
SoDa-TAP v2: Social Data Analysis Made Simple

by

Hassnain Ali

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Hassnain Ali, 2024

Abstract

Social platforms are the mirror of our society’s values, beliefs, and activities

and have become the subject of study of many disciplines; researchers often

study the themes and sentiments of social-platform discussions and attempt to

understand how the various aspects of these discussions correlate with people’s

influence and the spread of ideas. This type of research requires substantial

software engineering work. We developed SoDa-TAPv2 (Social Data - Toolkit

Analysis Platform, Version 2) to automate many useful tools and to make

them available to scholars of all disciplines. SoDa-TAPv2 integrates (i) a data-

ingestion and analysis pipeline, and (ii) a visual query language through which

to review data and evaluate hypotheses. The pipeline enhances datasets with

lexical analyses, sentiment analysis, humor detection, and identification of

personal values and Big Five personality traits from text and images. The vi-

sual query language features an intuitive drag-and-drop interface that enables

users to filter and slice datasets to create distinct sample sets and save them

for future use, perform aggregations, categorize data into buckets through

classification, clustering, and natural breaks, and compare these buckets using

statistical analyses and visualizations.

ii

Acknowledgements

First of all, a huge thanks to Dr. Eleni Stroulia for her unwavering support

and love during the entire process. I am forever grateful to you for all the

guidance and growth.

I would also like to thank Dr. Lianne Lefsrud for her support during the

research, and to Dr. Kenny Wong, and Dr. Paul Lu, for serving on my thesis

committee.

A special thanks to everyone from the SSRG lab for being an awesome team.

I dedicate this thesis in memory of Abu who is always in our hearts, to Ami

for always being an inspiration and the strongest person I know, to my brother

and sisters for all the love that you give, and to my nieces and nephews for all

the joy you bring.

iii

Contents

1 Introduction 1
1.1 The Research Problem . 2
1.2 Data Democratization with SoDa-TAPv2 3
1.3 SoDa-TAPv2 Features . 4
1.4 Thesis Outline . 6

2 Background and Related Research 7
2.1 Commercial Tools . 7
2.2 Social and Behavioral Research using Analytical tools 9

3 Software Architecture and Implementation 12
3.1 Data Ingestion . 13

3.1.1 Automated Data Ingestion in Action 13
3.1.2 Data Processing and Analyses 16

3.2 VQL Interface . 20
3.2.1 Query Builder . 21
3.2.2 VQL Syntax and Functionality 23

3.3 The VQL Engine . 32
3.3.1 Task Queueing . 33
3.3.2 Query Translator . 33
3.3.3 Analysis Engine . 34

3.4 Interactive Dataset Exploration 37

4 Evaluation 42
4.1 Energy Conversations . 42
4.2 Immigration Conversations . 52
4.3 Replication study . 57
4.4 VQL Performance Analysis . 61

5 Conclusion 69
5.1 Contributions . 69
5.2 Future Work . 71

References 73

Appendix A The VQL BNF 82

iv

List of Tables

3.1 Libraries used for the bucketing functionality 37
3.2 Libraries used for the statistics functionality 37

4.1 Datasets Analyzed . 43
4.2 Dataset Operation Times . 67

v

List of Figures

3.1 SoDa-TAPv2-Architecture . 12
3.2 Query Builder Tab . 22
3.3 Data-Subset Construction . 25
3.4 Dataset Preview toolbar . 38
3.5 Table View . 39
3.6 Sample Treemap for Personal Values 39
3.7 Sample Sunburst Chart for Emotions 40

4.1 Create data slice of tweets by users with 100-plus tweets . . . 46
4.2 Compare number of likes in quartiles, based on tweet character

count . 47
4.3 Tweet length versus viewer response 48
4.4 Tweet Multimodality versus viewer response 50
4.5 Sample tweets for Tweets Text and Images (Factual, Emotion

or Both) . 51
4.6 Sentiment of Tweets made by Users with varying popularity . 53
4.7 Sentiment of Tweets made by Users with varying popularity . 54
4.8 Plot Query - Effect of a moderating variable 54
4.9 Plot - Effect of a moderating variable 55
4.10 Followers data-subset ranges for immigration dataset 55
4.11 Create data-subset workflow with bucket-picker 56
4.12 Big-Five Personality Traits For Users with Varying Popularity 56
4.13 Examining descriptive statistics for a variable (Step 1) 58
4.14 Statistical Analysis of the influence of three different parameters

on the number of ”likes” a post receives. (Step 2) 59
4.15 Intra-dataset comparison using Bucketing with Uniform Breaks,

visualized with two different types of plots. 60
4.16 Replicating the original study pie chart. (Step 4) 61
4.17 Plotting the average number of likes (Step 5) 62
4.18 Examining verified and non-verified users (Step 6) 63
4.19 The numbers of verified and non-verified users (Step 6) 64
4.20 Followers and Likes (Step 7) 65
4.21 Scatterplot Comparison (Step 7) 66
4.22 Execution times for various operations 68

vi

Chapter 1

Introduction

Social platforms are today’s key channels of communication, dissemination of

ideas, propagation of opinions and beliefs, and, overall, cultural exchange. The

broad participation of users from every socioeconomic background on social

media makes these platforms an ideal “laboratory” where to take society’s

pulse.

In the recent decade, we have seen a wave of scholarly publications exam-

ining sociological phenomena on social platforms. These publications often

refer to the same data sets, and sometimes use similar basic tools to process

these datasets, but, more often than not, rely on software tools developed by

the authors’ teams. The system we report in this thesis has been developed

to support this kind of scholarly work by researchers who do not necessarily

possess software engineering skills. To that end, our system has been designed

to meet two key requirements. The first requirement is to enable users to

comfortably experiment with data and construct subsets of data of interest

to them, based on their disciplinary expertise, by “slicing” it, i.e., selecting

specific values or ranges within a dimension, and “dicing” it, i.e., by select-

ing combinations of values from multiple dimensions. The second important

requirement that our system strives to meet is to automate the data-science

tasks frequently involved in analyzing social-platform data.

Our system, called SoDa-TAPv2, integrates (i) a data-ingestion and anal-

ysis pipeline, through which posts are annotated with a variety of lexical,

sentiment, personality, and influence analysis, and (ii) a visual query language

1

through which users can explore their data, review their properties through

a variety of visualizations and evaluate their hypotheses through a variety of

statistical-significance tests.

1.1 The Research Problem

Today, the ability to effectively interpret massive amounts of data has become

a necessity across various domains, from education and healthcare to energy

and finance. Despite this prevalence of data, it is often underutilized due to

technical barriers. These barriers include a lack of people proficient in data

interpretation tools, technical experts who find traditional data analysis meth-

ods intimidating, researchers who can’t afford the development time required

to write scripts for analyzing a particular dataset, and domain experts in areas

like healthcare who lack programming skills.

Challenges in Data Utilization

The challenges in leveraging data stem from the complexity of two tasks:

1. Data Ingestion: Convenient ingestion and processing of data is often

hindered by underlying technical complexities [54]. While off-the-shelf

technologies facilitate convenient ingestion and transformation [2], they

regularly fall short in terms of extensibility. Instead, custom pipelines,

when incorporated with Python scripts and its extensive range of NLP

and ML libraries, can significantly enhance the insights extracted from

data. However, setups like this require developers to do manual work,

for example, in case of a Kafka-Spark setup [105], create Kafka topics,

trigger Spark jobs, and write separate scripts for ingesting each dataset.

2. Data Querying and Visualization: Non-experts often lack knowl-

edge of query languages and data visualization software. Even for those

with programming skills, it can be arduous to dedicate focused effort

to extract insights from a particular dataset using conventional libraries

like Pandas. Generalized programming languages aim to achieve a bal-

ance in query-expressiveness [63] to cater to a wide range of domains.

2

However, this often leads to a trade-off where query succinctness (the

ability to express queries concisely) is compromised. This trade-off is

a common aspect of language design, where the goal is to make the

language versatile enough for various applications, sometimes at the ex-

pense of the ability to express domain-specific queries as concisely as a

domain-specific language (DSL) could. As such, our requirement for a

DSL specifically for hypothesis testing, a common element of research

work, was left unfulfilled.

1.2 Data Democratization with SoDa-TAPv2

Data democratization is a recently coined term that refers to the aspiration of

mitigating these barriers by making data more accessible to a wider range of

users, irrespective of their technical expertise. Data democratization refers to

the practice of empowering individuals, regardless of their technical expertise,

to access and manipulate data resources in order to gain insights relevant to

their field of study and work. A key requirement of data democratization is

that data, which is one of the most valuable assets of an organization, should

be available to the average end user, and not just siloed within IT depart-

ments or available only to data scientists. This component has been widely

studied in the domains of data privacy and transparency [125]. However, data

accessibility entails more than just availability. A very crucial tenet of data

democratization pertaining to accessibility is the provision of tools that enable

“self-service analytics” [62]. Such tools, owing to their easy-to-learn and easy-

to-use user interfaces, enable individuals without expert knowledge to engage

in data analysis without feeling overwhelmed.

With our focus on tooling, this thesis aims to advance data democratization

efforts in the following ways.

• Reduce communication complexity between human actors: We

expect that the ability to independently analyze data will streamline

the communication process between team members, including those of

our lab, minimizing misunderstandings that typically arise from relaying

3

data requests [12]. In small teams like ours, where a data engineer usu-

ally manages the data needs, relying solely on this individual for data

handling can lead to miscommunications regarding data requirements,

as team members may struggle to accurately convey their needs.

• Cut-down on turnaround time: As per the philosophy of lean man-

agement [124], teams must reduce delays by stripping out unnecessary

communication. Preparing, conveying, and responding to data requests

leads to inefficient time management as (i) the elicitation steps cannot be

avoided, and (ii) everyone’s schedule must align with the data engineer’s

availability.

• Support data experimentation and minimize data waste: This

centralized dependency on another individual also discourages exploratory

data analysis and experimentation, as individual team members might

feel pressured to refine their requests to avoid imposing on the data en-

gineer’s time. A more accessible system gives individual actors more

confidence to play around with data and also minimizes data waste [1].

• Empower domain-knowledge experts: Empowering individuals to

conduct data analysis on their own gives people with domain knowledge

more control, as they can make inferences from data-analysis results and

make necessary adjustments to queries based on their knowledge.

• Relieve data scientists of redundant tasks: Routine analytical tasks

can be distributed across the team, allowing data scientists to focus on

complex, value-adding activities. This approach optimizes the use of

skilled data scientists’ time, for example, by freeing them to develop

advanced predictive models rather than generating reports.

1.3 SoDa-TAPv2 Features

The first version of SoDa-TAP [46] focused on incorporating functionality for

advanced social data analysis. However, the use of the tool was strictly suited

4

to data engineers or those experienced with data analysis tools. SoDa-TAPv2

focused on the premise of making this system accessible to those with little to

no programming experience, such that they could interact with the tool using a

simplified interface that does not require expert knowledge. SoDa-TAPv2 plays

an important role in overcoming traditional data analysis challenges through

innovative functionalities that cater to the needs of non-technical users, in the

following ways:

Simplified Data Ingestion

• Automated Data Import: SoDa-TAPv2 offers a highly simplified in-

gestion process, allowing end users to initiate data ingestion directly

from the user interface by providing a simple, publicly accessible URL

to the dataset, hosted on platforms like Google Drive.

• Customizable Data-Analysis Pipeline: The end user can toggle the

specific analyses they want the pipeline to conduct. SoDa-TAPv2 inter-

nally relays this configuration to the pipeline, ensuring that the analysis

is tailored to user needs.

Intuitive Querying and Visualization

• Visual Query Language (VQL): SoDa-TAPv2 introduces a domain-

specific visual query language that allows users to construct queries

through a drag-and-drop interface. This method drastically lowers the

learning curve associated with traditional text-based query languages.

• Flexible Data Manipulation: Users can create, compare, and ana-

lyze data subsets using predefined blocks in VQL, such as filtering for

specific attributes or comparing different datasets. This flexibility is vi-

tal for non-technical users who need to conduct complex data operations

without programming.

• Dynamic Visual and Statistical Comparisons: Users can visualize

their results directly within SoDa-TAPv2 using a variety of charts, and

conduct statistical tests on these results.

5

Ease-of-Use Features

• Data Preview: SoDa-TAPv2 features a comprehensive data preview

tab, with a table view and visualizations to help users understand the

structure of their data before proceeding with deeper analysis.

• Saving/Loading Workspaces: The users can save a query workspace

that they have created and return to it later.

• Tooltips: Each VQL block displays a tooltip upon hovering, explaining

the usage of that block.

• Help Pages: Each tab on the user interface includes a help page that

offers users an overview of how to use that particular tab.

1.4 Thesis Outline

The rest of the thesis is structured as follows: Chapter 2 discusses related

research and existing tools in social media data analysis space, acting as a

primer to the functionality of SoDa-TAPv2. Chapter 3 delves into the func-

tionality and design of SoDa-TAPv2, explaining each feature and architectural

component in detail. Chapter 4 provides an evaluation of the system’s util-

ity, generality, and performance, using various experiments. Finally, Chapter

5 summarizes the key aspects of the system and details the planned future

modifications to the system.

6

Chapter 2

Background and Related
Research

In this section, we recap relevant commercial tools that support social data

analyses. Additionally, we detail research studies utilizing such tools as a

foreground to understanding the utility of SoDa-TAPv2.

2.1 Commercial Tools

There is a variety of commercially available tools that employ techniques sim-

ilar to ours to study social media data.

Audiense [7] focuses on understanding groups within Twitter data, by

segregating audiences based on their “psychographics, demographics, content

they like, and sources of influence” [53]. This is based on social network

analysis, that allows the user to assess the connections that exist within their

audience, based on who engages with what content, and how the data flows

across from one point to another, or from one audience subset to another. Once

these distributed subsets with distinguished attributes are created, you can

make targeted marketing efforts based on the characteristics of each subgroup.

Similar to many other social media analysis tools, you can also monitor your

competitors, as well as conversations about your brand. Although Audiense

focuses primarily on Twitter, it can also be integrated into other platforms.

CrowdTangle [26] is a tool provided by Meta, that can be used to analyze

content on Facebook, Instagram, and Reddit. It allows you to “follow” content

7

(e.g. tracking posts with specific keywords, topics, links, or trending content)

across the entire platform, tracking as many accounts as you want (real-time

monitoring). Not only does it allow analyzing content ‘within’ a platform, but

also ‘across’ platforms, such that you can analyze how your content performed

on different social media platforms, and how it resonated with the audience

on each. Custom real-time dashboards can be created by the user as per

their preferences, to assess multiple streams of data on a single dashboard,

which includes creating reports and visualization. Its analysis capabilities are

mainly focused on monitoring engagement rates and associated functionality

like creating leaderboards and comparing performance metrics across different

forms of content based on engagement. Additionally, the tool allows you to

set up ‘custom alerts’. For example, you might want to be alerted on your

Slack channel once some content crosses a specific threshold for engagement

rate. Its API is also accessible so that it can be integrated into other extended

tools, leveraging its capabilities.

Keyhole [58] is a tool that allows you to monitor trends, hashtags, influ-

encers, keywords, etc. It offers you specific functionality for each category;

for example, for influencers, it can help you assess their return on investment

(marketing efforts compared with engagement), and for content, it can conduct

real-time sentiment analysis such that you can monitor the changing sentiment

of your audience towards a series of posts you are making. As such, it can be

particularly useful for brand monitoring, to assess how the consumer perspec-

tive towards your brand is changing, and what measures might need to be put

in place to influence this change.

Brand24 [15] is a ‘social listening tool’ that allows businesses to monitor

how they are being talked about across social media platforms. This includes

content that mentions your brand or a product made by your brand, the users

mentioning your brand, or any hashtags or links you might want to associate

with your brand. The ‘user detection’ capabilities allow you to identify which

major companies, competitors, or influencers might be mentioning your com-

pany or products so that you can engage with them accordingly. Perhaps an

influencer bought one of your products from Amazon and gave it a negative

8

review on their channel. You can be notified of it as soon as possible, using

custom alerts, and reach out to them to make amends. This is also supple-

mented by sentiment analysis capabilities, to monitor the general perception

of your company and products.

2.2 Social and Behavioral Research using An-

alytical tools

Many research studies have used tools that analyze social data to gain insights

into topics ranging from health and public opinion to behavioral trends and

the spread of misinformation.

Social media analysis tools have been extensively used to explore topics

in healthcare. Santarossa et al. [93] used the Netlytic [74] software to assess

the prevalence of orthorexia nervosa on Instagram. The study examined the

impact of social media on dietary behaviors, with a focus on how discussions

tagged with #orthorexia reflect the broader issues of dietary perfectionism and

its potential harms. Netlytic’s capabilities to process large datasets allowed for

detailed analysis of user interactions and content themes, providing insights

into the social and psychological impact of online conversations about health

on individuals, and the dominant role of social media in promoting health-

related disorders among users. In Malhotra et al.’s research [65], tools such as

Sprout Social [101], Symplur [113], and SocioViz [99] were used to study the

impact of World Hypertension Day. The research provided insights into the

regional interest in hypertension awareness from 2014 to 2022. Sprout Social

and Symplur allowed the extraction of tweets and impressions, and SocioViz

aided in conducting network analysis to understand connections between var-

ious hashtags and topics. The study found that World Hypertension Day had

a huge influence on awareness regarding the issue, even noticing a spike of

over 800% increase in 2021. Moens et al.’s study [73] aimed to evaluate the

type, quality, and content of web-based information on spinal cord stimulation

(SCS) for chronic pain. It used keywords like “pain” and neuromodulation” to

identify relevant conversations about the topic on Facebook, Twitter, Youtube,

9

Instagram, and blogs, etc, using the Awario [10] tool.

Research during the COVID-19 outbreak further concretized the role of

such tools in public health communication, particularly in pandemic manage-

ment and emergency response. Obia la et al. [76] used BuzzSumo [18] to as-

sess the accuracy of articles that were most frequently shared on social media

platforms regarding COVID-19 prevention. The study analyzed thirty arti-

cles and classified them as accurate, misleading, or inaccurate in accordance

with the health guidelines issued by authorities such as WHO and the CDC.

It found that while most of the articles (80%) were accurate, they only ac-

counted for 64% of the shares. BuzzSumo was also used in another study [69]

by Mirone et al. to assess telemedicine information on social media during

the pandemic. The paper suggested that online content by different medi-

cal institutions should be standardized to combat misinformation. Rovetta’s

study [90] used Google Trends [44] and Talkwalker [107] to examine concerns

on the web about COVID-19 vaccines in Italy. It used the keyword search and

filtering functionalities of these platforms to identify relevant conversations.

The study indicated a general sense of doubt amongst the public regarding

vaccines.

Besides healthcare and pandemic research, these tools have also been used

to investigate the manner in which people communicate on social media in gen-

eral. Gruzd et al. [45] used the Communalytic [22] tool to study anti-social

behavior within online communities, especially on platforms like Reddit. The

study examined issues like trolling, hate speech, and inflammatory messages

made to disrupt conversations. Rohlinger et al. [89] used DiscoverText [28] to

examine how Twitter’s suspension of a few accounts during the 2020 presiden-

tial election audits affected open discourse on the topic. The study discovered

that such suspensions had little to no effect on the quality of information

shared, or the people who posted.

Each of these tools and their assisted research reflects the core goals of our

system, allowing users to conduct social data analysis conveniently. The first

version of SoDa-TAP implemented a comprehensive range of lexical, impact,

and semantic analyses within a data pipeline. However, this setup required

10

manual configuration, including the setup of Kafka topics, connectors, trigger-

ing Spark jobs, etc. Additionally, the platform did not provide a user interface

to make it convenient for end users to interact with the system. This rigidity

necessitated the constant presence of a developer to customize ingestion scripts

and to develop scripts for data analysis after storage. Moreover, the platform’s

filtering capabilities were quite limited, supporting only a set of static visu-

alizations, offering little flexibility for end users to interact with and explore

their stored data dynamically. SoDa-TAPv2 addresses these limitations by

handing non-expert users more control, to customize and trigger the pipeline

conveniently, conduct additional analyses, store data, and play around with

it using an easy-to-use Visual Query Language (VQL) and an intuitive user

interface. Each of these improvements over the Soda-TAP platform will be

detailed in length in the next section.

11

Chapter 3

Software Architecture and
Implementation

SoDa-TAPv2 combines a number of tools, as shown in the diagram of Figure

3.1, accessible over a browser-based user interface. The user interface contains

four tabs: ‘Data Ingestion’, ‘VQL Interface’, ‘Dataset Preview’, and ‘Plotting’,

each with a help page detailing its functionality. A user can log in to the system

using the Auth0 [8] authentication service.

Figure 3.1: SoDa-TAPv2 Software Architecture

12

3.1 Data Ingestion

SoDa-TAPv2 relies on Kafka [3] for data transfer, Apache Spark [5] for process-

ing, and Elasticsearch [31] for storing the analysis results (instead of CrateDB

[25] which was part of the first version of the system). The system continues

to use Docker [29] containers to simplify deployment. SoDa-TAPv2 enhances

the previous architecture with more automation, handing more control to a

non-expert using the system. Section 3.1.1 describes the journey of a CSV file

as it flows through the different tools of the data pipeline and lands in the

data store. Section 3.1.2 details the types of analyses conducted on the data

as it flows through the pipeline.

3.1.1 Automated Data Ingestion in Action

SoDa-TAPv2 automates the data-ingestion workflow in four steps. (i) The file

is downloaded to a designated “unprocessed” folder, which triggers the rest of

the pipeline. (ii) Kafka is the mechanism for data transfer; a topic is created,

and a connector reads the file from this directory into the topic. (iii) A Spark

job is triggered to consume data from the Kafka topic, infer the schema, and

perform analyses. (iv) Finally, the processed data is written to Elasticsearch

for efficient querying.

Triggering the Data pipeline

The journey of the file through the pipeline starts with the user providing two

inputs, to trigger the pipeline:

• a link to the dataset, typically a public Google Drive URL

• the name of the dataset

Upon clicking the “Begin Import” button, the size (up to 500MB) and

format (CSV) of the file are checked and its column names are extracted. The

user then chooses the analyses they want to be conducted on the dataset.

SoDa-TAPv2 supports a variety of analyses, including topic modeling, lexical

analysis, impact analysis, high-order semantic analysis, and image analysis,

13

described in detail in Section 3.1.2. The user can choose to apply any (or all) of

these analyses by toggling checkboxes on the UI. Once they click the “confirm”

button, the pipeline is triggered, requiring no further user interaction.

Next, the Python “requests” [87] library downloads the data file from the

specified URL and stores it in a designated “unprocessed” folder on our file

system, ready for Kafka to pick it up.

Data Transfer with Kafka

Kafka remains the core of the data transfer mechanism in SoDa-TAPv2. It has

the following components:

• Topic: Acts as a message buffer for transporting data bytes.

• Producer: Sends data to a topic.

• Consumer: Reads data from a topic.

• Connector: Links Kafka with external services e.g. a database.

In the first version of the architecture, a topic and a CSV source connector

had to be manually created each time a dataset had to be ingested. In SoDa-

TAPv2, these are automatically created using the “confluent kafka.admin.AdminClient”

[23] and the “Kafka Connect REST Interface” [57] respectively. The CSV con-

nector reads the file in the “unprocessed” folder into the Kafka topic, ready

to be consumed by Spark. To ensure smooth data movement, the following

additional services are used:

• Zookeeper [6]: Provides state management to the Kafka cluster.

• Schema Registry [94]: Stores the data schemas for the data being

transported by Kafka.

Data Analysis with Apache Spark

Apache Spark is an analytics engine for large-scale data processing, offering

high-level APIs for distributed data processing and machine learning. In the

first version of the system, Spark was deployed in local mode, which doesn’t

14

allow distributed processing over multiple machines. In SoDa-TAPv2, a Spark

cluster is set up using Docker for future expansion to multiple machines, allow-

ing for better resource isolation, fault tolerance, and scalability. The cluster

setup includes the following components.

• The master node manages the cluster’s resources and schedules tasks

by distributing them among the worker nodes.

• The worker nodes execute the tasks assigned by the master node. Four

worker nodes have been deployed, with 5G of memory and 3 cores each.

• Spark Standalone Cluster mode [100] is used, which is the default

cluster manager that comes bundled with Apache Spark, removing the

need to set up a separate software like YARN [92] or Mesos [91]. It

provides robust scheduling and resource management capabilities across

multiple worker nodes out-of-the-box, as well as a web-based user inter-

face that we use to monitor the cluster.

SoDa-TAPv2 triggers a Spark job using the spark-submit [106] utility, which

provides the topic name and the list of required analyses to the cluster. Spark

reads from the Kafka topic, infers the schema for the dataset, and performs the

analyses on it. The results are written to Elasticsearch using the “org.elasticsearch.spark.sql”

package and the “Elasticsearch-Hadoop connector” [49].

Data Storage with Elasticsearch

We have changed the system’s data repository from CrateDB to Elasticsearch

in SoDa-TAPv2. Elasticsearch is a powerful, open-source search engine built

on Apache Lucene [4], widely recognized for its speed, scalability, and robust

querying capabilities. It is designed to handle large volumes of data query-

ing in near real-time, making it an ideal choice for our data-intensive query

language detailed in section 3.2. Elasticsearch uses an inverted indexing sys-

tem, allowing for quick text searches, and supports complex search queries

with its DSL (Domain-Specific Language). Its distributed nature allows for

the data and search load to be spread across multiple servers or nodes. Our

Elasticsearch setup has the following components:

15

• Nodes: We have deployed Elasticsearch using Docker, with a cluster of

three nodes, aiding efficient querying. All nodes currently run on a single

machine. However, our deployment is suitable for a multi-machine setup

to allow data redundancy, fault tolerance, and high availability.

• Document structure: For the functioning of our VQL, we maintain a

flat document structure within our indices to simplify querying. As such,

each document contains a denormalized set of fields with no parent-child

relationships or nested fields. This simplicity keeps the VQL implemen-

tation straightforward and ensures that non-expert users do not have to

deal with complex queries involving nested structures.

• Kibana [59] Integration: We used Kibana for its Developer Tools to

create and explore indices during development, and to upload small files

during VQL testing.

3.1.2 Data Processing and Analyses

SoDa-TAPv2 features a comprehensive set of analyses, conducted primarily

within Apache Spark, to enhance input data before it is written into Elastic-

search. SoDa-TAPv2 includes the following text-analysis functionalities, origi-

nally available in the first system version.

Preprocessing: This stage cleans the text by eliminating non-essential ele-

ments like stop-words and standardizes it to lowercase.

Dictionary look-up: A number of dictionaries are used to identify words

tied to personal values, sentiment, humor, big-five personality traits, and emo-

tions.

1. Personal Values: Words categorizing personal values into ten categories:

self-direction, stimulation, hedonism, achievement, power, security, con-

formity, tradition, benevolence, and universalism, based on the frame-

work proposed by Ponizovskiy et al [81].

16

2. Sentiment: A binary classification of sentiment (positive and negative)

as proposed by Hu and Liu [50].

3. Humour: Words categorized into four levels of humor intensity, as sug-

gested by Engelthaler and Hills [35].

4. Big-Five Personality Traits: The Big 5 personality traits represent five

dimensions of personality. This dictionary categorizes words falling into

each of these five dimensions, namely “extraversion”, “agreeableness”,

“openness”, “conscientiousness” and “neuroticism”.

5. Emotions: The dictionary categorizes words into a set of eight emo-

tions, namely “anger”, “anticipation”, “disgust”, “fear”, “joy”, “sad-

ness”, “surprise”, and “trust”.

Sentiment Analysis: Captures the sentiment associated with a text using

VADER [116].

Element Extraction: This functionality extracts commonly occurring ele-

ments like hashtags, emojis, and URLs from tweets, and does frequency anal-

ysis on them.

Engagement Calculation: The engagement rate, extended reach, and po-

tential impressions of a tweet are calculated using tweet interactions and the

author’s following/follower counts.

Image Analysis: Version 1 provides a custom-built console application, not

incorporated into the pipeline, that conducts color scheme analysis, object

detection, image classification, sentiment analysis, OCR, and face recognition.

Data Analyses New in SoDa-TAPv2

In addition to the above, SoDa-TAPv2 features a number of additional analy-

ses, described below.

17

LDA Topic Modelling: Topic modeling is used in NLP to discover abstract

topics within a collection of documents. It clusters co-occurring words into

topics, revealing latent thematic structures in the text. SoDa-TAPv2 uses

the popular Latent Dirichlet Allocation (LDA) algorithm [13] provided by

“pyspark” [61] to categorize each document as a mixture of topics and to

determine which words make up a topic. The topic-modeling process involves

the following three steps.

• Vectorization: A tokenizer splits the preprocessed text for each document

into words. A “CountVectorizer” [24] then converts these words into a

sparse vector representation, resulting in a matrix of word counts for

each document.

• Topic Discovery: With the text data vectorized, a Latent Dirichlet Al-

location (LDA) model is used to discover a distinct number of topics

within the corpus. The model iterates multiple times to optimize the

topic distributions.

• Topic Assignment: Once the LDA model is fitted, the topic distribution

for each document is retrieved, and the most dominant topic for each

document is also determined.

Fact vs Emotion Image Classification: Social-platform users often in-

clude images with their posts, including personal images, memes, infograph-

ics, etc. These images play an important role in how users engage with each

other and researchers are often interested in exploring the nature of the images

and their impact. This is why SoDa-TAPv2 integrates a console application

to detect if an image depicts facts, emotions, or both. It uses Google’s Cloud

Vision API [21], specifically its face detection, text detection, and labeling

features to label tweet images. If people’s faces are the dominant element of

the image, whether the image contains one big face or many smaller faces, the

emotions detected by the API are examined: if any face is rated “likely” or

“very likely” to express an emotion like joy, anger, surprise, or sorrow, the im-

age is labeled as “emotional.” To assess whether faces are a dominant image

18

element, we calculate the percentage of the image covered by the bounding

boxes of the detected faces. If this percentage is above a threshold, facial in-

formation is determined to be a dominant feature of the image. We typically

set the threshold to 1%. Although this percentage may appear to be low,

it pertains to the bounding box of faces only and not the whole person. If

faces are not a dominant feature or the faces do not show clear emotions, we

examine whether the image has a text element. If the bounding boxes of all

text segments cover more than 20% of the image, the text feature is consid-

ered “dominant.” If they cover between 10% and 20% of the image, the text

feature is deemed “relevant.” The detected text is passed to the OpenAI API

for classification for both relevant and dominant texts. If the text is dominant,

this classification is applied to the whole image. If the text doesn’t dominate

the image, we consider the array of objects and notable attributes detected by

the Google Cloud Vision API. The array elements are classified as “positive,”

“negative,” or “neutral” using the “finiteautomata/bertweet-base-sentiment-

analysis” HuggingFace model [38]. If any element is tagged as “emotional,”

whether “positive” or “negative,” the image is classified as emotional. Our

rationale is that if the earlier steps (face detection and text detection) have

not confirmed a label, any trace of emotion in the image is prioritized. This

decision criterion is often validated by the label detection feature, which iden-

tifies sentiments like “happiness” or “sadness” rooted in the broader image

context, which in turn is immediately labeled as “emotional” by the Hugging-

Face model. Finally, if up to this point, all our efforts have been unsuccessful,

we are left with a list of labels. Each label is identified either as “factual,”

“emotional,” or “both.” The label marked as “both” can only have originated

from the previous “relevant” text detection, while the “factual” labels are the

result of the HuggingFace classifier. At this point, the image is usually labeled

as “factual” because the “factual” tags are more common than the “both” tag,

which could appear once (at most). In the rare scenario where there is a single

“factual” label and a “both” label, the image is categorized as “both.”

19

GPT 3.5 Turbo Instruct API integration: SoDa-TAPv2 also includes a

console application to classify text based on an OpenAI model’s response. This

console application was implemented to classify text as “emotional”, “factual”,

or “both” for a research study done in parallel to the system’s implementation

(detailed in section 4.1) but is truly versatile and can be used for any other

classification as well. The console application used OpenAI’s GPT-3.5 Turbo

Instruct API [71], optimized for task-oriented use cases with well-defined in-

structions, distinguishing it from the chat models. The text of each tweet was

submitted to the model with the following concise prompt: “Does the following

tweet seem like it was written based on facts, emotions, or both? Please out-

put just one word: ‘facts’, ‘emotions’, or ‘both’. Tweet: {tweet-text}.” This

prompt accompanied each API request to ensure the model retained the con-

text of providing a one-word response and prevented the model from offering

extended explanations that would require the need for post-processing. This

method was favored over the alternative of giving a “system” message to the

API to establish its role. After a brief period of trial-and-error with both tech-

niques, sending the context with each request proved to be more precise for our

specific use case. Consequently, the OpenAI API provided the label for each

text. Post-processing was needed only in the extremely rare instances (in four

cases) when the API, contrary to instructions, chose to provide explanations.

3.2 VQL Interface

Unlike traditional text-based programming languages, Visual Programming

allows users to implement computing logic using graphics and images. Vi-

sual programming languages and interfaces [104][34][60][30] come in all shapes

and forms, from blocks that mimic real-life objects to those that represent

individual operators within a language. This visual approach benefits from

the widespread familiarity with drag-and-drop interfaces, thanks to their use

in introductory programming courses and coding education for children, such

as with Scratch [97][96]. To enable users to explore and test their hypothe-

ses visually, we designed a domain-specific visual query language (VQL) for

20

hypothesis testing. Through an intuitive drag-and-drop interface, the SoDa-

TAPv2 VQL guides users through a sequence of steps, each one supported

by a special-purpose block, toward a complete and correct specification of a

hypothesis.

3.2.1 Query Builder

The VQL is implemented using Blockly [14], a client-side library that enables

the creation of block-based visual programming languages. Blockly’s inter-

locking blocks visually represent the flow of execution with statements and

variables. Figure 3.2 shows our Blockly query builder interface with one of the

tabs open. The dotted grid (labeled A) in the image is the query grid, where

blocks can be dragged in to form a query. The block labeled “Workflow” (la-

beled B) on the grid is fixed and represents the starting point for a query. The

query needs to be created within this root block. Any blocks not directly or

indirectly connected to it will be disabled, and ignored upon query execution.

On the right, there is a panel (labeled C) containing blocks separated into

categories. Each category has a specific color allowing for easy identification

of its blocks. As can be seen in the figure, the third workflow block (labeled

D) already has its inputs pre-connected. This is a Blockly feature that allows

pre-plugging common inputs for a block to aid the query setup process, re-

ducing development time. Blockly by default provides additional features like

duplicating, deleting, expanding, and collapsing blocks, and even retrieving

them from a trashcan (labeled E) after deletion. We have added tooltips for

each block that appear upon hovering, aiding with the learning curve. The

two buttons labeled F and G in Figure 3.2 can be used to save and load a

query workspace, respectively, in case the workspace is needed for future use,

or for saving frequent queries.

Query Workflow Construction

The learning curve of a query language can be affected by the fact that there is

a multitude of potential queries that the user can come up with that may not

always correspond to a valid query within the language. This is due to their

21

Figure 3.2: Query Builder Tab

often text-based and non-linear input structure. Structured query languages,

such as SQL, mitigate this problem by imposing a fixed order in how queries

are constructed (e.g. SELECT-FROM-WHERE structure), guiding the user

through a logical sequence of operations that result in a valid query. This

structured approach is indicative of declarative languages [121], where the

focus is on the “what” of the data retrieval rather than the “how”, making it

easier to retrieve and transform the required data. Similar to SQL’s logical

sequencing, our VQL, designed with hypothesis testing in mind, introduces

four default workflows. These workflows act as the starting point for the end-

user, guiding them through a structured series of steps needed to conduct an

analysis, significantly reducing the risk of errors or incomplete queries. The

workflow blocks are tailored to cover the most common types of operations

typically involved in data slicing and dicing for hypothesis testing. These

workflows will be detailed in section 3.2.2.

Query Validity Evaluation

Ensuring query validity upfront, a practice usually referred to as “compile-time

validation” as opposed to “run-time validation”, is crucial for maintaining the

integrity and efficiency of database operations. Compile-time validation checks

the correctness of inputs during the query-building phase, before execution.

22

This preemptive validation approach helps avoid the execution of erroneous

queries that can lead to system crashes or unexpected results.

Blockly provides built-in setCheck, setPreviousStatement, and setNextStatement

features that are used to ensure query validity within the VQL. The setCheck

feature allows developers to specify the type of data that should be accepted

by a block’s input connector. This is accomplished by assigning an array of

acceptable data types to each input connector, ensuring that only compatible

data types can be connected. For example, if a block is designed to perform

operations on numerical data, its setCheck property can be set to accept only

’Number’ data types. Attempting to connect a block that outputs a ‘String’

type would be disallowed, visually indicated by an inability to connect the

blocks. The setPreviousStatement and setNextStatement features manage

how blocks interlock with each other, defining which blocks can be sequen-

tially connected. For example, for a date filter block, it can be ensured that

the block connected to it is a date-selector block. These features help prevent

runtime errors from type mismatches and guide users in constructing queries

correctly by enforcing data type constraints.

Query Execution

When a user constructs a query in Blockly and hits the execute button on the

front-end, a JSON representation of their query is created. Each line in this

JSON corresponds to a specific statement block and its variables. The front-

end then performs validation ensuring no required connections are missing,

and no dropdown blocks are unselected. If the validation fails, the user is

immediately alerted of the missing inputs. Otherwise, the JSON is sent to the

backend for processing using jQuery

3.2.2 VQL Syntax and Functionality

The BNF grammar for our VQL is provided in Appendix A. The Backus-

Naur Form (BNF) [120] is a notation technique used to describe the syntax of

programming and data description languages. Each rule in BNF notation is

written with a non-terminal symbol on the left-hand side and the derivation

23

it represents on the right-hand side, separated by the “::=” special symbol.

The right-hand side can contain a combination of terminals and non-terminals.

Non-terminals are typically enclosed by the <> symbol and terminals are en-

closed by quotation marks. We occasionally add text within parenthesis to

further explain a symbol in our BNF for readability. The simplicity and clar-

ity of BNF allow language designers to unambiguously convey the structure

of language constructs.

The VQL allows operations on two levels of granularity, the tweet level,

and the author level. A tweet is equivalent to a single document in the Elastic-

search index. An author is equivalent to an aggregation of the author’s tweets

based on the author id field. The words “tweet” and “author” are only used to

simplify explanations and to keep the VQL in line with the social data analysis

pipeline that precedes it. Otherwise, its implementation is not restricted to

social media data. For example, the VQL would work just as well for a li-

brary analysis system, where a “book” would correspond to a single document

instead of a tweet, and a “book genre” would correspond to an aggregation,

instead of an author.

The user starts building their hypothesis by selecting one among four top-

level workflow blocks:

1. The data-subset-creation workflow enables the user to flexibly slice

and dice a dataset to produce a new dataset, which can be named and

saved for further processing.

2. The intra-dataset comparison workflow guides the user to create

distinct data buckets within their dataset, and compare them against

each other.

3. The inter-dataset comparison workflow is similar to the one above,

but instead of comparing data buckets from the same dataset, the user

compares two different datasets against each other.

4. Finally, the statistics workflow allows the user to conduct statisti-

cal analyses on fields of a dataset, specifying the relevant field for each

24

Figure 3.3: Data-Subset Construction

required input variable.

1. Example: data-subset-creation workflow (Filtering) Let us now

review the first workflow, shown in Figure 3.3. Note that the workflow has

two main inputs: the original dataset and the name of the data-subset to

be constructed. In this example, the user chooses to filter the “immigra-

tion dataset new” dataset, based on which to construct the new data-subset.

The workflow works almost instantaneously, using Elasticsearch’s filtered aliases

as its backbone. The user can choose to apply a “stack” of filters. Each filter

block requires the name of the field on which it should be applied. Each filter

in the sequence applies to the output of the filter preceding it; in effect, the

filters are all applied in conjunction with the original dataset. Note that the

field names are dynamically retrieved from the repository.

The SoDa-TAPv2 VQL has seven primary field name blocks: “All Fields

block”, “Numeric field block”, “Boolean Field block”, “String Field block”,

“Data Field block”, “Array Field block”, and “Dictionary Field block”. Each

of these is constructed using a Blockly “dynamic dropdown field”. The system

dynamically populates these blocks with field names using field types inferred

from the Elasticsearch index mapping. This ensures that the dropdowns are

25

always up-to-date and aligned with the current data schema. The All Fields

block contains the names of all fields found in the index. The numeric, Boolean,

and date blocks contain the fields with these respective data types in Elastic-

search. String, array, and dictionary types are not inherently distinguished

in our indices, as they are all indexed under “keyword” or “text” types. To

classify these accurately, the first document from the index is analyzed: if a

field is a list instance, it is classified as an array; if the first character of the

field is ‘{’, it is identified as a dictionary; otherwise, it is treated as a string.

Dynamically populating fields based on these types allows us to impose type

restrictions for tailored operations specific to each data type, easing user in-

teraction by minimizing manual input and reducing the likelihood of errors.

There are four different types of tweet-filtering blocks:

1. The range filter is used to filter tweets based on a range of a numeric

or a date field.

2. The comparison filter is used to filter tweets based on various operators

(=, >, <, ≥, ≤, contains, does-not-contain), and can be used with all

types of fields (the above operators are overloaded).

3. The sorting block applies an ascending or descending order to the

chosen field and is typically used as a pre-step for the position filter.

4. The position filter selects a range of tweets, between two sentinels e.g.

from position 15 to 200.

In our example, the user applies three filters on the input dataset. First, a

range filter on the text sentiment field of the tweets. This field is numeric and

the user selects the tweets that have a positive text sentiment value. Next,

the user applies a sorting filter, ordering the tweets with positive sentiment

in ascending sentiment order. Finally, the user selects the first 1000 tweets,

with a position filter. In effect, this block has selected the 1000 tweets from

the original dataset that express the least positive sentiment. In addition

to filtering tweets, the SoDa-TAPv2 VQL supports three types of author

filtering blocks.

26

1. The tweet count filter selects authors whose number of tweets is within

the specified numeric range. For example, select authors who have be-

tween 30 and 50 tweets.

2. The author metric filter selects authors based on an aggregation met-

ric, i.e., average, median, minimum, maximum, sum, or median-absolute-

deviation, of a numeric variable of all of the tweets for that author. For

example, one may need to examine “generally happy authors” and they

would do that by selecting authors for whom the average text sentiment

of their tweets is above 0.

3. The count comparison filter selects authors based on the comparison

of two distinct range queries. This approach is particularly useful when

outliers might skew the measures of central tendency used in the author

metric filter. For instance, to identify generally happy authors, one might

typically use an author metric filter to select authors whose average

text sentiment exceeds 0. However, this average can be influenced by

extreme values. To address this, the count comparison filter can be

applied to ensure a more robust selection by specifying that (the number

of tweets with a text sentiment greater than 0) (is greater than) (the

number of tweets with a text sentiment less than 0).

Lastly, the VQL supports saving a specific bucket using a bucket-picker

block. Bucketing is explained in the next example (intra-dataset comparison).

Essentially, this block allows you to create buckets within a dataset using a

technique like clustering, and then indicate which specific bucket/cluster you

want to retain/save as a data-subset.

2. Example: intra-dataset comparison (using Bucketing) Let us now

move on to a second more complex example, to illustrate the intra-dataset

comparison workflow. As discussed previously, the intra-dataset comparison

workflow guides the user to create distinct data buckets within their dataset

and compare them against each other. Examples of its usage are shown in

chapter 4 (Evaluation).

27

Instrumental to the intra-dataset comparison workflow are the bucketing

blocks that allow users to create data buckets within a dataset. These buckets

can then be compared against each other using a plot or a statistical test.

There are four types of bucketing blocks:

1. Clustering based on the tweet’s text using two different clustering al-

gorithms;

2. Classification of the tweets according to an input model;

3. Continuous bucketing based on a numerical field and one of a set

of alternative methods for identifying breaks in the continuous range of

values of this field; and

4. Discrete bucketing based on a categorical field of the tweets.

The clustering block requires that the tweets’ texts be vectorized. As

the vectorization model, we currently use Google Code’s Word2Vec model [43],

trained and fine-tuned on the Google News Dataset (100 billion words), named

“GoogleNewsvectors-negative300”. The vectorization process transforms ev-

ery word in each tweet into a 300-dimensional vector. These vectors are then

averaged to produce a 300-dimensional vector representation of the tweet. For

author-level analysis i.e. if clusters of authors are required rather than clus-

ters of tweets, the mean of each author’s vectorized tweets is taken to get a

300-dimensional vector representation of each author. The vectors can then

be fed to a clustering algorithm.

SoDa-TAPv2 supports two clustering algorithms:

• Flat centroid-based clustering (using k-means) This can be run in

two ways. Either the user can manually specify the number of clusters

to be created, as is common with k-means, or use the automated k-

means block. With the automated block, the k-means algorithm is run

multiple times, using a different number of clusters each time, and the

best number of clusters is automatically determined using the silhouette

score.

28

• Hierarchical Density-Based Clustering (using HDBSCAN) HDB-

SCAN allows hierarchical clustering without having to manually identify

the optimal number of clusters. Additionally, contrary to the centroid-

based K-means clustering algorithm that assumes the clusters to ex-

ist within a Gaussian sphere, HDBSCAN can adapt to obscure shapes

within the dataset, and also identify the data points that are noise

[67][48].

The classification block takes advantage of the recent advances in LLMs

(Large Language Models) to classify text using a variety of HuggingFace [70]

models. For author-level analysis, this text is a concatenation of all of that

author’s tweet’s texts. Although this approach works flawlessly for tweet-level

classification, the author-level classification is currently problematic due to

the input token limits of HuggingFace models. A better approach is required

specifically for user-level classification. The models available in SoDa-TAPv2

are listed below.

1. cardiffnlp/tweet-topic-21-single for tweet topic classification

2. yiyanghkust/finbert-esg-9-categories for finance topic classification

3. SamLowe/roberta-base-go emotions for emotion classification

4. bucketresearch/politicalBiasBERT for political bias classification

5. martin-ha/toxic-comment-model for toxicity classification

6. papluca/xlm-roberta-base-language-detection for language classification

7. nlptown/bert-base-multilingualuncased-sentiment

8. cardiffnlp/twitter-roberta-basesentiment-latest for sentiment classifica-

tion

9. mohameddhiab/humor-no-humor for humor classification

10. snlp/roberta-base-formality-ranker for formal/informal classification

29

11. cardiffnlp/twitter-roberta-base-irony for irony/non-irony classification

We also provide a list of distilled versions of these classification models, if

available. Distilled models are optimized for faster performance, representing

a compact “student” model to replicate the behavior of a larger “teacher”

model, based on the same foundational architecture. This process of creating

a student model reduces computational demands while maintaining similar,

though not as great accuracy.

The continuous bucketing block allows the creation of buckets based on

a continuous numeric variable. The user provides the numeric field based on

which they want to create buckets. For author-level analysis, bucketing would

be done based on the average of that numeric field across all the author’s

tweets. The user selects one of the following methods to create the buckets.

1. Jenks Natural Breaks [122] minimize the variance within clusters

and maximize the variance between them. It is particularly useful for

identifying natural groupings in the data that aren’t obvious just by

looking at the numbers.

2. Uniform Breaks divide the data into evenly spaced intervals from the

minimum to the maximum value.

3. Quartile Breaks organize data into four equal parts based on quantiles.

This approach ensures that each bucket contains a roughly equal number

of data points but may vary widely in the range of the data values. This

is particularly useful in scenarios when Jenks Natural breaks or Uniform

breaks might produce buckets with disproportionate distributions, where

some buckets might be overly dense while others are sparse.

The unique bucketing block categorizes data based on discrete variables.

This can include categorical data such as author IDs, the number of modalities

of a tweet (likes, comments, hashtags, etc.), or a non-numeric attribute that

distinguishes one piece of data from another.

30

3. Example: Plotting and Statistical Analyses Once the user has con-

structed the subsets of interest, either using a data-subset-creation workflow or

through buckets created using any of the previously mentioned methods (clus-

tering, classification, continuous breaks, unique breaks), these buckets can now

be compared against each other based on any user-selected variable, using one

of the plotting blocks available: pie-charts, single-variable plots like boxplots

and violin plots, plots with two variables like scatter plots, faceted box plots,

faceted violin plots, line plots (with a date type being one of the variables),

and faceted scatter plots. The plots with two variables aid in assessing the

effect of a moderating variable, which in this case would be the variable based

on which the bucketing was done. Similarly, after the buckets have been cre-

ated, they can be compared using statistical tests. Currently, the system has

blocks for the following statistical analyses on variables from the buckets:

• Covariance: Measures the directional relationship between two vari-

ables, indicating how much the variables change together.

• Correlation: Provides a scaled version of covariance that measures

both the strength and direction of the linear relationship between two

variables.

• T-test: Assesses whether the means of two groups are statistically dif-

ferent from each other. This is useful for hypothesis testing between two

conditions or treatments.

• ANOVA (Analysis of Variance): Tests differences in means across

three or more groups, helping to determine if any of the group means

are significantly different from each other.

• ANCOVA (Analysis of Covariance): Similar to ANOVA, but it

includes one or more covariate variables that you control for, improving

the accuracy of the analysis.

• MANOVA (Multivariate Analysis of Variance): An extension of

ANOVA that can analyze multiple dependent variables simultaneously,

31

determining whether the vector of means of several variables is different

across groups.

• MANCOVA (Multivariate Analysis of Covariance): Combines

the principles of MANOVA and ANCOVA, analyzing multiple dependent

variables while controlling for one or more covariates.

3.3 The VQL Engine

The SoDa-TAPv2 backend APIs are powered using Flask [39], a lightweight

WSGI [119] (Web Server Gateway Interface) web application framework. Flask

blueprints [72] are used for the backend design. A blueprint is a Flask con-

struct that allows the separation of a Flask application into separate related

components. This ensures that our API implementation is highly modular and

easily extendable.

The query executed by the user on the front-end is handled by a Flask

endpoint upon reception. This endpoint checks if the user’s query has already

been executed against a Redis [86] cache. After determining whether a fresh

query execution is necessary or not, it either sends back the cached results or

relays the new query to the Celery Task Queue.

SoDa-TAPv2 uses Redis for caching query responses. Redis is an in-memory

key-value database, cache, and message broker. The JSON from the user’s

query is hashed using MD5 to create a unique and consistent key for caching.

The key is used to check if a response for this particular query already exists.

If there is a cache hit, the response is immediately returned to the front-end,

bypassing the need for re-execution. Caching is also implemented at a fine-

grained level, such that portions of a query are also cached. If a portion of

a query containing a series of commands has been executed before, the result

for that specific portion of commands will be returned directly from the cache

for a future query that has the same series of commands as a subset, for the

execution of subsequent commands in the query.

32

3.3.1 Task Queueing

SoDa-TAPv2 uses Celery [20], an asynchronous task queue based on distributed

message passing, for queueing and managing query requests. Celery is par-

ticularly suited for tasks that require execution in the background as it does

not block the main thread of an application while the task is being processed.

Flower [40], a Celery monitoring application, is used to monitor the status of

the Celery workers and tasks.

Once a query is submitted and there is a cache miss, a Celery worker is

assigned the task for execution. At this point, the front-end is informed that

the task has been successfully accepted. The front-end then begins pinging

another Flask endpoint at half-second intervals to retrieve the state of the

Celery task. This endpoint informs the front-end whether the task is:

• Completed: In this case, the result of the query is returned.

• Pending: If the task is pending, the user has the option to terminate

it using another endpoint, which is particularly useful in cases where

processing a huge dataset takes excessive time.

• Failed: If the task fails due to an error, the front-end is informed so the

user can be alerted.

The incorporation of this task-queueing component with the help of Celery

allows the VQL engine to handle multiple simultaneous queries, across different

browser tabs or sessions.

3.3.2 Query Translator

Each line in the JSON representation of the user query sent from the front-

end corresponds to a distinct command. The Query Translator is a function

within the VQL Engine that maps these commands to distinct functions in

the Analysis Engine. Each command is processed sequentially, from the first

JSON line to the last. First, parameters are extracted from the command, and

then, a function corresponding to the command within the Analysis Engine is

called, passing in the extracted parameters.

33

3.3.3 Analysis Engine

Data-subset Creation

A data-subset (or data slice) is one of the primary concepts within our VQL.

In a typical data analysis script, data transformation often yields intermediate

data representations, on a particular line of code. Traditionally, these inter-

mediate representations are transient, recalculated with each execution of the

script, and restricted within a particular script. This inability to easily reuse

these slices across different analyses or scripts results in redundant process-

ing and a lack of fluidity in data exploration. The ability to do so would be

particularly useful within our domain of hypothesis testing, where the aim is

often to compare multiple groups/slices against each other.

The backbone of this feature within the VQL is an Elasticsearch “filtered

alias” [33]. A plain Elasticsearch alias is a reference or pointer to one or

more indices and can be thought of as a soft link to the actual resource,

rather than a duplicate. A filtered alias is a type of alias that has a filter

applied in its definition, such that every time the alias is called upon, it first

applies the specified filter in its definition to the index and then returns that

specific subset. Alias creation in Elasticsearch is notably swift, providing near-

instantaneous referencing of the defined subset.

Once the user has selected specific filters to define a data slice using the

VQL’s “data-subset-creation” workflow, these filters are embedded into the

alias definition. This filtered alias is then presented to the user as if it were

any ordinary dataset, allowing for analysis or comparison with other data

slices. When the user performs an operation on this filtered alias, Elastic-

search applies the filters within the alias definition behind the scenes to acquire

that exact data slice from the original index before further processing. Elas-

ticsearch’s caching mechanism plays a crucial role, ensuring that subsequent

accesses to the same alias are expedited, avoiding the need to reapply filters

or reprocess the entire initial index every time.

34

Querying the Elasticsearch Repository

Our decision to opt for Elasticsearch as the data repository in SoDa-TAPv2,

replacing CrateDB, was influenced by the availability of the “Elasticsearch-

dsl-py” library [32], a high-level library providing a Pythonic way of running

queries directly within Elasticsearch. The Elasticsearch DSL offers an ever-

increasing variety of filtering and aggregation features that were deemed nec-

essary for current and future releases of the system.

Pushdown processing with Elasticsearch-dsl-py: SoDa-TAPv2 is in-

tended to support the analysis of large datasets; therefore, it was crucial that

the processing be done closest to the data source, aligning with the concept of

pushdown processing [83][82]. This technique involves applying possible data

transformations directly at the database level, reducing delays caused by the

need to fetch huge amounts of data to be operated on elsewhere, often losing

out on the processing optimizations offered by modern search engines. By

implementing pushdown processing, user-built queries are transformed into

queries understandable to the data store and sent to it for optimized data

retrieval [118]. The analysis engine, instead of fetching the data and then

transforming it inside Python, uses elasticsearch-dsl-py to carry out the first

few steps of data processing directly within Elasticsearch, i.e. operations like

filtering, sorting, aggregating, applying aggregation filters, or molding data

into a particular format necessary for further processing. As a result, the size

of the returned data is much smaller and often closer to the final result than

otherwise. These benefits are augmented by Elasticsearch’s out-of-the-box

query caching and distributed data handling capabilities.

Query Optimization with Elasticsearch-dsl-py: In traditional data pro-

cessing scripts, operations are often executed sequentially. Each line of code,

such as a single filter triggers an immediate operation for its result to be uti-

lized in subsequent operations. This approach limits the abilities of modern

libraries and search engines to optimize query execution e.g. executing multi-

ple filters in a single dataset pass. Query Optimization involves the evaluation

35

of multiple potential execution plans to select the one that minimizes the cost

in terms of processing time and resource consumption.

Utilizing Elasticsearch-dsl-py, SoDa-TAPv2 embraces a lazy evaluation ap-

proach to execute search queries, creating a “search object” to encapsulate

multiple operations by chaining them within a single request. The VQL en-

gine gathers all user-placed filters, splits, aggregations, aggregation filters, and

sorting functions, as well as operations needed to mold a request-response into

a specific input format for subsequent operations, into a single search object

in the back-end. When a subsequent operation like bucketing requires the

result of this combined search object, a single API request is made to Elas-

ticsearch at that specific moment, rather than multiple, isolated requests at

a time when the result might not be required. Elasticsearch intelligently op-

timizes the execution of the search object by reordering operations internally

to minimize processing time and resource consumption. Also, since the entire

query is sent to Elasticsearch as a single unified request, there’s a reduction

in latency, and the need to wait for one operation’s completion before starting

another is eliminated.

The Elasticsearch querying capabilities of the analysis engine make use of

the following query and aggregation constructs:

• Range Queries [85]

• Term-level queries [109] like term [108], wildcard [123], and terms [111]

• Bucket aggregations [16] like variable width histogram [117], filter [37],

and terms [110]

• Pipeline aggregations [78] like bucket selector [17] and extended stats bucket

[36]

• Metric aggregations [68] like avg [9], cardinality [19], and top hits [114]

• Scripted Metric Aggregations [98] in multiple phases (init, map, combine,

reduce)

36

Bucketing

The bucketing functionality in the Analyzer engine, used for creating buckets

within a dataset to compare them against each other, or save a particular

bucket for future use, utilizes a variety of Python modules and libraries. The

primary ones used are shown in Table 3.1.

Table 3.1: Libraries used for the bucketing functionality

Module/Library Used for
Pandas [77], Numpy [75] Data Manipulation

jenkspy [56] Jenks Natural Breaks
gensim.models [41] Loading word2vec model

transformers [51] Classification
sklearn.cluster [95] K-Means

hdbscan [112] HDBSCAN

Statistical Analyses

SoDa-TAPv2 includes the statistics modules listed in Table 3.2 below. The

purpose of each measure/test is explained in Example 3, in section 3.2.2

Table 3.2: Libraries used for the statistics functionality

Module/Library Measure/Test
elasticsearch-py [42] Descriptive Statistics
elasticsearch-py [42] Correlation
elasticsearch-py [42] Covariance

sklearn.cluster [95] T-test
statsmodel.api.stats [103] AN(C)OVA

statsmodels.multivariate.manova [103] MAN(C)OVA

3.4 Interactive Dataset Exploration

The Dataset Preview tab provides the user with high-level insights into the

available datasets, including pie charts, treemaps, and a table view. A drop-

down in the toolbar lists available datasets fetched from Elasticsearch. A

refresh button is provided to fetch the newly created sub-datasets and update

the drop-down with them without needing a page-reload. The toolbar consists

37

of analysis icons representing the type of analysis that will be done on the

entirety of the dataset, along with the type of chart that will be generated,

indicated by a mini-icon on the bottom right of the image. The name of the

analysis is also displayed upon hovering over the icon. The toolbar can be seen

in Figure 3.4, consisting of the following buttons, from left to right:

• dataset selection dropdown and dropdown refresh button below it.

• table view of the entire dataset.

• pie-charts of the distribution of hashtags, handles, and emojis, respec-

tively.

• treemaps representing distributions of emotions, big-five personality traits,

personal values, and humor respectively.

• sunburst charts representing distributions of emotions, big-five person-

ality traits, personal values, and humor respectively.

Figure 3.4: Dataset Preview toolbar

Table View Figure 3.5 shows the table view. The table view is created

using DataTables [27], a jQuery plugin that transforms standard HTML tables

into interactive tables capable of handling large datasets with features like

pagination. We use its server-side processing feature to dynamically populate

the column names using the Elasticsearch index mapping. The rows are filled

by fetching a sample of documents from the index, as specified by the “show n

entries” drop-down and the page number selected, on-demand, for efficiency.

Visualizations Figures 3.6 and 3.7 demonstrate an example of a treemap

and a sunburst chart respectively, retrieved for a dataset regarding immigra-

tion. The plots are interactive and can be zoomed in and out, and a category

can be clicked to expand it for a closer look.

38

Figure 3.5: Table View

Figure 3.6: Sample Treemap for Personal Values

The plotting in SoDa-TAPv2 is done using “Plotly.js” [80], a charting li-

brary that enables the creation of highly interactive visualizations. The current

system iteration renders the plots directly on the client-side, allowing for the

convenient interactivity features that “Plotly.js” offers out-of-the-box. This

includes features like zooming, panning, saving plots, hiding/showing portions

of the plot, and hovering for detailed insights. However, this interactivity

comes at a cost, since client-side rendering can occasionally put an unneces-

sary burden on the client for massive datasets. To minimize this burden, we

ensure most of the data manipulation is done on the server-side before the data

is sent to the client, only requiring the client to do minimal data manipulation

to mold the data into a format necessary to generate the plot. Additionally,

to overcome this problem, we have implemented two alternative server-side

rendering approaches, one available in the current iteration and the other as

our preferred approach for the next SoDa-TAPv2 iteration. In our first al-

39

Figure 3.7: Sample Sunburst Chart for Emotions

ternative approach, we use “Pyppeteer” [84] to perform server-side rendering

with a headless browser that renders the plot and saves its HTML content.

This HTML content is then sent to the client to be displayed. This approach

currently works with all our plots but unfortunately causes them to lose out

on their interactivity, only displaying a static image. The second alternative,

which will be our preferred approach in the next iteration, is currently im-

plemented for some of the plots. It generates the plots on the server-side in

Python, using the “plotly.express” [79] package, which allows the creation of

HTML that includes the interactivity component. The client-side can then

access this interactive plot generated on the server-side. Additional exam-

40

ples of the generated plots available in SoDa-TAPv2 can be seen in Chapter 4

(Evaluation).

41

Chapter 4

Evaluation

We used our system to analyze two datasets, listed in Table 4.1, with three

separate studies. Our work with the first dataset was formative for our system:

the study (Energy Conversations) was conducted in parallel with the system

development and provided requirements for its development. The other two

studies (Immigration Conversations, and Replication Study) were evaluative

and were conducted after the system development was completed. The “Im-

migration Conversations” study used the “Immigration-Sample” dataset, and

the “Thesis Replication” study used the “Energy-East” dataset from the first

study.

In total, we conducted four experiments: (i) a study of the opinions and

sentiments of Twitter users discussing energy projects; (ii) a brief comparative

analysis of influential and non-influential users discussing the Immigration and

Travel Ban announced by the Trump administration; (iii) the replication of

an undergraduate thesis-level Twitter study; (iv) a systematic performance

evaluation.

4.1 Energy Conversations

This study was conducted in parallel with the development of the system,

and, to a degree, informed the design of its functionalities. It is currently

under review in an RSO (Research in the Sociology of Organizations) [88]

volume titled ”Moving beyond the microfoundations and macrofoundations of

institutions”.

42

Table 4.1: Datasets

Dataset fr
o
m

(D
D
-M

M
-Y

Y
Y
Y
)

to
(D

D
-M

M
-Y

Y
Y
Y
)

#
T
w
e
e
ts

#
A
u
th

o
rs

Description
Energy-East 07-06-

2013
16-06-
2021

144,561 34,864 The dataset (re-
trieved using
twarc2) contains
tweets regarding
the controver-
sial energy-east
pipeline project in
Canada.

Immigration-
Sample

30-01-
2017

20-04-
2017

1,000,000 526,216 The dataset is a
sample of a Har-
vard Dataverse
dataset [64] con-
taining tweets re-
lated to the Trump
Administration’s
immigration and
travel ban execu-
tive order.

In this study, we explored what people had to say about the Energy East

Pipeline, as part of a broader project on energy system transformation and

contestation [47]. TransCanada Pipelines announced the 4,600 km project

on August 1, 2013, to carry 1.1 million barrels per day of diluted bitumen

from western Canada (primarily Alberta’s oilsands) and North Dakota US

to refineries in central Canada (primarily Quebec) and New Brunswick on the

east coast. Other highly controversial topics being contemporaneously debated

were the oilsands’ greenhouse gas emissions and tailings ponds, expansion of

the Keystone XL pipeline in the US, pipelines leaking into the Great lakes, and

Indigenous sovereignty over their lands. This project was emblematic of these

43

broader issues and, thus, became heavily debated among multiple groups on

economic, political, environmental, and moral grounds. Although the project

ultimately was cancelled by TransCanada on October 5, 2017, #energyeast

continued to feed pipeline debates for years afterward.

Data Collection

We utilized the Twitter API’s full-archive search endpoint to identify all tweets

with the “#energyeast” hashtag. Using the tweet IDs and twarc2 [115], we

rehydrated these tweets and their attached images (if any). The resulting data

set contained a total of 144,561 tweets published between June 7, 2013, and

June 16, 2021. Included in this corpus were 28,319 tweets, 3,695 tweets with

an embedded quote, 107,867 retweets, and 4,680 replies.

Tweet metadata

We parsed and formatted the resulting set of tweet objects and then extracted

and computed: (i) the tweet’s text; (ii) its follow-up metrics: retweet count, re-

ply count, likes count, quote count; (iii) created at timestamp; (iv) the URL(s)

included in the tweet and their count (if any); (v) the hashtag(s) included in

the tweet and their count (if any); (viii) mention(s) of other users included in

the tweet and their count (if any). For each tweet, we computed its character

count with all the elements present. If a URL(s) was seen during this process,

we counted it with a fixed value of 22, because of Twitter’s URL shortener.

We also calculated three influence metrics: engagement rate considers retweets

and likes (i), or retweets, likes, replies and quotes (ii), divided by the number

of followers of the tweet’s author multiplied by 100. The extended reach met-

ric is based on the number of retweets divided by the total number of tweets

by the author, multiplied by 100. The user’s potential impressions metric is

based on the number of the user’s followers multiplied by the total number

of the user’s tweet count [46][102]. We also gathered descriptive information

about the user who posted the tweet, including (i) their public profile met-

rics: followers count, following count, tweet count, listed count; (ii) whether

the user was verified; and (iii) their screen name. Based on these variables,

44

we examined the tweets’ multimodal combinations of text and images. Malik

et al. [66] analyzed combinations of three modes: text, URL links, and pho-

tos. We expanded on this to create a modality index ranging from 1 (for a

tweet that has only text including the hashtag from the initial search “#ener-

gyeast”) to 6 (for a tweet that includes text, URLs, hashtags (different than

“#energyeast”), user handles, emojis, and photos).

Sampling tweets with text and image

Focusing on original tweets only (to eliminate duplicate images in retweets),

a total of 5,696 images were identified. To simplify the analysis and preclude

the introduction of confounding variables implicit in the influence of multi-

ple images within a tweet, we ignored tweets with links to multiple images,

which left us with 5,011 images. Finally, we sorted the corresponding tweets

chronologically based on the tweet’s creation timestamp, and we sampled every

fifth tweet to collect the dataset of 1,000 tweets, along with their accompa-

nying text, images, and the influence metrics defined above, i.e., engagement,

extended reach, and possible impressions.

Labeling text and images

We used OpenAI’s GPT-3.5 Turbo Instruct API to label tweet text, and

Google Cloud Vision API along with a HuggingFace model to classify im-

ages. The procedure for text labeling and image labeling are detailed in 3.1.2,

under the headings ”GPT 3.5 Turbo Instruct API integration” and ”Fact vs

Emotion Image Classification” respectively.

1) What types of users frequently tweeted about #EnergyEast, and

what did they talk about? We used the author tweet count filter to create

a data slice containing tweets by users who posted more than 100 times, as

shown in Figure 4.1. We then used the table view on our preview tab to

observe the types of authors and what they were talking about.

We noticed that although there was a total of 144,561 tweets in our cor-

pus, the conversation was highly concentrated among a few accounts. Only 141

45

Figure 4.1: Create data slice of tweets by users with 100-plus tweets

users (re)tweeted about #energyeast more than 100 times during our study

period. Of these, 103 were individual people, 35 were organizations, and three

were suspended or deleted accounts. This concentrated group of users also

tended to take political positions towards the pipeline: 45 (32%) were envi-

ronmental activists and 50 actively criticized all politicians (28%), conservative

politicians (5%), or Prime Minister Trudeau specifically (10%). There were

fewer moderate voices: eight supported Indigenous rights (6%), seven were

media outlets (5%), five supported sustainable development (4%), five were

energy activists (4%), one was a government agency (Canadian Energy Regu-

lator), and one was a politician.

2) How does tweet length affect viewer engagement on #EnergyEast

Tweets? We used our “inter-dataset comparison workflow”, along with the

“quartile breaks” block to see the impact of character count on four fields;

number of likes, number of retweets, number of quotes, and number of replies.

The query for observing the number of likes within quartiles is shown in Figure

4.1. The variable in the boxplot can be changed for the other fields.

Figure 4.3 shows the results of the queries for each variable. We found

that tweet length exhibited an inverted U relationship with viewers’ responses.

In our preliminary analysis, these boxplots are largely overlapping, and the

differences are not statistically significant. Follow-on multivariate analysis will

include other user and tweet-level variables to sharpen our analysis. It appears

that relatively shorter original tweets, albeit not too short (i.e., tweets in the

46

Figure 4.2: Compare number of likes in quartiles, based on tweet character
count

second quartile in terms of length), and tweets with a high character count

(i.e., tweets in the fourth quartile in terms of length), both tend to garner

larger response rates. There are potentially two reasons why tweets that were

neither too short nor too long were seen as more engaging: (i) they were text-

only messages, which made them simple to digest; and (ii) they contained text

plus several URLs, which artificially increased their character count without

complicating their message. This may be because they thought shorter texts

would be easier to read, parse, and understand. Hence their high follow-up

interaction particularly with semi-short messages could allow the user to have

a faster reaction time while not spending too much time trying to understand

a long text.

3) How do different multimodal elements in tweets impact viewer

engagement and response rates? The multimodality-index is calculated

during the ingestion phase. There are multiple ways to get a score from 2

to 6. The index adds up for any element present in the tweet [text, URL,

hashtag (different than “#energyeast”), handle, emoji and photo]. Besides

47

(a) Likes by Quartile (b) Retweets by Quartile

(c) Quotes by Quartile (d) Replies by Quartile

Figure 4.3: Tweet length versus viewer response

48

the count of multimodal elements, we also measure the presence of images —

which is the single most influential multimodal element for engagement rate.

To measure the impact of the multi-modality index on viewer response rates,

we used a query similar to , simply replacing the “text char count” variable

with the “multi-modality index” variable.

Figure 4.4 reports the relationships between tweet multimodality and view-

ers’ response. As can be seen in the four boxplots, more multimodal tweets

have distinctly higher responses (retweets, quotes, replies, likes) than text-only

tweets. There were three predominant indexes: 2, 3, and 4, where 3 contained

the highest number of tweets. This means that the presence of at least three

elements was mostly used by tweeters. By inspecting the interactions, we

observed that ‘likes’ and ‘retweets’ were the most predominant ones, likely

because these responses are most easily accessible to users. This analysis sup-

ports our hypothesis that tweets with multimodal elements are more likely to

capture viewers’ attention, engagement, and response.

4) How do factual and emotional appeals in text and images influence

tweet engagement? As we analyzed the tweets, instead of offering purely

emotional or factual claims, we found that users frequently invoked claims

that were factual and emotional, and utilized both text and images, resulting

in multimodal hybridized claims. Thus, rather than create a 2 x 2 for factual

x emotional and text x image, we have created a 3 x 3 to include factual +

emotional texts and images. Figure 4.5 shows examples of our auto-labeling

of tweets’ factual versus emotional appeals in text in images.

In the top left corner of Figure 4.5 is a sample tweet with factual text and

factual image. Fact-based text presented evidence as statistics and references

to experts others and fact-based value systems (economics, science, law, energy

security). Fact-based images gave complementary information such as maps,

figures, and infographics.

In the bottom right corner of Figure 4.5 is a sample tweet with emotional

text and emotional image. Emotional text invoked group-level emotions like

shame and love; individual-level emotions like frustration and anger; and val-

49

(a) Likes by Multimodality Index (b) Retweets by Multimodality Index

(c) Quotes by Multimodality Index (d) Replies by Multimodality Index

Figure 4.4: Tweet Multimodality versus viewer response

50

(a) Factual Text & Fac-
tual Image

(b) Factual+Emotional
Text & Factual Image

(c) Emotional Text &
Factual Image

(d) Factual Text & Fac-
tual+Emotional Image

(e) Factual+Emotional
Text & Fac-
tual+Emotional Image

(f) Emotional Text &
Factual+Emotional Im-
age

(g) Factual Text & Emo-
tional Image

(h) Factual+Emotional
Text & Emotional Image

(i) Emotional Text &
Emotional Image

Figure 4.5: Sample tweets for Tweets Text and Images (Factual, Emotion or
Both)

51

ues of self-transcendence, benevolence, universalism, and hedonism. The emo-

tional appeals were positive high-arousal emotions (excitement, attraction),

negative high-arousal emotions (anger), and negative low-arousal emotions

(frustration, fear). The emotional images focused on peoples’ faces to reinforce

the emotional appeals, and create emotional transference, and connection to

moral domains. Images were funny, cute, and often brightly colored cartoons.

In the center of Figure 4.5 is a sample tweet with factual + emotional

text and factual + emotional image. These hybridized claims supported irony

(saying one thing while meaning another), hyperbole (over-exaggeration), and

sarcasm (use of irony to mock) to create negatively-based humor. The focus of

actors’ ire was the hypocrisy of politicians, energy development policies, and

regulatory review processes.

The remaining cells of Figure 4.5 give sample tweets that have varying

degrees of hybridized claims. Tweets with factual text and emotional images

gave numbers, statistics, and economic arguments in the text, supplemented

with the faces of farmers, workers, and politicians. This script is flipped for

tweets with emotional texts and factual images. The text was often a sarcastic

criticism of factual imagery like corporate logos, maps, and machinery. Factual

texts and factual + emotional images used a hybridized version of facts and

statistics with imagery that emphasized politicians’ hypocrisy, broken maps

with spilling oil, and poster-like appeals to activists. Emotional text and

factual + emotional images have emotional appeals and images that emphasize

the hypocrisy of politicians, activists, and energy policies.

4.2 Immigration Conversations

This study conducted a comparative analysis of users with a different degree of

popularity in a sample of the Harvard Dataverse Immigration and Travel Ban

Tweets dataset [64]. The dataset contains tweets related to the “immigration

and travel ban executive order announced by the Trump administration in

January 2017” [52]. We used SoDa-TAPv2 to investigate two questions.

52

1) Do tweets made by users with varying popularity exhibit different

sentiments? We use the bucketing workflow to assess this difference. To

ensure we are working with very dense buckets, we conduct this particular

analysis on tweets made by users with less than 10,000 followers. We first

apply a tweet filter to only keep the tweets where user followers count is less

than 10,000. Then, we use the “uniform breaks” bucketing to create 8 different

buckets with varying follower count ranges and use a boxplot to check the

distribution of tweets within these buckets. Figure 4.6 shows the relevant

query. 4.7 shows the resultant plot. As expected, the tweets for all buckets

generally have a negative sentiment since the dataset is about a controversial

topic. A preliminary observation from the plot might be that except for the 7th

bucket, the median negative sentiment tends to get more negative as the user

follower count increases. We can use an ANOVA to get further insights into

these buckets’ differences. To do this, we simply replace the Box Plot block

in the query with an ANOVA block. Doing so, we get the following results:

”F-Statistic = 3.34, p-Value = 0.00147”. The results hint that there is a

statistically significant difference between the means of the buckets, and the

variation between the buckets is not due to random chance. Further analyses

might be needed to confirm this.

Figure 4.6: Query - Sentiment of Tweets made by Users with varying popu-
larity

53

Figure 4.7: Plot - Sentiment of Tweets made by Users with varying popularity

Additionally, we can use a faceted box plot to observe whether this relation

between users’ follower count and text sentiment differs between verified and

non-verified users. This type of faceted plotting is useful to observe the impact

of a moderating variable on the relation between two other variables. Figure

4.8 shows how such a faceted box plot can be created and figure 4.9 shows the

resultant plot. A possible observation might be that while verified users in the

three least influential categories of users tend to have more negative tweets in

general than their non-verified counterparts, this doesn’t seem to always be

the case as the follower count increases. Further analysis is needed to make

any concrete claims. SoDa-TAPv2 allows the creation of faceted scatter plots

and faceted violin plots as well.

Figure 4.8: Query - Effect of a moderating variable

54

Figure 4.9: Plot - Effect of a moderating variable

(2) Is there a difference in the phrasing of tweets between users

with varying popularity? Do the words used demonstrate different

big-five personality traits? To assess this difference, we create 9 different

data-subsets to generate treemaps for each of them. We use the create-data-

subset workflow along with a bucket-picker using natural breaks, to create 9

different data-subsets one by one. We only consider tweets of users with less

than 100000 followers to ensure dense buckets. The determined natural breaks

are shown in Figure 4.10.

Figure 4.10: Followers data-subset ranges for immigration dataset

Figure 4.11 shows how we save the first bucket created with natural breaks

as a new data-subset.

We run the same workflow 8 times changing the bucket number each time

to create 9 different data-subsets based on natural breaks. We then filter each

data-subset to retain a maximum of 10000 tweets in each data-subset to ensure

55

Figure 4.11: Create data-subset workflow with bucket-picker

consistency in density across data-subsets. We regard the first 3 sub-datasets

as tweets by low-influence users, the second 3 as tweets by medium-influence

users, and the last 3 as tweets by high-influence users. Once the data-subsets

are created, we use the data preview tab to construct treemaps of big-five

personality traits for each data-subset. Figure 4.12 shows a 3x3 grid created

using the treemaps of big-five personality traits for the 9 data-subsets. They

are placed in order of a growing number of followers.

(a) Low Influence - 1 (b) Low Influence - 2 (c) Low Influence - 3

(d) Medium Influence - 1 (e) Medium Influence - 2 (f) Medium Influence - 3

(g) High Influence - 1 (h) High Influence - 2 (i) High Influence - 3

Figure 4.12: Big-Five Personality Traits For Users with Varying Popularity

A quick observation looking at Figure 4.12 is that although the first five

data-subsets (Low Influence-1 to Medium Influence-2) strictly exhibit the or-

56

der agreeableness -> neuroticism -> openness, this order tends to shift within

users with higher influence (Medium Influence-3 to High Influence-3) who typ-

ically start exhibiting a higher amount of openness, with openness as the most

dominant trait in the last 2 treemaps (High Influence-2 & High Influence-3).

Therefore, it might be up for speculation that users with a higher influence

tend to demonstrate more openness, while less influential users tend to be

more agreeable.

Note: It is important to realize that we have made the above observation

based on the change in the dominant order of personality traits, and not

simply based on the frequency of the appearance of words in general. This is

because the distribution of words across the treemap is largely influenced by

the dictionary used, and one category (e.g. agreeableness) might have more

common words than the other categories; therefore it might naturally appear

higher up in the list. However, as we have observed, the shifting order in

the frequently used words might indicate a difference in big-five personality

traits across lower and higher influence users. Additionally, the purpose of

this particular analysis is only to demonstrate how SoDa-TAPv2 can be used

to make preliminary observations using its preview features. As such, further

observation is required to make any concrete claims.

4.3 Replication study

To evaluate the generality of SoDa-TAPv2, we replicated some of the methodol-

ogy of a research study. Our approach was not aimed at replicating or verifying

the exact results of the study, since we are using a different dataset, but at

demonstrating that our platform can efficiently handle the analyses commonly

required in such studies. As such, we make no statements about the quality or

accuracy of the research but simply demonstrate how the statistics and plots

generated in it can conveniently be generated on our platform. We demon-

strate each of the relevant queries on our VQL, and the resultant plots, high-

lighting the platform’s ability to generate comparable visualizations quickly

and conveniently. The original study we attempt to replicate the methodology

57

Figure 4.13: Examining descriptive statistics for a variable (Step 1)

of is a senior honors thesis work, titled “Understanding the Factors that Influ-

ence Tweet Popularity” [55], completed at the University of New Hampshire.

We chose this study as it contains multiple visualizations and is straightfor-

ward enough for us to demonstrate some basic functionality of our platform.

We will take a step-by-step approach, mentioning a step taken in the paper,

and then demonstrating the equivalent methodology on our platform.

1) Step 1: The study lists the descriptive statistics for each of the

variables used in their regression model, stating the mean, median,

and standard deviation of each variable. Using SoDa-TAPv2 we can

use the statistics workflow, as shown in Figure 4.13, to generate the descrip-

tive statistics for a variable, returning its min, max, average, sum, sum of

squares, population variance, sampling variance, standard deviation, popu-

lation standard deviation, sampling standard deviation, standard deviation

bounds, skewness, and kurtosis.

2) Step 2: The study conducts regression analysis, using a single

dependent variable and multiple independent variables. Using the

SoDa-TAPv2 statistics workflow supports the application of several statistical

tests conveniently on the columns of a dataset. A similar analysis our system

allows is an ANCOVA, as shown in Figure 4.14, returning the sum of squares

58

(quantifying how much of the variability in the dependent variable can be

attributed to each independent variable), the degrees of freedom for each vari-

able, the F-statistics, and the (PR > F) value (associating the p-value with

the f-statistic) for each variable.

Figure 4.14: Statistical Analysis of the influence of three different parameters
on the number of ”likes” a post receives. (Step 2)

3) Step 3: The study then proceeds to conduct sentiment analysis

on tweets using the MeaningCloud API. Our data pipeline conducts

aspect-based sentiment analysis on tweets during the ingestion phase, using

the VADER library, and appends the sentiment as a field to each document in

the index, where the sentiment is a number within the range -1.0 (extremely

negative) to 1.0 (extremely positive).

4) Step 4: The study demonstrates the distribution of the 1022

most impactful tweets, based on sentiment. Using the SoDa-TAPv2

intra-dataset comparison block, we can sort the tweets based on their number

of likes in descending order, keeping the first 1022 tweets, creating 5 uniform

59

buckets using the text sentiment field, and using a pie chart to demonstrate

the distribution within each bucket, as demonstrated in Figure 4.15a. The

resulting plot, compared to the plot from the study is shown in Figure 4.16.

(a)

(b)

Figure 4.15: Intra-dataset comparison using Bucketing with Uniform Breaks,
Visualized with two different types of plots: (a) a pie chart and (b) a box plot.
(Steps 4 and 5)

5) Step 5: The study demonstrates the average number of likes and

retweets based on sentiment. Using SoDa-TAPv2 we formulate this query

similar to the previous one, simply replacing the pie chart with a boxplot using

like count as the input variable, as shown in Figure 4.15b. For the number

of retweets, the input variable can simply be changed to retweet count. The

resulting plot, compared to the plot from the study, for average number of

likes, is shown in Figure 4.17.

60

Figure 4.16: Replicating the original study pie chart. (Step 4)

6) Step 6: The study examines the distribution of tweets made by

verified and non-verified users in the top 1022 tweets. Using the

SoDa-TAPv2 intra-dataset comparison block with unique/discrete bucketing,

we can create buckets based on the author verified variable, that can then

be compared using a pie chart as shown in Figure 4.18. The resultant plot,

compared with the plot from the original study is shown in Figure 4.19.

7) Step 7: The study calculates the correlation between the number

of followers and the number of likes, and generates a scatter plot

to visualize it. Using SoDa-TAPv2, we can use the statistics workflow to

calculate the correlation between the two variables as shown in Figure 4.20a.

To generate the scatter plot, the intra-dataset comparison block can be used,

using the no bucketing block to specify that we won’t be creating any, as shown

in Figure 4.20b. The scatter plot from the original study, compared with the

one generated in SoDa-TAPv2 is shown in Figure 4.21.

4.4 VQL Performance Analysis

We evaluate the performance of the VQL by recording the time taken to carry

out several operations. The analysis is conducted on a Linux machine with 16

cores and 56 GB of RAM.

The performance was tested on 5 different datasets with increasing sizes:

61

Figure 4.17: Plotting the average number of likes (Step 5)

• D1: A dataset containing energy-related tweets curated during the de-

velopment of version 1, with approximately 300 documents.

• D2: A dataset containing Jason Kenney’s Tweets, curated during the

development of version 1, with approximately 10,000 documents.

• D3: A dataset containing tweets debating the energy-east pipeline, cu-

rated during the development of version 1, with approximately 150,000

documents.

• D4: A sample from “The Pushshift Telegram” dataset [11], containing

approximately 350,000 documents.

• D5: A sample from the “Harvard Dataverse Immigration and Travel Ban

Tweet Ids” dataset [64], containing approximately 1 Million documents.

It is important to note that:

62

Figure 4.18: Examining verified and non-verified users (Step 6)

• Each dataset has different characteristics that can affect the execution

times.

• The execution times are only for the first execution of the query. For

subsequent executions, the results will be retrieved immediately from the

cache.

• For bucketing using clustering, the manual version of K-Means should

be used for bigger datasets. The automated k-means approach runs the

k-means algorithm multiple times to determine the optimal number of

clusters. As such, it is only suitable for small datasets. The HDB-

SCAN implementation is expensive as well and is only suitable for small

datasets.

The performance was tested for the following operations:

• OP1: retrieve 2 string fields for the entire dataset

• OP2: retrieve 2 string fields for the entire dataset (including sorting with

numeric field)

63

Figure 4.19: The numbers of verified and non-verified users (Step 6)

• OP3: retrieve 2 string fields with comparison filter (text sentiment >0)

• OP4: position filtering

• OP5: retrieve 2 string fields with a tweet count filter (between 2 and 30

tweets)

• OP6: retrieve 2 string fields with author metric filter (avg text sentiment

>0)

• OP7: retrieve 2 string fields with a count comparison filter: count(text sentiment

>0) >count(text sentiment <0)

• OP8: Bucketing using text content with K-Means (manual with 2 clus-

ters) - including text vectorization

• OP9: Bucketing using text content with automated K-Means (multiple

runs) - including text vectorization

• OP10: Bucketing using text content with HDBSCAN - including text

vectorization

• OP11: Bucketing using Jenks Natural Breaks with 3 buckets

• OP12: Bucketing using Uniform Breaks using Natural breaks with 3

buckets

64

(a)

(b)

Figure 4.20: Followers and Likes (Step 7)

65

Figure 4.21: Scatterplot Comparison (Step 7)

66

• OP13: Bucketing using Quartile Breaks

Table 4.2 shows the time in seconds for each of these operations. Author-level

filtering operations could not be conducted on D4, as it doesn’t contain an

author id field for aggregation. Figures 4.22a, 4.22b, 4.22c, and 4.22d show

graphs of these operation times. Computationally inexpensive and expensive

bucketing operations are separated into two separate graphs to avoid scaling

issues.

Table 4.2: Dataset Operation Times

Operation vs
Dataset

D1 D2 D3 D4 D5

OP1 0.01s 0.66s 3.41s 10.12s 35.57s

OP2 0.01s 0.71s 3.72s 10.35s 40.36s

OP3 0.004s 0.97s 2.20s 2.65s 12.83s

OP4 negligi-
ble

negligi-
ble

negligi-
ble

negligible negligi-
ble

OP5 0.03s 0.03s 0.12s not
applicable

5.08

OP6 0.04s 0.05s 0.63s not
applicable

5.45s

OP7 0.05s 0.03s 0.84s not
applicable

7.61s

OP8 0.98s 5.90s 22.12s 58.71s 135.94s

OP9 3.31s 23.39s 841.35s - -

OP10 0.36s 21.40s - - -

OP11 0.02s 0.86s 48.39s 275.67s 2472.98s

OP12 0.01s 0.31s 4.45s 10.34s 29.64s

OP13 0.01s 0.28s 4.63s 10.81s 29.76s

67

(a) Operation times for tweet-level re-
trieval/filtering operations

(b) Operation times for author-level re-
trieval/filtering operations

(c) Operation times for inexpensive
bucketing oeprations

(d) Operation times for expensive buck-
eting operations

Figure 4.22: Execution time for various operations

68

Chapter 5

Conclusion

5.1 Contributions

This thesis and SoDa-TAPv2 make the following contributions to the state of

the art.

First, it provides a simple data-ingestion and analysis pipeline for social

data. This pipeline extends the corresponding component of the first version

of the tool in several important dimensions.

• A variety of data-labeling tools in the form of classifiers based on LLMs:

SoDa-TAPv2 incorporates multiple HuggingFace models, that enable au-

tomated categorization and tagging of social data. These models have

been handpicked to allow classification across a wide range of categories,

including toxicity, irony, sentiment, political bias, financial topics, etc.

• Image analysis with the Google Vision API: The multifaceted nature of

social data necessitates that images accompanying the text can also be

analyzed. This is particularly important as our energy-east case study

4.1 indicates that oftentimes, images have the most dominant impact on

a reader’s interaction with the post.

• Labeling with GPT 3.5 Turbo Instruct API: SoDa-TAPv2 allows conve-

nient interaction with the Instruct API to facilitate tasks like classifica-

tion, removing the need to train an in-house model for small inexpensive

use cases.

69

• Elasticsearch as the data store: The distributed storage and data ma-

nipulation capabilities of Elasticsearch, along with its rich Query DSL

serve as the backbone of SoDa-TAPv2’s filtering and analysis capabilities

post-storage.

Second, it provides a visual query language through which domain experts

with little to no programming knowledge can review their data and evaluate

hypotheses of interest. Through our evaluation experiments, we have demon-

strated that the SoDa-TAPv2 VQL possesses several desirable attributes.

• It is easy to use, featuring an intuitive drag-and-drop interface based on

the Blockly language editor. This visual programming paradigm often

feels more familiar to users, lowering the barrier to data analysis for non-

experts, as well as domain experts lacking experience with traditional

programming languages who want to engage directly with their data.

• It is expressive, enabling users to filter and slice datasets to create dis-

tinct sample sets and save them for future use, perform aggregations,

categorize data into buckets through classification, clustering, and nat-

ural breaks, and compare these buckets using statistical analyses and

visualizations. Sections 4.1, 4.2, and 4.3, reporting two studies by our

group as well as a replication of an extensive third-party study, document

the language’s expressiveness.

• SoDa-TAPv2 scales well, as the performance analysis study in Section 4.4

demonstrates. The performance is evaluated on five datasets of varying

sizes, containing 300, 10000, 150000, 350000, and 1 million documents,

respectively. It exemplifies the system’s ability to conduct a variety of

operations efficiently on even the biggest dataset.

Finally, the system provides a simplified user interface for end-users to

interact with all the system’s aforementioned features from the comfort of a

browser tab.

70

5.2 Future Work

Analyzing Images and Memes Contained in Tweets

SoDa-TAPv2 currently relies on Google Vision API for some of its image analy-

sis capabilities, which can prove to be expensive for large datasets, and doesn’t

encapsulate all the potential analysis that can be conducted on social media

data. A console application offered by SoDa-TAP version 1 is also available

but is extremely expensive computationally. Future work aims to introduce an

efficient image analysis component to support a variety of interesting features.

Facial Expression Recognition for Sentiment Analysis We intend to train a

facial expression recognition model to assess the sentiment conveyed by faces

within images. This model will be trained on the FER-2013 dataset that

categorizes facial expressions into seven categories: anger, disgust, fear, happy,

sad, surprise, and neutral, within 32000 images.

Perception Analysis of Images To address the challenges of image context

and viewer perception, we plan to implement a model like EmoNet. EmoNet

is trained to recognize the emotion perceived by viewers from visual content.

It categorizes perceptions into twenty emotions, including i) Craving ii) Sex-

ual Desire iii) Romance iv) Disgust v) Entrancement vi) Interest vii) Aesthetic

Appreciation viii) Horror ix) Empathic Pain x) Anxiety xi) Boredom xii) Con-

fusion xiii) Adoration xiv) Surprise xv) Joy xvi) Fear xvii) Amusement xviii)

Sadness ix) Awe and xx) Surprise. As images are difficult to categorize, and

the context is often vague, such an analysis will provide better context into the

’intention’ of the image, and what emotion it was supposed to induce, rather

than simply the emotion displayed.

Contextual Understanding through Action Recognition and Scene Analysis

We intend to use action recognition and scene understanding models to identify

activities and settings within an image, to infer thematic elements and the

overarching sentiment, e.g. ”joy” in an image of children playing.

Utilization of Saliency Maps to Focus Image Analysis To aid the compu-

tational viability of the above analyses, we aim to employ saliency maps, to

highlight regions within images most likely to attract viewer attention. Tools

71

such as Keras-vis support the creation of these maps, which can direct the

analytical models to the most pertinent areas of an image. This technique will

be particularly useful to reduce the area of the image that has to be analyzed,

making the computationally expensive image analyses more viable within our

tool.

Cloud Migration

In future iterations, we plan to migrate SoDa-TAPv2 to a cloud platform like

Google Cloud Platform (GCP). While our current setup with open-source tools

has been effective, such setups can cause frequent development and manage-

ment challenges, as we have experienced with SoDa-TAPv2. The biggest prob-

lems we have faced are complex configurations, concerns like version conflicts

and difficult interoperability of different tools, and maintenance overheads on

development time. These issues are expected to become increasingly problem-

atic as the system is extended further and as data processing demands grow.

A managed data pipeline solution with a cloud provider instead offers the sta-

bility necessary to extend such a system with a small team like ours, without

running into maintenance issues continuously. Using services like Google Ku-

bernetes Engine (GKE) will help in the orchestration of Docker containers,

allowing efficient resource management and automated scaling. For message

queueing, Google Cloud Pub/Sub can replace Kafka, to provide a properly

configured scalable messaging service, more efficient than a minimally config-

ured local Kafka setup. A migration to a cloud platform like GCP will also

naturally make it easier to use tools like Google Vision, as tools by a single

cloud provider are configured for optimal interoperability. Lastly, the mon-

itoring and management solutions that accompany these tools will provide

comprehensive oversight and control over all components of the pipeline.

72

References

[1] 5 types of costly data waste and how to avoid them, cio, https://www.
cio.com/article/307487/5-types-of-costly-data-waste-and-

how-to-avoid-them.html, (Accessed on 05/25/2024).

[2] J. Alwidian, S. Rahman, M. Gnaim, and F. Al-Taharwah, “Big data
ingestion and preparation tools,” Modern Applied Science, vol. 14, p. 12,
Aug. 2020. doi: 10.5539/mas.v14n9p12.

[3] Apache kafka, https://kafka.apache.org/, (Accessed on 05/27/2024).

[4] Apache lucene, https://lucene.apache.org/, (Accessed on 05/27/2024).

[5] Apache spark, https://spark.apache.org/, (Accessed on 05/27/2024).

[6] Apache zookeeper, https://zookeeper.apache.org/, (Accessed on
05/27/2024).

[7] Audiense, https://www.audiense.com/, (Accessed on 05/25/2024).

[8] Auth0, https://auth0.com/, (Accessed on 05/27/2024).

[9] Avg aggregation — elasticsearch guide [8.13] — elastic, https : / /

www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-metrics-avg-aggregation.html, (Accessed
on 05/27/2024).

[10] Awario, https://awario.com/, (Accessed on 05/25/2024).

[11] J. Baumgartner, S. Zannettou, M. Squire, and J. Blackburn, “The
pushshift telegram dataset,” Proceedings of the International AAAI
Conference on Web and Social Media, vol. 14, pp. 840–847, May 2020.
doi: 10.1609/icwsm.v14i1.7348.

[12] E. Bjarnason, B. Gislason Bern, and L. Svedberg, “Inter-team commu-
nication in large-scale co-located software engineering: A case study,”
Empirical Software Engineering, vol. 27, Mar. 2022. doi: 10.1007/

s10664-021-10027-z.

[13] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” vol. 3,
Jan. 2001, pp. 601–608.

[14] Blockly - google for developers, https://developers.google.com/
blockly, (Accessed on 05/27/2024).

[15] Brand24, https://brand24.com/, (Accessed on 05/25/2024).

73

[16] Bucket aggregations — elasticsearch guide [8.13] — elastic, https :

//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-bucket.html, (Accessed on 05/27/2024).

[17] Bucket selector aggregation — elasticsearch guide [8.13] — elastic, https:
//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-pipeline-bucket-selector-aggregation.

html, (Accessed on 05/27/2024).

[18] Buzzsumo, https://buzzsumo.com/, (Accessed on 05/25/2024).

[19] Cardinality aggregation — elasticsearch guide [8.13] — elastic, https:
//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-metrics-cardinality-aggregation.html,
(Accessed on 05/27/2024).

[20] Celery, https://docs.celeryq.dev/en/stable/getting-started/
introduction.html, (Accessed on 05/27/2024).

[21] Cloud vision documentation, https://cloud.google.com/vision/
docs, (Accessed on 05/27/2024).

[22] Communalytic, https://communalytic.org/, (Accessed on 05/25/2024).

[23] Confluent kafka api, https://docs.confluent.io/platform/current/
clients/confluent-kafka-python/html/index.html#pythonclient-

adminclient, (Accessed on 05/27/2024).

[24] Countvectorizer — pyspark master documentation, https://spark.
apache.org/docs/latest/api/python/reference/api/pyspark.

ml.feature.CountVectorizer.html, (Accessed on 05/27/2024).

[25] Cratedb, https://cratedb.com/, (Accessed on 05/27/2024).

[26] Crowdtangle, https://www.crowdtangle.com/, (Accessed on 05/25/2024).

[27] Datatables, https://datatables.net/, (Accessed on 05/27/2024).

[28] Discovertext, https://discovertext.com/, (Accessed on 05/25/2024).

[29] Docker, https://www.docker.com/, (Accessed on 05/27/2024).

[30] A. Eckert and P. Juvonen, Developing computational thinking with so-
cial robots in linguistically heterogeneous classrooms – the case of misty,
May 2024. doi: 10.21203/rs.3.rs-4363387/v1.

[31] Elasticsearch, https://www.elastic.co/elasticsearch, (Accessed
on 05/27/2024).

[32] Elasticsearch dsl, https://elasticsearch-dsl.readthedocs.io/
en/latest/, (Accessed on 05/27/2024).

[33] Elasticsearch filtered aliases - how to create, with examples, https://
opster.com/guides/elasticsearch/data-architecture/elasticsearch-

filtered-aliases/, (Accessed on 05/26/2024).

74

[34] K. Elvira, O. Smyshliaeva, I. Panova, E. Neumoina, and A. Ponachugin,
“Using visual-block programming environments to create robotic sys-
tems,” in Mar. 2024, pp. 281–285, isbn: 978-3-031-51271-1. doi: 10.
1007/978-3-031-51272-8_46.

[35] T. Engelthaler and T. Hills, “Humor norms for 4,997 english words,”
Behavior Research Methods, vol. 50, Jul. 2017. doi: 10.3758/s13428-
017-0930-6.

[36] Extended stats bucket aggregation — elasticsearch guide [8.13] — elas-
tic, https://www.elastic.co/guide/en/elasticsearch/reference/
current/search-aggregations-pipeline-extended-stats-bucket-

aggregation.html, (Accessed on 05/27/2024).

[37] Filter aggregation — elasticsearch guide [8.13] — elastic, https://

www.elastic.co/guide/en/elasticsearch/reference/current/

search - aggregations - bucket - filter - aggregation . html, (Ac-
cessed on 05/27/2024).

[38] Finiteautomata bertweet-base-sentiment-analysis - hugging face, https:
//huggingface.co/finiteautomata/bertweet-base-sentiment-

analysis, (Accessed on 05/27/2024).

[39] Flask, https://flask.palletsprojects.com/en/3.0.x/, (Accessed
on 05/27/2024).

[40] Flower, https://flower.readthedocs.io/en/latest/, (Accessed on
05/27/2024).

[41] Gensim - topic modelling for humans, https://radimrehurek.com/
gensim/index.html, (Accessed on 05/27/2024).

[42] Github - elastic/elasticsearch-py: Official python client for elasticsearch,
https://github.com/elastic/elasticsearch- py, (Accessed on
05/27/2024).

[43] Google code word2vec, https : / / code . google . com / archive / p /

word2vec/, (Accessed on 05/27/2024).

[44] Google trends, https://trends.google.com/trends/, (Accessed on
05/25/2024).

[45] A. Gruzd, P. Mai, and Z. Vahedi, “Studying anti-social behaviour on
reddit with communalytic,” Jun. 2020. doi: 10.31124/advance.12453749.
v1.

[46] C. A. G. Gutierrez, “Soda-tap: A data platform for social media anal-
ysis,” Master’s thesis, University of Alberta, Faculty of Graduate and
Postdoctoral Studies, Fall, 2022. doi: 10.7939/r3-v1t4-nb16. [On-
line]. Available: https://doi.org/10.7939/r3-v1t4-nb16.

[47] C. Gutierrez Gutierrez, A. Whittaker, K. Patenio, et al., “Analyzing
and visualizing twitter conversations,” Dec. 2021.

75

[48] Hdbscan, fast density based clustering, the how and the why - john healy
- youtube, https://www.youtube.com/watch?v=dGsxd67IFiU&ab_
channel=PyData, (Accessed on 05/27/2024).

[49] How to connect apache spark with elasicsearch - big data landscape -
medium, https://medium.com/@big_data_landscape/how- to-

connect-apache-spark-with-elasicsearch-3f9d17eaacd9, (Ac-
cessed on 05/27/2024).

[50] M. Hu and B. Liu, “Mining and summarizing customer reviews,” Aug.
2004, pp. 168–177. doi: 10.1145/1014052.1014073.

[51] Huggingface transformers, https://huggingface.co/docs/transformers/
en/index, (Accessed on 05/27/2024).

[52] Immigration and travel ban tweet ids - gwu libraries dataverse, https:
//dataverse.harvard.edu/dataset.xhtml?persistentId=doi:

10.7910/DVN/5CFLLJ, (Accessed on 05/27/2024).

[53] Insights - audience intelligence, https://www.audiense.com/products/
audiense-insights, (Accessed on 05/26/2024).

[54] M. Irfan and J. George, “A systematic review of challenges, tools, and
myths of big data ingestion,” in Jan. 2022, pp. 481–494, isbn: 978-981-
19-2210-7. doi: 10.1007/978-981-19-2211-4_43.

[55] K. A. Jalbert, “Understanding the factors that influence tweet popu-
larity,” Honors Theses and Capstones, University of New Hampshire,
2021. [Online]. Available: https://scholars.unh.edu/honors/588.

[56] Jenkspy - pypi, https://pypi.org/project/jenkspy/, (Accessed on
05/27/2024).

[57] Kafka connect rest interface for confluent platform, https://docs.
confluent.io/platform/current/connect/references/restapi.

html, (Accessed on 05/27/2024).

[58] Keyhole, https://keyhole.co/, (Accessed on 05/25/2024).

[59] Kibana, https://www.elastic.co/kibana, (Accessed on 05/27/2024).

[60] E. Klekovkin and A. Suntsov, “Application of visual programming for
automation tasks in construction,” Construction and Geotechnics, vol. 14,
pp. 128–143, Jun. 2023. doi: 10.15593/2224-9826/2023.2.10.

[61] Lda — pyspark master documentation, https://spark.apache.org/
docs/latest/api/python/reference/api/pyspark.ml.clustering.

LDA.html, (Accessed on 05/27/2024).

[62] H. Lefebvre, C. Legner, and M. Fadler, “Data democratization: Toward
a deeper understanding,” Sep. 2021.

76

[63] L. Libkin, “Expressive power of query languages,” in Encyclopedia of
Database Systems, L. LIU and M. T. ÖZSU, Eds. Boston, MA: Springer
US, 2009, pp. 1081–1083, isbn: 978-0-387-39940-9. doi: 10.1007/978-
0-387-39940-9_1239. [Online]. Available: https://doi.org/10.
1007/978-0-387-39940-9_1239.

[64] J. Littman, Immigration and Travel Ban Tweet Ids, version V1, 2018.
doi: 10.7910/DVN/5CFLLJ. [Online]. Available: https://doi.org/
10.7910/DVN/5CFLLJ.

[65] K. Malhotra, A. Kalra, A. Kumar, M. Majmundar, G. Wander, and A.
Bawa, “Understanding the digital impact of world hypertension day:
Key takeaways,” European Heart Journal - Digital Health, vol. 3, Aug.
2022. doi: 10.1093/ehjdh/ztac039.

[66] A. Malik, A. Johri, R. Handa, H. Karbasian, and H. Purohit, “How
social media supports hashtag activism through multivocality: A case
study of ilooklikeanengineer,” First Monday, vol. 23, Nov. 2018. doi:
10.5210/fm.v23i11.9181.

[67] L. McInnes, J. Healy, and S. Astels, “Hdbscan: Hierarchical density
based clustering,” The Journal of Open Source Software, vol. 2, Mar.
2017. doi: 10.21105/joss.00205.

[68] Metrics aggregations — elasticsearch guide [8.13] — elastic, https:

//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-metrics.html, (Accessed on 05/27/2024).

[69] V. Mirone, F. Di Bello, S. Morra, et al., “Telemedicine and social media:
A contemporary analysis of the most shared content by internet users,”
Archivio Italiano di Urologia e Andrologia, vol. 96, Apr. 2024. doi:
10.4081/aiua.2024.11206.

[70] Models - hugging face, https://huggingface.co/models, (Accessed
on 05/27/2024).

[71] Models - openai api, https://platform.openai.com/docs/models/
gpt-3-5-turbo, (Accessed on 05/27/2024).

[72] Modular applications with blueprints — flask documentation (3.0.x),
https://flask.palletsprojects.com/en/3.0.x/blueprints/,
(Accessed on 05/27/2024).

[73] M. Moens, L. Doorslaer, M. Billot, et al., “Examining the type, quality,
and content of web-based information for people with chronic pain inter-
ested in spinal cord stimulation: Social listening study,” Journal of med-
ical Internet research, vol. 26, e48599, Jan. 2024. doi: 10.2196/48599.

[74] Netlytic, https://netlytic.org/index.php, (Accessed on 05/25/2024).

[75] Numpy, https://numpy.org/, (Accessed on 05/27/2024).

77

[76] J. Obia la, K. Obia la, M. Mańczak, J. Owoc, and R. Olszewski, “Covid-
19 misinformation: Accuracy of articles about coronavirus prevention
mostly shared on social media,” Health Policy and Technology, vol. 10,
Nov. 2020. doi: 10.1016/j.hlpt.2020.10.007.

[77] Pandas - python data analysis library, https://pandas.pydata.org/,
(Accessed on 05/27/2024).

[78] Pipeline aggregations — elasticsearch guide [8.13] — elastic, https:
//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-pipeline.html, (Accessed on 05/27/2024).

[79] Plotly express in python, https : / / plotly . com / python / plotly -

express/, (Accessed on 05/27/2024).

[80] Plotly javascript graphing library, https://plotly.com/javascript/,
(Accessed on 05/27/2024).

[81] V. Ponizovskiy, M. Ardag, L. Grigoryan, R. Boyd, H. Dobewall, and P.
Holtz, “Development and validation of the personal values dictionary:
A theory-driven tool for investigating references to basic human values
in text,” European Journal of Personality, vol. 34, Aug. 2020. doi:
10.1002/per.2294.

[82] Pushdown, https://docs.datavirtuality.com/v3/pushdown, (Ac-
cessed on 05/27/2024).

[83] Pushdown vs pullup processing; why things are changing - by kirk haslbeck
- collibradq - medium, https://medium.com/owl-analytics/pushdown-
vs-pullup-processing-why-things-are-changing-ae9ae5c2badc,
(Accessed on 05/27/2024).

[84] Pyppeteer - pypi, https://pypi.org/project/pyppeteer/, (Accessed
on 05/27/2024).

[85] Range query — elasticsearch guide [8.13] — elastic, https://www.
elastic.co/guide/en/elasticsearch/reference/current/query-

dsl-range-query.html, (Accessed on 05/27/2024).

[86] Redis - the real-time data platform, https://redis.io/, (Accessed on
05/27/2024).

[87] Requests - pypi, https://pypi.org/project/requests/, (Accessed
on 05/27/2024).

[88] Research in the sociology of organizations - emerald insight, https:

//www.emerald.com/insight/publication/issn/0733-558X, (Ac-
cessed on 05/27/2024).

[89] D. Rohlinger, K. Rose, S. Warren, and S. Shulman, “Does the musk
twitter takeover matter? political influencers, their arguments, and the
quality of information they share,” Socius: Sociological Research for
a Dynamic World, vol. 9, p. 237 802 312 311 521, Feb. 2023. doi: 10.
1177/23780231231152193.

78

[90] A. Rovetta, “An integrated infoveillance approach using google trends
and talkwalker: Listening to web concerns about covid-19 vaccines in
italy,” Healthcare Analytics, vol. 4, Oct. 2023. doi: 10.1016/j.health.
2023.100272.

[91] Running spark on mesos - spark 2.4.7 documentation, https://spark.
apache.org/docs/2.4.7/running-on-mesos.html, (Accessed on
05/27/2024).

[92] Running spark on yarn - spark 2.4.7 documentation, https://spark.
apache.org/docs/2.4.7/running- on- yarn.html, (Accessed on
05/27/2024).

[93] S. Santarossa, J. Lacasse, J. Larocque, and S. Woodruff, “#Orthorexia
on instagram: A descriptive study exploring the online conversation and
community using the netlytic software,” Eating and Weight Disorders -
Studies on Anorexia, Bulimia and Obesity, vol. 24, pp. 1–8, Apr. 2019.
doi: 10.1007/s40519-018-0594-y.

[94] Schema registry overview, https://docs.confluent.io/platform/
current/schema-registry/index.html, (Accessed on 05/27/2024).

[95] Scikit-learn, https : / / scikit - learn . org / stable/, (Accessed on
05/27/2024).

[96] Scratch - educators, https://scratch.mit.edu/educators, (Accessed
on 05/27/2024).

[97] Scratch - imagine, program, share, https://scratch.mit.edu/, (Ac-
cessed on 05/27/2024).

[98] Scripted metric aggregation — elasticsearch guide [8.13] — elastic,
https://www.elastic.co/guide/en/elasticsearch/reference/

current/search-aggregations-metrics-scripted-metric-aggregation.

html, (Accessed on 05/27/2024).

[99] Socioviz, https://socioviz.net/, (Accessed on 05/25/2024).

[100] Spark standalone mode - spark 2.4.7 documentation, https://spark.
apache.org/docs/2.4.7/spark-standalone.html, (Accessed on
05/27/2024).

[101] Sprout social, https://sproutsocial.com/, (Accessed on 05/25/2024).

[102] J. Ge-Stadnyk and U. Gretzel, “The role of humour in driving customer
engagement,” in Jan. 2017, pp. 461–474, isbn: 978-3-319-51167-2. doi:
10.1007/978-3-319-51168-9_33.

[103] Statsmodels, https://www.statsmodels.org/stable/index.html,
(Accessed on 05/27/2024).

[104] K. Stolpe and J. Hallström, “Visual programming as a tool for devel-
oping knowledge in stem subjects: A literature review,” in Jan. 2024,
pp. 130–169, isbn: 978-90-04-68791-2. doi: 10.1163/9789004687912_
007.

79

[105] Structured streaming + kafka integration guide, https://spark.apache.
org/docs/latest/structured- streaming- kafka- integration.

html, (Accessed on 05/25/2024).

[106] Submitting applications - spark 3.5.1 documentation, https://spark.
apache.org/docs/latest/submitting-applications.html, (Ac-
cessed on 05/27/2024).

[107] Talkwalker, https://www.talkwalker.com/, (Accessed on 05/25/2024).

[108] Term query — elasticsearch guide [8.13] — elastic, https://www.

elastic.co/guide/en/elasticsearch/reference/current/query-

dsl-term-query.html, (Accessed on 05/27/2024).

[109] Term-level queries — elasticsearch guide [8.13] — elastic, https://
www.elastic.co/guide/en/elasticsearch/reference/current/

term-level-queries.html, (Accessed on 05/27/2024).

[110] Terms aggregation — elasticsearch guide [8.13] — elastic, https://
www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-bucket-terms-aggregation.html, (Accessed
on 05/27/2024).

[111] Terms query — elasticsearch guide [8.13] — elastic, https://www.
elastic.co/guide/en/elasticsearch/reference/current/query-

dsl-terms-query.html, (Accessed on 05/27/2024).

[112] The hdbscan clustering library, https://hdbscan.readthedocs.io/
en/latest/, (Accessed on 05/27/2024).

[113] The healthcare hashtag project, https://www.symplur.com/healthcare-
hashtags/, (Accessed on 05/25/2024).

[114] Top hits aggregation — elasticsearch guide [8.13] — elastic, https:

//www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations-metrics-top-hits-aggregation.html, (Ac-
cessed on 05/27/2024).

[115] Twarc2, https://twarc- project.readthedocs.io/en/latest/

twarc2_en_us/, (Accessed on 05/27/2024).

[116] Vadersentiment - pypi, https://pypi.org/project/vaderSentiment/,
(Accessed on 05/27/2024).

[117] Variable width histogram aggregation — elasticsearch guide [8.13] —
elastic, https : / / www . elastic . co / guide / en / elasticsearch /

reference/current/search-aggregations-bucket-variablewidthhistogram-

aggregation.html, (Accessed on 05/27/2024).

[118] What is a push-down? https://glossary.airbyte.com/term/push-

down/, (Accessed on 05/27/2024).

[119] What is wsgi? https://wsgi.readthedocs.io/en/latest/what.

html, (Accessed on 05/27/2024).

80

[120] Wikipedia contributors, Backus–naur form — Wikipedia, the free en-
cyclopedia, [Online; accessed 27-May-2024], 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Backus%E2%80%

93Naur_form&oldid=1225174908.

[121] Wikipedia contributors, Declarative programming — Wikipedia, the free
encyclopedia, [Online; accessed 27-May-2024], 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Declarative_

programming&oldid=1224915321.

[122] Wikipedia contributors, Jenks natural breaks optimization — Wikipedia,
the free encyclopedia, [Online; accessed 27-May-2024], 2024. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Jenks_
natural_breaks_optimization&oldid=1205900617.

[123] Wildcard query — elasticsearch guide [8.13] — elastic, https://www.
elastic.co/guide/en/elasticsearch/reference/current/query-

dsl-wildcard-query.html, (Accessed on 05/27/2024).

[124] J. Womack and D. Jones, “Lean thinking: Banish waste and create
wealth in your corporation,” Journal of the Operational Research Soci-
ety, vol. 48, Nov. 1997. doi: 10.1057/palgrave.jors.2600967.

[125] A. Yoon and A. Copeland, “Toward community-inclusive data ecosys-
tems: Challenges and opportunities of open data for community-based
organizations,” Journal of the Association for Information Science and
Technology, vol. 71, no. 12, pp. 1439–1454, 2020. doi: https://doi.
org/10.1002/asi.24346. eprint: https://asistdl.onlinelibrary.
wiley.com/doi/pdf/10.1002/asi.24346. [Online]. Available: https:
//asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.

24346.

81

Appendix A

The VQL BNF

<workflow>::= <inter-dataset-comparison> | <intra-dataset-comparison> | <data-

subset-creation>|<statistics-workflow>

<inter-dataset-comparison>::= <multiple-filterers> <comparative-analysis>

<intra-dataset-comparison>::= <filterer> <bucketing> <comparative-analysis>

<data-subset-creation>::= <filterer> “new-dataset-name” | <bucket-picker> “new-

dataset-name”

<statistics-workflow>::=<filterer><stat>

<multiple-filterers>::= <filterer> | <filterer> <filterer>

<comparative-analysis>::= <plot>|<stat>

<filterer>::= <tweet-filterer> | <author-filterer>

<bucketing>::= <continuous-bucketing> | <discrete-bucketing> | <clustering>

| <no-bucketing>

<bucket-picker>::= <filterer><bucketing>“bucket-num”

82

<stat>::= “descriptive-stats”|“Covariance & Correlation”|“t-test”|“AN(C)OVA”|“MAN(C)OVA”

<plot>::= “pie-chart”|“box-plot”|“violin-plot”|“scatter-plot”|“faceted-box-plot”|“faceted-

violin-plot”|“faceted-scatter-plot”|“line-plot”

<tweet-filterer>::= <dataset> <tweet-filters>

<author-filterer>::= <dataset> “pre-sample-size” <author-filters>

<continuous-bucketing>::= <continuous-bucketing-algorithm> | “num-buckets”

| “numeric-variable”

<discrete-bucketing>::= “any-type-of-variable”

<clustering>::= <clustering-algorithm> “num-clusters (optional)”

<dataset>::= “any-index–or-alias”

<tweet-filters>::= <tweet-filter> | <tweet-filter> <tweet-filter>

<author-filters>::= <author-filter> | <author-filter> <author-filter>

<continuous-bucketing-algorithm>::= “Jenks-natural-breaks” |“breaks-with-uniform-

range” | “breaks-into-quartiles”

<clustering-algorithm>::= “auto-K-Means” | “manual-K-means” | “HDBSCAN”

<tweet-filter>::= <range-filter> | <comparison-filter> | <sorting> | <position-

filter>

<author-filter>::= <tweet-count-filter> | <author-metric-filter> | <count-comparison-

83

filter>

<range-filter>::= (“numeric-variable” | “date-variable”) (“number (from)” “num-

ber (to)” | “date (from)” “date (to)”)

<comparison-filter>::= “any-type-of-variable” <operator (overloaded)> “value-

compatible-with-variable-type”

<sorting>::= <sorting-order> “any-type-of-variable”

<position-filter>::= “integer (from)” “integer (to)”

<tweet-count-filter>::= “integer (from)” “integer (to)”

<author-metric-filter>::= <aggregation-metric> “numeric-variable” <numeric-

operator> “number”

<count-comparison-filter>::= “numeric-variable” <numeric-operator> “number”

<numeric-operator> “numeric-variable” <numeric-operator> “number”

<operator>::= “contains”| “does-not-contain” | <numeric-operator>

<sorting-order>::= “asc” | “desc”

<aggregation-metric>::= “average” | “minimum” | “maximum” | “sum” |

“median” | “median-absolute-deviation”

<numeric-operator>::= “<” | “>” | “≤ ”|“ ≥ ”|“=”

84

	Introduction
	The Research Problem
	Data Democratization with SoDa-TAPv2
	SoDa-TAPv2 Features
	Thesis Outline

	Background and Related Research
	Commercial Tools
	Social and Behavioral Research using Analytical tools

	Software Architecture and Implementation
	Data Ingestion
	Automated Data Ingestion in Action
	Data Processing and Analyses

	VQL Interface
	Query Builder
	VQL Syntax and Functionality

	The VQL Engine
	Task Queueing
	Query Translator
	Analysis Engine

	Interactive Dataset Exploration

	Evaluation
	Energy Conversations
	Immigration Conversations
	Replication study
	VQL Performance Analysis

	Conclusion
	Contributions
	Future Work

	References
	Appendix The VQL BNF

