slope 0.00001 0.0005 0.00001 0.0005

54
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Table 2.7 Discharge coefficients for side weirs.

Side Weirs (sharp crested)

Author Discharge Coefficient Valid Range
Subramanya
—
& Awasthy, C,=0.611]|1- 3F, O0<H _<0.6m
F/+2
(1972)
Yu-Tech, C,=0.622-0.222F, O<H <0.6m
(1972)
Ranga Raju, C,4=0.81 - 0.60F, 0.2 H, <0.5m

etal. (1979)

Cheong, C,=0.45-0.22F} Hy= 0
(1991)
H
Manivannan C,=0.33-0.18F, +0.49—*= 0.06S H,<0.12 m

et al. (1994)

1

Swamee,

et al. (1994)

C, =0. 447[(

-0. 15
4470, )" . ( H-H, )"'“
49H_+ H H

0<H <0.Im

Side Weir (broad crested)

Ranga Raju,
etal. 1979)

C,=(0.8

1—0.6F,)(0.80+().1H’;H”J

w

0.05SH, <0.25m
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Figure 2.1 (a) confined meandering channel
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Figure 2.1 (b) regular meandering channel

Figure 2.1 (¢) rregular meandering channel

\ \\

Figure 2.1 (d) Tortuous meandering channel
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Figure 2.3 Typical velocity profile in a compound channel in a lateral direction
as reported by Rajaratnam and Ahmadi (1981) for H/Hr=2.210 7.4
(half-channel shown).
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Figure 2.4 Typical shear stress profile in a compound channel in a lateral direction
as reported by Rajaratnam and Ahmadi (1981) for H/Hf =2.2107.4
(half-channel shown).
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Figure 2.19 Flow over an end weir.
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3.0 PROPOSED MODE!. ¢GF COMPOUND CHANNEL FLOW

3.1 Introduction

In many onc-dimensional models, river floodplains are treated as storage arcas
(Yer,ovich, 1975 When the conveyance capability of the floodplains is included, they
are handled either as composite or compound flow sections. In this study, a one-
dimensional model is proposed that handles the river and the floodplains as a compound
channel while accounting for the flow interaction and mass transfer between the main
channel and the floodplain through the introduction of an apparent shear force, and mass
transfer equations.

[t 1s recognized that as the flow rises above the ~hannel bank and starts inundating
the floodplain the flow is three-dimensionai. However, if the dominant flow direction is
in the longitudinal direction, a one-dimensional approximation can produce rcasonable
stage and discharge results, even though they may be approximate at certain times within

the -imudation (Cunge, Holly and Verwey, 1980).

3.2 Basic Equations of One-Dimensional Open Channel Flow
3.2.1 Basic Formulations of the St.Venant Equations
The basic formulation of the St. Venant equations; [2.19] and [2.20] for a channel

with lateral inflow or outflow is given as (Chaudhry, 1993):

A . 90 _

_ 3.1
ot dx 1 3.1

which represents conscrvation of mass and

JQ dQv) dH S
—= 4+ =+ gA—— = pA(S, - -V, 3.2
£ + En + g Ep 8A(S.—87)-V:q [3.2]

which is the longitudinal momentum cquation.
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Where: Vg is the convective momentum  transport between the channel and the
floodplain. The lateral outflow from the channel is considered negative while the lateral
inflow is considered positive.

The x direction coordinate has been adopted as shown in Figure 3.1, where: Sy, S;
and Sy are cross-sections and Iy is a correction factor for the distance between cross-
sections in the floodplain when the distance between cross-sections in the main channel
is used as the measuring distance x. This correction factor is found to be equal to
sinuosity. The assumptions that are required in the derivation of the above equations are
(Yevjevich, 1975):

- streamlines are straight and parallel between cross-sections,

- the pressure distribution is hydrostatic;

- the channel width is allowed to change gradually;

- the velocity distribution is uniform cross the section;

- the channel bottom slope is small, so that the flow depths measured normal to

the channel bed as those measured vertically are approximately the same;

- the water has constant density; and

- both dependent variables, that is A and Q, are continuous differentiable

functions.
3.2.2 Other Forms of the St. Venant Equations

If the cross-section shape is approximated as a trapezoid, then the area is

A =BH +—i—(Z,+Zz)H2=BH+—;—ZH2 [3.3]
where:

B = main channel bottom width;

Z2=Z,+2.; [3.4]

and Z; and Z> are the channel side slopes, as shown in Figure 3.2.

The pressure term in equation [3.2] may be rewritten using,
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L AH\ H*dB g, 0H

—-=—~ ; p——=-2ZH — 35
kg £ 2 de 4 ox 13:51

The full derivation of equation [3.5] is shown in Appendix A.
Neglecting convective momentum transfer and lateral mass transter for now,
equation [3.2] becomes:
3Q r?(QV) (QAH) £H3(IB_g . 0H
()\ 2

ZH" — = pA(S — § 3.6
Fr 2 & AT o= EAS =S, 13.01

Equation [3.6] i¢ a quasi-conservation form of the longitudinal momentum
equation for a trapezoidal cross seciion. The momentum cquation may also be writien in a

completely non-conservation {orm using:

JH dA dB ZH? (?H
A—=gH ——gH — g —— 3.7
& dx 8 ox dx 875 2 (7.x' 13.7]
and
1%
AQV) _ 5,90 13.8]
ox
Substituting equ: 2ton [3.2] one obtains:
00 8Q ¢A ,dB ZH® oH
v ZE 4 (gH - V)= = gA(S,-S )+ gH — - g=—— 39
5 T2V tls Vo = EASmSD* g -k 1391

If the cross section has a rectangular shape, then Z s cqual to zero and A=BH.
Then equation [3.6] can be reduced te:
572 r?(QV) (gAH) &Hz dB
r?r

o ox 2 2 A Sy [3.10]
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while equation [3.9] takes the form of:

8Q+2V(7Q 5\ A

,dB
H-Ve)—=gA(S.—-S/)+ H &
ox dx (g i )ax BAS.=S,)+ 8 dx

[3.11]
3.2.3 Diffusive Wave Approximation

The St.Venant equations simplify to a diffusive wave cquation when the
magnitudes of the inertial terms in equation [3.6] arc very small in comparison to the

pressure, slope and friction terms (Henderson, 1966). The reduced equations are:

JA a0
ot dx l !
and
oH
EAPETAY 312
ER . { I

The friction slope (Sy) is the defined using conveyance (K) as:

S = I—Q—IQ [3.13]
K_
here, the absolute value of discharge is taken so that the longitudinal friction slope retains
the correct sign.

For the Chezys equation, K is expressed as:

K = C.A\gR

[3.14]
where: C. is the nondimensional Chezy coefficient and R the hydraulic radius, defined
as:
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A A A
R f o - 3.15
P B+H(JI+Z,3+\ﬁ+Z§) B+HZ,, B13]

for a trapezoidal cross section shape where P is the wetted perimeter and,

ZW4$+K+$+2) [3.16]

For the Manning cquation (in S.I units) K is given as:

K:lA#“ [3.17]

n
where: nis the Manning roughness coefficient.

Substituting equation [3.13] for the friction slope in equation [3.12] yields:

oH . 0o
= ¢ -l 3.18
" K- [ ]

Equation [3.18] is differentiated with respect to x and the résulting expression for a%r

is substituted into the continuity equation [3.1] to yield:

where D; is a diffusion coefficient and a is a kinematic wave speed coefficient. D; is

defined for the Chezy formula as:

eCiA
D= : 3.20
l lel (B + HZ"”‘) [ ]

and for the Manning formula as:
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10/3
R 13.21)
2n°(B+HZ, ) |0

me

o tor the Chezy cquation is defined as:

3
o= {3.22)
2
while for the Manning formula it is given as:
5
o= r [3.23]

The full derivation of equation [3.1¢] is shown in Appendix A.

Diffusive waves have only one wave component which propagates in the
downstream direction. This is because there is only one convective velocity (aV). They
also attenuate as they propagate downstream. The rate at which this occurs is governed by
the magnitude of the diffusion term Dj. Diffusive waves cause loop rating curves in
which the water levels associated with the rising limb of a hydrograph are lower than
those for the same discharge for the falling stage. This is because the diffusive velocity is
a function of not only the depth but the slope of the water surface as well. This can he
seen by the velocity equation below (for the Manning cquation):

1 JH

V _ __RZ/.? Su ot

3.24
n ox ' !
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3.3 Proposed Formulation
3.3.1 Introdiuction

In *: ¢ proposed formulation, a compound flow section is modelled by treating the
flow in the floodplain (s) and the main channel as paralicl, one-dimensional flows while
allowing for the exchange of flow and longitudinal momeatum between subsections.
Although the Bow exchanges suggest that the flow is two dimensioral along the
intereection of the main channel and the floodplain, the dominating flow dircction is
longitudinal.

The flow in the compound channel floodplain is modelled using a convection-
diffusive wave model for the following reasons. First, a diffusive wave approximation
facilitates the simulation of flow on a dry bed. This is particularly impcrtant to modelling
the onset of floodplain inundation. Second, because of higher values of relative roughness
on the Iloodplain (s) the magnitudes of the inertial terms in the equations are generally
very small in comparison with the pressure, slope and friction terms. Further, Ponce
(1977. 1978) showed that for a dimensionless wave number ( 0.) of approximaely 0.1 or
less, flood waves are predominartly kinematic or diffusive. He defined the dimensionless

wave number as:

o= (L:)L [3.25]
where

L =the wavelength of the wave disturbance; and

L, = the horizontal length in which the steady uniform flow drops in head

by an amount equal to its depth.

Ponce (1977) defined:
L,=H,/S, [3.26]
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where H, and §, are flow depth and slope., respectively. Therefore, equation [3.25)

becomes:

27rH_‘
LS

a

c.

]
-

2
-~J

e

It is seen that for typical floodplain parameters, such as those shown previously in Table
2.6, a typical dimensionless wave number ( 6.) for flood waves in the tloodplain can be
determined. If H, is taken as a typical depth | S, as a typical slope, and L as a typical
wavelength for flood waves in the floodplain then

o = 2r
"= Joox107  33T07

=u./2 [3.28]

where a typical L is about 100 km (Rijn, 1990). Since o, =0.12 is about 0.1, the
diffusive wave approximation can be used to madel flood waves in the floodplain.

It is proposed that the exchénge of flow between the floodplain and the main
channel be modelled usir ;@ side channel weir of either long or broad crested shape, as
discussed in section 2.5. The accounting of the longitudinal momentum exchange
between the floodpiasr and the main channel is done through the apparent shear foree that
is included in the force- - ..ag on the control volumes of the sub-scctions. The lateral
convective momentum ix .- -~ ned to be transfered into the floodplain without any loss.

This proposed formuiseon for modelling the compound flow scection is restricted
to rectangular and trapezoidal sections because the experimental work which has led to
the evaluation of the apparent shear force has only been conducted for these types of
channels. The method could be extended to natural sections once comparable apparent
shear force relationshps are developed. The proposed model also does not consider the

effect of sediment transport in compound channels which normally influences the bed
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characl roughness and formation of floodplains. Although this proposed formulation is
limited in this aspect, its use on simulating real world situations is still expected to yield
reasonable results. Tt is suggested that before the effect of sediment transport is included

in this proposed formulation, the model skould first be refined for situations of rigid

boundaries.

3.3.2 Dynamic Equations for Main Channel Flow
The cequations used to model the main channel are [3.1], [3.6] and [3.9] with the
addition of new terms that account for the mass and momentum exchange between the

main channel and floodplains. With these additional terms, the continuity equation

becomes:
_(7__4 + -{7—9— +q, +q,=0 [3.29]
t dx

and the momentum cquation in a (pscudo-conservative form) takes the form of:

90 HQV) (rAHY g ..dB g.. ..0H
=+ +— ~SH =2 7H —=
o or  ox\ 2 1 27 de 477 ox

[3.30]
8A(S,=S;)-V.q,-V.q,~ M,

where,

q, = is the lateral discharge into (or out of) the left floodplain 2nd

q, = is the lateral discharge into (or out of) the right floodplain

M, =M, +M,, {5.31]
and,

M = the total momentum transfer between the main channel and the

r

the two tloodplains;

M, = thc momentum transfer between the main channel and the

i



the left tloodplain ; and
M, = the momentum transfer between the main channel and the
the right floodplain.
M. and M.rarc positive when the lateral flow is to the floodplain (s) from main
channel.

The longitudinal momentuin equation in the non-conscrvative form is given as:

9 v 22, (o - v2)aA

dx dx 1119; o 13.32]
GAS,~S)+gH? S =g E2 vy -V g ~ M,
dx 2 Jx

where: Vxis the longitudinal component of the lateral velocity.

If there is lateral outflow into the floodplain, Vx is taken as the average channel
velocity, because it is assumed that the lateral outflow goes with its full convective
momentum. If there is lateral inflow into the main channel, Vx is assumed to be equal to
respective floodplain longitudinal velocities for the same reason that the lateral inflow

does not loose any of its mmentum.

3.3.3 Diffusive Equation for Floodplain Flow

The derivation of the equations used to model the floodplain starts with equations
[3.1] and [3.2] with the addition of new terms that account for the mass and momentum
exchange between the main channel and the floodplain. The continuity equation [3.1]

takes the form of:

JA a0

/ Xy

— + =g 3.33
o lox 13331
where

A, = the floodplain cross scction flow areu;
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Q, = the floodplain discharge;

l, = a correction factor for the distance between cross-sections in
the floodplain when dx is the distance between cross-sections in the
main channel; and

q; = the lateral inflow from (or outflow to) the main channcl.

The momentum cguation becomes:

(75, N r%f(,;,) oA, Zf;i = gA, (S =S ,)+ Vi@, + My [3.34]
where:

Hy = floodplain flow depth;

A\ = the longitudinal floodplain bed slope;

Sy = the floodplain longitudinal friction slope;

M,, = the momentum transfer between the main channel and

one {loodplain (My,1 or Myy,)
As mentioned earlier, the floodplain equations are reduced to a convection-

diffusion equation by neglecting the inertial terms. Equation [3.34] reduces to:

OH, |
Tk 8A(Sy = Sy)+ Vi, + My [3.35]

/

eA

<

Dividing through by gAy, equation {3.35] bccomes:

o M
il SR .2 [3.36]
11(?.\‘ gA, gAf
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Equation 13.36] is differentiated with respect 1o x and the resulting expression for

20, /

1y is svbstituted in to the continuity cquation [3.33]. If the Manning cquation is

/lfr?x

uscd to define the conveyance (K) the equation becomes:

_a_A_f_.Jr'_sV ()A'I _l")_ Zfo 81‘11 -D aA/' -D aAf ~q =D HJH
a3 7 10x 3(Bf+Hf Z/)l,r)r 2oy agx T8

_ A JI{('/S
= 2”2(31, N Hfo )4/.e|Qll /f2

D

A;/j Vx (1[
D:= ; 373
2n’(B,+H,Z,) |01,

_ A}” Al.
D;:= N 473
211‘(Bf+Hfo) IQfl Iy

where for the left floodplain:

Z, =(\/1+Z_f +\/1+Z_§)

and for the right floodplain:

z, =(\i+Z +\1+Z)

[3.37]

[3.38]

[3.39]

[3.40]

[3.41]

[3.42]

where: By is floodplain bottom width; and Z3; Zy: Zs; and Zg are side slopes as defined in

Figure 3.2.

Rewriting equation [3.37] using the relations [3.38]-[3.40] gives:



JA, 2

20, _oH, _ &H,

If onc further, defines By and B as:

49
" 2(B+H,Z,)l,

x 3(B+HZ)l ox ot

q,=0

Then equation [3.43) can be simplified to:

JA y

oH, _ IH,

JA /
+ B,
ot

-B

-D _
dx ! ox I ox?

‘1f=0

25

[3.43]

[3.44!

[2.45]

[3.46]

Equation [3.46] is the convection-diffusion equation modelled in the floodplains.
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4.0 Numerical Solution Technique
4.1 introduction

As analytizal solutions of the one-dimensional equations of open channel flow are
only available for limited situations (Yevjevich, 1975), the equations formulated in
Chapter 3 (13.29], [2.30] and [3.46]) must be solved numerically. There arc a number of
numerical schemes which could be applied to solve this sytem of equations, as the
application of numerical methods to the onc-dimensional equations has been the subject
of intense rescarch for many years (Pricssmann, 1961; Amicn, 1968; Liggett and Cunge,
1975; Ahbott, 1979; Cunge er al, 1980; Katopodes, 1984; and Hicks and Steffier, 1992, to
name only a few). However, as it was the primary objective of this study to explore the
formulation itself, the numerical technique may be considered as a merely a vehicle in
obtaining the solution of the equations. Although this means that the proposed
formulation could be implemented using any numerical technique suitable for the
solution of non-lincar hyperbolic systems, in order to ensure that the evaluation of the
performance and validity of the proposed formulation was not obscured by limitations of
the numericas] scheme, it was desirable to select a numerical technique that was
computationally robust, as well as accurate. The characteristic-dissipative-Galerkin
method (CDG) finite clement scheme, first derived by Hughes and Mallet, (1986) and
later adapted to open channel flow problems by Hicks and Steffler (1990, 1992), was

considered ideal for this purpose.

4.2 The Characteristic Dissipative-Galerkin Method

The CLG scheme is a Streamline Upwind Petrov-Galerkin (SU/PG) based
scheme (Hughes «nd Mallet, 1986) in which upwind weighted test functions are used to
introduce selective dissipation based on the characteristic velocities of the propagating

disturbances.  Extensive investigations into the performance of this scheme in
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comparison to the popular “box™ or “four-point implicit” finite difference scheme
(Amien, 1968), have illustrated the superior stability and accuracy of the CDG finiwe
element scheme tor open channel fiow applications, (Hicks and Steftler, 1990, 1992,
Hicks, Stetfler and Gerard, 1992). The characteristic-dissipative-Galerkin finite clement
method has also been shown to provide superior stability and more selective damping off
numerical instabilities than the Taylor-Galerkin and Least Squares finite clement schemes

over a wide range of practical flow situations (Hicks and Steffler, 1990, 1995).

Implementation of the CDG on the continuity equation takes the form of:

L
if
f.C+aw ——(w,,,,i)uwi‘—‘ W, i——'—)M dx =0 (1]
2 Ix 2 “dx

0

and the momentum equation is given as:

1
J(f M+coA‘(wq,,ﬂ)C+ AZ(W ﬂ—)M}dr:(} 14.2]

v 2 dx “ dx
Where: C and M refer to the continuity and momentum equations, respectively; fj is the
interpolating function; w is the diffusion parameter termed the 'upwinding coefficient'

while Waa, Way, W and Wy, are components of the upwinding matrix | W] such that:

W, W, [4.3]
(W)= lw Wq]
z 99

The magnitudes of the ~omponents of the upwinding matrix [W] are determined by the
characteristic velocitics of both progressive and regressive dynamic wave components

such that (Hicks and Steffler, 1992):



89

(c?-V?) (V+c) (V=-¢)

[W]:L V+d-V- V+¢ V= (4.4]
2¢ ((.Z_Vz)[(v-i-c)_(V—C‘)) (V+c) (V=c)
| Ve [Vv-c ) V+d V-

in which ¢ = Jq_ﬁ represents the propagation velocity of a small disturbance in still
water. It is important to note that although the upwinding matrix [W] is based on the
dynamic wave characteristic propagation velocities, the scheme has been shown to
provide excellent results for purely diffusive waves as well (Hicks, Yasmin and Chen,
1994 ).

Hicks and Steffler, (1990,1992) examined the sensitivity of the CDG scheme to
the upwinding coctficient for three values of @.: 0.25: 0.5; and 1.0, and found that @ =
(1.5 optimized phase accuracy in the linear case, while at @ = 0.25 amplitude accuracy
improved slightly while the reduction in phase accuracy was only marginal. Because of
the limited effect of varying @ in the lincar case, they recommended that a constant value
of @ = 0.5 be used in modelling unsteady open channel flows. This value was adopicd
here.

The appropriate relationship between the spatial and ten.poral discretization for
the CDG numerical scheme has been thoroughly examined through linear stability
analyses (Hicks, 1990; Hicks and Steffler, 1992), and may be expressed in terms of the

Courant number, C, which is defined as:
| VicIAl

The CDG method was found to provide highly selective damping of high frequency
(numerical) disturbances as well as good phase accuracy for values of the Courant

number less than or equal to 0.5 (Hicks, 1990; Hicks and Steffler, 1992). In this study,
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the temporal and spatial discretizations in all test runs were designed to ensure the

Courant number was within this range throughout the solution domain.

4.3 Implementation of the CDG for the Governing Equations
The cquations to be solved for a trapezoidal compound section are given in
equations [3.29], [3.30] and [3.46] and are restated here for easy reference.
M, 2

+ = + gl + gr =0 329

8\f

ar o8 2 2 (l\‘ 2
[3.30]
gA(Sn— Sf)— ‘,qu - ‘/,l(/! - A411
A, pOA g OH,  OH, 0 1346
-~ B, — — —_ = 3.40
o o SR

In the CDG mecthod, the upwinding part uses the non-conservative form of the

momentum ¢ ation given by equation [3.32].

99 2y 52 4 (eH -v2 2) 94

ox ox dr;r 3 (3.32]
A(S., +gH ——g———-V q-V,q, -M
g (S Sf) [ﬁ (lx g 2 ax qu xqr r
The weak statement is derived as:
dJ{d
[S1252L 4 K@} + {F) = {0) (461
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where: [S] and [K] are mass and stiffness matrices, {F} is the load vector and {®]} is

defined as:

{d)}zw 3 [4.7]

Using finite differences to discretize the time derivative, gives:

oD " - "
R (48
where @ and F are defined as:
@ =00" +(1-0)d" [4.9]
F=6F""+(1-8)F" {4.10]

and where: n+/ is the unknown time level, n is the known time level, and © is the time
weighting factor or implicitness, taken as 0=0.5 fcr the CDG scheme (Hicks and Steffler,

1992).
Rewriting equation [4.6], gives:

lsl(————d’"*;j d’")+[1<](9d>"”+(1—e)¢")+(epw CU-OF)={0 @]



Rearranging equation {4.11], yiclds:
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[[S]+ 47 6[K]]{®™'}+ 41 6 {F™'} =

[4.12}

[[s]-4r1-8)[K){@"}-ar(1-6){F"}

[K] and {F} depends upon the solution vector, { ® }. The matrices [S], [K] and {F} are

defined as follows:

S, ] 00
0 1S,1 IS,,]
[S]=
0 1S,.1 IS,
0 0 0
MK, 0 0
0 Kl [K,]
[K]=
0 K, [K,]
0O 0 0

0 7

0

0

[S., 1]

0 ]
0

0

(K 1]

14.13]

and [4.14]
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F(l
{F}= [4.15]
F‘l
| Fr |
where:
[Sual = mass matrix (continuity equation, area term);
[S..1 = mass matrix (continuity equation, discharge term),
(Sl = mass matrix (momentum equation, area term);
[Syql = mass matrix (momentum equation. discharge term);
[Saa 1] = mass matrix (left floodplain equation);
[Saagy] = mass matrix (right floodplain equation);
K. = stiffncss matrix (continuity equation, area termy);
(Kl = stiffness matrix {continuity equation, discharge term);

[Kya] = stiffens matrix (momentum equation, area term);

[Kyy] = stiffness matrix (momentum equation, discharge term);

IKirl = stiffness matrix (left floodplain equation); and

{Kryl = stiffness matrix (right floodplain equation).
The first subscript denotes the equation (a: continuity or ‘area equation’; q: momentum or
‘discharge cquation’). The second subscript denotes the variable (a:area and q: discharge)
in the case of main channel flow. The floodplain has only one equation and therefore the
notations used are LF and gF. For the CDG method, the values of these matrices are

defined as follows:

_ A,
e[ 0 (e
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[S,,q] = :fr(wuq w%fji%' fj)d\': [4.17]
[s,.]= ”( ., w%l‘(% f, )d\i [4.18]
[S..]= U“{m fj)+(wqué;;%fj)}dx:| 14.19]
[Say)={f11, 1, dx] [4.20]
[Saay,]= [ fu, 1) dr] [4.2i]
[Km]EU:w%naq(—gSn%f,-&-(gl—l—vz)f-j{x—_‘(—“;—’)([] [4.22]
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[K,.]= dx 14.24]
df, dr; df,
+0 — wqq(— gS‘,E' f, +(gH - VZ) . ))



[KW] =

[Kir]=

[Ker]=

X

Ax

2

e\

.
([ (2vane0)ts
. 3 ") dx

[ ‘
( (—'—?V, + D, +D{)-(1'-f-'- f;
.3 ‘ ) dx

(—'£f+fff,)
d J [

df,
+ 00— (wqq f. _(I: f +(an +2quq) e

)
)«

95

[4.25]

[4.26]

[4.27]

The contribution of the momentum transfer terms is reflected through the load terms.

r

/
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ddx

[4.28]
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df dH
Fo=4| /(D% B |y | 43l
o ” (( dx 2) dx "’)”} 1431

4.4 Determination of Jacobian
The solution of equation [4.11] requires an iterative solution, because | K| and {F}
depend upon the solution vector, { @}, In this study, a Newton-Raphson iteration scheme

was employed. The Jacobian was evaluated analytically as:

[(J]= [g{{zﬂ [4.32]

where: {R} is the residual vector and [J] is the Jacobian matrix.

The details of the determination of the residual {R} and Jacobian [J] are

presented in Appendix A.
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The convergence criteria was adapted after Hicks and Steffler, (1990) which was
hased on the root-mean square of the vector of corrections compared to a specified

tolerance. If

<'"tolerance' [4.33]

then the solution would progress to the next step.

A complete listing of the finite element program is provided in Appendix B.

4... Boundary and Initial Conditions

Boundary and initial conditions are required to close the mathematical model. In
this case the governing equations require that the initial values of discharge and flow area
he specified both for the main channel and the floodplain. The geometric data for the
compound flow cross section such as: the channel bed elevation; the floodplain bed
clevations; and the step or dike heights are also required. The channel roughness can be
specified through the Mannings n or through the relative roughness ..

The boundary conditions used in the model were problem specific. For subcritical
flow, one boundary condition is specified at each end of the main channel. Normally,
this would be a discharge at the upstream end and a water level or depth at the
downstream end. Also, one boundary condition, depth, is specified at the upstream end of
cach floodplain. For supercritical flow, two boundary conditions must be specified at the

upstream end of the channel domain.
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5.0 SIMULATION ANALYSIS
5.1 Introduction

This chapter examines, and critically analysces, the performance of the proposcd
mode] in simulating stage discharge relationships, through the testing of reported
laboratory data and field data. This includes the examination of both steady and unsteady
flows observed in laboratory. Throughout this chapter, the proposed coupled formulation
will be referred to as the CCDG 1-D model (Coupled Characteristic-Dissipative-Galerkin
1-D model).

As noted carlier, the main channel was modelled using the full dynamic equations
in a pscudo-conservative form, while the floodplains were modelled using a diftusive
wave model. All the tests were conducted with dependent variables for the main channel
being the area and discharge, while that of the floodplain was arca only. The discharge in
the floodplain was determined through the solution of the momentum c¢quation in the
floodplain oncc the floodplain depths had been established. The upwinding matrix and
upwinding parameter @ adapted after Hicks and Steffler (1992) were applied only to the
main channel equations. The upwinding matrix was updated at every time step and @ of
(.5 was used for all tests as discussed in Chapter 4.

The iterative scheme used the analytical CDG Jacobian. These details are outlined
in Appendix A. A specified tolerance of 1073 (as defined in equation [4.33]) was imposcd
on the model except for steady flow simulations where a coarse tolerance of (0.1, Most of
the tested problems converged in 3 to 4 iterations. Details of the initial and boundary
conditions are provided with each test.

The momentum transfer term M,, used to reflect the addition of the apparent shear
force in the CCDG 1-D was tested to sce how it affected the prediction of the steady state
and unsteady state stage-discharge relationships. The methods investigated included those
proposed b Prinos and Townsend (1984), Wormleaton and Merrett (1990) and

Christodoulou (1992). For easy reference, these models will be differentiated as CCDG 1-
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D (P-T) for the Prinos-Townsend model, CCDG 1-D (W-M) for the Wormleaton-Merrett
model and CCDG 1-D (C) for the Christodoulou model. All the three methods were
derived for symmetrical cases but both symmetric and asymmetric sections were tested in
this study.

Sensitivity analyses were also carried out to see how the coefficient of discharge
affects the lateral outflow or inflow into the floodplain of a compound channel and finally
the CCDG 1-D model was used to test flow through a breached dike and a meandering
channel to sce how well it predicts the behavior of flow in both the main channel and the

floodplain.

5.2 Verification of the Proposed Formulation for Steady Flow
5.2.1 Introduction

The sct of tests used in e analysis were mainly that reported from laboratory
data. Two different sets of experimental data were selected: the tests conducted by Prinos
and Townsend (1984), and data from the Wallingford Research Institute in the UK. All
data sets were obtained under uniform flow conditions. In order to study the impact of
including the apparent shear at the interface of the main channel and floodplain, the
CCDG 1-D model results were compared to the observed data. The observed discharges
have also been compared to discharges calculated from conventional methods. The
boundary conditions were adopted as area for both the upstream and downstream
boundarics. All the steady state runs were fully implicit with a coarse convergence

tolerance of (1.1,

5.2.2 Prinos-Townsend Experimental Data
Prinos and Townsend data were selected to test the CCDG 1-D model, because
their data included a roughness variation in the floodplain part of the compound channel.

Figure 5.1 shows the cross-section dimensions of the compound channel they used in
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their experiments. The main channei was 10.2 cm deep with the vertical to horizontal side
slope ratio of 2V:1H. The bottom width of the main channel was set at 20.3, 30.5, 40.6
and 50.8 ¢cm. In this study the data examined was that from the main channel whose
bottom width was 20.3 cm. The floodplains on either side, were 38.1 cm wide. The first
set of experiments tested on the model were performed with the main channel and
floodplains having the same roughness (n =0.011) and then the floodplain roughness was
varied to 0.014 and 0.022. The observed data were plotted together with the CCDG 1-D

model result e,

5.2.3 Methods Used for Comparison with CCDG 1-D model

The stage-discharge curves obtained using divided channel methods 2 and 3 and
the diagonal method were compared 1o the observed data. The divided channcl methods
were chosen because they are traditionally used in steady state compound {low
calculations, while the diagonal method is currently the best method in discharge
prediction in compound channels. The divided channel method 1 was omiued becazuse
methods 1 and 2 are similar in predicting the stage-discharge relationship. In computing
the discharge using these methods, the same compound channel conditions described in
the Prinos-Townsend experiments were used. The results obtained using these methods

are shown Jogeher with the CCDG 1-D model results.

5.2.4 CCDG 1-D Computational Model

The apparent shear stress models used in this study arc the CCDG 1-D (P-T)
model, CCDG 1-D (W-M) model and CCDG 1-D (C) model. The CCDG 1-D modcl
reduces to the divided channel method 3 when apparent shear stress is excluded from the
model. The compound channel conditions modelled were the same as those descnbed in
the Prinos-Townsend experimental setup. The results for the CCDG 1-D model and the

divided charnel methods are shown in Figures 5.2, 5.3 and 5.4 for the roughness in the
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floodplain of 0.011, 0.014 and 0.022 respectively. The discharge percentage error
associated with the CCDG 1-D models and the divided channel methods are shown in
Table 5.1 while Figures 5.5, 5.6 and 5.7 show the change of the percentage error with

relative depth HyZH. The percentage error has been calculated as:

AQ%=g'——_—&X1()() [5.1]
ob

where:

Qp = predicted or estimated discharge and

Qub = observed discharge.

The comparison of results for the diagonal method and CCDG 1-D model are
shown in Figures 5.8. 5.9 and Figures 5.10 for the roughness in the floodplain of 0.011,

.014 and 0.022 respectively.

5.2.5 Discussion of Results

The results obtained for uniform flow conditions were compared to the observed
data. The stage-discharge results generally show that the divided channel method 3, the
diagonal method and the CCDG 1-D models overestimated the discharge while the
divided method 2 underestimated the discharge over all stages. It is, however, noted that
the CCDG 1-D models overestimated the discharge by smaller values as compared to the
divided channel method 3 and roughly behaves in the same manner as the diagonal
method. Table 5.1 shows that for the floodplain roughness of 0.011, the divided channel
method 3 overestimates the discharge by 22.7 % at low stage and 2.4 % at high stage
while the worst of the three CCDG 1-D models overestimates by 16.7% at low stage and
by 0.5 % at high stage. The diagonal method overestimated the flow by about 15% for
low stages and underestimaics the discharge by 3.5 % at high stages. This means that
although the diagonal method 1« svpposed to approximate lines of zero shear, at low flow

over the floodplain, it does not perfcsm any better than the other methods. The divided
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channel method 2 underestimates the discharge by 19.7 % at low stage and 5.4 % at high
stage. The CCDG 1-D (P-T) model gave the best results because it only overestimated the
discharge by 10.6% at low stage and (.5 % at high stage. The CCDG 1-D(C) model gave
the highest overestimation of about 17 % fci the low stage among the CCDG t-D
models.

As the floodplain roughness was increased from 0.011 to (L022, the prediction of
discharge at low stage was poor by all methods. As the Table 5.1 shows, for the
floodplain roughness of (.022, the divided channel method 3 overestimates the discharge
by 62.5 % while the divided channel method 2 underestimates by 35.4 %. Among the
CCDG [-D models, the CCDG !-D (P-T) model overestimates by 37.5 % while the
diagonal method overestimates by 51.2 %..

As the stage was 1+ -eased, the divided channel methods and the CCDG 1-D
models predicted the flow  .ter. Figures 5.5, 5.6 and 5.7 show that, the trend of
percentage crror reduces with increasing relative depth. These figures also show that the
CCDG 1-D models and the diagonal methods generally perform better than the divided
channel methods because the CCDG 1-D models account for the effect of apparent shear
on the flow, while the diagonal method attempts to account the effect of apparent shear

by dividing the flow sections along lines of zero shear.

5.2.6 Wallingford SERC Flood Channel Facility Experimental Data

The data from Wallingford, UK (1992) were uscd in this study because it had
more observed data at low stages. Figure 5.11 shows the cross-scction dimensions of the
Wallingford experimental setup, which consisted of a symmetrical compound channcl
with a trapezoidal main channel and a rectzngular floodplain section. The bottorn width
of the main channel was 1.5 m and the channel depth was 0.15m. The main channel side

slopes had a ratio of 1V:1H. The floodplain bed width was 4.1 m wide on each side of
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the main channel. The channel bed slope was 0.001027. The model tests were performed
as the depths increased from (.159 m to 0.25 m.

The compound channel was smooth. The Mannings n for the channel bed had
different values for the bottom part of the main channel and the sloping part. It was given
as varying from (L.008S to 0.0122 for the sloping and the bottom parts respectively. The
Mainings roughness for the floodplain varied from 0.0098 for low stages to 0.0092 for

high stages.

5.2.7 Computational Tests

The compound channel conditions modelled were the same as those described in
the Wallingford experimental facility. In this study, the floodplain roughness was used
for both the main channel and the floodplain because the equivalent roughness for the
main channel was close to the floodplain roughness. The Wallingford data were
compared with results obtained using the divided channel methods, diagonal method and
the results from the three CCDG 1-D models. Figure 5.12 shows the comparisor. of the
stage-discharge curves with the observed data while Figure 5.13 and Table 5.2 show the
percentage error associated with discharge estimation for the CCDG models and the
divided channel methods. The comparison of the diagonal method and the CCDG 1-D

model arc shown in Figures 5.14 and 5.15.

5.2.8 Discussion of Results

As shown in Table 5.2, the divided channel method 2, underestimates the
discharge by 69.3 ¢ low stage and by 41.6 % at high stage. The divided channel
method 3, diagonal method and the CCDG 1-D models overestimate the discharge by
about the same amount of about 10% to 15 %. Generally the results follow the same
trend as the previous test, where the diagonal method and the CCDG 1-D models gave

better discharge prediction than the divided methods.
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5.2.9 Comparison of Methods
The steady state tests have shown that the divided channel method 2 underestimates
the discharge gencrally, while the other methods overestimated the discharge.

Although the CCDG 1-D model and the diagonal method showed better
prediction of the stage-discharge relationship over the traditionai methods, it also showed
that the two methods are also not entirely adequate. The inclusion of apparent shear in a
divided method (in this case CCDG 1-D), improved the prediction of the discharge but
this method only performed as well as the diagonal method. The tests also showed that
increased roughness in the floodplain reduced the accuracy of these methods in
estimating the compound channel discharge whether an apparent shear was included or
lines of zero shear were adopted. Overall, the CCDG 1-D models improved the discharge
prediction by 8-12 % (at low depths) for smooth surfaces and about 20 % for rough
surfaces over the traditional methods. These results generally show that the CCDG 1-D
model is as good as any existing method used for handling compound channel flow.

In flood studies, the issuc of overestimation of discharge may not be as important
as underestimation of stage. This is because high stages can cause cxcessive damage to
human developments during flooding. In this respect, it is therefore important not to
underestimate stage when modelling it. The results observed from the CCDG 1-D model
showed that for a given discharge the stage was generally under predicted, and a
frechoard should be considered when using this model for designing purposes. However
it is believed that better prediction of stage-discharge relationships may be achieved if
improved relations representing flow mechanism between the floodplain and main

channel are found.
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5.3 Verification of the Proposed Formulation for Unsteady Flow Tests

5.3.1 Introduction

¢t~
(9 ¥ie)

In this scction, the intention of the study was to examine the ability of
proposed model to simulate unstcady flow in compound channels. The tests involved
comparisons to laboratory data. In these tests, 8 of 0.5 and a tolerance of 10-5 were used.

The effect of momentum transfer and mass flow exchange on unsteady flow were
investigated. Sensitivity analyses were conducted to determined whether the mass flow
exchange was sensitive to the coefficients of discharge used. Also in this section the

performance of DWOFER and ONE-D models (CSCE, 1993) in simulating the tested

data was compared to the CCDG 1-D model.

5.3.2 Treske's Experimental Data

Treske's unsteady flow data (1980) was first reported by *he CSCE task
committee on river models (1987). The data was collected in an outdoor laboratory
facility by Treske in Germany. Treske conducted experiments on three different types of
compound channel configurations, namely, straight channel with and without floodplains,
meandering channels with and without floodplains, and straight channels with lateral
inflow. In this model the data collected on straight channels were used to test the model.

The cross-section of the straight channel is shown in Figure 5.16. The main
channel had a bedwidth of 1.25 m and was 0.39 m in depth. The left floodplain was 3.0 m
wide and the right floodplain was 1.5 m wide. The working length of the channel was 210
m. The bed slope was 0.019 % and the Manning roughness coefficient for both the main
channcl and floodplains was estimated to be 0.012 (Treske, 1980). The downstream
measurement station was 210 m from the upstream measurement station. At the
measurement stations, both the flow rate and stage were measured with time. Figures
5.17 and 5.18 show the depth and discharge inflow and outflow hydrographs of Treske's

tenth experiment (used in this comparison)
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5.3.3 CCDG 1-D Computational Model
The total length of the channel was divided into 14 elements, each of 15 m
length. Based on the travel time of the observed peak discharge to reach downstream, it
was established that the wave speed was about 1.17 m/s. Therefore a time step of 6
seconds was used in the simulation so that the Courant number was Icss than 0.5. This is
because the CDG scheme was found to achieve excellent phase accuracy while
successfully damping the shortest wavelengths when the Courant number was less than
0.5 (Hicks and Steffler, 1992). The model used an observed discharge hydrograph as the
boundary condition upstrcam and a stage hydrograph as the boundary condition at the
downstream boundary. The observed upstream discharge had to be split into three
discharges using the Manning formula to distribute the main channel and the floodplains
discharges. A Mannir.gs n of (0.012 was used for both thc main and floodplain sections.
The model predictions such as the flow depth at the upstream and the flow rate at the
downstream scction were compared with the measured data. The addition of the
momentum transfer terms were examined to sece how the routing of the flow was affected.
In this study unless otherwise stated, the term model discharge will refer to the total
compound discharge. Other discharges that will be referred to are the main channel and

floodplain discharges.

5.3.4 Sensitivity Analysis on the Coefficient of Discharge

The flow exchange between the floodplain and the main channel was linked
through a long or broad crested side weir for the flow into the floodplain and a side weir
of zero height for inflow into the channel. Because of certain factors, such as spilling of
flow at an angle and effect of submergence, a range of coefficients was adopted as stawed
earlier in section 2.5.3. For flow from the main channel into the floodplain, C; values
trom 1.45 to 1.90 were considered while the discharge coefficients associated with inflow

to the main channel were taken from 0.45 1o (0.64. Also the new method (shome, 1995)
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outlined in scction 2.5.6 was tested to sec how it performed against other methods for
estimating lateral outflow. Figures 5.19, 5.20 and 5.21 show the effect of different lateral
outflow discharge coefficients on total discharge when the inflow discharge coefficient is
kept at (.45, The two figures show that, the effect of variance is very minimal. Although
a high cocfficient of discharge, means more lateral discharge, the effect of submergence
may have been significant.

The new method also performed equally well. Varying the inflow discharge coefficients
in the floodplain, the solution also showed no sensitivity. Figures 5.22 and 5.23 showed a
slight effect around 160 minutes for a high value of Cq = 0.64. Figure 5.24 also show that
different coefficients of inflow discharge have no effect on the floodplain total discharge.
Therefore for all other tests, a C; value of 1.45 is adopted for the lateral outflow and Cy

value of 0.45 for the lateral inflow.

5.3.5 Discussion of Results

The computed upstream depth and downstream discharge were compared to the
observed data at these two boundaries. Treske's data werelimited in that there are no
intermediate points at which to compare results. All the CCDG 1-D models generally
reproduced the measured upstream depth very well as shown Figure 5.25. The
comparison of observed discharge and computed discharge at the downstream boundary
arc shown in Figures 5.26. Here the agreement of the discharge hydrographs was good
except for the fact that, the wave was slightly out of phase with the observed wave. This
was probably caused by the poor representation of the upstream boundary condition since
the distribution of flow between the channel and the floodplain had to be estimated. The
CCDG 1-D (P-T) overestimated the peak discharge by about 4.6 %. The model peak
discharge was 0.412 m3/s while the observed was 0.394 m3/s. The CCDG 1-D (P-T)
model was not affected by the transition associated with the beginning of the inundation

of the tloodplain.
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Treske's data were also compared with vie CCDG 1-D model results when the
momentum transfer terms were excluded from the model but the lateral inflow and
outflow were allowed. As shown in Figure 5.26, the model without the momentum
transfer terms gencrated a peak discharge slightly higher than the CCDG 1-1) model with
momentum transfer terms. The computed maximum peak discharge at the downstream
boundary was 0.427 m3/s while the observed was 0.394 m3/s. Thc relative error was 8.4
% which was higher than that obtained from any of the apparent shear stress models.
However, since the CCDG 1-D models also overestimated the peak discharge by about
4% 10 7%, it can be said that including the apparent shear had a marginal effect on

unstcady flow.

5.3.6 Selected Dynamic Models

A CSCE Task Force Committee on River Models (CSCE, 1993) ¢valuated some
dynamic models to see how they perform in modelling rivers with floodplains. They
tested these models with the same Treske data described in the previous section and some
of their results have been used to compare to the results obtained from the CCDG 1-D
model. Here, the results from DWOPER and ONE-D finite difference models were
compared to the CCDG 1-D model results. These models were chosen because,
DWOPER is widely used in United States of America and ONE-D is used widely in

Canada.

5.3.6.1.1 DWOPER Computational Model

In the CSCE study, the channel was subdivided into 14 reaches, each of 15 m
length. A time step of 1 minute (60 secs) and a 8 weighting factor of (0.55 was used. The
Manning n of 0.012 was modificd because the DWOPER modcl was developed io

simulate large rivers where flow depths are much smaller than the widths and the wetted
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perimeter (P) is approximated by the top width (Tw). To compensate for the under-

estimation of the wetted perimeter (Py, Mannings roughness n was modified by:

p 2/3
n,=n (——J [5.2]

The observed upstream discharge was input as the upstream boundary condition
and a rating curve based on observed flows and stage was used as the downstream
boundary condition. A table of Mannings n as a function of depth (H) was also input to
DWOPER. The transition from the main channel to the floodplain was made to change
gradually.

Figures 5.27 and 5.28 show the DWOPER results. The upstream depth was generally
simulated well as shown by Figure 5.27. The observed discharge at the downstream was
satisfactorily predicted by the DWOPER model. The peak discharge computed by the
model at the downstream boundary was found to be 0.379 m3/s which was an under-

estimation of 3.8 %.

5.3.6.2 ONE-D Computational Model

In the CSCE study, the channel was again divided into reaches of 15 m for the
ONE-D model. with a rating curve specified at the downstream end of the channel. A
time step of 1 minute and a 8 weighting factor of 0.55 was alsc used for this model. The
observed discharge hydrograph was used as the upstream boundary condition. Mannings
n was varied from 0.0116 to 0.0110 as the depth increased from the initial depth to the
top of the main channel. The main channel width was restricted to 2 m for the first 0.025
m above the start of the floodplain. The ONE-D model was also run with ficuitious lateral

withdrawal to partially account for the difference in volume between the observed inflow
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and outflow. The transition from the main channel to the floodplain was also made to
change gradually like the DWOPER model.

The results obtained using this model are also shown in Figures §.27 and 5.28.
Figure 5.27 shows that, like other models, there was a good agre :ment between the
computed and observed depth at the upstrcam station. The computed discharge at the
downstream boundary was also well predicted. The model computed peak discharge was

0.394 m3/s which was the same as observed.

5.3.7 Comparison of Computational Models

The results show that the CCDG 1-D model generally handled the transition of
flow from the main channel to the floodplain very well aithough its performance was
only murginaly improved when the momentum transfer terms were included in the model.
The CCDG 1-D (P-T) model performed best among all the CCDG 1-D models. It only
overestimated the peak discharge by 4.6 % at the downstream boundary. The CCDG 1-D
(W-M) and The CCDG 1-D (C) models overestimated the peak discharges by 6.8 %o and
5.3 %, respectively, at the downstream boundary.

The model without the transter terms overestimated the peak discharge by about
8.4 % at the downstream boundaries. The results showed that the inclusion of the
apparent shear stress models slightly increased the prediction capability of the observed
discharges in compound channels.

The performance of the CCDG 1-D model in comparison to the DWOPER and
ONE-D model was fairly good. The peak discharge at the downstrcam station was
slightly over predicted by the CCDG 1-D model as compared to the ONE-D model. The
reason for this difference may have been the poor representation of the upstream
boundary condition. It is also noted that the DWOPER and ONE-D models had to be

specifically adjusted and the channel modified to be able to model this flow. With further
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improvement, the CCDG 1-D model can perform equally well ia predicting compound

channel flows.

5.4.0 Illustration of Model Performance for Practical Situations.
5.4.1 Simulation of Flow through a Dike Breach into the Floodplain.

TheTreske (1980) channel and inflows were used to set up the hypothetical case
of flow through a breached dike. A dike of height 0.3 m was placed on the floodplain as
an extension of the channel side walls from the upstream boundary to the downstream
boundary. Beginning at 120 m from the upstream boundary, a breach was set such that
the height of the dike was reduced to 0.06 m. The length of the breach was 30 m, which
was exactly cqual to two element lengths. Treske's inflow hydrograph was used as the
upstrcam boundary condition. For illustrative purposes, the downstream boundary was
extended to 420 m from the upstream boundary and a constant depth of 0.215 m was used
as the downstream boundary condition. The same time step and upwinding coefficient
adopted for other tests was used. The flow was routed using the CCDG 1-D model for
219 minutes and results at 150 m the downstream from upstream boundary were plotted
and compared to the case when the breach was not present. Figures 5.30 to 5. 37 show

these results.

5.4.2 Discussion of Results

The CCDG 1-D results from the breaching of the dike were compared to the case
when the dike was not breached. As shown in Figure 5.30, the main channel discharge at
150 m downstream drops from 0.412 cms to 0.402 m3/s when the dike was breached.
This represented a reduction in discharge of 2.4 %. Figure 5.31 show that the depth along
the entire length of the channel was lowered when the dike breached. Upstream of the
breached dike, the depth reduced by about 2 %, but downstream of the breached dike the

depth reduced by about 1.2%. The discharge that flowed into the left floodplain flowed in
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the upstream and downstream directions as shown in Figure 5.32. Figure 5.33 shows also
that the depth hydrograph in the left floodplain increascd in the upstream and downstream
directions. The main channel discharge and depth distributions with time are shown in
Figures 5.34 and 5.35. These Figures show that the peak discharge and peak depth are
also reduced although by small percentages. Figures 5.36 and 5.37 show that there is
some distribution of depth and discharge in the floodplain as opposed to the case of no
flow associated with no breach conditions.

Although the amount of discharge passed into the floodplain was minimal in this
case, the use of computational model:- like CCDG 1-D model can be useful in prediction
of how the wave behaves in the main channel and the floodplain(s) when a dike breaches
in case of extreme floods. Specifically, it helps in assessing the effects of flood waters
passiug through breached dikes on unprotected arcas both upstream (due to potential
backwater effects) and downstream (due to the loss of flood storage arca, causing flood
peak attenuation). It is also pointed out that, although this model can model breached
dikes, it may not exactly reproduce the kind of situations observed in naturc. This is
because the flow may not flow far into the floodplain and the observed depth in the
floodplain may not be deep as observed in the CCDG 1-D model, when floodpiain

roughness is high.

5.4.3 Simulating Steady Flow in a Meandering Compound Channel

To test the CCDG 1-D model on simulating the stage-discharge relationship for
steady state in a meandering compound channel, Smith’s experimental set up (1978) was
tried. Figure 5.38 shows the plan view, dimensions and cross-section of the meandcering
compound channel Smith used. His experimental set up consisted of a valley of slone
0.001 and a sinusoid meandering channel of slope 0.00085 laid on a bed flume 24 m long
and 1.22 m wide. The channel had a bottom width of 0.122 m, top width of (.27 m and a
depth of 0.076 m with side slope ratio of 1V:1H.



113

In simulating this experiment, the cross-section representing the length of an
clement was adopted such that the cross-sections are perpendicular to the downstream
direction of flow and the main channel width varies gradually along the channel in the
longitudinal dircction. Because of a lack of information, the compound channel entrance
and exit lengths were approximated as 5.0 m and the left and right floodplain widths
were taken s shown in Figure 5.38. The valley slope was adopted as the slope of the left
and right floodplains and the floodplains widths and distances between the Cross-sections
were determined based on the dimensions in the original figures. For the simulation of
flow in a compound meandering channel, the effect of apparent shear stress was not
included in the CCDG 1-D model because available relations are only valid for straight
compound channels given that the flow interaction methods are entirely different in this
case. The roughness in the main channel used by Smith (1978) varied from 0.0138 to
0.0127 as the stage increascd while for the valley section of the compound channel, the
Mannings roughness varied from 0.0117 to 0.0114. In this study, an average Mannings
roughness of 0. 013 was used for both the main channel and the floodplain. The boundary
conditions were adopted as area for both the upstream and downstream boundaries. 'L he
CCDG 1-D model simulated results were compared to Smith's observed stage and

discharge.

5.4.4 Discussion of Results

The comparison of the CCDG 1-D model simulation results at end of the second
wavelength of the meandering channel and observed stage-discharge results are shown in
Figure 5.39. The sin -fation results shows a good agreement with the observed data,
although the CCDG 1-D model overestimates the observed discharge by about 12.5 % at
the low stages and 6.1 % at the high stages. The longitudinal distribution of discharge

shown in Figure 5.40 shows some oscillations in the left and right floodplain. This is



114
mainly due to the the fact that the width is always changing in the downstream divection.
The total discharge, although expecied to be constant, showed some small fluctuations.

The results obtained from this test on routing flow in meandering compound
channels using the CCDG 1-D model showed that the model requires further refining in
order to model meandering channels. In a general sense, the results showed that the
CCDG 1-D model could be a good tool in simulating stecady flow in meandering

channels.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this research project was to evaluate the potential for a new
coupled formulation of the equations of unsteady open channel flow in compound
channels capable of handling the transport of mass and momentum between a channel
and its floodplains. Considerable research effort has been devoted to the problem of open
channel flow in compound channels in the past, primarily focused on developing an
understanding of the flow structure and finding ways to improve the traditional methods
used for stage-discharge prediction. However most of the work to date has concentrated
on steady  state problems.

Unsteady flow modelling is essential to assessing the impact of flood mitigation
schemes, such as dikes, on flood hydrographs and flood levels if water resources
engineers are to be able to: assess the effects of such schemes on unproiected areas, both
due to potential backwater effects and reduced flood peak attenuation; reassess both the
adequacy of existing works and their increased impact cu .. protected areas; and provide
updated tlood forecasting information when flood coni:ol schemes fail, such as when a
dike is ovenopped and/or breached.

In this study a model of unsteady compound channel flow was formulated by
modeling the channel with the full dynamic, one-dimensional (St. Venant) equations and
by treating the floodplains as conveying channels with a diffusive wave approximation.
The connection between the three separate flow systems was achieved by adapting the

equations to include terms to account for mass and momentum transfer between the main



channel and the floodplains, while considering a diffusive wave approximation in cach of
the floodplains. The momentum transfer terms consisted two effects: momentum transfer
due to flow interaction (apparent shear); and convective momentum transport duc to
lateral outflow or inflow. Mass transfer to and from the channel was modelled in two
ways. First as a side weir and second based on a simple lateral momentum balance. The
resulting formulation provides a tramework for assessing various models of mass and
momentum transfer between the main channel and the floodplain for unsteady flow.

The resulting coupled formulation was solved numerically using the characteristic
dissipative Galerkin finite clement scheme, and was called the CCDG 1-D model. To
assess the performance of the proposed formulation, steady and unsteady flow tests were
performed on straight and meandering compound channels in a comparison to
experimental measurements. Steady flow results in straight compound channels were also
comparcd with conventional 'divided channel’ methods, including the more recent zero-
shear interface, or 'diagonal’, method.

The steady state tests in straight channels showed that the inclusion of the
momentum transfer terms, in the forin of apparent shear stress, improved :he predicted
stage-discharge relationship over that of the traditional divided channel methods, with
results being equally as good as those obtained using the diagonal method. It was found
that the results were similar for a variety of apparent shear stress models, specifically
those of Prinos and Townsend, Wormleaton, and Christoudolou. The proposed
formulation was a particular improvement over conventional divided channel methods for
the case when the stage in the floodplain was low and the floodplain roughness relative to
the main channel was high, improving the discharge prediction by 8-15 %.

A sensitivity analysis on the effect of the weir discharge coefficient on the mass
exchange between the main channel and the floodplain revealed that the solution was not
particularly sensitive to variations in this parameter. The results showed only a marginal

effect in the falling portion ol the flood hydrograph. The lack of sensitivity may have
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heen bhecause the lateral outflow into the floodplain became quickly submerged by the
floodplain flows being conveyed along the floodplain. The lateral discharge estimation
using the simple lateral momentum conservation approach was found to perform very
well. However it is stressed that there is no experimental data available with which to
compare the validity of either approach.
Unsteady flow tests were run for comparison with experimental measurements.
The proposed formuletion was also compared to the performance of two unsteady flow
models available in the public domain (DWOPER and ONE-D) which are based on
conventional divided channel methods. The CCDG 1-D model (using the Prinos
Townsend model 1o quantify the apparent shear effect) overestimated the peak discharge
by ahout 4.6 % while the DWOPER model underestimated the peak discharge by 38%.
The ONE-D model exactly predicted the peak discharge. For unsteady flow, the test
results showed that the inclusion of the momentum transfer terms affected the peak
discharge, marginally. Although the DWOPER and ONE-D models showed slightly
better results than the CCDG 1-D model, tit is stressed that modifications to the channel
geometry, such as a gradual transition of the main channel bank into the floodplain and,
in the case of the ONE-D model, flow withdrawal were required to achieve good results.
The CCDG 1-D model required no such modification. However, a possible disadvantage
of the CCDG 1-D model is that in coupling three separate flow systems, the flow
distribution hetween the main channel and the floodplains at the upstream boundary,
becomes a required boundary condition. Because this fiow distribution has not been
measured (nor is likely to be) this flow distribution must be approx‘mated by
conventional divided channel methods (at least at this time).
This study also illustrated that the proposed formulation has the potential to be
used to simulate flow onto the floodplain through a breached dike. This capability is very
important in that the proposed formulation model could help in determining the effects of

such a dike failure on both the flood wave itself and in terms of floodplain inundation.
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Accounting for the convective lateral momentum into the floodplain, showed a smal.
increment in lateral discharge to the floodplain on flow through a breached dike. This
means that in cases of large floods, the convective lateral momentum could be a
significant term in increasing the floodplain inundation.

The study has established a framework of studying the problem of mass exchange
between the floodplain and the main channel. This study has also shown that, the
floodplain can be modelled as part of a conveying compound channel instcad of as a
storage area and that the inclusion of the apparent shear force into the coupled
formulstion provides a compound channel flow model which is as good as any current
method in predicting the stage discharge relationshir in channels with inundated
floodplains. The demonstration of the coupled formulation for the breached dike scenario
showed the possibility of using it to investigate the behavior of the flood wave when a
dike is breached.

A preliminary icst on steady flow in a meandering channel, showed that the
proposed formulation shows promise for modelling fiow in meandering channel. The
simulation results showed a good agreement with the observed data, although the CCDG
1-D model overestimated the observed discharge by about 12.5 % at the low stages and
6.1 % at the high stages. Problems with mass conservation indicates that the proposed
formulation requires further development before being used to model mcandering
compound channels.

The CCDG 1-D model, is still limited to rectangular and trapczoidal cross-
sectional shapes but could be extended to other regular shapes, like parabolic cross-
sections. It, however, offers itself as a useful investigative tool in ptoviding some
preliminary answers on compound flow problems. As recommendations for future
research, it is suggested that the discharge coefficients used in determining lateral inflow
or outilow be further investigated, especially regarding the case of submerged side weirs.

The framework established to handle mass transfer between the main channel and the

146



147

floodplain nceds further development, especially in quantifying cross-over effects to
extend the model for 1..candering channels. Betore the proposed formulation can b«
applicd o nawral channels with confidence, field data is required to determine how river

asprct ratios, channel shape, relative roughness and sediment transport affect the flow in

compound channels.
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APPENDIX A

A.1 The Pressure Term in the Momentum Equation

The pressure force through a centroid of trapezoid can be expressed as:

P=PA=p.A
where:
P =pressure force acting through the centroid,;
P =hydrostatic pressure; and
Ye

= centroid of a trapezoid.

172 - KR 3
(B (),
’ 2 6 2 12

where:
=2, +7Z;.
Z;, Z; =the slopes of the trupezoid and
arca for trapczoid is expressed as:

2
A=BH+ZH

Then cquation [A.1] becomes:

The longitudinal momentum equation is given as

Q. o), oo

= A ( o~ S - Vx
ot ox & dx gALS % 9
and

The pressure term in equation [3.2] can the be rewritten for a trapezoid
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(A 1]

[A.3]

[A.4]

[A5]

(3.2

as:



d( AH ZH?\_ o ( AH ZH?\
IlA0 AH) 927 A6
()x( 2 ¢ 12) (7r(g 2 ) ( ) A6l

The last two terms in equation [A.6] are then expressed out as:

,’)(*’AHJ (A-a—H H‘M) -&[(BH+—H )-aﬂ+H—a-(BH+ZH )]
dx\ 2 dx ox) 2 ox ox 2

:ﬁBHa—H+£ZH259—}i+§BH—3—11+§H2—(1—B-+§-2112211
2 ox 4 ox 2 ox 2 dx 2 ox

= ¢l BH + - ZH
&( 2 )Bx 2 Bx 2 dx

(7( AH) k,Aaﬂ H® dB gZH_B_H_

ax\" 2 o a2 Tl (A7)
and
Substitutin equations [A.7] and [A.8] into [A.6] and rearranging yields:

Equation [A.9] is used in the pseudo-conservative momentum equation [ 3. ].

The momentum equation may also be written in a non-conservation form using:
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JA d ( V4 ) ( JH dB oH )
H—=gH—| BH+—=H" |=gH| B—+H—+ZH —
8 ox § ox 2 8 ox dx ox
oH .dB  ZH’ oH
=gl BH+ H H —+
g( ) ox i dx §75 2 av 1A 101
= ¢A JH +oH? 98 dB ZH oH
ox dr 2 9x
then
oH 0A ZH* 9H H® dB
A— =gH All
8 ox § ox 2 ox 2 dv ! l
A.2 Formulation of the Diffusive Equation.
The continuity and momentum equatuons for a diffusive equation is expesses respectively
as:
JA a0
AL ) 2.19
or ox ! ]
and
oH _
o [3.12]
where the friction slope (Sf) is defined using ¢onveyance (K) as:
. _ 90
.5f = 7{'—:— 'zl')bl
Substituting equation [3.13] for the friction slope in cquation [3.12] yields:
oH |00 ,
— =5 -E=E 3.18
ox ° K ! I

Differentiating equation [3.12] with respect to x gives:
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H __ 2000 , 200 9K [A.12]
dx” K° dx K ox

Multiplying equation [3.22] throughout by K%|Q| and writing an expression for aan
yields:
W _QK_K FH AL
dx K ox 2|0 ox’
Substituting equation [ A.13] into the continuity equation [2 19] yields:
dhL QoK K IH_ [A.14]
dr K dv Z|Q ox
For Mannings cquation {in S.1 units) K is given as:
K =L AR (3.17]
n
r=2 - 2 A [3.15]
PoB+H(I1+Z +4142 | B+HZ,
573
then K== [A.15)
n(B+HZ,,)
and
oK 5 AY? oA 2 A"z, OoH ,
e /£ R TS [A.16]
ox  3n(B+Hz,)" ox 2n(B+ Hz, )" ox

substituting equations [A.15] and {A.16] into [A.14] and simplifying, yields:
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OA 5, 0A 2,0 OJH_,JdH
or 3 0A 2AB+HZ,) dx ' ox [A.17)

For Chezy's equation,

AI’Z Ai/
k=CA C.AVg 7= CNg = A8
Vak = C.AVs (B+HZ, )" ﬁ(mnzm) |A-18]
and
dK 3 A" A 1 AY'Z,. OH
T =0 g = Cg - A.19
ox 2 \/E(B-»HZW)”' ox 2 ﬁ(B+HZ )7 o A9

JA Z oH d*H
ncd =D, — [A.20]

where D; is a diffusion coefficient adefined for Chezy'ss formula as:

2 43
8C:A (3.22]
20/ (B+HZ,,)

D=

and for Mannigs {formuia as:

A]()IR
s {3.23}
2n* (B+HZ,) |0

D=

Equations [A.17] and [A.20] can be represented by one equation in the form of:

JA JdA Z Q OJH IH
— ’v__ _ Cmcx
F A P TV TS e (3:21]
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o for Chezy”s is defined as:

?
a=s= 3.24
5 [3.24]
while for Mannings formula it is given as:
5
as== [3.23]

A.3 Determinatuion of Jacobian
The solution of equation [4.12] requires an iterative solution, becuase [K] and {F}
depends upon the solution vector, {@}. In this study, a Newton-Raphson iteration

scheme is employed and the Jacobian used in this scheme is evaluated analytically as:

[J]= [;l{{-(—l;;}}] [A.21]

where: {R) is the residual vector and [J] is the Jacobiun matrix.

The equations needed tobe solved can be put in the fonn below:

oo} oF} iy .
St {G.}={0} [A.22]

Deriving the weak statement from equation [A.22] yields:

ki '7’

J ({ 2199, _ Q%J{F,} +[\,‘,i]{<;i}}1 = {0} ---{xrk,]{F,.}|(f [A.23]

{

where: [v,] is the test functin matrix.

For Bubnov-Galerkin approximation, the test function is given as:
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=[] [A.24]

The rest function in Petrov-Galerkin formulation is presented as:
dfy s
[vu]= [f‘,]+[ : ][V‘ g [A.25]

The test function of the Petrov-Galerkin formulation will hencefort be used to derive the

the residual {R). Therefore equation [A.23] becomes:

([1rd e B o )22 - 2 e+ [ e o e

dx

de={0}+ (1, {F,} 1A26]

([f‘,.] + [5h][w,m]){c:}

dx
The (@j) is defines as:
{o.}=[r,]{¢,} [A.27)
Then equation [A.26] becomes:
e
20 e[ B fwa e jae=torfe e,

dr
(i) 2= [w.ifie)

[A.28)




Equation [A.28] can be rewritien as:

[s‘,]d{‘p} +{K,}={0}+ BT

[su]; J ([ 10 U]+[‘I(L }[Wmi][f,-j])ix

[FEAGRES LAY

L dx
{K,}= dx+B.T

v (ne), [ S fw.)z6),

dx

B.T=[f,){F} |

To accourt for implicitness, {Ky} is define as:

{K,}=6{K""}+ (1- O)K;}

and
()¢/ _ ¢;1+l _ ¢;n
ot At
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[A.29]

[A.30]

[A.31]

[A.32]

[A.33]

[A.34]

Substituting cquations [A.33] and [A.34] into equation [A.29] and doing some

rcarrangement yields:

[s.){er}+0a{K; "3 -[s, [{o;}+ (- )A{K] } ={0} + BT

Then the residual { Rg} becomes:

[A.35]
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{R}={s,o;'}+oa{rr}-{F} IA.36]
wherg:
IF}=[s,[{e;}-(1-0)a{K]} +BT. [A.37)

The residual {Ry. }={0} when the problem is solved.

From equation [A21] the Jacobian is then calculated as:

R, iR, .
- 2 -5 i

[ka] =

a{¢" {[S‘U]{ }}+9A' Af au}IKM,} [A.39]

Finding the derivative of the first .-+ of equation [A.39] leads to:

S]_r 10 A.40)
¢~+1}{[ ‘,]{ }} W{% } [ ] {m} [tz] |A.40]

The mass matrix [Sy;] has no {¢} in it, therefore its derivative with respect to {¢} is zero.

The derivative of the sccond part is given as:
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Jd d o
¥’
() ¢7»l}{Kl } A,al¢l+l {K }
((_ar, 3F), 0, 2
G } 3]
= OAr +[wW,, ][df ]a{;"};r 3{1':“ §
: [A.41]
dfbni a{Gi}n
I ¢y is define as tollows:
0,=[r,]{] [A.42]
a9, 1.y e}
Then, _-80),"”_[f"]ﬁ{ff){'”}—[f"] [A.43]
o\F} _or, 00, _[aF ] Add
o] a¢ farra ey U A 44
oG} _aG, s, _[aG] .
. i, A.43]
{d’/ } a¢ ad): _a¢j_[ ",] A%

Theretore,



[df ][ ‘[ ,1] [fh LB«p ] f,,

sl - )
AKCI N o[ ] aF.-,J[df,n
} dx || 99, J dx J

b e 2
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dx
[A.46]

Substituting cquations {A.40] and [A.46] into equation [A. 39] yiclds the Jacobian as:

[94]

where:

5
e

[S, ]+ 6415
HE,] { .M][r,,]
| o B e

b (dx

[A.47]




[dF, OoF, dF, dF,]
A, 0A, 00, OA,
JF, OJF, OF, OF,
JA, 0A. 3Q. OA,
JF, dF, OF, dF,
JA, A, 00, OA,
JF, dF, dF, OdF,
| 0A, O0A. 00, OA, ]
[0G, 8G, dG, dG,]
dA, 0A, 9¢ OA,
G, dG, 9G  9G,
0A, A, 0Q. OA
3G, 9G, 9G, G,
OA, 0A. 0Q. OA,
G, 9G, 0G, oG,
| 04, O0A. 90. OA, |
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[A.48]

[A.49]
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APPENDIX B

krxxx*xx+*PROGRAM MAIN WHICH WRITES THE MASS ELEMENT MATIX**#*x*«xs

PROGRAM ELEMENT MASS MATRIX

IMPLICIT REAL *8(A-H,0-2)
CHARACTER*12 FILES5,FILE6

DIMENSION RHS(200),P2(200),DPHI(200),ES(8,8),FCL(200),FCR(200),
+P3(200),P4(200),TH(200),20(200) ,Ho(200),TZ2(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),O0MEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),EL.VRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(2030),X1.(290),GJC(200,200),A01d(200)
COMMON NODNUM{(200,2),ELVMc(200},ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200},Q0PHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200), Hcnew (200}, HLnew(200)
COMM.! ALnew(200),ARnew(200),QLnew(200), QRnew (200}, HRnew(200)
COMMON QfL(200),QfR(200), AMTR(200}, AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RH0,21,22,23,724,H01d(200),COEFF, ITAA,

+ Qt(200),Qtr(200),VXL(200),VXR(200),CML(200),CMR(200),CFl,CF2,

+ PARF(200,2),PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+ HRSTEP(200),CASEL(200),CASER(200) ,WALL

PRINT *, 'GIVE DATA FILE NAME '
READ(*, ' (A} ') FILES

PRINT *, "' '

PRINT *, 'GIVE OUTPUT FILENAME'
READ({*, ' (A) ') FILE®6
OPEN(UNIT=5, FILE =FILES, STATUS='0OLD"')
OPEN(UNIT=6, FILE=FILE6, STATUS="'UNKNOWN" )

DATA DPHI/200*0.0D+00/

CALL INPUT(NSTEP,NITER, TOL,MTD,K, KUW, KLP,KFL, Cr,DT, NGP, NQc,
+ IY1l,IY2,1IY3,IY4,1IY5,1IY¥6,1Y7,1I¥8,IY9,IY10,IvV11,1IY12,1IY13,1IY14,
+1y15,1IY16,1IY17,1IY18,1IY19,1IY20,1IY21,IY22,1IY23,1IY24,1Y25,1Y26,
+ IY27,1Y28,JQF, ITAO, T™M,DST, TAG1, TAG2, PET)

COMPUTE THE MINIMUM ELEMENT LENGTH (DXMIN)

WRITE(6,12)THETA
WRITE(6,13)DT

FORMAT(/6X,'DX IS = ',F12.2,1X,'M")
FORMAT(/6X, 'THETA IS = ',F3.1)
FORMAT(/6X, 'DT IS = ',F8.2,1X%,'SEC")

GRAV=5.81D+00
RHO=1000.0D+00
NTRY=0

NTEST=0

T = 0.0D+00

Z= 21 + 22
CALL SLOPE(P2,P3,P4,

READ ESSENTIAL BOUNDARY CONDITIONS***
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WRITE(6,314)
FORMAT (/2¥%, *“NATURE OF BOUNDARY CONDITIONS')

READ(S,*)IBC(1),IBC(2),IBC(3),IBC(4),NBCUS,II
WRITE(%,315)IBC(1),IBC(2),IBC(3),IBC(4),NBCUS,II

Do 310 I=1,NBCUS

READ (S5, *)TH(I1),2o(I)
WRITE(6,313)1,TH(I),Z20(I)
CONTINUE

READ(S5, *)IBC(5),IBC(6),IBC(7),IBC(8),NBCDS, III
WRITE(6,315)1IBC(5),IBC(6),IBC(7),IBC(8),NBCDS,III

Do 312 I=1,NBCDS

READ(5, *)T2(I),Ho(I)
WRITE(6,313)I,TZ2(I),Ho(I)
COMNTINUE

FORMAT (2,6 (2%,1I3))
FORMAT (2X,12,F10.1,3(2X,F10.3))

WRITE(6,316)
FORMAT (/2¥, 'INITIAL CONDITIONS')

IF(MTD.EQ.2) THEN

WRITE(6,317)
FORMAT (18X, 'AL', 12X, 'Amc',10X, 'Omc', 12X, 'AR" )
ELSE

WRITE (6,318}

FORMAT (18X, 'Amc', 12X, 'Qmc'}

ENDIF

CALL CHPROP (IELNO,NITER,NTEST,T,DPHI,NTRY,MTD, K, P2,P3, P4,
+ KLP,NQc,JQF, ITAO, TAG1, TAGZ, PET)

DO 600 N = 1,NSTEP

T = T + DT
T. = ELVLP(1)+HLSTEP(1)-ELVMc (1)
™ = PAK(1,2) + Z2*T1

CALL INTFRPO(TH, Zo,T,NEBCUS, UNK1, TM)
IF((IT.EQ.1).AND. (K.EQ.2))THEN
PHI{1)=UNRK1*PAR({1, 2)
Acnew(1)=PHI(1)
Hcnew (1Y =UNK1
FLSEI¥F,(iT1.EQ.2) .AND. (K.EQ.2))THEN
PHY 2. =UNK1
ELSRIF{(IT.EQ.1) .AND.(K.EQ.4))THEN
[F{UNKIl.GT.T1)THEN
ATF= AR(1,2)*T1 + 2*T1**2/2.0
!Nz UNK1 - T1
ATOP = HN*Tw
0 = ATP 4+ ATCP
EL.'E
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PHI(2)=UNK1*PAK.{,2) + Z*UNK1**2.2.0
ENDIF

Hcnew (1) =UNK L

Acnew (1)=PHI(2;

ELSE

PHI(3) = UNK1

ENDIF

TIML=T/i™
WRITE(6,115)TIME, ATP,HN, ATOP, PHI(2), Hcnew(1l),Acnew(1)

HSTEP=ELVLP{(1)}+HLSTEP(1)-ELVMc (1)

IF(II.EQ.2)THEN

CALL ONITIAL(UNKI1,P2,P3,P4,HSTEP, TOL,N,COTR}
IF(COTR.EQ.1.0) GO TC 700
ENDIF

Tl= ELVLP (NNODES)+HLSTEP (NNODES) -ELVMc (NNODES )
Tw = PAR(NHNODES,Z2) + 2Z*Tl

CALL INTERPO(TZ, Ho, T,NBCDS, UNK1, ™)
IF((III.EQ.1).AND.(K.EQ.2) THEN

PHI (NNODES*2-1)=UNK1*PAR (NNODES, 2)
Acnew (NNODES ) =PHI (NNCDES*2-1)

Hcnew (NNODES) =UNEK1
ELSEIF((III.EQ.2) . .AMD. (K.EQ.2))THEN
;HI{NNODES*2) =UNK1
ELSEIF((III.EQ.1).AND. (K.EQ.4)YTHEN
IF(UNK1.GT.T1)THEN
ATP=PAR(NNODES, 2})*T1 + 2Z2*T1**2/2.0
HN= UNK1 - T1

ATOP -: HN*Tw

PHI (NNODES*4-2)= ATP + ATOP

EI SE

FHI (NNODES*4-2)=zUNK1*PAR(NNODES, 2) + Z*UNK1**2/2.0
ENDIF

Hcnew (NNODES) =UNK1

Acnew (NNODES ) =PHI (NNCDES*4-2)

ELSE

PHI (NNODES*4-1) = UNK1

ENDIF

WRITE(6,115)TIME, ATP, HN, ATOP, PHI (NNONDE&*4-2), Hcrniew (NNODES ),
+ Acnew (NNODES)

IF(II.EQ.1)THEN
T2 = ELVLP(1)+HLSTEP(1l)-ELVMc (1)
IF(Hcnew (1) .LE.T2)THEN

HLnew(l) =HLnew (1)

PHI(1)=PHI(1)

ELSE

Hlnew(1l)=Hcnew(1l) - T2
PHI(1)=HLnew(1l)*PARF(1,2) + Z2*HLnew(1l)**2/2.0
ENDIF

T3 = ELVRP(1)+HRSTEP(1l)-ELVMc (1)
IF(Hcnew(1l).LE.T3)THEN

170
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HEnew (1) =HRnew (1)
PHI1(4)=PHI(4)
ELSE
HRnew(1l)=Hcnew(1l)-T3
PHI (4)=HRnew(1)*PARL(1,2) + Z4*HRnew(1l)**2/2.0
ENDIF
ENDIF

e

IF(JQF.EQ.1)THEN
T4 = ELVLP{NNODES)+HLSTEP (NNODES) -ELVMc (NNODES)
IF (Hcnew (NNODES) .LE.T4)THEN
HLnew (NNODES) =HLnew (NNODES)
PHI (NNODES*4-3)=PHI (NNODES*4-3)
ELSE
HLnew (NNOLCES) =Hcnew (NNODES) - T4
PHI (NNODES*4-3)=HLnew (NNODES) *PARF (NNODES, 2) + 2Z3*
+ HLnew (NNODES) **2/2.0
ENDIF

TS5 = ELVRP(NNODES)+HRSTEP (NNODES) -ELVMc (NNODES)
IF (Hcnew (NNODES) .LE.T5) THEN
HRnew (NNODES ) =HRnew (NNODES)
PHI (NNODES*4)=PHI (NNODES*4)
ELSE
HRnew (WNODES*4) =Hcnew (NNODES*4) -T5
PHI (NNODES*4) =HRnew (NNODES) *PARL (NNODES, 2}  + 2Z4*
+ HRnew(NNONMES)**2/2.0

ENDIF
C ENDIF
C JJ=NNODES-1
C PHI (NMODES¥4 -3+ PHI(JJ 2 3)
. HLnew (NNODES) =PHI (NNODES*4-3) /PARF (NNODES, 2)
C PHI (NNODES*4)=PHI(JJ*4)
C ALnew (NNODES) =PHI (NNODES*4-3)
C ARnew (NNODES) =PHI (NNODES*4)
C HRnew {NNODES) =PHI (NNODES*4) / PARL (NNODES, 2)
C ENDIF
¢
C WRITE(6,115)TIME, PHI (NNODES-3), PHI(NNODES-2), PHI (NNODES) ,
C + HLnew (NNODES), HRnew (NNODES) , Acnew (INNODES)
115 FORMAT (2X,7 (2X,F10.3))
IF(T.EQ.DT)THEN
WRITE(6,430)
IF(II.EQ.1)THEN
WRITE(6,435)
ELSE
WRITE(6,436)
ENDIF
ENDIF
420 FORMAT (/2X, '**** SOLUTIONS AT DIFFERENT TIMES *****')
43% FORMAT (/2X, 'STAGE HYDROGRAPH IS INPUT UPSTREAM')
436 FORMAT (/2X. 'DISCHARGE HYDROGRAPH IS INPUT UPSTREAM')
C

IF(T.EQ.DT) GO TO 225

220 CALL CHPROP (IELNO,NITER,NTEST,T,DPHI,NTRY,MTD, K, P2,P3, P4,
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+ KLP,NQc, JQF, ITAO, TAG1, TAG2, PET)}
CONTINUL
FORMAT(2X,F6.3)

CONTINUE

CALL ASSEMB(FCL, FCR, DT, NTEST,MTD, K, KUW, P2, P3, P4,
+ KLP,ES, KFL,NGP, T)

CALL ASSJACOB(DT,MTD,K,KUW, P2, P3, P4, ES, KLP, KFL, NGP, HSTEP, T)

CALL RESIDUAL(FCL, FCR, RHS, TOL,DPHI,NITER, NTES'[,
+ NTRY,MTD, K)

CALL DEPTH(NTEST,T,K,MTD, TAG1, TAG2)

T2 = ELVLP{1l)+HLSTEP(1)-ELVMc (1)
T2 = ELVRP(1)+HRSTEP(1)-ELVMc (1)
IF(II.EQ.2)THEN
IF (Hcnew (1) .LE.T2)THEN
HLnew(1l)=HLnew (1)
PHI(1)=PHI(1)
HRnew(1l)=HRnew (1)
PHI(4)=PHI(4)
ELSE
HLnew(1l)=Hcnew(1l)-T2
PHI(l)=HLnew(1l)*PARF(1,3) + Z3*HLnew(1)>*2/2.0
HRnew (1) =Hcnew(1)-T3
PHI(4)=HRnew(1l)*PARL(1,2) + Z4*HRnew(1)**2/2.0
ENDIF
ENDIF

CALL QFLPIL? >4, KLP, TM, JOF, TAG1, TAGZ)
IF(NTEST

IF (NTF
WRITE!

FORMAT. , . ', 2%, '# OF ITER. ARE',2X,14)
GO TO
ENDIF

IF((N.EQ. WL.EQUIY2) LOR.{N.EQ.IY3) .0OR.(N.EQ.IY4) .0OR.
+ (N.EQ.IYS).OR. (N.EQ.IY6).0R.(N.EQ.IY7).OR.(N.EQ.IY¥8).0R.
+ (N.EQ.IY9).OR.(N.EQ.IY10).OR.(N.EQ.IY11l).0OR.(N.EQ.IY12).0F.
+ (N.EQ.IY13).0OR.(N.EQ.IY14).0R.(N.EQ.IY15).0R.(N.EQ.IY1l6).0R.
+ (N.EQ.IY17).0R.(N.EQ.IY18).0R.(N.EQ.IY19).0R.(N.EQ.IY20).0R.
+ (N.2Q.IY21).0R.(N.EQ.I7T22).0R.{(N.EQ.IY23).0R.(N.EQ.IYZ24) .0OF.
+(N.EQ.I1Y25).0OR. (N.EQ.IY26) .0OR.(N.EQ.IY27).0OR.(N.EQ.IY28})THEN

WRITE(6,460) N,NTRY
WRITE(6,470)TIME

IF(MTD.EQ.2) THEN
WRITE(6,464)
ELSE
WRITE(6,462)
ENDIF
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NS 450 I=1,NNODLC
DIST=PAR(I, 1) /DET
Qt(I)= PHI(I*K-1)+QLnew(I)+QORnew{l)
QtF(1)= QOLnew(I)+JRnew(I)
IF(MTD.EQ.1)THEN
WRITE(6,465)DIST,Hcnew(I),PHI(I*K-1),PHI(I*K)
ELSE

C WRITE(6,465)DIST,Hlnew(I),Hcnew (1), HRnew(I), PHI(I*K-23),
C + PHI(I*K-2),PHI(I*K-1),PHI{I*K),QLnew(I),QRnew(I),
Cc + AMTL(I),AMTR(I)
C
WRITE(6,465)DIST,HLnew(I),Hcnew(I),HRnew(I),Qt (I),PHI(I*K-1),
+ QtF(I),QOLnew(I),QRnew (I}
C
ENDIF
450 CONTINUE
ENDIF
NTRY =0
NTEST=0
C
460 FORMAT(/2¥%,'N',16,2¥, 'NTRY= ',12)
462 FORMAT (SX, 'DIST',7x, 'Hmc',7X, 'Amc', 9%, 'Omc')
C464 FORMAT (%X, 'DIST',7X, 'HL',9X, 'Hmec',S6X, 'HR', 10X, 'AL', 10X, 'Amc ",
C + 93, 'Qmc',9X, *AR',9X, 'QLF',9X, 'QRF"*, 11X, 'MTL"', 9X, *MTR")
C
464 FORMAT (%X, 'DIST',5X, *HL', 11X, 'Hnc', 10X, 'HR', 8%, 'Qtctal "',
+ 7X,'0Omc',8¥, 'QtFlp', 8%, 'QLF',9X, 'ORF')
~
445 FORMAT (2¥,¥6.1,11(2X,F10.4))
470 SORMAT (22X, 'TIME = ',F10.4)
600 CONTINUE
700 STOP
C
END
C
SUBROUTINE INTERPO(X,Y1l,T,NBCUS,UNK1, TM)
IMPLICIT REAL *8(A-H,0-2)
DIMENSION X(200),Y1(200)
C
COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA,GRAV,001d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, I'NODES, NELTYP (200),XL(200),GJC(200,200),A0ld(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMCN ORM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
CUMMCN Acnew(200),0Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMOY ALnew(200),ARnew(200),Q0Lnew(200),QRnew(200),HRnew(200)
COMMON QfL{(200),QfR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL{(200),DHR(200),RHO,21,22,23,24,Hold(200) . COEFF, ITAA,
+ Qt(200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+ PARF(200,2),PARL(200,2),DXL(200),DXR(20.},DXM(200), HLSTEP (200,
+ HRSTEP(200),CASEL(200),CASER(200) ,WALL
C
C WRITE(6,1)T, TM
1 FORMAT(2X, 'I AM IN SUBPOUTINE INTERPO',2(2X,F10.6))
C

TIME=T/TM
IF(TIME.EQ.X(NBCUS))THEN
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JNKi= Y1 (NECUS)
ELCEIF(TIME.GT.X (NECUS) ) THEN
WRITE(6,10;
FOFMAT (2%, 'EXTRAPOLATION HAS BEEN REQUESTED')
ELCE
WRITE(&,15)%4(1),Y1(1)
DO 20 TI=1,NBCUS-]
IF(TIME.LT.X(I+1))THEN
UNK1= Y1(I) + (TIME -X(I))*(Y1(I+1) - Y1(I})/(X(I+1) -X{I))
WRITE(6,15) X(I+1),Y1(I+1)
GO TO 25
ENDIF
CONTINUE
ENDIF
FORMAT (2X,4(2%,F10.3))

RETURN
EMND

SUEROUTINE QNITIAL(UNK1, P2, P3, P4.HSTEF, TOL,N, COTR)
IMPLICIT REAL *8(A-H,0-Z)
DIMENSION P2(200),P3(200),P4(20v)

COMMONM THETA,CN1(200),CN2(2C0),CN3(200),O0MEGA,GRAV,Q0ld(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200) ,GJC(200,200),A01d(200)
COMMON NODNUM (200, 2) , ELVMc (200) ,ELVLP(200),PAR(200,4), PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200),HRnew(200)
COMMON QfL{200),0fR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,Z21,22,23,24,Hold(200),COEFF, ITAA,

+ Ot (200),Q0tF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,

+ PARF(200,2),PARL(.00,2),DXL{200),DXR(200) ,DXM(200),HLSTEP(200),
+ HRSTEP(200),CASEL(200),CASER(200),WALL

WRITE(6,1)N,UNK1
FORMAT(2X,'I AM IN SUBROUTINE ONITIAL',6 I3,F10.4)

Hcenew(1)=PHI(2)/™AR(1,2)

I=0

I= I+1
IF(I.GT.100)THEN
WRITE(6,15)1
COTR=1.0
WRITE(6,10)N, X, Hcnew(1)
GO TO 20
ENDIF
COTR=2.0

PHI(2)=PAR(1l, 2) *Hcnew(1l)

IF (Hcnew (1) .LT.HSTEP) THEN

RC= PHI(2)/(PAR(1,2)+2.0*Hcnew(1))
ELSE

RC = PHI(Z2)/(PAR:¢'® +2. " ASTEP)
ENDIF
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Al=Hcnew(1l) - HSTEP
IF(A1.LT.0.0D+0)THEN
AL=0.0D+00C

AR=0.0D+0C0
RL=G.0D+00
RR=0.0D+00
GO TO 3
ENDIF

AL =PARF {1, 2)*Al
AR=PARL(1,2)*Aal
RL= AL/ {(PARF(1,2' +Al)
RR=AR/ (PARL (1,2, +Al)

ERROR=0.0D+"70
PHI(3)=PHI(2)*RC**0.66667*P2(1)**0.5/CN1(1)
QL=AL*RL**0.66667*P3(1)**0.5/CN2(1)
QR=AR*RR**0.66607*P4(1)**0.5/CN3(1)

(V3]

2

H=UNF1-PHT (3)-QL-QP
Acnew(1)=PHI(2)

o)

ERROR=ARBS (X)

IF(ERROR.ZT.0.001)THEN

Hcnew(l)= Hcnew(l)+ 0.5*X
IF(N.EQ.510)THEN
WRITE(6,10)I X,Hcnew (1)
ENDIF

GO TO 2

IIDIF

IF(Hcnew(l) .LT.HSTEP)THEN

HLX¥=0.0D+00

HRX=0.0D+00

ELSE

HL¥=AL/PARF (1, 2)

HRX=AR/PARL(1,2)

ENDIF

OO0

IF(N.EQ.300)THEN
WRITE(6,10)I,UNK1,PHI(3),0QL,QR
WRITE(6,10)I,Hcnew(1), HLX, HRX

8 ENDIF

1 FORMAT (2X,1I2,4F15.4)

15 FORMAT (2¥, 'NUMBER OF ITERATION EXCEEDS',I2)
20 RETURN

END

ONoNONOND!

C
C ***x CALCULATING DEPTH AND VELOCITY FOR THE PURPOSE OF CALCULATING
DT****

SUBROUTINE CHPROP(IELNO,NITER,NTEST, T,DPHI,NTRY,MTD, ¥, P2, P53, b4,
+ KLP,NQc,JQF, ITAC, TAG1, TAGZ, PET)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION DPHI(200),P2(200},P3(200),P4(200;

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV, 0old(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
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COMACH HNELEM, NHODES, NELTY P (200) , XL (209) ,GJC(2030,200),201d(200)
COMMON NODNUM (200, 2) , ELVMc (200) , ELVLP(200),rAR(200,4),PHI(200)
COMMCH QRM(200),QLM(200),APHI(200),CPHI(200),ARM(200), TETA,FC(200)
coMM”:l Acrniew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew (200)

coMM 1 ALnew(200),ARaew(200),0Lnew(200),0Rnew(200),HRnew(200)
coMr. 1 QFfL(200),0fR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMM/ '] DHL(200),DHR(200),RH0,21,22,23,24,Hold(200), COEFF, ITAA,

+Qt (2.0),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,

+ PARF(200,2),PARL(200,2),DXL(200),DXR(200),D:M(200),HLSTEP(2060),

+ HRSTEP(200),CASEL(200),CASER(200),WALL

REVISE PHI BY ADDING DPHI (DPHI=0 FCR FIRST TRIAL)

WRITE{6,1)
FORMAT (2X, 'I AM IN SUBROUTINE CHPROP')

IF((NTEST.EQ.0) .AND . (T.8EQ.0.0D+00) ) THEN

ne IELNO = 1,NELEM

DO 5 J= 1,NELTYP(IELNO)

CALL AREAS (IELNO,J,NQc, P2,KLP, TAG1, TAG2)
IF(MTD.EQ.2)THEN
HLnew (NODNUM(IELNO,J)) = ALM{NODNUM(IELNO,J))

PHI { (NODNUM (IELNO, J)) *K-2) = Acnew{(NODNUM(IELNO,J))
PHI ( (NCDNUM{IELNO, J))*K-1} = Qcnew(NODNUM(IELNO,J))
HRnew (NODNUM(IELNO, J)) ARM (NODNUM(IELNO, J) )

Ucnew (NODNUM(IELNO,J)) = PHI({NODnNUM{IELNO,J))*K-1)/
+ PHI((NODNUM(IELNO,J))*K-2)

PHI ( (NODNUM({IELNO,J)) *K-3)= HLnew(NODNUM(IELNO,J))*
+ PARF((NODNUM(IELNO,J)),2) + 23*HLnew(NODNUM(IELNO,J))}**2/2.0

ALnew (NODNUM(IELNO, J) ) =PHI ( (NODNUM(IELNO,J)) *K-3)
ZLF=DSQRT (1.0 + Z3**2)

R=PHI ( (NODNUM(IELNO, J) ) *K~-3) / (PARF( (NODNUM(IELNO,J) ), 2) +
+ HLnew (NODNUM(IELNO,J)) *ZLF)

IF(R.EQ.0.0D+00)THEN
VEL=0.0D+00
QOLnew (NODNUM(IELNO, J) )=0.0D+00
GO TO 11
ENDIF
IF(KLP.EQ.0)THEN
CS= 5.75*DLOG10(R/CN2{IELNO)} + 6.2D+09
VEL=CS*DSQRT(GRAV*R*P3 (IELNO) )
ELSE
VEL=R**0.667*P3(IELNO)**0.5/CN2 (IELNO)
ENDIF
QLnew (NODNUM(IELNO, J))=PHI( (NODNUM(I®LNO,J))*K-3)*VEL
CONTINUE

PHI ( (NODNUM(IELNO,J)) *K) =Hknew (NODNUM (IELNO,J))*
+ PARL ( (NODNUM(IELNO,J)),2)+ Z4*HRnew(NODNUM(IELNO,J))**2/2.0

ARnew (NODNUM (IELNO, J) ) =PHI ( (NODNUM(IELNO,J) ) *K)
ZRF=DSQRT(1.0 + Z4**2)
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R=PHI { (NODNUM{IELNO, J;)*K)/ (PARL ( {(NODNUM(IELNQ,J})), 2}

+ HRnew (NODNUM(IELNO, J)}*ZRF)

IF(R.ED.0.0D+0C)THEN
VER=0.0D+00
QRnew (NODNUM({IELNC, J))=0.0D+00
GO TO 13
ENDIF

IF(KLP.EQ.0)THEN

CS= 5.75*DLOG10(R/CN3(IELNC)) + 6.2D+00
VER=CS*DSQORT (GRAV*R*P4 (IELNO) )
ELSE
VER=R**0.667*P4 (IELNO)**0.5/CN3(IELNO)
ENDIF

QRnew (NODNUM (IELNO, J) ) =PHI ( (NODNUM(IELNO, J) ) *K) *VER
CONTINUE
WRITE(6,15)IELNO,J, PHI ( (NODNUM(IELNO, J))*K-3),

+

+ PHI((NODNUM(IELNDO,')*K-2),PHI ((NODNUM(ITLNO,J))*K-1),

+ PHI((NODNUM(IELNC,J)})*K)

FORMAT (2X, 2I3,2X,5(2X,F12.6))

ELSE
PHI( (NODNUM(IELNO,J})*K-1) = Acnew{NODNUM(IELNO,J))
PHI { (NODNUM (IELNO, .71 ) *K} = Qcnew (NODNUM (IELNO, J))

WEITE(6,15)IELNC. 1, PHI( (NODNUM(IELNO, J)) *K-1),
+ PHT ((NODNUM(IELI" J))*K)
ENDIF

CONTINUE

ELSE

IF(NTrY.GY MITTER) THEN

DO 20 I = .,NNODFS
IF{MTD.EQ.1. "HT

WRITE(6,21}k,/ <1 : ,PHI(I*K-1),PHI(I*K),DPHI(I*K-1),DPHI(I*K)

ELSE

WRITE(6,21) Pik "', PHI(I*K-3),PHI(I*K-2),PHI(I*K-1),

+ PHI(I*K)

WRITE(6,21)PAR{ .. ,DPHI(1*K-3),DPHI(I*K-2),DPHI(I*K-1),

+ DPHI(I*K)
ENDIF
CONTINUE
FOTMAT(2X,78.1,5%:2X,F12.8))
ENDIF

SET DPHI = 0

DO 400 I=1,NNODES*K
DPHI(I)=0.0D+00
CONTINUE

ENDIF

177
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IF(MTD.EG.1)GO TO 24

CALLL FLOODPROP(IELNO,J, ITAO,NTEST)
CONTINUE

IF(T.EQ.0.0D+40) THEN
CALL OUTFLOVW(JQF, TAGl, TAG2,T, PET)
ENDIF

RETURHN
END

SUEROQUTINE DEPTH(NTEST, T,K,MTD, TAG1, TAG™"®
IMPLICIT REAL *8(A-H,0-Z)

COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA,GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM,NNODES,NELTYP(ZOO),XL(ZOO),GJC(200,200),Aold(ZOO)
COMMON NODNUM(200,2) ,ELVMc(200) ,ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(ZOO),TETA,FC(ZOO)
COMMON Acnew (200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMCH ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMOM QfL(200),QfR(200),AMTR(200),AMTL (200),TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,Z1,22,23,724,Hol1d(200),COEFF, ITAA,
+0t (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2).PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

TIME =T/60.0
IF(TIME.GT.46.3(; THEN
WRITE(6,1)
FORMAT (2%, 'I AM IN SUBROUTINE DEPTH')
ENDIF
IF ((NTEST.3Q.() .AND. (T.EQ.0.0D+00))GC TO 10

2=21+22

DO 5 IELNO=1,NELEM
DO 5 J= 1, NELTYP(IELNO)
IF(MTD.EQ.2)THEN
ALnew (NODNUM(IELNO, J))
Acn=w (NCDNUM(IELNO, J))
Qcnew (NODNUM(IELNO, J)}
ARi.ew (NODNUM(IELNO, J))
ELSE
Acnew (NODNUM(IELNO, J})
Qciiew (NODNUM(IELNO, J))
ENDIF

PHI ( (NODNUM(IELNO,J))*K-3)
PHI ( (NODNUM(IELNO,J) ) *K-2)
PHI ( (NODNUM(IELNO,J))*K-1)
PHI ( {NODNUM(IELNO,J) ) *K)

PHI( (NODNUM(IELNO,J))*K-1)
PHI ( (NODNUM(IELN®O,J) ) *K)

i"nn

Ucnew (NODNUM{IELNO,J)) = Qcnew(NODNUM(IELNO,J))/
+ Acnew (NODNUM(IELNO,J))

IF(NTEST.EQ.0)THEN
Qold (NODNUM(IELNO, J) ) =Qcnew (NODNUM (IELNO, J))
Aold (NODNUM(IELNO, J) ) =Acnew (NODNUM (IELNO, J) )
Hold (NODNUM(IELNO, J) ) =Hcnew (NODNM(IELNO, J})
ENDIF



) ()

C

179

IF(2.EQ.0.0D+00)YTHEN
Hcnew (NODNUM(IELNO, J) ) =Acnew (NODNUM(IELNO, J)) /
+ PAR( (NODNJM(IELNO,J})), 2}
GO TO 4
ENDIF

IF(IELNO.LT.TAG1)THEN
HLSTEP (NODNUM(IELNO, 2) ) =HLSTEP (1)
ENDIF

IF(IELNO.GT.TAG2) THEN
HLSTEP (NODNUM(IELNC, 1)) =HLSTEP (1)
ENDIF

IF((IELNC.EQ.TAG1) .OR. (IELNO.E?).TAG2) ) THEN
HLSTEP (NODNUM(IELNC, J) ) =WALL
ENDIF

"RITE(6,15) IELNO, J, HLSTEP (NODNUM( IELNO, J) ), Acnew (NODNUM( IELNO, J} )

C

O P 0O
o [§;]

Tl= ELVLP(NODNUM(IELNO,J))+HLSTEP (NODNUM(IELNO,J) )
+ ELVMc (NODNUM{IELNO,J))

TOPWIDTH=PAR ( (NODNUM(IELNO,J)),2) + Z*Tl
Al=PAR( (NODNUM(IELNO,J)),2)*T1 + 2*T1**2/2.0

A2=Acnew (NODNUM(IELNO,J)) - Al
WRITE(6,15)IELNO,J, TOPWIDTH, Al, A2

IF((A2.GT.0.0D+ " .AND. (HLSTEP (NODNUM(IELNO, J) ' .EQ.WALL) ) THEN
A3= TOPWIDTH**2 + 2.0*(ABS(A2))*2
H1=(DSQRT(A3)~TOPWIDTH) /2

Hcnew (NODNUM{IELNO,J))= Hl + T1
GO TO 4
ENDIF

IF(A2.LE.0.0D+00)THTN
A3=PAR( (NODNUM(IELNO,J)),2)**2 + 2.0*Acnew(NODNUM(IELNO,J))*Z

Hcnew (NODNUM(IELNO, J) ) = (DSQRT (A3) -PAR( (NODMUM(IELNO,J)),2)) /2

GO TO 4
ENDIF
A4=22/TOPWIDTH
Hcnew (NODNUM (IELNO,J) )= A4 + T1
CONTINUE
WRITE(6,15) IELNO, J, Acnew (NODNUM(IELNO, J) ), Hcnew (NODNUM(IELNO, J} )
FOR'!"T(2X,2I3,3(2X,F10.6))
Cor. 7 .NUE
CONTINUE
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RETIPRN
END

SUBRNOUTINE AREAS(IELNO,J,NQc, P2, KLP, TAGL, TAG2)
IMPLICIT REAL *8{A-H,0-2)
DIMENSION P2(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV, Q01d(200)
COMMON IEC(8),NBC,ALM(200),ELVRP(200),GSL{200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc (200), ELVLP(200),PAR(200,4), PHI (200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(200)
COMMON Acnew(200),0cnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(20Q),ARnew(200),QLnew (200}, QRnew(2C0), HRnew(200)
COMMON QfL{(200),0fR{(200),AMTR(200),AMTL(200),TAL(200), TAR(200)
COMMON DHL{(200),DHR(200),RHO, Z1,22,23,24,H01d(200), COEFF, ITAA,
+0t (200),0tF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200),DXM(203), HLSTEP (200),
+HRESTEP (200, ,CASEL(200),CASER(200) ,WALL

WRITE(6,1)
FORMAT (2%, 'I AM IN SUBROUTINE AREAS')

HV!=HLSTEP (1)
2= 21 + 22
Henew (NODNUM(IELNO, J) )= APHI (NODNUM(IELNO,J))

IF(IELNO.GT.TAG2) THEN
HLSTEP{NODNUM(IELNG, 1) )=HW
ENDIF

IF({IELNO.EQ.TAGl) .OR. (IELNO.EQ.TAG2) ) THEN
L_STEP (NODNUM! IELNO, J} ) =WALL
WRITE(6,15)IELNO,J, WALL, HLSTEP (NODNUM (IELNO, J) )

T1l= ELVLP{NODNUM(IELNO,J))+HLSTEP(NODNUM(IELNO,J)) -
+ ELVMc (NODNUM(IELNO, J)})

IF (Hcnew (NODNUM(IELNO, J) ) .GT.T1)THEN
Al=PAR( (NODNUM(IELNOQO,J)},2)*T1 +Z*T1**2/2
TOPW1=PAR ( (NODNUM(IELNO,J)),2) + Z*T1

T2= Hcnew(NODNUM(IELNO,J)) - Ti

IF(WALL.EQ.0.0D+00)THEN
A2=TOPW1*T2

ELSE

A2=TOPW1*T2 + Z*T2**2/2
ENDIF

Acnew (NODNUM(IELNO,J)) = Al + A2
ELSE

GO TO 7

ENDIF
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Al=1.0D+00 + Z1**2
A2=DSQRT(Al)
E1=1.0D+00 + Z22%**2
B2=DSQRT (R1)

C
IF(WALL.EQ.0.0D+00)THEN
P=PAR({ (NODNUM/IELNO,J)),2) +T1*(A2+B2)
ELSE
P=PAR{ (NODNUM(IZLNO,Jd)),2) +T1*{AZ2+B2) +T2*B2
ENDIF
C
C WRITE(6,15)IELNC,J, Acnew (NODNUM(IELNO,.J))
GO TO 12
ENDIF
C
7 Tl= ELVLP(NODNUM(1ELNO,J))+HLSTEP (NODNUM(IELNO,. ) ) -
+ ELVMc (NODMNUM(IELNO,J))
C
TF (Hcocnew (NODNUM(IELNO,J)) .LT.T1)THEN
Tl=Hcnew (NODNUM(IELNO, J) )
ENDIF
TOPWIDTH-PAR ( (NODNUM(IEINO,J})), 2} + 2*Tl
C
T3=TOPWIDTH* (Hcnew (NODNUM(IELNO,J))-T1)
C
Acnew (NODNUM(IELNO,J)) =PAR{{NODNUM{IELNO,J)),2)*T]l +2*T1**2/
+ 2.0 + T3
Al=1.0D+00 + 21**2
A2=DSQRT(Al)
B1=1.0D+00 + 22**2
B2=DSQRT (B1)
c
P=PAR ( (NODNUM(IELNO,J)),2) +T1*(A2+B2)
C
12 R=zAcnew (NODNUM(IELNO, J) ) /P
IF(KLP.EQ.O0)THEN
A3=R/CN1 (IELNO)
CS= 5.75*DLOG10(A3) + 6.2D+CC
CL=CS*DSQRT (GRAV*R*P2 (IELNO) )
ELSE
VEL=R**0.667*P2 (IELNO)**0.5/CN1 (IELNO)
ENDIF
C WRITE(6,15)IELNO,J,T1, TOPWIDTH, T3
C WRITE(6,15)IELNO,J,P,R,VEL
C
1IF(NQc.EQ.1)THEN
Qcnew (NODNUM(IELNO, J) ) =QPHI (NODNUM(IELNO, J) }
ELSE
Qcnew {NODNUM(IELNO, J) ) =Acnew (NODNUM(IELNO, J) ) *VEL
ENDIF
C
C WRITE(6,15) IELNO,J, Aci ew(NODNUM(IELNO, J)),
C + Qcnew (NODNUM(IELNO,J} )
15 FORMAT (2%,213,2X,3(2X,F12.6})

RETURN
END
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SUBROUTINE FLOODPROP (IELNC,J, ITAO, NTEST)
IM: LICIT REAL *8(A-H,0-Z)

SOMMOH THETA,CN1(200),CN2(200),CN3(200), OMEGA, GRAV, Quld{(200)
COMMON IBC(8),NBC,ALM(200;,ELVRP(200),GSL(200,200),GSR(200,200
cOMMO!! NELEM, NNODES,NELTYP(200),XL(200),GJC(200,200),Acld(200)
COMMON NODNUM(2(0,2),ELVMc (20" ,ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI . 200),¢PHI(200),ARM(200), TETA,FC({){,
COMMON Acnew (200), Qcnew{200),Ucnew(200),Hcnew(200), HLnew (200}
COMMON ALnew(200), ARnew(200),0Lnew(200),0Rnew(200), HRnew (200
COMMON QfL(200),0fR(200),AMTR(200), AMTL(200), TAL(200),TAr 1200;
COMMON DKL (200),DHR(200),PHO,Z21,22,23,24,Hold(200),COEFF, ITAA

+0Qt (200),QtF(200),VXL(200),V N0),CML(200),CMR(200),CF1,CF2,

+PARF (200,2),PARL(200,2),0.° .DXR(200),DXM(200),HLSTEP(200),
+HRSTEP (200, ,CASEL(200) ,C2 1, WALL
WRITE(6,1)

FORMAT (27, 'I AM IN SUBROULLNE FLOODPROP')

DO 24 IELNO=1,NELEM

DO 24 J= 1, NELTYP(IELNO)
WRITE(6,20)IELNO, J, HLnew (NODNUM(IELNO, J) ), HRnew (NODNUM(IELNO,J)),
+ Hcnew (NODNUM(IELNO, J))

IF(NTEST.EQ.0) THEN
Qold (NODNUM (IELNO, J) ) =Qcnew (NODNUM ( IELNO, J) )
A0ld (NODNUM (IELNO, J) ) =Acniew (NODNUM (IELNO, J) )
Hold (NODNUM ( IELNO, J) ) =Hcnew ( NODNUM ( IELNO, J) )
ENDIF

CALL APPARENT(IELNO,J, ITAO)

AMTL (NODNUM (IELNO, J) ) =TAL (NODNUM(IELNO, J) ) *
HLnew (NODNUM (IELNO, J) )} /RHO

AMTR (NODNUM (IELNO, J) ) =TAR (NODNUM (ILNO, J) ) *
HRnew (NODNUM{ IELNO, J) ) /RHO

WRITE(6,20)IELNCQ, J, TAL (NODNUM(IELNO,J) ), TAR (NODNUM({IELNO, J))
WRITE(6,20)IELNO,J, AMTL (NODNUM(IELNO,.", } , AMTR (NODNUM(IELNO,J) )

FORMAT (2X, 2I3,3(2X,F12.6))
CONTINUE

RETURN
END

SUBROUTINE APPARENT (IELNO,J, ITAO)
.MPLICIT REAL *8(A-H,0-2)

COMMON THETA,CN1¢(200),CN2(200),CN3(200),OMEGA, GRAV,Qold(220)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR{200,200)
COMMON NELEM, NNODES,NELTYP(220),XL(200),GJC(200,200),2A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),QLM{200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew (200}, ARnew{200),QLnew{200),Q0Rnew(200),HRnew(200)
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COMMON QfL{200),QfR(200), AMTR(200) , AMTL{200), TAL(200), TAR (200"
COMMON DHw (200),DHR{200),RHO, 21,22, 23,24, Hold(200), COEFF, ITAA,
+Qt (200),QtF(200) ,VXL(200),VXR(200),CML(200),CMR(200Q},CFl, CF2,
+PARF (200, 2),PARL(200,2),DXL(200),DXR(200),DXM{200), HLSTEP (200)
+HRSTEP(200) ,CASEL(200), CASER(200),WALL

WRITE(6,1)
FORMAT(2X, 'I AM IN SUBROUTINE APPARENT')

WRITE{6,20)IELNO, ITAC, QLnew (NODNUM(IELNO,J) ),
+ ORnew (NODNUM(IELNO,J))

Z2=21 + Z2

TL1= ELVLP(NODNUM({IELNO,J))+HLSTEP(NODNUM/IELNO,.J) -
+ ELVMc (NODNUM(IELNO, J))

IF(ITAO.EQ.0)THEN

TAL (NODNUM(IELNO,J))=0.0D+00
TAR (NODNUM(IELNO,J) )=0.0D+00
GO TO 19

ENDIF

BBE=PAR ( (NODNUM(IELNG,J)),2) + 7*TLl
T1=PAR{ (NODNUM(IELNO,.J)),3)+BB + PAR((NODNUM(IELNO,J})),2)

IF(TAA.EQ.1)THEN

IF (HLnew (NODNUM(IELNO,J)).LE.0.001D+00)THEN
TAL (NODNUM(IELNC,J))=0.0D+90

GO TO 7

ENDIF

T2=Qcnew (NODNUM (IELNO,J) ) /Acnew (NODNUM(IELNO, J)) -
+ QLnew (NODNUM (IELNO,J) ) /ALnew (NODNUM(IELNO,.J})

T2=Qo0ld (NODNUM(IELNO,J)) . Acld(NODNUM(IELNO,J)) -
+ QLnew (NODNUM(IELNO, J)) /ALnew (NODNUM(IELNO,J))

T4=(Hcnew (NODNUM(IELNO, J) ) /HLnew (NODNUM (IELNO,J) ) )} **1.129
T5= (PAR( (NODNUM(IELNO, J)),2)/
+ (T1-PAR((NODNUM(IELNO,J)),2)))**0.514
A5=T2/DABS(T2)
A6=DAB5(T2)
T6=A5*A6**0.92
TAL (NODNUM({IELNO, J))=0.874*T4*T5*T6

IF(HRnew (NODNUM(IELNO,J)) .LE.0.001D+00) THEN
TAR (NODNUM (IELNO,J))=0.0D+00

GO TO 19

ENDIF

T3=Qcnew (NODNUM{ JELNO, J) ) /Acnew (NODNUM(IELNO, J}) -
+ QRnew (NODNUM({IELNO,J))/ARnew(NODNUM(IELNO,J))

T3=001d (NODNUM(IELNO, J))/A0cld (NODNUM(IELNO,J)) -
+ QRnew(NODNUM(IELNO,J)) /ARnew (N 3NUM(TELNO, J) )

T4={Hcnew (NODNUM(IELNO,J) ) /s -~ (JODNUM(IELNO,J)} ) **1.129
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A5 =T1/DAES(T3)

26 =DRES(T3)

TE=AS*A **0.92

TAR (HODHUM(IELNG, J) ) =0.874*T4*TS*T6

ELGCEIF (TZA.EQ.2) THEN

IF (HLnew (NODNUM(IELNO,J)) .LE.0.001D+00) THEN
TAL (NODNUM(IELNO,J))=0.0D+00

GO TO 8

ENDIF

T2=0cnew (NODNUM(IELNO, J; ) /Acnew (NODN.M(IELNOC,J))

+ OLnew (NODNUM(IELNO, J)) /ALnew {NODNUM(IELNO,J))

T2=00 1 (NODNUM(IELNG, J) ) /A0ld (NCDNUM(IELNO, J) )
+ QLnew (NODNUM (IELNO,J) ) /ALnew (HODNUM(IELNO,J) )

T4=(1.0/HLnew (NODNUM(IELNO,J)))**0.354
T5={T1-PAR( (NODNUM(IELNO,J)),2))**0.519
AS=T2/DABS(T2)

A€=DAES(T2)

TA=AS5*A6**1.451

TAL (NODNUM(IELNO, J) ) =3.325*T4*T5*T6

IF (HRnew (NODNUM(IELNO,J)) .LE.0.001D+00)THEN
TAR (NODNUM(IELNO,J})=0.0D+00

GO TO 19

ENDIF

T3 =0cnew (NODNUM{IELNC.J) ) /Acnew (NODNUM(IELNO,J))

+ QRnew (NODNUM(IELNO, J}) /ARnew (NODNUM(IELNQ,J)}

T3=0Q01d (NCDNUM(IELNO, J)}) /Acld (NODNUM(IELNO,J))
+ QORnew (NODNUM (IELNO,J) ) /ARnew (NODNUM(IELNO, J))

T4=(1.0/HRnew (NODNUM(IELNO,J)))**0.354
AS=T3/DABS(T3)

A6=DABS(T3)

T6=A5*AR**1.451

TAR {NODNUM(IELNO, J))=3.325*T4*T5*T6
ELSE

CFA=0.01*T1/PAR( (NODNUM(IELNO,J)), 2)

IF (HLnew (NODNUM(IELNO,J)).LE.0.001D+00)THEN
TAL {NODNUM (IELNO, J))=0.0D+00

GO TO 10

ENDIF

T2=Qcnew (NODNUM(IELNO, J) ) /Acnew (NODNUM(IELNO,J))

+ QLnew (NODNUM(IELNO,J)})/ALnew (NODNUM(IELNO,J))

T2=Qold (NOLNUM(IELNO,J) ) /Aold (NODNUM(IELNO,J))
+ QLnew {NODNUM(IELNO,J))/ALnew (NODNUM(IELNO, J})

TAL (NODNUM(IELNO,J))=0.5*RHO*CFA*T2**2

IF (HRnew (NODNUM(IELNO,J)) .LE.0.001D+00)THEN
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TAR (NODNUM(IELNC, 7)) =0.(D+00

GO TG 18
ENDIF
C
C T3=0cnew (NODNUM ( IELNO, J) ) /Acnew (NODNUM{ IELNO, J))
C + QRnew (NODNUM(IELNO, J) ) /ARnew (NODNUM(IELNO, J))
C
TB:Qold(NODNUM(IELNO,J))/Aold(NODNUM(IELNO,J)) -
+ QRnew (NODNUM(IELNO, J) ) /ARnew (NODNUM(IELNO, J})
C
TAR (NODNUM(IELNOQO,J) ) =0.5*RHO*CFA*T3**2
ENDIF
12 CONTINU=
C WRITE(G,ZO)IELNO,J,TAL(NODNUM(IELNO,J)),TAR(NODNUM(IELNO,J))
20 FORMAT (2X,21I3,3(2X,F12.6))
C
C
RETURN
END
C
C ****x CALCULATING FLOOD PLAIN DISCHARGES (DURING INTERATIONS
* ok ok ok ok ok kR
¢
SUBROUTINE QFLPLAIN(T,K,NGP, P3, P4,KLP,TM, JQF, TAGL, TAGZ2)
IMPLICIT REAL *8(A-H,0-2)
DIMENSION DFIDS(2),FI(2),8{(2),W(3),P3(200),P4(200)
C
COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV, 0old(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSI.(200,200),GSR{200,200)
COMMON NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,200),A01d(26G0}
COMMON NODNUM(200,2), ELVMc (200) ,ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA, F( i200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew (200}
COMMON ALnew{200),ARnew(200),QLnew(200),QRnew(200), HRnew (200)
COMMON QfL(200),QfR(200),AMTR(200), AMTL(200), TAL(200}, TAR(200)
COMMON DHL (200} ,DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,
+2t(200) ,QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200),DXM(200C),HLSTEP(200),
+HRSTEP (200),CASEL(200),CASER(200) , WALL
C
TIME=T/TM
C IF(TIME.GT.46.30)THEN
C WRITE(6,1)TIME
1 FORMAT (2X, 'T AM IN SUBROUTINE QFLPLAIN',2X,F10.2)
C ENDI™
C

IF(T.EC.C.0. +00} GO TO 45

DO 5 T 1, NwODES
IF(22 . 2Q.0.0D0+00)THEN
HLnew 7")=PHI{I*K-3)/PARF(I,2)
ALnew({1,-IHI(I*K-3)
ELSE
A3=PARF(I,2)**2 + 2.0*PHI(I*K-3)*Z3
HLnew(I)=(DSQRT(A3)-PARF(I,2))/23
Alnew(I)=PHI(I*K-3)
ENDIF
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IF(Z4.E¢Q.0.00D+09) THEN
HRnew{(I1)=PHI(1*F)/PARL(I,k2)
ARPne (I )=PHI(I*EK)
ELLOE
A%=PARL(TI,4)**2 + 2.0*PHI(I*K)™*Z4
HFnew!1)=(DSQRT(AY)-PARL(1,2))/24
AFEnew!(I)=FHI(I*K)
ENDIF
IF(TIME.GT.46.30) THEN
YRITE(6,15)I,PHI(I*¥-3),PHI(I*K),HLnew(I),HRnew(I)
ENDIF
CONTINUE

CALL OUTFLOY(JQF, TAG1, TAGZ2, T, PET)

DO 4G I=1, NNODES
IF(1.EQ.NNODES)THEN

CM2 (HNNODES) =CN2 (NNODES-1)
CHZ (I1NODES ) =CN3 (NNODES-1)
ENDIF

r«y 10 L=1,HNGPE

CALL GAUSS(NGP,L,W,5)
CALL SHAPE(L,S,FI,DFIDS)
CONTINUE

R=PHI(I*K-3) /(PARF{I,2) + HLnew(I))
IF(R.LE.0.0D+00) THEN

VL=0.0D+00

CONST=0.0D+00

GO TO 12

FUHDIF

Al=R/CN2(I)

IF(KLP.Ey.0)THEN

CS= 5.75*DLOG10(Al) + 6.2D+00
VL=CS*DSQRT(GRAV*R*PHI (I*K-3))
B1=GRAV*R
CONST=CS*PHI(I*K-3)*DSQRT(B1)

ELSE
VL=R**0.6666667*P3(I)**0.5/CN2(I)
CONST=PHI(I*K-3)*R**0.6666667/CN2(I)
ENDIF

Bl1=GRAV*PHI (I*K-3)
IF(B1.EQ.0.0D+00)THEN
T2=0.0D+00
T3=0.0D+00
GO TO 23
ENDIF
T1l=VXL(I)*QfL(I)
T2=T1/B1
T3I=AMTL(I) /Bl

IF({(I.EQ.1).0R.(I.EQ.NNODES)) GO TO 25
IF{(1.EQ.1).0R. (I.EQ.NNODES))THEN
QLnew(I)=VL*PHI (I*K-3)
A2= P3(I) + T2 +T3
A3=AZ/DABS(A2)
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QLnew (1) =CONST*A3*DSQRT (DABS(A2))
WRITE(6,15)I,R,VL,PHI(I*K-3},CONST,QLnew(T)
GO TO 25
ENDIF

)

@]

SoL=P3(I;
DHLAX= (HLnew(I-1)*DFIDS(1)+HLnew(I)*DFIDS(2))*2./DXL(I-1)
C WRITE(6,15)I,DXL(I-1),dHLdX

A2= SoL- DHLAX + T2 +T3

A3=A2/DABS (AZ)
QLnew(I)=CONST*A3*DSQRT(DABS (A42))

SIS

5 R=PHI(I*K) /(PARL(I,2) + HRnew(I))
IF(R.LE.0.0D+00) THEN
VR=".0D+00
CCNSTR=0.0D+00
GO TO 26
ENDIF
A1=R/CN3(TI)
IF(FT7 .EQ.Q)THEN
C&= 5. 5*DLOG10O(Al) + 6.2D+00
""R=CS*D3QRT(GRAV*R*PHI (I*K))
B1l1=GRAV*R
CONSTR=CS*PHI (I*K) *DSQRT(E1)
ELSE
VR=R**0.6666667*P4(I)**0.5/CN3(I)
CONSTR=PHI(I*K)*R**0.6666667/CN3(I)
ENDIF

26 B1=GRAV*PHI(I*K)
IF(B1.EQ.0.0D+00)THEN
T2=0 0D+00
T3=". sD+00
GO TO 27
ENDIF
T1=VXR(T)*QfR(I)
T2=T1
T3=AMT" 7~ Bl

C IF((I.EQ.1).0OR.{(I.EQ.NNODES)) GO TO 30
27 IF((I.EQ.1).0OR.(I.EQ.NNODES) )THEN
o QRnew(I)=VR*PHI(I*K)

A2= P4(I) + T2 +T3

A3=A2/DABS (A2)

ORnew (I)=CONSTR*A2*DSQRT(DABS(A2) )

C WRITE(6,15)I,R,VR, PHI(I*K), CONSTR, QRnew(I)

GO TO 30

ENDIF

SoR=P4 (1)
DHRAX= (HRnew(I-1)*DFIDS{1)+HRnew(1)*DFIDS(2))*2./DXR‘!-1)
C WRITE(6,15)I,DXK(I-1),dHRdX

A2= SoR-DHRAX + T2 +T3

(@]

A3=A2/DABS(A2)
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FORMAT(2X,13,5(2X,F12.6))

ORnew (1) =CONSTR*A2*DSQRT (DABS (AZ2))
COHNTINUE
IF(TIME.GT.46.30) THEN
WRITE(6,50)I,QLnew(I}),ORnew(I)
ENDIF
CONTINUE
CONTINUE
FORMAT(2¥%,1I3,4(2X,F15.7
RETURN
END

SUBROUTINE OUTFLOW(JQF, TAGl,TAG2, T, PET)
IMPLICIT REAL *8(A-H,0-Z)

COMMON THETA, CN1(200),CN2(200),CN3(200),0MEGA,GRAV,Q0ld(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(250,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),201d4(200)
COMMON NODNUM(200,2),ELVMc(200) ,ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),0cnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),0Lnew(200),QRnew(200),HRnew(200)
COMMON OfL(200),QfR(200),AMTR(20),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,H0l1d(200),COEFF, ITAA,
+0t (200),QtF(2060),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(200),DXM"200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

TIME=T/60.0
IF(TIME.GT.48.0) THEN
WRITE(6,1)TIME
FORMAT (2X, 'I AM IN SUBROUTINE OUTFLOW', 3(2X,F10.3))
ENDIF

HW=HLSTEP (1)
DO 24 IELNO=1,NELEM

DO 24 J= 1, NELTYP(IELNO)
IF(TIME.GT.46.0) THEN

WRITE(6,20)IELNO, J, HLnew (NODNUM(IELNO, J) ), HRnew (NODNUM(IELNO, J)),

+ Hcnew (NODNUM(IELNO,J))
ENDIF

IF(IELNO.LT.TAG1)THEN
HLSTEP (NODNUM(IELNO, 2) ) =HW
ENDIF

IF(IELNO.GT.TAG2)THEN
HLSTEP (NODNUM(IELNO, 1)) =HW
ENDIF

IF((IELNO.EQ.TAGL) .OR. (IELNO.EQ.TAG2) ) THEN
HLSTEP (NODNUM(IELNO, J) ) =WALL
ENDIF
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WRITE(6,20) IELNO, J, HLnew (NODNUM (IELNO, J) ) , HRnew (NODNUM ( IELNO, J) ),
+ Hcnew (NODNUM(IELNO,J) ), HLSTEP(NODNUM(IELNO,J))

IF(JQF.EQ.0)THEN

DHL (NODNUM(IZLNO,J))=0.0D+00
DHR (NODNUM(IELNO,J) }=0.0D+00
QfL (NOUNUM(IELNO,J))=0.0D+00
RER (NODNUM(IELNO,J)3=0.0D+00
GO TO 24

ENDIF

IF (HLnew {NODNUM(IELNO,J)) .LE.C.0D+C0) THEN
HLnew (NOCDNUM(IELNC,J))=0.0D+00

ALnew (NODNUM(IELNO,J))=0.0D+00

ENDIF

IF (HRriew (NODNJM(IELNO,J)) .LE.0.0D+00)THEN
HRnew (NODNUM(IELNO, J) ) =0.0D+00

ARnew (NODNUM(IELNO,J))=0.0D+00

ENDIF

T1=ELVMc (NODNUM(IELNC,J))} + Hcnew (NODNUM(IELNO,.J)}
T2=ELVLP (NODNUM(IELNO,J}) + HLnew(NODNUM(IELNO,J))
T3=ELVRP (NODNUM(IELNO,J)} + HRnew(NODNUM(IELNO,J)}
T4=ELVLP (NODNUM{IELNO,J)) + HLSTEP(NODNUM(IELNO,J))
TS5=ELVRP (NODNUM(IELNO,J)}) + HRSTEP{(XNODNUM(IELNO,J))
T1=ELVMc (NODNUM(IELNO,J)) + Hcnew(NODNUM(IELNO,J})

Al=ELVMc (NODNUM(IELNO,J)) + HSTEP
A2=T1-Al

IF (HLnew (NODNUM(IELNO,J) ) .EQ.0.0D+00) GO TO 3
IF(A2.EQ.0.0D+00) GO TO 3
IF ( (HLnew (NODNUM(IELNO,J) ) /A2) .GT.0.75D+00) THEN
DHL {NODNUM{ IELNO, J) ) =0.0D+00
GO TO 4
ENDIF

IF((T1.GT.T2).AND. (T2.GE.T4))THEN
DHL {NODNUM(IELNO,J) )=T1 - T2
CASEL (NODNUM(IELNO, J}} =1
CML (IELNO) =CF1
ELSEIF((T2.GT.T1) .AND. (T1.GE.T4))THEN
DHL (NODNUM( IELNO, J) })=- (T2 - TI1)
CASEL (NODNUM(IELNO, J) ) =2
CML (IELNO) =CF2
ELSEIF((T2.GT.T4) .AND. (T1.LT.T4))THEN
DHL (NODNUM(IELNO, J))=~{T2 - T4)
CASEL (NODNUM (IELNO,J) ) =3
CML (IELNO) =CF1l
ELSEIF((T1.GT.T4) .AND. (T2.LT.T4))THEN
DHL (NODNUM(IELNO,J))=T1 - T4
CASEL (NODNUM(IELNO, J) ) =4
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CML(IELNO} =CF2
ELSEIF((T1.EQ.T2) .AND. (T1.GT.T4) )THEN
DHL (NODNUM ( IELNO, J) ) =0.0D+G0
CASEL {NODNUM(IELNO,J)) =5
“1'L(IELNO}=0.0D+00
ELSE
DHI, (NODNUM ( IELNO, J) ) =0.0D+G9
CASEL (NODNUM(IELNO,J) ) =6
CML(JELNO)=0.0D+00
ENDIF

IF (DABS (DHL (NODNUM(IELNO,J))).LT.0.00001) THEN
DHL (NODNUM(IELNO,J))=0.0D+00
ENDIF

TF (HRnew (NODNUM (IELNO,J)) .EQ.0.0D+00) GO TO S
IF(A2.EQ.0.0D+00) GO TO 5
IF ( {HRnew (NODNUM(IELNO, J) ) /A2, .GT.0.75D+00) THEN
DHR (NODNUM(IELNO,J))=0.CD+00
GO TO 6
ENDIF

RSN NN NaNsNoNa el
SN

IF((T1.GT.T3).AND.(T3.GE.T5) ) THEN
DHR (NODNUM(IELNO,J))=T1 - T3
CASER (NODNUM{ IELNO,J) ) =1
CMR (IELNO)=CF1
ELSEIF((T3.GT.T1).AND. (T1.GE.T5) ) THEN
DHR (NCDNUM(IELNG,J)'=-(T3 - T1)
CASER (NODNUM (IELNO,J)) =2
CMR (IELNQ) =CF2
ELSEIF((T3.GT.TS5).AND. (T1.LT.TS) )THEN
DHR (NODNUM (IELNO,J))=-(T3 - T5)
CASER (NODNUK{TELNO, J) ) =3
CMR({IELNO)=CF1
ELSEIF((T1.GT.TS).AND. (T3 .LT.T5) )THEN
DHR (NODNPJM(IELNO, J) ) =Tl ~ T5
CASER (NODNUM(IELNO,J)) =4
CMR{IELNO) =CF2
ELSEIF((T1.EQ.T3) .AND. (T3.GT.T5})THEN
DHR (NODNUM ( IELNO, J) ) =0.0D+00
CASER (NODNUM(IELNO, J) }=5
CMR (IELNO)=0.0D+00
ELSE
DHR (NODNUM ( IELNO, J) ) =0.0D+00
CASER (NODNUM(IELNO,J) ) =6
CMR (IELNO)=0.0D+00
ENDIF

(€]

IF (DABS (DHR (NODNUM(IELNO, J)) ) .LT.0.00001) THEN
DHR (NODNUM(IELNO,J))=0.0D+00
ENDIF
CONTINUE

IF(TIME.GT.51.0)THEN

NN N NN

WRITE(6,20)IELNO,J, DHL (NODNUM(IELNO, J) ), DHR (NODNUM(IELNO, J))
C WRITE(6,20)IELNO,J,CML(IELNO),CMR(IELNO)
c ENDIF
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CALL COEFDIS(IELNO,J,T)
B1=2.0*GRAV

IF (DHL (NODNUM(IELNO,J)) .EQ.0.0D+00) THEN

QfL (NODNUM(IELNQ,J))=0.0D+00

GO TO 11

ELSE

Al=DHL (NODNUM (IELNO, J) ) /DABS (DHL (NODNUM ( IELNO, J) ) )

A3=DABS (DHL (NODNUM(TELNO, J)))

OfL (NODNUM(IELNO,J})={ML(IELNO)*2.0*DSQRT(B1) *A1*A3**1.5/3.0
ENDIF

IF (DHR (NODNUM(IELNO,J)).EQ.0.0D+00) THEN

QfR(NODNUM(IELNO,J))=0.0D+00

GO TO 23

ELSE

A2=DHR (NODNUM (IELNO, J) ) /DABS (DHR (NODNUM ( IELNO, J}) ) )

A4=DABS (DHR {NODNUM ( IELNO, J) })

QfR{NODNUM(IELNO, J))=CMR(IELNO)*2.0*DSORT(B1) *A2*A4**]1.5/3.0
ENDIF

CONTINUE
HC=.dcnew (NODNUM(IELNQO, J) ) -HSTEP
IF((PET.EQ.0).OR. (HC.LT.0.0D+00)) GO TO 24

AS=8.41*DSQRT (GRAV) *CN2 (IELNO)}

AKS= A5**6

R=ALnew (NODNUM(IELNO,J)) /(PAR((NODNUM(IELNO,J}),3)+
HLnew (NODNUM(IELNO, J)))
R=HLnew (NODNUM (IELNO, J))

AL=R/AKS

IF(AL.LE.1.0D+0)THEN

CSL=6.2D+00

ELSE

CSL=5.75*LOG(AL) + 6.2

ENDIF

AS=8.41*DSQRT{GRAV) *CN3 (IELNO)

AKS= AS**6

R=ARnew (NODNUM(IELNO,J)) /(PAR((NODNUM(IELNO,J)),4)+
FRnew (NODNUM (IELNO, J) ) )

R=HRnew (NODNUM (IELNO, J))

AR=R/AKS

IF(AR.LE.1.0D+0)THEN

CSR=6.2D+00

ELSE

CSR=5.75*LOG(AR) + 6.2

ENDIF

IF(TIME.GT.48.7D+00) THEN
WRITE(6,20) IELNO,J,AS,AKS,R, AR

WRITE(6,20)IELNO,J,CSL,CSR, DHL (NODNUM(IELNO, J)), P3 (IELNO)
ENDIF
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IF((HC.GT.0.00.D+00) .AND. (HLnew (NODNUM(IELNO,J)) .EQ.0.0D+00)) THEN
HLnew (NODNMUM(IELJO, J) ) =" 007
A2=HC**3.5
A3=8.0*PAR( {NODNUM{IELN.,J)),3)*C3QRT(P3 (IELNO) )™
+ HLnew (NODNUM(IELNO,J) )
A4=3.0*CSL*DSQRT(GRAV) /A3
QfL (NCDNUM(IELNO,J) )=A4*A2
ELSEIF( (HC.GT.0.001D+00) .AND. (HLnew (NODWUM (IELNO, J)) .NE.0.0D+00)
+ .AND. (Hcnew (NODNUM{IELNO, J)) .GT.HLnew (NODNUM(IELNO, J))) ) THEN

IF(HC.GT.0.001D+00) THEN

IF (HL.new (NODNUM (IELNO,J)) .EQ.0.0D+00) THEN

HLnew (NODNUM(IELNO,J))=0.001D+00

ENDIF
HLC=Hcnew (NODNUM({IELNO,J)} - (HSTE? + HLnew (NODNUM{IELNO,J)))
A2=HLnew (NODNUM(IELNO, J))**1.5*HLC
A3=PAR( (NODNUM(IELNO,J)}), 3) *DSQRT(P3 {IELNO) )
A4=4.0*CSL*DSQRT(GRAV) /A3
QfR(NODNUM(IELNO,J) )=A4*A2
ENDIF

IF((HC.GT.0.005D+00) .AND. (HRnew (NODNUM(IELNO,J)) .EQ.0.0D+00))THEN
HRnew (NODNUM(IELNO, J))=0.001
A2=HC**3.5
A3=8.0*PAR( (NODNUM(IELNC,J)), 4, *DSQRT(P4 (IELNO) ) *
+ HRnew (NODNUM(IELNO, J) )
A< :3,0*CSR*DSQRT (GRAV) /A3
QfR(NODNUM(IELNO, J) )=A4*A2
ELSEIF( (HC.GT.0.001D+00) .AND. (HRnew (NODNUM(IELNO,J)) .EQ.0.0D+00)
+ .AND. (Hcnew(NODNUM(IELNO,J ) .GT.HRnew(NODNUM(IELNO,J))))THEN

IF(HC.GT.0.001D+00) THEN
IF (HRnew (NODNUM{IELNO,J); EQ.0.0D+00)THEN
HRnew (NODNUM (IELNO, J) )=0.001D+00
ENDIF
HRC=Hcnew (NODNUM(IELNO,J)) - (HSTEP + HRnew (NODNUM(IELNO,J)})
A2=HRnew (NODNUM(IELNO,.J))**1.5*HRC
A3=PAR( (NODNUM(IELNO,J)), 4) *DSQRT(P4 (IELNO))
Ad4=4 .0*CSR*DSQRT(GRAV) /A3
QfR(NODNUM(IELNO,J))=A4*A2
ENDIF
24 CONTINUE
C IF(TIME.GT.48.7D+00)THEN
C WRITE(6,20) IELNO,J, QfL (NODNUM(IELNO,J) ), QfR (NODNUM(IELNO,J))
C ENDIF
25 CONTINUE
20 FORMAT (2X,2I3,4(2X,F12.6))
2 FORMAT(2X,2I3,3(2X,F12.6))
RETURN
END

SUBROUTINE COEFDIS(IELNO,J,T)
IMPLICIT REAL *8(A-H,0-2)

e}

COMMON THETA, CN1(200),Ci2(200),CN3(200),0MEGA,GRAV, Qold(200)

COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL{200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
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COMMON QRM(200),QLM(200) ,APHI(200),QPHI(200),ARM(200), TETA, FC(>
COMMON “.cnew(200),Qcnew(200),Ucnew(200),Hcnew(2C0), HLnew (200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew{200)
COMMON QfL(200),Q0fR(200),AMTR(200),AMTL(200), TAL(200),‘TAR(200)
COMMON DHL/{200),DHR(200),RH0O,Z21,22,23,24,Hold(200), COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200,2),PARL{(200,2),DXL(200),DXR(200),DXM(200), HLSTEP(200),
+HRSTEP(200) ,CASEL(200),CASER(200),WALL

TIME=T/60.0
IF(TIME.GT.46.0)THEN
WRITE(6,1)TIME
FORMAT (2X,'I AM IN SUBROUTINE COEFDIS',F10.3)
ENDIF

IF (DHL (NODNUM (IELNO, J)) .EQ.0.0D+00) THEN
VXL (NODNUM(IELNO,J))=0.0

GO TO 5

ENDIF

IF (DHL (NODNUM (IELNO,J)) .GT.0.0D+00) THEN
VXL (NODNUM (IELNO, J} ) =Qcnew (NODNUM (IELNO, J) ) /

+ Acnew (NODNUM ( IELNO, J}) )
ELSE
VXL (NODNUM( IELNO, J) ) =QLnew (NODNUM( IELNO, J) ) /
+ ALnew (NODNUM(IELNO, J))
ENDIF

IF (DHR (NODNUM (IELNO,J)) .EQ.0.0D+00) THEN
VXR(NODNUM(IELNO,J))=0.0

GO TO 10

ENDIF

IF (DHR (NODNUM (IELNO,J)) .GT.0.0D+00) THEN
VXR (NODNUM( IELNO, J) ) =Qcnew (NODNUM(IELNO, J) )/

+ Acnew (NODNUM(IELNO, J))
ELSE
VXR (NODNUM(IELNO, J) ) =QRnew (NODNUM (IELNO, J} )}/
+ ARnew (NODNUM(IELNO, J))
ENDIF
CONTINUE

WRITE(6,20) IELNO,J, VXL (NODNUM(IELNO,J))
WRITE(6,20)IELNO,J,F1L,H1,CML
WRITE(6,20)IELNO,J, VXR (NODNUM(IELNO,J} )
WRITE(6,20)IELNO,J,F1R,H2,CMR
FORMAT(2X,2I3,3(2X,F12.6))
RETURN
END

****% CALCULATING THE SLOPE BETWEEN ELEMENTS ****x¥w*
SUBROUTINE SLOPE (P2, P3, P4)

IMPLICIT REAL *8(A-H,0-Z)

DIMENSION P2(200),P3(200),P4(200)

COMMON THETA, CN1(200),CN2(200),CN3(200),O0MEGA,GRAV, Q0ld (200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)

193
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COMMON NELEM, NNODES, NELTYP(200),XL{(200),GJC(200,200),a01d(20¢C)
COMMON NODNUM(200,2),ELVMc(1200) , ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200).QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200;,Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew({200),ARnew(200),QLnew{(200),Q0Rnew(200),HRnew (200)
COMMON QfL (200),QfR(200),AMTR(200), AMTL(200), TAL(200), TAR(200)
COMMON DHL (200),DHR(200),RHO,Z21,22,23,24,Hold(200),COEFF, ITAA,

+Qt (200) ,0tF(200),VXL(200),VXR(200),CML{200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200) ,CASEL(200) . CASER(200) ,WALL

]

WRITE(6, 1)
1 FORMAT (2X,'I AM IN SUBROUTINE SLOPE')

DO 10 I=2,NNODES

UP= ELVMc(I-1}

DM= ELVMc(I)

P2(I) = (UP-DN)/DXM(I-1)
P2(1)=P2(2)

P2 (NNODES) =P2 (NNODES-1)

UP= ELVLP(I-1}

DN= ELVLP(I)

P3(1) = (UP-DN)/DXL{(I-1)
P31(1)=P3(2)

P3 (NNODESZ) =P3 (NNODES-1)

)

UpP= ELVRP(I-1)

DN= ELVRP(I)

F4(1) = (UP-DN)/DXR{I-1)
P4(1)=P4(2)

P4 (NNODES) =P4 (NNODES-1)

WRITE(6,20)I,P2(I),P3(I),P4(1)
10 CONTINUE
0 FORMAT(2X,I2,3(2X,F10.5))
RETURN
END

b =

¥*dr ASSSEMBLING THE MATRICES *****%ddkkasdx
ES ----- IS THE MASS MATRIX
EKA ----- IS THE LEFT STIFNESS MATRIX
EKB ------ IS THE RIGHT STIFNESS MATRIX

anNnaonoon

SUBROUTINE ASSEMB(FCL, FCR,DT,NTEST, MTD, K,KUW, P2, P3, P4,
+ KLP,ES, KFL,NGP, T)

C
IMPLICIT REAL *8(A-H,0-2)
DIMENSION ESaa(2,2),Esaq(2,2),FE1(4),FE2(4),P2(200),ESga(2,2),
+ ESqq(2,2),E5(8,8),EKaa(2,2),EKaqg(2,2),EKqa(2,2),EKgq(2,2),
+ EK(8,8),EKA(8,8),EKB(8,8) ,ESL(8,8),ESR(8,8),SLaa(2,2),SRaa(2,2),
+ ALK(Z2,2),ARK(Z2,2),FL(4),FR(4),FCL(200),FCR(200),P3(200),P4(200)
C

COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV,Q01d(200)

COMMCN IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
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COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM{200), TETA, FC{200)
COMMON Acnew (200}, Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200), ARnew(200),QLnew(200), QRnew(200),HRnew (200)
COMMON QfL(200),Q0fR1200),AMTR{200) ,AMTL(200),TAL{200),TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,

+Qt (200),QtF (200),VXL(200),VXR(200),CML{200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP (200) ,CASEL(200) ,CASER(200), WALL

C****** BEGIN LOOP OVER ALL ELEMENTS*****%#++

C

OO0

000

TIME=T/60

.0

IF(TIME.GT.46.30)THEN
WRITE(6,1)
FORMAT (2X, 'I AM IN SUBROUTINE ASSEMB')

ENDIF

DO 500 IELNO = 1,NELEM
DO 10 I = 1, K*NELTYP(IELNO)
DO 10 J = 1, K*NELTYP(IELNO)
ES(I,J) = 0.0D+00
EK(I,J) = 0.0D+00
EKA(I,J) = 0.0D+00
ESL(I,J) = 0.0D+00

IF(NTEST.EQ.1) GO TO 10
ESR(I,J) = 0.0D+00
EKB(I,J) = 0.0D+00

CONTINUE

CALL INTEGRALS(IELNO, Efaa, ESaq, ESqa, E5Sqg, EKaa, EKaq,

+ EKga, EKqq, SLaa, SRaa, ALK, ARK, P2, P3, P4, NGP, KUW, KLP, KFL, MTD)

IF(MTD.EQ.1) GO TO 5

CALL SOURCE (IELNO, FEl1,FEZ2,FL,FR,P2,P3, P4, NGP, KUW, KLP)

ES(1,1)
ES(1,5)

ES(2,2)
ES(2,3)
ES(2,6)
ES(2,7)

ES(3,2)
ES(3,3)
ES(3,6)
ES(3,7)

ES(4,4)
ES(4,8)

ES(5,1)
ES(5,5)

ES(6,2)

*** COMPOUND CHANNEL MATRICES ****

SLaa(l,1)
SLaa(1l,2)

ESaa(1l,1)

= ESaqgq(1,1)

ESaa(l,2)
Esaq(1,2)

ESga(1,1)
Esqgq(1l,1)
ESqa(1,2)
ESqq(1,2)

SRaa(l,1)
SRaa(1l,2)

SLaa(2,1)

= SLaa(2,2)

ESaa(2,1)



[

C

nnon

mmm
L"
J\

G\O\

ol
(
(

ES(7,
ES(7,
ES (7,
ES(7,

ES (8,
ES (8,

EK(1,
EK(1,

EK (2,
EK(2,
EK'2,
EF (2,

EK (3,
EK(3,
EK (3,
EK (3,

EK (4,
EK (4,

K(5,
EK (5,

K(6,
FK(G

K(6

(6

K(7,
K(7,
K(7,
Eh(7

EK (8,
EK (8,

* ok ok ok kA

IF(MTD.NE.1) GO TO 17

\lmw

}
)
)

2)
3)
6)
7

4)
8)

1)
5)

2)
3)
6)
7)

2)
3)
6)
7)

4)
8)

1)
5)
2)
3)

€)
7)
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6)

7)

4)

8)

SINGLE CHANNEL MATRICES *****

S5{1,1

ES(1,
ES(1,
Es(1,

ES(2,
Es(2,

Es(2
Es{2

2)
3)
4)

1)
2)
I3)
+4)

LI T

ttn i s n n

wonounou

nononon

i~

Ezaq(2.1)
Ecaa (2, 2)
Esaqg(2,2)

ESqga(2,1)
ESqq (2, 1)
ESga (2, 2)
Esqq (2, 2]

SRaa(2,1)
SRaa (2, 2)

ALK (1,1)
ALK (1,2)

EKaa(1l,1)
EKag(1,1)
EKaa (1, 2)
EKaqg(1l, 2)

ARK (1,1,
ARK (1, 2)

ALK(2,1)
ALK(2,2)

EKaa(2,1)
EKag(2, 1)
EKaa (2, 2)
EKaq(2, 2)

EKga(2,1)
EKqg(2,1)
EKga (2, 2)
EKaq(2, 2)

ARK(2,1)
ARK(2,2)

= ESaa(l,1)

ESaq(1,1)
Esaa(l, 2)
Esaq(1,2)

ESga(l,1)
ESqq(l, 1)
ESga {1, 2)
ESqq(1l,2)
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NO=EL 000000
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D3
Sl

ES(3 = ESaa(2,1)
ES(3,2) = ESag(2,1)
ES(3, = ESaa(2,2)
Es{(3,4) = Esaq(2,2)
ES(4,1) = ESqa{2,1)
ES(-:“) = Esqq(zll)
ES(4,3) = ESqa(2,2)
ES(4,4) = ESqgg(2,2)
EK(1,1) = EKaa(l,1)
EK(1,2) = EKaqg(l,1)
EK(1,3) = EKaa(l,2)
EK(1,4) = EKag(l,2)
E: 1) = EKga(l,1)
FK(2 2) = EKqgq(l,1)
EFfz 3) = EKga(l,z)
K(2,4) = EKgg(l,2)
EK(3,1) = EKaa(2,1)
EK(3 2) = EKaq(2,1)
K(3,3) = EKaa(2,2)
ER(B 4) = EKag(2,2)
EK(4,7) = EKga(2,1)
EK(4, = EKqq(2,1)
EK(4,3) = EKga(2,2)
EK(4,4) = EKqgq(Z,2)
CONTINUE

DO 15 I= 1,K*NiLTYP(IELNO)
DO 15 J = 1,K*NELTYP(IELNO)

WRITE(6,1

CONTINUE

)I,J,ES(I,J),EK(TI,J)

FORMAT (72X, 21I3,2(2X,F12.6))

Z. I= 1,K*NELTYP(IELNO)

EKA(I,J)

IF(NTEST.EQ.1)

EKB(I,J)
CONTINUE

J = 1,K*NELTYP(IELNO)

= THETA*DT* (EK(I,J))

GO TO 20
= {1.0 - THETA) *DT*(EK(I,J))

DO 30 I= 1,K*NELTYP(IELNO)
DO 30 J= 1,K*NELTYP(IELNO)

= ES(I,J) + EKA(I,J)

- EKB(I,J)

r,J3,ESL(I,J),ESR(I,J)

ESL(I,J)
IF(NTEST.EQ.1) GO TO 30
ESR(I,J) = ES{(I,J)

WRITE (6, 34)
CONTINUE

FORMAT (2X,213,2(2X,F12.6))

IF(IELNO.EQ.1) THEN

DO 35 I =
FC(I) =

1,NNODES*K

0.0D+00

197
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FCL(I)= 0.0D+00C
IF(NTEST.EQ.1) GO TO 35
FCR(I)= 0.0D+00
CONTINUE

w!
[Ga)

DO 40 I = 1,NNODES*K
DO 4C J= 1,NNODES*K
GEL(I,J) = 0.0D+00
IF(NTEST.EQ.1) GO TO 40

GSL(I+3,I~-1)

ESL(8,4)

GSR(I,J) = 0.0D+00
40 CONTINUE
C
DO 50 I= 1,NELTYP(IELNO)*K
DO 50 J =1,NELTYP(IELNO) *K
GSL(I,J) = ESL(I,J)
IF(NTEST.EQ.1) GO TO 50
GSR(I,J) = ESR(I,J)
C WRITE(6,55)I,3,GSR(I,J)
50 CONTINUE
55 FORMAT (2¥,213,2X,F10.3)
C
ELSEIF(IELNO.LE.NELEM) THEN
NND=K* (IELNO+1)
M=IELNO*K+1
c
IF(MTD.EQ.1) GO TO 80
c
DO 60 I= M,NND,4
GSL(1-4,I) = ESL(1,5)
GSL(I-3,I+1) = ESL(2,6)
GSL({I-3,I+2) = ESL(2,7)
GSL{(I1-2,I+1) = ESL(3,6)
GSL(I-2,I+2) = ESL(3,7)
GSL(I-1,1I+3) = ESL(4,8)
c
GSL(I,I-4) = ESL(5,1)
GSL(I-4,1I-4) = GSL(I-4,I-4) + ESL(1,1)
GSL(I+1,I-3) = ESL(6,2)
GSL(I+1,I-2) = ESL(6,3)
C
GSL(I-3,I-3) = GSL(I-3,1-3) ESL(2,2)
GSL(I-3,I-2) = GSL(I-3,1-2) ESL(2, 3)
GSL(I+2,1-3) = ESL(7,2)
GSL(I+2,1I-2) = ESL(7,3)
GSL(I-2,I-3) GSL(I-2,I-3) ESL(3,2)
GSL(I1-2,1I-2) GSL(I-2,I-2) ESL(3,3)

o mnon

GSL(I-1,I-1) GSL(I-1,I-1) + ESL(4,4)

60 CONTINUE
C
GSL(NND-3,NND-3! = ESL(5,5)
GSL(NND-2,NND-2} = ESL(6,6)
GSL(NND~-2,NND-1} . FSL(6,7)
GSL(NND-1,NND-2) = " *".(7,6)

GSL(NND-1,NND-1) = ESL'7,7)
GSL(NND,NND) = ESL(8,8)
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IF(NTEST.EQ.1)GO TO 75

DO 70 I= M,NND, 4
GSR(I-4,I) = ESR(1,5)

G3R(I-3,I+1) = ESR({2,6)

GSR(I-3,I+2) = ESR(2,7)

GSR(I-2,I+1) = ESR(3,6)

GSR{I-2,I+2) = ESR(3,7)

GSR(I-1,I+3) = ESR(4,8)

GSR(I,I-4) = ESR(5,1)

GSR(I-4,I-4) = GSR(I-4,I-4) + ESR(1,1)
GSR(I+1,I-3) = ESR(6,2)

GSR({I+1,1I-2) = ESR(6,3)

GSR(I-3,I-3)
GSR(I-3,I-2)

GSR(I-3,I-3) + ESR(2,2)
GSR(I-3,I-2) + ESR{(2,3)

GSR(I+2,1-3) = ESR(7,2)
GSR(I+2,I-2) = ESR(7,2)
GSR(I-2,I-3) = GSR(I-2,I-3) + ESR(3,2)
GSR(I-2,I-2) = GSR(I-2,I-2) + ESR(3,3)
GSR{I+3,I-1) = R{8,4)

GSR(I-1,I-1) ‘R(I-1,I-1) + ESR(4,4)

CONTINUE
GSR(NND-3,NND-3, = ESR(5,5)
GSR(NND-2,NND-2) = ESR(6,6)
GSR(NND-2,NND-1) = ESR(6,7)
GSR(NND-1,NND-2) = ESR(7,6)
GSR(NND-1,NND-1) = ESR(7,7)
GSR(NND,NND) = ESR(8,8)

CONTINUE
IF(MTD.NE.1)GO TO 105

DO 90 I= M,NND,2
GSL(I-2,I) = ESL(1,3)
GSL(I-2,I+1) = ESL({1,4)

GSL(I-1,I) = ESL(2,3)
GSL(I-1,I+1) = ESL(2,4)

GSL(I,I-2) = ESL(3,1)

GSL(I,I-1) = ESL(3,2)

GSL{I-2,I-2) = GSL(I-2,I-2) + ESL(1,1)
GSL(I-2,I-1) = GSL(I-2,I-1) + ESL(1,2)
GSL(I-1,I-2) = GSL(I-1,I-2) + ESL(2,1)
GSL(I-1,I-1) = GSL(I-1,I-1) + E5L(2,2)
GSL(I+1,I-2) = ESL(4,1)

GSL(I+1,I-1) = ESL(4,2)

CONTINUE

GSL (NND-1,NND-1) = ESL(3,3)



GSL(NND-1,NND) = ESL(3,4)
GCL(IND,INID-1) = EEL(4,3
GSL(NND,NND) = ESL(4, 4}
-
C IF(IELNO.EQ.NELEM)THEN
C WRITE(6,91) IELNO, GSL (NND-1,NND) , GSL(INND, NND-1) ,

GSL(MND, NND)

- +

cyl FORMAT(2X,12,3(2¥%,F8.7
o ENDIF
C
IF(NTEST.EQ.1)GO TO 105
¢
DO 106 I= M,NND,2
GS5R(1-2,I) = ESR(1,3)
GSP(I-2,I+41) = ESR(1,4)
o
GSR{I-1,1) = ESR(2,3)
3GR(I-1,1+1) = ESI(2,4)
(
GEP(1,1-2) = ESR({3,1)
GER(I,I-1) = ESR(3,2)
¢
GSR(I-2,1-2) = GSR(I-2,I-2) + ESR(1,1)
GSR(I-2,1-1) = GSR(I-2,I-1) + ESR(1,2)
GSR(I-1,I-2) = GSR(I-1,I-2) + ESR(2,1)
GSR({I-1,I-1) = GSR(I-1,I-1) + ESR(2,2)
o
GSR(I+1,I-2) = ESR(4,1)
G5R(I+1,I-1) = ESR(4,2)
L0 CONTINUE
C
GSR(NND-1,NND-1) = ESR(3,3)
GSR(NND-1,NND) = ESR(3,4)
GSR(NND,NND-1} = ESR(4,3)
GSR (NND,NND) = ESR(4,4)
¢
C IF (IELNO.EQ.NELEM) THEN
C WRITE(6,91) IELNO, GSR(NND-1,NND) , GSR (NND, NND-1) ,
C + GSR(NND, NND)
cal FOR.AT(2X,12,3(2X,F8.3))
c ENDIF
105 ENDIF
IF(MTD.EQ.1)GO TO 110
¢
C  ****+2APPLYING BOUNDARY TERMS AT THE FIRST BOUNDARY ****¥**x
C FOR COMPOUND FLOW ***x*x
C
IF(KLP.EQ.1) THE."
AX=5/3
ELSE
AX=3/2
ENDIF
C
DO 108 J= 1,NELTYP(IELNO)

IF((IELNO.EQ.1) .AND. (J.EQ.1))THEN
IF{ (ALnew (NODNUM(IELNO,J)).LE.0.0) .OR
+ .LE.0.0))THEN

. (ARnew (NODNUM ( IELNO, J))

200
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000

201

UL=0.0D+00

UR=0.0D+00

GO TO 117

ELSE
UL=QLnew {NODNUM (IELNO, J) ) /ALnew (NODNUM(IELNO, J))
UR=QRnew (NODNUM(IELNO, J) ) /ARnew {(NODNUM{ IELNO, J))
ENDIF

CONTINUE
WRITE(6,123)UL,UR

GSL(1,1) GSL(1,1) -THETA*DT*AX*UL

GsSL(z,3) GSL(2,3) ~1.0*THETA*DT

GSL(3,2)= GSL(3,2)-THETA*DT*GRAV*Hcnhew (NODNUM(1ELNO,J)) /2.
GSL(3,3) = GSL(3,3) - THETA*DT*Ucnew (NODNUM(IELNO,J))
GSL(4,4) = GSL(4,4) -THETA*DT*AX*UR

IF(NTEST.EQ.1) GO TO 106
GSR(1,1}) = GSR(1,1) +(1.0-THETA)*DT*AX*UL
GSE({2,3) = GSR(2,3) +1.0*(1.0-THETA) *DT
GSR(32,2)=GSR{3,2)+(1.0-THETA) *DT*GRAV*Hcnew (NODNUM(IELNO,J)) /2.
GSR(3,3)=GSR(3,3) +(1.0-THETA) *DT*Ucnew (NODNUM (1IELNO, J}) )
GSR(4,4) = GER(4,4) +(1.0-THETA)*DT*AX*UR

CONTINUE

ENDIF
*** APPLYING BOUNDARY CONDITINS AT THE LAST BOUNDARY
FOR COMPOUND FLOW ***=*

NND=K* (IELNO+1)
IF( (IELNO.EQ.NELEM) .AND. (J.EQ.2) ) THEN
IF( (ALnew (NODNUM(IELNO,J)).LE.0.0) .OR. (ARnew {(NODNUM(IELNO, J) )
+ .LE.0.0))THEN
UL=0.0D+00
UR=0.0D+00
GO TO 127
ELSE
UL=QLnew (NODNUM(IELNO, J) ) /ALnew (NODNUM( ITELNO, J) )
UR=QRnew (NODNUM (IELNO, J) ) /ARnew (NODNUM ( IELNO, J) }
ENDIF

CONTINUE
WRITE{6,123)UL,UR
FORMAT (2X,2(2X,F12.6))
GSL (NND-3,NND-3) ESL(5,5) + THETA*DT*AX*UL
GSL (NND-2,NND-1) ESL(6,7) + 1.0*THETA*DT
GSL(NND-1,NMD-2) = ESL(7,6) + THETA*DT*GRAV*
+ Hcnew (NODNUM(IELNO,J))/2.

W n

GSL(NND-1,NND-1)= ESL(7,7)+THETA*DT*
+ Ucnew (MODNUM(IELNC, J))

GSL (NND, NND) ESL(8,8) + THETA*DT*AX*UR

IF(NTEST.EQ.1) GO TO 107
GSR{NND-3,NND-3) ESR(5,5) ~ (1.0-THETA)*DT*AX*UL
GSR(NND-2,NND-1) ESR(6,7) - 1.0*(1.0-THETA) *DT
GSR(NND-1,NND-2) = ESR(7,6) - (1.0-THETA)*DT*GPAV*
+ Hcnew (NODNUM(IELNC,J))/2.
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i

SR(NND-1,NND-1)=ESR(7,7)~-(1.0-THETA)*DT*
+ Ucnew (NODNUM(IELNO,J))

C
GSR(NND,NND) = ESR(8,8) - (1.0-THETA)*DT*AX*UR

107 CONTINUE

ENDIF
o WRITE(6,109)IELNO,J,GS5L(1,1),GSL(2,3),GSL(3,2),GSL(3,3),
C + GSL(4,4),GSL(NND-3,NND-3),GSL{NND-2,NND-1),GSL(NND-1,NND-2),
C + GSL(NND-1,NND-1),GSL(NND, NND}
108 CONTINUE
109 FORMAT(2X,2I3,10(2X,F12.6))
C

IF(MTD.NE.1)GO TO 120
C

C ****APPLYING BOUNDARY TERMS AT THE FIRST BOUNDARY (SINLGE CHANNEL)

LA B A

C
1140 Do 115 J= . ,NELTYP(IELNO)
IF({(IELNO.EQ.1) .AND.(J.EQ.1))THEN
GSL(1,2) = GSL(1,2) -1.0*THETA*DT
GSL(2,1) = GSL(2,1) - THETA*DT*GRAV*Hcnew (NODNUM(IELNO,J))/2.
GSL(2,2) = GSL(2,2) - THETA*DT*Ucnew(NODNU. IELNO,J))
C
IF(NTEST.EQ.1) GO TO 112
GSR(1,2) = GSR(1,2) +1.0*(1.0-THETA) *DT
GSR(2,1) = GSR(2,1) +(1.0-THETA)*DT*GRAV*Hcnew (NODNUM (IELNO,J)) /2.
GSR(2,2) = GSR(2,2) +(1.0-THETA) *DT*Ucnew(NODNUM(IELN . "))
1i2 CONTINUE
ENDIF

C *** APPLYING BOUNDARY CONDITINS AT THE LAST BOUNDARY (SINLGE
CHANNEL) ****

C
NND=K* (IELNO+1)
IF( (IELNO.EQ.NELEM) .AND. (J.EQ.2) ) THEN
GSL (NND-1,NND) = ESL(3,4) + 1.0*THETA*DT
GSL (NND,NND-1) = ESL(4,3) + THETA*DT*GRAV*
+ Hcnew (NODNUM (IELNO,J))/2.
GSL (NND,NND) = ESL(4,4)+THETA*DT*Ucnew (NODNUM( IELNO, J))
[
IF(NTEST.EQ.1) GO TO 114
GSR(NND-1,NND) = ESR(3,4) - 1.0*(1.0-THETA)*DT
GSR(NND,NND-1} = ESR(4,3) - (1.0-THETA) *DT*GRAV~*
+ Hcnew (NODNUM(IELNO,J)) /2.
GSR(NND,NND) = ESR(4,4) - (1.0-THETA) *DT*Ucnew (NODNUM(IELNO,J))
114 CONTINUE
ENDIF
C WRITE(6,116) IELNO,J,GSL(1,1),GSL(2,3),GSL(2,2),
C + GSL{NND-1,NND),GSL(NND,NND-1),GSL{(NND, NND)
115 CONTINUE
116 FORMAT(2X,2I3,6(2X,F10.3))
C
C
120 CONTINUE
C
IF(MTD.EQ.1) GO TO 500
C

IF(IELNO.EQ.1)THEN
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C
DC 130 I= 1,2
FC(I*4-3) = FL(I)
FC(I*4-2) = FE1(I)
FC(I*4-1) = FE2(1)
FC(I*4) = FR(I)
130 CONTINUE
C
ELSEIF(IELNO.NE.1)THEN
II=IELNO
N=IELNO+1
C
DO 145 I=1I,N
FC(I*4-3)=FC(I*4-3)+FL(1)
FC(I*4-2)= FC(I*4-2)+FE1(1)
FC(I*4-1)= FC(I*4-1)+FE2(1)
FC(I*4)= FC(I*4)+FR(1)
145 CONTINUE
C
FCI(N*4-3)=FL(2)
FC(N*4-2)= FE1(2)
FC(N*4-1)=FE2(2"
FC(N*4)= FR(2)
ENDIF
500 CONTINUE
DO 180 I =1,K*NNODES
DO 180 J = 1,K*NNODES
C WRITE(6,150)I,J,GSL(I,J),GSR(I,J)
180 CONTINUE
190 FORMAT (2X, '(*',I5,1X,',',I5,')"',2X,2(4X,F12.6))
C
C DO 215 I=1,NNODES
C IF(MTD.EQ.1)GO TO 210
C WRITE(6,220)I,FC(1*4-3),FC(1*4-2),FC(I*4-1),FC(1*4)
C IF(MTD.NE.1)GO TO 215
c210 WRITE(6,220)I,FC{(1I*2-1),FC(1I*2)
218 CONTINUE
C
Z = 21 + 22
C
DO 230 I=1,NNODES*K
FCL(I)= THETA*DT*FC(I)
IF(NTEST.EQ.1) GO TO 224
FCR(I)= -(1.0-THETA)*DT*FC(1I)
224 CONTINUE
Cc225 WRITE(6,240)I,FCL(I),FCR(I)
230 CONTINUE
(o
220 FORMAT(2X,12,4(2X,F12.6))
240 FORMAT(2X,12,4(2X,F12.6))
C
RETURN
END
C

Cx****x+x*xsx* ASCEBL,ING THE GLOBAL MATRIX OF THE JACOBIAN ****

C
SUBROUTINE ASSJACOB (DT,MTD, K,KUW, P2, P3, P4,ES,KLP,KFL, NGP, HSTEP, T)

o
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IMPLICIT REAL *8(A-H,0-2)
DIMENZSION P2(200),AJB(8,8),CJA(8,8),ES(8,8),P3(200;),P4(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV,Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES,NELTYP(200), XL(200),GJC(200,200),A01d(200)
COMMON NODITUM (200, 2),ELVMc(200), ELVLP(200),PAR(200,4),PHI(200)
COMMOMN OQRM(200),0LM(200),APHI{200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200},Hcnew(200), HLnew(200)
COMMON ALnew(200),ARnew(200),0Lnew(200),0Rnew(200),HRnew(200)
COMMON QfL(200),Q0fR(200),AMTR(200),AMTL (200),TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,Ho1d(200),COEFF, ITAA,
+ Ot (200),QtF{200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200) ,CXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200) ,CASEL (200),CASER(200) ,WALL

**xxx*x% BPGIN LOOP OVER ALL ELEMENTS******x%¥

IF(K.EQ.4)THEN

WRITE(6,1)
FORMAT(2X,'1 AM IN SUBROUTINE ASSJACOB')
ENDIF

DO 500 IELNO = 1,NELEM
DO 10 I = 1, K*NELTYP(IELNO)
DO 10 J = 1, K*NELTYP(IELNO)
AJB(I,J) = 0.0D+00

CONTINUE

CALL JACOBIANS (IELNO,CJA, P2, P3, P4,NGP,MTD, KUW, KLP, KFL, K, HSTEP, T)

IF(IELNO.EQ.NELEM) THEN

DO 30 I = 1, K*NELTYP(IELNO)
DO 30 J = 1, K*NELTYP(IELNO)
WRITE(6,33) I,J,CJA(I,J)
CONTINUE
FORMAT (2X,2I3,4(2¥,F10.6))
ENDIF
DO 40 1 , K*NELTYP (IELNO)

=1

DO 40 J = 1, K*NELTYP(IELNO)

CJA(1,J) =THETA*DT*CJA(I,J)
CONTINUE

WRITE(6, 51) IELNO
DO 50 I = 1, NELTYP(IELNO)*K
DO 50 J = 1, NELTYP{IELNO)*K
AJB(I,J) = ES(I,J) + CJA(I,J)

IF (IELNO.EQ.NELEM) THEN
WRITE(6,55) I1,J,E8(1,J),CJA(I,J),AJB(I,J)
CONTINUE
ENDIF
FORMAT ( ' ELEMENT NUMBER IS',I2,/)
FORMAT(2X,213,3(4X,F12.6))

IF(IELNO.EQ.1)THEN

DO 60 I = 1,NNODES*K



DO 60 J= 1,NNODES*K
GJC(I,J) =0.0D+G0
CONTINUE

DO 70 I= 1,NELTYP(IELNO)*K

DO 70 J =1,NELTYP(IELNO) *K

GJC(I,J) = AJB(I,J)
CONTINUE

ELSZIF (IELNO.LE.NELEM) THEN

NND=K* (TELNO+1)
M= K*IELNO +1

IF(MTD.EQ.1) GO TO 85

DO 80 I= M,NND, 4

GJC(I-4,I) = AJB(1,5)

GJIC(I-4,I+1) = AJB(1,6)
) = AJIB(1,7)

GIC(I-4,I+2

GJC(I-3,I) = AJB(2,5)
GJC(I-3,I+1) = AJB(2,6)
GJC(I-3,I+2) = AIB(2,7)
GJC(I-3,I+3) = AJB(2,8)

GJC(I-2,I) = AJB(3,5)

GJC(I-2,I+1) = AJB(3,6)
GJC(I-2,1I+2) = AJB(3,7)
GJC(I-2,I+3) = AJB(3,8)
GJC(I-1,I+1) = AJB(4,6)
GJIC(I-1,I+2) = AJB(4,7)
GJC(I-1,I+3) = AJB(4,8)
GJC(I,I-4) = AJIB(5,1)
GJC(I,I-3) = AJB(5,2)
GJC(I,I-2) = AJB(5,3)

GJIC(I-4,I-4)

GJC(I-4,I-3) = GJIC(I-4,1I-3)
GJC(I-4,I-2) = GJIC(I-4,I-2)
GJIC(I+1,1-4) AJB(6,1)
GJC(I+1,I-3) AJB(6,2)
GJC(I+1,I-2) AJB(6,3)
GJIC(I+1,I-1) AJB(6,4)

LT U | O | N [ I 1 I 1}

GJC(I-3,1I-4) GJC(I-3,I-4)
GJC(I-3,I-3; GJC(I-3,I-3)
GJC(I-3,I-2) GJC(I-3,1-2)
GJC(I-3,I-1) GJC(I-3,I-1)
GJC(I+2,1I-4) AJB(7,1)
GJC(I+2,1I-3) AJB(7,2)
GJC(I+2,I-2) AJB(7,3)
GJIC(I+2,I-1) AJB(7,4)

GJC(I-2,I-4)
GJC(I-2,1I-3)
GJC(1-2,1-2)

GJC(I1-2,I-4)
GJC(I-2,1-3)
GJC(I-2,1-2)

L LI N L N LI L Y | S 1

+ + + o+

GJC(I-4,I-4) + AJB(1,1)

+ AJB{(1,2)
+ AJB(1,3)

AJB(2,1)
AJB(2,2)
AJB(2, 3)
AJB(2,4)

AJE(3,1)
AJB(2,2)
AJB(3,3)
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GJC(1-2,I-1) = GJC(I-2,1I-1)
GJC(I+3,I-3) = AJB(8,2)
GJC(I+2,1I-2) = AJE(S8,3)
GJC(I+3,1I-1) = AJB(8,4)
GJC(I-1,I-2) = GJC(I-1,I-3)
C1C(1-1,1I-2) = GIJC(I-1,I-2)
GJC(I-1,1I-1) = GJC(I-1,1I-1)
CONTINUE
GJC (NND--3,NND-3) = AJB(S,5)
GJC (NND-3,NND-2) = AJB(S,6)
GJC (NND-3,NND-1) = AJB(S,7)
GJC(NND-2,NND-3) = AJB(6,5)
GJC (NND-2,NND-2) = AJB(6,6)
GJC (NND-2,NND-1) = AJB(6,7)
GJC(NND-2,NND) = AJB(6§, 8)
GJC (NND-1,NND-3) = AJB(7,5)
GJC (NND-1,NND-2) = AJB(7,6)
GJC(NND-1,KNND-1) = AJB(7,7)
GJC(NND-1,NND) = AJB(7, 8)
GJC (NND,NND-2) = AJB(8,6)
GJC (NND,NND-~1) = AJB(8,7)
GJC(NND,NND) = AJB(8,8)
IF(MTD.NE.1) GO TO 490
DO 90 I= M,NND,?2
GJC(I-2,1) = AJB(1,3)
GJC(I-2,I+1) = AJB(1,4)
GJC(I~-1,1) = AJB(2,3)
GJC{I-1,1I+1) = AJIB(2,4)
GJC(1I,I-2) = AJB(3,1)
GJC(I,I-1) = AJB(3,2)
GJC(I-2,1-2) = GIC(I-2,1I-2)
GJC(I-2,1~1) = GJC(I-2,I-1)
GJC(I-1,1I-2) = GJC(I-1,1I-2)
GJC(I-1,1-1) = GJC(I-1,1I-1)
GJC(I+1,I-2) = AJB(4,1)
GJC(I+1,I-1) = AJB(4,2)

CONTINUE

GJC (NND-1,NND-1) = AJB(3,3)
GJC (NND-1, NND)
GJC (NND,NND-1)

GJC (NND, NND)

ENDIF

IF(MTD.NE.1) GO

AJB(3,4)
AJB (4, 3)
AJB(4,4)

TO 495

+ AJ3(3,4)

+ AJB(4,2)
AJB(4, 3)
AJB(4,4)

+ +

+ AJB(1,1)
+ AJB(1,2)
+ AJB(2,1)
+ AJB(2,2)
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C
C *****APPLYING BOUNDARY TERMS AT THE FIRST BOUNDARY ****+
C
DO 108 J= 1,WELTYP(IELNO)
IF((IELNO.EQ.1) .AND. (J.EQ.1) ) THEN
GJC(1,2) = GJC(1,2) ~-1.0*THETA*DT
GJC(2,1) = GJC(2,1) -THETA*DT*(GRAV*Hcnew(NODNUM(IEI 10,J)) -
+ Ucnew (NODNUM(IELNO,J))**2)

c
GJC(2,2) = GJC{2,2) - THETA*DT*2.0*Ucnew (NODNUM(IELNO, J))
ENDIF
Cc *** APPLYING BOUNDARY CONDITINS AT THE LAST BOUNDARY ***1
C
IF((IELNO.EQ.NELEM) .AND. (J.EQ.2) ) THEN
NND=K* (IELNO+1)
GJC(NND-1,NND) = AJB(3,4) + 1.0*THETA*DT
GJC (NND, NND-1) =AJB(4, 3)+THETA*DT* (GRAV*Hcnew (NODNUM( IELNO, J) ) -
+ Ucnew (NODNUM(IELNO,J) ) **2)
C
GJC (NND,NND) = AJB(4,4)+THETA*DT*2.0*Ucnew (NODNUM(IELNO,.J))
ENDIF
C WRITE(6,109} IELNO,J,GJC(1,2),G3C(2,1),GJC(2,2),
C + CG"T(NND-1,NND),GJC(NND, NND-1),GJC (NND, NND)
108 CONTINUE
109 FORMAT (2X,2I3,6(2X,F12.6))
C

IF(MTD.EQ.1) GO TO 500

C

C *****APPLYING BOUNDARY TERMS AT THE FIRST BOUNDARY ******%
C FOR COMPOUND FLOW *****
C

495 IF(KLP.EQ.1)THEN
AX=5/3
ELSE
AX=3/2
ENDIF
C

DO 496 J= 1,NELTYP(IELNO)
IF((IELNO.EQ.1).AND.(J.EQ.1))THEN
IF ( (ALnew (NODNUM(IELNO,J)) .EQ.0.9).0R. (ARnew (NODNUM ( IELNO,.J))
+ .EQ.0.0))THEN
UL=0.0D+00
UR=0.0D+00
GO TO 117
ELSE
UL=QLnew (NODNUM (IELNO, J) } /ALnew (NODNUM (IELNO, J) )
UR=QRnew (NODNUM (IELNO, J) ) /ARnew (NODNUM (IELNO, J) )
ENDIF
117 CONTINUE
GJC(1,1) = GJC(1,1) -THETA*DT*AX*UL
GJC(2,3) = GJC(2,3) -1.0*THETA*DT
GJC(3,2)= GIC(3,2)-THETA*DT* (GRAV*Hcnew (NODNUM(IELNO,J) ) -
+ Ucnew (NODNUM(IELNO,J) ) **2)
GJC(3,3) =GJC(3,3)-THETA*DT*2.0*Ucnew (NODNUM (IELNO,J))
GJC(4,4) = GJC(4,4) -THETA*DT*AX*UR
ENDIF
c *** APPLYING BOUNDARY CONDITINS AT THE LAST BOUNDARY
C FOR COMPOUND FLOW «“***
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NND=zK* (IELNO+1)
IF((IELNO.EQ.NELEM) .AND. (J.EQ.2) ) THEN
IF ((ALnew (NODNUM(IELNO,J)) .EQ.0.0) .OR. {ARnew (NODNUM(IELNO,J})
+ .EQ.0.0))THEN
UL=0.0D+00
UP=0.0D+00
GO TO 127
ELSE
UL=QLnew (NODNUM(IELNO, J) ) /ALnew (NODNUM IELNO, J))
UKk=0QRnew (NODNUM{ IELNO,J) )} /ARnew (NCDNUM(IELNO, J})
ENDIF

127 CONTINUE

GJC(NND~3,NND-3) AJB(5,5) + THETA*DT*AX*UL
GJC(NND-2,NND-1) = AJB(6,7) + 1.0*THETA*DT
GJC (NND-1,NND-2) =AJB(7, 6) +THETA*DT* (GRAV*Hcnew (NODNUM(IELNO,J)) -
+ Ucnew (NODNUM (IELNO, J)) **2)

GJC(NND-1,NND-1)=AJB(7,7)+THETA*DT*2 . 0*Ucnew (NODNUM(IELNO, J) }

C
GJC(NND,NND) = AJB(8,8) + THETA*DT*AX*UR
ENDIF
C WRITE(6,499)IELNO,J,GJC(1,1),GJC(2,3),GJC(3,2),GIC(3,3),
C +GJC(4,4),GIC(NND-3,NND-3),GJC{NND-2,NND-1),GJC(NND-1,NND-2),
C + GJC(NND-1,NND~-1),GJC(NND, NND)
496 CONTINUE
492 FORMAT (2X,2I3,10(2%,F12.6})
C
500 CONTINUE
C
C DO 195 I =1,K*NNODES
C DO 199 J = 1,K*NNODES
C GJC(I,J)= GSL(I,J) + GJC(I,J)
C WRITE(6,190)1,J,GJC(I,J),GSL(I,J)
199 CONTINUE
C
DO 200 I =1,K*NNODES
po 200 J = 1,K*NNODES
C WRITE(6,190)I,J,GJC(I,J)
200 CONTINUE
190 FORMAT (2%, ' (',15,1X,'.',I5,"')',2(2X,F15.10})
C
RETURN
END
C
C xwdws CALCULATION OF THE RESIDUAL *****wksdkx
c
SUBROUTINE RESIDUAL(FCL, FCR,RHS, TOL,DPHI, NITER, NTEST,
+ NTRY,MTD, K)
c
IMPLICIT REAL *8(A-H,0-2)
DIMENSION RES(200),RHS(200),DPHI{(200),FCL(200),FCR(200)
C

COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),R01d4(200)
COMMON NODNUM(200,2),ELVMc(200), ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(200)
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200
COMMCN Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew (200)
COMMON ALnew(200), ARnew(200),QLnew(200),QRnew(200), HRnew (200)
COMMON QfL(200),QfR(200), AMTR(200),AMTL(200),TAL(200), TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,Z23.24,Hold{200),COEFF, ITAA,
+Qt(200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1, CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(ZOb),DXM(ZOO),HLSTEP(EOO),
+HRSTEP(200),CASEL(200) ,CASER(200),WALL

WRITE(6,1)
FORMAT(2X, 'I AM IN SUBROUTINE RESIDUAL',2X,F10.6)

CALL MATMUL (FCR,FCL, RES, RHS, NTEST, MTD, K)
CALL BOUND(RES,MTD)
NEQ=NNODES *K
DO 130 I=1,NEQ
RES(I)= -RES(I)
WRITE(6,150}I,RES(I)
CONTINUE
FORMAT (2%, I4,E20.6)
CALL SOLVE(GJC, RES, NEQ)

CHECK TO SEE IF DPHI=0.0

NTZ2ST=0
SUMA=0.0D+00
SUMB=0.0D+00
ERRMAX=0.0D+00

DO 200 I=1,NEQ

DPHI(I) = RES(I)

IF(NTRY.GT.20)THEN

PHI(I) = PHI(I) + O0.5*DPHI(I)
TOL=0.001
ELSE

PHI(I) = PHI(I) + DPHI(I)
TOL=0.00001
ENDIF

SUMA = SUMA + DPHI(I)**2
SUME = SUMB + PHI(I)**2
CONTINUE
ERRMAX= SQRT (SUMA/SUMB)
IF(ERRMAX.GT.TOL) NTEST=1
IF(NTEST.NE.1) GO TO 350
IF(NTRY.EQ.NITER) GO TO 250
NTRY= NTRY+1
RETURN
NTEST=2

WRITE(6,260) NTRY
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FORMAT ('NTRY IS EQUAL TO NUMBER OF ITERATION',2X,I2)

N
O

Kal
o

CONTINUE

AW NN

RETURN
END

9]

#wrws MATRIX MULTIPLICATION **#*¥**xxsw

DI

SUBROUTINE MATMUL (FCR, FCL, RES, RHS,NTEST, MTD, K}

®]

IMPLICIT REAL *8(A-H,0-%2)
DIMENSION RES(200),FCL(200),FCR(200),RHS(200),AHS(200}

COMMON THETA,CN1(200),CN2(200),CN3(200),0M:uA, GRAV, 001d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM,NNODES,NELTYP(ZOO),XL(200),GJC(200,200),AOld(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(ZOO),QLM(ZOO),APHI(ZOO),QPHI(200),ARM(200),TETA,FC(ZOO)
COMMON Acnew(200),QOcnew(200),Ucnew(200),Hcnew(200) ,HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200),HRnew(200)
COMMON QfL(200),Q0fR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL (200),DHR(200),RHO, 21,22,23,24,Hold(200),COEFF, ITAA,
+ Qt(200),QtF(200),VXL(200),VXR(ZOO),CML(ZOO),CMR(ZOO),CFl,CFZ,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200) ,CASER(200) ,WALL

WRITE(6,1)
FORMAT(2X,'1 AM IN SUBROUTINE MATMUL', 2X, I2)

D=0

N= NNODES*K

Do 5 I=1,N
AHS(I) = 0.0D+00
RES(I)= 0.0D+00

IF(NTEST.EQ.1)GO TO 5
RHS(I) =0.0D+00
CONTINUE

un

IF (MTD.EQ.2) THEN
NBAND = 11

ELSE

NBAND = 6

ENDIF

L=NBAND/2

po 20 I=1,N
AHS(I) = FCL.I)
IF(NTEST.EQ.1)GO TO 20
RHS(I) = FCR(I)

0 CONTINUE

Nt

IF(NTEST.EQ.1l) GO TO 60
DO 50 I = 1,N
DO 40 J = 1,N
IF((ABS(J-I)).GT.L) GO TO 40
RHS(I)= RHS(I) + GSR{(I,J)*PHI(J)
40 CONTINUE



50 CONTINUE

C

60 DO 80 I = 1,N
DO 7¢ J = 1,N
IF((ABS(J~I)).GT.L) GO TO 70
AHS(I)= AHS(I)+ GSL({I,J)*PHI(J)

70 CONTINUE

C WRITE(6,81)I,RHS(I),AHS(I),PHI(I)

80 CONTINUE

91 FORMAT (2X,I3,3(2X,F12.6))

C

DO 80 I=1,N
RES(I) = AHS(I)-RHS(I)

C
90 CONTINUE
100 FORMAT (2X, I3,2X,F25.20)
C
RETURN
END
C

C********** PROGRAM TO DO LU MATRIX SOLVING A AR A RS ESEEREREREY
C e e e e e e e e
C
SUBROUTINE SOLVE(AB, B, NEQ)
C
IMPLICIT REAL *8(A-H,0-Z)
DIMENSION AB(200,200),B(200)

COMMON THETA,CNI(ZOO),CN2(200),CN3(200),OMEGA,GRAV,Qold(ZOO)
COMMON IBC(8),NBC,ALM(ZOO),ELVRP(ZOO),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A0ld(200)
COMMON NODNUM(200,2), ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(ZOO),QLM(ZOO),APHI(ZOO),QPHI(ZOO),ARM(ZOO),TETA,FC(ZOO)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew(200)
COMMON ALnew (200), ARnew(200),QLnew(200),QRnew (200}, HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL(200), TAL(200), TAR(200)
COMMON DHL(200),DHR(200),RHO,ZI,ZZ,Z3,Z4,Hold(200),COEFF,ITAA,
+ Qt(200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(ZOO),DXM(200),HLSTEP(200),
+HRSTEP (200) ,CASEL(200) ,CASER(200), WALL

WRITE(6,1)
FORMAT(2X,'I AM IN SOLVE',2X,I2)

PERFORM THE LU DECOMPOSITION
DO 15 J=2,NEQ
AB(J,1)=AB(J,1)/AB(1,1)
DO 10 I=2,(J-1)
SUML=0.0D+00
SUMU=0.0D+00
DC 5 M=1, (I-1)
SUML=SUML+AB(J,M) *AB (M, I)
SUMU=SUMU+AB(I,M) *AB(M, J)
5 CONTINUE
AB(J,I)=(AB(J,I)~SUML)/AB(I,I)
AB(I,J)=AB(I,J)-SUMU
10 CONTINUE

NOOEOO
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SUMU=0.0D+00
DC 12 M=1, (J-1)
SUMU=SUMU+AB (J,M) *2R{M, J)
12 CONTINUE
AE(7,J)=AE(J,J)-SUMU
15 CONTINUE

FORWARD SWEEP

DO 30 I=2,NEQ
SUML=0.0D+00

DO 20

J=1,(I-1)

SUML=SUML+AB(I,J)*B(J)
20 CONTINUE

B(I)

) ~SUML

30 CONTIN .

BACKWARD SWEEP

B(NEQ) -

:B(NEQ) /AB (NEQ, NEQ)

DO 60 I=1, (NEQ-1)
SUMU=0.0D+00

J=NEQ-

DO 5&

-1

K=(J+1),NEQ

SUMU=SUMU+AB (J, K) *B(K)
50 CONTINUE
B(J)=(B(J)-SUMU) /AB(J,J)
60 CONTINUE

RETURN
END

*%++% BOUNDARY CONDITIONS ******++sx«

SUBROUTINE BOUND (RES, MTD)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION RES(200)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,Q01d(200)
IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),3SR(200,2900)
NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,20¢. ,A0ld(200)
NODNUM(200,2),ELVMc(200) ,ELVLP(200),PAR(200,4),PHI(200)
QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(200)
Acnew(200),Q0cnew(200),Ucnew(200) ,Hcnew(200),HLnew(200)
ALnew(200),ARnew{200),0Lnew(200),0Rnew{200), HRnew(200)
QfL(200),QfR(200),AMTR(200), AMTL (200), TAL(200),TAR(200)
DHL(200),DHR(200),RH0O,21,22,23,24,Hold(200),COEFF, ITAA,

+Qt (200) ,QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6,1)
FORMAT (2X,'I AM IN SUBROUTINE BOUND')

*** PENALTY METHOD, IF Ac OR Qc MAY BE KNOWN AT THE BOUNDARIES ****

IF(MTD.

EQ.1)THEN



N2= NNODES*2
IF(IBC(2).EQ.0) GO TO 70
GJC(1,1)=1.0D+30
RES({1)=0.0D+00

C
70 IF(IBC(3).EQ.0) GO TO 80
GJIC(2,2)=1.0D+30
RES(2)=0.0D+00
C
80 IF(IBC{6).EQ.0) GO TO 90
GJC(MN2-1,N2-1)=1.0D+30
RES(N2-1)=0.0D+00
~
90 IF(IBC(7).EQ.0) GO TO 180
GJC(N2,N2)=1.0D+30
RES(N2)=0.0D+00
ELSE
N2= NNODES*4
IF(IBC(1).EQ.0) GO TO 100
GJC(1,1)=1.0D+30
RES(1)=0.0D+00
C
100 IF(IBC(2).EQ.0) GO TO 110
GJC(2,2)=1.0D+30
RES(2)=0.0D+00
C
110 IF(IBC(3).EQ.0) GO TO 120
GJC(3,3)=i.0D+30
RES(3)=0.0D+00
C
120 IF(IBC(4) .EQ.0) GO TO 130
GJC(4,4)=1.0D+30
RES(4)=0.0D+00
C
130 IF(IBC(5).EQ.0) GO TO 140
GJC(N2~3,N2-3)=1.0D+30
RES(N2-2)=0.0D+00
c
140 IF(IBC(6).EQ.0) GO TO 150
GJC(N2-2,N2-2)=1.0D+30
RES(N2-2)=0.0D+00
c
150 IF(IBC(7).EQ.0) GO TO 160
GJC(N2-1,N2-1)=1.0D+30
RES (N2-1)=0.0D+00
c
160 IF(IBC(8).EQ.0) GO TO 180
GJC(N2,N2)=1.0D+30
RES(N2)=0.0D2+00
C
C WRITE(6,170) GJC(2,2),RES(2),GJC(N2,N2),
c + RES(N2)
170 FORMAT (2X,4(2X,F20.3))
180 ENDIF
RETURN
END
C

Crrxx¥x*x SAMPLING POINT VALUES *****x
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SUBROUTINE GAUSS (NGP,K,W, &)
IMPLICIT REAL *8(A-H,0-Z)
DIMENSIGCN VW(3),S(3)

coMMon
COMMOI!
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV,Q0ld (200)
IEC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR/200,200)
NELEM, NNODES, NELTYP(200) ,XL{(200),GJC(200,200),A01d(200)
NODNUM (200, 2),ELVMc(200) , ELVLP(200),PAR(200,4),PHI(200)
QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
Acnew(200),0cnew(200) ,Ucnew(200),Hcnew(200),HLnew(200)
ALnew(200), ARnew(200),QLnew(200),QRnew(200),HRnew(200)
QfL(200),QfR(200), AMTR(200), AMTL(200), TAL(200),TAR{200)
DHL(200),DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,

+Qt (200) ,QtF/200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200),CASEL(200) ,CASER(200),WALL

WRITE(6,1)
FORMAT(2X,'I AM IN GAUSS')

IF(NGP.

EQ.2)THEN

IF(K.EQ.1)THEN
¥(1)=1.0D+00

S{l)=

-0.577350269189626D+00

ELSEIF(K.EQ.2)THEN
W(2)=1.0D+00

S(2)=
ENDIF
ELSE

0.577350269189€626D+00

IF(K.EQ.1)THEN

W(l)=
5(1)=

0.555555555555556D+00
-0.774596669241483D+00

ELSEIF(K.EQ.2)THEN

W(2)=
S(2)=

0.888888888888£39D+00
0.0D+00

ELSEIF(K.EQ.3)THEN

Wid)=
f;\3 )=
SNDIF
ENDIF

0.555555555555556D+00
0.774556669241483D+00

WRITE(6,10)W(K), S(K)
FORMAT (2X,F4.1,F20.15)
RETURN

END

SUBROUTINE UPW(IELNO,KUW,Ucold, HH, WK1, WK2, WK3, WK4)

IMPLICIT REAL *8(A-H,0-2)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

THETA, CN1(200),CN2(200),CN3(200),O0MEGA, GRAV,Q01d (200)
IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),Acld(200)
NODNUM(200, 2),ELVMc(200) ,ELVLP(200),PAR(200,4),PHI(200)
QRM(200),0QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
ALnew(200), ARnew(200),QLnew(200) ,QRnew(200),HRnew(200)
QfL(200),0fR(200),AMTR(200), AMTL(200), TAL(200),TAR(200)

DHL (200),DHR(200),RHO,21,22,23,Z4,Hold(200),COEFF, ITAA,



+Qt (200) ,QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200,2),PARL(200,2),DXL(200),DXR(200),DXM(200), HLOTEP(200),
+HRSTEP(200) ,CASEL (200}, CASER{200), WALL

WRITE(6,1)
FORMAT(2X,'I AM IN UPWMATRIX')

N =MNON

1=GRAV*HH

DSQRT (A1)
Uold + C
Uold ~ C
1.0/7(2.0*C)
C**2 - Uold**2

mow» 0P

C WRITE(6,25) GRAV,HH,C,A,B,D,E
25 FORMAT (2X,7 (2X,F20.15))

D*{E*(1.0/DABS(A) -1.0/DABS(EB}))
D* (A/DABS(A) ~ B/DABS(B))
D*(E*(A/DABS(A) - B/DABS(B)))
D*(A**2/DABS(A) - B**2/DABS(B))

Waa
Wag
wWga
waq

nononon

WK1
WK2
WK3
WK4

Waa*OMEGA*DXM ( IELNO) /2.
Waq*OMEGA*DYM (IELNQ) /2.
Wga *OMEGA*D:1 i IELNO) /2.
Wgq*OMEGA*DXM (IELNO) /2.

OO CO

IF(KUW.EQ.0) THEN
WKl= 0.0D+00C
WK2= 0.0D+00
WK3= 0.0D+00
WK4= 0.0D+00
ENDIF

WRITE(6,30)WK1l,WK2,WK3, WKL
0 FORMAT (2X,5(2X,F10.6))

Nnwnan

RETURN
END

**x%* THIS SUBROUTINE CHANGES VALUES OF VARIABLES ****x**

nnNno

SUBROUTINE CHANGEVAR(IELNO, B, AA,QQ,dBdX,U,H,FI,AJa,Alq,
+ DFIDS,Uold, HH, P2, So, dHdX)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2),P2(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,001d (200}
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL{(2006,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,200),A01d(200)
COMMON NODNUM (200, 2),ELVMc(200) ,ELVLP(200),PAR(200,4),PHI (200}
COMMON OQORM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),0Qcnew(200),Ucnew(200),Hcnew(200), HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL (200),DHR(200),RHO,Z1,22,23,24,Hol1d(200),COEFF, ITAA,

+Qt (200),0tF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CFZ,
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+PARF(200,2),PARL(200,2),DXL{(200),DXR(200),DxXM{200),HLSTEP(200),
+HRSTEP(200),CASEL{200) ,CASER(200) ,WALL

WRITE(6,1)
FORMAT (2X, 'I AM IN CHANGEV:R'2(2X,F10.6))

AA=Acnew (NODNUM (IELNO, 1)) *FI(1)+Acnew(NODNUM(IELNO,2))*FI(2)
00=0cnew (NODNUM ( IELNO, 1) ) *FI(1)+Qcnew (NODNUM(IELNO, 2) ) *FI(2)

A=Aold (NODNUM(IELNO, 1)) *FI(1)+A0cld(NODNUM(IELNO,2))*FI(2)
©=001d (NODNUM(IELNO, 1)) *FI(1)+Qold(NODNUM(IELNO,2) )} *FI(2)

dBdY=(PAR( (NODNUM(IELNO, 1)), 2)*DFIDS(1l) +
+ PAR({ (NODNUM{IELNO, 2)),2)*DFIDS(2})*2./DXM(IELNO)

B= PAR( (NODNUM(IELNO,1)),2)*FI(1) +
+ PAR( (IODNUM(IELNO, 2)),2)*FI(2)

So=P2 (NODNUM(IELNQ, 1)) *FI{1)+P2{NODNUM(IELNQO, ' )*FI(2)

H=Hrnew {NODNUM(IELNO,1))*FI(1l)+Hcnew(NCDNUM(IELNO, 2))*FI(2)
HH=Hold (NODNUM(IELNO, 1)) *FI(1)+Hold(NODNUM(IELNO,2))*FI(2)

dHdX= (Hcniew (NODNUM ( IELNO, 1) ) *DFIDS(1) +
+ Hcnew (NODNUM(IELNO, 2) ) *DFIDS(2) ) *2./DXM(IELND)

U=Q0/AA
Uold=0Q/A

Al=(Acnew (NODNUM(IELNO, 1)) *DFIDS(1) +
+ Acnew (NODNUM(IELNO, 2))*DFIDS(2))*2./DXM(IELNO)

A2=(Qcnew (NODNUM(IELNO, 1) ) *DFIDS(1) +
+ Qcnew (NODNUM(IELNO, 2) ) *DFIDS(2) ) *2./DXM(IELNO)

C=DSQRT (GRAV*H)

A3=C**2 + 2.0*U**2
AJa=(Al*a3 - 2.0*U*A2)/AA
AJg=2.0* (A2 -U*Al)/AA

WRITE(6,10)AA, QQ,dBdX, B, U, H,Uold, HH, So
WRITE(6,26) AJa,AJq
FORMAT (2X, 10 (2X,F12.6))
FORMAT (2X, 5 (2X,F10.6))

RETURN
END

C **** THIS SUBROUTINE CHANGES VALUES OF VARIABLES IN THE FLOOD PLAIN

LR B B NS

c

SUBROUTINE FLOODVAR(IELNO, AL, AR, OL, QR, BL, BR, HL,, HR, SoL, SoR,
+ QOQL, QOR, DDHL, DDHR, TL, TR, TML, TMR, FI, P3, P4,HLdX, HRAX, dTML, ATMR,
+ dQFL,dQFR,DFIDS, VL, VR)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2),P3(200),P4(200)
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COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMCN NELEM, NNODES, NELTYP(200) ,XL(200,,GJC(200,200),2A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4), PHI(200)
COMMCN QRM(200),QLM(200) ,APHI(200),QPHI(200),ARM(200), TETA, FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew{200),HRnew(200)
COMMON 0OfL(200),QfR(200),AMTR(200), AMTL(200), TAL(200), TAR(200)
COMMON DHL(200),DHR(200),RHO,Z21,22,23,24,Hold(200),COEFF, ITAL,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2),PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP (200) ,CASEL(200),CASER(200),WALL

WRITE(6,1)IELNO
FORMAT(2X,'I AM IN FLOODVAR FOR ELEMENT #',6I2)

AL=ALnew (NODNUM{IELNO, 1) }*FI(1)+ALnew (NODNUM{IELNO,2))*FI(2)
AR=ARnew (NODNUM(IELNO, 1) ) *FI (1) +ARnew (NODNUM(IELNO,2))*FI(2)

QL=QLnew (NCDNUM(IELNO, 1} ) *FI(1)+QLnew(NODNUM(IELNQ,2))*FI(2)
QR=QRnew (NODNUM(IELNO, 1)) *FI(1)+QRnew(NODNUM(IELNO,2)*FI(2)

BL=PARF ( (NODNUM(IELNO,1)),2) *FI(1)+PARF((NODNUM(IELNO,1)),2)*F1(2)
BR=PARL ( (NODNUM(IELNO, 1) ),2) *FI(1)+PARL((NODNUM(IELNO,1)),2)*FI(2)

HL=HLnew (NODNUM(IELNO, 1) )*FI(1)+HLnew{NODNUM(IELNO,2))*FI(2)
HR=HRnew (NODNUM(IELNO, 1} )*FI(1)+HRnew(NODNUM(IELNO,2))*FI(2)

SoL=P3 (NODNUM(IELNO, 1)) *FI(1)+P3 (NODNUM(IELNO,2))*FI(2)
SoR=P4 (NODNUM (IELNO, 1)) *FI(1)+P4 (NODNUM(IELNO,2))*FI(2)

DDHL=DHL (NODNUM(IELNO, 1} ) *FI (1) +DHL (NODNUM{IELNO, 2) ) *FI(2)
DDHR= DHR (NODNUM(IELNO,1))*FI(1)+DHR{NODNUM(IELNO,2))*FI(2)

QQL= Qfi (NODNUM(IELNO, 1)) *FI(1)+QfL(NODNUM(IELNO,2))*FI(2)
QQR= QfR(NODNUM(IELNC, 1), *FI{1)+QfR(NODNUM(IELNO,2))*FI(2)

TL= TAL(NODNUM(IELNO,1))*FI(1)+TAL(NODNUM(IELNO,2))*FI(2)
TR~ TAR(NODNUM(IELNO,1))*FI(1)+TAR(NODNUM(IELNO,2))*FI(2)

TML= AMTL (NODNUM(IELNO, 1)) *FI(1)+AMTL (NODNUM(IELNOC,2))*FI(2)
TMR= AMTR (NODNUM(IELNO, 1)) *FI(1)+AMTR (NODNUM(IELNO,2))*FI(2)

HLAX= (HLnew {NODNUM(IELNO, 1) ) *DFIDS (1) +
+ HLnew (NODNUM(IELNO, 2) ) *DFIDS(2))*2./DXL(1ELNO)

HRdX= (HRnew (NODNUM(IELNO, 1)) *DFIDS(1) +
+ HRnew (NODNUM(IELNO, 2))*DFIDS(2))*2./DXR(IELNO)

dTML= ( AMTL (NODNUM (IELNO, 1) ) *DFIDS(1) +
+ AMTL (NODNUM(IELNO, 2))*DrIDS(2))*2./DXL(IELNO)

dTMR=(AMTR (NODNUM(IELNO, 1)) *DFIDS(1) +
+ AMTR (NODNUM(IELNO, 2) ) *DFIDS(2))*2./DXR(IELNO)

VL=VXL (NODNUM(IELNO, 1)) *FI(1)+VXL(NODNUM(IELNGC,2))*FI(2)
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VR=VZR(MODNUM(IELNO, 1) )*FI(1)+VXR(NODNUM(IELNO,2))*FI(2)

C
dOFL=(QfL (NODNUM(IELNO, 1)) *DFIDS(1) +
+ QfL(NODNUM(IELNO,2))*DFIDS(2))*2./DXL(IELNO)
C
dQFR= (QfR (NODNUM(IELNO, 1)) *DFIDS(1) +
+ OfR{NODNUM(IELNO, 2))*DFIDS(2))*2./DXR(IELNO)
C
C WRITE(6,10)AL, AR, BL, BER, QL, QR, HL, HR
C WRITE(6,10)DDHL, DDHR, QQL, QOR, TL, TR, TML, TMR
C WRITE(6,10)SoL, SoR
10 FORMAT (2X,8(2X,F10.6))
RETURN
END
C
¢ **** THIS SUBROUTINE CHANGES VALUES OF FRICTION f ***¥**>*
C
SUBROUTINE SHEAR(IELNO,B,AA,FF,U,H, KLP, KFL)
c
IMPLICIT REAL *8(A-H,0-2)
¢
COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PsR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew({200),ARnew(200),QLnew(200),QRnaw(200), HRnew(200)
COMMON QfL{(200),QfR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,Hold(200),CNEFF, ITAA,
+0t (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL{200),DXR(200),DXM(200), HLSTEP(200),
+HRSTEP(200),CASEL(200) ,CASER(200) , WALL
C
C WRITE(6, 1)
1 FORMAT(2X, 'I AM IN SHEAR')
C
T1l= ELVLP(NODNUM(IELNO, 1)) ~-ELVMc (NODNUM(IELNO, 1))
IF(T1.GT.H) THEN
T1=H
ENDIF
C
Al=1.0D+00 + Z1**2
A2=DSQRT (Al)
Bl-1.0D+00 + Z2**2
B2=DSQRT (B1)
C
P= B + T1*(A2+B2)
R=AA/P
c
A3= R/CN1(IELNO;
CS= 5.75*DLCGL10(A3) + 6.2D+00
C

IF(KLP.EQ.1)THEN
FF= GRAV*DABS (U) *CN1 (IELNO)**2/(R**1.333)
ELSE

FF= DABS (U) / (R*CS**2)

ENDIF
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EQ.0)THEN

FF=0.0D+00

ENDIF

c WRITE(6,25)FF
25 FORMAT (2X,F10.6)

RETURN
END

**** THIS SUBROUTINE CALCULATES VARTABLES ****+*»

SUBROUTINE INTEGRALS (IELNO, ESaz, ESaq, ESqa, ESqq, EKaa, EKaq,
+ EKqa, EKqQq, SLaa, SRaa, ALK, ARK, P2, P2, P4, NGP, KUW, KLP, KFL, MTD)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2),Esaa{2,2),ESaq(2,2),ESqa(2,2),ESqq(2,2),

+EKaa (2,
+SRaa {2,

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

2),EKaq(2,2),EKqa(2,2),FKqgq(2,2),W(3),S8(3),SLaa(2,2),
2),ALK(2,2),ARK(2,2),P2(200),P3(200),P4(200)

THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV, 00l1d(200)
IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),201d(200)
NODNUM(200, 2), ELVMc(200) ,ELVLP(200),PAR(200,4),PHI(200)
QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew(200)
ALnew{(200),ARnew(200),QLnew(200),0Rnew(200), HRnew(200)
QfL(200),0fR(200),AMTR(200), AMTL(200), TAL(200), TAR(200}
DHL(200) ,DHR(200) ,RHO,21,22,23,24,Hold(200),COEFF, ITAA,

+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(200),DXM(200 ,HLSTEP(200),

+HRSTEP (

OO0

DO i0 I
Do 10 J
ESaa(I,
ESaq(I,
ESga(I,
ESqq(I,
EKaa(I,
EKaq (I,
EKga (I,
EKqq(I,
SLaa(I,
SRaa (I,

200),CASEL(200),CASER({200),WALL

WRITE(6, 1) IELNO, NGP
FORMAT(2X, 'I AM IN INTEGRALS FOR ELEMENT # ',62X,12,1X,12)

NELTY: IELNO)
NELTP (IELNO)
. 0D+ 10
.0D+00
.0D+00
.0D+00
.0D+00
.0D+00
.0D+00
.0D+00
.0D+00
.0D+00

J)
J)
J)
J)
J)
J)
J)
J)
J)
J)

L | (T | [ S 1 B ol

OO OO OO OO

ALK(I,J) = 0.0D+00
ARK(I,J) = 0.0D+00
i0 CONTINUE

Do 60

L=1,NGP

CALL GAUSS(NGP,L,W,S)
CALL SHAPE(L,S,FI,DFIDS)

CALL CHANGEVAR (IELNO, B, AA,QQ,dBdX,U,H,FI,AJa,Alq,
+DFIDS, Uold, HH, P2, So, dHdX)
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CcALL UPYW(IELNO, KUV, Uold, HH, WK1, WK2, WK3, WK4)
CALL SHEAR!(IELNO,E,AA,FF,U,H, KLP, KFL)

IF(MTD.EQ.1) GO TO 30
caLL FLOODVAR(IELNO, AL, AR, QL, OR, BL, BR, HL, HR, SoL, SoR, QQL, QQR, DDHL,
+ DDER,TL, TR, TML,TMR, FI,P3, P4,HLdX, HRdX, dTML, dTMR, dQFL, dQFR, DFIDS,
+VL, VR}

CONTINUE

po 56 I = 1, NELTYP(IELNO)
DO 50 J = 1, NELTYP(IELNO)

ESaa(I,J) = ESaa(I,J) + W(L)*(FI(I)*FI(J)*DXM(IELNO)/2.+
+ WK1*DFIDS(I)*FI(J))

Esaq(I,J) = ESaq(I,J) + W(L)*WK2*DFIDS(I)*FI(J)
ESqa(I,J) = ESga(I,J) + W(L)*WK3*DFIDS(I)*FI(J)
ESqq(I,J) = E3qq{I,J) + W(L)*(FI(I)*FI(J)*DXM(IELNO)/2.+

+ WK4*DFIDS(I)*FI(J)})

CALL ELMKaa(IELNO,I,J,FI,DFIDS,WK2,U,So,H,t)
EKaa(I,J) = EKaa(I,J) + W{(L)*t

CALL ELMKagq(IELNO,I,J,FI,DFIDS,WK1,WK2,U,FF,t)
EKaq(I,J) = EKaq(I,J) + W(L)*t

caLL ELMKga(IELNO,I,J,FI,DFIDS,WK4,U,So,H,¢t)
EKga(I,J) = EKga(I,J} + W(L)}*t

CALL ELMKqq(IELNO,I,J,FI,DFIDS,WK3,WK4,U,FF,t)
EKqq(I,J) = EKqg(I,J) + W(L)*t

IF(MTD.EQ.1) GO TO 40

SLaa(I,J) = SLaa(I,J) + W(L)*FI(I)*FI(J)*DXL(IELNO)/2.
SRaa(l,J) = SRaa(I,J) + W(L)*FI(I)*FI(J)*DXR(IELNO)/2.

CALL ELMALK(IELNcC,I,J,AL,QL,BL,HL, QQL, TML,FI,DFIDS,
+t,KLP,VL}

ALK(I,J) = ALK(I,J) + W(L)*t

CALL ELMARK(IELNO, I, J,AR,QR,BR,HR, QQR, TMR, FI,DFIDS,
+t,KLP, VR)

ARK(I,J) = ARK(I,J) + W(L)*t
CONTINUE
IF(L.EQ.NGP)THEN

WRITE(6,70)1,J,ESaa(1,J),ESaq{1,J),ESqa(I,J),ESqqg(I,J)
WRITE(6,70)1,J,EKaa(I,J),EKaqg(1l,J),EKqa(I,J),EKqq(I,J)
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WRITE(6,70)I,J,8Laa(I,J),SRaa(1,J),ALK(I,J),ARK(I,.T)
ENDIF
CONTINUE
CONTINUE
FORMAT(2X,2I3,4(2X,F12.6))
RETURN
END

**** THIS SUBROUTINE CALCULATES VARIABLES ***#*%%

SUBROUTINE SOURCE (IELNO,FEl,FE2,FL,FR, P2, P3, P4,NGP, KUW, KLP)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2),FL(4),W(3),FE1(4),FE2(4),P2(200),
+ S(3),FKk(4),P3(200),P4(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,Q001d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),G8L(200,200),GSR(200,200)
COMMCN NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,200),A0l1d(200)
COMMON NODNUM(200, 2), ELVMc(200) , ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),0cnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),Q0Rnew(200),HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200), AMTL(200), TAL(200), TAR(200)
COMMON DHL (200),DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,
+Qt (200) ,0tF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2),PARL(200,2),DXL(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6, 1) IELNO, NGP
FORMAT(2X, 'I AM IN SOURCE FOR ELEMENT #& ',2X,I2,1X,1I2)

DO 10 3 = 1, 2*NELTYP(IELNO)
FE1(J)= 0.0D+00
FE2(J);= 0.0D+00
FL(J)= (.0D+00
FR(J)= 0.0D+00
CONTINUE

DO 30 L=1,NGP
CALL GAUSS (NGP,L,W,3)
CALL SHAPE(L,S,FI,DFIDS)

CALL CHANGEVAR (IELNO, B, AA,QQ,dBdX,U,H,FI,AJa,AJq,
+DFIDS, Uold, HH, P2, So, dHdX)

CALL UPW({IELNO,KUW,Uold, HH, WK1, WK2,WK3,WK4)

CALL FLOODVAR(IELNO, AL, AR, QL, QR, BL, BR, HL, HR, SoL, SoR, QQL, QOR, DDHL,
+ DDHR, TL, TR, TML, TMR, FI, P3, P4, HLdX, HRAX, dTML, dTMR, dQFL, dQFR, DFIDS,
+ VL, VR)

DO 20 I=1,NELTYP(IELNO)

CALL FMC(IELNO, I,QQL,QCR,FI,DFIDS, WK1, WK2,WK3,WK4, TML, TMR, R1,R2,
+ dBdX, H,dHdX, VL, VR)

FE1(I)= FE1(I) + W(L)*R1
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FE2(I)= FE2(I) + W(L)*R2

CALL FL¥(IELNO,I,AL,QL,BL,HL,FI,DFIDS, QQL, t,KLP, HLdX)
FL(I)= FL(I) + W(L)*t

CALL FRK(IELNO,I, AR, QR,BR,HR,FI,DFIDS, QQR, t,KLP, HRdAX)
FR(I)= FR(I) + W(L)*t

IF(L.EQ.NGP)THEN
WRITE(6,50)1I,FE1(I),FE2(I),FL(I),FR(I)
ENDIF
CONTINUZ
CONTINUE
FORMAT(2X,I2,4(2X,F12.6))
RETURN
END

*#+** THIS SUBROUTINE CALCULATES JACOBIAN INTEGRALS******

SUBROUTINE JACOETANS (IELNO, CJE, P2, P3,P4,NGP,MTD, KUW, KLP, KFL, K,
+ HSTEP, XT)

IMPLICIT REAL *8(A-H,0-Z)
DIMENSION CJA(8,8),CJB(8,8),CcJC(8,8),CJD(8,8),CJE(8,8),
+ W{(3),P2(200),S(3),FI(2),DFIDS(2),P3(200).P4(200)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV,Q01d(200)
COMMCN IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),Q0LM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200) ,Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew{200),QLnew(200),Q0Rnew(200), HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2),PARL(200,2),DXL(200) ,DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

IF{K.EQ.4)THEN
WRITE (6, 1) IELNO, MTD
FORMAT (2X, 'I AM IN JACOBIANS FOR ELEMENT # ', 2X,I2,1X,612)
ENDIF

DO 10 I = 1, K*NELTYP(IELNO)
DO 10 J = 1, K*NELTYP(IELNO)
CJA(I,J) = 0.0D+00
CJB(I,J) = 0.0D+00
CJC(I,J) = 0.0D+00
CJD(I,J) = 0.0D+00
CJE(I,J) = 0.0D+00
CONTINUE

DO 60 L=1,NGP
CALL GAUSS(NGP,L,W,S)
CALL SHAPE(L,S,FI,DFIDS)



C
CALL CHANGEVAR(IELNQ, B, AA,QQ,dBdX,U,H,FI,AJa,AJq,
+DFIDS,Uold, HH, P2, So, dHdX)
C
CALL UPW(IELNO, KUW,Uold, HH, WK1, WK2, WK3, WK4)
C
IF(MTD.EQ.1) GO TO 55
C
CALL FLOODVAR({IELNO, AL, AR, QL, QR, BL, BR, HL, HR, Sol, SoR, QQL, QQOR, DDHL,
+ DDHR, TL, TR, TML, TMR, FI, P3, P4, HLdX, HRdAX, dTML, dTMR, dQFL, dQFR, DFIDS,
+ VL, VR)
c
C **¥ THIS PART OF THE DERIVATIVE IS FROM THE CONSERVATIVE EQUATIONS
(Fll) * kx
C

CALL DERIVF(IELNO, AL, AR, QL, OR, BL, BR, HL, HR, QQ, AA, H,
+B, tALl, tAL2,dF1dA, dF1dQ, dF1dAR, dF2dAL, dF2dA, dF2dQ, dF2dAR, AF3idar.,
+dF3dA, dF3dQ, dF3dAR, dF4dAL, dF4dA, dF44Q, tAR1, tAR2, KLP, TML, TMR,
+QQR, QQL, XT, VL, VR)

*** THIS PART OF THE DERIVATIVE IS FROM THE NON-CONSERVATIVE
QUATIONS (F2i) ***

aogo0on

CALL DERIVD(U,H, B,AA,dD1dAL,dD1dA, dD1dQ, dD1dAR, AD2dAL, dD2dA, AD2dQ,
+ dD2dAR, dL3dAL, dD3dA, dD3dQ, dD3dAR, dD4dAL, dD4dA, dD4dQ, dD4dAR, XT)

*** THIS PART OF THE DERIVATIVE IS FROM THE CONSERVATIVE EQUATIONGS
Gll) L

Nn—~nn

CALL DERIVG(IELNO, So,QQ, AA, B, dBdX, KFL,KLP, AL, AR, QL, QR, BL, BR,
+HL, HR, dG1dAL, dG1dA, dG1dQ, dG1dAR, dG2dAL, dG2dA, dG2dQ, dG2dAR, dG3dAL,
+dG3dA, dG3dQ, dG3dAR, TML, TMR, dG4dAL, dG4dA, dG4dQ, dG4dAR, DDHL, DDHR,
+QQR, QQL, HSTEP, VL, VR, L)
C
C *** THIS PART OF THE DERIVATIVE IS FROM THE NON-CONSERVATIVE
EQUATIONS (G2i) r~**

C
CALL DERIVE(IELNO, So,QQ, AA, B, dBdX, KFL,KLP, AL, AR, QL, OR, BL, BER,
+HL, HR,dE1dAL, dE1dA, AE1dQ, dE1dAR, dE2dAL, dE2dA, dE2dQ, AE2dAR, AE3dAL,
+dE3dA, dE3dQ, dE3dAR, TML, TMR, dE4dAL, dE4dA, dE4dQ, dE4dAR, DDHL, DDHR,
+QQR, QQL, HSTEP, VL, VK, L)
c
CALL PART1(IELNO,L,W,FI,DFIDS, tALl, tAL2,dF1dA,dF1dQ,
+ dF1dAR, dF2dAL, dF2dA, dF2dQ, dF2dAR, dF3dAL, dF3dA, dF3dQ,
+ dF3dAR, dF4dAL, dF4dA, dF44dQ, tARL, tAR2,CJA)
C
CALL PART2(IELNO,L,W,WK1,WK2,WK3,WK4,DFIDS,
+ dD2dAL, dD2dA, dD2dQ, dD2dAR, dD3dAL, dD3dA,
+ dD3dQ,dD3dAR, CJIB)
c
CALL PART3(IELNO,L,W,FI,dG1dAL,dG1ldA,dCcldQ,
+ dG1dAR, dG2dAL, dG2dA, dG2dQ, dG2dAR, dG3dAL, dG3dA, dG34Q,
+ dG3dAR, dG4dAL, dG4dA, dG4dQ, dG4dAR, CJIC)
C

CALL PART4(L,W,FI,DFIDS,dE2dAL,dE2dA,
+ dE2dQ, dE2dAR, dE3dAL, dE3dA, dE3dQ,
+ dE3dAR, WK1, WK2,WK3, WK4, CID)
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IF(L.EG.HGP)THEN

Do 30 1=1,8

Do 30 J=1,8

CJE(I,J)=CJA(I,J)+CJIB(I,J)+CJIC(I,T)+CID(I1,J)
« WKRITE(6,50)I,J3,CJdA(1,J),CdB(I,J),CJC(I,J),CID(1,J),CIE(I,J)
30 CONTINUE
ENDIF
FORMAT (2X,213,2X,5(2X,F12.6))

O
=

IF(MTD.EQ.2) GO TO 60

[N

5 CALL DERIVB(IELNO, So,dBdX,QQ,AA,U,H, B,KLP,KFL, dF1daA,
+ dridQ,dF2da, dF2dQ, dG1dA, dG1dQ, dG2dA, dG2dQ)

(8]

CALL DERIVP(IELNO, So,dBdX,QQ,AA,U,H,B,KLP,KFL,dB1dA,
+ dB1dQ,dB2dA,dB2dQ,dE1dA, dE1dQ, dE2dA, dE2dQ)

CALL MCJBIANS(IELNO,L,W,CJE,FI,DFIDS,dFldA,dridQ,
+ dF2dA,dF2dQ, 4G1dA, dG1dQ, dG2dA, dG2dQ,dB1dA, dB1d4dQ, dB2dA,
+ dB2dQ,dE1dA, dE1d4Q, dE2dA, dE2dQ, WK1, WK2, WK3, WK4)

60 CONTINUE
RETURN
END

*** THE JACOBIAN FOR THE MAIN CHANNEL ONLY *****x

0N

SUBROUTINE MCJBIANS(IELNO,K,W,CJA,FI,DFIDS,dF1lda, dF1dQ,
+ dF2da,dF2dQ, dG1dA, dG1dQ, dG2dA, dG2dQ, dB1dA, dB14Q, dB2dA,
+ dB2dQ,dEldA,dE1dQ, dE2dA, dE2dQ, WK1, WK2, WK3, WK4)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION CJA(8,8),W(3),FI(2),DFIDS(2)

COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA, GRAV, Qold(200)
COMMON IBCi8),NBC,ALM(200),ELVRP(Z 9),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES,NELTYP(200),XL(200),GJC(200,200),2A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),Qitnew(200) ,HRnew(200)
COMMON QfL(200),0£fR(200),AMTR(200),AMTL{(200), TAL{(200), TAR(200)
COMMON DHL(200),DHR(200),RHC,21,22,23,24,Hc1d(200),COEFF, ITAA,
+0Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2) ,DXL(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6, 1) IELNO
FORMAT(2X, 'I AM IN MCJBIANS ',62X,I2,4(2X,F10.6))

nNr—nNnon

tl= -DFIDS(1)*dF1dA*FI (1)
t2= FI(1)*dG1ldA*FI(1l)*DXM(IELNO)}/2.
t3=(DFIDS(1) *WK1*dBlaA + DFIDS(1) *WK2*dB2dA) *DFIDS(1)*2./
+ DXM(IELNO)
t4=(DFIDS(1)*WK1*dE1dA + DFIDS (1) *WK2*dE2dA)*FI(1)
t=tl + t2 + t3 + t4
CJAa(l,1)= CJA(1,1) + W(K)*t
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tl= -DFIDS(1)*dF1dQ*FI(1)
t2= FI(1)*dGldQ*FI(1l)*DXM(IELNO) 2.

£3=(DFIDS(1)*WK1*dBldg¢ + DFIDS(1)*WK2*dB2dy *DOFIDS(1)*2./

DXM{1ELNO)
t4=(DFIDS (1) *WK1*dE1dQ + DFIDS(1)*WK2*dE2dQ)*FI(1)
t= tl + t2 + t3 + t4
CJA(1,2)= CJA(1,2) + W(K}*t

tl= -DFIDS(1)*dF1dA*FI(2)
t2= FI(1l)*dG1dA*FI(2)*DXM(IELNO)/2.

t2=(DFIDS (1) *WK1*dB1dA + DFIDS (1) *WK2*dB2dA)*DFIDS(2)*2.

DXM(IELNO)
t4=(DFIDS(1) *WK1*dE1dA + DFIDS (1) *WK2*dE2dA)*FI(2)
t= tl1 + t2 + t3 + t4
CJA(1,3)= CJIA(1,3) + W(K)*t

tl= -DFIDS(1)*dF1dQ*FI(2)
t2= FI(1)*dGldQ*FI(2)*DXM(IELNO)/2.

t3=(DFIDS(1)*WK1*dB1dQ + DFIDS(1)*WK2*dB2dQ)*DFIDS(2)*2.

D:21(IELNO)
t4=(DFIDS(1)*WK1*dE1dQ + DFIDS(1)*WK2*dE2dQ)*FI(2)
t= tl + t2 + t3 + t4
CJA(1,4)= CJA(1,4) + W(K)*t

tl= -DFIDS(1)*dF2dA*FI(1)
t2= FI(1l)*dG2dA*FI(1)*DXM(IELNO) /2.

t3=(DFIDS(1)*WK3*dB1dA + DFIDS(1)*WK4*dB2dA)*DFIDS(1)*2.

DXM(TELNO)
t4=(DFIDS (1) *WK3*dE1dA + DFIDS(1)*WK4*dE2dA) *FI(1l)
t= tl + t2 + t3 + t4
CJA(2,1)= CJA(2,1) + W(K)*t

tl= -DFIDS(1)*dF2dQ*FI(1)
t2= FI(1)*dG2dQ*FI(1)*DXM(IELNO),2.

t3=(DFIDS (1) *WK3*dB1dQ + DFIDS(1)*WK4*dB2dQ)*DFIDS(1)*2.

DXM(IELNO)
t4=(DFIDS(1)*WK3*dE1ldQ + DFIDS(1) *WK4*dE2dQ) *FI(1}
= tl + t2 + t3 + t4
CJA(2,2)= CJIA(2,2) + W{K)*t

tl= -DFIDS(1)*dF2dA*FI(2)
t2= FI(1)*dG2dA*FI(2)*DXM(IELNO)/2.

t3=(DFIDS (1) *WK3*dBldA + DFIDS (1) *WK4*dB2dA) *DFIDS(2)*2.

DXM(IELNO)
t4=(DFIDS(1)*WK3*dE1dA + DFIDS(1l)*WK4*dE2dA) *FI(2)
t= tl + £2 + t3 + t4
CJA(2,3)= CJA(2,3) + W(K)*t

tl= -DFIDS(1l)*dF2dQ*FI(2)
t2= FI(1l)*dG2dQ*FI(2)*DXM(IELNO)/2.

t3=(DFIDS(1)*WK3*dB1d0Q + DFIDS(1)*WK4*dB2dQ) *DFIDS(2)*2.

DM (IELNO)
t4=(DFIDS(1)*WK3*3dE1dQ + DFIDS(1)*WK4*dE2dQ)*FI(2)
t= t1 + t2 + t3 + t4
CJAiZ,4)= CIA(2,4) + VI(K)*t

t -DFIDS(2) *dF1dA*FI (1)
t2:. FI(2)*dG1dA*FI(1)*DXM(IELNO)/2.
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t3=(DFIDS(2) *WK1*dE1dA + DFIDS(2) *WK2*dB2dA) *DFIDS(1)*2./
+ DZM{IELNG)
4= (DFIDS{2)*WK1*dE1dA + DFIDS(2) *WK2*dE2dA) *FI(1)
t= tl + £2 + £3 + t4
CIJA(3,1)= CJA(3,1) + W(K)*t

tl= -DFIDS(2)*dF1dQ*FI(1l)

t2= FI(2)*dG1dQ*FI(1)*DXM(IELNO)/2.
t3=(DFIDS(2)*WK1*dB1dQ + DFIDS(2) *WK2*dB2dQ) *DFIDS(1)*2./
+ D¥M(IELNO)

t4=(DFIDS(2) *WK1*dE1dQ + DFIDS(2) *WK2*dE2dQ) *FI(1)

t= tl + £2 + t3 + t4

CJA(3,2)= CJA(3,2) + W(K)*t

tl= -DFIDS(2)*dF1dA*FI(2)

t2= FI(2)*dG1dA*FI(2)*DXM(IELNO) /2.
t3=(DFIDS(2)*WK1*dB1dA + DFIDS(2) *WK2*dB2dA) *DFIDS(2)*2./
+ DXM(IELNO)

t4=(DFIDS(2)*WK1*dE1dA + DFIDS(2)*WK2*dE2dA)*FI(2)

t= tl + t2 + t3 + t4

CIJA(3,3)= CJA(3,3) + W{K)*t

tl= -DFIDS(2)*dF1dQ*FI(2)

t2= FI(2)*dGldQ*FI(2)*DXM(IELNO)/2.
t3=(DFIDS(2)*WK1*dB1dQ + DFIDS(2) *WK2*dB2dQ) *DFIDS(2)*2./
+ DXM(IELNO)

t4=(DFIDR(2) *WK1*dE1dQ + DFIDS(2)*WK2*dE2dQ) *FI(2)

= tl + t3 + t4
CIA(? 3(3,4) + W(K)*t
tl= -DF. ; *dF2dA*FI(1)

2= FI(2)*dG2dA*FI(1)*DXM(IELNO) /2.
t3=(DFIDS(2) *WK3*dB1dA + DFIDS(2) *WK4*dB2dA)*DFIDS(1)*2./
+ DXM({IELNO)
t4=(DFIDS(2) *WK3*dE1dA + DFIDS(2) *WK4*dE2dA) *FI(1)
t= t1 + t2 + t3 + t4
CJA(4,1)= CJA(4,1) + W(K)*L

tl= -DFIDS(2)*dF2dQ*FI (1)

t2= FI{2)*dG2dQ*FI(1)*DXM(IELNO)/2.
t3=(DFIDS(2)*WK3*dB1dQ + DFIDS(2) *WK4*dB2dQ) *DFIDS(1)*2./
+ DXM (IELNO)

t4=(DFIDS(2)*WK3*dE1dQ + DFIDS(2) *WK4*dE2dQ) *FI(1)

t= tl + £2 + t3 + t4

CJA(4,2)= CJA(4,2) + W{K)*t

tl= -DFIDS(2)*dF2dA*FI(2)

t2= FI(2)*dG2dA*FI(2)*DXM(IELNO) /2.
t3=(DFIDS(2)*WK3*dBl1dA + DFIDS(2) *WK4*dB2dA) *DFIDS(2)*2./
+ DXM(IELNO)

td=(DFIDS(2) *WK3*dE1dA + DFIDS(2) *WK4*dE2dA)*FI(2)

t= tl + t2 + t3 + t4

CJA(4,3)= CJA(4,3) + W(K)*t

tl= -DFIDS(2)*dF2dQ*FI(2)

t2= FI(2)*dG2dQ*FI(2)*DXM(IELNO) /2.

t3=(DFIDS(2) *WK3*dB1dQ + DFIDS(2) *WK4*dB2dQ) *DFIDS(2)*2./
+ DXM(IELNO)
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td=(DFIDS(2) *WK3*dE1dQ + DFIDS(2)*WK4*dE2dQ) *FI(2)
t=tl + £2 + £3 + t4
CJA(4,4)= CJA(4.,4) + W(K)*t

IF(K.EQ.NGP) THEN

DO 30 I=1,4

DO 30 J=1,4

WRITE(6,50)I,J,CJA(I,J)

CONTINUE

ENDIF
FORMAT (2X, 21I3,2X,F12.6)
RETURN

END

***** CALCULATION OF PARTIAL DERIVATIVES FOR MAIN “HANNEL ***#*»#aas

SUBROUTINE DERIVB(IELNO, So,dBdX, QQ,AA, U, H, B, KLP, KFL, dF1dA,
+ dF1dQ, dF2da, dF2d0,dG1ldA, dG1dQ, dG2dA, dG2dQ)

IMPLICIT REAL *8(A-H,0-2)

COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,2- - ,GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),G3C(200,200),A01d(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200), PAR(200,4), PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(.100)
COMMON Acnew(200),Qcnew(200),Jcnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMON QfL(200),0£fR(200),AMTR(200), AMTL (200), TAL(2060), TAR(200)
COMMON DHL(200),DHR(200),RHO,Z1,22,23,24,Hold(200),COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DX>(200),DXM(200), HLSTEP(200),
+HRSTEP (200) ,CASEL(200),CASER(200), WALL

WRITE(6,1)
FOFI'-T(2X,'I AM IN SUBROUTINE DERIVE')

IF(KFL.EQ.1)THEN
F=1.0D+00

ELSE

F=0.0D+00

ENDIF

IF(KLP.EQ.1)THEN
Al=2.*AA+B**2
A2=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*Al1**1.333/(A%**3.333*B**] 333
A3=GRAV*QQ*DABS (QQ) *CN1(IELNO) **2*A1**(.333/(AA**2.333*B**]1.3.%)
ENDIF

Tl= ELVLP (NODNUM(IELNO, 1)) -ELVMc (NODNUM(IELNO, 1))
IF(T1.GT.H)THEN

T1l=H

ENDIF

A4=1.0D+00 + 21**2
AS5=DSQORT (A4}
B4=1.0D+00 + Z2**2
B5=DSQRT (B4}
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P= B + T1*(AS+ES)
P=hh/{(2.0*H + B)

A4=R/CHNI1 (IELNO)

S= 5.75*DLOG10(A4) + 6.2D+00
dF1dA=0.0D+00

dF1d(=1.0D+00

dr2da= - (QQ**2/AA**2) + GRAV*H
dF2dp= 2.0*U
dG1dA=0.0D+00
dG1dp=0.0D+00

.
C A3=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2/ (AA**2*R**1.333)
C
IF(KLP.EQ.1)THEN
AG2dA= -GRAV*AA*dBAX/B**2 - GRAV*Sc -(7./3.)*A2*F +(8./3.)*A3*F
C dG2dA= -GRAV*AA*dBdX/B**2 - GRAV*So - A3*F
~
dG2dQ= 2.*F*GRAV*QQ*CN1(IELNO) **2*A1**1.333/(AA**2.333*R**1.333)
C dG2dQ=2.*F*GRAV*QQ*CN1 (IELNO) **2/ (AA*R**1.333)
ELSE
dG2da= -GRAV*AA*dRAX/B**2 - GRAV*So -2.*QQ*DABS(QQ)*F*B/
+ (AA**3*CS**2)- 5.0*Q0*DABS(QQ) *F/ (AA**2*CS**3*R)
C
AG2dQ= 2.*F*QQ*B/ (AA**2*CS**2)
ENDIF
C WRITE (6,20)dF1dA,dF1dQ, dF2dA, dF24Q
C WRITE(6,20)dG1dA,dG1dQ, dG2dA, dG2dQ
20 FORMAT (2X, 6 (2X,F12.6))
RETURN
END
C
¢ *** DERIVATIVES IS FROM THE NON-CONSERVATIVE PART EQ.(MAIN CHANEL
ONLY ) ***
C
SUBROUTINE DERIVP(IELNO, So,dBdX, QQ,AA,U,H, B, KLP,KFL,dB1dA,
+ dB1dQ,dB2dA, dB2dQ,dE1dA,dE1dQ, dE2dA, dE2dQ)
C
IMPLICIT REAL *8(A-H,0-Z)
C

COMMON THETA,CNi1'200),CN2(200),CN3(200),0MEGA, GRAV,Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP({200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(ZOO),QLM(ZOO),APHI(ZOO),QPHI(ZOO),ARM(ZOO),TETA,FC(ZOO)
COMMON Acnew (20C),Qcnew(200),Ucnew(200) ,Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200),HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200) ,AMTL (200), TAL(200), TAR(200)
COMMON DHL (200),DHR(200),RHO,21,22,23,Z4,Hold(200),COEFF, ITAA,
+Qt (200),0tF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2), PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP (200),CASEL(200),CASER(200) , WALL

WRITE(6,1)
FORMAT (2X, 'I AM IN SUBROUTINE DERIVP')

=N G
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IT(KFL.EQ.1) THEN
F=1.0D+00

ELSE

F=0.0D+00

ENDIF

IF(KLP.EQ.1)THEN

Al=2.*AA + B**2

A2=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*
+ Al**1.333/(AA**3.333*B**1.333)

A3=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*A1%*0.333/
+ (AA**2.333*B**1.333)
ENDIF

Tl= ELVLP(NODNUM(IELNO, 1)) -ELVMc (NODNUM(IELNO, 1))
IF(T1.GT.H)THEN

T1=H

ENDIF

Ad4=1.0D+00 + Z1**2
AS5=DSQRT(A4)
B4=1.0D+00 + Z2**2
B5=DSQRT(B4)

P= B + T1*(AS5+BS5)
R=AA/(2.0*H + B)

A4=R/CN1 (IELNO)

CS= 5.75*DLOG10 (A4} + 6.2D+00
dB1da=0.0D+00

dB1dp=1.0D+00

dB2dA = 2.0* RAV*H -U**2
dB2dg = 2.0*U

dEldA =0.0D+00

dE1dQ =0.0D+00

A3=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2/ (AA**2*R**1.333)

IF(KLP.EQ.1)THEN
dE2dA= -GRAV*AA*dBdX/B**2 - GRAV*So -(7./3.)*A2*F +(8./3.)*A3*F
dE2dA= -2.0*GRAV*AA*dBdX/B**2 - GRAV*So - A3*F

dE2dQ= 2.*F*GRAV*QQ*CN1 (IELNO)**2*A1**1.333/(AA**2.333*B**1.333)
dE2dQ = 2.*F*GRAV*QQ*CN1(IELNO)**2/(AA*R**1.332)
ELSE
dE2dA = -2.0*GRAV*AA*dBdX/B**2 - GRAV*So -2.*QQ*
+ DABS(QQ) *F*B/ (AA**3*CS**2) -5.0*QQ*DABS (QQ) *F/
+ (AA**2*CS**3*R)

dE2d¢ = 2.*F*QQ*B/ (AA**2*CS**2)
ENDIF

WRITE(6,20) dB1ldA,dB1dQ,dB2dA, dE2dQ
WRITE(6,20) dE1dA,dE1dQ,dE2dA,dE2dQ
FORMAT(2X,5(2X,F12.6))
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RETURN
END

wwxiwrxs CALCULATION OF THE JACOBIAN PART 1 ***x*»*

SUBROUTINE PART1 (IELNO,K,W,FI,DFIDS, tALl, tAL2,dF1dA,dF1dQ,
+ dF1dAR, dF2dAL, dF2dA, dF2dQ, dF2dAR, dF3dal., dF3dA, dF3dQ,

+ dF3dAR,dF4daL,dF4dA, dF4dQ, tAR], tAR2, CJA)

IMPLICIT REAL *8(A-H,0-Z)
DIMENSION CJA(8,8),DFIDS(2),FI(2',W(3)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV, 014 (200)

COMMON IBC(8),NBC,ALM(20%),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200) ,XL{200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
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COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)

COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),0Lnew(200),0Rnew(200),HRnew(200)
COMMON QfL(200),QfR(200),AMTR{200),AMTL(200}, TAL(200), TAR(200)
COMMON DHL(ZOO),DHR(ZOO),RHO,Zl,ZZ,Z3,Z4,Hold(200),COEFF,ITAA,
+Qt (200),QtF{200),VXL(200),VXR{200),CML(200),CMR{200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(200},DXM(200),HLSTEP{200),

+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6,1)

FORMAT(2X,'I AM IN SUBROUTINE PART1')

CJA(1l,1)= CJA(1,1)

+

W(K)*(-DFIDS(1) *(tALl +

+ tAL2*DFIDS(1)*2.0/DXL(IELNO))*FI(1))

CJA(1,2)= CJA(1,2)
CJA{l,3)= CJA(1l,3)
CJA(1,4)= CJA(1,4)

CJA(1,5)= CJIA(1,5)

+
+
+

+

W(K)*(-DFIDS (1) *dF1dA*FI(1))
W(K)*(-DFIDS(1) *dF1dQ*FI(1))
W(K)*(-DFIDS (1) *dF1dAR*FI(1l))

¥(K)*(-DFIDS(1) *(tALl +

+ tAL2*DFIDS(2)*2.0/DXL{IELNO))*FI(2))

CJA(1,6)= CJA(1,6)
CJA(1,7)= CJIA(1,7)
CJA(1,8)= CJA(1,8)

CJA(2,1)= CJA(Z,1)
CJA(2,2)= CJA(2,2)
CJA(2,3)= CJA(2,3)
CJA(2,4)= CJA(2,4)

CJA(2,5)= CJA(2,5)
CJA(2,6)= CJA(2,6)
CJA(2,7)= CJA(2,7)
CJA(2,8)= CJA(2, 8)

CJA(3,1)= CJA(3,1)
CJA(3,2)= CJA(3,2)
CJA(3,3)= CJA(3,3)
CJA(3,4)= CJA(3,4)

CJA(3,5)= CJA(3,5)
CJA(3,6)= CJA(3,6)
CJIAL(3,7)= CIA(3,T)

+
+
+

+ + + + + + + + + + + +

+ 4+

W(K)* (-DFIDS (1) *dF1dA*FI(2))
W(K)* (-DFIDS (1) *dF1dQ*FI{(2))
W({K)* (-DFIDS (1) *dF1dAR*FI (2))

W(K)*(-DFIDS{1) *dF2dAL*FI(1))
W(K) *(-DFIDS (1) *dF2dA*FI (1))
W{K)* (-DFIDS (1) *dF2dQ*FI (1))
W(K)*(~-DFIDS(1) *dF2dAR*FI (1))

W(K)* (-DFIDS{1) *dF2dAL*FI(2))
W(X)* (-DFIDS (1) *dF2dA*FI(2))
W(K)* (-DFIDS (1) *dF2dQ*FI(2})
W(K!*(-DFIDS (1) *dF2dAR*FI(2))

W(K)* (-DFIDS (1) *dF34AL*FI (1))
W{K)*(-DFIDS (1) *dF3d4A*FI (1))
W(K)*(-DFIDS (1) *dF3dQ*FI (1))
W(K)*(-DFIDS (1) *dF3dAR*FI(1})

W(K)* (-DFIDS (1) *dF3dAL*FI(2))
W(K)*(-DFIDS (1) *AF3dA*FI(2))
W(K)*(-DFIDS(1) *dF3dQ*FI(2))



CJA(3,8)= CJA(3,8) +

CJA(4,1)= CJA(4,1)
CJA(4,2)= CJA(4,2)
CJA(4,3)= CJA(4,3)
CJA(4,4)= CIA(4,4) +

+ + +

W(K) *(~-DFIDS (1) *dF3dAR*FI(2))

W(K)* (-DFIDS (1) *dF4dAL*FI(1))
W(K}* (~-DFIDS(1) *dF4dA*FI{1})
W(K)* (-DFIDS (1) *dF44Q*FI(1))
W(K)*(-DFIDS (1) *(tARl +

+ tARZ*DFIDS(1)*2.0/DXR(IELNO))*FI(1))

CJA(4,5)= 2JA(4,5) +
CJA(4.6)= CJA(4,6) +
CJA(4,7)= CIJA(4,7) +
CJA(4,8)= CJA(4,8) +

W(K)*(-DFIDS (1) *dF4dAL*FI{2))
W(K)*(~-DFIDS (1) *dF4dA*FI(2))
W(K) *(-DFIDS(1) *dF4dQ*FI(2))
W(K)*(-DFIDS(1) *(tARl +

+ tARZ*DFIDS(2)*2.0/DXR(IELNO))" 'I(2))

CJA(5,1)= CJA(5,1) + W(K) ! S(2)*(tAL1 +
+ tAL2*DFIDS{1)*2.7/DXL(IELN 1))
CJA(5,2)= CJA(5,2) + W(K)*{ JS(2) *dF1dA*FI(1))

CJA(S,3)= CJA(S5,3) +
CJA(5,4)= CJIJA(5,4) +

CJA(5,5)= CJA(5,5) +

W(K)* (~DFIDS(2) *dF1dQ*FI(1))
W(K)*(-DFIDS(2) *dF1dAR*FI(1))

W(K)*(-DFIDS(2)*{(tALl +

+ tALZ2*DFIDS(2)*2.0/DXL(IELNO))*FI(2))

CJA(5,6)= CJA(S5,6) +
CJA(5,7)= CJA(5,7) =
CJA(5,8)= CJA(5,8) +

CJA(6,1)= CJA(6,1)
CJA(6,2)= CJA(6,2)
CJA(6,3)= CJA(6,3)
CJA(6,4)= CJA(6,4)

+ 4+ 4+

CJA(6,5)= C3A(6,5)
CJA(6,6)= CJA(6,6)
CJA(6,7)= CIA(6,7)
CJA(6,8)= CJA(6,8)

+ + o+ +

CJA(7,1)= CJA(7,1)
CJA(7,2)= CJA(7,2)
CJA(7,3)= CJIA(7,3)
CJA(7,4)= CIA(7,4)

+ + 4+ 4+

CJA(7,5)= CJIA(7,5)
CJA(7,6)= CJIA(7,6)
CJA(7,7)= CIA(7,7)
CJA(7,8)= CJIA(7,8)

+ + + 4+

CJA(E,1)= CJA(8,1)
CJA(8,2)= CJA(8,2)
CJA(8,3)= CJA(8,3)
CJA(8,4)= CJA(8,4) +

+ + +

W(K)*(-DFIDS(2) *dF1dA*FI(2))
W(K)*(~-DFIDS(2) *dF1dQ*FI(2))
W(K)*(-DFIDS(2)*dF1dAR*FI(2))

W(K)*(-DFIDS(2) *dF2dAL*FI (1))
W(K)* (-DFIDS(2) *dF2dA*FI (1))
W(K)* (-DFIDS(2) *dF2dQ*FI(1})
W(K) *(-DFIDS(2) *dF2dAR*FI(1))

W(K)*(-DFIDS(2) *dF2dAL*FI(2))
W(K)*(-DFIDS(2) *dF2dA*FI(2))
W(K)* (-DFIDS(2) *dF2dQ*FI(2))
W(K)*(-DFIDS(2) *dF2dAR*FI(2))

W(K) *(-DFIDS(2) *dF3dAL*FI(1))
W(K) *(-DFIDS(2) *dF3dA*FI(1))
W(K)*(-DFIDS(2) *dF3dQ*FI (1))
W(K)*(-DFIDS(2) *dF3dAR*FI(1))

W(K)*(-DFIDS(2) *dF3dAL*FI(2))
W(K)* (-DFIDS(2) *dF3dA*FI(2))
W(K)*(~-DFIDS(2) *dF3dQ*FI(2))
W(K)*(-DFIDS(2) *dF3dAR*FI(2))

W(K)* (-DFIDS(2) *dF4dAL*FI (1))
W(K)*(-DFIDS(2) *dF4dA*FI(1))
W(K)*(-DFIDS(2) *dF4dQ*FI(1))
W(K)*(-DFIDS(2) *(tARl +

+ tAR2*DFIDS(1)*2.0/DXR(IELNO))*FI(1))

CJA(8,5)= CJA(8,5) +
CJA(8,6)= CJA(8,6) +
CJA(8,7)= CJA(8,7) +
CJA(8,8)= CJA(E,8) +

W(K)*(-DFIDS(2) *dF4dAL*FI(2))
W(K)*(-DFIDS(2) *dF4dA*FI(2))

W{K)*(~-DFIDS(2) *dF4dQ*FI(2))

W(K)*(-DFIDS(2) *(tARl1 +

+ tAR2*DFIDS(2)*2.0/DXR(IELNO))*FI(2))
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RETURNM
END

s#wxx2x* CALCULATION OF THi JACOEIAN PART 2 ***wxxx

SUBROULTINE PART2 (IELNO,K,W,WK1,WK2,WK3,WK4,DFIDS,
+ dD2zdAL,dD2dA, ¢D2dQ, dD2dAR, dD3dAL, dD3dA,
+ dD3dQ, dD3dAR, CJB)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION CJB(8,8),DFIDS(2),W(3)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV,Qo1d(200)
cOMMON IBC(8),NBC,ALM{200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM (200, 2),ELVMc(260),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),0LM(200),APHKI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew({200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew(200)
COMMON ALnew(200),ARnew{200),QLnew(200),QRnew{200),HRnew(200)
COMMON QfL(200),QfR{(200),AMTR(200),AMTL(200),TAL{200),TAR(200,
COMMCN DHL(ZOO),DHR(200),RHO,ZI,ZZ,ZB,Z4,Hold(200),COEFF,ITAA,
+OL (200),QtF(200), VXL (200 ,VXR(200),CML{200),CMR(200),CF1,CF2,
+PARF (20v, 2}, PARL(200,2),DXL{200),DXR(200),DXM(200), HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6,1)
FORMAT (2%, *I AM IN SUBRCUTINE PART2',4(2X,F10.6))

t=(WK1*DFIDS{1)*dD2dAL + WK2*DFIDS (1) *dD3dAL)*DFIDS(1)*2./
+ DXM(IELNO)
CJIB{2,1)= CJIB(2,1) + W{(K)*t

t=(WK.1*DFIDS(1)*dD2dA 4+ WK2*DFIDS(1)*dD3dA)*DFIDS(1)*2./
+ DXM(IELNO)
CIB(2,2)= CJIB(2 2) + W(K)*t

t=(WK1*DFIDS(1)*dD2dQ + WK2*DFIDS(1)*dD3dQ)*DFIDS(1)*2./
+ DXM(IELNO)
CJB(2,3)= CJIB{(Z2,3) + W(K)*t

t= (WK1*DFIDS(1)*dD2dAR + WK2*DFIDS(1)*dD3dAR)*DFIDS(1)*2./
+ DXM(IELNO)
CIB(2,4)= CIB(2,4) + W(K)*t

t=(WK1*DFIDS (1) *dD2dAL + WK2*DFIDS(1)*dD3dAL) *DFIDS(2)*2./
+ DXM(IELNO)
CJB(2,5)= CJB{2,5) + W(K)*t

t=(WK1*DFIDS (1) *dD2dA + WK2*DFIDS(1l)*dD3dA)*DFIDS(2)*2./
+ DXM(IELNO)
CJIB(2,6)= CJIB(2,6) + W(K)*t

t={(WK1*DFIDS(1)*dD2dQ + WK2*DFIDS(1)*dD3dQ)*DFIDS(2)*2./
+ DXM{IELNO)
CIB(2,7)= CJIB(2,7) + W(K)*t

t=(WK1*DFIDS(1)*dD2dAR + WK2*DFID3(1)*dD3dAR) *DFIDS(2)*2./
+ DXM(IELNO)



+

+

+

+

+

+

+

+

+

+

+

+

+

+

CJB(2.8)= CJIB(2,8) + W(K)*t

t=(WK3*DFIDS (1) *dD2dAL + WK4*DFIDS (1) *dD3dAL)*DFIDS(1)*2.

DXM(IELNO)
CJIB(3,1)= CJB(3,1) + W(K)*t

t=(WK3*DFIDS(1)*dD2dA + WK4*DFIDS(1)*dD3dA)*DFIDS(1)*2./
DXM(IELNO)
CJIB(3,2)= CJIB(3,2) + W(K)*t

t=(WK3*DFIDS (1) *dD2dQ + WK4*DFIDS(1)*dD3dQ)*DFIDS(1)*2./
DXM(IELNO)
CJIB(3,3)= CJIB(3,3) + W(K)*t

t=(WK3*DFIDS (1) *dD2dAR + WK4*DFIDS(1)*dD3dAR) *DFIDS(1)*2.

DXM(IELNO)
CJIB(3,4)= CIB(3,4) + W(K)*t

t=(WK3*DFIDS (1) JuD2dAL + WK4*DFIDS(1)*dD3dAL)*DFIDS(2)*2.

DXM({IELNQ)
CJB(3,5)= CJF(3,5) + W(K)*t

t=(WK3*DFIDS (1) *dD2dA + WK4*DFIDS(1)*dD3dA)*DFIDS(2)*2./
DXM(IELNO)
CJB(3,6)= CJIB(3,6) + W(K)*t

t=(WK3*DFIDS (1) *dD2dQ + WK4*DFIDS (1) *dD3dQ)*DFIDS(2)*2./
DXM(IELNO)
CJIB(3,7)= CJIB(3,7) + W(K)*t

t=(WK3*DFIDS (1) *dD2dAR + WK4*DFIDS(1)*dD3dAR)*DFIDS(2)*2.

DXM (IELNO)
CJIB(3,8)= CJB(3,8) + W(K)*t

t=(WK1*DFIDS (2) *dD2dAL + WK2*DFIDS(2) *dD3dAL)*DFIDS(1)*2.

OXM(IELNO)
CJIB(6,1)= CJB(6,1) + W(K)*t

t=(WK1*DFIDS(2) *dD2dA + WK2*DFIDS(2) *dD3dA)*DFIDS(1)*2./
D¥M(IELNO)
CJB(6,2)= CJB(6,2) + W(¥ *t

t=(WK1*DFIDS(2)*dD2dQ + WK2*DFIDS(2) *dD3dQ)*DFIDS/13*2./
DXM(IELNO)
CJB(6,3)= CJIJB(6,3) + W(K)*t

t=(WK1*DFIDS(2)*dD2dAR + WK2*DFIDS(2) *dD3dAR)*DFIDS(1)*2.

DXM(IELNO)
CJIB(6,4)= CIB(€,4) + W(K)*t

t=(WK1*DFIDS(2) *dD2dAL + WK2*DFIDS(2) *dD3dAL)*DFIDS(2) *2.

DXM (IELNO)
CJB(6,5)= CJIB(6,5) + W(K)*t

t=(WK1*DFIDS(2) *dD2dA + WK2*DFIDS(Z2) *dD3dA) *DFIDS(2)*2./
DXM(IELNO)
CJB(6,6)= CJIB(6,6) + W(K)*t

/
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t=(WK1*LFIL::(2)*dD2dQ + WK2*DF1.S(2)*dD3dQ) *DFIDS(2)*2./
+ DXM(IELNO)
CJB(6,7)= CJB(6,7) + W(K)*t

t=(WK1*DFIDS(2)*dD2dAR + YHK2*DFIDS(Z2)*dD3dAR)*DFIDS(2)*2./
+ DZM(IELNO)
CJB(6,8)= CJB(6,8) + W(K)*t

t={(WK3*DFIDS(2)*dD2dAL + WK4*DFIDS(2)*d. JAL)*DFIDS(1)*2./
+ DXM(IELNQO)
“JB(7,1)= CIB(7,1) + W(K)*t

t=(WK3*DFIDS(2) *dD2JdA + WK4*DFIDS(2)*dD3dA)*DFIDS(1)*2./
+ DXM { 1ELNO)
CJIB(7,2)= CIB{7,2) + W(K)*t

t=(WK3*DFIDS(2)*dD2dQ + WK4*DFIDS(2)*dD3dQ) *DFIDS(1)*2./
+ D¥M ( IELNO)
CJIB(7,3)= CIB(7,3) + W(K)*t

t=(WK3*DFIDS(2) *dD2dAR + WK4*DFIDS(2)*dD3dAR)}*DFIDS(1)*2./
+ DXR(IELNO)
CJIB(7,4)= CIB(7,4) + W(K)*t

t=(WK3*DFIDS(2)*dD2dAL + WK4*DFIDS(2)*dD3dAL)*DFIDS(2)*2./
+ DXM(1ELNO)
CJB(7,5)= CJIB(7,5) + W(K)*t

t=(WK3*DFIDS(2) *dD2dA + WK4*DFID5(2)*dD3dA) *DFIDS(2)*2./
+ DXM (IELNO)
CJB{7,6)= CJIJB(7,6) + W(K)*t

t=(WK3*DFIDS(2)*dD2dQ + WK4*DFIDS(2)*dD3dQ) *DFIDS(2)*2./
+ DXM(IELNO)
CJB(7,7)= CIB(7,7) + W(K)*t

t =(WK3*DFIDS(2) *dD2dAR + WK4*DFIDS(2)*dD3dAR)*DFIDS(2)*2./
+ DXM(IELNO)
CJIB(7,8)= CJIB(7,8) + W(K)*t

RETURN
END

*rxxxxxx CALCULATION OF THE JACOBIAN PART 3 ***x*%*

SUBRO"TINE PART3 (IELNO,K,W,FI,dG1dAL,dG1dA,dGldQ,
+ JdG1dAR, dG2dAL, dG2dA, AG2dQ, dG2dAR, dG3dAL, dG3dA, dG3dQ,
+ dG23dAR, dG4dAL, dG4c'A, dG4dQ, dG4dAR, CJIC)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION CJC(8,8),FI(2),W(3)

COMMON THETA,CN1(200),CN2(200),CN3(200),O0MEGA, GRAV,Q01d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200),HLnew(200)



NN

COMMON 2ALnew(200),ARnew({200),QLnew(200),QRnew(200), HRnew{209)
COMMON QfL(200),QfR(200),AMTR{200), AMTL(200), TAL(200), TAR(200)
COMMON DHL(200),DHR(2090),RHO,21,22,23,24,Hold(200), COEFF, ITAA,
+Qt (200) ,QtF(200),VXL{200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200,2),PARL(200,2),DXL(200),DXR(200),DXM(200), HLSTEP{200),

+HRSTEP(200),CASEL(200),CASER(200),WALL

FORMAT(2X,'I AM IN SUBROUTINE PART3')

WRITE(6,1)
cJC(1,1)= €Jc(1,1)
cJc(1l,2)= €Jc(1,2)
cJc!1,3)= CJc(1,’)
CJC(1,4)= CJC(1,4)
cJc(1,5)= C€3C(1,5)
CJC(1l,6)= CJC(1,6)
cJC(1,7)= CIC(1,7)
CcJC(1,8)= C£JC(1,8)
CsC(2,1)= CJC(2,1)
CJC(2,2)= CJIC(2,2)
CIC(2,3)= CJIC(2,3)
CJC(2,4)= CIC(2,4)
CJC(2,5)= CJIC(2,5)
CJC(2,6)= CJC(2,6)
cJc(2,7)= €Jc(2,7)
cJC(2,8)= €Jc(z,8)
CJC(3,1)= cJc(3,1)
cJC(3,2)= CJIC(3,2)
CJC(3,3)= CIJC(3,3)
CJC(3,4)= CIC(3,4)
CJC(3,5)= CJIC(3,5)
CJC(3,6)= CJC(3,6)
CJC(3,7)= CIC(3,7)
CJC(3,8)= CJC(3,8)
CJC(4,1)= CJC(4,1)
CJC(4,2)= CIC(4,2)
CJC(4,3)= CJIC(4,3)
CJC(4,4)= CJIC{4.4)
CJC(4,5)= €Iy 9}
CJC(4,6)= CIL1, =
CJC(4,7)= CICls./;
CJC(4,8)= CJC(4,8
2JC(5,1)= CJC(5,1)
CJC(5,2)= CJC(5,2)
CJC(5,3)= nI1C(5,3)
CJC(5,4)= ¢JC(5, 4)
CJC(5,5)~ vJC(5,5)
CJC(5,6)= €JC(5,6)
cJC(5,7)= ¢cJC(5,7)

+ o+ o+ + o+ + + + o+ + + + o+ o+ o+ + o+ o+ o+ + o+ o+ 4+

+ 4+ + +

W(K)*FI(1l)*dG1dAL*FI(1)*DXL{IELNO) /2.0
W(K)*FI(1)*dGldA*FI(1)*DXL(IELNQ)/2.0
W(K)*FI(1)*dG1ldQ*FI(1)*DXL{(IELNO)/2.0
W(K)*FI(1)*dG1dAR*FI(1)*DXL(IELNO)/2.0

W(K)*FI(1)*dG1ldAL*FI(2)*DXL(IELNO)}/2.0
W(K)*FI(1)*dG1dA*FI(2)*DXL(IELNO)/2.0
W(K)*FI(1)*dG1dO*FI(2)*DXL(IELNO)/2.0
W(K)*FI(1)*dG1dAR*FI(2)*DXL(I" 0)/2.0

W(K)*FI(1)*dG2dAL*I'I(1l)*DXM(IELNO)} /2.0
W(K)*FI(1l)*dG2dA*FI(1)*DXM(IELNO)/2.0
W(K)*FI(1)*dG2dQ*FI(1)*DAM(IELNO) /2.0
W(K)*FI(1)*dG2dAR*FI(1)*DXM(IELNO) /2.0

W(K)*FI(1)*dG2dAL*FI(2)*DXM(IELNO} /2.0
W(K)*FI(1)*dG2dA*FI(2)*DXM(IELNO)/2.0
W(K)*FI(1)*dG2dQ*FI (2)*DXM(IxwuNO)/2.0
W(K)*FI(1)*dG2dAR*FI(2)*DXM{(IELNO) /2.0

W(K)*FI(1)*dG3dAL*FI(1)*DXM(IELNO) /2.0
W(K)*FI(1)*dG3dA*FI(1)*DXM(IELNO)/2.0
W(K)*FI(1)*dG3dQ*FI(1)*DXM(IELNO)/2.0
W(K)*FI(1)*dG3dAR*FI(1)*DXM(IELNO) /2.0

W(K)*FI(1)*dG3dAL*FI(2)*DXM(IELNO) /2.0
W(K)*FI(1)*dG3dA*FI(2)*DXM(IELNO) /2.0
W{K)*FI(1)*dG3dQ*FI(2)*DXM(IELNO)/2.0
W{K)*FI(1)*dG3dAR*FI(2)*DXM(IELNO) /2.0

W(K)*FI(1)*dG4dAL*FI(1)*DXR(IELNO) /2.0
W(K)*FI(1)*dG4dA*FI(1)*DXR(IELNO)/2.0
W(K)*FI(1)*dG4dQ*FI(1)*DXR(IELNO)/2.0
W(K)*FI{(1)*dG4dAR*FI(1)*DXR(IELNO) /2.0

. W(K)*FI{(1)*dG4dAL*FI(2)*DXR(IELNO)/2.0

+ + + + +

+ +

W(K)*FI(1)*dG4dA*FI(2)*DXR(IELNO) /2.0
W(K)*FI(1)*dG44dQ*FI(2)*DXR(IELNO)/2.0
W(K)*FI(1)*dG4dAR*FI(2)*DXR(IELNO) /2.0

W(K)*FI(2)*dG1dAL*FI(1)*DXL(IELNO}/2.0
W(K)*FI(2)*dG1dA*FI(1)*DXL(IELNO) /2.0
W(K)*FI(2)*dG1ldQ*FI(1)*DXL(IELNO)/2.0
W(K)*FI(2)*dG1d4AR*FI (1) *DXL(IELNO) /2.0

W(K)*FI(2)*dG14AL*FI(2)*DXL(IELNO) /2.0
W(K)*FI(2)*dG1dA*FI(2)*DXL(IELNO)/2.0
W(K)*FI(2)*dG1ldQ*FI(2)*DXL(IELNO)/2.0
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B)= CJC(5,8) + W(K)*FI{2)*dG1dAR*FI(2)*DXL(IELNO)/2.0

W(K)*FI(2)*dG2dAL*FI(1)*DXM(IELNO) /2.0

CJC(6,1)= CIC(6,1) +
CJC(6,2)= CIC(6,2) + W(¥)*FI(2)*dG2dr *FI(1)*DXM(IELNO)/2.0
CJC(6,3)= CIC(6,3) + W(K)*FI(2)*dG2dQ*FI(1)*DXM(IELNO}/2.0
CcJC(6,4)= CJIC(6,4) + W(K)*FI(2)*dG2dAR*FI(1)*DXM(IELNO) /2.0
¢
CJC{6,5)= CIC(6,5) + W(K)*FI(2)*dG2dAL*FI(2)*LXM{IELNO)/2.0
CJC(6,6)= CIC(6,6) + W(K)*FI(2)*dG2dA*FI(2)*DXM(IELNO)/2.0
cJC(6,7)= CIC(6,7) + W(K)*FI(2)*dG2dQ*FI(2)*DXM{IELNO)/2.0
CJC(6,8)= CJC(6,8) + W(K)*FI(2)*dGZJAR*FI(2)*DXM(IELNO) /2.0
o
cJC(7,1)= CJIC(7,1) + W(K)*FI(2)*dG3dAL*FI(1)*DXM(IELNG) /2.0
CJC(7,2)= CJIC(7,2) + W(K)*FI(2)*dG3dA*FI(1)*DXM(IELI">)/2.0
CJC(7,3)= CIC(7,3) + W(K)*FI(2)*3dG3dQ*FI(1l)*DXM(IELNO)/2.0
CIC(7,4)= CIC(7,4) + W(K)*FI(2)*dG3dAR*FI(1)*DXM(IELNO)/2.0
C
CJC(7,5)= CIC(7,5) + W(K)*FI(2)*dG3dAL*FI(2)*DXM(IELNO)/2.0
CjC(7,6)= CIC(7,6) + W(K)*FI(2)*dG3dA*FI(2)*DXM(IELNO) /2.0
CJC(7,7)= CJIC(7,7) + W(K)*FI(2)*dG3dQ*FI(2)*DXM(IELNO)/2.0
cJC(7,8)= CIC(7,8) + W(K)*FI(2)*dG3dAR*FI(2)*DXM(IELNC,;/2.0
¢
CJC(8,1)= CJC(8,1) + W(K)*FI(2)*dG4dAL*FI(1)*DXR(IELNO) /2.0
cJC(8,2)= £JC(8,2) + W(K)*FI(2)*dG4dA*FI(1)*DXR(IELNO) /2.0
CJC(8,3)= CJIC(8,3) + W(K)*FI(2)*dG4dQ*FI(1)*DXR(IELNO)/2.0
CJC(R,4)= CIC(8,4) + W(K)*FI(2)*dG4dAR*FI(1)*DXR(IELNO) /2.0
C
CcJC(8,5)= CIC(8,5) + W(K)*FI(2)*dG4daL*FI(2)*DXR(IELNO) /2.0
CJC(8,6)= CJC(8,6) + W(K)*FI(2)*dG4dA*FI(2)*DXR(IELNO)/2.0
CJC(8,7)= CIC(8,7) + W(K)*FI(2)*AdG4dQ*FI(2)*DXR(IELNO)/2.0
CcJC(8,8)= €CJC(8,8) + W(K)*FI(2)*dG4dAR*FI(2)*DXR(IELNO) /2.0
C
RETURN
END
C
C *xskxxx* CALCULATION OF THE JACOBIAN PART 4 *****%x
C
SUBROUTINE PART4(K,W,FI,DFIDS,dE2dAL,dE2dA,
+ dE2d0Q, dE2dAR, AdE3dAL, dE3dA, dE3dQ, dE3dAR, WK1,
+ WK2,WK3,WK4,CJID)
C
IMPLICIT REAL *8(A-H,0-Z)
DIMENSION CJD(8,8),DFIDS(2),FI(2),W(3)
C
COMMON THETA,CN1(200),CN2(200),CN3(200),O0MEGA, GRAV,Q01d(200)
COMMON IBC(8),NBC,ALM(200),FELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(290,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200), ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),0QLM(200),APHI(200),QPHI(200;,ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200) ,Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200),HRnew (200)
COMMON QfL(200),0fR(200),AMTR(200),AMTL(200), TAL(20(), TAR(200)
COMMON DHL (200} ,DHR(200),RHO,21,22,23,Z4,Hol1d(200),COEFF, ITAA,
+Qt {200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL({200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP (200), CASEL(200),CASER(200) ,WALL
C
C WRITE(6,1)



=

(@)

FORMAT(2X, 'I AM IN SUBROUTINE PART4',4(2X,F10.6))

t={WK1*DFIDS(1) *dE2dAL + WK2*DFIDS(1)*dE3dAL)*FI(1)
CJID(2,1)= CJID(2,1) + W(K)*t

t=(WK1*DFIDS (1) *dE2dA + WKZ2*DFIDS(1)*dE3dA)*FI(1)
CJID(2,2)= CID(2,2) + W(K)*t

t=(WK1*DFIDS(1)*dE2dQ + WK2*DFIDS(1)*dE3dQ)*FI(1)
CJID(2,3)= CJID(2,3) + W(K)*t

t=(WK1*DFIDS(1)*dE2dAR + WK2*DFIDS(1)*dE3dAR)*FI(1)
CJID(2,4)= CID(2,4) + W(K)*t

t=(WK1*DFIDS(1)*dE2dAL + WK2*DFIDS(1)*dE3dAL)*FI(2)
CJID(2,5)= CID(2,5) + W(K)*t

t=(WK1*DFIDS(1)*dE2dA + WK2*DFIDS(1l)*dE3dA)*FI(2)
CJID.?,6)= CID(2,6) + W(K)*t

t=(WK1*DFIDS(1)*dE2dQ + WK2*DFIDS(1)*dE3dQ)*FI(2)
CJID(2,7)= CID(2,7) + W(K)*t

t=(WK1*DFIDS/1)*dE2dAR + WK2*DFIDS(1)*dE3dAR)*FI(2)
CJID(2,8)= CJID{(2,8) + W(K)*t

t=(WK3*DFIDS (1) *dE2dAL + WX4*DFIDS(1)*dE3dAL)*FI(1)
CJID(3,1)= CID(3,1) + W(K)*t

t=(WK3*DFIDS (1) *4E2dA + WK4*DFIDS(1)*dE3dA)*FI(1)
CID(3,2)= CID(3,2) + W(K)*t

t=(WK3*DFIDS (1) *dE2dQ + WK4*DFIDS(1)*dE3dQ)*FI(1)
CJID(3,3)= CJID(3,3) + W(K)*t

t=(WK3*DFIDS (1) *dE2dAR + WK4*DFIDS(1)*dE3dAR)*FI(1)
CJID(3,4)= CID(3,4) + W(K)*t

t=(WK3*DFIDS(1)*dE2dAL + WK4*DFIDS(1)*dE3dAL)*FI(2)
CJID(3,5)= CID(3,5) + W(K)*t

t=(WK3*DFIDS(1l)*dE2dA + WK4*DFIDS(1l)*dE3dA)*FI(2)
CJID(3,6)= CID(3,6) + W(K)*t

t=(WK3*DFIDS(1)*dE2dQ + WK4*DFIDS(1l)*dE3dQ)*FI(2)
CJID(3,7)= CJID(3,7) + W(K)™*t

t=(WK3*DFIDS (1) *dE2dAR + WK4*DFIDS (1) *dE3dAR) *FI(2)
CJdD(3,8)= CID(3,8) + W(K)*t

t=(WK1*DFIDS(2) *dE2dAL + WK2*DFIDS(2)*dE3dAL)*FI(1)
CJID(6,1)= CID(6,1) + W(K)*t

t=(WK1*DFIDS(2)*dE2dA + WK2*DFIDS(2)*dE3dA)*FI(1)
CJID(6,2)= CID(6,2) + W(K)*t

t=(WK1*DFIDS(2) *dE24Q + WK2*DFIDS(2)*dE3dQ) *FI(1l)
CJD(6,3)= CID(6,3) + W(K)*t
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t=(WK1*DFIDS(2)*dE2dAR + WK2*DFIDS(2)*dE3dAR) *FI(1)
CJID(6,4)= CID(6,4) + W(K)*t

t= (WK1*DFIDS(2)*dE2dAL + WK2*DFIDS(2)*dE3dAL) *FI(2)
CJD(6,%)= CID(6,5) + W(K)*t

t=(WK1*DFIDS(2)*dE2dA + WK2*DFIDS(2)*dE3dA)*FI(2)
CJID(6,6)= CID(6,6) + W(K)*t

t=(WK1*DFIDS(2)*dE2dQ + WK2*DFIDS(2)*dE3dQ) *FI(2)
cJL 6,7)= CID(6,7) + W(K)*t

t=(WK1*DFIDS(2)*dE2dAR + WK2*DFIDS(2)*dE3dAR)}*FI(2)
CJID(6,8)= CJID(6,8) + W(K)*t

t=(WK3*DFIDS(2)*dE2dAL + WK4*DFIDS(2)*dE3dAL)*FI(1)
CID(7,1)= CID(7,1) + W(K)*t

t=(WK3*DFIDS(2)*dE2d% + WK4*DFIDS(2) *dE3dA) *FI (1)
CID(7,2)= CID(7,2) + “1{K)*t

t=(WK3*DFIDS(2)*dE2dQ + WK4*DFIDS(2)*dE3dQ)*FI(1)
CJID(7,3)= CID(7,3) + W(K)*t

t= (WK3*DFIDS(2) *dE2dAR + WK4*DFIDS(2)*dE3dAR)*FI(1)
CID(7,4)= CID(7,4) + W(K)*t

t= (WK3*DI'IDS(2)*dE2dAL + WK4*DFIDS(2)*dE3dAL) *FI(2)
CID{7,5)= CID(7,5) + W(K)*t

t=(WK3*DFIDS(2)*dE2dA + WK4*DFIDS(2)*dE3dA) *FI(2)
CID(7,6)= CIN{7,6) + W(K)*t

t=(WK3*DFIDS(2)*dE2dQ + WK4*DFIDS(2)*dE3dQ) *FI(2)
CID(7,7)= CID(7,7) + W(K)*t

t=(WK3*DFIDS (2) *dE2dAR + WK4*DFIDS(2)*dE3dAR) *FI(2)
CID(7,8)= CID(7,8) + W(K)*t

RETURN
END

SUBROU "INE DERIVF(IELNO, AL, AR, QL, 7R, BL, BR, HL, HR, QQ, AA H,

238

*** THIS PART . THE DEnIVATIVE 'S FROM THE CONSERVATIVE EQUATIONS

+B,t A" _ tALz,dF1dA, dF1dQ, dF1dAR, dF_4AL, dF2dA, dF2dQ, dF2dAR, dF3dAL,

+dF* dJdF3dQ, dF3dAR, dF4dAL, dF4dA, dF 2dQ, tAR1, tAR2, KLP, TML, TMR,

+QQ% QQL, XT, VL, VR)

T PLI1CIT REAL *8(A-H,0-2)

C MMON THETA,CN1(200),CN2(200;,C.3(200),0MEGA, GRAV,Q01d(200)

Cr“MON IBC(8),NBC,ALM(20v; .ELVE (200),GSL(200,200),GSR(200,200)
Cl ‘N NELEM, NNODES,NELTYP(207 XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2), ELVMc(/ (. ,ELVLP(200),PAR(200,4},PHI(200)

COMMON QRM({200),QLM(200),AFK" (200),QPHI(200),ARM(200),TETA,FC(200)
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COMMON Acnew (200),Qcnew{200),Ucnew(200), Hcnew (200), HLnew (200)
COMMON ALnew (200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMON QfL(200),C£fF(200),AMTR{200),AMTL(200), TAL/200), TAR(200)
COMMON DHL /"""),DHR{200),RHO,Z1,22,723,24,Hold(200), COEFF, ITAA,
+Qt (200),0 ), VXL(200),VXR(200),CML(20C),CMR(200),CF1,CF2,
+PARF (200, . ARL(200,2),DXL(200),DXR(200),DXM(200), HLSTEP(200),
+HRSTEP (200), CASEL(200),CASER(200) , WALL

TIME=XT/60.0
IF(TIME.GT.46.30)THEN
WRITE(6,1)
FORMAT(2X,'I AM IN SUBROUTINE DERIVF')
ENDIF

ALl=AL
AR1=AR
HL1=HL
HR1=HR
QL1=QL
QR1=CR

IF(TIME.GT.46.30)THEN
WRITE(6,9)0,AL1,HL]1,QL1,COS(TETA)
ENDIF

Z = 21 + 22

IF(HL1.LE.0.0D+00)THEN
EL1=0.001D+00
ENDIF

IF(AL1.LE.0.0D+00)THEN
AL1=HL1*BL
ENDIF

IF(TIME.GT.46.30)THEN
WRITE(6,9)0,ALl,HL1,QLl
ENDIF

IF(KLP.EQ.1) GO TO S
R=AL1/(PAR(1,3) + HL1)
IF(R.LE.0.0D+00)THEN
CS=6.2
ELSE
Al= R/CNZ2 (IELNO)}
CS= 5.75*DLOG10(Al) + 6.2D+00
ENDIF

CONTINUE

UL=QL1/2AL1

IF(QL1.EQ.0.0D+00)THEN
tALl= 0.0D+00
tAL2 =0.0D+00

GO TO 13

ENDIF

Al=BL**2 + ALl
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IF(FLP.EQ.1)THEN

A2=-2.0*QL1/(3.0*Al)

A3=2.0*C . 1*AL1/(3.0*A1**2)
A4=-5.0*AL1**2.3333*BL**1.333/(3.0*CN2(IELNO)**2
*Al1**] ,333*ABS(QL1))
A5=2.0*AL1**3.3333*BL**1.333/(3.0*CN2(IELNO)**2
*Al**2  333*ABS(QL1))

Ab= -7.0*TML*AL1**2.333*BL**1.333/(6.0*CN2(IELNO)**2
*GRAV*Al1**2 . 333*ABS(QL1))

A7= ~-7.0*VL*QOL*AL1**2 333*BL**1.333/
(GRAV*6.0*CN2 (IELID)**2*A1**2 . 333*ABS(QL1}))
ELSE

A2= -QL1/Al

A3=QL1*ALl/Al**2
Ad=-3.0*GRAV*CS**2*AL1**2*BL/(2.0*A1*ABS(QL1) )
AS5= GRAV*CS**2*AL1**3*BL/(A1**2*2_.0*ABS(QL1))
ENDIF

tALl= A2 + A3 + A6 + A7

tAL2 =(A4 + A5)*HL1

dF1dA=0.0D+00
dF1dQ=0.0D+00
dF1daR=0.0+00

dF2dAL=0.0D+00
dF2dA=0.0D+00
dF2dQ= 1.0D+00
dF2dAR=0.0+00

IF(Z.EQ.0.0D+00)THEN
AB=9.0D+00
ELSE
AD= B**2+2.0*AA*Z
AB=-3.0*GRAV*Z*H**2/(DSQRT(AD) *4.0)
AB=-3.0*GRAV*Z*H**2/(4.0* B)
ENDIF

AB=0.0D+00

dF3dAL=0.0D+00

dF3dA= -(QQ**2/AA**2) + GRAV*H + AB
dF3dQ= 2.0%QQ/AA

dF3dAR=0.0+00

dF4dAL=0.0D+00
dF4dA=0.0D+00
dF4do= 0.0D+00

IF(HR1.LE.0.0D+0C)THEN
HR1=0.091D+00
ENDIF

IF(ARL1.LE.0.0D+00)THEN
AR1=HR1*BR
ENDIF

IF(TIME.GT.46.30)THEN
WRITE(6,9)C,ARL,HR],QR1

240
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C ENDIF

IF(KLP.EQ.1) GO TO 6
R=AR1/(PAR(1,3) + 2%*HR1)
IF(R.LE.0.0D+00)THEN

CS=6.2

ELSE

Al= R/CN3 (IELNO)

CS= 5.75*DLOG10 (Al) + A.2D+00

ENDIF
6 CONTINUE
C
UR=QR1/AR1
C
IF{QR1.EQ.0.0D+00)THEN
tARl= 0.0D+00
tAR2 =0.0D+00
GO TO 8
ENDIF
C

Al=BR**2 + ARl
IF(KLP.EQ.1)THEN
C JRITE(6,9)1,A1,0R1,CN3(IELNO), BR

A2=-2.0*QCR1/(3.0*Al)

A3=2.0*QRL1*AR1/(3.0*A1**2)

Ad4=-5.0*AR1**2,3333*BR**1.333/(3.0*CN23(IELNO)**2
+ *Al1**1.333*ABS{(QR1))

AS5=2.0*AR1**3.3333*BR**1.333/(3.0*CN3(IELNQ)**2
+ *A1**2.333*ABS(QR1))

A6= -7.0*TMR*AR1**2.333*BR**1.333/(6.0*CN3(IELNO)**2
+ *GRAV*A1**2 ,333*ABS(QR1))

A7= -7.0*VE*QQR*AR1**2,333*BR**1.333/
+ (6.0*GRAV*CN3 (IELNO)**2*A1**2 .333*ABS(QR1))

C WRITE(6,9)2

ELSE

A2= -QR1/Al

A3= QRI1*AR1/Al**2

A4=-3.0*GRAV*CS**2*AK1**2*BR/(2.0*A1*ABS (QR1))

AS= GRAV*CS**2*AR1**3*BR/(A1**2*2.0*ABS(QR1))

ENDIF

tARl1= A2 + A3 + A6 + A7

tAR2 =(A4 + AS5)*HR1

CONTINUE
FORMAT (2X, 'I AM HERE',12,5(2X,F12.6})
WRITE(6,20)tALl, tAL2,dF1dA,dF1dQ, dF1dAR
WRITE (6,20)dF2dAL, dF2dA, dF2dQ, dF2daR
WRITE(6,20)dF3dAL, dF3da, dr3dQ, dF3dAR
WRITE (6, 20)dF4dAL, dF4dAa, dF4dQ, tAR], tAR2
0 FORMAT (2X, 6(2X,F12.6))
RETURN
END

MOOODO O WO

C
C *** THIS PART OF THE DERIVATIVE IS FROM THE NON-CONSERVATIVE
EQUATIONS ***
C
SUBROUTINE DERIVD(U,H,B, AA,dD1dAL, 4D1dA, dD14Q, dD1dAR, dD2dAL, dD2dA,
+dD2d0, dD2dAR, dD3dAL, dD3dA, dD3dQ, dD3dAR, dD4dAL, dD4dA, dD4d0, dD4dAR,
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IMPLICIT REAL *8(A-H,0-2)

COMMOHN
COMMON
COMMON
COMMON
COMMON
COoMMON
COMMON
COMMOHN
COMMON

THETA,CN1(200),CN2(200),CN3 (200) , OMEGA, GRAV, 0old (200)
IBC(8),NBC,ALM(200),ELVRP(ZOO),GSL(ZOO,ZOO),GSR(200,200)
NELEM,NNODES,NELTYP(ZOO),XL(200),GJC(200,200),Aold(200)
NODNUM(200,2),ELVMC(200),ELVLP(ZOO),PAR(200,4),PHI(200)
ORM(200),QLM(ZOO),APHI(ZOO),QPHI(?OO),ARM(200),TETA,FC(200)
Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew (200)
ALnew{200),ARnew{200),QLnew(200),QRnew(200), HRnew(200)
QfL(ZOO).QfR(ZOO),AMTR(ZOO),AMTL(ZOO).TAL(ZOO),TAR(ZOO)
DHL(200),DHR(ZOO),RHO,Zl,ZZ,23,24,Hold(200),COEFF,ITAA,

+Ot(200),QtF(200),VXL(200),VXR(200),CML(ZOO),CMR(ZOO),CFl,CFZ,
+PARF(200,2),PPRL(ZOO,Z),DXL(ZOO),DXR(ZOO),DXM(200),HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

TIME=XT/60.9
IF(TIME.GT.46.30)THEN
WRITE(6, 1)
FORMAT (2X,'I AM IN SUBROUTINE DERIVD')
ENDIF

Z =121

dDldAL=

+ 722

0.0D+00

AD1dA=0.0D+00
dD1d=0.0D+00

dD1dAR=%.0D+00

AD2dAL=0.0D+00
dAD2dA=0.0D+00
dD2dQ=1.0D+00

AdD2dAR=

0.0D+00

IF(Z.ED.0.0D+00) THEN
AB=0.0D+00

ELSE

AD= B**2+2.0*AA*Z
AR=-3.0*GRAV*Z*H**2/ (DSQRT(AD)*2.0)
AB=-3.0*GRAV*Z*H**2/(B*2.0)

ENDIF

AB=0.0D+00

dD3dAL=

dD3dA=
dD3dQ=

dND3dAR=

dD4dAL=

0.0D+00
2.0*GRAV*H-U**2 + AB
2.0*U

0.0D+00

0.0D+00

dD4dA=0.0D+00
dD4dQ=0.0D+00

dD4dAR=

0.0D+00

WRITE(6,20)dD1dAL,dD1dA, dD1dQ, dD1dAR
WRITE(6,20)dD2dAL, dD2dA, dD2dQ, dD2dAR
WRITE(6, 20)dD3dAL, dD3dA, dD3dQ, dD2dAR



C WRITE (6,20)dD4dAL, dD4dA, dD4dQ, dD4dAR
20 FORMAT (2X, 4(2X,F12.6))
RETURN
END
c
C *** THIS PART OF THE DERIVATIVE IS FROM THE NON-CONSERVATIVE
EQUATIONS (G21) **~*
C

SUBROUTINE DERIVE(IELNO, So,QQ, AA, B,dBdX, KFL,KLP, AL, AR, QL, OR, RL,
+BR, HL, HR, dE1dAL,dE1dA, dE1dQ, dE1dAR, dE24AL, dE2dA, dE24Q, dE2dAR,
+dE3dAL, dE3dA, dE3dQ, dE3dAR, TML, TMR, dE4dAL, dE4dA, dE4dQ, dE4dAR, DDHL,
+DDHR, QQR, QQL, HSTEP, VL, VR, L)

IMPLICIT REAL *8(A-H,0-2)

COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA, GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
CCMMON NELEM,NNOLES,NELTYP(200),XL{(200),GJC(200,200),a01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcinew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),0Lnew(200),0R: w(200),HRnew(200)
COMMON CfL{200),QfR(200),AMTR(200), AMTL(200), TAL(200), TAR{200)
CCMMON DHL({200),DHR(200),RH0,Z21,22,23,24,Hold(200),COEFF. ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF{200,2),PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200) ,CASEL(200) ,CASER(200),WALL

WRITE’6,1)
FORMAT (2X, 'I % IN SUBROUTINE DERIVE'4(2X,Fl12.6)}

WRITE (6, 4)Q0L, QQR, AA, QQ
WRITE (6, 4)QL, OR

HL1=HL

HR1=HR

AL1l=AL

AR1=24R

QL1=QL

QR1=0QR

OO0, O0O

)

Z = 21 + 22

[®]

IF(HL1.LE.0.CD+00)THEN
HL1=0.001D+00
ENDIF

]

IF(AL1.LE.0.0D+00)THEN
ALl= HL1*BL
ENDIF

IF(4YR1.LE.O.0D+00)THEN
HR1=0.001D+00
ENDIF

IF(AR1.LE.9.0D+00)THEN
ARl= HR1~*BR
ENDIF

(@]
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UL=QL1 /ALl
UR=QKL/ARL

dE1dAL=0.0D+00
dE1dA=0.0D+00
AdE1d0=0.00+00
<E1dAR=0.0D+00
H=AA/B

IF(KFL.EQ 1)THEN
F=1.0{+00

ELSL

F=0.0D+00

ENDIF

IF(KLP.EQ.1)THEN

A¥= 2.0%AA+B**2

BX= AA**2.333*B**1.333
B2=GRAV*QO*DABS(QQ) *CN1 (IELNO) **2*AX**1.333/ (AA**3.333*B**1.333)
B2=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*AX**0.333/ (AA**2.333*B**1.333)
ENDIF

IF(KLP.EQ.1)THEN

A¥= R**1.333

BX= AA**3.333
B2=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*B**1,333/(AA**3,333)
B3=-10.0*GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*B**1.333/(3.0%AA**3.333)
ENDIF

Tl= ELVLP(NODNUM(IELNO,L) )+ HLSTEP(NODNUM(IELNO,L))-
ELVM ‘NODNUM(IELNO,L))

IF (" 3T.H) THEN

T1=H

ENDIF

BL=1.0
B=1.0
BR=z1.0
ALl1=1.0
AR1=1.0
AA=1.0

Al=1.0D+00 + 21**2
AZ2=DSQRT(Al)
B4=1.0D+00 + Z2**2
B5=DSQRT(B4)

P= B + T1*(A2+B5)

R=AA/P
A4=R/CNI1(IELNO)
CS= 5.75*DL0OG10(A4) + 6.2D+00

BA=2.0*GRAV

Al=BL**2Z + 2.0*Z23*ALl1
A2=B**2 + 2.0*Z*AA
A3=BR**2 + 2.0*Z4*ARl
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IF(DDHL.EQ.0.0D+00) THEN

dQLdAL=0.0D+00

dQLdA=0.0D+00

dQLdQ=0.0D+00

dQLAAR=0.0D+00

GO TO 2

ELSEIF(DDHL.GT.0.0D+00) THEN

dOLdAL=0.0D+J0

dQLdA= CML{(IELNO) *DSQRT (BA) *DDHL**0.5/(A2**0.5)
dQLdQ=0.0D+00

dQLdAR=0.0D+00

ELSE

dQLdAL= ~CML(IFLII?) *DSQRT(BA) * (DABS(DDHL))**0.5/(A1**0.5)
doLdA=0.0D+00

dQLAQ=0.0D+00

dQLdAR=0.0D+00

ENDIF

CONTINUE

WRITE(6, 20)dQLdAL, dQLAA, dQLdQ, dQLJAR

IF(DDHR.EQ.0.0D+00)THEN

AdAQRAAL=0.0D+00

dQRdA=0.0D+090

dQRAQ=0.0D~00

dQRdAAR=0.0D+00

GO TO 65

ELSEIF(DDHR.GT.0.0D+uv0)THEN
dQRJAL=0.0D+00
dQRdA= CMR(IELNO)*DSQRT(BA) *DDHR**( .5/ (A2**0.5)
dQRdAQ=0.0D+00
dORAAR=0.0D+00
ELSE
dORJAL=0.0D+00
dQRdA= 0.0D+00
dQRAQ=0.0D+00

dORJAR= ~CMR(IELNO) *DSQRT(EA) * (DABS(DDHR) }**0.5/(A3**0.5)
ENDIF

CONTINUE

WRITE(6,20)dQRAAL, dQR4A, dORAQ, dORJAR

dE2dAL= dQLAAL + dQRJAL
dE2dA= dQLdA + dQRdA
dE2dQ= dQLdQ + dQRdQ
dE2dAR= dQLdAR +dQRdAR

IF(TML.EQ.0.0D+00)THEN
dMLAAL=0.0D+00
dML.dA=0.0D+00
dMLdQ=0.0D+00

EM.IF
FORMAT (2X,5(2X,F12.6))

CONTINCE

WRITE(6,20)QL1,VL
IF(QQL.GT.0.0D+00) THEN
dE3dAL=z VL*dQLJAL + dMLJAL
ELSEIF(QQL.LT.0.0D+00) THEN
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dE*dAL= -QL1*QQL/AL1**2 + VL*dQLJAL +dMLJ4AL
ELZE

dEXdAL=0.0D+0G0

ENDIF

IF(TMR.EQ.0.0D+00) THEN
dMRAA=0.0D+00
dMRAQ=0.0D+00

ENDIF

CONTINUE

IF(QOQL.GT.0.0D+00) THEN

Yl= -QQ*QQL/AA**2 + VL*dQLdA
Rl= QQL/AA +VL*dQLdQ

ELSEIF (QQL.LT.0.0D+00)THEN
Yi= VL*dQLdA

R1=0.0D+00

ELSE

Yl= 0.0D+00

Rl= 0.0D+00

ENDIF

IF (QOR.GT.0.0D+00) THEN
Y2= -QQ*QQOR/AA**2 + VR*dQRdA
R2= QOR/AA +VR*dQRAQ
ELSEIF(QOR.LT.0.0D+00)THEN
Y2= VR*dQLdA

2=0.0D+00
ELSE

2= 0.0D+00
R2= 0.0D+00
ENDIF

WRITE(6,20)Y1,Y2,R1,R2
2Z1= Y1 + Y2
RR1= R1 + R2

B3=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2/ (AA**2*R**1.333)

IF(Z.EQ.0.0D+00)THEN
AB=-2.0*GRAV*AA*dBdX/B**2
ELSE

AD= B**2+2.0*AA*Z

AB= -2.0*GRAV*H*dBdX/DSQRT(AD)
ENDIF

IF(KLP.EQ.1) THEN
dE3dA= AB-GRAV*So + B2*F + B3*F+2Z1+dMLdA+dMRdA

dE3dQ= 2.*F*GRAV*QQ*CN1{IELNO)**2*AX/BX +RRl + dMLJQ + dMRdQ
ELSE
dE3dA= AE - GRAV*So -2.*QQ*DABS(QQ)*F*B/
+ (RA*T*3*CS**2)- 5.0%QQ*DABS(QQ) *F/ (AA**2*CS**3*R) + 2Z1 +
+ dMLdA+ dMRdA

dE3dQ=2.*F*QQ*B/ (AA**2*CS**2) +RR1+dMLAQ+dMRAQ
ENDIF
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IF(TMR.EQ.0.0D+00) THEN
AMRJAR=0.0D+00
ENDIF

CONTINUE

WRITE(6,20)QR1,VR
IF{QQR.GT.0.0D+00)THEN
dE3dAR= VR*dQRdJAR + dMRJAR
ELSEIF (QOR.LT.0.0D+00)THEN
dE3dAR= -QR1*QQR/AR1**2 + VR*dQRAAR + dMRdAR
ELSE
dE3dAR=0.0D+00
ENDIF

dE4dAL=0.0D+00
dE4dA=0.0D+00
dE4dQ=0.0D+00
dE4dAR=0.0D+00

WRI1TE (6, 20)dE1dAL, dE1dA, dE1dQ, dE1dAR
WRITE(6,20)dE2dAL, dE24A, dE24Q, dE2dAR
WRITE!G, 20)dE3dAL,dE3dA, dEsdQ, dE3dAR
WRITE(6,20)dE4dAL, dE4dA, dE4dQ, dE4dAR
FORMAT (2X, 5(2:,F12.6))

RETURN
END

*** THIS PART OF THE DERIVATIVE IS FROM THE CONSERVATIVE EQUATIONS:

IR S E RS X R SRR RSN

C

OO0, OO0

SUBROUTINE DERIVG (IELNO, So,QQ, AA, B, dBdX, KFL, KLP, AL, AR, QL, OR, BL,

+BR, HL, HR, dG1dAL, dG1dA, dG1dQ, dG1dAR, dG2dAL, dG2dA, dG2dQ, dG2dAR,
+dG3dAL, 4G3dA, AG3dQ, dG3dAR, TML, TMR, dG4dAL, dG4dA, dG4dQ, dG4dAR,
+DDHL, DDHR, QQR, QQL, HSTEP, VL, VR, L)

IMPLICIT REAL *8(A-H,0-2)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP{200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),Aocld(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200), TETA,6FC(200)
COMMON Acnew(200),0Q0cnew{200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),Q0Rnew(200),HRnew(200)
COMMON OfL{200),QfR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO,Z21,22,23,24,Hold(209),COEFF, ITAA,

+0t (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR{200),DXM(200) ,HLSTEP(200),
+HRSTEP (200) ,CASEL (200),CASER(200),WALL

WRITE(6,1)
FORMAT(2X,'I AM IN SUBROUTINE DERIVG'4(2X,F12.6))

WRITE(6,4)Q0L, QQR, AL, QO
WRITE(6,4)9L, QR
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HL1=HL
HR1=HF
AL1=AL
AR1=AR
QL1=0L
QR1=0QR

= 721 + 22

IF(HL1.LE.0.0D+00) THEN
HL1=0.001D+00
ENDIF

IF(AL1.LE.0.0D+00)THEN
ALl= HL1*BL
ENDIF

IF(HR1.LE.0.0D+0C)THEN
HR1=0.001D+00
ENDIF

IF(AR1.LE.0.0D+0Q0) THEN
ARl= HR1*ER
ENDIF

H=AA/B
IF(KFL.EQ.1)THEN
F=1.0D+00

ENDIF
IF(KFL.EQ.0) THEN
F=0.0D+00

ENDIF

IF(KLP.EQ.1)THEN
AX=2.0*AA+B**2
BX= AA**2.333*B**1.333

248

B2=GRAV*QQ*DABS ({Q) *CN1 (IELNO) **2*AX**1.333/(AA**3,333*B**] .333)
B3=GRAV*QQ*DABS (QQ) *CN1 (IELNO) **2*AX**(0.333/(AA**2.333*B**1.,333)

ENDIF

IF(KLP.EQ.1)THEN
AX= B**1.333
BX= AA**3.333

B2=GRAV*NQ*DABS {QQ) *CN1 (IELNO) **2*B**1.333/ (AA**3.333)

B3:=-10.0 GRAV*QQ*DABS(QQ)*CN1 (IELNO)**2*B**1.333/(3.0*AA**3.333)

ENDIF

T1= ELVLP(NODNUM(IELNO, L))+ HLSTEP(NODNUM(IELNO,L)) -

ELVMc (NODNUM(IELNO, L))
IF(T1.GT.H)THEN

Tl=H

ENDIF

Al=1.0D+00 + Z1**2
A2=DSQRT(Al)
B4=1.0D+00 + Z2*~2
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B5=DSQRT(B4)
P= B + T1*(A2+BS)
RC=AA/F
A4=RC/CNI1 (IELNO)
CSl= 5.75*DLOG10(A4) + 6.2D+00

UL=QL1/ALl
UR=QR1/AR1

2 B il s B [
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BA=2.0*GRAV

Al=BL**2 + 2.0*Z3*ALl
A2=B**2 + 2.0*Z*AA
A3=BR**2 + 2.0*Z4*ARl

WRITE(6,4)DDHL, HL1, DDHR, HR1
IF(DDHL.EQ.0.0D+00)THEN
dQLdAL=0.0D+00
dQLdA=0.0D+00
dQLdQ=0.0D+00
dQLAAR=0.0D+00
GO TO 2
ELSEIF(DDHL.GT.0.0D+00)THEN
dQLdAAL=0.0D+00
dQLdA= -CML(IELNG) *DSQRT(BA)*DDHL**0.5/(A2**0.5)
dQLdQ=0.0D+00
dQLdAR=0.0D+00
ELSEIF (DDHL.LT.0.0D+00)THEN
dQLdAL= CML(IELNO) *DSQRT(BA) * (DABS (DDHL))**0.5/(A1**0.5)
dQLdA=0.0D+00
AQLdQ=0.0D+00
dQLdAR=0.0D+00
ENDIF

CONTINUE

WRITE(6,4)dQLdAL, dQLAA, dQLAQ, dOLJAR
IF(DDHR.EQ.0.0D+00) THEN
dQRAAL=0.0D+0G
dQRdAA=0.0D+00
dQRAQ=0.0D+00
dQRAAR=0.0D+00
GO TO 5
ELSEIF (DDHR.GT.0.0D+00)THEN

dQRAAL=0.0D+00

dQRdAA= -CMR(IELNO) *DSQRT (BA) *DDHR**0 .5/ (A2**(.5)
dQRdQ=0.0D+00

dQRAAR=0,0D+00

ELSE

AdQRAAL=0.0D+00

dQRdA= 0.0D+00

dQRAQ=0.0D+00



[Qal

AN

NnNNHeLwnnnN

5

0N

C
12

dQRJAK= CMR (1ELNO) *DSQRT(BA) * {DABS(DDHR) ; **0.5/ (A1**0.5)

ENDIF
CONTINUE
WRITE (6, 4)dQRAAL, dQRJA, dQRAQ, AORAAR
FORMAT (2¥,5(2X,F12.6))

dG1ldAL= dQLA4AAL
dGldA= dQLdA
dG1dQ= dQLdQ
dG1dAR= dQLdAR

dG2dAL= - (dOLdAL + dQRdAL)
dG2dA= - (dQLdA + dQRd4A )
dG2d¢= - (dQLdQ + dQRdQ)
dG2dAR= - {(dQRdJAR +dQLdAR)

IF(TML.EQ.0.0D+00) THEN
dMLAAL=0.0D+00
dMLAQ=0.0D+00
dMLdJA=0.0D+00

ENDIF

WRITE(6,9)dMLdAL, dMLAQ, AMLJAA
FORMAT (2X,3(2X,F12.6))
CONTINUE

IF(TMR.EQ.0.0D+00) THEN
dMRdA=0.0D+00
dMRdQ=06.0D+00

ENDIF

CONTINUE

WRITE(6,20)QL1,VL
IF(QQOL.GT.0.0D+00) THEN
dG3dAL= -VL*dQLJAL + dMLJAL
ELSEIF(QQL.LT.0.0D+00) THEN
dG3dAL= -QL*QQL/AL1**2 - VL*3QLdAL + dMLJAL
ELSE
dG3dAL=0.0D+00
ENDIF

IF(TMR.EQ.0.0D+00)THEN
dMRAA=0.0D+00
dMRAQ=0.0D+00

ENDIF

CONTINUE

IF(QQL.GT.C.0D+00) THEN

Yl= -QQ*QQL/AA**2 - VL*dQLdA
Rl= QQL/AA -VL*dQLdQ
ELSEIF(QQL.LT.0.0D+00)THEN
Y1l= -VL*dQLdA

R1=0.0D+00

ELSE

Y1=0.0D+00

R1=0.0D+00

ENDIF

250



(oSS!

IF{(C. - GT.0.0D+00)THEN

Y2= -QU QQR/AA**2 - VR*dQRdA
R2= QUR/AA - VR*dQRAQ
ELSEIF{"»R.LT.0.0D+00) THEN
Y2= -VR® JQLdAA

R2=0.0T+00

ELSE

Y2=0.0D+(0

R2=0.0D+00)

ENDIF

WRITE(6,.:C) ¢!, Y2,R1l,R2
ZZ1= Y1 + Y!
RR1= Rl + RZ

IF(Z.EQ.0.0D+UC)THEN
AB=-GRAV*AA*dBdX/B**2
ELSE
AD= B**2+2.0*AA*Z
AB= -GRAV*H*dBJX/DSQRT (AD)
ENDIF

IF (KLP.EQ.1)THEN
dG3dA= AB-GRAV*So + B2*F + B3*F+ZZ1+dMLdA+dMRAA

dG3dQ= 2.*F*GRAV*QQ*CN1{(IELNO)**2*AX/BX +RR1 + dMLdQ + dMRdAQ
ELSE
dG3dA= AB - GRAV*So -2.0*QQ*DABS(QQ)*F*B/
(AA**3*CS1**2)- S.0*QQ*DABS(QQ)*F/ (AA**2*CS1**2*RC)+Z221 +

+ dMLdA + dMRd4A

dG3dQ=2.0*F*QQ*B/ (AA**2*CS1**2)+RR1l + dMLAQ + dMRAQ
ENDIF

IF(TMR.EQ.0.0D+00)THEN
dAMRAAR=0.0D+00

ENDIF
CONTINUE

WRITE(6,17)dMRJAR, dMRAQ, dMRAA
FORMAT (2X,3(2X,F12.6))

WRITE(6,20)QR1,VR
IF(QQR.GT.0.0D+00) THEN
dG3dAR= -VR*dQRJAR + AMRAAR
ELSEIF(QQR.LT.0.0D+00) THEN
dG3dAR= -QR1*QQR/AR1**2 - VR*dQRAAR + dMRAAR
ELSE
dG3dAR=0.0D+00
ENDIF

dG4dAL= dQRJAL
dG4dAa= dQRdAA
dG4dQ= dQRdQ
dG4dAR= dQRJAR

WRITE(6,20) dG1dAL,dGldA,dGldQ,dGldAR
WRITE(6,20) dG2dAL,dG2dA, dG2dQ, dG2dAR

t9
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& WRITE(6,20) dG3dAL,dG3da,dG3dQ,dG3dAR
C WRITE(6,20) AG44AL, dG4dA, dG4dQ, dG4dAR
20 FORMAT (2X,5(2X,F12.6))
c

RETURN

END

c
¢ **%xx»» CALCULATION OF STIFFNESS MATRIX [EKaa]*****
C

SUBROUTINE ELMKaa (IELNO,I,J,FI,DFIDS,WK2,U,So,H,t)
C

IMPLICIT REAL *8(A-H,0-2)

DIMENSION FI(2),DFIDS(2)

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA, GRAV, Q01d(200)
COMMON 1BC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),2A01d(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),0LM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),0cnew(200),Ucnew(200),Hcnew(200) ,HLnew(200)
COMMON ALnew(200),ARnew(200), QLnew(200),QRnew(200), HRnew(200)
COMMON QfL(200),0fR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO, 21,22,%3,24,Hold(200),COEFF, ITAA,
+Qt(200),QtF(ZOO),VXL(ZOO),VXR(ZOO),CML(ZOO),CMR(ZOO),CFl,CFZ,
+PARF(200,2),PARL(200,2),DXL(ZOO),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200) ,WALL

WRITE(6, 1)DXM(IELNO)
FORMAT (2X,'I AM IN SUBROUT . E ELMKaa',6F10.3)

MNe=nn

tl (GRAV*H-U**2) *WK2*DFIDS . )*DFIDS(J)*2./DXM(IELNO)
t2 -GRAV*So*WK2*DFIDS(I)*F J)

t= tl+t2

RETURN

END

C
¢ **x+xxx CALCULATION OF STIFFNESS MA1..I.i [EKaq]*****
c
SUBROUTINE ELMKag(IELNO,I1,J,FI,DFIDS,WK1,WK2,U,FF,t)
c
IMPLICIT REAL *8(A-H,0-2Z)
DIMENSION FI(2),DFIDS(2)

COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA, GRAV,Q01d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR{200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),2A01d(200)
COMMON NODNUM(200,2),ELVMc(200), ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),0QLM(200),APHI(200),Q0PHI(200),ARM(200C), TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200) ,Hcnew(200) ,HLnew(200)
COMMON ALnew(200),ARnew(200),Q0Lnew(200),QRnew(200),HRnew(200)
COMMON QfL(200),0fR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL(200),DHR(200),RHO, 21,22,23,24,Hold(200),COEFF, ITAA,
+Qt(200),QtF(ZOO),VXL(ZOO),VXR(ZOO),CML(ZOO),CMR(ZOO),CFl,CFZ,
+PARF (200, 2), PARL(200,2),DXL(200) ,DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEP(200),CASEL{(200) ,CASER(200) ,WALL

C WRITE(6,1)DXM(IELNO)
1 FORMAT(2X, 'I AM IN SUBROUTINE ELMKaqg',F10.3)
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C
tl = =DF.DS(I)*FI(.J)
t2 = WK1*DFIDS(I)*DFIDS(J)*2./DXM(IELNO)
t3 = WK2*FF*DFIDS(I)*FI(J)
t4 = WK2*2.0*U*DFIDS(I)*DFIDS(J)*2./DXM(IELNO)
t = tl + t2 +t3 + t4
C WRITE(6,10)t
10 FORMAT (2X,¥8.2)
RETURN
END
C
C *xxxixx CATCULATION OF STIFFNESS MATRIX [EKga]*****
C
SUBROUTINE ELMKga (IELNO,I1,J,FI,DFIDS,WK4,U,So,H,t)
C
IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2)
C
COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,Q00l1d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GS8L(200,200),GSR{200,200)
COMMOIN NEL.EM, NNODES, NELTYP(200) ,XL(200),GJC(200,200), Aold(200)
COMMON NODNUM (200, 2),ELVMc(200),ELVLF(200),PAR(200,4),PHI(200)
COMMON QRM(200),Q0LM:200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew({200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ZRnew(200),QLnew(200), QRnew(200), HRnew(200)
COMMON QfL (200),QfR(200), AMTR(200),AMTL(200),TAL(200), TAR(200)
COMMON DHL (200),DHR(200),RHO, 21,22,23,24,Hold(200),COEFF, ITAA,
+ Qt (200),QtF(200),VXL(200},VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF (200, 2),PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP (200),CASEL(200),CASER{200), WALL
C
C WRITE(6,1)U,S0,H,DXM(IELNO)
1 FORMAT(2X,'1 AM IN SUBROUTINE ELMKga',4(2X,F12.6))
C
tl = -GRAV*H/2.*DFIDS(I)*FI(J)
t2 = -GRAV*So*FI(I)*FI(J)*DXM(IELNO)}/2.
t3 = -WK4*GRAV*So*DFIDS(I)*FI(J)
t4d = (GRAV*H-U**2)*WK4*DFIDS(I)*DFIDS(J)*2./DXM({(IELNO)
t =1 +t2 +t3 +td
C WRITE(6,10)t1,t2,t3,t4,¢t
10 FORMAT (2X,5(2X,F12.6})
RETURN
END
C
C **x*xxxx CATCULATION OF STIFFNESS MATRIX [EKqg]***#**
C
SUBROUTINE ELMKqgq(IELNO,I,J,FI,DFIDS,WK3,WK4,U,FF,t)
C
IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2)
C
COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV,001d(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL{(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200),XL(200),GJC(200,200),A01d (200}
COMMON NODNUM (200, 2), ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA, FC(200)
COMMON Acnew(200),0cnew(200),Ucnew(200) ,Hcnew{200},HLnew(200)
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COMMON ALnew(200), ARnew(200),QLnew(200), QRnew(200) , HRnew(200)
COMMOMN QfL(200),0fR(200),AMTR(200),AMTL(200), TAL(200),TAR(200)
COMMON DHL(200),DHR{(200),RHO,21,22,23,24,Hc1d(200),COEFF, ITAA,
+0t (200),0tF(200),VXL(200),VXR(200),CML{200),CMR(200),CF1,CF2,
+PARF(200,2), PARL(200,2),DXL{200),DXR(200),DXM(200), HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

WRITE(6, 1) DXM(IELNC)
FORMAT (2X.'I AM IN SUBROUTINE ELMKqq',F10.3)

tl= -~-U*DFIDS(I)*FI(J) + FF*FI(I)*FI(J)*DXM(IELNO)/2.
t2= WK4*FF*DFIDS(I)*FI(J)
t3= WK3*DFIDS(I)*DFIDS(J)*2./DXM(IELNO)
t4= WK4*2.0*U*DFIDS(I)*DFIDS(J)*2./DXM(IELNO)
t= tl + t2 + t£3 + t4
WRITE(6,10)tl,t2,t3,t4,¢t
FORMAT (2X,5(2x,F10.6))
RETURN
END

*#*#x+xx*x CALCULATION OF STIFFNESS MATRIX [ALK]*****

SUBROUTINE ELMALK(IELNO,I,J,AL,QL,BL, HL, 0QL,TML, FI, DFIDS,
+t,KLP, VL)

IMPLICIT REAL *B(A-H,0-Z)
DIMENSION FI(2),DFIDS(2)

COMMON THETA,CN1(200),CN2(200),CN3(200), OMEGA,GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP(200) ,XL(200),GJC(200,200),A01d(200)
COMMON NODNUM (2900, 2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHI(200),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200),Ucnew(200),Hcnew(200), HLnew{(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL(200),TAL(200),TAR(200)
COMMON DHL(200),DHR{(200),RHO,21,22,23,24,Hold(200), COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2), PARL(200,2),DXL(200),DXR(200),DXM(200),HLSTEP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

WRITE(6,1)QQL, VL
FORMAT (2X, 'I AM IN SUBROUTINE ELMALK',2(2X,F10.6))

IF({(AL.LE.0.0D+00) .OR. (QL.EQ.0.0D+00) ) THEN
IF(AL.LE.0.0D+00)THEN
t=0.0D+00
GO TO 15
ENDIF

UL=QL/AL

ZL=DSQRT(1.0 + 23**2)

Al=BL + HL*ZL

IF(KLP.EQ.1)THEN
D1=AL**3.3333/(CN2(IELNO)**2*A1**1.333*2.0*ABS(QL))

D2=AL**1.333*QQL*VL/(2.0*GRAV*CN2 (IELNQO) **2*A1**1.333*ABS(QL))
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1*QQP*VR/ (2.0*GRAV*CN3 (IELNO) **2*
KES(OR))

D2=hR**1.23
¢ R1**1.333%

DE:AR*‘I.333*TMR/(2.0*GRAV*CN3(IELNO)*'2*A1**l.333*ABS(QR))

tl= (-5.0/3.0)*UR*DFIDS(I)*FI(J)

t2= (DZ2+D2)*DFIDS(I)*FI(J)
ELSE

R=AR/Al

Bl= R/CN3(IELNO)

¢S= 5.75*DLOG10(Bl) + 6.2D+00
D1=GRAV*CS**2*AR**3/(A1*2.0*ABS(QR})
D2= CS**2*AR*QQR*VR/ (A1*2.0*ABS(QR))
D2= CS**2*AR*TMR/(A1*2.0*ABS(QR))
t1=-1.5*UR*DFIDS(I)*FI(J)
t2= {(D2+D3)*DFIDS(I)*FI{(J)

ENDIF
t= tl + t2
-
e WRITE(6,10)D1,02,D3
& WRITE(6,10)tl,t2,t
10 FORMAT (2¥,6(F15.10))
1% RETURN
END

¢
¢ **r#*w%x CATCULATION OF STIFFNESS MATRIX [FMC]*****
c
SUBROUTINE FMC(IELNO,I,QQL,QOR,FI,DFIDS,WK1,6 WK2,WK3,6 WK4, TML,
+ TMR,R1,R2,dBdX,H, dHdX, VL, VR}

IMPLICIT REAL *8(A-H,0-Z)
DIMENSION FI(2),DFIDS(2)

COMMON THETA,CNI(ZOO),CNZ(ZOO),CN3(200),OMEGA,GRAV,Qold(ZOO)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM,NNODES,NELTYP(ZOO),XL(ZOO),GJC(ZOO,ZOO),AOld(ZOO)
COMMON NODNUM(ZOO,Z),ELVMC(ZOO),ELVLP(ZOO),PAR(200,4),PHI(ZOO)
COMMON QRM(ZOO),QLM(200),APHI(200),QPHI(ZOO),ARM(ZOO),TETA;FC(?OO)
COMMON Acnew(200),anew(200),Ucnew(ZOO),cheW\200),HLnew(ZOO}
COMMON ALnew(ZOO),ARnew(ZOO),QLnew(QOO),QRnew(ZOO),HRnew(200)
COMMON QfL(200),QER(200),AMTR(ZOO),AMTL(ZOO),TAL(ZOO),TAR(ZOO)
COMMON DHL(ZOO),DHR(200),RHO,Zl,&2,Z?,Z4,HOld(200),COEFF,ITAA,
+Qt(200),QtF(ZOO),VXL(ZOO),VXR(ZOO),CML(ZOO),CMR(ZOO),CFl,CFZ,
+PARF (200, 2), PARL(200,2),DXL(200),DXR(2CJ)},DXM(200), HLSTEP(200),
+HRSTEP(200), CASEL(200),CASER(200) , WALL

WRITE ({6, 1)D¥XM(IELNO)
FORMAT(2X, ‘I AM IN SUBROUTINE FMC',2(2X,F10.6))

N —=nn

2= 21 + 22

]

FI{(I)*(QQL+QQR)*DXM(IELNO)/2.
WK1*DFIDS(I)* (QQL+QOQR)
WK2*DFIDS(I)*{VL*QQL+VR*QOR)
WK2*DFIDS(I)* (TML+TMR)

= -GRAV*H**2*dBdX*WK2*DFIDS(I)

6= - GRAV*Z*H**2*WK2*DFIDS(I)*dHdX/2.0

1
3
4
i
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Rl= tl + t2 + t3 + td + t5 + té
WRITE(6,10)t1,t2,t3,t4,R1
WRITE(6,10)t5,t6

ti= FI(I)*(VL*QQL+VR*QQR)*DXM(IELNO)/2.¢
t2= FI(I)*{TML+TMR)*DXM(IELNO) /2.

t3= WK3*DFIDS(I)* (QQL+QQR)

t4= WKA*DFIDS(I)* (JL*QOL+VR*QOR)

tS5= WK4*DFIDS(I;* (TML+TMR)

t6= -GRAV*H**2*dBAX*FI(I)*DXM(IELNO) /4.0
t7= -GRAV*Z*H**2*FI(I)*dHAX*DXM(IELNO) /8.0
t8= -GRAV*WK4*H**2*dBdX*DFIDS (I}

t9= -GRAV*WK4*Z*H**2*DFIDS(I)*dHdX/2.0

R2= tl + t2 + t3 + t4 +tS + t€6 + t7 + t8 + t9

WRITE(6,1C)t1,t2,£3,t4,¢t5,R2
WRITE(6,10)£6,+7,t8,¢t9
FORMAT (2X, 6 (2X,F12.6))
RETURN
END

*xFxrkd CALCULATION OF STIFFNESS MATRIX [FL]*****
SUBROUTINE FLK{IELNO, I, AL, QL, BL,HL,FI,DFIDS, QOL, t, KLP, HLdX)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2

COMMON THETA,CN1(200),CN2(200),CN3(200),0MEGA,GRAV, Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES,NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200), PAR(200,4),PHI(200)
COMMON QRM(200),QLM(200),APHI(200),QPHT (200),ARM(200),TETA,FC1200)
COMMON Acnew(200),0Q0cnew(200),Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew{z00),QLnew(200),QRnew(200),HRnew(200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL (200), TAL(200),TAR(200)
CCMMON DHL{200),DHR(200),RHO,21,22,23,24,Hold(200),COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2), PARL(200,2),DXL(200),DXR(2C0),DXM(200),HLSTFP(200),
+HRSTEP(200),CASEL(200),CASER(200),WALL

WRITE (6, 1)DXL(IELNO)
FORMAT (2%, 'I AM IN SUBROUTINE FLK',6F10.3)

IF/(AL.LE.0.0D+00) .0OR. (QL.EQ.0.0D+00Q) ) THEN
IF(AL.LE.0.0D+00)THEN
t=0.0D+00
GO TO 165
ENDIF

UL=QL/AL
ZL=DSQRT(1.0 + 23**2)
Al=BL + HL*ZL

IF(KLP.EQ.0O)THEN
R=AL/Al
Bl= R/CHN2(IELNO)
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CS= 5.75*DLOG10(B1l) + 6.2D+00
D1=C3**2*GRAV*AL**3/(2.0*A1*DABS(QL))

51z AL*QL/(2.0%A1)

ELSE
D1=AL**3.333/(2.0*CN2(IELNG)**2*Al1**1.333*ABS(QL))
By 2.0*ZL*QL/(3.0*Al)

ENDIF
t: = -FI(I)*QQL*DXL{(IELNOC)/2.0
t4 = -B3*FI(I)*HLAX*DXL(IELNO)/2.0

tS = D]I*HLAX*DFIDS({I)
t=- t3 + t4 + t5

C WRITE(6,10)t3,t4,t5,t
10 FORMAT (2X, 6(2X,F15.10))
15 RETURN

END
c

¢ **¥++*+ CALCULATION OF STIFFNESS MATRIX [FR]*****
SUBROUTINE FRK(IELNO, I,AR,QR,BR,HR,FI,DFIDS,QQR, t,KLP, HRAX)

IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2)

COMMON THETA,CN1(200),CN2(200),CN3(200),OMEGA,GRAV,Q0ld(200)
COMMON 1BC(8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NELTYP (200),XL (200} ,GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200),PAR(200,4),PHI(200)
COMMON CRM(200),QLM(200),APHI(200),QPHI(20C),ARM(200),TETA,FC(200)
COMMON Acnew(200),Qcnew(200;,Ucnew(200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew{200),QLnew(200),Q0Rnew(200),HRnew(200)
COMMON QfL(200),0fR(200), AMTR(200),AMTL (200),TAL(200), TAR(200)
COMMON DHL (200),DHR(200) RHO,Z21,22,23,24,Hold(200),COEFF, ITAA,
+Ot(200),QtF(ZOO),VXL(200),VXR(ZOO),CML(ZOO),CMR(200),CF1,CF2,
+PARF (200, 2), PARL(200,2),DXL{200),DXR(200),DXM(200) , HLSTEP(200),
+HRSTEP (200) , CASEL(200),CASER(200) ,WALL

C
C WRITE (6, 1)DXR{IELNO)
1 FORMAT (2X,'I AM IN SUBROUTINE FRK',F10.3)
¢
IF((AR.LE.0.0D+00).OR.(QR.EQ.0.0D+00) ) THEN
C IF(AR.LE.0.0D+00)THEN
t=0.0D+00
GO TO 15
ENDIF
&
UR=QR/AR

ZR=DSYRT(1.0 + 24**2)
Al=FR + HR*ZR

IF (KLP.EQ.0) THEN
R=AR/Al
Bl= R/CN3 (IELNO)
CS= 5.75*DLOG19(Bl) + 6.2D+00
D1=CS**2*GRAV*AR**3/(2.0*A1*DABS(QR) }
B3= ZR*QR/(2.0*Al)
EL.E
D1=AR**3 . 333/(2.0*CN3 (IELNO)**2*A1**1.333*ABS(QR))



B3= 2.0 *ZR*QR/ (3.0*Al)
ENDIF
t3 = -r{(I)*OR*DXR{(IELNO) /2.0
4 = -B3*FI(I)*HRAX*DXR(IELNO)/2.0
= D1*HRAX*DFIDS (1)
"3+ t£4 + t5

Cc RITE(6,10)t3,t4.t5,¢
10 . RMAT(2X,6(2X,F15.10))
15 RETURN
END
Cc
C****i*‘***‘ SUBROUTINE SHAPE L2 AR AR RS ER SRR R RRERESR SRS RN
~
C THIS PROGRAM DEFINES THE TYPE OF FUNCTION ONG THE
C ELEMENT.
C

SUBROUTINE SHAPE(K,S,FI,DFIDS)
IMPLICIT REAL *8(A-H,0-2)
DIMENSION FI(2),DFIDS(2),S(3)

@]

COMMON THETA,CN1(200),CN2(200),CN3{(200),O0MEGA,GRAV,Qold(200)
COMMON IBC(8),NBC,ALM(200),ELVRP(200),GSL{200,200),GSR(200,200)
COMMON NELEM, NNODES,NELTYP(200),XL(200),GJC(200,200),A01d(200)
COMMON NODNUM(200,2),ELVMc(200),ELVLP(200) PAR(200,4),PHI(200)
COMMON QRM(200),Q0LM(200),APHI(200),QPHI(200),ARM(200), TETA,FC(200)
COMMON Acnew(200),Q0cnew(200),Ucnew{200),Hcnew(200),HLnew(200)
COMMON ALnew(200),ARnew(200),QLnew(200),QRnew(200), HRnew(200)
COMMON QfL{200),0fR(200),AMTR(2v0),AMTL(200),TAL(200), TAR(200)
COMMON DHL(200),DHR(200),RH0O,21,22,23,24,Hold(200),COEFF, ITAA,
+Qt (200),QtF(200),VXL(200),VXR(200),CML(200),CMR(200),CF1,CF2,
+PARF(200,2),PARL(200,2),DXL(200),DXR(200),DX* ‘ TTTEP(200),
+HRSTEP{200),CASEL(200),CASER(200) ,WALL

C
Cx***x*x [, TNEAR FUNCTICN ELEMENT ***=****kwxswx
C
C WRITE(6, 1)
C1 FORMAT (2X,'I AM IN SUBROUTINE SHAEFE')
C
FI(1) = 0.5 * (1.0 - S(K})
FI(2) = 0.5 * (1.0 + S(K))
DFIDZ (1) = -0.5D+00
DFIDS(2) = 0.5D+00
RETURN
END
C
C *#¥**x1%x SUBROUTINE INPUT *****wx
C

SUBROUTINE INPUT(NSTEP,N1iTER, TOL,MTD, K, KUW, KLP KFL, 7, DT, NGP, NQc,
+ IY1l,IY2,IY3,IY4,1Y5,1Y6,IY7, 1Y8,1IY9,IYi0,IY1L, IY12,IYis, IY14,
+IY15,7y16,1Y17,1Y18,1Y19,1IY20,1Y21,1I¥22,1Y23,1IY24,1Y25%,1Y26,
+ IY27,1Y28,3QF, ITAO, T™M, DST, TAG1, TAG2, PET)

IMPLICIT REAL *8(A-H,C-Z)

COMMON THETA,CN1(200),ClLi.{200),CH3{200),0MEGA, GRAV,Qc1d(200)

COMMON IBC{8),NBC,ALM(200),ELVRP(200),GSL(200,200),GSR(200,200)
COMMON NELEM, NNODES, NEL1TYP (200), XL(20¢) ,GJC(200,200),Acld (200,
COMMON NODNUM(200,2},ELVMc(200), ELVLP(200), PAR(200,4),PHI(200)
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COMMGIIORM (200) , CLM{200) ,APHI(200),QPHI(200),ARM(200), TETA, FC(200)
COMANY enew(200), Ocnew(200),Ucnew(200) , Hecnew(200) , HLnew (200)
COMMON ALnew(200), 2Rnew(200),QLnew(200), ORnew(200) , HRnew (200)
COMMON QfL(200),QfR(200),AMTR(200),AMTL(200),TAL(200), TAR(20C0)
COMMON DHL(200),DHR(200),RHO,21,22,23,24,H0o1d(200),COEFF, ITAA,
‘Ot(200),QtF(?OO),VXL(200),VXR(ZOO),CML(ZOG),CMR(200),CF1,CF2,
+PARF (200,2), PARL(200,2),D)L(200),DXR(200),DXM(200) ,HLSTEP(200),
+HRSTEF(200;,CASEL(200),CASER(200) ,WALL

‘
o WRITE(6,1)

1l FORMAT(2X,'I AM IN SUBROUTINE INPUT')
C

READ(S, *) MTD, K, KUW,KLP,KFL, DT,NGP, TETA, NQc, TM, DST, PET
READ(5,*)21,22,23,24,1ITAA,CF1,CF2
READ (%, *)WALL, TAGL, TAG2
READ(S,*) NSTEP, NITER, OMEGA, Cr, THETA, TOL, COEFF, JQF, ITAC
READ(S,*) IvY1l,1Y2,1v3,1IY4,1Y5S,1IY6,1IY7,1IY8,1IY9,IY10,IY11,112,
+ IY13, IYl4 IY1S,1IY16,IY17,IY¥18,IY19,1IY20,IY21,1IY22,1IY23, 1134 Iv25,
+ IY26,IY27,1Y28

o GENEEAL INFORMATION

READ (5, *) NNODES,NELEM, NBC
WIRITE(6,710)NNODES, NELEM
C WKRITE(6,720)
DO 29 I=1,NNODES
READ(S, *) (PAR(I,J),J=1,2),ELVMc(I), APHI(I),QPHI(I)

WRITE(6,750) 1, (PAR(I,J), 2),ELVMc(I), 8PHI(I),QPHI(I)
20 CONTINUE

DO 2% I=1,NNODES
READ(5, *) (PARF(I1,J),J=1,2),ELVLP(I),ALM(I),QLM(I),HLSTEP(I)

WKRITE(6,750)1, (PARF(I,J),J=1,2),ELVLP{(I), ALM(I),QLM(I),HLSTE?P (I}
25 CONTINUE

DO 26 I

=1, NNODE
READ(5, *) (PARL (1

)-4 wn

,J),J=1,2),ELVRP(I),ARM(I),QRM(I),HRSTEP(I)

WRITE(6,750)1I, (2ARL(ZI,J),3=1,2),ELVRP(I),ARM(I),QRM(1),HRSTEP(I)
26 CONTINUE

C SET UP CONNECTIVITY TABLE
(e m e e ——————
C WRITE(6,760)

DO 50 I=1, NELEM

READ(5, *)NELTYP(I), (NODNUM(I,J),J=1, (NELTYP(I})},CN1(I),
+ CN2(I),CN3(I)

+~1=PAR ( (NODNUM(I,1)),1)

X2=PAR( (NODNUM(T, (NELTYP(I)))),1)
LXM{I)=DABRS(X2-X1)

3

X1=PARF ( (NODNUM(I, 1)) ,1)
X2=PARF ( {NODNUM(I, (NELTYP(I)))), 1)
DXL {I)=DABS(X2-X1)

X1=FARL ( (NODNUM(I,1)},1)
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X2=PARL ( (NODNUM(I, (NELTYP(I)})})), 1)
DXR{I)=DAEBS(X2-X1)

WRITE(6,770) I, (NODNUM(I,J),J=1,2),DXM(I),DXL(I),DXR(I',CNI(1)
50 CONTINUE

DO 6¢ I= 1,NELEM
DO 55 J= 1,NELTYP(I)
WRITE(6,780)I,APHI(NODNUM(I,1)),APHI (NODNUM(I, (NELTYP(1})))
WRITE(6,780)I,J5, APHT (NODNUM(I,J))
5 CONTINUE
0 CONTINUE
IF (KUW.EQ.O)THEN
WRITE(6,790)
ELSE
WRITE(6,795)0OMEGA
ENDIF
IF{ITAO.LQ.0) THEN
WRITE(6,800)
ELSE
WRITE(6,810)
ENDIF

IF(JQF.EQ.0) THEN
WRITE(6,820)
ELSE
WRITE (6,830}
ENDIF
71C FORMAT(/6X, 'SOLUTION FOR A ONE - DIMENSIONAL PROBLEM (COMPGUNI Cil
+ANNEL FLOW) '//6X, 'UNKNOWN PARAMETERS: Amc, Qmc,AL,AR AT EACH NODLE'
+//6X, 'TOTAL NUMBER OF NODES =',I3, 'FOR ', I3, 'ELEMENT:'/)
720 FORMAT(//6X,'NODE',7X,'X*',7X,*AC',5X, 'QC*,7X, *AL',6X, 'QL",
+ &), 'AR',6X,'OR'/6X, 62('-"'))
750 FORMAT(6X,1I3,2X,13(2X,F8.3))

760 FORMAT(///6X,'CONNECTIVITY TABLE'/6X,18('~"')//6X, 'ELEMENT', 4X, ''I'fP
1E', 13X, 'NODES', 12X, *LENGTH' /6X,51('-"))
770 FORMAT (4%, I3,3X, 'LINEAR',2X,2I3,1X,F7.2,3(1%,F10.6))

780 FORMAT (/,2X,213,2(2X,-6.1))
790 FORMAT(/6X, 'THE UPWINDING PARAMETER OMEGA IZ EQUAL TO ZEKO')
795 FORMAT(/6X, 'THE UPWINDING PARAMETER OMEGA IS EQUAL TO',F&.2)
800 FORMAT(/6X, 'THE MOMENTUM TRANSFER Mtf i< NOT ALLOWED TO
+ TAKE TIACE')
810 FORMAT(/6X, ' THE MOMEN{UM TRANSFER Mtf IS ALLOWED TO TAKE PLACE')
820 FORMAT (/6X, 'FLOW EXCHANGE g BETWEEN MAIN CHANNEI, AND FLOOD PLAIN
+ IS NOT ALLOWED')
830 FORMAT(/6X, 'FLO¥W EXCHANGE g BETWEEN MAIN CHANNEL AND FLOOD PLAIN
+ IS ALLOWED')
" "TURN
witD



