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Abstract

Over the past decades, considerable progress has been made in the area of automatic image 

interpretation using computer vision and pattern recognition methods. However, there is 

still a large gap between the requirements of most image interpretation applications and the 

accuracy and reliability achieved by automatic methods. Many attempts to automate these 

tasks are too fragile, and they require checking by experts before any final decision can be 

made. For this reason, most successful systems retain a “human in the loop”, where a human 

operator can aid the automatic image interpretation through human-computer interactions 

(HCI).

In this thesis, we introduce a framework for image interpretation based on HCI. This 

framework consists of five components, a human-computer interface, a user model, com­

putational image interpretation models, a knowledge transfer scheme, and a performance 

evaluation scheme. We applied this framework to image feature tracking in cartographic 

map revision, which is expensive, time-consuming, and currently has to be done manually. 

We implemented an interface to access, record, and parse human actions. The human data 

was used to predict user actions (such as view changes) using hidden Markov models and 

to develop a computer-assisted road tracking system. In this system, the human operator 

retains complete control over the operations with the computer acting as an apprentice and, 

later, as an assistant. The apprentice leams simple tasks from the human operator by track­

ing and modelling all input operations in road tracking. Eventually the apprentice can take 

over these tasks from the human and execute them, returning control to the human oper­

ator whenever problems arise. Two tracking methods were implemented, using Bayesian 

filtering and profile matching, as well as online learning and novelty detection. Experimen­

tal results confirmed that our approach is effective and superior to existing methods. Our 

approach is computationally efficient, and it can rapidly adapt to dynamic situations where 

the image feature distributions change.
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Chapter 1

Introduction

1.1 Motivation

Automatic image interpretation has a wide variety of applications, for example, image re­

trieval, scene understanding, medical image analysis and remote sensing. Compared to 

human image interpretation, automatic methods are fast, mathematically well defined, and 

suitable for the processing of large volumes of data. For this reason, they have been studied 

extensively by researchers in Computer Vision, Pattern Recognition, Machine Learning and 

Remote Sensing. However, even with the rapid progress in this area, there is still a large 

gap between the requirements of most image interpretation applications and the accuracy 

and reliability achieved by the automatic methods. For example, it is hard to completely 

and accurately detect roads in a satellite image. In image data mining, correct image clas­

sification is still a difficult task. In many real-world applications, such as medical image 

processing, bank cheque processing and map production, mis-interpretation of image fea­

tures may even generate legal problems. It is thus no wonder that in these applications, 

image interpretation tasks are still performed manually. The disadvantage of manual work 

is that it is slow and expensive. With the exploding amounts of available image data and 

the increasing demands on data analysis, total reliance on human image interpretation is not 

feasible in most industries.

One solution to this problem is to further study the ability of humans to perceive the 

world, and to acquire knowledge in order to build better automatic image interpretation 

algorithms. Efforts have been made in Cognitive Science, Computer Science, and Neuro­

science, focusing on modelling how humans learn from data. It is expected that the mod­

elling will improve the accuracy and robustness of a given learning algorithm, in order to 

build a better prediction model before it can process unseen data automatically.

As an alternative to building completely automatic systems is to retain a “human in

1
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the loop”, where a human operator can work with an automatic image interpretation system 

through human-computer interactions (HCI) [31, 28,77,21]. This is particularly in the area 

of HCI, where it is widely believed that computer vision-based user interfaces will be one of 

the major forces in the future developments of HCI [101,110,94], Some successful systems 

adopted the human-in-the-loop solution because many attempts to completely automate 

image interpretation systems are too fragile and require checking by experts before any 

final decision can be made. This solution has several advantages in real world applications. 

First, no optimal prediction model is needed at the initial stage of the image interpretation, 

because human-computer interactions provide the possibility of improving the prediction 

model. Second, it provides users with the choice to switch between automatic and manual 

methods so as to gain better control of the image interpretation process and to build more 

usable systems. Third, a number of prediction models can be implemented, so that they 

can boost each other’s performance. Further, users can select a better prediction model 

when multiple models are available. Fourth, it is possible to build user-adaptive prediction 

models by monitoring the performance of the semi-automatic systems. Finally, whenever 

errors happen during the prediction, the human can get involved to correct them quickly.

Although the concept of building human-computer interaction systems has been widely 

accepted in the research and industry, studies in this area are quite biased. Current research 

focuses on two aspects, the human side and the computer side. The former tends to provide 

human with better interfaces by developing hardware or software tools, and by modelling 

user behavior, while the latter tends to replace human from the manual work by developing 

computational algorithms and models. Although great achievements have been made in 

these two aspects independently, it is gradually clear that they are closely related with each 

other. As a consequence, many semi-automatic systems have been proposed in the past a 

few years, attempting to combine both human and computer resources.

In this thesis, we attempt to bridge the gap between the human and the computer: we 

study and model human performance on image interpretation tasks, we identify key ac­

tions and difficulties, and we then develop algorithms that improve the efficiency of human 

operators. At the same time, we explore how interactions can improve the performance 

of automatic systems through knowledge accumulation and online machine learning. The 

optimization of the human and computer resources requires the development of control 

strategies that can adapt to a variety of perceptual tasks such as algorithm selection, fea­

ture extraction, and training/testing data retrieval. For this purpose, we propose a robust 

framework that effectively combines existing technology with task demands and human

2
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performance. It is a practical solution to the applications in image interpretation, where 

many automatic algorithms have been developed, but most of them have been unusable in 

reality [43],

1.2 Application Background in Cartographic Map Revision

With the creation of the first map, the tedious but non-trivial task of map revision began 

as well. For hundreds of years, the revision process has stored maps for information that 

humanity needs, and has helped us to understand the world that we are living in [114]. 

Traditionally, map revision tasks were performed manually. Departing from analog car­

tography, cartographers now perform this task in a digital environment. The tools used by 

users are no longer pencils and plastic films, but computers, databases and printers. CAD 

environments like Microstation and Adobe Illustrator facilitate users in designing and edit­

ing maps. GIS systems like GeoMedia and Arcinfo make it possible to manage different 

geospatial databases and integrate different formats of data into one system. With the devel­

opment of remote sensing technology, aerial images and satellite images have been widely 

used in map revision to present the latest ground truth on earth’s surface.

We study cartographic map revision because it has a well defined context to examine 

our ideas. The software environment and the development tools make it possible to keep 

track of the user. It enables us to record the spatial and temporal information of the user 

actions, as well as to analyze and model them. Another advantage is that the revision tasks 

are well defined. Normally, revisions are performed on multiple map layers, which contain 

map features such as boundaries, road, building, water bodies, and others. Many automatic 

methods have been developed to detect and track these features in remote sensing images, 

using automatic image interpretation technology. We are focusing on the technology to in­

terpret these features, utilizing and extending the existing automatic methods, and studying 

their interaction mechanism with users. Then we can compare our approach to automatic 

methods and human performance, respectively.

In this thesis, we present our work on semi-automatic road tracking, one of the key 

tasks in map revision, using the proposed HCI framework. We developed a system to parse 

system-level software events into time-segmented, meaningful and complete user action 

data. These data can then be used to analyze user behavior patterns in road tracking. We 

also propose a human-centered approach for road tracking, in which the human works as a 

tutor and decision maker, with the computer acting as an apprentice and, after training, as an

3
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assistant. The computer tracks and models human actions, and, on request, takes over those 

tracking tasks that can reduce the human effort. Our approach is computationally efficient, 

and it can rapidly adapt to dynamic situations where the image feature distributions change.

1.3 Outline of Thesis

This thesis is organized in nine chapters.

In Chapter 2, we review the state of the art of semi-automatic image interpretation and 

computer-aided map revision. This covers a variety of topics, including HCI techniques 

in image interpretation and analysis, semi-automatic image interpretation methods for map 

feature detection and tracking.

In Chapter 3, we propose a general HCI framework for semi-automatic image interpre­

tation. This framework consists of five components, a human-computer interface, a user 

model, a computer vision component, a knowledge transfer scheme, and a performance 

evaluation scheme.

In Chapter 4, we first review current map revision programs. Then we apply the HCI 

framework to map revision. The software environment and the development tools make it 

easy to keep track of the user actions in system-level events. These events are parsed into 

time-segmented, meaningful and complete user action data that are stored in XML format.

In Chapter 5, we show how the parsed user action data is used to analyze user behaviors. 

Two experiments were performed. First, user actions were used in modelling human view­

ing patterns using hidden Markov models (HMMs). This included a training process and a 

testing process. Second, user data were used to compare to automatic road edge detection 

method.

In Chapter 6 , we introduce a linear feature extraction algorithm to extract lines from 

noisy aerial images. This algorithm uses directional information to filter an image and to 

extract edges. Then, the Hough transform is used to compute peaks from the edges and to 

restore line segments. A peak selection algorithm based on directional information is used 

to distinguish true line segments from the line segments generated from spurious noisy 

edges.

Applying the HCI framework to road tracking tasks, a semi-automatic Bayesian filtering 

method is introduced in Chapter 7. The Bayesian filters are used to estimate the current state 

of the system based on past and current observations. User input not only sets the initial 

state of the Bayesian filters but also reflects knowledge of road profiles. A knowledge base
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is built to facilitate the knowledge transfer between human and computer. Experimental 

results confirm the effectiveness of this approach, and it is shown to be superior to existing 

methods.

In Chapter 8 , we propose an online learning approach that naturally integrates guidance 

from human experts with automatic computer vision algorithms for tracking roads in aerial 

photos. Human inputs provide the online learner with training examples to generate road 

predictors. An ensemble of road predictors is learned incrementally from human inputs, 

and the predictors are then used to automatically track roads. The experimental results on 

the learning and tracking models are compared and analyzed. The proposed approach is 

computationally efficient, and it can rapidly adapt to dynamic situations where the road 

feature distributions change.

Finally, we summarize the thesis in Chapter 9, with some conclusion remarks and pro­

pose the future work.

1.4 Contribution of the Thesis

The ultimate goal of studying image interpretation is to aid humans in performing the task 

in a more convenient and efficient manner. Current research in semi-automatic image inter­

pretation has not been very systematic. Researchers often adopt solutions that seem work 

even if they only have a rough idea on what to do and how to do it. They often miss why 

they do it in that way, and how to do it better.

The human-computer interaction framework introduced in this thesis is one of the first 

to analyze semi-automatic image interpretation systems in a systematic fashion. It can 

improve the efficiency of image interpretation in performing tasks usually done by human, 

while maintaining completeness, correctness, and accuracy, because the human is never 

removed from the process. This framework is very generic and could be applied to similar 

applications that require mutual understanding and different levels of interactions between 

human and computer. This is the most important contribution of the thesis.

We made an in-depth analysis of all components that are required for semi-automatic 

image analysis, with special attention being paid to the interaction mechanism between hu­

man and computers. We defined the roles of human and computer, showing that the key 

to bridge them is to build an effective knowledge transfer scheme. Our scheme enables 

both static and dynamic knowledge to be transferred from human to computer, so that the 

computational model can be gradually strengthened. This suggests that we can take advan-
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tage of the current achievement in computational models, without the need to explore many 

more new methods, so that great efforts can be saved to make workable systems.

We demonstrated the application of the proposed framework in solving real-world prob­

lems. In designing a semi-automatic road tracking system for map revision, we first mod­

elled human behavior in manual work, and identified why we can solve the problem using 

semi-automatic method, and how this should be done. Then we developed systems that 

enables human control and knowledge transfer through human-computer interactions. Ex­

perimental results confirm that our approach is effective and superior to existing methods. 

This is the practical contribution of the thesis.

6
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Chapter 2

Semi-automatic Image Interpretation 
Methods and Map Revision

The term image interpretation, or image understanding, often has different meanings in 

different research communities. In the computer vision community, it refers to the recon­

struction and interpretation of a scene by means of images. It covers the broad topics from 

early vision to high-level vision [15]. In the remote sensing community, it is defined as 

the extraction of qualitative and quantitative information from images. Thus, an image in­

terpretation system consists of image acquisition, image processing, feature extraction, and 

image analysis [85]. In both communities, the common topics are image processing, feature 

extraction, and object recognition. In these topics, studies on human-computer interactions 

are one of the key directions, and they form the basis of developing semi-automatic sys­

tems. In this chapter, we review past work and put special emphasis on the HCI techniques 

for image interpretation and the state of the art in map feature detection.

2.1 Human-Computer Interaction for Image Interpretation

Human-computer interaction is a discipline concerned with the design, evaluation and im­

plementation of interactive computing systems, and with the study of major phenomena 

associated with them [33]. Some interesting topics in HCI that relate to the image interpre­

tation include human-computer interfaces, human information processing, and performance 

evaluation.

2.1.1 Human-computer Interface

A variety of aspects are important for a human-computer interface. In Graphical User Inter­

faces (GUI), such aspects include the presentation of visual components (desktop, windows,
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menus, icons, and others), the way data are presented and operated on, and the supporting 

hardware. In our study, we are concerned with the way human actions are input into the im­

age interpretation system. The input method determines directly how the input information 

can be captured and used in the later processing.

The most typical input devices in a GUI are keyboard and mouse. These two devices 

are suitable for two-dimensional (2D) environments that use dialogue techniques, such as 

text input, selections and discrete parameter specification. They provide support for fast, 

simple, convenient, and interactive continuous control in a system. Many image interpreta­

tion systems use keyboard and mouse as input devices, e.g. for contour editing [71,97,29], 

segmentation [37, 107], or object modelling and detection [103, 84, 151, 36]. Some inter­

action techniques have been proposed for mapping two-dimensional cursor motion into a 

three-dimensional (3D) translation or rotation [55,57]. These techniques usually consist of 

a combination of mappings of planar movement into space and a mechanism for switching 

the control of the current degree-of-freedom, which are not trivial task.

It is more natural to use 3D input devices to support the 3D interactions. A number 

of 3D devices were compared in [57], including popular haptic devices such as 3D mouse 

and gloves. 3D mouse is popular input device in photogrammetry and medical image pro­

cessing [139, 48]. It allows user to control the 3D position of a cursor. Functions keys are 

used to set parameters, change modes or perform other functions. Instrumented gloves are 

normally used in combination with sensors so that they can detect the hand position and 

finger movement [142].

Beyond the conventional user interfaces, advanced user interfaces take advantage of re­

cent progress in pattern recognition and computer vision. These interfaces include systems 

for gesture, action, and speech recognition, which make it possible to interact with image 

interpretation system at a distance. Colombo et al. reported a system for image manipu­

lation using hand pointing actions [2 2 ], which allows users to move freely in a room with 

an image displayed on a big screen. Users use their arms as the pointing device, and the 

movements of the arms and hands are tracked by a pair of cameras. The hand pointing ges­

tures are mapped onto the screen locations of interest so that an subarea on the image can be 

retrieved. A similar system was reported by Arsenio to guide image segmentation for robot 

vision [3]. First, a standard color segmentation algorithm was applied to a stationary im­

age. Then the human actor waved an arm to indicate the locations of the objects of interest. 

Finally, a robot mapped the object to target classes by matching the color cluster to prede­

fined object templates. Speech recognition techniques are also used in image interpretation

8
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Table 2.1: Summary of semi-automatic image interpretation systems

systems applications interfaces usage of input evaluation
Kass [71] contour detection mouse initialization qualitative
Elder [29] contour editing mouse judgement qualitative

Freedman [37] image segmentation mouse preprocessing qualitative
Harders [48] image segmentation 3D mouse steering quantitative
Amqvist [2] image segmentation keyboard, mouse initialization quantitative
Okada [106] image segmentation mouse initialization quantitative
Francois [36] 3D Modelling mouse initialization qualitative
Lepetit [84] object detection mouse preprocessing qualitative

Giakoumis [42] object detection mouse initialization qualitative
Xiong [140] object detection N/A correction quantitative
Zou [151] object recognition mouse initialization quantitative

Gougeon [44] object recognition mouse preprocessing quantitative
Arsenio [3] scene understanding action preprocessing quantitative

Okabe [105] document retrieval mouse feedback quantitative
Muneesawang [99] image retrieval mouse initialization quantitative

to identify and tagging relevant objects and regions in the image. The Show&Tell system 

proposed by Srihari and Zhang is such an example [124]. A user views the image and de­

scribes it in spoken language to indicate the objects and regions in the image. The input is 

processed by a speech recognition engine to generate constraints on the image, such as the 

spatial relationship between objects. The user can also use the mouse to provide additional 

information. Then the image is processed by an automatic image interpretation system to 

extract objects based on the user inputs.

As summarized in Table 2.1, the mouse is the most popular input device for image inter­

pretation. In many traditional image interpretation tasks, such as image retrieval, medical 

image processing and remote sensing, a user has to interact with images at a close dis­

tance. Such tasks require simpler, more accurate and more convenient interfaces, for which 

a mouse is the most suitable input device and will remain so in the near future.

2.1.2 Usage of Human Data

Once the human inputs are obtained from the interface, the next step is to process these 

inputs. Depending on the interactive type, human input can be parameterized and used in 

different ways. Depending on this interaction, semi-automatic image interpretation sys­

tems can be divided into user-assisted systems and computer vision-based interaction sys­

tems [97]. User-assisted systems describe techniques where the user interacts first in image 

space, so that the algorithm produces a desired result. The computer vision-based inter-
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actions are the methods where the computer perform some or all vision tasks, before the 

human gets involved as decision maker.

User-assisted System

In a user-assisted system, the human provides inputs for two purposes, preprocessing and 

initialization.

• Preprocessing

F. Gougeon reported a semi-automatic forest inventory system based on individual 

tree crown recognition, in which humans helped to remove the non-forest areas on 

the digitized high-resolution aerial photographs [44]. Then the automatic delineat­

ing algorithm was used to isolate the individual tree crowns and to generate species 

signatures. In contrast, in [3], humans were used to point out areas of interest in the 

image before the classification of the object in the area could be done. A similar 

HCI system was developed in [84] to outline the occluding objects in the key-views, 

before the actual boundary of the object were tracked by snakes. The medical image 

segmentation system proposed by Freedman and Zhang required users to mark seed 

pixels both within and outside of the object of interest [37]. Shape priors were then 

incorporated to help the automatic segmentation.

• Initialization

In these systems, human inputs guide the setting of parameters for image processing 

[42, 151, 2, 106], feature extraction [141, 42], object detection [83, 56] and image 

classification [99, 8 8 ]. Some widely used algorithms also require humans to set the 

parameters. For example, in region-growing, the users point out one or more seeds 

[1, 141, 42] to initialize the segmentation. These seeds can be pixels or regions, 

and neighboring pixels or regions can be merged into the seeds. An advantage of 

human involvement is that the human can help to make judgements on ambiguous 

region. In active contour models, a set of control points is often input by the human 

[71, 13]. The snakes, which are splines with active shapes, are updated iteratively 

to minimizing their energy until the weighted internal and external energies reach 

a local minimum. In modelling 3D objects from 2D images using a multi-camera 

system, the human can help the computer to establish stereo and pose-to-pose cor­

respondences, after the object features, such as edges, vertices, curves, and planes, 

have been extracted [98]. Francois and Medioni proposed a system to produce a 3D
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model of an object as observed in a single image [36]. User were involved in the 

system with a minimum of high-level interaction for feature extraction and grouping 

to enable robust computer vision algorithms for geometric computing.

In summary, user-assisted techniques are suitable for systems that require user involve­

ment before the automatic process. The purpose is to facilitate the analytical or numerical 

computation. The quality of the human inputs greatly affect the performance of the auto­

matic processing. When an initial input is poor, the automatic processing might not generate 

correct or accurate results. In this case, iterative user inputs are required, and sometimes 

user have to provide feedbacks or correct errors, which can be considered as computer 

vision-based interactions.

Computer Vision-based System

In computer vision-based interaction systems, the purpose of human input is to judge the 

results, provide feedbacks, and correct errors for the computer vision algorithm.

• Judgement

The human evaluates the automatic processing results and decides what to do in the 

next step. One example is the Interactive Contour Editing [29,97], which is an image 

editing tool that supports the translation of actions from the contour domain into 

actions that will be performed on the image. The key step is to find reliable image 

contours, to encode their locations, and then reconstruct a high-fidelity representation 

of the original image. Image contours are detected automatically using edge detection 

methods, and the human operator observes the contours and decide how to group 

them. In another example, Navalpakkam and Itti studied how human attention was 

influenced by high level tasks [1 0 2 ], and designed an architecture to estimate the 

task-relevance of attended locations in a scene. Vision-based components worked 

together to estimate the task-relevance of the most attended areas. Then the object in 

the area was recognized by a human operator.

• Feedback

Feedback can be used to adjust the behavior of the automatic systems. These feed­

backs can be qualitative, indicating whether the results are right or wrong, or quanti­

tative, indicating how good the results are. Sometimes, feedback can be considered 

as a human labelling process, which is especially useful in developing systems based 

on online machine learning. For example, Muneesawang et al. developed a labelling
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system for content-based image retrieval [99]. In each image retrieval session, users 

were asked to classify the relevant and irrelevant results related to the query images. 

Then the classification results were used as training examples for the retrieval model. 

Similar work include the roof detection system by Maloof et al. [8 8 ] and the interac­

tive document retrieval systems by Okabe and Yamada [105], by Salton and Buckley 

[118], and by Peng et al. [111].

• Correction

Computer vision-based image interpretation is not robust, hence errors happen from 

time to time. When a computational method fails, the human is the best source of 

remedy. In the systems reported in [143] and [140], the human operator was required 

to check and correct the road detection results after automatic road extraction from 

high-resolution imagery and road database. Another example is the Crayons system 

that supports such interactions [32]: With the help of human input, an automatic 

object classifier generates initial results to distinguish an object from background. 

The human analyzes the results, and make new inputs to correct the classifications 

results. With the new inputs, the classifier also updates itself using simple machine 

learning methods, like nearest-neighbor algorithm, or decision trees.

Steering System

A complete semi-automatic system could be a combination of the user-assisted and vision- 

based models. Sometimes it is hard to distinguish between these two. A human input 

may be used both to provide feedback and to initialize an algorithm, as in the content- 

based image retrieval system in [99], where human inputs provide labels first and then are 

used to initialize the training process. We call such closely coupled interaction models 

steering models, in which human guides the computational process, gradually optimizing 

the algorithms until the desired results are achieved. Only a few steering models have been 

reported in the literature, including the process model by Madhok and Landgrebe [87], the 

satellite image processing system by Datcu and Seidel [25], the building extraction system 

by Gulch [47], and the image segmentation system by Harders and Szekely [48].

In building their process model [87], Madhok and Kandgrebe proposed three design 

principles. First, human and computer have different abilities and thus need to take on 

different roles in a system. Second, the machine is used to validate the human hypotheses. 

Third, not every analysis can be solved perfectly. Thus, multiple techniques should be 

combined to generate successful results. These principles were applied to remote sensing
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data analysis. Aerial images were segmented and classified to generate thematic maps. This 

output was validated with test data gathered from humans.

Datcu and Seidel proposed a knowledge-driven information mining system for remote 

sensing data processing based on human-centered concepts [25]. Input images were first 

processed by computer vision algorithms to extract primitive features such as texture and 

geometrical information. These features were clustered and used to organize a quicklook 

images archive. The human was required to give examples of target objects in the quicklook 

images, and examples were automatically generalized with confidence values for all images 

in the archive. Low confidence value objects were verified by human. This interaction 

system was implemented to generate risk maps for mined areas and to detect objects and 

structures in high-resolution images.

In [48], Harders and Szekely introduced an interaction tool for medical segmentation. 

Human input was required to generate the centerline of a tubular structure in 3-D data using 

haptically assisted tools. Then the centerline was used to initialize a deformable surface 

model. This model was used to segment the medical images. A step-by-step segmentation 

approach was used to hide the already segmented image parts, thus, the human was in 

control of the whole process. The author claimed that the using of multimodal interface 

improved the segmentation performance on linear structures.

2.1.3 Performance Evaluation

To evaluate a semi-automatic system, we need to ask the question whether the system is 

useful. The term usefulness was defined by Nielsen, as incorporating utility and usability 

[104]. Utility evaluates how well the system fulfills the functionality required for predefined 

tasks, and it is mainly presented with both quantitative and qualitative attributes. Usability, 

on the other hand, is a quality attribute that assesses how easy the user interface is to use.

Most reported evaluation criteria in semi-automatic image interpretation rely on utility. 

Researchers are concerned more on how well the developed models can solve the tasks. 

Some popular criteria include completeness, correctness, accuracy, and efficiency.

• Completeness
Completeness is defined as the percentage of the correctly interpreted targets among 

all targets. For example, in building detection, it refers to the percentage of correctly 

detected buildings among all buildings in an image. This criterion has been used in 

[63, 140, 52],
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•  Correctness

Correctness is defined as the percentage of correctly interpreted targets among all 

interpreted targets. All in terpreted targets m ay include both correct and wrong 

in terpretations. It is used in [44, 22, 3, 74, 151, 106, 105].

•  Accuracy

Accuracy is the degree to which a given quantity is correct and free from error. For 

example, in road detection, the accuracy of the detection can be evaluated by the 

average distance between the extracted and the true roads [52, 146, 147].

•  Efficiency

The efficiency is a time-related criterion. It is affected by two factors, the efficiency 

of the computational algorithm, and the time used for interaction. The latter can be 

considered partly as usability issue. Most image interpretation systems reported the 

efficiency in terms of average computation time for each task [99,2]. Interaction time 

is normally evaluated by comparing the absolute time between the system and manual 

work, or by calculating the percentage of human effort saved [9, 50,151, 106,48].

•  Qualitative

Except for the quantitative evaluations above, many researchers demonstrated the 

quality of their models by showing images on the interpretation results. It is effective 

when quantitative evaluation is difficult, such as in evaluating a sequence of frames 

in a video [84], or is not necessary, such as in highlighting the interactive procedure 

[42, 37, 29, 36].

Completeness, correctness, accuracy and efficiency are quantitative criteria. They are 

suitable for testing and comparing different image interpretation methods and to identify 

their strength and weakness. One problem in using these criteria is that there is normally 

no standard image database available for testing purposes 1. Thus, the comparison of eval­

uation results is not very meaningful. This is the reason why many researchers tend to use 

qualitative criteria, which can give a direct visual impression on the performance of the 

system. In the last column of Table 2.1, we give a summary on the criteria used for some 

semi-automatic image interpretation systems. We find that both qualitative and quantitative

’We need to point out that some researchers have paid attention to this problem. Mayer and Baltsavias have 
started an European Spatial Data Research which provides high resolution satellite images for road extraction 
study. Researchers can download images, run their own algorithms, and upload results for comparison from 
the following website: http://www.bauv.unibw-muenchen.de/institute/instlO/eurosdr/.
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evaluation criteria are widely used. Another problem in the utility evaluation lies in the ef­

ficiency criterion, in which assessing the human involvement should be further considered 

besides the time for interactions.

From a software engineering point of view, usability is the most important factor for the 

success of a system. Nielsen pointed out that the usability should be evaluated using the 

following five quality components [104], First, leamability, which refers to how easy a user 

can learn to perform a task the first time they use the system. Second, efficiency of use, 

which refers to how quickly a user can perform a task. Third, memorability, which refers 

to when user is away from the system for a period of time, whether or not they can get 

re-familiar with the system quickly. Fourth, few and noncatastrophic errors, which include 

the number of errors a user make, the Severeness of the errors, and whether or not it is easy 

for a user to recover from the errors. Finally, subjective satisfaction, indicating whether or 

not a user is having a pleasant experience using the system.

Among these five components, leamability, efficiency and errors should be paid more 

attention to in designing semi-automatic image interpretation systems. The speed of users 

performing a task and the time they spend to identify and correct errors greatly affect the 

overall efficiency of the system. Harvey reported their work in evaluating ROADMAP, 

which is a semi-automatic road extraction system [50], and they observed 20% or more im­

provements after users were familiar with the ROADMAP system. Even so, when compar­

ing the system against completely manual work, the ROADMAP system was 12% slower 

than the manual work. The major problem was that users found the interface hard to con­

trol and found it difficult to switch between automatic and manual operation. This work 

suggests that, in evaluating a system, we need to consider both the computational factors 

and the user factors. In table 2.1, we give a summary on some typical semi-automatic 

image interpretation systems in their applications, interfaces, input data usage, and utility 

evaluation.

2.2 Related Work in Image Interpretation for Map Revision

In this section, we review related work in both automatic and semi-automatic image inter­

pretation methods for map revision. We focus on the two most dynamic map features, roads 

and buildings.
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2.2.1 Road Recognition

Road revision is one of the main tasks in map revision because roads are the most frequently 

changed map elements. In remote sensing images, roads are typically long, smooth, and 

continuous. In the following sections, we discuss several approaches in road recognition.

Knowledge-based Road Recognition

Knowledge-based image understanding techniques have been widely used in road recogni­

tion systems [24]. Knowledge refers to all information related to roads, such as their context 

in the image, intermediate processing results, defined rules and constraints, and so on. It 

also includes input data to be used in the processing [6 ]. The source of knowledge could be 

images, maps, road databases, regulations, human and so on. Some reported knowledge- 

based road recognition systems are [12, 72, 91, 120, 126, 135, 144], sone of which are 

discussed below.

Mayer and Steger studied scale-space events to extract road features [91]. The use of 

multiple scales is based on the knowledge that objects display different properties according 

to the scale of the image. High-frequency information may be removed at a coarse scale, 

and thus facilitate the extraction of object features. Multiple-scale images can be derived 

by Gaussian filters or by mathematical morphology. The authors extracted ID bar-shaped 

profiles with width and height information, as well as 2D curvatures based on the ID pro­

files at multiple-scales. To link the scale-space events, the width of roads and with of the 

gap between roads were analyzed and an appropriate scale was selected. This assured that 

unwanted substructures, like cars, were eliminated at a symbolic processing level. Finally, 

the road features, from fine to coarse scale, were integrated to generate a highway network 

using a knowledge-based model.

Katartzis et al. proposed an automatic road extraction model from airborne images 

based on local and global analysis [72], In the local analysis step, human knowledge on 

roads was applied to build geometric and radiometric models. A morphological approach 

was used to detect elongated structure with a certain width based. Then a line following 

algorithm was used to detect line segments that were longer than a predefined threshold. 

In the global analysis step, the detected line segments were grouped into roads using a 

Bayesian method. First, a graph was constructed to characterize the connectivity among 

line segments. Then road identification was carried out using Markov random field based 

on Bayes and MAP criteria to maximize the posterior probability of the labelling given the 

graph model. Several aspects were investigated that would influence the grouping, such as
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the parameters in the graph creation, the formulation of probability distributions, and the 

reduction of the number of parameters.

Bentabet et al. implemented a road vector update system using two sources of knowl­

edge: SAR imagery and road databases [12]. The road database was used as a reference 

for estimating the initial road location given that the database coordinates are normally 

close to the true roads location. Then roads were detected from the SAR imagery using 

snake approach and were used to update the road database. The road detection system was 

composed of three modules, preprocessing, line extraction, and road detection. The prepro­

cessing module used a Frost filter to remove unexpected lines from the image and to smooth 

the roads. Then a line detector based on Canny’s criteria was used to extract line feature. 

These were used as input to the snake in calculating the external energy. This work pro­

vides a good example on how knowledge can be used to compute the parameters of vision 

algorithms.

Shackelford and Davis processed high-resolution multispectral images using a pixel- 

based and object-based approach [120]. The pixel-based approach classified image pixels 

into four classes, Grass-Tree, Road-Building, Water-Shadow, and Bare Soil, using spectral 

and spatial knowledge. This image was further segmented using region-growing. Then the 

object-based, fuzzy logic classifier was called to label each segment. In this step, shape, 

neighborhood information and spectral statistics were used as object features. A correct 

classification rate of 86.4% was achieved.

A summary of knowledge-based road recognition systems is given in Table 2.2. In 

these systems, knowledge from different sources have been successfully used for different 

application purposes. Common usage of the knowledge is that it guides the design and 

development of computational models. As we will see in later chapters, such knowledge is 

static, and thus cannot characterize the dynamics of image features. To make systems more 

robust, additional human knowledge should be incorporated into the image interpretation 

process through human-computer interactions.

Road extraction and tracking

When classified by purpose, the processing of roads is often divided into two main pro­

cesses, road extraction and tracking [150], In road extraction, typical sequences of road 

points are detected within an area of interest. Such road extraction systems include [150, 

92,76,127,69], In road tracking, a part of the road is already known and different strategies 

are used to track the road [93,40, 11,8]. These systems are discussed in the following.
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Table 2.2: Summary of knowledge-based road recognition systems

systems purpose of systems knowledge sources
Bentabet [12] road update image and road database
Katartzis [72] road extraction human

Mayer[91] road extraction human
Shackelford [120] scene classification spectral and spatial property

Ton [126] image segmentation spectral and spatial property
Wang [135] highway network extraction reasoning rules
Zhang [144] road update road database and road design rules

Klang was one of the first researchers to use snakes in road extraction [76]. Similar to 

[12], he also used a road database and satellite images as source of road database updating. 

Road end points and intersections were extracted from the road database in order to get node 

points. These node points were matched to the neighborhood image pixels using iterative 

least square matching. Connecting the nodes in the image formed the initial road segments. 

A ziplock snake was then used in road delineation. This approach was used in mapping 

rural areas. Similar work including the road system based on scale-space and snakes was 

reported by Laptev et al. [80].

Tupin et al. introduced a road extraction method on urban areas using multiple-view 

images [127]. These images were taken from two flight directions that were perpendicular 

to each other. Like many other systems, this method was also composed of line detection 

and road network construction steps. But then a merging method was applied, in which 

the road networks extracted from the two views were superimposed. The resulting road 

detection rate were increased by about 30%, compared to the single view detection rate. 

During the road network reconstruction, Markov random fields (MRF) were used to label 

the roads from a set of candidate road segments. A similar system, also using of MRF was 

reported in [72],

Hinz and Baumgartner interpreted multiple views in another way. They correspond 

views to the resolution of the same image [58]. Different parts of the road model and ex­

traction strategy were performed differently in these views, and thus an optimal exploitation 

was achieved. Another work using multi-resolution image processing was reported in [53].

Some researchers used 3D topographic information in road extraction. The 3D infor­

mation can help to distinguish buildings and trees from roads. Zhu et al. proposed a system 

to detect hidden road edges covered by shadows of high objects in urban area [149]. After
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high objects were removed, the road centerline was reconstructed by spline estimation.

Jeon et al. modelled roads in a spacebome SAR image as curvilinear structures with 

width information [69]. The curve segments were grouped using a genetic algorithm. The 

grouping started from an initial seed segment selection among the curve segments. Re­

gion growing was incorporated into the genetic algorithm so that only segments within the 

neighborhood of the seed were input to the algorithm. Then the grouping was performed 

by the genetic algorithm using each seed. This model detected roads with an accuracy of 

92.2%, and with average error of 2.08m.

Geman and Jadynak provided a partial solution for tracking road networks from medium 

resolution satellite imagery [40]. Given a starting point and direction, the tracker performed 

on-line testing of road hypotheses using decision trees. During the testing, a geometric 

model and a statistical model were used to constrain the search direction, and a local filter 

was designed to extract possible road segments. The on-line testing adopted an entropy 

testing rule, and generated an approximation to the maximum likelihood estimation. This 

solution successfully extracted highways over one hundred kilometers without human in­

volvement.

Kim et al. proposed another system for road centerline tracking [73]. The tracking 

started from user defined road templates, which were used to match the image along the 

direction of the road using least squares correlation method.

Table 2.3 shows a summary on typical work in road extraction and tracking. Compar­

ison are made on road operations, type of images used for the analysis and experiments, 

as well as major methods used for image processing, feature extraction, road detection and 

classification. We do not compare the performance of each system because there is no 

standard database available. This summary is far from complete since there are numerous 

research papers published in these topics.

The summary shows that many image processing and machine learning methods have 

been successfully used for the road extraction and tracking. Main methods for image pro­

cessing include image segmentation and morphology. Edge and curve detection are the 

key methods for feature extraction. In the classification step, methods include decision tree, 

support vector machine, Bayesian modelling, and others. These facts leave us many choices 

when semi-automatic road recognition algorithms are developed. We have to look into each 

step and explore the optimal combination of these methods, as well as their incorporation 

into the interactions.
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Table 2.3: Summary of road extraction and tracking.

systems road operations type of images methods
Heipke [53] extraction aerial multi-resolution processing, data fusion

Hinz [58] extraction aerial multi-resolution processing, data fusion
Jeon [69] extraction satellite curve detection, Genetic algorithm

Katartzis [72] extraction aerial morphology, MRF
Klang [76] extraction satellite snake
Laptev [80] extraction aerial multi-scale processing, snake

McKeown [92] extraction aerial edge analysis
Priestnall [112] extraction satellite Bayesian modelling

Song [122] extraction satellite image segmentation, SVMs
Tupin [127] extraction satellite MRF, data fusion
Zhu [149] extraction aerial edge detection, spline approximation

Zlotnick [150] extraction aerial edge detection
Barzohar [8] tracking aerial stochastic modelling and estimation
Geman [40] tracking satellite model-based tracking, decision tree

McKeown [93] tracking aerial edge detection
Kim [73] tracking satellite least squares correlation matching

Automatic versus semi-automatic methods

Road processing can also be classified as automatic or semi-automatic depending on whether 

the human is involved in the process. Automatic methods aim at replacing humans [40,76, 

58,92]. However, humans cannot be excluded completely from the map revision process in 

real applications because the image interpretation algorithms are not sufficiently robust and 

reliable and, importantly, a map is a legal document, requiring some form of final checking 

by a human. For these reasons, semi-automatic methods are preferable [80].

KcKeown and Denlinger [93] introduced a semi-automatic road tracker based on road 

profile correlation and road edge following. The tracker was initialized by a human op­

erator to obtain starting values for coordinates, direction and width of a road. Road axis 

points were then predicted by a road trajectory model and correlation models. The edge- 

based tracker modelled the road by linking points with high gradient and orientation in the 

expected direction.

Vosselman and Knecht [134] proposed a road tracker based on a single observation 

model Kalman filter. Human input was used to initialize the state of the Kalman filter and 

to extract a template road profile. The Kalman filter then recursively updated its state to 

predict the road center, using feedback from matching the template profiles to the observed 

profiles. Baumgartner [9] developed a prototype system based on the above method. An 

interaction interface was designed to coordinate human actions with computer predictions.
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Xiong and Sperling presented a semi-automatic tool that enables human to visually 

check and correct mistakes in an automated algorithm for performing road network match­

ing [140]. Similar to [69], the automated algorithm started from road seed selection. These 

seeds were extracted from latest aerial images. A clustering procedure was used to identify 

matches between the seeds and the existing database. A matching table and a matching 

map were generated, and these results were checked and verified by human operator. The 

matching procedure then went through segment mapping and edge mapping steps. The 

effectiveness of the tool was evaluated by the matched road length.

More recent semi-automatic approaches include the least squares template matching 

methods [46] for road centerline extraction by [63] and [73], both requiring seed-point 

input from humans to generate 2D template.

Harvey et al. looked at the semi-automatic road extraction from a different point of 

view [50]. They performed a usability evaluation on the ROADMAP road network tracking 

system against pure manual systems. Users were required to perform automatic, semi­

automatic, and manual road tracking using two software packages, and statistic analysis 

was made to the recorded time costs. The authors concluded that the ROADMAP was 

comparable to commercial software.

2.2.2 Building Extraction

In this section, we review some of the latest work on building extraction from aerial images. 

This has been an active topic for almost twenty years because of its application in computer 

aided cartography, remote sensing and geographical information systems. These systems 

are either automatic or semi-automatic. A more complete survey of systems before 1999 

can be found in Mayer’s paper [90]. This paper introduced and assessed several examples 

of building extraction approaches in terms of complexity of data, characterization of models 

and characterization of strategies.

Cord, Jordan and Cocquerez developed a hierarchical system to automatically extract 

and model buildings from stereoscopic pairs of high resolution aerial images of urban areas 

[23]. The image pairs were input into the system and processed using a stereo match­

ing scheme to compute a dense Digital Elevation Model (DEM). A matching cost func­

tion based on gradient vector correlation for edge-adaptive windows was developed in the 

matching scheme. A global scene classification based on altimetric data was then per­

formed based on the DEM. The scene was classified into ground regions, building regions 

and vegetation regions. For each building detected, two-step individual building modelling
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was performed. The first step was to deal with the 2D roof boundary modelling using the 

3D and radiometric information. The second step was to model the roof surface based on a 

parametric multiplane 3D data model and a stochastic algorithm.

Fradkin, Maitre and Roux introduced another automatic building detection system from 

multiple aerial images in dense urban areas [35]. The approach consisted of two steps, 

surface reconstruction and building detection. The accuracy of the first step decided the 

reliability of the second step. To achieve accurate surface reconstruction, a multiview stereo 

matching followed by robust surface interpolation was implemented. Dense elevation maps 

for the most oblique views of the scene were constructed into the first step. Then several 

oblique views were used to detect the ground projection of building facades in object space. 

Building hypotheses were established using the facade information and prominent planar 

3D regions from surface reconstruction. Finally, these hypotheses were verified using a set 

of conformation criteria. A 80% good detection rate and high reliability (near 99%) was 

reported.

Gulch reported a semi-automatic building extraction system, which provides a tool to 

derive reliable 3D geometric information on buildings [47]. The inputs were two images, 

image orientation and the average terrain height. To find the homologous points from two 

images for 3D construction, the human selected a small area in the first image, and the 

computer automatically selected the homologous point in the second image by searching 

for the maximal normalized correlation coefficient. The operator could modify the length 

of the roof and rotation with mouse. The roof-top height matching and form adaptation 

were done automatically by the computer. Finally, the ground height was determined by 

selecting one point in one image and an automatically determined corresponding point in 

the other image. The system produced 3D models of buildings in vector format for which 

only four mouse clicks were required.

Caelli, McCabe and Briscoe developed a shape tracking and production system to gen­

erate shape boundaries from image features using Hidden Markov Models [17]. The shape 

boundaries were defined by sequence of states with each a probability distribution of ex­

pected image feature types. In the boundary tracking and generation process, the initial 

model estimates were obtained from observed expert behavior and then updated by the 

Baum-Welch estimation procedure. Following this, a new version of the Viterbi procedure 

was used to determine the degree to which each HMM predicted shape states sequences 

from observed sequence of feature types. Hamming distance between predicted and ob­

served symbol sequences using a MonteCarlo method was used to evaluate the model per-
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formance.

Huguet, Carceroni and Araujo described a solution to the problem of recovering the 

3D structure of an urban area from a set of low-altitude aerial images [65]. To constrain 

and guide the 3D reconstruction, prior knowledge on a large set of architecture scenes were 

used instead of an a priori geometric model of a single building. Homogeneous features, 

such as roofs, walls and pavements of the objects, were used to segment these objects in 

images, using a proposed Colored Watershed method. To build the 3D reconstruction after 

the initial segmentation, a dense elevation map was produced using dense-stereo algorithms. 

The proposed algorithm performed the shape estimates through the use of segmentation and 

stereo techniques from the raw images and buildings. These shape estimates were refined 

in a final, image-driven optimization step.

Significant research has been done on automated cartography by the Digital Mapping 

Laboratory in School of Computer Science at Carnegie Mellon University, including au­

tomated phototexturing from aerial and terrestrial imagery, feature extraction, road extrac­

tion, stereo processing and generalization [92]. For example, the automated phototexturing 

from aerial and terrestrial imagery started with the building of a phototextured model o f the 

CMU campus. The major steps included resecting aerial and terrestrial imagery, building 

extraction, terrain skin generation and texture selection methods. The building extraction 

used a semi-automated multi-image site modelling tool called SiteCity, which was based 

on the GOMS (Goals, Operators, Methods and Selection Rules) HCI principles [62]. Im­

age understanding algorithms were integrated into SITECITY to assist human operators. 

The evaluation showed that semi-automated processes in SITECITY enhanced the overall 

usability of the system and reduced the complexity of manual mensuration of three dimen­

sional building objects.

Shufelt addressed the evaluation of unbiased metrics for qualifying detection and de­

lineation performance, applying these metrics to a representative body of test images, and 

understanding the impact of image and scene content on building extraction systems [121]. 

He evaluated four existing monocular building extraction systems, using image-space and 

object-space based metrics on test images from different sites. The effects of image obliq­

uity and object complexity on system performance, and the effects of edge fragmentation, 

were also analyzed. Even given such efforts, there is to date not a single system that can 

reliably perform building extraction.
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2.3 Summary

In this chapter, we have reviewed related work in semi-automatic image interpretation and 

its application to map revision. The review focused on two major topics, the human- 

computer interaction for image interpretation, and the semi-automatic road recognition and 

building detection. From the review, we can draw several conclusions. First, the semi­

automatic method is a practical way to address the lack of robustness in image interpre­

tation. Second, research in human-computer interactions for image interpretation is still 

limited, especially in modelling the user action and developing interactions. The former 

answers the question what we can do, and the later tells us how we can do. Third, current 

research achievements in automatic methods provide us with many choices when a semi­

automatic method is exploited. These choices form the basis of our study and what we need 

to do to combine selected methods with human-computer interactions.
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Chapter 3

HCI Framework for Image 
Interpretation

3.1 The Framework

The aim of this thesis is to build an HCI framework for cartographic map revision, which 

uses image interpretation methods as the revision approach. We first discuss a general 

HCI framework for image interpretation systems and then apply it to semi-automatic map 

revision.

Most image interpretation research is aimed at replacing humans in performing percep­

tual tasks. We noticed that very few automatic or semi-automatic approaches have been 

used in map revision or remote sensing systems. Although some GIS system provides 

tools for automating tasks to a certain degree, these tools are restricted to post editing of 

acquired data. Classic semi-automatic systems developed in universities or labs allow a hu­

man to initiate the image interpretation tasks by inputting initial features, but then proceed 

with little or no HCI [64, 95, 108, 93, 9, 25]. Unfortunately the accuracy, robustness and 

reliability of such approaches are far behind real-world requirements. What is required is 

more dynamic on-line interactions between image interpretation routines and human opera­

tions. Such systems demand integration of several components, namely a human-computer 

interface, user modelling, image interpretation models, knowledge transfer schemes, and 

performance evaluation. As Barnard et al. pointed out [7], developing a general HCI the­

ory is difficult because there are too many types of users, computers and applications. The 

same applies to the development of a general HCI framework for image interpretation sys­

tems. However, we believe that any successful system should at least consist of all the five 

components above, interacting in the way shown in Figure 3.1.

Within this framework, human operators generate inputs through the human computer
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Figure 3.1: An HCI framework for image interpretation systems.

interface. The inputs can be used for multiple purposes as summarized in Section 2.1.2. 

Before any automatic image interpretation methods are developed, analysis of complete 

manual image interpretation can help understanding the difficulties in the interpretation 

tasks. This requires modelling of the human behavior in the system. Besides computational 

analysis, user modelling can also be performed by heuristic usability analysis, including 

questionnaires, user surveys, and direct monitoring of human behavior. With the acquired 

user model, we can replace human with image interpretation models in simple tasks. The 

direct development of a robust model is difficult, even though offline training may be avail­

able. An advantage of this human-computer interaction framework is that the update of 

image interpretation models can be performed under the guidance of a human. Human 

knowledge can be transferred to the computer through a knowledge database or through 

online machine learning. The control of the system and the knowledge transfer is achieved 

by the performance evaluation and through the human-computer interface.

3.2 Human-computer Interface

The choice of the interface has a significant effect on what can be attained. When a key­

board is used, human input can be given as parameters or labels, and thus can affect the 

image interpretation models directly. When a mouse and other input devices are used, the
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inputs should be analyzed and transformed into parameters for automatic models. In more 

complex input interfaces, such as gestures and speech recognition, systems must be devel­

oped to interpret the user’s intention.

Within the user interface, two tasks should be performed. First, the human inputs should 

be tracked and recorded. This is the syntactic level of input analysis. Second, the recorded 

inputs should be interpreted into actions, so that the computer can understand what the user 

is doing. This is the semantic level of input analysis. Both tasks are non-trivial. Due to a 

lack of understanding of the software mechanism and unavailability of the source codes and 

packages, it may be hard to record user actions. Although researchers can work with small 

applications or try to build simulation systems by developing simple interfaces for human 

computer interaction, the user action data collected in these simplified human-in-the-loop 

systems is very restricted compared to the complex human behavior in an unconstrained real 

world. Even when the actions can be acquired, further understanding of human intentions 

requires complex analysis and modelling.

Another issue to be considered is the way users interact with the system. An interface 

that is difficult to learn and to use can deeply affect user performance, and in turn, can affect 

the overall performance of the semi-automatic system. Thus, usability evaluation should be 

considered in developing an interface.

3.3 User Modelling

Modelling user behavior provides quantitative information for computers to learn about 

human actions and how specific computational image interpretation procedures can replace 

humans [115].

By monitoring the process in human image interpretation (detection) and annotating 

the interpretation results (production), we can get statistical data on the types of tasks that 

take a human more effort to finish. Then we can study whether and how these tasks can be 

automated. Such monitoring can be performed by direct observation of human behavior by 

an expert or by analyzing recorded human inputs in a software system.

User modelling can also help to determine how humans perform the tasks and to predict 

user actions. We need to find out the interconnections between image features and human 

actions. We also need to analyze the relationship between individual actions in an action 

sequence. Such modelling helps the development of robust computational algorithms and 

user friendly systems.
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3.4 Image Interpretation Models

Image interpretation models perform the perceptual tasks to replace human. Normally, com­

plete image interpretation models include algorithms for preprocessing, feature extraction, 

object recognition and classification.

The purpose of developing an interactive system is not do explore new image interpreta­

tion models. Instead, we have to find out how the existing models can fit into the interaction 

process. Choices need to be made to select from a number of current models for the design 

of a system. On the one hand, good computational models are not necessarily suitable for 

human-computer interactions because they may not require human involvement or may not 

suitable for the designed interactions. On the other hand, some models may not be robust 

at the beginning, but can evolve progressively with human guidance.

3.5 Knowledge Transfer Schemes

In the human-to-computer knowledge transfer, both static and dynamic knowledge is rele­

vant. Static knowledge reflects conceptual information about specific tasks. It typically de­

fines the types of image interpretation algorithms to be used. It also guides the selection and 

extraction of features, such as color, shape, texture, color layout and segmentation [117]. 

Dynamic knowledge reflects the diversity of the real world. When applied to image inter­

pretation applications, it indicates feature changes, the main reason why most automatic 

systems fail. Dynamic knowledge can be transferred to the computer through knowledge 

database construction and online learning.

A knowledge database contains information on the specific tasks that are to be per­

formed. The information includes the cognitive model how humans perceive an image 

feature and general knowledge on how the feature should be used. For example, in an 

aerial image, roads should be long, smooth, continuous, and homogenous. This knowledge 

forms the basis of the prior probabilities used in the machine learning routines of each task. 

These priors are recursively updated by the results of the image interpretation algorithms 

and the actions of the human operator. These updates form a lower level of knowledge rep­

resentation in a knowledge database, including low-level image feature representation and 

knowledge accumulation.

Combining user modelling, image interpretation models and the knowledge transfer 

schemes, it is possible to develop user adapted systems. Specifically, we can decide what 

functions are to be served by the adaptation, what properties of the user should be modelled,
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what methods should be employed to infer user goals, and how the system should behave 

adaptively, and so on [68].

3.6 Performance Evaluation

Performance evaluation has two levels, the system level and the internal level. At the sys­

tem level, the evaluation can be made according to the criteria introduced in 2.1.3. At the 

internal level, the performance evaluation is a two way process through HCI, the computer 

side and human side. On the computer side, the evaluation of human inputs enables the 

image interpretation system to eliminate noise from human inputs and decide whether to 

accept or reject the inputs. The computer also evaluates its own performance and allows 

the human-in-the-loop to gain control over the whole process. On the human side, when 

control has been given up by the computer, the human evaluates the situation and decides 

the next step the system should take.
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Chapter 4

Applying the HCI Framework to 
Map Revision

Map revision is traditionally a manual task, especially when maps are updated on the basis 

of aerial images and existing map data. This is a time consuming and expensive task. For 

this reason, maps are typically out of date. For example, it has been reported that, for 

a number of reasons, the revision lag-time for topographic maps from the United States 

Geological Survey (USGS) is over 23 years [45],

We applied our HCI framework to the application of map revision. In this chapter, we 

first review the current status of topographic map revision. Then we report the interface 

analysis in the software environment for the USGS map revision program.

4.1 Status of Topographic Map Revision

The USGS is the major federal agency in the United States for the collection and distribution 

of digital cartographic data. A similar role is played by the Earth Science Sector of Natural 

Resources Canada (NRCan).

4.1.1 USGS Map Revision Program

The primary product of the USGS National Mapping Program is the 1:24,000, 7.5-minute 

topographic quadrangle series, which is the only uniform map series that covers the entire 

area of the continental United States in considerable detail [96]. This map series includes 

about 53,000 map sheets, the building of which lasted from the mid-1940’s to the early 

1990’s.

The revision of this map series started from the beginning of the program. From the 

mid-1960’s, the revision number became significant. To keep the primary series map cur-
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rent, the USGS began a revision plan in 1992 based on user requirements, available re­

sources and funding. For example, maps that are demanded most are given priority in the 

revision work.

To speed up the revision process, stereophotos without field verification are used to 

collect new features. However, the revision speed is lagging far behind the requirements. 

In 2000, the median map date for the series was 1979, which means that their median age 

was over 20 years. In order to keep the current age of maps, at least 1,500 maps should be 

revised every year. Furthermore, the aerial photos and other source materials used for map 

revision are usually 3 to 5 years old, which makes even the latest maps out of date.

Four types of revision are performed in USGS, minor revisions, basic revisions, com­

plete revisions and single-edition revisions. Minor revisions use aerial photos to update 

the few changes since the last revision. Basic revisions use Digital Orthophoto Quadrangle 

(DOQ) and aerial photos to update map features and costs about USD17,000 per quadran­

gle. Complete revisions and contour updates are rarely done because of high costs.

4.1.2 Digital Orthophoto Quadrangle

The data sources for map revision are original maps, recent aerial photos and DOQs, as 

well as information from other sources such as other government agencies. Among them, 

the DOQ is the most critical input because it is positionally more accurate than all other 

sources. Features such as roads and buildings can be directly collected from DOQs. An 

objective of basic revision is to make the revised map match the DOQ.

DOQs are produced from aerial photos taken at a height of 20,000 feet with an approxi­

mate scale of 1:40,000. When digital orthophotos are produced, several inputs are required 

besides the original perspective image, namely digital elevation models, ground coordi­

nates of ground control points, camera calibration information and the user parameter file. 

DOQs can distinguish ground objects of 1 meter size for quarter-quad digital orthophoto 

and of 2 meter size for quadrangle digital photos, which is sufficient for detecting roads and 

buildings.

During the process of map revision, the map of a quadrangle is scanned into a computer 

at 1000dpi and becomes a raster image. This raster image is displayed over the correspond­

ing DOQ on the computer screen and uses the DOQ as the source of revision. The cartog­

raphers then make a visual comparison of the raster image and DOQ. Since the scanned 

features appear on top of the DOQ, feature changes such as shape, size and distance can be 

easily detected.
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4.1.3 Map Revision in Canada

The center for Topographic Information of Natural Resources Canada produces National 

Topographic Systems (NTS). The NTS series provides general-purpose topographic cov­

erage of Canada at the 1:50,000 and 1:250,000 scales. NTS maps depict terrain features 

(landforms and land cover), drainage (lakes, rivers and streams), official boundaries, the 

transportation infrastructure (rail and road networks) and many other man-made features 

(buildings, power lines, pipelines, dams, cut lines, et al.).

Very little revision of NTS map sheets is currently being done. In many cases, the 

revision process is partial, in which only features such as the road network, boundaries, 

and toponymy are revised, along with the addition of metric contours derived from Digital 

Elevation Models. In other cases, a more thorough revision is done using satellite imagery.

The NRCan’s Earth Science Sector is gradually abandoning the revision job of NTS 

because of shortage of budget and personnel. In turn, they began to work on a project 

of GeoBase, which is an initiative of the Canadian Geospatial Data Infrastructure. This 

database will become the source for new map products.

The GeoAccess Division of the Geomatics Sector of NRCan is another provider of the 

geographic data in Canada [49]. Its main product is the National Atlas of Canada, which is 

a multi-themed small-scale map (1:6,000,000). During its revision in 1997, a large amount 

of manual compilation was done because much new information from multiple resources 

was not in database.

4.1.4 Other Map Revision Programs

Most countries have map revision programs although many suffer from the same finding 

and logistic problems identified above.

In the United Kingdom, Ordnance Survey (OS) is the leading agency in providing ge­

ographic data. One of the major products, the OS MasterMap, provides topographic infor­

mation on nine themes representing layers such as land area classification, buildings, roads, 

water, terrain and height, boundaries, and others. This product is created from a master 

database that is updated every six weeks. The updating uses the old database and the latest 

aerial photos as the data source, which requires cartographers to make visual comparison 

of the two, digitize the changes, and to modify the database.

In Finland, the topographic database contains nine data groups, such as transportation 

network, transmission network, terrain, hydrography, elevation and buildings [54], The 

revision of topographic maps uses 1:16,000 or 1:31,000 aerial photos for level A building,
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power lines, fields, water bodies and roads. The aerial photos are scanned using 20 micron 

resolution. Aerial triangulation, digital elevation model editing are then performed. Op­

erators use photo interpretation to determine the changes that happened in the field, new 

objects are added and associated to existing objects, and disappeared objects are deleted.

In China, the State Bureau of Surveying and Mapping (SBSM) finished building the 

National Fundamental Geographic Information System in February 2006. This system in­

clude 1:50,000 topographic maps that cover mainland China, Hongkong, Macau, and Tai­

wan. The update of this database started in June 2006, and will last for 5 years. 19,000 

topographic maps will be updated using 1:10,000 map and remote sensing images as the 

source of revision.

4.2 Human-Computer Interface for Semi-automatic Map Revi­
sion

We use the USGS topographic map revision system as the general platform for our research. 

Current USGS maps are printed on white paper with six colors: black, red, brown, green, 

blue and purple, one for each feature. The revision of this map series is the Raster Graph Re­

vision (RGR) program. The RGR system uses existing film separates as the primary input 

and creates new film separates as the primary output. Cronapaque positives are produced 

photographically from the map separates and are scanned at 1000 dpi as raster images. The 

images, in addition to the DOQs of the area to be mapped, are registered to the control file 

and displayed simultaneously on a computer screen as the source for revision. Cartogra­

phers then make a visual comparison of the raster image and DOQs. When a discrepancy is 

found between a feature on the raster image and the DOQ, cartographers can add to, delete 

from, or modify the raster image to match the DOQ. Figure 4.1 shows the environment of 

the RGR system.

The standard CAD tool for RGR systems is a Bentley Microstation. Bentley I/RAS B 

is used to display and manipulate the scanned map layers, 7A  Imaging I/RAS C is used to 

display the DOQs, USGS RGR software provides CAD tools to draw, delete and modify 

specialized graphic symbols on maps, and MVES converts vectors and points to a symbol­

ized raster format.

To apply the HCI framework to map revision tasks, we have explored a prototype that 

consists of following components: an interface to track and parse human actions in map re­

vision, a model for user behavior patterns to support and automate the map revision process, 

image interpretation algorithms to replace simple subtasks performed by humans such as
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Figure 4.1: Map revision environment in the USGS. Here previous map layers are aligned 
with current digital image data. The icons in the tool bar correspond to operations on 
feature collection and environment setting. The pop-up windows on the upper-right screen 
is an interface to record system-level events.

road section tracking, processes whereby the computer selects and tunes image interpreta­

tion algorithms from its ability to predict human behavior throughout the tracking process, 

and evaluation criteria for purposes of feedback so that the computer can quantitatively 

evaluate human inputs and its own performance. Each of these components is discussed in 

detail in the following sections.

4.2.1 Tracking User Actions

In the Bentley Microstation, users interact with the system using keyboard or mouse. A 

simple drawing operation may be implemented by either clicking a tool icon on the tool bar 

or by entering a key-in command. To facilitate map revision, RGR implemented a set of 

tools for cartographic symbols, each of which encompasses a sequence of key-ins. At the 

system level, the mouse input is also transformed into key-ins. Each key-in is considered an 

event. Events from both inside or outside Microstation are processed by an input handler 

and are sent to a queue, and a task ID is assigned to each event.

With the imbedded Microstation Development Language (MDL) environment, we can
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keep track of the states of the event queue and extract detailed information of each event, 

for example, the task ID, the key-ins, the time, and the coordinate of the mouse clicking, 

and so on. To fully describe an event, we used the following data structure:

event ID ID of the event
event name the key-in command
event type Is it a keyin, coordinate, or reset?
event time the time when the event is captured
event source where does the event come from
x coordinate x coordinate of the mouse clicking
y coordinate y coordinate of the mouse clicking

Table 4.1: Data structure for system-level event

Doing so, we have fully captured and recorded the time-stamped system-level event 

sequence. This sequence contains both inter-action and intra-action information. Then we 

have to parse the sequence into a meaningful higher-level user action sequence. This step 

is similar to natural language processing.

4.2.2 Analyze and Parse User’s Actions

Altogether there are 278 tools in RGR software, each corresponding to a user action. This 

number could be increased when new standard are utilized in USGS. An analysis of all 

these tools is not necessary. First, some tools are used for features that rarely appear or that 

need not to be revised in most cases. Second, some tools relate to the registration of the 

scans and DOQs, environment setting, file input/output, and map plotting. Such task are not 

involved in the feature collection process. Thus, we have made the following assumptions:

•  We are only interested in the actions related to feature collection.

•  All the environment settings have been done before the tracking of user actions.

•  We are performing an offline analysis.

With these assumptions, the number of tools is reduced to 144. Each of these tools is 

composed of a fixed sequence of events.

When doing the revision, a complete action may contains a tool selection and an inter­

vening sequence of coordinate clicks, view changes, as well as one or more reset operations 

which are used to end the coordinate clicks and the action. For each action, the correspond­

ing sequence of events involved in the tool selection is fixed. View changes may happen
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both before and after the coordinate selections. The reset patterns are different across the 

class of actions. In analogy to natural language, a complete action can be viewed as a 

sentence. The tool selection, coordinates clicks, view changes, and reset can be viewed as 

words. Thus, syntactic and semantic information is contained both at the sentence and word 

levels. Depending on the how the specific feature looks and the way that user perform the 

action, the sequence of the sentences and words may be different in each revision task. It 

makes the parsing process a challenging task.

Lexicon

We built a semantic lexicon to store the word information. The lexicon has two parts. The 

first part contains the spelling information of each word. Because each word correspond 

to an identical action, the spelling sequence is the same as the sequence of events in tool 

selection of the action. Table 4.2 shows the spelling information for drawing class 1 road, 

which is a list of events. The spelling information uses the same data structure described in 

Table 4.1. ‘Type” indicates the type of the input, namely the keyin, coordinates, or reset. 

“Keyin” is the actual key-in command. “TaskID” indicates the event source, e.g., where the 

event comes from. “Unparsed” indicates the unparsed component of the key-in that needs 

to be processed by the system. Note that the spelling information does not contain the event 

ID, the event time, and the coordinates, which can only be captured in the drawing process.

The second part is a semantic marker which shows the usage of the action. It contains 

the information like how many coordinate clicks and resets should an action have and the 

meaning of the position of the coordinates in an action given the resets.

Depending on the action usage pattern, we classified the actions into 17 groups. Table

4.3 shows the semantic part of the lexicon.

Parser

A parser was designed according to the syntactic and semantic information of each identical 

action. A scan generator is first applied to the sequence of system-level events. The events 

are grouped into words according to the spelling information of each action. Then, the 

sequence of words is segmented into sequence of sentences, or complete actions, according 

to the syntax in Table 4.4.

The sequence o f actions are arranged into a tree structure shown in Figure 4.2. The root 

of the tree is a project, which is defined as the revision of a map. The task is defined as 

the revision of one ground object, such as a road, a block of buildings, a lake, and so on.
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Project

Action 1 Action 2 ........ Action n ........  Action 1 Action 2 ........  Action n

Figure 4.2: Hierarchy of the action database

The project- and task-levels contain the semantic information of the map revision process 

and can be tagged by human input. Finally, the user actions are stored into an XML format 

database. Table 4.5 shows an example of the human input during road tracking, which is 

extracted from the XML database.

4.3 Conclusion

This chapter has reviewed the current map revision programs, one of which, the USGS 

map revision system, has been introduced in detail as the software environment that we 

are studying. We developed a human-computer interface for tracking and recording human 

action as a time-stamped sequence of events at the system level. These events are parsed 

into an event sequence that is represented in XML format, and stored in a database. This 

is, as far as we know, the first open database on user behavior in real world applications 

involving document processing, feature tracking, or pattern recognition. It is the basis of 

our research in user modeling and semi-automatic image interpretation that are reported in 

the following chapters.
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Type: Command Keyin: DRAFTPAL KEYIN macro 40’solid6
Taskld: DRAFTPAL Unparsed: macro 40’solid6

Type: Command Keyin: MACRO 40’solid6
Taskld: USTN Unparsed: 40’solid6

Type: Unknown Taskld:

Type: Command Keyin: IRASB DGN2RAS MS OFF
Taskld: IRASB Unparsed:

Type: Unknown Taskld: MBE1

Type: Unknown Taskld: MACRO_40’ SOLID

Type: Unknown Taskld:

Type: Command Keyin: IRASB ACTIVE LAYER blackl2.rle
Taskld: IRASB Unparsed: blackl2.rle

Type: Command Keyin: IRASB IRASB refresh dialogs
Taskld: IRASB Unparsed: refresh dialogs

Type: Unknown Taskld: MBE1

Type: Unknown Taskld: MACRO_40’ SOLID

Type: Unknown Taskld:

Type: Command Keyin: PLACE LSTRING POINT
Taskld: USTN Unparsed:

Type: Unknown Taskld: MBE1

Type: Unknown Taskld: MACRO_40’SOLID

Type: Command Keyin: MDL UNLOAD inputMon
Taskld: USTN Unparsed: inputMon

Table 4.2: Spelling information for class 1 road
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Group Number of Coordinates 1st reset 2nd reset
GO n  =  0 N N
G1 n  =  1 Y N
G1 n  =  2 Y N
G1 n  =  3 Y N
G4 n  >  1 Y N
G5 n  >  2 and n  >  1 R Y
G6 n  >  2 N N
G7 n  > 2 or N  =  1 R Y
G8 n  = 2 R Y
G9 n  — 1 or n  =  2 R Y

G10 n  >  1 R Y
G il n  > 2 Y N
VI n  = 2 Y N
V2 n  — 1 or n  =  1 Y N
V3 n  =  0 N N
R

CO
n  =  0 
N/A

N/A
N/A N/A

Table 4.3: Semantic lexicon. The first column is the group number. The second column 
is the number of coordinates contained in an action. The third column is whether a reset 
operation is required to end an action. ’Y’ means yes, but can be omitted; ’N ’ means no; 
and ’R ’ mean required. The fourth column is whether a second reset operation is required. 
G1 to G 11 are drawing action and drawing setting operations. VI to V3 are viewing change 
operations. R is the reset operation itself. And CO is the coordinates of the action.
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s GO | G l+ S l | G2+S2 | G3+S3 | G4+S4 | 
G5+S5 | G6+S6 | G7+S7 | G8+S8 | G9+S9 | 
G10+S10 | G l l+ S l l  | R | CO | V

SI - ► I+F
S2 I+I
S3 - ► S2+S1
S4 -> T+F
S5 S6+R+S2+F
S6 - ► I+T
S7 -> S6+R | SI
S8 S2+S4
S9 -> S2+F | SI
S10 S2+M+R+F
S l l ->■ S6+F
T -> S2+M
M - ► M+I | e
I -> VI+CO
VI -► VI+V I e
CO -*• CO | e
F -> R | e
V - Vl+CO+CO+F |V2+C+F | V3

Table 4.4: Grammar for parsing the system-level events

X y time
6982738
6983315
6983911
6984388
6984866
6985174
6985552
6986148
6986278
6986397
6986476
6986516

55013871
55013274
55012498
55011862
55011115
55010514
55009569
55007798
55007267
55006341
55005128
55004839

06:25:2005:12:25:37
06:25:2005:12:25:39
06:25:2005:12:25:41
06:25:2005:12:25:44
06:25:2005:12:25:45
06:25:2005:12:25:53
06:25:2005:12:25:55
06:25:2005:12:25:58
06:25:2005:12:26:05
06:25:2005:12:26:07
06:25:2005:12:26:11
06:25:2005:12:26:13

Table 4.5: Human input on road centerline during manual road tracking. It includes the x 
and y coordinates of the mouse clicks on the revision platform and the time of the clicks.
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Chapter 5

User Modelling in Map Revision *

5.1 Introduction

The purpose of computer aided map revision is to improve both the speed and accuracy 

of the map revision, as well as to release humans from this tedious process. One solution 

to the tasks is to reduce human involvement in the feature collection and map drawing, by 

automatic feature tracking based on computational image interpretation. Until now, all re­

search efforts in image interpretation fall in this area. However, the efficiency and accuracy 

of the image interpretation models are not necessarily consistent with human performance, 

suggesting that humans should be part of the feature tracking process. The human behavior 

pattern can be modelled to guide the automatic systems and to optimize the image interpre­

tation models, for example by reducing the search space. Further, the computer can attempt 

to predict human intention and react accordingly. However, humans too are not always ac­

curate. Consequently we envisage a tightly coupled, real-time, error-correcting interaction 

between human and machine in order to make map revision more efficient. To implement 

this we need to better understand these interactions.

Successful user modelling has been performed in several applications. Researchers at 

Microsoft Research reported their study of Bayesian user modelling for interring the goals 

and needs of software users in the Lumiere project [60]. In this project, a special version 

of Excel was created to capture the mouse and keyboard actions as well as the status of data 

structure in Excel files. Using a specially developed language, these atomic events were 

transformed into variables and fed into the Bayesian models for temporal reasoning about 

the user actions.

Another project was reported on building a user support system by action-sequence

*A version of this chapter has been published in the Proceedings of the 10th International Workshop on 
Structural and Syntactic Pattern Recognition, pp. 287-295, Lisbon, Portugal, August 18-20 2004.
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based user modeling [30]. This research has been integrated with two commercial software 

products. The user interactions with the software systems were captured and used to update 

the stored user knowledge in a global and a local model. The global model calculated the 

user’s overall application system knowledge, while the local model calculated the user’s 

expertise related to the specific tasks. Then the system provided the user with support 

according to the knowledge level.

Other work includes the mouse trajectory prediction system by Murata [100], the ac­

tion sequence based user modelling system by Encamacao and Stoev [30], the user action 

reasoning system by Virvou and Kabassi [132], the visual estimation model by Healey et 

al. [51], and the human attention modelling research by Horvitz et al. [61].

All these systems are not open environments. Thus, they cannot provide other re­

searchers a platform and database for future study. Further, the user modelling presented in 

the above work are not in semi-automatic image interpretation. In the following sections, 

we introduce our work on user modelling in the USGS map revision environment in which 

user actions can be captured using open-source libraries. The user modelling is closely 

coupled with the image features in the aerial imagery.

5.2 Predicting Human Gaze with Hidden Markov Models

One way to reduce the human workload in map revision is to reduce drawing actions and 

view change actions. This can be achieved by predicting when humans are likely to change 

the view displayed on the screen, and what new view is likely to be selected. This allows 

the target image area to be prefetched and a view change to be performed automatically. It 

requires the modelling of the interconnection between human attention and actions. To do 

so one can use Markov model or Hidden Markov Models (HMMs) [113].

5.2.1 Hidden Markov Models

A hidden Markov model [113] is a finite set of states, X  =  { x \ , X 2 , ■ ■ ■, x ^ } ,  where N  is

the number of states. The state at time t  is defined as x t . Each state is associated with an

initial probability

TXi =  P[xx =  Xi] (5.1)

Thus, 7T =  {7Tj} defines the initial state distribution. The state transitions are governed by 

transition probability distribution A  =  {a ,.,} such that

aij =  P ( x t+ i =  Xj |xf =  Xi) (5.2)
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At any given time t, an HMM can output observation zt from a finite set of observa­

tions, Z =  { z i ,Z 2 , ■ ■ ■, zm} ,  where M  is the number of distinct observations. The state- 

conditional observation probability distribution is B  =  {bi(k)},  such that

bi(k) = P ( z t =  zk |x t =  Xi) (5.3)

Using A, B ,  77, M  and N ,  we can define an HMM as

\  = (A ,B , iv )  (5.4)

Given an observation sequence z i ;j =  {z t , i =  1 , . . . ,  the state sequence x i :* =

(x j, i =  1, . . . , £}  is hidden, and only can be observed through a set of stochastic processes

that produce the observation sequence. In general, there are three problems associated with 

HMMs [113]:

1. Find P ( z i :t|A), the probability of the observation sequence given the model.

2. Find the most likely state sequence given z\-t and A.

3. Adjust A to maximize P(zi.t|A ).

Problems 1 and 2 are typically solved by Viterbi algorithm [133]. Problem 3 can be 

solved by Baum-Welch algorithm [113], a form of EM (Expectation-Maximization) algo­

rithm.

Forward and Backward Operators

The Viterbi algorithm is a dynamic programming algorithm, in which a forward operator 

and a backward operator are used.

In the forward operator, the forward variable a t (i ) is defined as

a t{i) — P ( z i:t,X( =  Xj|A) (5.5)

a t (i) can be solved using the iterative method in Algorithm 1.

In the backward operator, the backward variable /3t (i) is defined as

Pt(i) =  P (z t+ i:r |x t  =  Xi, A) (5.6)

/3t (i) can be solved in the same manner as a t (i), however, in the reverse order, as shown 

in Algorithm 2.
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Algorithm 1 Forward Operator
Input: The observation sequence z-i -t , the HMM A. 
Initialize:

ot\{i) = TTibi{zi) 1 <  i < N

for t  =  1 to T  — 1 do

at+i(J) =

end for 
O utput:

N

.2 = 1

(5.7)

(5.8)

N
P(zi:T\X) =  y t arji) (5.9)

i=l

Algorithm  2 Backward Operator
Input: The observation sequence z u ,  the HMM A.
Initialize:

p r ( i )  =  1 1 <  i < N  (5.10)

for t  — T  — 1 to 1 do

N

Pt(i) = y < i i jb j ( z t+ \ )p t+ i(j)  1 < i  < N  (5.11)
i = 1

end for 
O utput:

N
P ( z 1:T\\)  = y p l (i) (5.12)

2 = 1
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The Viterbi Algorithm

The purpose of the Viterbi algorithm is to find the most likely state sequence given the 

observation sequence and the HMM model. One solution is to calculate the maximum a 

posteriori (MAP) estimation the state sequence. At time t, we define:

St (i) =  m a x p [x i:t_ i ,x t  =  z ,z i :t|A] (5.13)
X l;4 _ l

The optimal sequence can be extracted using Algorithm 3.

Algorithm 3 Viterbi Algorithm
Input: The observation sequence z i :T, the HMM A. 
Initialize: 

for i =  1 to N  do

<5i(*) =  Ttih{ z i) (5.14)

end for
for t  =  2 to T  do 

for j  — 1 to N  do

=  0 (5.15)

St (j)  =  max[<St_i(i)oy]& j(zt )
I

1 <  i <  N (5.16)

i p t ( j ) =  argmax[«5t_i(i)ay]
i

1 < i < N (5.17)

end for 
end for

p* =  max[&r(i)] 
i

Xy =  argmax[^T(f)]
i

(5.18)

(5.19)

for t =  T  — 1 to 1 do
Reconstructed state sequence

Xi* =  ^t+ i(x*+1) (5.20)

end for
Output: The optimal state sequence x^.T

The Baum-Welch Algorithm

An initial estimation of an HMM can be obtained by randomly initializing the model param­

eters, or using statistics from training data. Given a sequence of observations, it is possible
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to iteratively update the model parameters so that a maximum likelihood estimation of the

HMM, P ( z i :t|A), is obtained. The iterations in Baum-Welch algorithm [113] include two

steps, calculating a re-estimated model, and substituting old parameters.

For the first step, we need to define the probability of being in state x % at time t, and 

transit to state Xj  at time t  +  1, given A and z ^ :

&(*, j )  = P (x t =  X j,x<+1 =  X j \ z 1 : T , \ )  (5.21)

Using the forward and backward variables defined in the previous section, this proba­

bility can be computed as:

e<(. = o ,(oa ^ ( ^ . ) A f l o ) (522)
” (Zl:T|A)

Defining the probability of being in state X i  at time t, given A and z \-t ,

7*(») =  £ & (* >  j )  (5-23)
j

T —l
we can calculate the expected number of transitions from x^ as 7 *(*)> and the expected

t=l
T - 1

number of transition from x\ to Xj as Y1 £ t(h j)-  using these expectations, an HMM can
t=t

be re-estimated using the following formula:

tfi =  7 t (i) (5.24)

T - 1
E

=  T Z I   (5-25)
E  71(0
t=i

E  7*0)

&i(fc) =    (5-26)

E  7*0)
t=l

Then we can update the HMM using Algorithm 4.

Performance Evaluation

Depending on the application of HMMs, different evaluation criteria can be used, for exam­

ple, the correct recognition rate in speech or optical character recognition, or the number of 

correct predictions of protein-coding regions in genome sequences processing. The evalua­

tion method used in this thesis was proposed by Caelli et al. [17]. A trained HMM is used
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Algorithm 4 Update old HMM model
Input: The HMM A =  A, B , n. 

repeat
Compute 7fj, a\j and b j ( k )  using equations 5.24 to 5.26 
Define re-estimated model as A =  (A, B ,  ir) 
set A to be A 

until A converges 
O utput: updated model A

as an observation generator, then the generated observation sequences are compared to the 

true observation sequence.

The observation sequences generation is performed by randomly selecting states, state 

transitions, and observations, according to the model parameters, using Monte Carlo method. 

Hamming distances between the generated sequences and the true observation are com­

puted, with a mean and a standard deviation of the distances obtained. These measures 

assess the trained HMM on the likelihood that an observation sequence would match pre­

dictions. Specifically, a Hamming distance d between a generated sequence g i :r ,  and a true 

observation sequence is calculated as:

E  $(gi>Zi)
d( Sl : T,  Z l:T ) =  — —^ -------  (5.21)

where

< « « • ■ * > - { £  <5 -28>

5.2.2 Human Gaze Prediction

Along with the parsed human action sequences, we can record the sequence of viewing 

locations (“gaze”). We have performed several experiments with HMMs in order to study 

such viewing patterns. The states in the HMM were defined as groups of actions where 

the groups were defined syntactically and semantically. The syntactic groups were the 

17 groups (17 states) defined in Section 4.2.2, and the semantic groups were obtained by 

clustering actions based on their functions as used in the RGR system, such as, for example, 

a group of actions for drawing transportation symbols or water body symbols. In the sematic 

case, the actions were divided into 6  groups ( 6  states). The observations were calculated 

from the movements of the mouse. These movements were classified into either 9 (45° 

step) or 17 (22.5° step) directions, with one direction in each group being used for the 

no-movement case, as shown in Figure 5.1.
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Figure 5.1: The directions of observation. Left graph shows 8 directions of gaze change. 
Right graph shows 16 directions of gaze change. When both are added with no change case, 
they correspond to 9 and 17 observations in an HMM.

Two participants were required to perform three drawing tasks twice, one for training 

and another for testing. The tasks involved the modification of roads, buildings, water bod­

ies, etc.. The average time taken to finish each task was 46 minutes. Altogether 34644 

system-level events with time-stamps were captured and 9025 of these events were coor­

dinate moves (changes in gaze). These events were parsed into 2157 actions. Each task 

sequence contained 180 actions on average. These task sequences were further divided into 

shorter sequences with 2 actions each. Finally, we obtained 560 training sequences and 540 

test sequences sampled at 1-second intervals, with an average length of 27 observations in 

each sequence.

With the given number of states and observations, the degrees to which each observation 

sequence could be predicted from the trained and untrained models was determined by the 

degree to which the HMM could reproduce the movements over a number of Monte Carlo 

trials. The results of these experiments are shown in Table 5.1.

The numbers in Table 5.1 refer to the average probabilities of correctly predicting the 

observation sequences, given the model and the Viterbi MAP solution, over 100 Monte 

Carlo trials. This reduces to sampling from the state-dependent observation vectors, given 

the Viterbi-predicted state for each observation value. Three models were tested, and each 

model was estimated by first obtaining initial estimates from the training sequences as all 

observations were automatically labeled (states known). The model was then updated using 

the Baum-Welch algorithm. We also tested a two-state model in which the states were either 

system setting actions or drawing actions. The results show that in each state-observation
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Training 1 Training2 Testing 1 Testing2 Chance
17S 170 0.72 0.63 0.61 0.63 0.06
6 S 9 0 0.72 0.63 0.61 0.63 0 .1 1

2S 9 0 0.79 0.69 0.67 0.69 0 .1 1

Table 5.1: The results of predicting next viewing change as a function of different number 
of states (S) and observations (O) for two training sets and two test sets. Values correspond 
to probabilities of correctly predicting the observation sequences given the model and the 
Viterbi MAP solutions. The right column shows chance performance levels. Average length 
of the observation sequences was 27.

combination, the probabilities of correctly predicting the observation sequences, given the 

models and Viterbi solutions, were significantly above chance (last column of Table 5.1). 

These results are quite informative given the lengths of the sequences (27 on average) and 

prediction rates significantly above chance.

In real applications, however, predictions of viewing changes need to be much more 

accurate. Further, complete viewing prediction requires not only a direction, but also an 

exact location on the map. This suggests that a simple analysis of the user actions is not 

sufficient. A better prediction model should involve the recognition of features from image 

and maps.

Current research on semi-automatic or fully automatic road tracking systems can be 

combined into the above model in order to provide support for complete viewing prediction 

and automatic tracking of roads. In automatic road tracking systems, the road seeds are 

found by the system, without the need to pre-select points along the road [34]. It is nor­

mally difficult to extend these automatic methods in a robust and efficient manner to very 

large images, such as the DOQs of this project [40]. Our viewing prediction results provide 

the possibility of reducing the search area in a large image to relatively small areas in the 

predicted directions, so as to generate a semi-automatic road tracker. The size of the pre­

dicted area can be decided by calculating the average length of the human viewing change 

steps. In the next subsection, we introduce a simple semi-automatic road tracking system 

based on the assumption that a small target area has been extracted. Then we compare the 

performance of human and computer in road tracking.
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5.3 Comparing the Performance of Human and Computer Vision- 
based Road Tracking

In semi-automatic systems, it is assumed that the human can perform tasks correctly and 

precisely. Further, what the computer determines as “incorrect” is unclear and subject to 

error. This is not necessarily the case. To analyze this, we developed a simple road tracker 

and compared its performance with that of humans.

A road segment is determined by two consecutive coordinates (mouse clicks), the axis 

joining the coordinates defines the human detected road. To compare this axis with that 

detected by computer, we cropped the neighborhood image of this road segment from the 

DOQ to reduce the search area (the size of a DOQ is more than 2MB) and then performed 

Canny edge detection [18]. As a result, points at maxima of gradient magnitude in the 

gradient direction were marked as edges, which may include both road and non-road edges, 

such as contour of cars. This edge operator was used because both straight and curved 

roadsides can be detected. Abrupt greylevel changes caused by surface material changes 

can also be detected and do not affect the extraction of candidate road edge points. Figure 

5.2(a) and 5.2(b) show an example of the cropped image and the image after Canny edge 

detection.

(a) (to (c)

Figure 5.2: (a) Cropped image from DOQ. (b) Human input (white blocks) and edges de­
tected by Canny edge operator, (c) Axis detected by computer.

For each point on the axis defined by the human operator, we constructed a line perpen­

dicular to the axis and determined the intersection points to the edges. These points were 

the candidates of the roadside. To reduce the influence of disturbances on the road, like cars 

and shadows, points on the edges with short length were removed from the candidate list. 

If two or more candidates were found, the road width limits defined by USGS were used 

as the upper and lower bounds of the distances between roadsides [128]. The two closest 

intersections to the axis detected by human that also met the width limit, were selected as 

the roadsides corresponding to the axis point. The connection of the mid-points of these
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intersection pairs formed the axis detected by the computer. Figure 5.2(c) shows the result 

of Canny-edge axis detection of the image in Figure 5.2(a).

Two kinds of errors occurred during Canny-edge axis detection. One kind was caused 

by deficiencies in the Canny edge detection: when the road and the background had similar 

greylevels, the Canny operator failed to mark the road edges. To reduce this error, the 

roadsides were predicted by fitting a parabola to the most recent road points, as described 

in [93]. This error can also be avoided by detecting weak edges from gradient images using 

distance limits [138]. Another type of error came from disturbances on the road that had 

not been removed. Some of them were connected with the roadsides, which made the road 

appear thinner than the lower bound of the road width limit. Consequently, correct road 

side candidates could not be selected by the system. This kind of error could be avoided by 

jumping to the next axis point along the road.

10
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road angle change

Figure 5.3: Distances of road axis versus road angle changes in the training sets.

To compare human and computer performance, the mean distance of the axis detected 

by computer and by human was calculated. Figure 5.3 shows the distribution of the dis­

tances versus road angle changes on the two training sets described in Section 5.2. The 

road angle change was obtained from the angle between two consecutive axes detected by 

human. We expected that the distances between the axes would increase along with the road 

angle changes, but the results show that there is no relationship between the two. In most 

cases, the distances between the axes were less than 4 pixels despite the change of road an­

gles. It is within the tolerance of positional accuracy defined by USGS (maximum 6  pixels, 

average 3 pixels) [129], In the cases where the distances were too large to be acceptable, an 

analysis showed that although most errors were caused by the deficiency of the Canny-edge 

axis detection, some were caused by the human inaccuracy of in georeferencing ground 

object in DOQ with a map feature. The human input may lie much closer to one roadside,
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or even falls outside of the road. In these cases, the road tracking system may not select the 

correct roadside candidates. An example of this deviation is shown in Figure 5.4.

(al (bl (cl

Figure 5.4: (a) Cropped image from DOQ. (b) Human input and edges detected by Canny 
edge operator, (c) The white blocks at the end of the road are the input from human. The 
small white dots show the axis detected by computer. Because the human input road end 
points are shifted from the true centers, the computer can not detect all the axis points 
correctly.

5.4 Conclusion

We need to model user actions in order to develop semi-automatic image interpretation 

system for map revision. In this chapter, two experiments based on the user modeling were 

reported on predicting human viewing changes and on comparison of the performances of 

human and computer in road tracking. It is clear from these studies that in order to build 

a human-machine system capable of improving human performance, we need more tightly 

coupled interactions between human and machine.
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Chapter 6

Extracting Lines in Noisy Image 
Using Directional Information *

As we have discussed in Chapter 3, automatic image interpretation models are an important 

part of our human-computer interaction framework. A robust computational model can 

improve the utility of a system and the efficiency of the human-computer interactions. Thus, 

there is always a need for better models.

Line extraction is one of the major methods used for road detection. Having been 

performed for many years, it is still a hot topic in the image processing and computer vision 

research. One of the problems to solve in this topic is to extract linear features in noisy 

images. An application example is shown in Figure 6.1. There are two kinds of roads in 

this image: the wide, white one is a road for major traffic, while the thin, fuzzy lines are 

trails for oil and gas exploration. The trails are normally straight. The detection of these 

trails is very important for forest preservation and oil exploration planning, but the noisy 

background of a forest makes this task difficult. In this chapter, we introduce a linear feature 

extraction algorithm to tackle this problem.

6.1 Introduction

Line detection is a fundamental task in computer vision. The Hough transform is the best

known method for detecting lines [6 6 , 81]. Usually, the Hough transform starts with edge

detection based on the local differential properties of the image. Then the edge map is

transformed from image space into parameter space, where collinear points in the image

space correspond to peaks in the parameter space. Candidate points for line segments in

the image space can be restored from these peaks. Analyzing and grouping these candidate

*A version of this chapter will appear in the Proceedings of the 18th International Conference on Pattern 
Recognition, Hong Kong, China, August 20-24 2006.
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points generates a final set of line segments.

Noise strongly affects line detection in the Hough transform. This is illustrated in the 

example in Figure 6.1(a), where the task is to find the four straight line segments that form 

a rectangle in an aerial photo. First, edge detection in this image is difficult because noise 

cannot be completely removed in the smoothing step. For example, the Canny edge detector 

[18], which often gives the best performance in edge detection, may not find a suitable 

scale to accurately detect and localize edges while efficiently removing the noise when 

the image is smoothed isotropically. This is shown in Figure 6.1(b) in which many edges 

are detected in the background forest area. Second, the noisy edges generate noisy peaks 

in the parameter space. These noisy peaks may be mixed with a butterfly pattern (see 

below) of transformed line segments, leading to the generation of false peaks. It is difficult 

to distinguish true peaks from false peaks, which, in turn, prohibits correct grouping of 

candidate points into true line segments.

Figure 6.1: Line detection in noisy image, (a) An aerial photo of size 250 by 250 pixels 
with lines to be detected in noisy background, (b) The Canny edge detection result on (a).

Several methods have been proposed to solve these problems, such as anisotropic fil­

tering in edge detection [109, 41], peak analysis in Hough transformation [131, 39], and 

grouping of directional features [19].

We propose a new method for effectively solving these problems using directional in­

formation. First, a Gabor filter is applied to the image to compute the dominant local 

orientation at each pixel. Then anisotropic Gaussian filtering is performed before edges are 

detected using the Canny edge detector. In this way, the noisy edges are reduced. Second,
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in the Hough transform, peaks are calculated from the edges and line segments are restored. 

Then a peak selection algorithm based on directional information is used to distinguish true 

line segments from the line segments generated from spurious noisy edges.

6.2 Anisotropic Filtering for Edge Detection

The purpose of anisotropic filtering is to effectively reduce the influence of noise while 

accurately detecting edges. In isotropic filtering, noise is smoothed in the same way in all 

directions. To reduce the side-effect of noise along edges or lines, one can take advantage 

of the directional property of these linear features. This requires fine-tuning the filter in 

the direction of the lines. To obtain the dominant local orientation, we used a Gabor filter. 

Then the image was smoothed anisotropically using the orientation map, followed by edge 

detection using the Canny edge detector.

6.2.1 Estimating Local Orientation

The Gabor filter is a bandpass filter [26]. A 2-D Gabor filter is a Gaussian envelope modu­

lated by a complex sinusoidal carrier. An even-symmetric Gabor filter is given by [59]:

gt {x ,y )  =  exp ( - ( ^ 2  +  ^ 2  ) ) cos( ^ )  C6-1)

where t  defines the wavelength of the Gabor filter, (ax , ay) defines the scale of the Gaussian 

envelope along the x-axis and y-axis respectively.

We may change the orientation of Gabor filter to angle 9, so that

9 t , e { x , y )  = gt (x ' ,y ')  (6 .2 )

where x ' = x  cos 6 +  y  sin 9 and y ' = —x  sin 9 + y  cos 9.

To implement this even-symmetric Gabor filter, we need to determine parameters t, ax , 

oy, and 9. t is a parameter related to the edge frequency, and was set to 5, while ax, ay 

were both set to 3. The orientations 9 were set to 16 orientations uniformly distributed in 

[0,7r). The input image was filtered iteratively on these orientations. The final orientation 

map was obtained by using the maximum response for each pixel over all orientations. An 

example of the extracted orientation map of Figure 6.1(a) is shown in Figure 6.2(a). The 

dominant orientation at each pixels is displayed in different greylevels and is used to guide 

the anisotropic filtering of the original image.
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(a) (b)

Figure 6.2: Anisotropic filtering and edge detection, (a) Orientation map from Gabor filter­
ing on figure 6.1(a). (b) Canny edge detection on anisotropically smoothed image.

6.2.2 Anisotropic Filtering

A fast anisotropic Gaussian filter has been proposed by Geusebroek and Smeulders [41]. 

The oriented filter in two dimensions is given by the convolution of two Gaussian filters:

where u = x  cos 9 + y  sin 9 and v  =  —x sin 9 + y  cos 9. Here, 9 is the orientation of the 

anisotropic Gaussian filter, x  and y  are the cartesian coordinates of the image pixels.

To facilitate the computation, the filter is transformed into image coordinates along the 

x-direction and f-direction, as shown in figure 6.3. The transformed filters are:

(6.3)

and

(6.4)

(6.5)

and

(6.6)

where t = x  cos <f> +  y  sin (j). The relationship between ax , and au, av, 9 is:

& U  ®  V (6.7)
\Jcr‘y cos2 9 + sin2 9

(6 .8)
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Figure 6.3: Anisotropic Gaussian filter. 
a l  cos2 0 +  cr2 sin2 0

f  o n  A x  -----  U______________________**.tan  (f) = 7^2------
(<r~ — &%) cos 0 sin 0

(6.9)

In this way, a 2-D anisotropic Gaussian filter can be implemented as a convolution of 

two 1-D Gaussians in the x-direction and ^-direction.

6.2.3 Edge Detection

Edge detection was performed by a Canny edge detector to generate a binary edge map. 

However, in the Gaussian smoothing step, the traditional isotropic smoothing was replaced 

by the anisotropic filtering introduced above. The resulting edge map is shown in figure 

6.2(b). Compared to Figure 6.1(b), the number of noisy edge points was reduced while the 

true edges were preserved. This is due to the fact that noise different from the dominant 

local orientation has been further smoothed out.

6.3 Line Detection using Hough Transform

The Hough transform is performed on an edge map to transform the x  — y  coordinates of 

edge points into p — 0 space. We used the normal parameterization proposed by Duda and 

Hart [27]. A line in an image is given by

p = x  cos 0 + y  sin 0 (6.10)

where p is the distance of the line to the origin, and 0 is the angle between the normal of 

the line and the x —axis, and (x, y) is any point on the line.
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(a) (b)

Figure 6.4: Hough transform and problems, (a) Top 20 Hough peaks detected from image 
6.2(b). (b) Lines (bounded by crosses) correspond to the peaks in (a) using traditional peak 
selection.

In the implementation of the Hough transform, the p — 9 space is normally quantized 

into cells. Assuming that a line is mapped to a peak at point {po, 9q), the collinear points on 

the line generate a pattern in the parameter space that is often referred to as a butterfly [131]. 

The analysis on the butterfly is supposed to be restricted to a small neighborhood window 

(—Wp/2, Wp/2)  x {—wq/ 2, w e /2) around the peak (po, 6q). The peaks in the neighborhood 

window can then be grouped and removed in a sequential peak selection [145].

One problem of this peak selection and grouping strategy is that noisy edge points may 

generate noisy peaks in the parameter space. For example, Figure 6.4(b) shows the lines 

restored from top 20 peaks in Figure 6.4(a), which was generated by Hough transform from 

Figure 6.2(b). Due to the noisy edge points, most extracted lines were false positive results 

and a true line in the lower-left comer was missing because it did not correspond to the top 

20 peaks. Although we can increase the scale of the anisotropic Gaussian filter to further 

eliminate noise in edge detection, it usually cannot do so completely, and, as a side-effect, 

may also remove correct line points. The noisy peaks thus cannot be excluded without 

further analysis.

6.4 Peak Selection using Directional Information

An analysis of Figure 6.2 reveals that the orientation of line segments is helpful in peak 

selection. This is based on the fact that, in peaks mapped from lines, the collinear edge
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points that contribute to the peaks tend to have the same local orientation, while the noisy 

edge points do not. This directional information, combined with traditional line grouping 

method in Hough transform, can help to distinguish true line segments from noisy ones. In 

this way, the peak selection can be considered as a classification by a decision tree. Each 

node in the decision tree classifies the lines mapped from a peak in the parameter space 

using a certain feature.

We developed the following algorithm for the peak selection using the Hough peaks 

(P ) and the orientation map (O ) as input, and generating true line segments as output:

Algorithm 5 Peak selection for line segment generation.
Peak Selection
Input: The Hough peaks P  =  {pi, ...,pn }, the orientation map O, thresholds f i, £2 , *3 , U 
Initialize: Sort P  according to the intensity, 

for each peak pi do
Restore the contributing edge points EPi
aPi +— average deviation on directions of E P t from O
if aPi >  t i  then

Remove pi and neighborhood peaks from P  {first step} 
else

Group points in EPi  with distance smaller than t? into line segments LSi — 
{Zsj,..., lsm }
LhSi — {7i,..., lm } <—length of the line segments {second step} 
for Each line segment Isj do 

< £3 then 
Remove Isj from L S t {third step} 

end if 
end for
ali <—average length of LSi  
if ali >  then

Add LSi  into output {fourth step} 
end if 

end if 
end for 

Output: Line segments

The first step in the algorithm is the direction judgement which enables the peak sup­

pression and removal of most line segments composed of noisy edge points. The second 

and third step perform the point grouping, which excludes short noisy line segments. The 

last step removes noisy lines which are composed of short line segments that have not been 

successfully eliminated in the previous steps.
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(d) (e) (f)

Figure 6.5: Line (bounded by crosses) detection results, (a) An image sample, (b) Lines 
detected on (a) using proposed method, (c) Lines detected using isotropic filtering, (d) 
Another image sample, (e) Lines detected on (d) using proposed method, (f) Lines detected 
using isotropic filtering.

6.5 Experimental Results

We performed experiments on sub-images extracted from a 7140 * 5940 aerial photo with 

ground resolution of 5 meters. The system went through all the steps described in the 

previous sections. The standard deviations of the anisotropic Gaussian filter were set to 

cr„ =  1 and ou — 3<jv. The parameters of the Hough transform were set to A p  =  1 and 

A 0 =  7t/180. The thresholds in the peak selection and line grouping were set to t \  =  7r/9, 

t 2 =  20, ts =  30 and =  40, respectively. These are empirical values tuned for the target 

images.

The final result for Figure 6.1(a) is shown in Figure 6.5(b). The starting and ending 

points of the lines were marked by crosses. The results show that all target lines were 

detected successfully. Figure 6.5(e) shows another line detection result. Note that a short 

line segment is missing due to the weakness of the edges.

We compared the results of using isotropic and anisotropic filtering. In the former case, 

two noisy lines are detected, as illustrated in Figure 6.5(c). This is due to fact that too

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



many noisy edge points have been detected in Figure 6.1(b). These edge points can not 

be completely removed in the peak selection and thus generate false lines. In the latter 

case, three short lines are missing. This is also caused by the noisy edge points, which 

were removed in the peak selection due to their deviation to the dominant orientation of the 

line. The remaining edge points are not close enough to each other to be grouped into line 

segments.

6.6 Conclusion

This chapter introduced a line detection method based on directional information and Hough 

transform. The directional information is utilized in two stages. First, anisotropic filtering 

is used in the edge detection step. Each pixel in the image is smoothed according to their 

dominant local orientation extracted from an Gabor filter. Second, after the Hough trans­

form, the peak selection and line segments grouping is guided by the same directional 

information. This method can successfully extract lines in noisy images.
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Chapter 7

HCI-based Bayesian Filtering for 
Road Tracking in Aerial Imagery *

7.1 Introduction

Automatic road detection and tracking based on image interpretation has been one approach 

to speeding up the map revision process. It requires knowledge about the road database 

as well as image-related knowledge [24], including the road context, road characteristics, 

previous processing results, rules, and constraints [6]. A problem with such knowledge- 

based systems is that knowledge is pre-defined and fixed, whereas image road features vary 

considerably. The dynamics cannot be completely predicted, and they constitute the main 

source of problems with fully automated systems.

One solution to this problem is to adopt a semi-automatic approach that retains a “the 

human in the loop”, where computer vision algorithms are used to assist humans performing 

these tasks [101,110]. In this approach, dynamic knowledge can be transferred to comput­

ers, not only when necessary, but also to guide the computer. As reviewed in section 2.2, 

we have introduced several semi-automatic road tracking systems. These semi-automatic 

systems allow humans only to initiate the tracking process and/or to perform final editing. 

This makes the road tracking process difficult to control and leaves the combination of hu­

man and computer resources suboptimal. Typically, the tracking process is only guided by 

the most recent human input.

In this chapter, we present an approach that uses a semi-automatic road tracking system 

based on human-computer interaction and Bayesian filtering [4]. It is an application of the 

human-computer interaction framework proposed in Chapter 4. The Bayesian filters are

* A version of this chapter has been published in the Proceedings of the Workshop on Object Extraction for 
3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation, pp. 35-40, 
Vienna, Austria, August 29-30,2005.
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used to estimate the current state of the system, based on past and current observations. 

When the Bayesian filters fail, a human operator observes the reason of the failure and 

initializes another filter. Observation profiles are generated from 2D features of the road 

texture, making the tracker more robust. Optimal profile matches are determined from 

the current state of the Bayesian filters and the multiple observations. The human operator 

interacts with the road tracker, not only at the beginning but throughout the tracking process. 

User input not only sets the initial state of the Bayesian filters but also reflects knowledge 

of road profiles. Consequently, the road tracker is more flexible in dealing with different 

kinds of road situations, including obstructions by vehicles, bridges, road surfaces changes 

and more.

The main contribution of the approach is to propose a general and robust system that 

effectively combines existing technology with task demands and human performance [50]. 

It is a practical solution to applications in remote sensing and image exploitation, where 

many automatic algorithms have been developed, but most of them have been unusable in 

reality [43].

7.2 System Overview

The application for our study is the USGS topographic map revision system introduced in 

Chapter 4. This platform uses the DOQ as the source of revision. An example of a road 

scene in a DOQ is shown in Figure 7.1. In the DOQ production, limited radiometric editing 

has been performed to the source aerial photographs in order to improve the image quality. 

When a DOQ is presented in the map revision system, no further image preprocessing is 

required to make the task easier for the human operator. For this reason, our system has 

been designed to not rely on further image preprocessing.

The task of map road layer revision is one where the principles in section 4 can be 

applied. In this case, the computer is trained to perform road feature tracking as consistent 

with experts as possible.

The road tracking process starts with an initial human input of a road segment, which 

indicates the road centerline. From this input, the computer learns relevant road infor­

mation, such as starting location, direction, width, reference profile, and step size. This 

information is then used to set the initial state model and related parameters of the auto­

matic road tracker. The computer also preprocesses the image to facilitate extraction of 

road features. The extracted features are compared with knowledge learned from the hu-
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Figure 7.1: An image sample of size 663 by 423 pixels extracted from a DOQ.

man operator through profile matching. The computer tracks the road axis points using a 

Bayesian filter. Connecting these points forms the road centerline detected by the computer. 

This centerline can be automatically digitized on the map by calling the tool to draw road 

features. During tracking, the computer continuously updates road knowledge while, at the 

same time, evaluating the tracking results. When it detects a possible tracking problem or a 

tracking failure, it returns control back to the human. The human observes the road changes, 

diagnoses the failure reason and indicates the correct tracking direction by inputting a new 

road segment. The new input enables prompt and reliable correction of the state model of 

the tracker. The new segment can either be input at the current location to resume tracking, 

or it can be input at the location where the tracking error happened. In this way, errors can 

be identified and corrected in real time, without interrupting the tracking process. Figure 

7.2 shows the architecture of the system.

This human-computer interaction determines what knowledge is to be passed between 

human and computer about the relevant road features in the image. This involves more 

formal methods for encoding road features and cartographical actions such as tracing roads, 

road boundaries and their related symbols. This involves defining expert static and dynamic 

knowledge on roads (see Section 4). Some useful static knowledge on roads is described in 

[5,134]:

•  Roads are elongated.
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Human
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Preprocessing

Control
Road Tracker
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Figure 7.2: Block diagram of road tracking system. This system is composed of five com­
ponents. 1. human; 2. computer vision algorithms to process images and track roads; 3. 
an interface to track and parse human actions; 4. a database to store knowledge, and 5. 
evaluation algorithms for feedback purposes, so that the computer can quantitatively evalu­
ate human input and its own performance, and the human can evaluate the performance of 
computer.

•  Road surfaces usually have high contrast with adjacent areas.

•  Road surfaces are smooth and homogenous.

•  Road curvatures have an upper bound.

•  The width of roads is bounded. The upper and lower bounds of the width depend on 

the importance of the road.

•  Roads are connected, networked entities.

Such static knowledge determines what road tracking method can be used. For example, 

the curvature property constrains the types of road position extrapolation methods that can 

be used to predict the road position [93]. The contrast and homogenous properties make it 

possible to use edge detection methods to detect parallel road edges [80, 10].
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Dynamic properties define the expected changes of road features, for example, radio- 

metric changes caused by different road materials, changes in contrast between road sur­

face and adjacent areas caused by road texture, lighting conditions, and weather conditions, 

special properties of crossings, bridges, and ramps, road appearance changes caused by 

background objects such as cars, shadows, trees, and others.

Because dynamic properties cannot be predicted completely, human input is required 

to guide feature extraction and road tracking. We also need to explore alternative ways to 

quantize road features. Instead of traditional one-dimensional road features, we use two- 

dimensional road features that contain more radiometric information and might therefore 

be more robust.

7.3 Exploring The Roles of the Human and Computer in Road 
Tracking

The human operator is at the center of the proposed system. The operator affects the tracker 

in two ways. First, the operator gives the computer a starting location and direction of a road 

by initializing road segments. These inputs are used by the computer to extract reference 

profiles, to detect the road edges, and to estimate the road width. They are also used to 

set the state model of the Bayesian filter for tracking. Whenever the computer fails, the 

operator observes the road changes, diagnoses the failure reason, and indicates the corrected 

tracking direction. The new input enables prompt and reliable correction of the state model 

of the tracker. Second, reference profiles extracted from human inputs are stored, and the 

road tracker gradually accumulates knowledge on these reference profiles. These profiles 

represent different road situations that the tracker has not yet seen. This knowledge passing 

process makes the tracker increasingly robust.

The computer also accumulates knowledge by itself. During the tracking, it continues 

updating the matched reference profiles with the latest tracking results. This enables the 

tracker to adapt to gradual road changes, so that human inputs can be reduced.

The tracker performance is always evaluated in so far as, when there is lack of confi­

dence over several consecutive positions, the system returns control to the human and waits 

for the next input. This evaluation is performed via cross-correlation, where new profiles 

are defined in terms of their lack of correlation with past ones. In this way, knowledge 

redundancy is avoided and the knowledge base does not expand too quickly, thus avoiding 

a reduction in tracking performance.

This intelligent tutor/decision maker and apprentice/assistant architecture provides a
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useful communication path between human operator and the computer. The computer can 

learn quickly from humans, and it can work more and more independently as tracking goes 

on.

7.4 Preprocessing

The preprocessing module consists of three components, image smoothing, road width es­

timation, and extraction of an initial reference-profile.

7.4.1 Smoothing Step

In the smoothing step, the input image is convolved with a 5 x 5 Gaussian filter

-I- ip
G  =  exp( (7.1)

where cr =  \/2  pixels. This filter is used to set the analysis scale and to reduce high- 

frequency noise.

7.4.2 Road Width Estimation

Road width determines whether road profiles can be correctly extracted or not. If an esti­

mated road width is smaller than the truth, road edges will not be completely included in 

the road profile. On the contrary, if the estimation is much larger than the truth, a lot of 

irrelevant information will be included in the road profile. In previous semi-automatic road 

trackers, the road width was typically entered by the human operator [93, 134, 9], whereas 

in our system, the road width is estimated automatically. A road segment is entered by the 

human operator with two consecutive mouse clicks with the axis joining the points defining 

the road center line. We assume that the roadsides are straight and parallel lines on both 

sides of the road axis. Road width can be estimated by calculating the distance between the 

roadsides. Further, knowledge about road characteristics also helps determining road edges 

because road width varies as a function of road class.

To detect the road edges, a method based on gradient profiles has been developed. This 

edge detector first estimates the true upper and lower bound of the road width, with the 

USGS road width definitions serving as a reference [128]. At each axis point a profile is 

extracted perpendicular to the axis. The length of the profile is bounded by the road width 

limits defined by USGS. The gradient of the profile along the profile direction is calculated 

and one point is selected on both sides of the axis point where the largest maximum gradient 

is found. If several equal largest local maxima are found, the first two local maxima are
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used. The distance between the two points is considered the road width at this point. For a 

road axis segment, we obtain a probability density function p (x )

p(xi) — num ber of tim es Xi appears, 1 <  i < n  (7.2)

where Xi is the road width value extracted above, n  depends on the road width limit from 

USGS and the complexity of the road conditions. Because the image resolution is 1 meter, 

Xi correspond to road width of approximate xn meters. Searching for the mode of the 

distribution

p(x*) = a rgm ax  p{xi) 1 < i < n  (7.3)
X

yields a dominant road width that appears most of the time. Then new road bounds are 

calculated using the functions

lb — x* — e and ub =  x* +  e (7.4)

where lb is the new lower bound, ub is the new upper bound, and e =  4 is an empirical 

value that proved to be suitable for our application. Using the new bounds, the edge detector 

determines the new road width at each axis point and computes the average as the final road 

width for profile matching.

Figure 7.3 shows road edges detected by the Canny edge detector [18] and our own 

gradient-based detector. Since the Gaussian filter has already been applied to the image, 

the implementation of the Canny edge detector [18] starts from calculating the x- and y- 

gradient. Then the magnitude and direction of the gradient are calculated at each pixel. To 

perform the non-maximum suppression, we used empirical values 0.1 and 0.3 as low and 

high thresholds to determine the strong edges. Notice that the Canny edge detector does 

not take advantage of the known road direction and the road width limits, multiple edges 

may be detected, which causes trouble in finding the true road edges. Thus, our gradient 

profile based edge detector performs better than the Canny operator, at least in this specific 

application.

The mean value of the estimated road width was 10.8 pixels, with a standard deviation 

of 4.3 pixels. In 93.8% of the cases, the estimated road width varied between 6 to 18 pixels, 

depending on the real road width, the road conditions, and the locations of human inputs. 

The estimation of road width can be affected by several factors. First, pavement markings 

in multi-lane roads, rather than the true road edges, may generate the maximum gradient 

value. In our application, the aerial images had a resolution of 1 meter per pixel. Thus, 

pavement markings were either not wide enough to be displayed or appeared to be less
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(a) (b) (c)

Figure 7.3: Road edge detection results, (a) Cropped image from DOQ with human input 
(white blocks), (b) Result of Canny edge detector: note the presence of multiple road edges,
(c) Result of gradient profile based detector: only one pair of road edges is detected.

salient after the smoothing step. Second, off-road areas and the road can be made of the 

same material, or have the same radiometric properties. For example, both the road and the 

sidewalk could be concrete. In this case, the maximum gradient is not found at the road 

edge. Our gradient based method either takes the first point at both sides of the road axis as 

the road edges, or it takes the edge of sidewalk as the road edge. In both situations, the road 

width is bounded by the limits defined by the USGS, so that it does not deviate far from the 

ground truth.

The reason for estimating the road width automatically was to allow the operator to 

focus on the road axis points and road directions, consistent with the operation of plotting 

roads in real-world map revision systems. However, it should be pointed out that tools with 

manual input are more accurate, though more time consuming, for estimating road widths, 

as used, for example in the ROADMAP system developed by [50].

7.4.3 Profile Extraction

An initial reference profile is extracted as a vector of greylevels from the road segment 

entered by the human operator. Later, new profiles are extracted from new human inputs 

and placed into a profile list for further use.

To improve robustness of the system, we use two-dimensional road features, i.e. in 

addition to searching along a line perpendicular to the road direction, we also search a 

line along the road direction. Profiles are extracted in both directions and combined. The 

parallel profile is useful since greylevel values vary little along the road direction, whereas
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Figure 7.4: Profiles of an road segment. In the left image, two white dots indicates the 
starting and ending points of road segment input by human. The right graphs shows the 
road profiles perpendicular to (upper) and along (lower) the road direction.

this is not the case in off-road areas. Thus the risk of off-road tracking is reduced and, in 

turn, tracking errors are reduced. As will be described later in section 7.5.2, the observation 

profiles are also 2D features. An example of road profile extraction is shown in Figure 7.4 

From each human input, we obtain a profile sequence that contains the road surface 

texture information which may include occluding objects. For a sequence of road profiles 

P  = [pi, P2 j • • • j Pn] > profile extraction proceeds as follows. First, an average profile is 

calculated. Then each profile in the sequence is cross-correlated with the average profile. 

Whenever the correlation coefficient is below a threshold (an empirical value set to 0.8), 

the profile is removed from the sequence. In this way, all axis points are evaluated and road 

profiles extracted from noisy axis points, for example, where cars and trucks are presented, 

are removed. The algorithm iterates through all the profiles until a new profile sequence is 

generated, and the average profile of the new sequence is taken as the final road segment 

profile. The profile extraction algorithm is presented in Algorithm 6.

The effectiveness of this noise removal method is affected by road conditions. When 

occlusions are sparse, the method is quite effective. However, in the case of populated 

roads, e.g. on roads with a traffic jam, or roads under the shadow of trees, noisy reference 

profiles may be generated. In these cases, the performance of the system drops.
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Algorithm 6 Reference profile extraction algorithm
Reference Profile Extraction
Input: A sequence of road profiles P  =  \p\P2 --Pn\

for each pi do
r(pi,p)  <— correlation coefficient of Pi and p  
if r ( p i , p ) is smaller than a threshold then 

P  <- P  - p i  
end if 

end for
E m  __  i=l Pi

** m
Output: p

If we consider the road tracking process as a time series, it can be modelled by a state- 

space approach involving state evolution and noisy measurements. The state evolution of 

the tracking process can be defined as

where x*. is the state vector at time k, v fe is the process noise, and f^ is a function of 

and v fc_ i.

Given an observation sequence zi.*., the tracker recursively estimates x*. using the 

prior probability density function p(xfc|xfc_i) and the posterior probability density func­

tion p(xfc|z1:/c). The relationship between observations and states is defined by

where n*. is the measurement noise.

Depending on the properties of the state evolution, the observations, and the posterior 

density, the tracking problem can be solved with different approaches, such as Kalman 

filters, hidden Markov models, extended Kalman filters and particle filters [70,113,137,4].

7.5.1 State Model

Road axis points are tracked using recursive estimation following [134], who proposed the 

following state model:

7.5 Road Tracking

(7.5)

z fc =  h fc(xfc, n fe) f c e N (7.6)

x

(7.7)
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where x  and y  are the coordinates of road axis points, 6 is the direction of the road, and 

6' is the change in road direction. The state model is updated by the following non-linear 

function

Differences between this simplified process and the true road shape are interpreted as pro­

cess noise v^, whose covariance matrix is Qk-

In Equation (7.8), r  is the interval between time k  — 1 and k, determining the distance 

the road tracker traverses in each step. Initially it is set to the length of the road width and it 

is affected by three parameters. The first parameter is a ’’jump-over” factor corresponding 

to the internal evaluation of the road tracker (see Section 8.4). The second parameter cor­

responds to the prediction scale (see Section 7.5.6). The third parameter corresponds to the 

curvature of the road. When the road curvature is high, a smaller r  is used to avoid off-road 

tracking.

7.5.2 Observation Model

Observations are obtained by matching the reference profiles to the observed profiles, the 

latter being extracted in 2D at the position estimated by the state models. To minimize 

disturbances due to background objects on the road and road surfaces changes, a heuristic 

multiple-observations method is used to search the neighborhood of the estimated points for 

better matches. Euclidean distances between the matching and observed profiles are calcu­

lated, and the position with the minimum distance is selected as the optimal observation in 

an iteration. The observations z*. are thus calculated as

where Sk is a shift from the estimated road axis point and o.k is a small change to the 

estimated road direction.

7.5.3 Extended Kalman Filtering

We have defined a tracking system based on nonlinear state and observation models. Ex­

tended Kalman filtering has been widely used to solve such nonlinear time series [16, 137] 

where the posterior density is assumed to be approximately Gaussian.

%k—l + T C O s(0fc_ i +  t A ^ )

(7.8)

Xk -  sk sin(0k + otk) 
yk +  sk cos(Ok +  a k)

(7.9)
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The tracking task is performed by estimating the optimal state x  at each iteration. First, 

we compute <f>, which contains the coefficients of the linearized time update equations

d fk (x ) | 
dx

The covariance matrix of the predicted state vector becomes

Pk\k-1 =  +  Qk-1- (7.11)

After the state update in Equation 7.8, the extended Kalman filter continues the iteration by 

solving the following measurement update equations:

K k =  Pk\k-i-AT (APk\k- 1A T +  Rk)  1 (7.12)

x k =  i +  K k (z fc -  A $ fcXfc_i) (7.13)

Pklk =  (J -  K kA )P k|fc_! (7.14)

In equation (7.12), A  is the measurement matrix

^ = ( i ? o o ) ’ <7i5>
and R  is the covariance matrix of the measurement noise

r>  _2 (  S in 2(0k) s i n ( 0 k ) c o s ( 0 k ) \
\  s i n ( 0 k) c o s ( 0 k ) c o s 2 (0k ) )  ’

where a 2 is the variance of the shift s  in the observation model. In the measurement update 

step, the Kalman gain is calculated in Equation 7.12. Then the predicted state and its 

covariance matrix are updated in Equations 7.13 and 7.14, respectively.

The initial state of the Extended Kalman filter is set to xq =  [xo yo So 0]r , where xo 

and yo are the coordinates of the end point of the road segment input by human operator,

and 0o indicates the direction of the road segment. Starting from the initial state, the ex­

tended Kalman filter tracks the road axis points iteratively until x  or y are outside the image 

boundaries or a stopping condition has been met.

Vosselman and Knecht suggested that the covariance matrix Qk of the process noise in 

road tracking is mainly determined by the difference between the constant road curvature 

assumption and the actual curvature changes [134]. They set the standard deviation of the 

process noise in 0'k to 1/400 the radius of the road and propagate it to the standard deviation 

of other state variables. We followed this rule in determining the process noise.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.5.4 Particle Filtering

Particle filtering, specifically the CONDENSATION algorithm proposed in [67], has been 

successfully used in modelling non-linear and non-Gaussian processes [4, 123, 82]. The 

filter approximates the posterior density p(xfc|z*;) by the particle set {s fc>wfci * =  i i- i-W }  

in each time step k, where w lk is a weight used to characterize the probability of the particle

4-
Given the particle set {sj,_1, i =  1 , N }  at time k — 1, the iteration k  of the

particle filter can be summarized as follows:

1. Construct cumulative density functions {4 ._x} on the current particle set. Sample N  

particles {x*.-i> j  — 1,..., N }  according to the cumulative density function. The 

sampling of the jth  particle x j . _ 1 is done by generating a uniform random number v? 

on [0,1] and searching for the first particle slk_ 1 with 4-i >  u j -

2. Update each particle by equation (7.8) to generate new particles {x^., j  =  1 ,..., N } .  

In the state update, the road curvature parameter 9' is influenced by a zero mean 

Gaussian random variable with unit variance.

3. Calculate new weights for each particle based on how well they fit the observation 

Zfc. The weights are normalized and are proportional to the likelihood p(zfc|x£). In 

this way, a new particle set {s^, w lk , i =  1 ,..., N }  is constructed.

The estimated state at time k  is then

N

£ ( x fc) =  5 > i  4 -  (7-17)
i=l

In our application, we assume that at each time step, the state of the road tracking is 

supported by a set of particles. The number of particles is set to 20 times the road width 

in pixels, and the initial density of p(xo) is set to a uniform distribution, which means each 

particle has the same initial probability. The particle filter gradually adjusts the weights 

of each particle during the evolution process. We further assume that the observation is 

normally distributed with standard deviation a  =  y/2 so the likelihood of the observation is

1 d?
P(z lx J) «  —f^=~  e x p ( - ^ ) ,  (7.18)V27T(7 2  o*

where dj is the Euclidean distance between the position of particle x J and the observation.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.5.5 Stopping Criteria

A matching profile is extracted from the observation model and cross-correlated with the 

reference profile. If the correlation coefficient exceeds some thresholds (e.g. 0.8 in [134]), 

the observation is accepted; if the coefficient is below the threshold, and some other con­

ditions are met (e.g. a high contrast between the profiles), the observation is rejected. In 

this case, the Bayesian filters make another state update based on the previous state, using a 

larger time interval r ,  so that the estimated position without accepted observation is jumped 

over. When contiguous jumps occur (set to 5 jumps), the Bayesian filter recognizes this as 

a tracking failure and returns control back to the human operator.

The jump-over strategy is particularly useful in dealing with small occlusions on the 

road, for example, when cars and long trucks are present. In these cases, the profile match­

ing will not generate high correlation coefficient at the predicted state. The jump over strat­

egy uses an incremented time interval to skip these road positions, so that a state without 

occlusions can be reached.

In real applications, however, road characteristics are more complex. Cross-correlation 

may not always generate a meaningful profile match, which in turn may lead to errors in the 

tracking process. For example, a constant road profile may generate high coefficient when 

cross-correlated with a profile extracted from an off-road area with constant greylevel. Fur­

thermore, the Bayesian filters may often fail because the predicted position may not contain 

an observation profile that matches the reference profile. For example, when occlusions are 

present on the road, the reference and observation profiles may generate a small correlation 

coefficient, and leading to a rejection of the observation. The system then requires sub­

stantial interactions with the human operator, making the tracking process less efficient and 

quite annoying for the user.

7.5.6 Improving Efficiency

In previous algorithms [134, 9], each time a new reference profile was extracted, the old 

reference profile was discarded. In our system all the reference profiles are retained, and 

the road tracker gradually accumulates knowledge on road conditions. In profile matching, 

the latest profile is given the highest priority. When matching fails, the Bayesian filters 

search the list of reference profiles for a match. To reflect the gradual change of the road 

texture, the reference profile is updated by successful matches using a weighted sum. We 

call this the multiple profiles method.

We developed an algorithm to search for the optimal observation-reference profile com-
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bination. The search space V  = <  X ,  Y, © >  is defined by the current state Xk, where X ,  

Y  and © are bounded by a small neighborhood of x, y  and 9 respectively. The search 

algorithm is described in Algorithm 7.

Algorithm 7 Searching algorithm for the optimal observation-reference profile combination 
Searching Algorithm
Input: A list of reference profiles P  — p i ,P 2 , a list of observation V =

^2) • • • > Vm 
for each Vi €  V  do 

extract profile p ' at vl
c(p'i,pi) <—cross-correlation coefficient of p- and pi 

end for
c* -  m ax(c(p-,p i)) 
if c* >  0.9 then 

update p i 
return v* 

else
for each p\ do

for each pj  6  P, j  /  1 do
c{p'iiPj) cross-correlation coefficient of p\ and pj 

end for 
end for
c* =  m ax(c(p-,pj)) 
if c* >  0.9 then 

p* = pj  corresponding to c* 
switch pi and p* 
return v* 

end if 
end if

Output: the optimal observation v*

In many tasks, humans use multi-scale attention to focus on important features and 

to reduce the influence of distractors [79]. To simulate such behavior, we adopted a step 

prediction scaling strategy to improve the efficiency of road tracking. A prediction scale is 

added to the state update model of the Bayesian filters, contributing to the calculation of the 

time interval r .  The initial prediction scale is set to 1. When a successful match happens the 

scale parameter is incremented by 1. Whenever matching fails the prediction scale is reset 

to 1. In this way, the time interval is adjusted automatically. If the road is long, straight and 

homogenous in surface, the road tracker can predict the next road axis point using a larger 

scale and ignore many details on the road, thus increasing the speed of the tracking process.
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Table 7.1: Statistics on human input
userl user2 user3 user4 user5 user6 user7 user8

total number of inputs 510 415 419 849 419 583 492 484
total time (in seconds) 2765 2784 1050 2481 1558 1966 1576 1552

average number of inputs per task 18.2 15.2 15.0 30.3 15.0 20.8 17.6 17.3
average time per task (in seconds) 98.8 99.4 37.5 88.6 55.6 70.2 56.3 55.4

7.6 Experimental Results

7.6.1 Data Collection and Statistics

Eight students were required to plot roads manually in the USGS map revision environment, 

which displays the old map and the latest DOQ simultaneously on the screen. Plotting was 

performed by selecting tools for specific road classes, followed by mouse clicks on the 

perceived road axis points in the image. Before performing the actual annotation, each user 

was given 30 minutes to understand the road interpretation process as well as operations 

such as file input, road plotting, viewing change, and error correction. They did so by 

working on a real map for the Lake Jackson area in Florida. When they felt confident in 

using the tools and road recognition, they were assigned 28 tasks to plot roads on the map 

for the Marietta area in Florida. The users were told that road plotting should be as accurate 

as possible, i.e. the mouse clicks should be on the true road axis points. Furthermore, 

the road should be smooth, i.e. abmpt changes in directions should be avoided and no 

zigzags should occur. Although professional cartographers would be expected to perform 

such tasks better than the students used here, considering the simplicity of tasks, we believe 

the performance of students was close to that of experts. Indeed all users became familiar 

with the annotation operations in less than 15 minutes.

The plotting tasks included a variety of scenes such as trans-national highways, intra­

state highways and roads for local transportation. Further, these tasks contained different 

road types such as straight roads, curves, ramps, crossings, and bridges. They also included 

various road conditions such as occlusions by vehicles, trees, or shadows.

Both spatial and temporal information on human inputs were recorded and parsed and 

only road tracking inputs were kept. We obtained 8  data sets, each containing 28 sequences 

of road axis coordinates tracked by a user. Table 7.1 shows some statistics on the human 

data, including the total number of inputs, the total time for road annotation, and the average 

time per input. The time for road annotation includes the time that users spent on image 

interpretation, plotting, and error correction. As shown in the evaluation criteria, these were
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all taken into account in the efficiency calculation.

The number of inputs reflects how close the user zoomed in the image. When the im­

age is zoomed in, mouse clicks traverse the same distance on the screen but correspond to 

shorter distances in the image. Thus, the user needs to input more road segments. The av­

erage time per input reflects the time that users require to detect one road axis and annotate 

it.

From the statistics, it is obvious that the users had performed the tasks in different pat­

terns, which influenced the quality of the input. For example, more inputs were recorded 

for user 4 than for the other users. This was because user 4 zoomed the image into more 

detail than the other users. This made it possible to detect road axis locations more accu­

rately in the detailed image. Another example is that of user 3, who spent much less time 

per input than the others. This was either because he was faster at detection than the others, 

or because he performed the annotation with less care.

7.6.2 Evaluation

The proposed system allows us to simulate the human-computer interactions using the 

recorded human data as virtual users. The road trackers interacts with the virtual users 

throughout the semi-automatic tracking process. In a road tracking task, the first two mouse 

clicks in the human data are used to generate a reference road profile. Then the road tracker 

tracks the road automatically until a failure happens. At the location of the failure, a new 

human input can be obtained from the virtual user to initialize a new tracking iteration. This 

process continues until the tracking task is finished. For a set of human data, we can apply 

different automatic tracking models, e.g. the Kalman filtering and particle filtering mod­

els. Finally, we can compare the performance between the simulated semi-automatic road 

tracker and the complete manual tracking for each user. Semi-automatic systems can be 

evaluated in many ways. For a real-world application, it may include user experience eval­

uation, as reported by [50]. Since our system is still in the simulation stage, we focused on 

the engineering aspect of the evaluation where the human factors components are only part 

of the assessment criteria. The criteria used to evaluate this system included the following:

•  Correctness: Were there any tracking errors?

•  Completeness: Were there any missing road segments?

•  Efficiency: How much could tracking save in terms of human input, tracking distance, 

and plotting time?
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Table 7.2: Comparison of road tracking results between particle filters and extended Kalman
filter.

input saving (%) time saving (%) distance saving (%) RMSE (pixels)
extended Kalman filter 71.9 63.7 85.3 1.86
particle filter (average) 72.3 62.0 85.6 1.90

particle filter (best) 79.1 71.6 87.9 2.19

•  Accuracy: How much did tracking deviate from manual inputs?

Correctness and completeness have the highest priority in Cartography. When errors 

occur, the human operator has to search and correct these errors, and this may take longer 

than the time that was initially saved. The same problem can occur if the update on a road 

is incomplete. The most important advantage of the proposed system over fully automatic 

ones is that the human involvement guarantees correctness and completeness of road track­

ing. The human operator always follows and interacts with the road tracker, and whenever 

an error happens, the operator can correct it immediately by initializing a new tracking it­

eration. The tracking process does not stop until the user decides that all roads have been 

recorded.

Consequently, in evaluating efficiency, savings in human inputs, in plotting time and in 

tracking distance have to be considered. The number of human inputs and plotting time are 

related and so reducing the number of human inputs also decreases plotting time. Given an 

average time for a human input, which includes the time for observation, plotting and the 

switching time between the two, we obtain an empirical function for calculating the time 

cost of the road tracker:

tc = tt +  An/,. (7.19)

where t c is the total time cost, U is the tracking time used by road tracker, is the number 

of human inputs required during the tracking, and A is an user-specific variable, which is 

calculated as the average time for an input

total time for user i „
A* = -------------     —-  r 1 <  t <  8 (7.20)

total number of inputs for user i

In real applications, the A should be different, depending on the usability of the human- 

computer interface provided to the user. The savings in tracking distance is defined as the 

percentage of roads tracked by computer. Tracking accuracy is evaluated as the root mean 

square error between the road tracker and human input.
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Figure 7.5: Comparison of tracking performances for the particle filters (PF1 and PF2) 
and the extended Kalman filter (EKF). PF1 shows the average performance of the particle 
filter over 10 Monte Carlo trials. PF2 shows the best performance of the particle filter over 
10 Monte Carlo trials. The performance is evaluated on the saving of number of human 
inputs (upper left graph), the saving of total plotting time (upper right graph), the saving of 
tracking distance (lower left graph), and the accuracy as the root mean square error of the 
tracking results against the human input road axis (lower right graph).

7.6.3 Experimental Results

We compared the performance of the particle filter with the extended Kalman filter. Due to 

the factored sampling involved in the particle filter, the tracker may perform differently for 

each Monte Carlo trial. For this reason we evaluated the particle filter over 10 Monte Carlo 

trials and we report both average and best performance. Table 7.2 shows the performance 

comparison for the road trackers based on particle filtering and extended Kalman filter­

ing. The proposed road tracking system shows substantial efficiency improvement in both 

non-linear filtering algorithms compared to a human doing the tasks alone. More detailed 

performance comparison for each user are shown in Figure 7.5.

In the proposed road tracking application, the system states and observations are sub­

ject to noise from different sources, including those caused by the image generation, dis­

turbances on the road surface, road curvature changes, as well as other unknown sources. 

The nonlinear state evolution process propagates the noise into the state probability density
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function (pdf). For this reason, it is better to construct a non-Gaussian, multi-modal pdf, 

and the extended Kalman filter and the particle filter are two sub-optimal methods to solve 

such systems. The experimental results shows that the performance of the extended Kalman 

filter and the average performance of particle filter are quite similar. Due to the uncertainty 

in the state evolution of particle filters, different pdfs of the states can be approximated in 

different Monte Carlo trials. When the approximation of the state pdf is a better fit to the 

true pdf, the particle filter out-performs the extended Kalman filter. This is why the best 

performance of the particle filter is better than that of the extended Kalman filter. We also 

noticed the compensation on the accuracy in particle filter tracking. This is caused by the 

error correction function of the particle filters, which tolerates more deviations in tracking.

Notice in Table 7.2 that both Bayesian filters provide approximately the same level of 

improvement. This suggests that a combination of both filters may further improve the 

performance of the tracking system. For example, both filters could perform the tracking 

task simultaneously using a two-filter competing strategy. A dynamic programming ap­

proach could be used to coordinate the behavior of the trackers, using the correlation traces 

to decide the optimal tracking path. The correlations could also provide human operators 

with realtime feedback on the “level of confidence” the system has in the prediction step. 

This could assist the human operator in monitoring the tracking and in making a decision 

whether to allow the system to continue tracking.

As can be seen in Figure 7.5, the Kalman and particle filters perform differently for 

different users suggesting that an adaptive, competitive filter selection strategy should be 

included in the complete tracking model.

The performance of the system also reflects the quality of human input. Input quality 

determines how well the template road profiles can be extracted. When an input road axis 

deviates from the true road axis, the corresponding template profile may include off-road 

content perpendicular to the road direction. Moreover, the profile along the road direction 

may no more be constant. Thus, the road tracker may not find a match between observa­

tions and template profiles, which in turn requires more human inputs, reducing the system 

efficiency.

Figure 7.6 shows a comparison of system with and without processing of human input 

during road template profile extraction. The tracking method is Kalman filtering. When 

human input processing is skipped, noisy template profiles enter the knowledge base. This 

increases the time for profile matching during the observation step of the Bayesian filter, 

which, in turn, causes the system efficiency to drop dramatically.
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Figure 7.6: Efficiency comparison of semi-automatic road tracking with Kalman filtering.

Some tracking results are illustrated in Figures 7.8 to 7.12. In Figure 7.8, road tracking 

started from the upper left comer, with the white line segment showing the location of 

human input. The following white dots are the road axis points detected by the road tracker. 

When the texture of the road surface changes, the road tracker failed to predict the next 

position. Control was returned to the user who entered another road segment as marked 

by a short line segment. Step prediction scaling strategy enabled the road tracker to work 

faster. This can be seen in the image, where larger step sizes are used when consecutive 

predictions were successful.

Figure 7.9 shows how multiple reference profiles help the tracking. Tracking started in 

the upper left comer. When the road changed from white to black, a match could not be 

found between the observation and the reference profiles and human input was required as 

indicated by the white line segment. When the the road changed back to white, no human 

input was necessary because the profile for white road was already in the list of reference 

profiles. The tracker searched the whole list for an optimal match.

The performance of the system is influenced by several factors. First, human factors 

play an important role. Human input is not always accurate; hence the road tracker is 

affected strongly in the preprocessing step when initial parameters are set and road profiles 

extracted. This is reflected in similar trends of different filtering algorithms tracking in the 

same data sets. For example, the efficiency of all trackers is the poorest for user 3 and 

accuracy is the poorest for user 4. This suggests that our system can also be used to model 

the inputs given by different users. This, in turn, opens the possibility of investigating 

user-adapted systems.

Second, the number of particles in particle filter affects the performance of the system,
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Figure 7.7: The influence of number of particles on the performance of the system on data 
extracted from user one.

as shown in Figure 7.7. When the number of particles is smaller than 20 times of the 

road width, the performance of the system is quite steady. However, when this number 

continues to increase, the performance of the system drops. Though more particles allow 

for an improved approximation of the posterior density of the state, the system performance 

decreases due the the time spent on the particle evolution and likelihood computations.

Third, complex road scenes can cause tracking failures, requiring further human input. 

Figures 7.8 and 7.9 show cases of tracking failures that are caused by abrupt changes of 

radiometric properties of the road. Figure 7.10 shows a case where tracking stops where 

road direction changes abruptly. Figures 7.11 and 7.12 show the tracking failures caused by 

road profile changes due to road connections and occlusions.

When junctions are encountered, the road tracker makes different judgements based on 

the road condition and the status of the tracker, as shown in Figure 7.13. At junction 1, 

a matching observation could not be found. But further along the direction of the road, 

a matching observation profile was found. Thus, junction 1 was jumped over by state 

updating with a large step size r  due to the jump-over strategy (see Section 8.4) or the 

step prediction scaling strategy (see Section 7.5.6). However, at junction 2, no matching 

profile could be found. Thus, the tracking process stopped and control was returned to the 

human operator. Ultimately, in all difficult situations, it is the human who has to decide 

how to proceed with tracking.
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Figure 7.8: Road tracking from upper left to lower right. White dots are the detected road 
axis points, white line segment shows the location of human input.

7.7 Conclusion

This chapter introduced a human-computer interaction system for robust and efficient road 

tracking. It attempts to bridge the gap between human and computer in automatic or semi­

automatic systems. This approach has a potentially significant impact on the daily work of 

map revision. It can greatly reduce human effort in the road revision process. At the same 

time, it guarantees correct and complete results because the user is never removed from the 

process.

The proposed framework consists of several components, the user, the human-computer 

interface, computer vision algorithms, knowledge transfer schemes and evaluation criteria. 

It can compensate for the deficiencies of computer vision systems in performing tasks usu­

ally done by humans. This framework also can be applied to systems that require under­

standing of different levels of interactions between human and computer.

The road tracking method is based on Bayesian filters that match observation profiles 

to reference profiles. Particle filters and extended Kalman filters are used to predict road 

axis points by state update equations and to correct the predictions by measurement update 

equations. During the measurement update process, multiple observations are obtained 

at a predicted position. The tracker evaluates the tracking result using normalized cross­

correlation between road profiles at previous and at the current position. When multiple 

profiles are obtained from human input, the profile with the highest cross-correlation co­

efficient is searched, with the most recently used profile being given the highest priority.
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Figure 7.9: Road tracking from upper left to lower right. White dots are the detected road 
axis points, white line segment shows the location of human input. The number of human 
inputs is reduced by searching multiple reference profile lists, as described in the text.

The use of two-dimensional features, multiple observation and multiple profile methods 

has greatly improved the robustness of the road tracker. Finally, when they were combined 

with a step prediction scaling method, tracking efficiency was further increased.

For further progress with making human-machine systems robust and useful, we need 

to explore a number of paths.

•  The simulated system approximated the human-computer interaction in a real-world 

system. To further study the effectiveness and usability of the system, we need to 

implement it on an industrial platform, such as in the USGS map revision system.

•  The combination of Kalman filters and Particle filters should be studied, especially 

in developing user-adapted systems.

•  Current road tracking model uses the location of road centerline and the direction 

of the road to make prediction. We could also use higher-order prediction models, 

which use road curvature or curvature changes in the prediction.

•  The system can be more automated and its performance be further improved if more 

knowledge resources can be involved (for example, the buildings layer).

•  The system framework was developed for USGS map revision environment which
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Figure 7.10: Road tracking from upper left to upper right. Black dots are the detected road 
axis points, black line segment shows the location of human input. The tracking fails when 
road direction changes dramatically.

uses aerial image as the source of revision. It would be interesting to see how this 

system can be applied to other types of images, for example, to satellite images.
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Figure 7.11: Road tracking from upper right to upper left. Black dots are the detected road 
axis points, black line segment shows the location of human input. The tracking fails when 
road profile changes at the road connection.

Figure 7.12: Road tracking from upper left to lower right. Black dots are the detected road 
axis points, black line segment shows the location of human input. This is an extreme case 
when trees occlude the road. Intensive human inputs are required.
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Figure 7.13: Handling of road junctions. Black dots are the detected road axis points. 
Junction 1 was jumped over, while the tracking stopped at junction 2.
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Chapter 8

HCI-based Online Machine Learning 
for Road Tracking *

8.1 Introduction

We have presented an application of the HCI framework for road tracking in aerial images 

in Chapter 7. The tracking models use Bayesian filtering and template matching methods 

to predict the road centerlines. In the template matching, the system compares the observed 

road profiles with the profiles stored in a knowledge-base, and update this knowledge base 

with the observations.

In this chapter, we tackle the road tracking problem with another method using the 

same HCI framework. We introduce an online learning approach [75] that naturally inte­

grates guidance from human experts with automatic computer vision algorithms for track­

ing roads in aerial photos. Human inputs provide the online learner with training examples 

to generate road predictors. An ensemble of road predictors is learned incrementally from 

human inputs, and the predictors are then used to automatically track roads. When novel sit­

uations are encountered, control is returned back to the human expert. With this approach, 

we avoid the problem of having to explicitly define an off-road class, while enabling ex­

plicit learning from human inputs. Our learning algorithm is a kernel-based online learning 

approach for novelty detection. The learned predictors are represented as weighted combi­

nations of training examples, and the weights for each training example are derived from 

the large margin principle [130]. We discuss the learning methods to acquire single and 

multiple predictors from one human input, and we show that they are equivalent to learn­

ing an expansion model or multiple drifting models that characterize human knowledge of 

the dynamics of the image patterns. We also introduce two tracking algorithms that use

* A version of this chapter will appear in the Proceedings of the Workshop on Pattern Recognition in Remote 
Sensing, Hong Kong, China, August 20, 2006.
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either optimal candidate-predictor combinations or multiple hypotheses in the prediction. 

The experimental results of the learning and tracking models are compared and analyzed. 

The proposed approach is computationally efficient, and it can rapidly adapt to dynamic 

situations where the road feature distributions change. Experimental results confirm the 

effectiveness of our approach, and it is shown to be superior to existing methods.

8.2 Related work

8.2.1 Learning from Human-Computer Interaction

Interactive machine learning (IML) [32, 136] enables human operators to train predictors, 

for example decision trees or neural networks, by providing labelled training data and by 

defining boundaries between tme and false instances. Such learning methods have been 

successfully used in image segmentation.

Muneesawang and Guan [99] employed IML in a model for content-based image re­

trieval. An initial image distance function is given using a radial basis function (RBF) 

network method. When a user supplies a query image, the system retrieves images in the 

databases that are closest to the query image. Then user points out the correct and incorrect 

retrievals. The image features are used to train the RBF predictor using learning vector 

quantization method, so that the system can retrieve a new set of images. This process is 

repeated until the user is satisfied with the retrieval results.

Maloof et al. [8 8 ] proposed a similar model, which enables interactive supervised learn­

ing for building detection in aerial image analysis. In each training session, the classifiers 

generate roof candidates. The human analyst provides positive and negative labels on these 

candidates, which in turn are used to update the classifiers. The training sessions terminate 

when all training samples have been classified. Four types of classifiers were implemented, 

namely a nearest-neighbor method, a naive Bayesian classifier, decision trees, and a contin­

uous perceptron. In the testing session, these classifiers automatically detected buildings in 

testing data sets and their performance were compared.

The above methods acquire one predictor from human inputs. It is also possible to 

acquire a set of predictors if multiple predictors are generated from human inputs. In this 

case, the problem can be considered as predicting from expert advice [14] and it can be 

solved by online learning algorithms. Littlestone and Warmuth were among the the first 

to tackle this problem [8 6 ]. They proposed a weighted majority algorithm that can be 

summarized as follows:
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1. Set the initial weight Wi for each expert i to 1, where 1 <  i < n, and n  is the number 

of experts.

2. The algorithm compares the total weight from experts that predict output 0 and the 

total weight from experts predict output 1 , and output the prediction of the larger 

total.

3. The weights of the experts that made a mistake are multiplied by a penalty factor 

between 0  and 1 .

Kolter and M aloof [78] extended the above algorithm to create and delete experts in con­

cept drift problems using a weighted majority algorithm. In addition to the predictions 

by each expert, a global prediction is calculated as the label with the highest accumulated 

weight. Whenever the global prediction is incorrect, the algorithm creates a new expert. To 

constrain the number of experts, the algorithm eliminates experts with weights less than a 

certain threshold.

As described in a later section, our online learning problem is similar to the concept 

drifting problem: each predictor is a weighted sum of past training examples, where the 

weight for each training example is derived from the large margin principle [130]. Instead 

of creating new predictors automatically, we maintain a dynamic list of predictors: one set 

of predictors can be generated from one iteration, and different iterations generate different 

predictor sets.

We developed our algorithm for novelty detection, i.e. to identify new or unknown data 

that were not present during the training stage [89]. Thus, it is important to find true novel 

samples in testing while minimizing false positives. Cheng et al. [20] proposed an online 

learning method with sparse kernels to solve learning problems with examples drawn from 

non-stationary distribution. We extend this method to online learning from human inputs 

for novelty detection, so that it can fit into the HCI framework for image interpretation 

applications.

8.3 One-Class Support Vector Machines

To make this chapter self-contained, we give a brief introduction on one-class Support Vec­

tor Machines (1-SVM), which forms the basis of the proposed online learning method. 

Support vector machines are kernel based classifiers [130]. The purpose of training an 

SVM is to obtain good separating hyperplanes in a high dimensional space that has optimal 

generalization ability.
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8.3.1 Linear Support Vector Machines

In binary classification problem, given training samples {x*, yi} C X  x y ,  where X  C Rd, 

V =  {—1,1}, and i =  1 , . . . , ( ,  a hyperplane in R d can be written as

{x € R d|(w, x) +  6 =  0} (8.1)

If the training data is linearly separable, that is, if there exists a hyperplane such that

yi((w, x) +  b >  0), we can define two parallel hyperplanes, H+ and H  , in the form that

H+ : min(u;, x) +  b+ =  0 (8.2)

for all positive samples, and

H -  : m in (w, x) +  b-  = 0 (8.3)

for all negative samples. Let b = (b+ + b - ) / 2 and 5 = (b- -  b+)/2, we can rewrite the

above hyperplanes as

H+ : m in ( y ,x )  +  ^  =  l  (8.4)

and

H _ : m in (^ ,  x) +  \  = - 1  (8.5)
0 0

The separating hyperplane is then transformed into a scaled form

,w  b
( - , x )  +  -  =  0  (8 .6 )

Given (w, b), suppose all the training data satisfy the following constraints,

|(fn,Xj) +  b| >  1, i — (8.7)

the margin, which is defined as the distance from the closest samples to the hyperplane 

{w,x) + b =  0, is 1 / |M |.  Then we need to find the pair of hyperplanes that maximize 

the margin. Introducing Lagrange multipliers a i , i  =  1 , . . . ,  /, one for each of the above 

inequality constraints, a Lagrangian function can be defined as

^  i i

L P =  9  IM P -  X I  a i V i ( ( W ’ X i )  +  b ) +  X  Qi  (8 -8)
i=1 i=l

Maximize Lp  with respect to w and b vanish,subject to constraints that a* >  0, we have

i
=  X )  (XiViXi  (8.9)w

i=1
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^ 2 <XiVi =  0 (8.10)
i=1

Substituting them into Eq. 8 .8 , we get the dual form

(8.11)
i= 1 i,j

The aim of training support vector machine, is then to maximize L d , subject to a  > 0 and
i

Y2 a iVi =  0- Given each solved, the decision function can be written as
i=l

another Euclidean space H,  in which the mapped data is linearly separable. We also need 

a way to compute the inner product in the new space directly as a function of the original 

data. Kernel functions are used for these purposes. Given Xi, Xj e  X ,  a kernel function k  

is defined as

where $  is a mapping function from the original space to TL. The advantage of kernel 

functions is that we do not need to explicitly calculate the kernel mapping d>, and we can 

directly replace {xu x3) with k(x i ,  Xj) in the training process.

An important concept associated with the kernel mapping is Reproducing Kernel Hilbert 

Space (RKHS). Suppose we have the following reproducing kernel mapping

which is a vector space of all linear combination of the kernel functions k {-, x). This RKHS 

has the important properties f ( x )  =  (k ( ■, x),  /(■)) and (k (•, x,), k(-, x j) )  =  k(xi, X j).

93

(8.12)

where

(8.13)

8.3.2 Non-linear Support Vector Machines

In order to solve non-linear problems with a linear machine, we need first to map data to

k(xi,Xj) = ($(*0, *(*,•)> (8.14)

$  : x k(- ,x) (8.15)

Then we can construct a RKHS as

(8.16)
i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.3.3 One-class Support Vector Machines

When only data in one class is available, SVM must be modified to detect outliers. Scholkopf 

et al. proposed an algorithm to solve this problem by estimating a hyperplane based on data 

that lie on one side of the boundary [119], which is called one-class support vector machines 

(1-SVMs).

The strategy of the algorithm is to first map the data into a feature space using a kernel 

function, then to set the origin as the only sample in the second class and to separate data 

from the origin with maximum margin. To do so, equation 8 . 8  becomes

where v  e  (0 , 1 ) is a bound that a training point is outside of the estimated region, & is a 

nonzero slack variable, a* and (3i,i =  1 , . . . , / ,  are Lagrange multipliers. Maximizing L p ,  

subject to <  w, $ (x j)  > >  b — & and & >  0 , we have

When f ( x ) =  — 1, x  is classified as an outlier.

8.4 System framework

In this section, we give an overview of the main procedures of the proposed approach. In 

contrast to Chapter 7, the human-computer interaction process is redefined to fit the machine 

learning framework.

A road tracking task starts with an aerial photo with the target of tracking, and the 

system proceeds with iterations consisting of human input, sampling and prediction phases. 

The first phase is aimed at learning from human input whereas the last phases are aimed at 

automatic road tracking.

L P =  \  IMI2 ~  $ (*<))  - &  +  & ) “  P it*  (8-17)
i=l

(8.18)

(8.19)
i=1

Given the solution for each au  the decision function can be written as

(8 .20)
1 = 1

where

(8.21)
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Input phase. A human input consists of two mouse clicks on an image, with the line 

joining the click positions defining a road axis and indicating the road direction. Along 

the road direction, a set of road profiles are extracted normal to and along the road axis at 

consecutive axis points. The length of each profile is determined by the road width, which 

is estimated from the distance between the road edges. These, in turn, are obtained with 

a gradient-based edge detection method [148]. We denote a road profile as x  e  X  C 

where X  is the profile space with dimension d, and we denote one human input as one 

learning session s G I s  where I s  indexes the set of learning sessions that occurred for this 

road tracking task. A road profile x  is associated with a label y £ y ,  where ^  is the set of 

feasible labels (e.g. y  =  1 : on the road, y  =  0 : off-road), and a state a  €  £ , which encodes 

a location as

a = [ u  v 0 ] ' ,  (8 .2 2 )

where u  and v  are the coordinates of road axis point, and 6 is the direction of the road. The 

triplet z =  (x, a, y) represents an example. We further restrict that, at an appropriate road 

axis location, there has to be exactly one profile with y  — 1 , hence y =  1 for all training 

examples. To keep the notation simple, we assume that there are T  road profiles along the 

entire road, and we define a set of time steps T  =  {1, • • • , T} with one road profile for each 

time step. As will become clear later, a predictor (i.e. a road profile predictor) f s e  T  is 

learned from a learning session s, where T  denotes the set of predictors learned in sessions 

indexed by I 5 .

Sampling phase. We assume that, at time t, the system has experienced a sequence of 

learning sessions (1 , • • • , s) and obtained an ensemble of predictors !Ff =  ( / 1 , • • • , f s) by 

U f s . It then proceeds with the sampling phase, where the system searches the 

neighborhood (bounded by a fixed range of angles and depths) along the current road axis 

for candidate road profiles X  =  {xi, • • • , x m }, where m  denotes the number of candidates 

being sampled. The state at time t  is sampled using the following non-linear function

Ut - 1 +  £>COs(0f_ i )  
Vt - 1 +  £>sin(0t _ i )

et- i
(8 .2 3 )

where q  is the step size of the sampling determined by the road width and tracking status.

Prediction phase. After the sampling phase, the prediction phase starts with a set of 

candidate profiles X  and their associated states, with the goal of picking a predicted profile 

x t  and predicting its label yt. If yt =  0  (the profile is not on the road, i.e. a novelty), control 

is handed back to the human expert for further input. In this manner, switching between
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human inputs and automatic tracking continues until the tracking task is completed.

For predicting an example z t =  (x t , <rt , yt), we hope to be close to the true one z t =  

(x t , a t , yt), that is, x t —► x t, a t —* at and yt = y t = 1 . Unfortunately, this is not always 

the case. When cars or long trucks are presented on the road, none of the candidate profiles 

may match. As introduced in Section , a heuristic strategy was developed to overcome 

these often-encountered situations, where the step size g in Equation 8.23 is increased to 

jump over the current state when the system fails to find a road profile with y  =  1. Then 

a new sampling phase occurs from the previous state. When failures continue, even with 

the jump-over strategy, the system recognizes a tracking failure and returns control to the 

human expert, who then inputs another road segment from which new training examples 

with y  =  1 can be extracted.

In summary, the learning approach is naturally decomposed into two parts, a learning 

algorithm devised for the human input phase, and a tracking algorithm for automatic road 

tracking.

8.5 Learning Algorithms

The interactions between human and computer lead to a situation, where learning sessions 

are mixed with automatic tracking runs. The first learning session is initialized by the first 

human input. Each successive learning session s starts when, at time t, an outlier is detected 

(yt =  0 ) for the current predicted profile x t and control is handed back to the human 

expert. For the sake of simplicity, we assume that each learning session contains exactly S  

examples. Therefore, the learning session finishes when the expert finishes teaching, with 

inputs consisting of successive examples (zt+i , ■ • • , zt+s) ,  where zt =  (xt, a i: y j ,  Vi €  

{t +  1 , • ■ • , t  +  S }.

8.5.1 Basic learning algorithm

One learning session corresponds to one human input, with the goal of obtaining a rea­

sonable predictor f s . Assume that the current learning session s starts at time t  and con­

tains exactly S  examples (zt+i, • • • , z t+s)- Further, we define a kernel mapping k(-, ■) 

from profile space to a Hilbert feature space, X  —> H  a s i H  k (- ,x )  6  H. Here “H  de­

notes the Reproducing Kernel Hilbert space (RKHS) with induced kernel k ( •, •) such that 

f ( x )  — {k(-, x), /(■)), and (•, •) gives the inner product. The norm in this case is naturally 

defined as || • || =  (•, -)1/ 2.
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As in the online learning algorithm described in [20], the predictor f  €. H  can be

represented as a weighted combination of training profiles, where past examples in the

learning session are associated with different weights that are derived

formally from the large margin principle [130]. We extend this algorithm to incorporate

learning from human inputs and to deal with the novelty detection scenario, so that the

learning problem is naturally formulated as a novelty detection by solving online 1-SVMs.

Given a profile X{ at time i, the novelty detection can be formulated as a linear program

in a manner similar to 1-SVMs introduced in Section 8.3.3

m in C f  
1 1 / 1 1 = 1 ,  C

s.t. ( / ,  k(x i ,  •)) >  7  -  £, (8-24)

£ > 0

where 7 , C  are positive constants, and £ is a positive slack variable. We also define the loss 

function as

h -  Kf uXi )  =  (7 -  (1 - r ) ( / i , f c ( x i ,- ) ) )+  (8.25)

where (•)+ =  max{-, 0}. According to the framework in [20], we want to minimize the

risk function

R  =  R d U f )  + Rveg(f)  (8.26)

Here,

-Rdiv(/) =  11/ -  / z||2/2  (8.27)

measures the distance of the predicted /  from the previous prediction fa. The second term 

is

W /)  = \ ll/ll2 + + (8 28)
A itcapf/) R ‘"S t( /)

where c and C, are Lagrangian multipliers, and A >  0 is a regularization parameter. Equation 

(8.28) consists of two terms, the capacity risk, Rca.P( f ) ,  which controls the complexity of 

the prediction / ;  and the instantaneous risk, i?inst(/)>  which is the Lagrangian function 

of the optimization problem in Equation (8.25). Further, we introduce t , v  > 0, such 

that A =  t / ( 1  — t )  and c =  u / ( l  — r ) .  By solving the (previously mentioned) risk 

minimization problem, as shown in [2 0 ], the separating function /  turns out to be /(• )  =  

« Ifc(-, Xi), where the weights are

[ a,- <= (1 — r ) a ,  V? <  i
3 - (8.29)
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perceptron (0/1 loss)

« / ( y , (/,,*,)<0) J--------------------------p.

y , < f , ’x, >

hinge loss

\
" -)C

robust hinge loss

a t <= m in{/,,(l-r)C }

y t < f , ’x , >

Figure 8.1: Robust hinge loss function for a ,  assignment at time t. a ,  is upper bounded by

As stated in [20], the resultant weight updating formula has several advantages. First, the 

robust hinge loss ensures limited influence from outliers (see Figure 8.1). In the perceptron, 

0/1 loss leads to same weight assignment to all outliers. In regular hinge loss, weights are 

assigned to outliers proportional to the incurred loss. It means that some outliers may have 

much higher influence to the solution than the others. Both cases are not desired. Using the 

robust hinge loss, we can ensure that a* is always upper bounded by (1 — t )C . Second, 

by adjusting the decay rate r  €  [0 , 1 ) to an appropriate value, the new predictor /  is able 

to balance between two extreme situations, either fully adapting to the current example 

(i.e. forgetting all the past examples as r  —> 1 ), or keeping all past examples in memory 

(i.e. becoming a batch learning case as r  —> 0). Finally, at time i, the weight of current 

example xu  a t is automatically obtained, while the weights for previous examples Vj <  i 

are retained with proper decay, instead of being re-computed from scratch. Thus, this update 

formula allows for rather efficient computation, as shown in the learning algorithm below.

Based on the Learning Algorithm, the predictor f s is obtained given the weight se­

quence and the corresponding training examples. For a sequence of length S ,

( l - T ) C .
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Algorithm 8 Online learning algorithm
Learning Algorithm
Input: The cut-off value C , decay rate r ,  current learning session s. 
Initialize: f t+\ <= 0. 

for i = t  +  1 to t  +  S  do
Observe profile Xj

(s)Compute Zt- according to Equation (8.25)
Compute (a^ ) ’ _ t+ 1  according to Equation (8.29) 

end for
O utput: The sequences s > fs-

the space complexity of the proposed learning algorithm is ( d + 1)5, and the time complex­

ity is 0 ( 5 2).

8.5.2 Learning multiple predictors from one training session

We can generate multiple predictors from one training session. Since the separating func­

tion is in the form of /( • )  =  x i), given an input that consists of successive

examples (zt+1 , ■ ■ • , z t-\-s), we can compute up to 5  separating functions from t+ 1  to t+ S .

Thus, an ensemble of predictors is given in the form of =  ( / i , i ,  / i , 2 , — , / i j V  , f s , s - i ,  fs,s)-

For a sequence of length 5 , the time complexity of this extended model is not different from 

the single-predictor model, but the space complexity increases to (d +  1 )S 2.

In each training session, some predictors may not be as robust as others. To evaluate 

their robustness, we calculate the training errors for all predictors and rank them according 

to their performance. This permits us to select more robust predictors in the tracking runs 

and to achieve faster and more accurate results.

8.5.3 Discussion of the learning algorithms

As mentioned previously, the online learning algorithm is derived from 1-SVMs [119], and 

it is thus driven primarily by positive examples. This formulation perfectly fits the road 

tracking scenario, since the human inputs provide only positive examples for the learning 

process. In the following, we analyse the effect of applying this algorithm to a set of 2D 

data as illustrated in Figure 8.2. We assume a Gaussian kernel, and the learning algorithm 

generates, in each learning session, a sphere enclosing the features from input data.

We consider two learning models. In one model, we use a decay rate r  =  0, where all 

past examples contribute equally to a predictor without any loss of information. Learning 

thus expands the region to cover the new example. In the model with decay rate r  ^  0,
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in p u t i o o

input 2

Figure 8.2: This graph shows a set of input data. Initially, the class of the data is unknown. 
A human input sequentially mark the data that human operator considers as positive, which 
are in turn used in one training session. The region delimited by one curve identify these 
positive examples. In the proposed interactive model, multiple inputs can be observed, and 
thus form multiple regions as marked by input 1 and 2 .

the region drifts to adapt to the new example, and the extent of the drifting depends on the 

value of r .  With a large r ,  drifting is larger and past examples are forgotten more quickly 

(see Figure 8.3).

Since old examples characterize situations that are considered positive, we may want to 

preserve the past training examples in the drifting model. In this case, multiple predictors 

can be learned from one human input. The predictors acquired in each time step are pre­

served, each becoming an independent expert for the tracking process. This model is shown 

in Figure 8.4.

8.6 Tracking and Novelty Detection Algorithms

The tracking process automatically interprets road features in the aerial images using the 

trained predictors. If a novelty is found in the direction of the prediction, then either a new 

road condition has been observed or a tracking failure has been encountered. In both cases, 

human guidance is required to initialize a new training session, and if necessary, to correct 

the tracking error. We now introduce two tracking algorithms, one based on a single optimal 

predictor, the other using multiple predictors.

8.6.1 Optimal Candidate-Predictor Combination

We assume that, at time t, after the sth learning session, the newly learned predictor f 3 is 

incorporated into the set of predictors as !Ff =  J7®-1  U f s. Tracking starts by searching the 

neighborhood along the current road axis for candidate profiles. The losses of the candidates 

are calculated using Equation (8.25) and the one with the minimum loss, x t, is picked as
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Figure 8.3: Two models of learning: expansion (upper graph) and drifting (lower graph). 
The left graphs shows the learning result up to time t. At time £ + 1 , a new positive example 
is observed. The expansion model enlarges the region delimited by a curve to include the 
new example, while the drifting model moves the region to adapt to the new data.

the input to the predictors. If it is considered to be on the road (yt =  1 with the predictor 

/  € T ,  which produces the least loss), the state a t of the profile is used to set the current 

road axis point and the origin of the next prediction. The tracking algorithm based on 

optimal candidate-predictor combination is given in Algorithm 9.

Algorithm 9 Tracking Algorithm I: Optimal Candidate-Predictor Combination 
Tracking Algorithm I
Input: Decay rate r ,  threshold e, the set of learned predictors so far 

Obtain a set of m candidate profiles X  from the sampling phase, 
for i — 1 to m , j  — 1 to s do

Compute k j  according to Equation (8.25) 
end for
(l* ,x t ) «- m in i,j{k ,j}  
Predict label as

O utput: z t =  (x t ,a t ,y t )

Vt -{i
I* > e 
o therw ise (8.30)

The tracking algorithm picks the candidate-predictor combination with minimum loss, 

and it evaluates whether the candidate is on the road and its reliability by comparing the 

loss to a threshold.
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new example

Figure 8.4: Learning multiple predictors from one human input. The learned model at time 
t  is shown in the left graph. At time t +  1, a new model is learned to adapted to the new 
training example, while the old model is kept.

8.6.2 Multiple-Hypotheses Support

The road axis point and next prediction depend exclusively on the location and direction 

of the optimal candidate. Noisy candidates can thus mislead the prediction. To solve this 

problem, we propose a multi-hypothesis method. The losses of the candidates are again 

calculated using Equation (8.25) for each /  G !F. These losses are stored in a look-up 

table H , whose entries h i j  G Ti correspond to hypothesis road axis points from candidate- 

predictor combinations.

Given the lookup table, we search for hypotheses whose losses are lower than a thresh­

old e. If  a loss k j  is smaller than e, the hypothesis is a supporting hypothesis and its weight 

is set to

W ij =  exp ( ~ k j )  (8.31)

If l i j  > e the hypothesis is discarded. Finally, we calculate the road axis point as a normal­

ized weighted sum of the supporting hypotheses. If  the number of supporting hypotheses is 

zero, a novelty is detected. The resulting tracking algorithm is given in Algorithm 10.

8.7 Experimental Results

We performed experiments on the same platform as introduced in Chapter 7. The same 

applies to the user data collected and the evaluation criteria.

8.7.1 Experimental results

We compared the results of the proposed Online Learning and Novelty Detection (OLND) 

algorithm with the two algorithms reported in Chapter 7. In those two tracking algorithms, 

observed profiles were matched with reference profiles using cross correlation. The state
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Algorithm  10 Tracking Algorithm II: Multiple-Hypotheses Support 
Tracking Algorithm II
Input: Decay rate r ,  threshold e, the set of learned predictors so far JFj*, an empty H.  

Obtain a set of m candidate profiles X  from the sampling phase, 
for i =  1 to m, j  =  1 to s do

Compute l i j  according to Equation (8.25)

7i = H U  hitj 
end for
for i  = 1 to m , j  =  1 to s do 

if k j  < e then
compute W ij according to Equation (8.31) 

else 
“H  =  Ti — h ij  

end if 
end for
w i , j  =  w i , j /  X i X j  w i , j  

Xt  <- X i X j w i , j x i 

&t E i X j w i , j a i
Predict label as

O utput: z t =  (x t ,a t ,y t )

prediction was implemented with Kalman filtering (CCKF) and particle filtering (CCPF). 

The OLND algorithm learned one predictor from each human input and performed novelty 

detection using the optimal candidate-predictor combination model.

A comparison of results obtained with the three algorithms CCKF, CCPF and OLND is 

given in Table 8.1. The results show a clear but statistically not significant trend, namely an 

improvement of the tracking performance using the proposed OLND algorithm compared to 

the CCKF and CCPF algorithms. OLND algorithm achieves a higher degree of automation 

and efficiency, as well as better accuracy. A more detailed comparison of results is shown 

in Figure 8.5, which indicates an improved performance of the OLND algorithms for most 

user data sets.

To observe how the two learning choices affect the overall performance of the semi­

automatic image interpretation, we performed experiments on learning models with dif­

ferent decay rates. Figure 8 .6  shows the results for one user. We found that the system 

achieves the highest tracking efficiency with a decay rate of 0 .2 , but this occurs at the cost 

of a reduced tracking accuracy. It means that an appropriate drifting model is more robust 

and efficient as it balances the old and recent training examples, which better characterize

H = 0 

otherw ise
(8.32)
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Table 8.1: Comparison of road tracking results. The meaning for algorithms and compari­
son criteria are described in the text.

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
CCKF 71.9 85.3 63.9 1 .8 6

CCPF 72.3 85.6 62.0 1.90
OLND 75.0 87.8 69.1 1.54

Table 8.2: Comparison of tracking algorithms: TAI for the optimal observation-predictor 
combination model, and TAII for the multiple-hypotheses support model. The parameters 
for the model are: r  =  0.05, 7  =  1, e =  0.99

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
TAI 75.2 87.7 68.3 1.44
TAII 76.2 87.8 71.2 1.62

the gradual changes of the road feature.

Figure 8.7 shows the results of acquiring different number of predictors from one human 

input. Notice that the purpose of prediction is to find the true road axis, hence tracking 

continues as long as a road axis can be found. As more predictors are learned from human 

inputs, the probability of getting at least one prediction on the road increases, allowing the 

automatic tracking to last longer. On the other hand, noise present on the road surface may 

affect the predictors, which in turn may generate false positive or false negative novelties in 

the tracking phase. An increase in the number of predictors also increases the probability 

that noise affects the model. This leads to a trade-off in the tracking results: the robustness 

of the model rises first, then drops, when the number of predictors increases. Another 

negative effects of more predictors is that the tracking efficiency decreases.

Finally, we compare the performance of two tracking algorithms, in Table 8.2 and Fig­

ure 8 .8 . In both experiments, a single predictor was acquired in the training session from 

each human input. The results show a clear, but statistically not significant trend, namely 

that the multiple-hypotheses support model is better than the optimal candidate-predictor 

combination model, both with respect to robustness and efficiency. The result suggests that 

multiple-hypotheses helps the automatic process. When noise is present on the road, the 

optimal candidate-predictor combination is likely to deviate from the true road axis point. 

With the weighted sum of multiple hypotheses, this deviation effect is reduced.
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Figure 8.5: Comparison of tracking performance for the proposed algorithm (OLND) and 
the cross correlation with Bayesian filtering algorithms (CCKF and CCPF). The horizontal 
axis shows data sets recorded from different users. The vertical axis shows different eval­
uation criteria. The parameters for the OLND model are: r  =  0, 7  =  1, e =  0.95. For 
display purposes, the data points are connected by lines even though there is no quantitative 
relationship between data sets.

8.8 Conclusion

We have presented an online learning approach for novelty detection in image feature track­

ing. This approach is applied to road tracking in aerial images within a human-computer 

interaction framework that enables natural switching between human inputs and automatic 

tracking. It fills the gap between human and computer in image interpretation applications.

Depending on requirements, single or multiple predictors can be learned from the hu­

man inputs. These predictors then automatically track road using either an optimal candidate- 

predictor combination model or a multiple-hypotheses support model. We analyzed the 

theoretical and experimental difference between the learning and tracking models. Results 

show that multiple predictors from one human input further helps the learning. However, the 

system performance drops when too many predictors are acquired. In case of tracking mod­

els, the multiple-hypotheses support model outperforms the optimal candidate-predictor 

combination model.
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Figure 8 .6 : Comparison of tracking performance with different decay rates in the learning 
session. The parameters for the model are: 7  =  1, e =  0.95

Besides conceptual advantages, the experiments on real world tasks validated the supe­

rior performance of the proposed approach, compared to models without machine learning. 

Our approach is very generic and could be applied to similar applications that require in­

tensive human-computer interactions.
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Chapter 9

Conclusions

9.1 Summary of the Thesis

In this thesis, we proposed a human-computer interaction framework for image interpre­

tation systems. It is an attempt to fill the gap between human and computer in automatic 

or semi-automatic image interpretation. This framework consists of a number of compo­

nents, human-computer interface, user modelling, image interpretation models, knowledge 

transfer schemes and evaluation criteria.

We introduced an application in semi-automatic map revision, and we reported on two 

experiments, one on predicting human viewing changes, and the other comparing the per­

formance of human and computer in road tracking. We concluded from these studies that, 

in order to build a human-machine system capable of improving human performance, we 

need a more tightly coupled interaction between human and machine.

Applying the proposed framework to remote sensing image interpretation, we devel­

oped two methods for robust and efficient road tracking from aerial images. The computer 

tracks all human actions and learns a task by modelling human action and comparing the 

human actions with the image input. On request, the computer takes over simple tasks, 

returning control to human as soon as confidence rating gets too low. This approach has po­

tentially significant impact on the daily work of map revision because it can greatly reduce 

the human effort in the road revision process, while guaranteeing accurate results.

The first reported road tracking method is based on Bayesian filters that use a multiple 

observation profile matching model. The road tracker first estimates the road width and 

extracts an initial road profile from the human input using edge detection. Then a Bayesian 

filter is used to predict road axis points by state update equation and correct the predictions 

by measurement update equation. During the measurement update process, multiple ob­

servations are obtained at the predicted position. The tracker evaluates the tracking result
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using normalized cross-correlation between road profiles at previous and at current posi­

tions. When multiple profiles are obtained from human input, the profile with the highest 

cross-correlation coefficient is searched, with the most recently used profile being given 

the highest priority in the search. From time to time, the tracker fails to find points with 

a sufficiently high cross-correlation. These points are skipped, and control is returned to 

the human operator if too many points are skipped. The use of two-dimensional features, 

multiple observations, and multiple profiles has greatly improved the robustness of the road 

tracker. When they were combined with multiple scale methods, tracking efficiency was 

further increased.

The second road tracking method uses the same observation model as the first one. 

However, an online learning and prediction for novelty detection model was proposed and 

implemented for the tracking process. The tracking switches between human and computer. 

Human inputs are used to train a set of road profile predictors. From one human input, 

either single or multiple predictors can be learned. These predictors then track the road 

centerline automatically. Two prediction models were presented, an optimal candidate- 

predictor combination model and a multiple-hypothesis support model. Both the learning 

and predicting models were analyzed with respect to theoretical and experimental aspects. 

Results show that multiple predictors from one human input further helps the learning. 

However, the system performance drops when too many predictors are acquired. In case of 

tracking models, the multiple-hypotheses support model outperforms the optimal candidate- 

predictor combination model.

The performance of the two road tracking methods was compared in degree of automa­

tion, efficiency and accuracy. In the first model, particle filters and extended Kalman filters 

were implemented. In the second model, a single predictor was obtained in the training 

step, and optimal candidate-predictor combinations were used in the prediction. Exper­

imental results validated the superior performance of the online learning and prediction 

model. It suggests that learning from human is necessary in order to achieve a better road 

tracking system.

9.2 Future Work

This work has done some initial work in HCI for image interpretation. As an important 

and practical scheme, it is important to extend the theory and see how its working in real 

systems.
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First, we need to further study the learning models. In this thesis, bootstrap learning 

technique has been used to model the human-computer interactions, in which multiple pre­

dictors are learned through the interactions. To reduce the computational complexity, one 

predictor can be learned to perform the road tracking. Some machine learning methods can 

fit in the problem very well, such as boosting [38] and reinforcement learning [125]. The 

advantage of boosting is that it can combine several weak learners into an arbitrarily strong 

learner. In our case, at the beginning of the interactions, the predictors are weak. Thus, 

boosting is expected to generate a more robust predictor. In using the reinforcement learn­

ing to solve the problem, the human can be considered as part of the environment, which 

interacts with a goal-seeking agent, the road predictor.

Second, new tracking models should be incorporated into the proposed system. The 

particle filter used in the system is a sampling importance resampling (SIR) filter. The 

importance sampling density for the SIR filter is independent of measurement, thus the 

most recent observation is missing. Further, the resampling in each iteration may cause 

rapid loss of diversity in particles. The particles may quickly collapse into the same point 

in the state space [4]. It is known that regularized particle filters (RPF) and unscented 

particle filters (UPF) are good solutions to these problems [4,116]. We will look into these 

models and their application in our system.

Third, in order to make the system more practical, we have to consider more usabil­

ity issues in designing the interaction framework. This includes using and developing new 

interfaces for the human input, both in hardware and in software, for example, pupil track­

ing devices, electroencephalographic devices, or GUIs, so that more user information can 

be capture and analyzed. It also includes user modelling in multi-task systems in order 

to build more complex prediction models on human intention, for example, for modelling 

the sequence of the steps that a user performs, and reason about the status that a user is 

in. Then we know more timely and precisely when and how to provide help to the hu­

man. Current control of the system depends on the internal evaluation by the computational 

model. When the automatic system is not confident enough to its performance, it stops and 

hands over control to the human. More usability issues should be considered for better con­

trol mechanism, for example, whether and how human can terminate an automatic process 

when things go wrong, and how to develop more robust internal evaluation methods.

Fourth, we need to consider the quality control problem in the human input because it 

greatly affects the performance of the HCI system. We hope to avoid situations where a 

new user enters wrong or misleading inputs to the system. One solution is to build expert
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diagnosis models that incorporate knowledge from human experts and existing correct im­

age interpretation results. Another solution is to build training systems with specific image 

interpretation tasks for new users, so that they can get familiar with what to do and how to 

do correctly, before they start the real work.

Last, it is interesting to apply the interaction framework to other tasks in the map revi­

sion application, such as building revision, boundary revision, and task combination. This 

requires that we integrate the change detection and production into a coupled task, in which 

human inputs not only initialize the production step, but also give hints to the automatic 

change detection model.
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Appendix A

Table of Abbreviations

The table below gives a list of all abbreviations used in this thesis and their full descriptions.

1-SVMs One-Class Support Vector Machines
CAD Computer-Aided Design
CCKF Cross Correlation with Kalman Filtering
CCPF Cross Correlation with Particle Filtering
CMU Carnegie Mellon University
DEM Digital Elevation Model
DOQ Digital Orthophoto Quadrangle
EKF Extended Kalman Filter
EM Expectation-Maximization
G1S Geographical Information Systems
GOMS Goals, Operators, Methods, and Selection rules
HCI Human-Computer Interaction
HMM Hidden Markov Model
IML Interactive Machine Learning
MAP maximum a posteriori
MDL Microstation Development Language
MRF Markov Random Field
NRCan Natural Resources Canada
NTS National Topographic Systems
OLND Online Learning and Novelty Detection
OS Ordnance Survey, United Kingdom
RKHS Reproducing Kernel Hilbert Space
RGR Raster Graph Revision
SBSM State Bureau of Survey and Mapping, China
SVMs Support Vector Machines
USGS United States Geological Survey
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