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Abstract

Optimal designs of multi-channel, uniform- and nonuniform-band transmultiplexers
are considered. For uniform transmultiplexers, a measure based on 2-norm of transfer
matrices is proposed to quantify the degree of closeness to perfect reconstruction;
connections of this error measure to the traditional cross-talk, magnitude, and phase
distortions are established. An optimal design procedure for FIR analysis filters is
developed and applied to two design examples.

In the nonuniform case, it is well known that using traditional building blocks —
up- and downsamplers and linear time-invariant (LTI). causal filters — nonuniform
transmultiplexers typically do not achieve perfect reconstruction. To alleviate this,
we propose to build nonuniform transmultiplexers using general dual-rate structures
which provide more design freedom and hence perfect reconstruction can be achieved.
Such general transmultiplexers have a new source of error called aliasing distortion.
in addition to the traditional cross-talk. magnitude. and phase distortions. Similarly.
we propose a new composite error criterion based on the 2-norm of the blocked error
system which captures all four distortions in one. Using this error criterion as re-
construction performance measure, we develop an iterative optimal design procedure
and apply it to a three-channel nonuniform example, yielding an FIR transmultiplexer
which has good frequency limiting properties in the synthesis end and is very close

to perfect reconstruction.
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Chapter 1

Introduction

1.1 Applications of Multirate Systems

The area of multirate digital signal processing is basically concerned with problems
in which more than one sampling rates are required in a digital system. It is an
especially important part of modern (digital) telecommunications theory in which
digital transmission systems are required to handle data at several rates.

Multirate techniques have been in use for many vears. The use of multiple sam-
pling rates offers many advantages. such as reduced computational complexity for a
given task. reduced transmission rate (i.e. bits per second). and/or reduced storage
requirement. depending on the application. In summary, the multirate techniques
have been applied in a wide variety of areas in signal processing [11, 19. 27). Some of

the applications are discussed below.

1.1.1 Digital Time Division Multiplexing (TDM) to Frequency
Division Multiplexing (FDM) Translation

An application of multirate digital systems is the translation of signals in a telephone
system between time division multiplexed (TDM) and frequency division multiplexed
(FDM) formats {17, 42, 16]. The FDM format is often used for long distance trans-
mission, whereas the TDM format is more convenient for digital switching.

Figure 1.1 illustrates the basic process of translating a series of 12 TDM digital
speech signals, s1(n), s3(n), ---, s12(n), to a single FDM signal r(m) and the
reverse (FDM to TDM) translation process. The sampling rate of the TDM speech
signals is 8kHz. In each channel of the TDM-to-FDM translator the sampling rate is
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Figure 1.1: Illustration of (a) a TDM-FDM translator: (b) an FDM-TDM translator.

effectively increased (by interpolation) to the higher FDM sampling rate. The signal
is then modulated to its appropriate frequency band location in the range 56kHz to
112kHz as illustrated in Figure 1.2. The interpolated and modulated channel signals
are then digitally summed to give the desired FDM signal. In the FDM-to-TDM
translator the reverse process takes place.

As seen from Figure 1.1, the process of translation between TDM and FDM for-
mats involves sampling rate conversion and therefore these systems are inherently

multirate systems.

1.1.2 Short-Time Spectral Analysis and Synthesis

Another example of multirate signal processing systems is a short-time spectral anal-
ysis and synthesis system [31]. Such systems are widely used in the areas of speech
processing, antenna, and radar systems. Figure 1.3 gives a simplified explanation of
a spectrum analysis-synthesis system. The signal s(n) is periodically windowed with
a sliding window (shown in Figure 1.3) to form a short-time, finite duration piece of
signal at each time slot. This short-time signal is then transformed with a fast DFT
(discrete Fourier transform) algorithm to form a short-time spectral estimate of the

signal for that time slot. Then the signal may be modified in a variety of ways (or

2
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Figure 1.2: Spectral interpretation of TDM-FDM signal translation.

the short-time spectrum may be an end result in itself ). The modified short-time
spectrum is then inverse transformed to form a modified short-time segment of the
signal. Finally, a reconstructed, modified signal §(n) is obtained by appropriately

overlapping and summing the modified signal segments from each time slot.

1.1.3 Application in Communications

A third application of multirate sampling techniques is in the area of digital commu-
nications [18]. In communication networks a variety of different coding formats may
be used in different parts of the network to achieve flexibility and efficiency. Conver-
sion between these coding formats often involves a conversion of the basic sampling
rate.

Other applications of multirate systems such as sampling rate conversion in digital

audio systems and subband coding will be discussed later.

1.2 Organization of the Thesis

Our work focuses on the optimal design of uniform and nonuniform transmultiplex-

ers. The thesis is organized as follows. In Chapter 2 we introduce some basic ideas of
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Figure 1.3: (a) Example of a short-time spectral analysis/synthesis system with spec-
tral modification; and (b) an illustration of the sliding window framework of this
process.

filter banks and transmultiplexers. Chapter 3 and Chapter 4 propose the optimal de-
sign methods of uniform and nonuniform transmultiplexers, respectively, with design
examples. Chapter 5 concludes the thesis, and points out some future work.

Briefly. the contributions of this thesis are as follows.

e A single error criterion using the 2-norm of transfer matrices for the uniform
case (or the nonuniform case) is introduced, which is relatively easy to be opti-
mized and can capture the distortions (such as cross-talk., magnitude and phase

distortions) all in one.

e We propose ways to measure the distortions associated with a non-perfect re-
construction transmultiplexer: cross-talk, magnitude and phase distortions, and

a new aliasing distortion in the nonuniform case.

¢ Employing the blocking technique, we derive a blocked LTI model for nonuni-
form transmultiplexers; based on the blocked model, we give conditions for

perfect reconstruction.

e We develop an optimal iterative design procedure for FIR subsystems. By fixing

the synthesis or analysis subsystems in each step, the optimization problems are

4



finite-dimensional, convex optimization with a quadratic cost function. whose

global optimal solution can be computed.



Chapter 2

Filter Banks and Transmultiplexers

2.1 Decimation and Interpolation

The most basic operations in multirate signal processing are decimation and interpo-
lation. In order to describe these, two building blocks, called decimator and ezpander.,

are introduced.

2.1.1 The M-fold Decimator

Figure 2.1 shows the M-fold decimator - see [38] for details. which takes an input

sequence r(n) and produces the output sequence

z(n) {7 yp(n)

Figure 2.1: Decimator.

yp(n) = z(Mn),

where M is an integer. Only those samples of z(n) which occur at times equal to
multiples of M are retained by the decimator. Figure 2.2 shows the idea of this
operation. The decimator is also called a downsampler. It is easy to see that it may
not be possible to recover z(n) from yp(n) because of loss of information.

Using z-transforms, we can derive an expression for the output Yp(z) in terms of

X(z) [38]: e
| M=

Yo(2) = 37 X(Mwky, (2.1)
k=0

6
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Figure 2.2: Demonstration of decimation for M = 3.

here Wis = €77/ The changes in the frequency domain can be seen in F igure 2.3
[38], which can be graphically interpreted as follows: (a) stretch X(e’*) by a factor
M to obtain X(e™/M), (b) create M — 1 copies of this stretched version by shifting
it uniformly in successive amounts of 27, and (c) add all these shifted and stretched
versions to the unshifted but stretched version X (e//M), and divide by M. It is
easy to see that if z(n) is not a signal bandlimited to the region |w| < /M. the

stretched version X (e?“/M) can overlap with its shifted replicas. which means we can

not recover r(n) from yq4(n). This overlapping effect is called aliasing.

DN

-2 - 0 b4 2n

0 Y

Figure 2.3: Frequency-domain effects of decimator for M = 2.

2.1.2 The L-fold Expander

z(n) 1L ye(n)

Figure 2.4: Expander.

-~1



Figure 2.4 shows the L-fold expander, where L is an integer. This device takes an

input z(n) and produces an output sequence [38, 11]:

z(n/L), if n is integer multiple of L.

— 2.9
ye(n) = { 0. otherwise. (2.2)
Figure 2.5 shows this operation in the time domain when L = 2.
] ] ] I I ! @
] -~ ] . - l [ l I y (n)
-6 54 -3-2-1012 34 56 E
Figure 2.5: Demonstration of expander for L = 2.
The z-transform of Yz(z) is [38]:
Ye(z) = X(5). (2.3)

The frequency domain operation is shown in Figure 2.6. From (2.3) we know

Ye(e’¥) = X(e/“F), which means Yz(e/*) is an L-fold compressed version of X(e¥).

In Figure 2.6 the other L — 1 copies of the compressed spectrum are called images.

SN

-2

AVAVI\VAVANRN

Figure 2.6: Frequency-domain effects of expander for [ =2

"} X(w)




2.1.3 Decimation Filters and Interpolation Filters

Often, a decimator is proceeded by a lowpass digital filter called the decimation filter,
see Figure 2.7. The filter ensures that the signal being decimated is bandlimited
to avoid aliasing. The exact passband of the filter depends on how much aliasing
is permitted. In filter bank applications, a certain degree of aliasing is permitted

because this can eventually be cancelled out [38].

z(n) H(z) I Mb—- y(n)
Decimation Decimator
filter

Figure 2.7: The complete decimation circuit.

An interpolation filter (see Figure 2.8) is a digital filter that follows an expander.
The typical purpose is to suppress all the images. Typically the interpolation filter is
lowpass with cutoff frequency =/L. Thus. it retains only the compressed spectrum.

not the images (see Figure 2.6).

z(n) ——~ 1L H(z)——— y(n)
Expander Interpolation
filter

Figure 2.8: The complete interpolation circuit.

In the digital audio industry. it is a common requirement to change the sampling
rates of bandlimited sequences. So the decimation and interpolation filters are widely
used. For example, suppose we want to digitize an analog music waveform z,(t).
Assuming that the significant information is in the band 0 < [Q]/27 < 22kHz. a
minimum sampling rate of 44kHz is suggested (Figure 2.9). It is necessary to perform
analog filtering before sampling to eliminate out-of-band noise. Now the requirements
on the analog filter H,(jQ) are stringent: It should have a fairly flat passband and a
narrow transition band. Optimal filters for this purpose have a very nonlinear phase
response around the bandage, that is, around 22kHz. In high quality music this is

considered to be objectionable. A method to solve this problem is to oversample



z,(t) by a factor of two. The filter H,(jQ) now has a much wider transition band.
so that the phase-response nonlinearity is acceptably low. Such filters are sufficient
to provide the required stopband attenuation to avoid aliasing. The sequence r;(n)
obtained by the above oversampling method is then lowpass filtered by a digital filter

H(z) and then decimated by the same factor of two to obtain the final digital signal

z(n).
- 88kHz zl(n)
To(t) —Ha (1) ample A/D H(z)—1 2—=z(n)
Analog _ Digitai
LPF linear phase
FIR filter

Figure 2.9: Scheme for A/D stage of a digital audio system.

A similar problem can arise after the A/D conversion stage. where the digital
music signal z(n) should be converted to an analog signal by lowpass filtering. To
eliminate the images of X(e’*) in the region higher than 22kHz. a sharp cutoff (hence
nonlinear phase) analog lowpass filter is required. This problem is avoided by using

an expander and a digital interpolation filter.

Decimation and interpolation techniques permit us to alter the sampling rate of a
signal by an integer factor. In some applications, however, it is necessary to change
the rate by a rational fraction. Figure 2.10 is a fractional sampling rate alteration.

The rate is changed from z(n) to y(n) by a rational fraction L/M.

x(n)——-ﬂ T+ L H(z) M

y(n)

Figure 2.10: Fractional sampling rate alteration.

Fractional sampling rate alterations are very useful in communications. In digital
audio, there are several applications which require fractional sampling rate alterations.
This is because at least three sampling rates coexist: For most studio work, the sam-
pling rate is 48kHz, whereas for CD mastering the rate is 44.1kHz. For broadcasting
of digital audio, a sampling rate of 32kHz is expected to become the standard. To
convert from studio frequency to CD mastering standards, one would use the arrange-

ment of Figure 2.10 with L = 441 and M = 480. Such large values of L normally

10



imply that H(z) has very high order. A multistage design (see Sec. 4.4 in [38]) is

more convenient in such cases.

2.1.4 The Noble Identities

After seeing cascades of decimators and expanders with LTI systems, a different type
of cascade is shown in Figure 2.11, where a filter G(z) follows a decimator, and H(z)
precedes an expander. Such interconnections arise when we try to use the polyphase
representation (discussed later) for decimation and interpolation filters. If the transfer
functions G(z) and H(z) are rational we can redraw them as in the Figure 2.11 [38].
These are called noble identities and are very useful in the theory and implementation

of multirate systems [38, 11].

z3(n)

(np— M—~G(z) —u(n) =— z(n}—G(z¥) | Mi—eys(n)  Identity 1

T4(n)

r(ny—H(z) Tt L y3s(n) == z(n}—t L H(zt) —=y4(n) Identity 2

Figure 2.11: The noble identities for multirate systems.

The noble identities can be verified easily [38]. Note that
Xa(z) = G(z*) X (2). (2.4)

Substituting (2.1) into (2.4) gives

1 & V/Mygrk /My -k 1 % UMk
sz X(MMWHRG((MMwr)M =37 S X EMWRG(z)

Ya(z) = —
M = k=0

which agrees with Y;(z). Also
Yi(z) = G(z%) Xu(2)
Substitute (2.3) into (2.5) to get
Ya(2) = G(z5)X4(2) = G(z1) X (%) = Ya(2),
this proves identity 2.

11



2.2 Filter Banks and Transmultiplexers

A multirate filter bank is shown in Figure 2.12. If the decimation and expansion
ratio ng are the same for all the channels, it is called a uniform Quadrature Mirror
Filter (QMF) bank. Here a discrete-time signal z(n) is passed through a group of
digital filters Hg(z) called analysis filters. All the filters in the analysis bank are
frequency selective. The typical frequency responses of analysis filters are sketched in
Figure 2.13. The filtered signals z4(n) (subband signals) are thus approximately band
limited: rq is lowpass, zar_; is highpass and the others are bandpass corresponding
to their analysis filters H;. They are then decimated by M. so that the number of
samples per unit time (counting vi(n)) is the same as that for z(n). The decimated
subband signals, vi(n), are then quantized and transmitted. At the received end,
they are recombined by using expanders and synthesis filters Fi(z). In this manner,
an approximation z(n) of the signal z(n) is generated.

If the decimation and expansion ratio ni are not the same for all channels. it is

called a nonuniform filter bank.

r(n) HO .'L'o(n) ,L o UO(n’) T o Uo(Tl) FO
7 zy(n) ey vi(n) e ui(n) £,
1 4
t Hor] M-1(n T m-1(n T M-t(n Fors f #(n)

Figure 2.12: An M-channel filter bank.

Filter banks are very useful in subband coding [11, 38, 19]. In practice one of-
ten encounters signal with energy dominantly concentrated in a particular region of
frequency. But it is more common to encounter signals that are not band limited,
and still have dominant frequency bands. An example is shown in Figure 2.14. The
frequency component in |w| > 7/2 is not small enough to be discarded, and we can

not decimate z(n) without causing aliasing either. It seems that we can not obtain
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Figure 2.13: Typical frequency responses of the analysis filters.

1
x
M

any kind of signal compression at all. But we can use subband coding to get around
this difficulty. In view of Figure 2.15. we can split the signal into two frequency bands
by using an analysis bank with frequency responses as in F igure 2.14. The subband
signal zi(n) has less energy than zo(n) and so can be encoded with fewer bits than
ro(n). For example, suppose that z(n) is a 10kHz signal (10000samples/sec) and
requires 16 bits per sample for coding, so that the data rate is 160 Kbits/sec. Let
us assume that the subband signals z¢(n) and z,(n) can be represented with 16 bits
and 8 bits per sample, respectively. Because these signals are also decimated by a
factor of two, the data rate now works out to be 80 + 40 = 120 Kbits/sec, which is
a reduction by 4/3. The basic principle of subband coding is: Split the signal into
two or more subbands, decimate each subband signal, and allocate bits for samples
in each subband depending on the energy content. This is a very effective way for

coding and transmitting signals which are not bandlimited.

From (2.1) and (2.3), the expressions of decimator and expander in Sections 2.11
and 2.12, we can obtain an expression for X(:) in terms of X(z) in Figure 2.12, by
ignoring the presence of coding and quantization errors. Each subband signal is given
by

Xi(z) = He(2) X (2);
thus the decimated signals vi(n) have z-transform

1

M-1
M Z Hk(z‘/MW')X(zl/‘"IV’),

=0

Vi(z) =

13
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Figure 2.14: Splitting a signal into subband signals z¢(n) and z,(n)

£(k) e To(n) 12 vo(n) T3 yo(n) o

a2 sy nln) o) ¢ (k)

Figure 2.15: The two channel filter bank for subband coding.

where W' = W)y, = €727/, The outputs of the expanders are therefore given by

lx\rll

Ui(z) = Vi(2M) Z Hi(zWhHX(zW').
- M o

Hence the reconstructed signal is

M-1 1 M- M-1

Z Fk( Uk = A_ z X(SW’[) Z Hk(zW‘)Fk(z).

k=0 =0 k=0
We can rewrite this in the more convenient form

Z Ai(2) X (zWY), (2.6

=0
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where
M-1

Alz) = 7 3" Hi(zWHFi(z), 0<I<M-1. (2.
° k=0

[ V)
Z!

The Fourier transform of X(zW') can be written for = = ¢/ as
X(e“W!) = X(e/w=5),

For [ # 0. X (e’“W') represents a shifted version of the spectrum X (e/*). So X(e/¥)

is a linear combination of X(e/*) and its M — 1 uniformly shifted versions.

Transmultiplexers. used for interconversion between the time division multiplexing
(TDM) and the frequency division multiplexing (FDM) formats. have very similar
architectures as filter banks by switching the analysis part and synthesis part, whose
diagram is shown in Figure 2.16 [38]. So the F; and H; are svnthesis filters and analysis
filters respectively. Similar to filter banks, if all the decimation and expansion ratios
of all the channels are equal to M., it is called a uniform transmultiplexer: otherwise.
it is called a nonuniform transmultiplexer. For the uniform case. the typical frequency

responses of synthesis filters are also frequency selective, see in Figure 2.13.

To —— T ng Fo Hy dno —— 1,

I — Ty Fy H, 1 ny Iy
1

Taf—1———~T nar—y Fa_y Har_y I nar ——Ia,

Figure 2.16: An M-channel uniform-band transmultiplexer.

The main use of transmultiplexers is simultaneous transmission of several data sig-
nals through a single channel [39, 38] - some conventional and emerging applications

iIn communications are discussed in Section 3.1.

2.3 Errors Created By Filter Bank Systems

In Equation (2.6), the presence of shifted versions X(zW'), [ # 0, is due to the

decimation and interpolation operations. From Figure 2.13 we can see that all the
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analysis filters are frequency selective [38, 11]. But in practice, the filters have nonzero
transition bandwidths and stopband gains. Therefore, the signals filtered by the
analysis filters, z;(k). are not bandlimited. Based on the discussion in Section 2.1.3.
if the signal z;(k) is not bandlimited to the desired region (lowpass or bandpass).
after the decimator n;, the stretched version X;(e’“/™) can in general overlap with
its shifted replicas.

In view of (2.6), we say that X(zW') is the [th aliasing term. It is clear that

aliasing can be eliminated for every possible input z(n). if and only if
Ai(z) =0, 1<i<M-1.

From (2.7) we know that we can choose the proper synthesis filters to make A; zero.
That is. aliasing is cancelled out.

Suppose the filter bank is free from aliasing. We then have

-

X(z)=T(2)X(2).

Thus even after aliasing is cancelled, the signal #(n) suffers from a linear shift invariant

distortion T'(z). Letting T(e/*) = |T(e’¥)]|e’*), we have
X (&%) = |T ()] X (7).

Unless T(z) is allpass: [T(e’*)] = d # 0 for all w, we say that X(e/¥) suffers from
amplitude distortion. Similarly unless T(z) has linear phase (that is, o(w) = a + bw
for constant a,b). X(e/*) suffers from phase distortion. We say the uniform filter
banks have the perfect reconstruction if and only if all the three distortions are zero.

In summary, there are three distortions in uniform filter bank: aliasing, magnitude
and phase distortions. We say the uniform filter bank achieves perfect reconstruction
(PR) if the reconstructed signal £(n) is a delayed version of the input signal z(n) in

Figure 2.12, that is, all the three distortions are zero.

2.4 Polyphase Decomposition

An important advancement in multirate signal processing is the invention of the
polyphase representation (3, 36]. This permits great simplification of theoretical re-
sults and also leads to computationally efficient implementations of decimation and

interpolation filters, as well as filter banks and transmultiplexers.
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To explain the basic idea. consider a filter
H(z)= _i_oo h(rn)z"".
By separating the even numbered coefficients of ~(n) from the odd numbered ones,
we can write
H(z)= i h(2n)z=% 4 271 f:—h(gn +1)z7%,
Defining
Eo(z) = i: h(2n)z"", E(z) = i h(2n + 1):7".

we can. therefore. write H(z) as
H(z) = Eo(2*) + z7'E(2%).

Extending this idea further, suppose we are given any integer M. We can always
decompose H(z) as

H(z) = T2__ h(nM)z—"M
4+ zolyee h(nM + 1)z—™M

n=—0oo

+ WM=Dsee  CR(RM + M —1)zM

n=—0oo
This can be compactly written as

M~1 [~

H(z)= Z ! z h(Mn + [)z™"M,
=0 n=—oc
Defining
Ei(z) = Z ei(n)z7",
where

e(n)=h(Mn+10), 0<I<M-1.

We can write H(z) as
M-1

H(z) = Z T B (2M). (2.8)

=0
Equation (2.8) is called the type 1 polyphase representation and Ei(z) the polyphase

components of H(z).



A variation of (2.8) is given by

M-
H(z) =) =WM=1=0p M) (2.9)

=0
This is called the type 2 polyphase representation. The type 2 polyphase components

Ri(z) are permutations of Ei(z), that is

Ri(z) = Exroi-i(2).

From above we know that the transfer function of analysis filters Hi(z) can be
expressed in the form

M1
Hi(z) = > z7'Eu(z*) (type 1 polyphase), k=0.1,---, M — I.
=0

Then rewrite these in the matrix form:

HO(Z) EOO(ZM) Em(ZM) Tt Eo.;»t—l(-’—"") ] 1
Hyy_, Enx-10(zY) Espa(z) -+ Expopara(zM) | | z=M-D)
(2.10)
where B,
Eoo(z) Eoi(z) -+ Egar—i(2)
E(z) = EIO.(Z) Eu.(z) El..w-—l(:) @2.11)
Exi—10(z) Eax1a(2) -+ Escpm-1(z) |
which is the M x M type 1 polyphase matriz for the analysis bank.
We can express the set of synthesis filters also in a similar manner. Thus
M-1
Fi(z) = 3 =~W=1-0R, (™) (type 2 polyphase) .
=0
Using matrix notation we have
[Fo(z) -+ Fuy_y(2)]= [z~M-1) s-M-2) . 1]
[ Roo(zY) -+ Rom—(zM)
Ryo(z*) o Ry (2M) (2.12)
| Ry-10(zM) -+ Raroyar—(zM)
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where

Roo(z2) Roy(2) Roar—1(2)
R(z) = Rw:(z) Ru:(z) RI.M:—I(Z) (2.13)
Rar_10(z) Ram—11(2) -+ Rar—pamr—1(2)

The matrix R(z) is the type 2 polyphase matriz for the synthesis bank.

Using these two representations in the filter bank. we obtain the equivalent rep-
resentation shown in Figure 2.17. It can be simplified to Figure 2.18 using the noble
identities, which we refer to as the polyphase representation of the M-channel filter

bank.

z(n) | Mb—1t M|

| Mi—t M|

1-"1 "—1
i L—- | M——t M| — £(n)

Figure 2.17: Polyphase representation of the M-channel filter bank in Figure 2.12.

z(n) | M| M
Z—l 3_1
M M| .
- E(z) R(z) -
:-:‘lf t:‘l
L M) T M z(n)

Figure 2.18: Rearrangement using noble identities.

The polyphase decomposition of transmultiplexers is similar, which we will show

in Chapter 3.
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z(n) T M H(z) | M| (a)

= z(n) ——{Eo(z)l— (b)

Figure 2.19: The polyphase identity.

Let us consider a very interesting property. Pay attention to the structure of
Figure 2.19 which is a cascade of an expander followed by a filter H(z), which in turn
is followed by a decimator. Even though the decimator and expander are time-varving
building blocks. the above cascaded system happens to be time-invariant. To see this

note that the input to the decimator has the z-transform
[X(ZH(2)lar = X(2)[H(2)oar] = X (2) Eo(2),

where Ey(z) is the 0-th polyphase component of H(z). Thus Figure 2.19 represents
a linear time invariant system with transfer function Eo(z). This property is called

the polyphase identity, which is very useful - see the following chapters.

2.5 Perfect Reconstruction of Filter Banks

If a filter bank is free form aliasing, amplitude distortion, and phase distortion. it is
said to have the perfect reconstruction (abbreviated PR) property [38, 11]. This is

equivalent to the condition T(z) = cz=™. For a PR filter bank we have
X(z) =c="™X(z), ie. #(n)=cz(n—ngy), c#0.

for all possible inputs x(r). In other words, #(n) is merely a scaled and delayed
version of z(n). This, of course, ignores the coding/decoding error and filter roundoff
noise.

From Figure 2.18, it is clear that if
R(z)E(z) = I, (2.14)

then the output Z(n) is the same as the input z(n).

The condition (2.14) is sufficient for perfect reconstruction. It is clear that if we

replace this with
R(z2)E(z) = cz™™ 1, (2.135)
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we still have perfect reconstruction, but now T(z) = cz~(Mmo+M-1) \fore generally
it can be shown that, the system has perfect reconstruction if and only if the product
R(z)E(z) has the form

(2.16)

cmo | 0 I,
P(z) = R(2)E(z) = c= [:—‘I, o }

for some integer r with 0 < r < M — 1. some integer rg, and some constant ¢ # 0.
Under this condition the reconstructed signal is Z(n) = cz(n — ng). where ng =

Mmeg+r+ M ~1.

2.6 H; Norm

Norms are widely used in control and signal processing to quantify sizes of signals

and systems.

2.6.1 Norms of Signals
We shall use two norms for the signal v = {v(0), v(1),---} [9]:
2= Norm: vl = [0(0)® + v(1)? + ---]'/?
(2.17)

oc — Norm : ||v|l2 = sup, [v(k)|

The 2-norm is associated with energy: |[v||2 is interpreted as the energy of the signal
v(k). The co-norm is the maximum amplitude of the signal. more precisely, the least

upper bound on the amplitude.

2.6.2 Norms of SISO Systems

v G y

Figure 2.20: A SISO system.

Now we turn to LTI (linear time invariant) systems. Figure 2.20 is a SISO (single-
input and single-output) system with input v and output y. The impulse-response
function of this system is g(k) and G(z) is the transfer function. There are three

norms of interest [9], listed as follows:



1 —Norm: g = [g(0)] + lg(1)] +---
2—Norm: ||Gll2 = (& &7 |G(e*)|*dw)!/? (2.18)
oc — Norm :  ||G]| = max,, |G(e')]

We can see from the expression for the 2-norm of the system that if input is the
unit impulse. é4, then the 2-norm of output equals the 2-norm of the system . That
is {9]

Gdall2 = |G(2)]|2- (2.19)

Thus [|G(=)[|2 equals the energy of the output for a unit impulse input.

2.6.3 Norms of Multivariable Systems

From the discussions above we know that the 2-norm of the system is an average
svstemn gain for known input, while the oc-norm is a worst-case system gain for
unknown inputs. Let us extend the definitions of norms to MIMO (multi-input and
multi-output) systems.

Figure 2.21 is an MIMO system with input v and output y [9]:

v G Yy

Figure 2.21: An MIMO system.

where y = Gu, v(k) € €™, y(k) € ¢7. { is defined to be the space of discrete-time
signals defined on the set of all integers, and ¢” is the space of the discrete-time signals

with dimension n. We get
y(k) = >_g(k.Do(l)
1

where g(k.l) € ¢?*™ is the impulse-response function.
The definitions and conclusions of the norms can be extended to the case of

multivariable systems: The 2-norm and co-norm of a stable p x m transfer function

matrix A R R
gu Gz - Gim
g21 G2 - Jom - . R
Giz)=|" 7. ) =[G g2 - gm],
gpl §p2 gpm

22



are [9]

2—norm: ||Glla = {5 7" trace [G(e™)"G(e7*)] dw}!/?
(2.20)
oc —norm : |G|l = max, om..[G(e))

where the trace of a square matrix is the sum of the entries on the main diagonal.
that is, the sum of the eigenvalues, and o, is the maximum singular value.

Let e;,i = 1,---.m, denote the standard basis vectors in ®™. Thus. dq€; is
an impulse applied to the ** input; Géye; is the corresponding output. From the
definition of the 2-norm we can conclude [9]:

IGE = 2 5 11d55113
= 19z + - - + llgm I3 (2.21)
= Lt [|Géaeill3
That is, similar to the SISO case, the 2-norm of the transfer function G is related to

the average 2-norm of the output when impulses are applied at the input channels.



Chapter 3

Optimal Design of Uniform
Transmultiplexers

A schematic diagram of an M-channel uniform-band transmultiplexer is depicted in
Figure 3.1: M signals xg,z;. .z, with the same sampling rate, are combined
together (TDM — FDM) through the upsamplers by a factor of M. 1T M, and the
synthesis filters Fo(z), Fi(z), -+, Far_1(z); then the combined signal is coded and
transmitted (not modelled), and processed (FDM — TDM) through the analysis fil-
ters Ho(z). Hy(z),- -, Hyr~1(z) and the downsamplers by a factor of M. 4 M. yielding

reconstructed signals o, Zy.---.Tpr_g-
Ig T M Fo HQ .L M .i'o
1
T T M Fy H, | M| I
1
y(n)
TAaf-1 T M F}U—l HM-l 1, M .'I‘:';‘,[_l

Figure 3.1: An M-channel uniform-band transmultiplexer.

In analogy with the filter bank, we continue to use terms such as “analysis”
and “synthesis” filters. Notice the conceptual duality between filter bank and the
transmultiplexer. In the former, we first “analyze” and then “synthesis”; this is in
reverse order as compared to the transmultiplexer. We will see that the problem of

designing filters for “perfect reconstruction transmultiplexer” is similar to the design
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of perfect reconstruction filter banks.

3.1 Applications of Transmultiplexers

Transmultiplexers were studied in the early 1970’s by Bellanger and Daguet for tele-
phony applications [4]. Their seminal work was one of the first dealing with multirate
signal processing, which has matured lately in the signal processing field.

Now, there are several emerging application areas such as discrete multitone
(DMT) techniques, spread spectrum orthogonal transmultiplexers for code division
multiple access (CDMA) and low probability of intercept (LPI) communications [1.2].

Let us discuss a few applications used widely in recent vears.

e Spread Spectrum PR-QMF Codes for CDMA

. .
" M Go Ho v e
. )
—d M Gy H, Y s
Tar- Far—
it ISV Giart Hyr, LM EM

Figure 3.2: M-band transmultiplexer structure for CDMA communications

The CDMA techniques have been proposed as an alternative to the classical
multiplexing methods such as TDM and FDM. Figure 3.2 shows the M-band
transmultiplexer structure for CDMA communications. Due to the absence of
synchronization between the transmitter and receiver, the desired user codes
for CDMA communications should jointly satisfy the following time-frequency
properties [2]: (1) The orthogonal user codes can not be unit sample functions.
(2) The orthogonal user codes are expected to be spread over the full spectrum
with minimized intercode and intracode correlations. Several examples have
been done to show that the correlation and frequency spreading properties of

multivalued spread spectrum PR-QMF code outperform the other codes. There

o
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have been several other subband (wavelet) transform-based CDMA communi-
cation configurations reported in the literature [12, 15, 20, 25]. It is predicted
that these techniques might find their applications in the next generation of

PCS (private communication systems) products.

e DMT Modulation

DMT modulation has been widely used in applications such as asymmetric
digital subscriber line (ADSL), high bit-rate digital subscriber line (HDSL).
and very high bit-rate digital subscriber line (VDSL) communications for the

single-user case [1].

N Iy Go H, LM %o
M Gy Nin) H, LM
C(n)—@

Channel
TAf— Taf—
oL T M M-1 Hy o (VS b

Figure 3.3: A basic structure of a DMT modulation-based digital ADSL transceiver.

The basic structure of a DMT modulation-based digital ADSL transceiver is dis-
played in Figure 3.3, the DMT-based system uses a set of M frequency- selective
orthogonal functions {G:(n)}. The subsymbols {zo(n), zi(n), --.zym-1(n)} are
formed by grouping blocks of an incoming bit stream via certain constellation
schemes like quadrature amplitude modulation (QAM) or pulse amplitude mod-
ulation (PAM). The parsing of the Incoming bit stream to the subsymbols is
determined by the subchannel attenuation level. Therefore, each of the sub-
carriers (orthogonal functions) carries a different number of bits per symbol

commensurate with the corresponding subchannel attenuation [23].

This technology has two advantages [1]: (1) adaptation of the data rates of
subchannels based on the possible variations of the channel and noise character-

istics, (2) combining different coding schemes including block and trellis-based
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modulation in order to increase the system’s robustness toward transmission

€rTors.

LPI Communications

Time and frequency spread functions are often used as user codes or signatures
to provide LPI communications. Spread spectrum communication is a popular
example of this approach with its military and civilian applications (13, 14].
The basic philosophy of these techniques is to distribute the orthogonality con-
ditions of the function set in both the time and frequency domains. This helps
the transmitter to hide the information bearing signal in either domain from
an interceptor since it can see a fairly low signal-to-noise ratio (SNR). Thus.
the time or frequency domain localized interference immunity of the commu-
nications system is significantly boosted. The primary advantage of a spread
spectrum system is its low transmission power requirements along with its inter-
ference resistance. The inherent flexibilities of subband transforms on a time-
frequency plane naturally make them very valuable signal processing tools for
LPI communications. These flexibilities provide the user with codes that are

not easy to detect and recognize by unintended receivers.

In summary, several popular communication applications can be described in

terms of synthesis/analysis configuration (transmultiplexer) of subband transforms

such as code division multiple access (CDMA), frequency division multiple access

(FDMA), and time division multiple access (TDMA) communication. In particular.

FDMA or DMT modulation-based systems have been more widely used than others.

3.2 Input-Output Relation for Uniform Transmul-

tiplexers

In Figure 3.1, the components z,(n) of the TDM version can be recovered by sep-

arating the consecutive regions of Y (e’“) (which are the M message signals) with

the help of an analysis bank and then decimating the outputs. Now, if the synthesis

filters Fi(z) are non-ideal, the adjacent spectra in Figure 2.13 will actually tend to

overlap. Similarly if the analysis filters H;(z) are non-ideal then the outputs of Hi(z)
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have contributions from X(e’“) as well as X;(e/*),l # k. So in general each of the
reconstructed signals Zx(n) has contributions from the desired signal zx(n) as well
as the “cross-talk” terms z;(n).l # k. An obvious approach to reduce the extent of
cross-talk is to design Hi(z) and Fi(z) to have very sharp cutoff regions to avoid
overlapping in the signals throughout the decimator in Figure 3.4 [38], which requires
filters of very high order. From the following it can be shown that the cross-talk terms
can be completely eliminated by careful choice of the relation between the analysis

and synthesis filters.

Zo T M| Fo H; Y
T T M Fy H, | M|
Taf-1 T M| Fary H; L M| Iy

Figure 3.4: The relation between #(n) and z,.(n).

The relation between #x(n) and z,.(n) can be schematically represented as in
Figure (3.4). By using the polyphase identity (Figure 2.19) we see that each branch

in this figure is an LTI system. Therefore

M-—1
Xie(z) = D Tem(2)Xm(z), 0<k< M —1, (3.1)

m=0

where Ty(z) is the O-th polyphase component of Hi(z)Fr.(z). By defining

To(n) Zo(n)
cmy= | T a2 B
Za1-1(n) Earo1(n)
we can express (3.1) as
X(z) = T(2)X(z), (3.2)
where
Too(z) Toa(z) -+ Tom-1(z)
I(s) = Tm:(z) Tu:(Z) Tl.M:—-I(z)
Tar-10(2) Tar-1a(s) - Tarcraros(2)
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So the transmultiplexer is an LTI system with transfer matrix T(z). The system
is free from cross-talk if and only if T(z) is diagonal. That is, the 0-th polyphase
component of Hi(z)F,,(z) should be zero unless £ = m. Under this condition, each

reconstructed TDM signal £x(n) is related to the original signal z;(n) according to
Xi(2) = Ta(2) X (2)-

The transfer functions Ti(z) represent the distortions that remain after cross-talk
elimination. If Ty(z) is allpass for all k&, there is no amplitude distortion: if Tix(z)

has linear phase, there is no phase distortion. That is,
Tik(z) = ckz7™, for all k.

So. for well designed transmultiplexers, #; approximates r;. [deally, we say the
transmultiplexer achieves perfect reconstruction [38] if #; is a delayed version of z;,

namely, if there exist positive integers d; such that
zin)=czi(n—d;), i=0,1,---,M—1, (3.3)

all the distortions are zero.

3.3 Polyphase Decomposition

The use of polyphase decomposition adds further insight into the operation of the
transmultiplexer. As in the filter bank case, we can redraw the analysis and synthesis
banks in terms of the polyphase matrices E(z) and R(z). The resulting equivalent
transmultiplexer circuit is shown in Figure 3.5. Then it can be simplified into Figure
3.6, after invoking the noble identities. This structure can be further simplified into
the equivalent form shown in Figure 3.7. It is, therefore, clear that the transfer matrix

T(z) can be expressed as

T(z) = E(z)[(z)R(2), (3.4)

where I is a fixed function:

0 1
F(3)= ,:3—‘[’\4—1 0]'
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Figure 3.5: Polyphase decomposition of the transmultiplexer in Figure 3.1.

g —e TA/[ L ."/ i’o
9
Z_l
Iy ————e TA/[ ,L./"I [ .i‘[
R(z) = E(z)
. -
Tary M| (Y ———T Ao

Figure 3.6: Rearrangement using noble identities.

That is R
Xo(z) Xo(z)
Xl 2) 0 1 .XI(Z) -
—E@ﬂzqhhlo}m» o (35)
Xar_i(z) Xar-1(z)

From this expression we can explore the conditions for perfect reconstruction.

3.4 Perfect Reconstruction

3.4.1 The Conditions for Perfect Reconstruction

From Section 3.2 we know that the transmultiplexer achieves perfect reconstruction

if and only if Z; is a delayed version of z;, that is, in (3.2), T(z) is a diagonal matrix
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Figure 3.7: The equivalent form of Figure 3.6.

with all the elements on the main diagonal being pure time delays:

coz % 0 .- 0
0 clz'd‘ s 0
= ., 7 : , (3.6)
0 0 o cygsdue
where¢; #0for i =0,1,--- .M — 1.
From (3.6) it is easy to get a sufficient condition for perfect reconstruction by

setting T'(z) = cz7" [ [38]. Now
T(z)=cz™™][

= E()(z)R(z) =z
<= cE7Yz)R7!(z) = z"[(z)
<= R(:)E(z) = cz=™[~!(z)
Substituting for [(z), this becomes
R(z)E(z) = cz™™ [ ,91 I ] ; (3.7)

for appropriate integer ng.

3.4.2 Relation to Perfect Reconstruction (PR) Filter Banks

Reference [24] gave us the idea for the connections between QMF banks and transmul-
tiplexers. The following results from [24] are very useful. Note here we use PR QMF
banks and PR transmultiplexer instead of aliasing-free QMF bank and crosstalk-free

transmultiplexer.
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Let £'(z) and R'(z) be the polyphase component matrices of the analysis and syn-
thesis filter banks of an M-channel, maximally decimated QMF circuit {H: (). F!(z)}.
A sufficient condition for a PR-QMF bank is that the matrix P'(z) = R (2)E'(z)
should have the form (2.16). If » = 0, it will be called a standard PR-QMF bank.
whereas if it satisfies (2.16) with r # 0, it will be called an r-skewed PR-QMF bank.
The following properties relate standard PR-QMF banks and r-skewed PR-QMF
banks.

1. Anr-skewed PR-QMF bank {H, (=), F(2)} is always obtainable from a standard
PR-QMF bank {H/(z), F!(z)} by choosing the filters as H;(z) = H.(z) and

Fl(z2)=z"F/(z),0<i<M~1.

t

2. Let {H(z), F;(z)} represent a 1-skewed PR-QMF bank. Define H;(z) = H.(z)
and Fy(z) = F/(z),Vi. Then {Hi(z), F{(z)} represents a PR transmultiplezer.

Proof of the first property If the PR-QMF bank {H/(z). F!(z)} is a standard
PR-QMF bank, from the definition we know that

, ’ 1

P(z)=R(2)E (z) = cz7™[y,.

The synthesis filter bank F'(z) corresponding to R'(z) is

’ ’ ' ? T
F'(z) = [Fo(=) Fi(z) - Fyy_y(2)]" = RT(zM)e(2), (3.3)
) T
where €(z) = [z'("‘"‘” z=(M=2) . 1] . Similarly,
F'(z) = R"" (zM)e(z). (3.9)

t

Since H;(z) = H;(z),Vi, we have E!(z) = E/(z). By choosing F;'(z) = z"F/(z), we

t

can write

F'(z) =z F'(z). (3.10)

Substituting (3.8) and (3.9) into (3.10), we get

R (zM)e(z) = "R (M)e(2), (3.11)
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where

~—(M-1) == (M=1+4r
-~ (M=-2) z-(M—2+r)
zTTe(z)=z"" = (3.12)
1 =T
Note that
:-(.\J—l-i-r
0 :_A[[r :—(;\[—2+r) ‘ .
[ e o ] e(z) = . (3.13)

From (3.12) and (3.13) we know

0 =ML ] e(z). (3.14)

z- 6(3) = [ IA/ _, 0

Substitute (3.14) into (3.11) and get

R"T(z‘")e(z):R'T(zM)[ 0 ”—M[’}e(z).

Y- 0
That is
” 0 Ty, ) o
R(z)= [ s '0 ] R(z). (3.15)

From (3.15) we can conclude

" o 0 I - —ng 0 [, —r
R'(:)E (")=[:-*1r ! ]R(z)E(z)=cz [, " ]

this proves the first property. a
Proof of the second property By definition, the matrix P’(z) of the l-skewed
PR-QMF bank {H(z), F/(z)} satisfies

(3.16)

P'(z) = R (2)E'(s) = cz™™ [ -

So. for the transmultiplexer filters, the matrix P(z) satisfies P(z) = R(z)F(z). Hence.

from (3.16), we can write

R(z)=cz™™ l: 291 [h{)_l ] E~(2). (3.17)

Using (3.17) in (3.5), we get X(z) = z~'cz™™ X(2),Vi. Thus, {Hi(z), Fi(z)} rep-
resents a PR transmultiplexer in which all the Ti(z) are equal and are given by
Tiz) = z7'T'(2), Vi. m]
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From the two propositions above, we can get a PR transmultiplexer directly from
a l-skewed PR-QMF bank just by switching the synthesis and analysis part. On the
other hand, if the PR-QMF bank is not 1-skewed, that is, r # 1, then we can insert
appropriate amount of delay in front of the filters Fi(z) to force r = 1. The amount
of delay to be introduced can be judged as follows: If r = 0, the amount of delay to

be inserted is M — 1 (M here is to make the filters causal); otherwise, it is r — 1.

3.5 Distortion Measures

In order to quantify errors incurred in signal reconstruction in the transmultiplexer of
Figure (2.16), we need a mathematical model. It is a fact that the system in Figure
(2.16) represents a linear. time-invariant (LTI) system. though multirate building
elements are involved; but it is multi-input. multi-output (MIMO).

In the frequency domain the transmultiplexer is modelled by the M x M transfer
matrix T'(z) relating X (z) to X (z) (see Section 3.2): X(z) = T(z).X(z). This transfer

matrix can be computed based on (3.4) [38]:

T(z)=E(z)[(2)R(z). (3.18)
Writing
Too(z) Tou(z) -+ Toar-1(2)
T(z) = Txo:(z) Tu:(z) Tl.&lz—l(z) (3.19)
Tavr—10(2) Tar-1a(z) -+ Tayropar-i(2)
we can re-express the condition for perfect reconstruction in (3.3) as follows: There
exist positive integers do,d,,---,dap—; such that T(z) equals the ideal system Ty(z)
defined by
z7l 0 ... 0
0 =z=% ... 0
Tu(z) = | . —_— : : (3.20)
0 0 eee z—dar

Note that in this case, T'(z) is diagonal (no cross-talk distortion) and the diagonal
elements are time delays (no magnitude and phase distortions).
[n cases of non-perfect reconstruction, we shall discuss ways to quantify the three

distortions. First, cross-talk distortion exists if there is at least one non-zero off-
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diagonal element in T'(z). The energy of all the off-diagonal terms in T(z) can be

used to quantify cross-talk distortion; so we define

1/2
1 2r .
CD = [— [ = m,-(efwnzdw}
2r Jo . 5.
1.7 (i#5)
as a measure for cross-talk distortion. Note that (CD)? is the overall cross-talk energy
present in the system. Even if CD = 0, the channel transfer functions T::(z) may still
have errors in magnitude and phase compared with the ideal time delay z7%: define

the following quantities

= . 1/2
MD; = [2—_/02 (|T,-,-(eﬂ)|—1)2d<,,~] ) (3.21)
PD;, = {2%/02}[12 [(Tie™) + diw] dw}l/z. (3.22)

Note that MD; and PD; are defined across all frequencies for the i-th channel: (MD;)?
is the energy of the magnitude distortion. and PD; the energy of sine of the phase
distortion ¢(w) = (T;;(e’“) + dijw. There are two reasons why we use sine in the
definition of PD;: First, if ¢(«w) is within £ /2, which is usually the case. sin?[o(w)]
is a good indicator of the size of &(w); second, the PD; defined in (4.16) connects well
with the new distortion measure to be proposed later. From MD; and PD;. we can
introduce ways to quantify magnitude and phase distortions for the transmultiplexer:

1/2

1/2
MD = (Z MD?) . PD= (E PD?) ) (3.23)

Note that (MD)? is the overall energy of magnitude distortion, and (PD)? the overall
energy of the sine of phase distortion.
Alternatively, one can use maximum magnitude instead of overall energy to quan-

tify cross-talk, magnitude and phase distortions:

CDmax = max max|T;;(e*)|.

Li(i#j) W
MDpax = maxmg-xllﬂ;(ej“)l - ll,
PDmax = max max [(Ti(e?) + diw|.

These are useful and relevant in design based on minimizing the co-norm, see the

connections in filter banks [10, 30].
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In summary, either {CD, MD, PD} or {CDmax, MDmax; PDmax} can be used as a
complete set of distortion measures for the transmultiplexer in Figure 3.1: the first
set reflects overall energy, whereas the second measures maximum magnitudes. Here.

the first set is more relevant for the criterion we propose for design later.

We will put forward a single distortion measure for perfect reconstruction with the
following two desirable properties: First, it captures the three traditiona! distortions
in one in the sense that small values in this measure result in low CD.MD and PD
defined earlier; second, it is relatively easy to optimize this measure in transmulti-
plexer design. The new distortion measure to be proposed depends on 2-norms of
transfer matrices which we define next.

Let T'(z) be any stable, (M — 1) x (M — 1) transfer matrix of the same form given

in (3.19). The 2-norm of T'(z) is defined as

IT(=)]ls = {.)L’/Ozrtrace [T(e™) T(e)] dw}l/z.

=i

where T'(e’*)" is the complex conjugate transpose of T(e™). It is straightforward to

verify that

IT()1z = 3_1T5(2)113 (3.24)
5J
where the 2-norm of the scalar function T};(z) is given by
1 2 12 1/2 .
IT5)lle = [ [ ITs(e)Pas] (323)

This norm applied to a transfer matrix of an LTI system can be interpreted in terms
of the impulse responses or the white noise responses of the system. see. eg..[9].
Returning to the transmultiplexer problem, perfect reconstruction is achieved if
T(z) = Ty(z), where Ty(z) is the desired ideal system given in (3.20). Comparing
T(z) with Ty(z), we arrive at the error system depicted in Figure 3.8, where ¢; is the
error signal in reconstruction for the i-th channel. The transfer matrix for the error
system taking input vector z(n) to the error vector e(n), defined in the obvious way,
is clearly T'(z) — Ta(z). The new distortion measure we propose for reconstruction is

the 2-norm of the error transfer matrix:
J =||T(z) — Tu(2)]2-
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Figure 3.8: The error system between the transmultiplexer and the ideal system.

The reasons why this measure is appropriate are given in the next proposition
which establishes simple connections between J and the three distortions CD. MD.

and PD.
Proposition 1 CD and MD relate to J via

CD* + MD? < J? (3.26)
whereas CD and PD relate to J via

CD* + PD* < J2. (3.27)

Proof From the representations for T'(z) and Ty(z) in (3.19) and (3.20), respectively,

we get
Too(z) — z7% Toi(=) L Torr—1(z)
T(2) - Ty(z) = Tlo:(z) T“(z).— z=di :.. TW-_I(Z)
TM-;vO(z) TM—;,I(Z) aE TM—[,.M—I(-’;) — z7dm
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The 2-norm formula in (3.24-3.25) gives

1 2= . 1 2w » —idow
P [00F Ty de+ 5= [ S ITu(e) — e .
L 5(i#7) t
We know that
CD? = [i/k S TP dc»]
T 2w e &= W ’
.J(i#71)

which means the first term of J? is CD?. Write
Ai(w) = |Tu(e*) — e™I4
to get
J*=CD?+ 51: /0 2” Z [Ai(w)]? dw. (3.28)

Ai(w) is a more natural distortion index capturing both magnitude and phase distor-

tions together.

Since A;(w) > ||T:(e’)| — 1]. it follows that

1 2r 1 2= .
3= ) Z;[Af(w)]2 dow > 2—,/0 S |ITate™) = 1) dw = MD2.

Substituting this into (3.28) gives (3.26).
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Figure 3.9: sin™! A;.

For the definition of A;, write

|Tii(e™)| = [Teile? T

Then . .
Ailw) = |Tu(e’”) — em9%|
= ||Tle?lTi — e~idiw

lnilej(éT"'*'d‘w) - 1, .
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which says that the point lT,-,-Iej(éT"*'d"") lies on a circle with centre (1,0) and radius

A; (refer to Figure 3.9). Therefore,
|£Tii + diw| < sin~! A,

That is,
sin? [£Ts(e™) + dw| < [Aiw)]. (3.29)

Hence (3.27) is proven. a

Based on Proposition 1. it is clear that all the three distortions. CD. MD. and PD,
are bounded above by .J. Therefore it makes sense to minimize J in transmultiplexer

design because this suboptimizes all CD. MD, and PD simultaneously.

3.6 Optimal Design Procedures

In this section we formulate the optimal design problem for transmultiplexers based
on the distortion criterion J and develop the design procedure.

In view of the transmultiplexer in Figure 3.1, our design is divided into two steps:
First, FIR synthesis filters F;(z) are designed based on frequency band combining
requirement; next, FIR analysis filters H;(z) of a fixed length are designed to minimize

J. This two-step design process has several advantages:

e It guarantees that the analysis filters designed have the optimal reconstruction
property for a given set of synthesis filters. This is useful in cases where one can
select synthesis filters from other approaches, e.g., Johnston’s filters [22] as we

will study in Example 1, and then redesign the analysis filters for optimality.

¢ By Proposition 1, the quantity J captures all three distortions CD. MD, and
PD: minimizing J in design allows the reconstruction error to be distributed

evenly across CD, MD, and PD.

e The design scenario provides an easy framework for studying tradeoffs among
several important design factors, including filter complexity, reconstruction time

delay, and reconstruction performance (J).
With reference to Figure 3.8, the design problem can be stated as follows:
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Given the desired reconstruction time delays dg, dy, - - -, dar-y and the FIR syn-
thesis filters Fo(z), F1(2),-- -, Fy-1(z), design FIR analysis filters Ho(z). Hi(2).---

Hyr_y(z) of a given length to minimize J.

Note from (3.18) that J = ||E(z)[(z)R(z) — Tu(z)||2- Here, ['(z), R(z). and Ty4(=)
are all FIR and given and only E(z), the FIR polyphase matrix of the analysis filters
[38]. is designable. Define Q(z) = ['(z)R(z) to get that Q(z) is again FIR and given:

and the equivalent design problem is:
Jopt = fg(i})lllE(E)Q(Z) — Ty(2)|f2. (3.30)

where the minimization is over the class of FIR E(z) of some fixed length.

To reduce the latter minimization problem to a solvable matrix problem. we look
at the impulse response matrix of the MIMO system P := EQ — T,. Let the orders
of Q(z) and E(z) be m and (. respectively, and define

{

z)= Zz'iQ;, E(z) = Zz_iEi.

1=0 1=0
The matrices Qg. Q.- --.Qm can be computed from the given data: but Ey. E,.---. E|
are designable. If we have 0 < d; < m +1[. i =0.1.--- .M — 1. then the impulse

response matrix of P is FIR with order m + (:

m+4{
P(z) = Z P
=0
By Parseval’s equality,
m+1 1/2
J=||P(z)|l2 = [Z t;race(P,—P{)] = [trace (EE’)]I/z,
=0
where we have defined the row matrix
£= [ Po Pl Pm-H ]

Since P(z) = E(z)Q(z) — Ta(=). it can be verified that
P=EM-D,

where D relates to Ty(z) just as P does to P(z),

E=[E E - E|,
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and M is an ([ + 1) x (m + [+ 1) block matrix depending on only known matrices

Q0. Q1.+ -+, Qm. So the problem in (3.30) reduces to the following matrix problem:
Jope = min {trace [(E M — D)(EM — D)]}'/*.

If the matrix M has full row rank, or equivalently M M’ is invertible, the optimal

solution can be obtained as
Eope = DM'(M M),

From here we can recover the optimal analysis filters Ho(z). Hi(2). -+, Hy_y(2).

3.7 Design Examples

Next. we discuss two design examples based on the optimization just described. We
will obtain the synthesis filters from some existing filter bank systems in the litera-
ture which achieve close-to-perfect reconstruction and compare two sets of analysis
filters: The first set is obtained in the normal way from the filter bank system (using

traditional method); and the second set in the optimal way proposed in this paper.

Example 1 In this two-channel example, we consider a filter bank with analysis fil-
ters f{o(z) and H,(z) and synthesis filters Fy(z) and Fl(z) satisfying H,(z) = Ho(—z).
Fo(z) = f[o(z), and Fl(z) = —ro(——z). where Ho(z) is taken to be the Johnston’s FIR
filter (48D) [22] with 48 coefficients. Such a filter bank removes aliasing and phase
distortions but has small magnitude distortion. For the two-channel transmultiplexer,
we take the synthesis filters to be Fy(z) = z“ﬁo(z) and Fi(z) = —z"'Hy(—z). (The

factor z—1

is introduced because the corresponding filter bank is 1-skewed.) Their
magnitude responses are given in Figure 3.10.

By the normal approach, we get the analysis filters for the transmultiplexer from
the filter bank: Ho(z) = Ho(z) and Hy(z) = Ho(—z).

By the optimal approach we redesign FIR Ho(z) and Hy(z) of order 47 by mini-

mizing J when the desired ideal system is of the form

—d
Ty(z) = [ ~0 ..9d ] .
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Figure 3.10: Example 1: The magnitude responses for F (solid) and F} (dotted): dB
versus w/27.

The optimal distortion performance J,,; as a function of the time delay d is given
in Figure 3.11. Figure 3.11 shows that there is a unique optimal choice for d: d =
25. With this optimal value for d, the optimal analysis filters Ho(z) and H,(z) are
computed. with their magnitude responses given in Figure 3.13: the corresponding
Jop: 1s 6.044 x 107*. Figure 3.12 presents the simulation results. with the two inputs

to be:
uy 2sin(0.37t) + cos(0.47t).
uz = 1.5cos(0.27t) + sin(0.67t).

We find that the outputs of the error system are very small: The maximal magni-
tude of the errors is 3.679 x 10~4. This means the outputs of the designed system
approximate the inputs very well.

In terms of the distortion measures defined in Section 3.2. performance compari-
son of the two transmultiplexers via the normal and optimal approaches is given in
Table 3.1. We note that the optimal design outperforms the normal design in MD at

the cost of slight CD. Both designs remove PD completely.

Example 2 This three-channel example is based on a filter bank system designed in
[37]. where the FIR analysis and synthesis filters are all of order 14, and the magnitude

responses for the synthesis filters are given in F igure 3.14; for the transmultiplexer
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Figure 3.11: Example 1: Jopt versus the reconstruction delay d.

Table 3.1: Example 1: Distortion performance comparison.

Distortion Normal Optimal
CD 0 4.59 x 102
MD 6.14 x 10~ | 6.02 x 10~*
PD 0 0

CDnax 0 7.35 x 10~°
MDmax | 1.23x 1073 | 1.13 x 1073
PDmax 0 0

application, we modify the synthesis filters by multiplying by the factor =3 to han-
dle the skewedness condition [24]. The filter bank system does not achieve perfect
reconstruction but removes phase distortion completely. Again, the normal approach
is to use these filters in the transmultiplexer; and the optimal approach is to redesign
the analysis filters of the same length by optimizing J, taking the reconstruction time
delays to be the same: dy = d; = d,. It is found that the minimum Jopt i1s 1.67 x 104
when the reconstruction time delay is 6. For this delay value, the optimal analysis
filters are computed. Their magnitude responses are depicted in Figure 3.15, and the

simulation results are given in Figure 3.16, the maximal magnitude of the errors is
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Channel 1

Channel 2

Figure 3.12: Example 1: The simulation results of the error system with inputs (solid)
and outputs (dotted).

2.805 x 10~*, with the three inputs to be

u; = sin(0.37¢) + cos(0.27¢),
uz = 2sin(0.27t) 4 sin(0.17¢),
uz = cos(0.17t) + 2sin(0.27¢).
The performance of the two transmultiplexers designed by the normal and optimal

approaches are compared in Table 3.2. (Note that PD,,., in the table is measured in

radians.)

Table 3.2: Example 2: Distortion performance comparison.

Distortion Normal Optimal
CDh 2.05x 1073 [ 1.14 x 10~1
MD 1.35 x 1073 | 8.67 x 10~3
PD 0 8.65 x 10~°

CDijax | 1.3 x1073[1.13 x 107
MDuax | 1.79 x 1073 | 1.20 x 10~4
PDax 0 1.25 x 10~

The merit of the optimal approach is evident: By tolerating a slight phase dis-

tortion, one can significantly improve the cross-talk and magnitude distortions. Note
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Figure 3.13: Example 1: The magnitude responses for the optimal Hy (solid) and H,
(dotted): dB versus w/27.

that the conclusion is the same no matter we use CD.MD, and PD (energy) or

CDmax. MDpax. and PDya. (peak value).
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Figure 3.14: Example 2: The magnitude responses for Fy (solid),F} (dotted) and F3
(dashed): dB versus w/2x.

Channel 1
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Figure 3.15: Example 2: The simulation results of the error system with inputs (solid)
and outputs (dashed).
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Figure 3.16: Example 1: The magnitude responses for the optimal H, (solid), H,
(dotted) and H, (dashed): dB versus w/2x.

47



Chapter 4

Optimal Design of Nonuniform
Transmultiplexers Using General

Building Blocks

4.1 Introduction

Typical studies of transmultiplexers focus on uniform-band structures in which in-
coming data signals are assumed to have the same sampling rate and are upsampled
at the same integer factor. In this chapter, our goal is to study nonuniform transmul-
tiplexers where incoming signals have possibly different sampling rates and thus are

upsampled at different fractional ratios. A general nonuniform transmultiplexer built

with traditional blocks is shown in Figure 4.1. where m signals r; (1 =0.1.---.m—1).
Lo I
— Tpo Fo g T q Ho Lpo =
I i'l
— Th Fy la Ta H, Ip —
Tm—1 -i'm.—l
— T Pm-1 Frny 1 gm-y T Gm-1 Hpy 4 Pmo1 —

Figure 4.1: A nonuniform transmultiplexer using traditional building blocks.

with different sampling rates, are synthesized by m synthesis subsystems formed by
upsampler T p;, LTI filter F;, and downsampler | g; (g; < pi). Then these signals are

combined into a single channel. and are coded and transmitted (not modelled). In the
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other end, the combined signal is analyzed through m analysis subsystems consisting
of upsampler 1 ¢;, LTI filter H;, and downsampler | p;, and hence generating the
reconstructed signals Z; (1 = 0,1,---,m — 1).

Note that each subsystems is a sample-rate changer as depicted in Figure 4.2.
where the output sample rate is m/n times the input sample rate. We say it is a
dual-rate system with the input-output property that shifting the input (u) by n
samples results in shifting the output (y) by m samples. Such a property is defined
as (m.n)-shift invariance [6]. If m = n = 1, a linear, (m, n)-shift invariant system

reduced to an LTI system.

u + m F ln y

Figure 4.2: A sample-rate changer.

Let f; be the sampling rate for the incoming signal z;. Since after synthesis the

signals are combined (and hence have the same sampling rate). we have

Po P1 Pm-1

—Jo=—h="="——fm-1-

qo0 Q1 qm-1
Thus the sampling rates for the incoming signals are rationally related. Usually
integers p; and g; are coprime; even if they are not. this structure does not lead to
more general systems [8, 35]. To fully use the channel, we assume the critical sampling
ratios, i.e.,

m-l&: . (4.1)

i=0 Pi
Same as in the uniform case, we say the transmultiplexer achieves perfect recon-

struction [38] if Z; is a delayed version of z;, namely, if there exist nonnegative integers
d; such that
zik)=zik—-d;), :=0,1,---,m—1. (4.2)
Note that in this case there are no cross-talk, magnitude and phase distortions.
However, according to the analogy of transmultiplexers and filter banks established
in [39, 32, 24], in general, it is impossible to remove cross-talk distortion using causal
LTI filters F; and H;, let alone perfect reconstruction. As in the filter bank case, this

is due to the incompatibility of the upsampling ratios p;/q; involved.
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As suggested in [35, 8], more general building blocks should be used to allow
more design freedom in order to achieve perfect reconstruction. The system proposed
as a general building block in 8] for multirate signal processing is the linear, dual-
rate system depicted in Figure 4.3, and is represented by G : (p.q), where p and
q are positive integers. This system has the (p. q)-shift invariance property in that
shifting the input by ¢ samples results in shifting the output by p samples: thus the
output sampling rate is p/q times the input sampling rate. The dual-rate system in
Figure 4.3 is more general than the structure in Figure 4.2. and it can be realized
by Figure 4.2 only if the two integers p and ¢ are coprime [6]. Such system allows
more design freedom if p and ¢ have nontrivial common factors. In this case. they can
be implemented by the cascade combination of upsamplers, certain linear switching

time-varying (LSTV) systems, and downsamplers [8]-see Section 4.3 for details.

— G:(p.q) ——

Figure 4.3: A dual-rate system.

The synthesis and analysis subsystems in Figure 4.1 are such dual-rate systems.
e.g.. the i-th synthesis subsystem is (p;,q;)-shift invariant. Replacing the synthesis
and analysis subsystems in Figure 4.1 by appropriate dual-rate systems gives rise to
a more general transmultiplexer. Let n be the least common multiple of integers
Po.-P1:- ", Pm—1; define
ng;

pi

ry =

i=0,1,---.m—1. (4.3)

It follows that r; is integer-valued. The more general transmultiplexer using dual-
rate structures as building blocks is shown in Figure 4.4. Note that each synthesis or
analysis subsystem in Figure 4.1 is replaced by a (possibly) more general dual-rate
system in Figure 4.3, but the output-to-input sampling rate conversion ratio is kept

the same, e.g., for the i-th synthesis subsystem, we have

which follows easily from (4.3).
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Tm-1 z -1
il Fm—l : (Tl, Tm—1 m—1 ¢ (T‘m_l,fl“—l’

Figure 4.4: A nonuniform transmultiplexer using general building blocks.

As in the filter bank case (35, 8], perfect reconstruction is possible to achieve in
Figure 4.4.

Different from uniform transmultiplexers, the structure in Figure 4.4 is not time-
invariant in general, e.g., the system from z; to #; is linear periodically time-varying
(LPTV) with period r;. Hence, in addition to the usual cross-talk, magnitude. and
phase distortions, which are similar to the uniform case [39. 38. 26). there exists a
new aliasing distortion from z; to Z; - see Section 4.5 for details. Coping with this
new distortion is effectively done later.

The chapter is organized as follows. In Section 4.2 we introduce blocking and
develop a blocked model for the transmultiplexer in Figure 4.4. Section 4.3 relates
the blocked model to the LSTV structure for implementation. Section 4.4 states
a necessary and sufficient condition for perfect reconstruction based on the blocked
model. In Section 4.5 we propose measures for cross-talk, aliasing, magnitude, and
phase distortions, and a composite new measure. Section 4.6 develops an iterative
design procedure for the transmultiplexer aiming at minimizing the composite dis-
tortion measure. Finally in Section 4.7 this method is illustrated in details with a

three-channel example.

4.2 Blocked Models

Blocking is a standard technique for treating periodic/multirate systems in signal
processing [28, 29, 40]. Relating it to the polyphase decomposition in the frequency

domain provides deep insight for multirate systems.
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4.2.1 Blocking Signals

As in Chapter 3. £ is the space of discrete-time signals defined on the set of all integers.

A signal z in £ is written
{-,z(=2).z(-1) | z(0), z(1), z(2), - - - }.

the vertical bar separating the time from k£ = 0. For an integer n > 0, defining L,

to be the n-fold blocking operator, z = L,z is the blocked signal (underlining denotes

blocking):
z(0) z(n)
1 +1
{--- 12(0),z(1),---} — .r(. ) . :z:(n: ) (4.4)
z(n—1) z(2n — 1)

L, maps £ to ", the external direct sum of n copies of £. The underlying period for
the blocked signal z is nh if the underlying period for z is £. The vector representation

of the equation £ = L,z when n = 2 is: (see [9] for details)

S r{ojofofo L
' o|rlolofo '
z(0) 0[0[1]0]0 v(0)
z(1) | = v(l1)
- ojofolr]o o(2)
z(2) ojofofo[r ~
L] o|ofolo]o R

For the partition shown. the system L is non-causal and time-varying since L is
neither lower-triangular nor Toeplitz, namely, constant along all diagonals.
The inverse L', mapping £" to ¢, amounts to reversing the operation in (4.4). It

is defined as follows [9]: If

y1(0) yl(l)
y2(0) y2(1)
y= S A R
yn(0) yn(1)
and
z =Ly,
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then
= {' o Iyl(0)7y2(0)7 e 1yn(0)syl(1)f' "7yn(1)s"'}-

The corresponding matrix for n = 2 is [9]:

r -..--....
I 0/0 00 O
0 /|0 0[]0 ©
L7 = 0 0[7 0]/0 O
0 0[0 7|0 O
0 0j/]0 0|7 0O

Clearly. L~! is causal but time-varying.

4.2.2 Blocking Systems

For a linear discrete-time system G mapping ¢ to #. blocking of its input and output
signals induces another linear system, denoted G. That is. G = L.GL;' mapping
z to y. G has n inputs and n outputs if G maps r to y and is single-input and
single-output (SISO).

The following facts hold based on [6] and [9].

l. G is time-invariant if and only if G is n-periodic.

2. If G is n-periodic. the transfer matrix G of G is n x n and satisfies y(z) =

Q(z)i‘_(z). where £ and j are polyphase vectors of the input and output.

3. The norms of the two transfer function G and & satisfy: G2 = IGli2/n and

1Glleo = 1Gllco-

4. If G is LTI with the transfer function

n-1

G(z) =3 =7Gu(="),
1=0
G is also LTI and its transfer matrix is
[ Go(2)  #7'Gani(2) 27MGoa(z) oo 27MG(2) ]
G (=) Go(z)  27'Gn-1(2) -+ 27'Ga(2)
G(z)=| Galz) Gi(z) Go(z) =71 Ga(z) (4.5)
[ Gaot(2)  Gaa(2)  Gaa(2) -+ Golz) |
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Note that the matrix in (4.5) is the n-fold polyphase matrix associated with G. It is
Toeplitz and is determined by only n functions: the n-fold polyphase components of

4.2.3 Blocking Analysis Subsystems

From Figure 4.1 we know that all the analysis subsystems have similar structures.
In general. Figure 4.5 is an analysis subsystem by dropping the subscripts. Note the
system A = D,HE, changes sampling rates by a factor of p/q [6], where D, is the
q-fold decimator (| q) and E, is the p-fold expander (1 p).

T Ep H Dq [

Figure 4.5: An analysis subsystem:.

The sampling periods of the input and output are not equal. If the sampling
period of z is h, the v’s is gh/p. So in general, A is not n-periodic. For the blocked
system to have the same rate at the input and output, we should block v by the
np/g-fold blocking operator and z should be blocked by n. This suggests blocking A

this way [6].
A= Lo ALY

This A is LTI. Reference [6] gives the method to calculate the transfer matrix for A:

Let H(z) be the (np)-fold polyphase matriz of H:

Ho(z)  27'Hapor(2) --- =7UHL(2)
E(Z) _ le(z) Ho:(z) | 3'11':12(3)
Hopo1(2)  Hupa(z) - Ho(z)

Then the (np/q) x n transfer matriz for A is obtained by retaining every q-th row and
every p-th column of__f[_ starting from the upper-left corner:

1‘:{0(3) z-l’f[np—p(z) T 3-lflp(3)
A(-‘«') — qu(z) Hq—:p(z) 3_1Hc:7+p(3)
flnp—q(z) f{np—q-P(z) o f{np—q+p(z)
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(assuming q¢ > p).
Note that the matrix A is no longer Toeplitz.
In general. n is a multiple of g. We can write §(z) = A(z)i(z), where £ and 7 are

the n-fold and (np/q)-fold polyphase vectors of z(z) and v(z) in Figure 4.5.

4.2.4 Blocking Synthesis Subsystems

F D, ¥

U Eq

Figure 4.6: A synthesis subsystem.

n

The synthesis subsystems are the dual of the analysis subsystems studied before. see
the system u — y shown in Figure 4.6. where F is LTI. We wish to block yby L
and block u by np/q, where n is a multiple of ¢, so we define the blocked S to be [6]:

This S is LTL. The following result from [6] gives the way to calculate the transfer

matrix for the blocked synthesis subsystem S:
Let F(2) be the (np)-fold polyphase matriz of F:

[?0(3) Z—lénp—l(:) :-IFJI(:)
1(z) Fo(z) 2T R(z)

Eey=| B
ﬁnp—l(z) pnp—Z(z)
Then the n x(np/q) transfer matriz for A is obtained by retaining every p-th row and

every q-th column of F starting from the upper-left corner:
zj‘an..q(z) cee oz

)
) F; np—q+p (2)

1?0(3
Fo(z
ﬁnp—p(z) ﬁnp-p—q(z) Fq-p(z)

(assuming p > q).
Again, in general S is no longer Toeplitz but it contains all (np)-fold polyphase

components of F if p and g are coprime.
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4.2.5 Blocking the Transmultiplexer System

Putting together the results above, it is not difficult to get the blocked system for
Figure 4.1. We consider the more general transmultiplexer in Figure 4.4 represented

by

o

H,
H,
T = _ [FO Fo--- Fm_l]. (4.6)

Hm-—l
Since the m channels have different downsampling ratios, we need to block them
differently to get an LTI model. In view of (4.6), the blocked transmultiplexer, T, is

defined as follows:

" L., 1 [ L3
L., L7}
T = . T :
L er-—l 4 L:':-l
[ Ln |[
L., H,
| L,-m_l ] Hm—l
L}
Lt
[ Fo Fl Fm—l ] 1
L—l
L. HoL;! )
L. H L
= : [ LnFoL';Ll L"FIL:xl L"Fm“lL’—nt—l ]
Lm—le—lL;l

Defining the blocked subsystems
Fo=L.FL;', Hi=L.HL" i=0,1,---,m—1,

and the blocked synthesis and analysis matrices, respectively,

E=[FR FA - Fu], (4.7)
Hy
H,

H = o R (4.8)
Hm—l



we can write T as

T=HF.

All the blocked systems defined are LTI because of the shift invariant properties
of the subsystems: e.g., since Fg is (n, rg)-shift invariant, it follows that the blocked
system Fp is (1,1)-shift invariant and hence LTI. Therefore, F and H are LTI. and

so is T'; the frequency-domain model using transfer matrices is
I(z) = H(z)E(z).

For a dimensional count, note that F; has r; inputs and n outputs (because the way
blocking is introduced); thus £ has ¥"73' r; inputs and n outputs. It follows from
(4.3) and (4.1) that

m-—1
n= E .

=0
Hence F is a square system with n inputs and outputs. Similarly, H is square with

n inputs and outputs and so is T.

4.3 Realization of Dual-Rate Systems via Linear
Switching Time-Varying Structures

We know that if p and q are already coprime, any (p, ¢)-shift invariant system can be
implemented by the structure in Figure 4.2 using only the traditional decimator and
expander. If p and ¢ are not coprime, we can also make use of a similar structure
with traditional decimator and expander and some SISO system F'. where F belongs
to a special class of LPTV systems, which are called linear switching time-varying

(LSTV) systems (see [8] for details).

Yo F:lrs ¥

Figure 4.7: An [r,s]-LSTV system.

An [r,s]-LSTV system F is represented in Figure 4.7, which consists of r LTI
subsystems, Fp, Fy,---, F._;, and a switching device as depicted in Figure 4.8. The
switching device switches the input u to each subsystem for exactly s samples starting

from Fo to F._, and then repeats [8].
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Fo

o

Fy

o—F b ¥ .

Figure 4.8: The structure of an [r, s]-LSTV system.

It is obvious that the LSTV system F is LPTV with period rs. Blocking the
input and output by a factor of rs, we get an LTI MIMO system F := L. FLZ},
whose dimension is (rs) x (rs). Reference [8] gave the way for calculating the transfer
function of the blocked system F:

Let F; =L, ,F;L7}!. j=0.1,---,r —1; partition each transfer matriz as follows:
Ey(z) = [EXz) Eiz) - E74=)].

every submatriz being (rs)xs. Then the transfer matriz for the blocked LSTV system.
E=L.FL7}, is given by

E(z) = [E3(z) El(z) -~ Frzi=)].

Each submatriz in F(z) is pseudo-circulant column-wise only.
To see clearly how to write down this transfer matrix, let us consider the case

with r = 2,5 = 3; then E(::) is 6 x 6. Using the discussion above we get the blocked

systems
[ £2(2) sTEN=) 2TUENz) 2TUER(e) 2 ENz) sTUEM(z)
S(2) Bz 2TUER(z) 2TUEN:) 2 TUER(s) 2TUER(2)
2(z) '(2) P(2) =TUN) zTUENz) 2TUER(2)
F.z) = 7 ' J J J A J , =0,1
PO RG  Be) BG) BG) G ) |
=) E) FXzx) ENz) FR(z) sUE(z)
3 js(z) ;(Z) 13(2) F;z(:) jl(z) F_]O(:) §

F(z) can be formed by putting together the first three columns of Eo(:) and the last

three columns of F,(z):
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>
>

[ EQ(=) =7'ES(2) 27U RY(z) =TUER(E) sTURRz) s RN
o(z)  FR(2) 2TUES(2) 2TUENz) 2 TURY(:) 2 TRy(s)
Eoy=| B BG) BG) N ) sTEG)
5(z)  EG) Ej(x) EY(z) =TUE¥z) 2TUE)
(=) (=) BS(x)  FN=) BNz 2UEY(e)
L F3(z)  FGz) E¥(=) HER HE 2=)

From Section 4.2 we know that if in Figure 4.4 the blocked systems F,(=) and
H,(z) is computed, we can construct from (4.7) and (4.8) the two n x n matrices
£(z) and H(z), and hence 7(z). How do we compute the blocked systems F;(z)
and H,;(z)? If the general transmultiplexer in Figure 4.4 reduces to the traditional
transmultiplexer in Figure 4.1, procedures discussed in section 3.3 can be used directly.
Otherwise, we adopt the structure studied before using LSTV systems in Figure 4.8
for implementation of the general blocks in Figure 4.4.

Consider the general dual-rate system G in Figure 4.3 which is (p, ¢)-shift invari-
ant. Write p =[p and q = (g so that [ is the common factor and p and q are relative
prime. From [8] we know that the dual-rate system is realizable by the cascade struc-
ture of the expander 1 p, some [l, 53]-LSTV system G’. and the decimator 14 So
we can represent G in Figure 4.9 using LSTV system shown in Figure 4.8, where
Go.Gy. - .Gy, are LTI systems. The periodic switch connects each channel for Pq

samples starting from time & = 0 and system Gy [8]. In terms of the LTI systems

5q | Go
N
O—or G1
15
o—{ Gy 1q —

Figure 4.9: Implementation of a (p, q)-shift invariant system via an LSTV structure.

G;, the following procedure is summarized based on earlier discussions (also see the

proof of Theorem 3 in [8]) to compute the transfer matrix for G = L,GL;':
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1. Compute the type-1 polyphase representations [38] for G;:

Aot
G,-(z)= E Z—JG.xZ(ZPQI)t Z.=O, 17"'71_1-
j=0
2. Form the (pgl) x (pql) pseudocirculant matrices
GXz)  =7'GTM(z) oo 2TMG(z)
Gz G?(= =" 1G3(=
Gi(z) = ‘:( ) ‘.() :() i1=01.---.0-1
Gﬁql;l(z) G’?‘i’;z(z) . G?(:)

3. Form an (pql) x (pgl) matrix M(z) as follows: The first PG columns are taken
from the first 5§ columns of Go(z), the next pG columns are from the corre-
sponding columns of G,(z), and so on, and the last 5§ columns are taken from

the last pq columns of G;_,(z).

4. G(z) is obtained by exacting a p x ¢ matrix from M(z) by taking rows numbered

0.4.2G,---.(p—1)q and columns numbered 0, 5. 25, - - -, (g —1)p.

With this procedure, we can compute the blocked transmultiplexer.

From above we know that all (pg/)-fold polyphase components of the subsystems
G,;.5=0.1,---.q—1, appear exactly once in G. Hence. there exists a one-to-one cor-
respondence between the dual-rate G and the set of subsystems of Gy. Gy, - - -. Gqy-1.
As was observed, using general dual-rate systems provides more design freedom: All
the n x n elements of the matrices F(z) and H(z) can be designed freely. Thus it is al-
ways possible to achieve perfect reconstruction by properly designing the subsystems
in Figure 4.4.

Let us summarize as follows. With respect to the general transmultiplexer in
Figure 4.4, first we represent each dual-rate subsystem by the LSTV structure in
Figure 4.9; based on this we derive the blocked subsystems Fi(z) and H;i(z), using
the above procedure; next, we form the synthesis and analysis matrix F(z) and H(z)
as in (4.7) and (4.8); and finally, the blocked transmultiplexer has an n x n transfer
matrix given by T'(z) = H(z)F(z). This transfer matrix will be used for analysis and

design in the sequel.
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4.4 Perfect Reconstruction

As we saw in the preceding section, the blocked transmultiplexer is LTI with T(z) =

H(z)E(z). In view of (4.7) and (4.8), we can write T(z) as 2 m x m block matrix:

Too(z) Toi(2) Tom-1(z)
T(z) = Tm:(Z) Tu;(Z) Tl.m:—l(z) (4.9)
Th_10(z) Tr_1a(z) --- T im-1(2)

where

T;(z) = H(2)Fi(2). i,j=0,1,---,m—1.

The transmultiplexer achieves perfect reconstruction if in Figure 4.4 Z; is a delayed

version of z;, i.e., if there exist nonnegative integers d; such that T = T; with

Dy, o --. 0
0 Dg --- 0

Ty=| . : : (4.10)
0 0 --- Dg,_,

Dy, being the time-delay system with transfer function Dg,(z) = z=*%. Blocking Ty
the same way as we blocked T, we can state a condition for perfect reconstruction in

terms of the blocked transfer matrices.

Theorem 1 The transmultiplezer in Figure 4.4 achieves perfect reconstruction if and

only if
Tood(z) 0 0
0 Tlld(z) . O
H(:)E(z)=| : : ,
0 0 o Thcim—1,4(2)

where T;;q(z) is r; X r; and is of the form

1
0 = ["] (4.11)

Tia(z) = = [ Lo

for some integers k; and s; satisfying k; > 0 and 0 < s; <7 —1. (Note that I, is the

si X s; identity matriz; similarly for I.._,,.)
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Proof From the previous discussion, perfect reconstruction is obtained if and only

if for some integers d;, T equals the blocked Ty in (4.10), or equivalently,

Dy(z) 0 - 0

0  Duy(z) --- 0

HEEE=| | 2al ;
0 0 -+ Dq,._ (2)

where Dy, is the blocked time-delay system L, Dy, L. The transfer matrix for Dg,
can be readily derived: Write d; = k;r; + s; for k; > 0 and 0 < s; < r; — 1; then the
polyphase components of Dy, are given by

] = s;.
J # si
Thus D4, (=) equals to the right-hand side of (4.11). see Property 4 on page 53. The

- 2=k
Gi(:) = { 0.

theorem is therefore proven. m]

4.5 Distortion Measures

Many practical transmultiplexers do not achieve perfect reconstruction, or achieve
close to perfect reconstruction. In order to measure the degree of closeness to perfect
reconstruction, we shall introduce four quantities to measure sources of distortions:
cross-talk distortion, aliasing distortion, magnitude and phase distortions. The alias-
ing distortion is unique and new in the nonuniform case and does not occur in the
uniform case. These distortion measures are based on the blocked model T(z) in
(1.9).

First, cross-talk exists if there is any signal leakage from one channel to another.
or equivalently, if there is at least one non-zero off-diagonal block in T (z). We use
the 2-norm of T;;(z) to measure its size:

I . . 1/
1T(2)]l2 = {%/02 trace [T3;(™) T(e)] dw} :

Here T;;(e’)" is the complex conjugate transpose of T:j(€’“). So ||T:;(z2)||? is the
energy of this block. The energy of all the off-diagonal blocks in I'(z) can be used to

quantify cross-talk distortion; so we define

1/2
CD = [ > HT.-,-(z)n%]

L1 (1#7)
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as a measure for cross-talk distortion. Note that (CD)? is the overall cross-talk energy
present in the system.

If CD is zero, I'(z) becomes a block-diagonal matrix; but the diagonal blocks arise
from LPTV (instead of LTI) systems in general. This means that in Figure 4.4 the
system from z; to Z;, namely, H;F;, is in general LPTV with period r;. and T,(z)
is its blocked transfer matrix. This fact separates the transmultiplexer in Figure 4.4
from the uniform ones: A new aliasing distortion may be present in the system.

To quantify this effect, the following result form [7] is useful.
Lemma 1 An LPTV system G with period r can be uniquely decomposed into
G=G"+G"
satisfying the two properties

(i) G* is the optimal LTI approzimation of G in the sense that it minimizes
|G(2)—Q(z)||2 over the class of LTI Q s (G denotes the blocked system L, GL!;
sitmilarly for Q).

(i) NG=)IE =G ()15 + G2 (=)113-

The factor r in (ii) is due to the fact that we used the LTI system G* instead of
G*. How to compute this decomposition is given in [7]. Based on this lemma. the
quantity [|G*(z)|| can be used to measure aliasing in G.

Back to our transmultiplexer problem, the system from z; to z; (H;F;) is LPTV
with period r;; decompose this into G¥ + G, where G* is the LTI component and

G{¥ the time-varying component. Thus we have
Ti(z) = G¥(2) + G¥(2). (4.12)
Aliasing distortion in the i-th channel is measured by
AD; = |G (2) |- (4.13)

The overall aliasing distortion is defined as

m—1 1/2
AD = (z AD?) . (4.14)

=0
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Even if both CD and AD are zero, the i-th channel H;F: which reduces to an LTI
system G¥ may still have errors in magnitude and phase compared with the ideal

time delay z~%*; define the following quantities

~ . . /2
MD; = [2%/02 (IGﬁ‘(e"”)l—l)zdw]l , (4.15)
PD; = {;:_/;zrsinz [stf(ei“')+d,-w] dw}l/z. (4.16)

Note that MD; and PD; are defined across all frequencies for the i-th channel: (MD;)?
is the energy of the magnitude distortion, and PD; the energy of sine of the phase
distortion o(w) = LGH(e/*) + dyw.

In summary. CD measures the cross-talk distortion of the transmultiplexer. AD;.
MD;. and PD; measure aliasing, magnitude, and phase distortions in the i-th channel.

Next, we propose a composite distortion measure which captures all the four types
of distortions and is relatively easy to use in design. Comparing the transmultiplexer
T with the ideal system T; in (4.10). we get the error system 7 —Ty: the new distortion

measure is the 2-norm of the blocked error transfer matrix:
J = ||T(z) — Ty(2)]|.-

Such a measure is appropriate because in the next theorem we establish connections

between .JJ and the four types of distortions discussed earlier.

Theorem 2 CD, AD, and MD; relate to J via
CD? + AD? + mz_:l rnMD? < J?; (4.17)
i=0
whereas CD, AD, and PD; relate to J via
CD* + AD* + mz_:l riPD? < J2. (4.18)
i=0

Proof From the representations for T(z) and 7} in (4.9) and (4.10), respectively, we

get
Too(2) — Dy, (=) Toi(2) To,m-1(z)
e e R
Tr_10(z) Troaa(s) o Toeimes(2) = Dy (%)
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From the 2-norm definition it is not hard to get
m—1
JE= > TIN5+ X MTu(z) — Da(2)I3. (4.19)
1.J(1#7) =0
The first term is CD?. From (4.12) and Lemma 1 we get
ITi(=) = Do, (=)l = (Gi(2) + G(2) ~ Da,(2)II3
= rillGH(z) = =713 + 1IGE(2)3
= nillGE(z) - =} + AD?

Substitute this into (4.19) and note (4.14) to get

m—1
J2=CD*+AD* + 3 r||G¥(z) — =% 2.

=0
The proof is complete by noting the following two inequalities which have been used
in the uniform case (see Chapter 3):
IG(z) = ="*|l, = MD;,
||Gfi(z) — Z_d'”2 > PD;.

O

In view of Theorem 2, one can define the overall magnitude and phase distortions

for the transmultiplexer in Figure 4.4 as follows:

m-—1 1/2 m-—1 1/2
MD = (z r,-MD?) . PD= (z r;PD?) .
=0 =0

Then it is clear from Theorem 2 that all distortions (CD, AD, MD, and PD) are
bounded above by J. Therefore it makes sense to minimize J in transmultiplexer

design because this suboptimizes the four distortions simultaneously.

4.6 Design Procedures

In view of Figure 4.4 and the new distortion measure J discussed in the preceding
section, we wish to design synthesis and analysis subsystems to minimize J. The
subsystems are implemented via the LSTV structure in F igure 4.9 with LTI systems
which are FIR of a given length. Thus our optimal transmultiplexer design problem

using FIR subsystems can be stated as follows:
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Given the desired reconstruction time delays do.d;,---,dm_;. design FIR syn-

thesis and analysis subsystems of some given lengths to minimize J.

Such an optimal design problem can be recast using the blocked model: Given

T4(z), design F(z) and H(z) of some given lengths to minimize
J = |[H(=)E(z) — Tu(2)[l2-

(Of course, for this design to be practical, one should impose some constraint to
guarantee that the synthesis subsystems have certain frequency limiting properties;
this can be achieved by incorporating some penalty on the stop-band ripples in the
synthesis subsystems ~ see the design example later for more details.) Because both
£(z) and H(z) are designable. this optimization problem is in general nonlinear and
difficult to solve. Thus we propose the following iterative design procedure which

turns out to be very effective in the design example to follow.

Step 1 Design synthesis subsystems to satisfy desired frequency limiting prop-
erties (without considering reconstruction performance): these are used to ini-

tiate the iteration.

Step 2 Given the synthesis subsystems, design FIR analysis subsystems by

minimizing J; using the blocked models, this is equivalent to

[él(izl)l |H(z)E(z) ~ Ty(2)]l2.

Step 3 Fixing the analysis subsystems just designed. now redesign FIR syn-
thesis subsystems by minimizing J; using the blocked models, this is equivalent

to

min |H(z)E(z) — Ta(2)]|2

Step 4 Repeat Steps 2 and 3 until J is sufficiently small.

We note that the idea of iteratively designing analysis and synthesis filters was
used effectively in uniform filter bank design in [41]. The advantage of this procedure

is evident: By fixing either £(z) or H(z) in Steps 2 and 3, the optimization problems
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become mathematically tractable; in fact, they are finite-dimensional. convex opti-
mization with a quadratic cost function, whose global optimal solution can be always
computed. Even analytical solutions can be obtained.

For example, looking at the optimal design problem in Step 2. we define
P(z)=H(z)F(z) - Ty(=2).

This system is FIR and hence can be represented by its finitely coefficient matrices

P;. By Parseval’s equality.

1/2
J=P(z)ll2 = [Z_ trace(R-P,-')} . (4.20)

Since F(z) and Ty(z) are given and thus P(z) depends on H(z) in an affine manner,
it follows that P; relates to the coefficients of H(z) (to be designed) too in an affine

manner. Therefore, we can rewrite the quantity in (4.20) in the following way:
J = [(Mz - b)(Mz — b)]'/2.

Here. r is a column vector containing all the parameters in H(z) to be designed, b
is a column vector depending on only T4(z), and M is a matrix depending on F(z)
and the way z is formed. Both b and M can be computed and are independent of the
design parameters (z). Now the optimal design problem in Step 2 becomes a least

square problem:

min [(Mz — b)'(Mz — b)]'/2.

If the matrix M has full column rank, or equivalently M’'M is invertible, the optimal

solution can be obtained to be
Tope = (M'M)™' M'b.

From here we can recover the optimal analysis subsystems. The optimal design prob-

lem in Step 3 can be solved similarly.

4.7 A Design Example

Let us now illustrate with a design example. Consider the three-channel nonuniform
transmultiplexer depicted in Figure 4.10, built with traditional blocks (The filters in-

volved are all causal and LTI). A dual structure in the filter bank case is impossible to
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Figure 4.10: A three-channel nonuniform transmultiplexer using traditional building
blocks.

achieve perfect reconstruction no matter how the causal LTI filters are designed [21};
hence perfect reconstruction is too impossible for the transmultiplexer in Figure 4.10
with causal LTI filters [39, 32, 24]. Nevertheless, we proceed by applying the iterative
design procedure to see how close we can get to perfect reconstruction; and we shall
compare the result with that of using general building blocks later.

How do we initiate the iterative procedure? One idea is to get the initial svnthesis
filters from the ideal, brick-wall ones. If we choose H; = F; and Fo. F\. and F> to be
ideal filters with passband, [0,7/3). [7/3,7/2). and [7/2, 7). respectively. it is readily
verified that perfect reconstruction is achieved with #; = r;; but these ideal filters
do not satisfy the stability and causality properties. Suppose that FIR and causal
synthesis filters of order 35 are to be designed; we initially use truncated and shifted
ideal filters to start the iterative procedure. The magnitude responses of these initial
synthesis filters (FIR and causal with order 35) are given in Figure 4.11.

Next we apply the iterative design procedure to the example in Figure 4.10. Shift-
ing the truncated ideal filters for causality introduces time delays in the reconstruc-
tion; it is easy to calculate that these are dy = 12, d; = 6, and d, = 18, which are
fixed in the design steps. The analysis and synthesis filters involved in design are all
FIR and causal with a fixed order of 35.
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Figure 4.11: The magnitude responses for the initial F, (solid), F; (dotted) and F,
(dash-dot): dB versus w/2%

It is easily to compute the expressions for the blocked subsystems:

[ Hoo z7'Hos z7'Hoy z7'Hos 7 'Hopy z7'Hoy
Hoz Hg, Ho, Hoo z7'Hos =7'Hgy
z ~—1H14 2_1H13 Z—lle Z—IH“
Hy :"'Hps z7'Hpy z7'Hy :z7'Hy ="'Hy
H, Hy, Hio Hoo =z"'Hys =7'Hyy
H, Has Hs, Ho, Hyp ="'Hys ]

e

Iz

i
S
1
s

tr

and
[ Foo z7'Foz Fio Fao z7'Foy z7'Fp
Foo z7'Fy Fu Fay z7l1Fy = 1Fy
Foa z7'Fos Fio Fyy Fo =7'Fy

!
[

Fos Foo Fis Fas Fas Fy |

Because there are many structural constraints among the elements of H and F. we

L

can not design H or F freely using the same method as we stated in Chapter 3. Some
equality conditions must be included besides the object function. By changing the
variables of the optimization problem, analytical method can still be used.

For example, in Step 3, note that the columns of F are not independent. The
second column has the same elements as the first one; they differ by inserting some de-

lays and changing the order of the elements. Similarly for the last three columns. So,
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instead of defining the whole matrix as the variable, we define three vector variables:

[ Foo | [ Fio ] [ F2o
Fox Fy F2,
= Foz I, = Fi, 3= F2
Fos3 Fis Fa3
Fou4 Fyy Fas
| Fos | | Fis5 | | Fo5

By the properties of the 2-norm (2.21):

J? = |H(z)E(z) = Ta()} = IlH(z)z1 — Tu(z)"|2 + ”ﬂ(:)l'l - T_d(?)z”%
+|[H(= )l'z — T )3”2 + [[H(z) Ia — T4z )4”2
+||Ha(z)z3 — Ta(2)°||3 + [| Ha(z)xs — Tu(2)%|)3.

where H,(z), Hy(z) and H3(z) are the matrices satisfying:
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T4(z)" and F(z)' are the ith column of T4 and F respectively.

Define
= |Hz, - Q‘II% + II&II ~ T°|I3.
Jr = ||H(z)z2 — Ta(2)?]|3
Ja = |H(z)zs — Ty(2)*[I3 + | Ha(2)zs — Ta(=)°|13 + || Ha(=)zs — Tu(2)°]3
Then the optimization problem is: Design r; to minimize J;.i = 1.2.3. Note that

ry.r2 and r3 can be designed independently. The former optimization problem is

changed into three sub-optimization problems. For each problem. the method we
proposed in the uniform case is applicable except the variable is vector now instead
of matrix.

0.8038:

corresponding synthesis and analysis filters are shown in Figures 4.12 and 4.13, re-

After 2 good number of iterations, J converges to the value J = the
spectively, for their magnitude responses; the distortions achieved for this design are
summarized in Table 4.1. From there, it is clear that the the procedure produces
a design with errors distributed fairly evenly among CD, AD, MD, and PD; but the
limitation of using traditional building blocks is also evident: The distortions are

relatively large. (Perfect reconstruction in this case is impossible to achieve as we

commented before.)
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Figure 4.12: The magnitude responses for the designed Fy (solid). F) (dotted) and
F5 (dash-dot): dB versus w/27

Table 4.1: Distortions for design using traditional blocks.

J | 0.8038
CD | 0.2224
AD | 0.2007
MD | 0.2749
PD | 0.2075

Now we adopt general building blocks for analysis subsystems as shown in Fig-
ure 4.14. This structure is interesting because it is mixed in that the synthesis part
is built with traditional blocks, whereas the analysis part with general blocks. As we
shall see later, such structure can produce substantially improved design in terms of
reconstruction performance.

We use the same initial synthesis filters as in the previous design, obtained by
truncating and shifting the ideal filters. The general blocks for analysis are repre-
sented by the LSTV structure in Figure 4.9: Hp : (2,6) is implemented by an LSTV
system with two LTI systems denoted by Hoo and Ho,; followed by | 3; H, : (1.6) is
implemented by a single LTI system (H, o) followed by | 3; and H, : (3,6) is imple-
mented by an LSTV system with three LTI systems denoted by H,, H,,,and H,,
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Figure 4.13: The magnitude responses for the designed Hy (solid). H, (dotted) and
H; (dash-dot): dB versus w/27

followed by | 2. Thus for the analysis part, there are six LTI filters to be designed:
Hoo, Hoy. Hy g, Hy 0, Hy g, and H,. All the six LTI filters are causal and FIR with
order 35 in the design exercise.

In order to have some control of the band limiting properties of the synthesis filters.
in Step 3 of the iterative design procedure presented earlier we include penalties on

the stopband ripples in the synthesis filters ( Fp, F, and F3) to be designed: Instead

¥ or's) T 3 FO Ho . (2. 6) R i'o
T T6 Fy Hy:(1.6) —— 1
I, T 2 F2 Hg : (3. 6) e i‘g

Figure 4.14: A three-channel nonuniform transmultiplexer using general analysis
building blocks.
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of minimizing J to design synthesis filters, we minimize the quantity
I+ aodE + ayJ? + azJ?,

where

-%/3 = . 1/2
Jo = {[/_ +/m] lFo(er)lzdw} ,

-x/2 ~/3 - . 1/2
5 = {[/ ey ]|F1(eﬂ)|2dw} .,
-7 ~=/3 =/2

_ ? wyi2 .
J2 = [/ /2 IFg(e’ )l d««} .

-

The constants ag. a,. and a; are tuned in the design which reflect relative weightings
among multiple objectives: In our design of FIR synthesis filters of order 35. these
are taken to be

ap =0.02, a; =0.02, o, =0.04.

The iterative procedure then generates a design with J converging to the value
J = 0.003050, several order of magnitude better than the previous design using
traditional building blocks. The Bode magnitude plots for the three synthesis filters
and six analysis filters designed are given in Figures 4.15-4.18, and distortions achieved
are given in Table 4.2. Note the significant reduction of distortions ~ an advantage of
using general building blocks. Note also that the synthesis filters are band limiting:
Fy is lowpass, F; bandpass, and F, highpass. Similarly, the LTI filters in LSTV
structures of the analysis end are frequency selective: Hyg and Hoy,, are lowpass. H 4

is bandpass, and Hao, Hz,, and H,, are highpass.

Table 4.2: Distortions for design using general blocks.

J | 0.003050
CD | 0.001031
AD | 0.001933

MD | 0.0001821
PD | 0.0002117
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Figure 4.15: The magnitude responses for the designed Fg (solid), F} (dotted) and
F3 (dash-dot): dB versus w/27
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Figure 4.16: The magnitude responses for the designed Hy g (solid), Ho, (dotted):
dB versus w/2=
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Chapter 5

Conclusions

For both uniform and nonuniform transmultiplexers, we proposed ways to measure
the distortions associated with a non-perfect reconstruction, and a new distortion
criterion (J): 2-norm of the error system (or blocked error system for the nonuniform
case). This new criterion has the merit of capturing the distortions all in one. Then
we developed the related optimal design procedures.

The uniform case is a little easier according to its simple structure. The optimiza-
tion problem in Step 2 of the design procedure in Chapter 3 can be solved analytically
and it guarantees that the analysis filters designed have the optimal reconstruction
property for a given set of synthesis filters. Two examples are presented. The perfor-

mance is compared with the normal design approach.

The design of nonuniform transmultiplexers is more complicated. Unlike uniform

case. the following points are observed:

e It is already known that normally perfect reconstruction is not achievable, so
general dual-rate systems are introduced to allow more design freedom. In this
case, the incompatibility for alias cancellation and structural dependency con-
straint for design, both due to fractional decimation ratios in different channels,

are eliminated. The LSTV systems are used to realize the general building
blocks.

e The whole system is no longer LTI. So we employ the blocking technique, and

derive a blocked LTI model for the transmultiplexer in Figure 4.4. The transfer
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matrix for the LTI model is calculated and the condition for perfect reconstruc-

tion is given.

e In Figure 4.4 from each input to its corresponding output is in general LPTV.

So a new aliasing distortion is present.

® An optimal iterative design procedure based on the new error criterion is devel-
oped for FIR subsystems, which turns out to be very effective. At each iteration
step. an optimal FIR design problem is solved by fixing the synthesis or anal-
ysis subsystems. In order to get the good band limiting characteristics for the
synthesis subsystems, in Step 3 of the iterative design procedure we include

penalties on the stopband ripples in the synthesis filters to be designed.
Possible extensions of this work are as follows:

¢ The design framework proposed for transmultiplexers could be made more useful
if other design constraints are incorporated:; in these cases, numerical optimiza-

tion techniques would be necessary.

e An alternative distortion measure is the oc-norm of the error system or blocked
error system for the nonuniform case; such a measure relates naturally to
CDmax: MDpay, and PDyax (or including ADpax), which we proposed in Chap-
ter 3. Design based on minimizing this measure will have direct control over

CDmax; MDpay, and PDyax (or ADpa, as well).
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