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Abstract

This thesis proposes a novel Gaussian copula function-on-scalar regression,

which is more flexible to characterize the relationship between functional or

image response and scalar predictors and is able to relax the linear assump-

tion in traditional function-on-scalar linear regression. Estimation and pre-

diction of the proposed model are investigated: we develop the closed form

for the estimator of coefficient functions in a reproducing kernel Hilbert space

without the knowledge of marginal transformations; A valid prediction band

is constructed via conformal prediction methods with minimal assumptions.

Theoretically, we establish the optimal convergence rate on the estimation of

coefficient functions and show that our proposed estimator achieves the min-

imax rate under both fixed and random designs. Simulations and real data

analysis are conducted to assess the finite-sample performance.
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Chapter 1

Introduction

1.1 Background

Functional data, such as weather data, growth curves, and stock market

data etc., have been commonly seen in daily life, because with the advance of

modern technology we can conduct continuously measuring at multiple discrete

locations or time points. This kind of data usually has smoothness character-

istics and in the form of function but has complex structures, which can be

properly captured by functional data analysis (FDA). FDA has received lots

of attention over the past decade and there are tremendous appliances of FDA

to handle different statistical problems [FV06; RD91; RS02; YMW05]. One

interesting direction of FDA is functional regression, which is one version of

regression analysis when the response or covariates are functional data. De-

pending on the data we are interested in, we have the following three types of

functional regression models: scalar-on-function regression, function-on-scalar

regression, and function-on-function regression. In this thesis, we focus on

function-on-scalar regression (also as known as the varying coefficient model

with functional response), which is adopted to characterize how functional
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response changes with respect to scalar predictors. For example, in the real

data analysis of the Chapter 3, we aim to characterize the dynamic relation-

ship between image response extracted from imaging data (functional mag-

netic resonance imaging and diffusion tensor imaging) and multiple interested

covariates, such as age, education years.

Function-on-scalar regression has been well studied recently, see [BRS17;

CGO16; FR17; Yan+20; Zha+21]. [BRS17; CGO16; FR17] consider variable

selection procedures to identify the important covariates when we have a high

dimensional predictor vector. Instead of only modeling the conditional mean

of response, [Yan+20; Zha+21] combine quantile regression with function-on-

scalar regression, which is attractive since it does not require a specified error

distribution and leads to more robust estimations. Nevertheless, like tradi-

tional linear regression models, ordinary function-on-scalar regression assumes

that there is a linear relationship between functional response and scalar co-

variates. In fact, this linear relationship assumption is sometimes unrealistic,

in which case blindly applying this model may cause serious statistical issues.

Data transformations, such as log transformation, Box-Cox transformation,

are prior choices to help us alleviate the violation of linear assumption if we

want to fit a linear regression model. These procedures require knowledge

about transformation functions before building the model, which is tedious,

and sometimes it is hard to decide the best transformation function. Therefore,

[CZ18] introduces Gaussian copula into linear regression and comes up with the

Gaussian copula regression model. This model relaxes the linear assumption

and allows for unknown marginal monotonic transformations, so it is more

flexible than the traditional linear regression model.

Motivated by the Gaussian copula regression model, we start to doubt

the linearity assumption of linear function-on-scalar regression: is this enough
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to fit the vibrant nature of functional data? We all know that if we choose

the wrong model or the one that is a poor emulation of the data nature, no

matter how good the model fits, the conclusions drawn from it are wrong.

Statisticians prefer general and flexible models that are able to achieve the

same effect or even do better than more specific ones. Therefore, we propose

Gaussian copula function-on-scalar regression to remedy the limitations of the

conventional function-on-scalar regression.

1.2 Contributions

Contributions of this thesis are listed as follows:

As mentioned above, we first allow the existence of unknown monotonic

transformations in terms of functional response and scalar covariates instead

of impulsively assuming there is a linear relationship between them. Follwing

the idea of [CZ18], we can adopt rank-based Kendall’s tau to pull out the

covariance information of the transformed data under the Gaussian copula

assumption, which enables us to develop one way to efficiently estimate coeffi-

cient functions without the knowledge of monotonic transformations. Besides,

we model the functional coefficients by restricting them in a reproducing kernel

Hilbert space (RKHS) for the latter derivation of theoretical properties rather

than applying the commonly-used methods, such as wavelet basis functions

[ZOR12], B-splines [AA13], and functional principal componential analysis

(fPCA) [YL06].

The second contribution is that we not only consider the prediction of

the response function and also adopt conformal prediction techniques to con-

struct non-parametric prediction bands that guarantee the desired coverage

rate, which is proved in our theorem. A prediction band is always welcom-
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ing since it can quantify the uncertainty of our prediction. Compared with

time-consuming bootstrapping [Deg11], conformal prediction, especially the

split conformal prediction we used is more efficient and doesn’t need extra

conditions, and always gives correct finite sample coverage. In addition, we

consider two kinds of nonconformity measure to adapt different types of data:

for the data whose response function shows constant variability, the simpler

one enough; if the response function shows unequal variability over locations

or time points, the second one can let us have a narrower prediction band

given the same coverage rate.

Thirdly, we establish the minimax convergence rates of our proposed es-

timator’s error and prove this estimator is minimax rate optimal under both

fixed and random designs. Last but not the least, our numerical analysis sheds

some light on the advantages of Gaussian copula function-on-scalar model com-

pared with the traditional one. Our model gives us more precise estimation

and prediction, especially when there exits outliers.

1.3 Outline of the Thesis

This thesis is organized as follows:

In Chapter 2, we introduce the Gaussian copula function-on-scalar regres-

sion model and the closed-form estimator of coefficient functions. Since pre-

diction is of great interest in practice, we also propose one algorithm that

performs split conformal prediction to obtain valid prediction sets, whose out-

put is proved that can ensure precise coverage and avoid over-coverage when

sample size is enough. As for the theoretical part, the optimal convergence rate

of the error for the proposed estimates of coefficient functions is established

under both fixed and random designs.
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Chapter 3 displays the results of the numerical analysis. We first evaluate

and compare the estimation accuracy of the proposed estimator and the esti-

mator when the traditional function-on-scalar linear regression is fitted under

a fixed design. Obviously, the former outperforms the latter. Under random

design, we only focus on the performance of our proposed estimator and com-

pare it with the fixed design case. The simulation results for conformal pre-

diction verify that our algorithm gives us prediction sets with desired coverage

rate. Furthermore, those results confirm our conjecture that the modulation

function introduced into nonconformity measures does help narrow prediction

bands. In the part of real data analysis, we apply our proposed method to

analyze real imaging datasets from NIH Alzheimer’s Disease Neuroimaging

Initiative study.

Some conclusions and future directions are stated in Chapter 4.
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Chapter 2

Gaussian Copula

Function-on-Scalar Regression

2.1 Model Setup

Let {Y (s) : s ∈ S} denote the functional response defined on a field S

and x ∈ Rp denote the scalar predictors. Without loss of generality, S is set

as [0, 1]. A classical linear function-on-scalar model assumes that x influences

Y (s) linearly. More specifically,

Y (s) = x⊤β(s) + ϵ(s), (2.1)

where β(s) = (β1(s), . . . , βp(s))
⊤ is the vector of unknown coefficient func-

tions. The residual function ϵ(s) reflects the variability in Y (s) that cannot

be explained by the linear varying coefficient model. Each component of β is

assumed to reside in the function space H. Furthermore, we assume H is an

RKHS generated by a reproducing kernel K.

However, the linear function-on-scalar regression model in (2.1) may not

be adequate to characterize the relationship between Y (s) and x. To relax the
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linearity assumption, we incorporate a copula model in the function-on-scalar

regression. The proposed model will be elaborated on next.

In practice, a random function is usually observed at discrete time points

or locations. Suppose that we observe Zi = (Yi(Sij),xi) at location Sij, j =

1, . . . ,m for the i-th subject, i = 1, . . . , n. To ease the notation, we tem-

porarily omit the subject index i. Suppose that there exist fixed but unknown

transformations g1, . . . , gm and functions f1, . . . , fp that are strictly monotone

increasing. The marginally transformed random vector

Z̃ =
(︂
(Ỹ(S))⊤, x̃⊤

)︂⊤ def
= (g1(Y (S1)), . . . , gm(Y (Sm)), f1(x1), . . . , fp(xp))

⊤

satisfies Z̃ follows a d-dimensional Gaussian distribution with mean zero and

some positive-definite covariance matrix Σ ∈ Rd×d where d = m + p and

diag(Σ) = 1d. Under the Gaussian copula assumption, we definitely have that

the conditional expectation of Ỹ (S) given x̃ is a linear combination of x̃; that

is,

(Ỹ (S))⊤ = x̃⊤β(S) + (ϵ(S))⊤. (2.2)

Note that the copula carries no direct information about the marginals,

which means that the marginal transformations have no effect on the specifi-

cation of the copula. Thus, the Gaussian copula assumption here implies that

the dependence structure between the original data, i.e., (Y (S),x), should

satisfy the Gaussian copula.

The covariance matrix (or correlation matrix) Σ directly impacts the later

estimation of β(S) in (2.2). Because the transformed data Z̃ cannot be ob-

served, we employ the rank-based Kendall’s tau to estimate Σ. The Kendall’s

tau coefficient is a non-parametric statistic which measures the bivariate mono-

tone association between two independent random pairs [Joe14]. Since (Y (S),x)

7



follows a Gaussian copula model with the correlation matrix Σ = (σjk)1≤j,k≤d ,

σjk = sin
(︂π
2
τjk

)︂
(2.3)

where τjk is the Kendall’s tau, and defined as

τjk = E [sgn (z̃1j − z̃2j) sgn (z̃1k − z̃2k)] (2.4)

with Z̃i = (z̃i1, z̃i2, . . . , z̃id)
⊤ , i = 1, 2, being two independent copies ofNd(0,Σ).

Observe that the Kendall’s tau τjk is invariant under the assumption that

marginal transformations are monotone. Thus, directly following from (2.4)

we have a sample estimate of τjk given by

τ̂ jk =
2

n(n− 1)

∑︂
1≤i1<i2≤n

sgn (z̃i1j − z̃i2j) sgn (z̃i1k − z̃i2k)

=
2

n(n− 1)

∑︂
1≤i1<i2≤n

sgn (zi1j − zi2j) sgn (zi1k − zi2k) , 1 ≤ j, k ≤ d.

Let T̂ = (τ̂ jk)d×d be the Kendall’s tau sample correlation matrix. Then ac-

cording to (2.3), the following estimator for the correlation matrix Σ can be

obtained:

Σ̂ = (σ̂jk)d×d with σ̂jk = sin
(︂π
2
τ̂ jk

)︂
.

Write Σ̂ as a block matrix: Σ̂ =

⎛⎜⎝ Σ̂Y Y Σ̂Y X

Σ̂XY Σ̂XX

⎞⎟⎠ .
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2.2 Estimation

Considering generality, this thesis studies two experimental designs for the

location points {Sij}. The first one is a fixed design, where the functional

response is observed at the same locations across curves or images. That is,

S1j = S2j = · · · = Snj := Sj for j = 1, . . . ,m. The second design, which is a

random design, occurs when {Si1, . . . , Sim} are independently sampled from a

distribution {π(s) : s ∈ S}. Our goal is to estimate the coefficient functions

βk(·), k = 1, . . . , p in model (2.2).

Given observations (xi, Yi (Sij)) , i = 1, . . . , n, j = 1, . . . ,m, define the loss

functional:

L(β) = 1

mn

n∑︂
i=1

m∑︂
j=1

[︂
Ỹ i(Sij)− x̃⊤

i β(Sij)
]︂2

+ λ∥β∥H, (2.5)

where ∥β∥H :=
∑︁p

k=1 ∥βk∥2H is a roughness penalty on each βk to avoid over-

fitting, and λ > 0 is a tuning parameter controlling the roughness penalty.

Later we will use generalized cross-validation (GCV) to determine its value.

In the following derivations, we illustrate the algorithm in the case of fixed

design, and thus denote Ỹ i(Sij) as Ỹ i(Sj).
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The first term in the loss functional can be rewritten as

1

mn
∥ vec(Ỹ (S))− vec(X̃β(S))∥22

=
1

mn
∥ vec(Ỹ (S))− (I ⊗ X̃) vec(β(S))∥22

∝ 1

mn
[(vec(β(S)))⊤(I ⊗ X̃

⊤
)(I ⊗ X̃) vec(β(S))− 2(vec(Ỹ (S))⊤(I ⊗ X̃) vec(β(S))]

=
1

mn
[(vec(β(S)))⊤(I ⊗ X̃

⊤
X̃) vec(β(S))− 2tr(X̃

⊤
Ỹ (S)(β(S))⊤)]

=
1

m
(vec(β(S)))⊤(I ⊗ ˆ︁ΣXX) vec(β(S))−

2

m
tr(ˆ︁ΣXY (β(S))

⊤)

=
1

m
tr(β(S)(β(S))⊤ˆ︁ΣXX)−

2

m
tr(ˆ︁ΣXY (β(S))

⊤)

= tr

(︃
1

m
β(S)(β(S))⊤ˆ︁ΣXX − 2

m
ˆ︁ΣXY (β(S))

⊤
)︃

Define the Gram matrix K ∈ Rm×m, with entries Kℓj = K (Sℓ, Sj) , ℓ, j ∈

{1, . . . ,m}. By the representer theorem [RJY12], the infinite computation can

be reduced to finite calculation involving the Gram matrix K:

β̂k(S) =
m∑︂
j=1

ˆ︁wjkK (S, Sj)

for a collection of weights
{︁ ˆ︁wk = ( ˆ︁w1k, . . . , ˆ︁wmk)

⊤ ∈ Rm, k = 1, . . . , p
}︁
. The

optimal weights are obtained by solving the convex program:

min tr

(︃
1

m
β(S)(β(S))⊤ˆ︁ΣXX − 2

m
ˆ︁ΣXY (β(S))

⊤
)︃
+ λ

p∑︂
k=1

w⊤
k Kwk,

where (β(S))⊤ =

(︃
Kw1

...Kw2
... . . .

...Kwp

)︃
∈ Rm×p. LetW = (w1

...w2
... . . .

...wp) ∈

Rm×p. Then the convex program can be rewritten as

min
wk∈Rm

tr

(︃
1

m
(KW)⊤(KW)ˆ︁ΣXX − 2

m
ˆ︁ΣXY (KW)

)︃
+ λ

p∑︂
k=1

w⊤
k Kwk. (2.6)

Since wk is the kth column of W , denote it as Wek, where ek ∈ Rp is the
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standard basis vector. From the basic calculation of derivatives of traces and

matrices, the gradient of the convex program (2.6) with respect to W is given

as

G(W) =
2

m
K(KWˆ︁ΣXX − ˆ︁ΣY X) + 2λ

p∑︂
k=1

KWeke
⊤
k

=
2

m
K(KWˆ︁ΣXX − ˆ︁ΣY X) + 2λKW .

Let the gradient equal to 0 yields,

vec(ˆ︂W) = (ˆ︁ΣXX ⊗K + λmI)−1 vec(ˆ︁ΣY X),

Therefore, we can directly develop the closed-form of coefficient estimator

β̂(S).

The smoothing parameter λ is selected to minimize the GCV objective

function, defined as

GCV (λ) =
1
n

∑︁n
i=1

∑︁m
j=1[Ỹ i(Sj)− x̃⊤

i β̂(Sj)]
2

(1− tr(H)/n)2
,

where H is the hat matrix which satisfies Ŷ (S) = X̃β̂(S) = HỸ (S). Simple

algebra gives us

tr(H) = tr[(ˆ︁ΣXX ⊗K)(ˆ︁ΣXX ⊗K + λmI)−1]/m.

2.3 Conformal Prediction

Although estimation of the slope function is of great interest, as in conven-

tional linear regression using an estimator to predict the shape of the response

curve when the future observed value of covariates x is provided would be
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more practical. Based on the linear relationship displayed in model (2.2), if

we can specify those transformation functions, the optimal prediction of the

functional response located at Sj given a new observed x should be

µx(Sj) = g−1
j

(︄
p∑︂

k=1

fk(xk)βk(Sj)

)︄
, j = 1, . . . ,m.

However, we get access to only untransformed observations x and Y . To

obtain a predictor that is close to the optimal prediction, we firstly need to

estimate transformation functions fk, k = 1, . . . , p and gj, j = 1, . . . ,m.

Let Fk and Gj respectively denote the cumulative distribution functions of

xk and Y (Sj). Let Φ denote the cumulative distribution function of a standard

normal distribution. Let f̂k(·) = Φ−1(F̂ k(·)) and ĝj(·) = Φ−1(Ĝj(·)), where F̂ k

and Ĝj are the sample versions of Fk and Gj, respectively. Then, the predictor

located at Sj given x is:

µ̂x(Sj) = ĝ−1
j

(︄
p∑︂

k=1

f̂k(xk)β̂k(Sj)

)︄
, j = 1, . . . ,m. (2.7)

To go one step further, after making prediction, it is meaningful to con-

struct a simultaneous prediction band to quantify the uncertainty of predic-

tion and forecasting. There are only a few works in the literature that concern

building prediction sets for functional data [Deg11; HU07; LRW15]. Among

them, conformal prediction is a distribution-free method developed recently

[LW14; SV08] , which can yield efficient prediction sets without extra assump-

tions.

Instead of using ordinary conformal prediction, we adopt split conformal

prediction (also as known as inductive conformal prediction) to reduce the

computational cost of functional data [Pap08]. The main procedure to con-

struct a split conformal prediction band for a response curve is summarized
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in Algorithm 1. The nonconformity score in step 4 measures how different

(xn+1,Y ) is from the training set. A response curve would be included in

the prediction set for Yn+1 if its nonconformity score is not higher than the

⌈(n2 + 1)(1 − α)⌉ smallest value of those nonconformity scores on the cali-

bration set. Theorem 2.3.1 guarantees the minimal coverage of the prediction

band obtained via the proposed algorithm and avoids over-coverage when we

have a large sample size. Furthermore, the algorithm yields exact prediction

sets when ⌈(n2 + 1)(1− α)⌉ = (n2 + 1)(1− α).

Algorithm 1 Split Conformal Prediction Bands

Input: Data Z1, . . . ,Zn, significance level α ∈ (0, 1), n1 ∈ N+, n2 = n− n1 ∈
N+.

1: Randomly split {1, . . . , n} into two sets I1, I2 of size n1 and n2 respectively.
Let D1 = {Zi : i ∈ I1} be the training set and D2 = {Zi : i ∈ I2} be the
calibration set.

2: Choose a nonconformity measure M(D1,Z).
3: Define the nonconformity score νi = M(D1,Zi) for i ∈ I2.
4: Construct the prediction set for Yn+1 :

Cn,1−α(xn+1) = {Y : M (D1, (xn+1,Y )) ≤ q}

with q = ν(⌈(n2+1)(1−α)⌉), where ν(·) is the ranked nonconformity score.
Output: Cn,1−α(xn+1).

Theorem 2.3.1. Suppose the nonconformity score σi, i ∈ I2 are continuous,

the output of Algorithm 1 satisfies:

1− α ≤ P (Yn+1 ∈ Cn,1−α(xn+1)) < 1− α +
1

n2 + 1
.

Proof of Theorem 2.3.1. We assume the transformed data Z̃i are i.i.d., hence

Zi are i.i.d.. We can directly know that νi = M(D1,Zi) for i ∈ I2 are

i.i.d., which yields that the rank of nonconformity score is discrete uniformly
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distributed over {1, 2, . . . , n2 + 1} under our continuous assumption. Then,

P (Yn+1 ∈ Cn,1−α(xn+1)) = P (M(D1, (xn+1,Yn+1)) ≤ q)

=
⌈(n2 + 1)(1− α)⌉

n2 + 1

Since

(n2 + 1)(1− α) ≤ ⌈(n2 + 1)(1− α)⌉ < (n2 + 1)(1− α) + 1,

the inequalities in Theorem 2.3.1 always hold.

Selection of the nonconformity measure is crucial in the statistical effi-

ciency (i.e., size) of one conformal prediction set. If the functional data have

constant variability over S, we may choose the supremum metric to be the

nonconformity measure: M0(D1,Z) = sups∈S |Y (s) − µ̂x(s)|. Note that esti-

mated slope β̂ in predictor µ̂x(s) is now calculated only based on the training

set D1 instead of the whole dataset, which shows the computational efficiency

of the split conformal method.

Once the predictor given xn+1 is obtained, by Algorithm 1, it can be easily

shown that the prediction band with M0(D1,Z) has the following form:

Cn,1−α(xn+1) =
{︁
Y : Y (Sj) ∈ [µ̂xn+1

(Sj)− q0, µ̂xn+1
(Sj) + q0], j = 1, . . . ,m

}︁
.

Let q0 denote the ⌈(n2+1)(1−α)⌉ smallest value of nonconformity scores cal-

culated by M0 on the calibration set. The width of the above prediction band

at each location is constant, which is 2q0. If data present different variability

at different locations, using the ordinary supremum metric would lead to an

unnecessarily wide prediction band.

To have prediction bands adaptive to the variability of data, which means
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to have a narrow band when the variability of observations at one location

is small but a wide band when the variability is large, one possible way is

to introduce a modulation function into the original nonconformity measure

[DFV21]. There is no preferred modulation function, while the main target is

to obtain a prediction set with smaller size since the minimal coverage rate is

already guaranteed in Theorem 2.3.1. Here we simply consider the standard

deviation function as our modulation function:

Mσ(D1,Z) = sup
s∈S

⃓⃓⃓⃓
Y (s)− µ̂x(s)

σD1(s)

⃓⃓⃓⃓
.

Then the related prediction band of Yn+1 is:

Cn,1−α(xn+1) = {Y : Y (Sj) ∈ [µ̂xn+1
(Sj)− qσ · σD1(Sj),

µ̂xn+1
(Sj) + qσ · σD1(Sj)], j = 1, . . . ,m},

hence its size is given by
∫︁
s∈S(2qσ)·σD1(s)ds. It is expected that one can obtain

more informative prediction bands in the presence of a modulation function

when a difference exists among local variability. In fact, this conjecture would

be verified in the simulation part.

2.4 Optimal Rate of Convergence

This section proves the proposed estimator of the coefficient function, de-

noted as β̂, is minimax rate optimal under fixed and random designs. The

minimax lower bounds for all possible estimators, denoted as β̃, are derived

and we establish the minimax upper bounds of β̂, which are respectively con-

sistent with the minimax lower bounds.
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2.4.1 Optimal Rate of Convergence under Fixed Design

Let ∆ = {Ỹ (Sj) − x̃⊤β(Sj)}mj=1, and it is easy to see that the con-

ditional distribution of ∆ given x̃ follows N (−x̃⊤β(Sj),Vjj), where V =

ΣỸ Ỹ − ΣỸ X̃Σ
−1

X̃X̃
ΣX̃Ỹ and Vjj is the jj-th entry of matrix V . We first intro-

duce the following assumptions. Assumptions (A1) and (A2) are quite mild

and constrict the covariance matrices of x̃ and ∆ given x̃. Assumption (A3)

requires the conditional expectation of ∆ times a sufficiently small constant is

no less than 0. Assumption (A4) puts constraint on the spacing of sampling

points, which is also assumed in [CY11] to prove the minimax optimality of

their mean function’s estimator.

(A1) Assume x̃ belongs to a compact subset of Rp and the eigenvalues of

E(x̃x̃⊤) = ΣX̃X̃ are respectively bounded from below and above by constant

c1 and 1
c1
.

(A2) Eigenvalues of V is lower bounded by c2 > 0.

(A3) Assume that E[t∆|x̃] ≥ 0 for sufficiently small t.

(A4) There exists some positive constant c3 such that max1≤j≤m |Sj+1 − Sj| ≤

c3m
−1.

Theorem 2.4.1. Suppose the kernel eigenvalues µk of the RKHS decay at a

rate k−2α for some α > 0. If the conditions (A1) (A2) hold, then for the fixed

design,

lim
a→0

lim
n→∞

inf
β̃

sup
β0∈Hp

P
(︃⃦⃦⃦

β̃ − β0

⃦⃦⃦2
2
≥ a

(︁
n−1 +m−2α

)︁)︃
> 0,

where the infimum is taken over all possible estimators β̃ based on the obser-

vations.

Theorem 2.4.2. Suppose the kernel eigenvalues µk of the RKHS decay at a

rate k−2α for some α > 0. The true parameter β0 lies in a closed bounded ball
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of H, denoted as BH. If (A1) (A3) (A4) hold, then for the fixed design

lim
a→0

lim
n→∞

sup
β0∈BH

P
(︃⃦⃦⃦

β̂ − β0

⃦⃦⃦2
2
≥ a

(︁
n−1 +m−2α

)︁)︃
= 0,

where β̂ is the estimator obtained via minimizing the cost functional with pa-

rameter λ ≍ (n−1 +m−2α).

Theorem 2.4.1 incorporates with Theorem 2.4.2 indicating that our esti-

mator β̂ is minimax rate optimal under fixed design when setting λ to be of

order (n−1+m−2α). When we sample our data at a large number of locations,

the effect of m−2α on the rate of convergence can be neglected and the optimal

rate is of order n−1. On the other hand, if m = o(n1/2α), the term involved

with m plays the leading role and fixed design has optimal rate of order m−2α.

This phenomenon is also discussed in [CY11] and [Zha+21], where the first one

mainly estimates the mean of random functions and the second one focuses on

the quantile function-on-scalar regression model.

Proof of Theorem 2.4.1. By Mercer’s theorem, K(s, t) =
∑︁∞

k=1 µkϕk(s)ϕk(t),

where µ1 ≥ µ2 ≥ . . . ≥ 0 are a non negative sequence of eigenvalues, which

decay at a rate k−2α, and {ϕk}∞k=1 are the associated eigenfunctions, taken to

be orthonormal in L2. Define

βθ =
1√
m

d+m∑︂
j=d+1

θj
√
µjϕj(s), θ = (θd+1, . . . , θd+m) ∈ {0, 1}m.

We have ∥βθ∥2H = 1
m

∑︁d+m
j=d+1 θ

2
j ≤ 1, so βθ belongs to a Hilbert ball of radius

1.

Define the hamming distance H(θ, θ′) =
∑︁d+m

j=d+1(θj − θ′j)
2. Since ∥βθ −
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βθ′∥22 = 1
m

∑︁d+m
j=d+1(θj − θ′j)

2µj, we have the following relationship,

µd+m

m
H(θ, θ′) ≤ ∥βθ − βθ′∥22 ≤

µd

m
H(θ, θ′) ≤ µd.

The Varshamov-Gilbert bound shows that for any m ≥ 8, there exists a

subset Θ = {θ(0), θ(1), . . . , θ(N)} ⊂ {0, 1}m such that

1. θ(0) = (0, . . . , 0)′;

2. H(θ, θ′) ≥ m
8
for any θ ̸= θ′ ∈ Θ;

3. N ≥ 2
m
8 .

Therefore,

µd+m

8
≤ ∥βθ − βθ′∥22 ≤ µd.

Recall that the eigenvalue µd ≈ d−2α,which yields that

(d+m)−2α ≲ ∥βθ − βθ′∥22 ≲ d−2α.

Let Pk denote the joint conditional distribution of (Ỹ i(S1)−x̃⊤
i β

(k)(S1), . . . , Ỹ i(Sm)−

x̃⊤
i β

(k)(Sm))
⊤ given x̃i, i = 1, . . . , n and β(k) = βθ(k) . Then Pj is the multivari-

ate normal distribution with a mean vector
(︁
−x̃⊤

i β
(k)(S1), . . . ,−x̃⊤

i β
(k)(Sm)

)︁⊤
and an m×m covariance matrix V . The Kullback-Leibler divergence between

18



two multivariate normal distributions Pk and Pl is:

DKL(Pβ
θ(k)

∥Pβ
θ(l)

) =
1

2
E{

n∑︂
i=1

[x̃⊤
i (β

(k)(S1)− β(l)(S1)), . . . , x̃
⊤
i (β

(k)(Sm)− β(l)(Sm))]

V−1[x̃⊤
i (β

(k)(S1)− β(l)(S1)), . . . , x̃
⊤
i (β

(k)(Sm)− β(l)(Sm))]
⊤}

≤ n

c2
E{[x̃⊤(β(k)(S1)− β(l)(S1)), . . . , x̃

⊤(β(k)(Sm)− β(l)(Sm))]

[x̃⊤(β(k)(S1)− β(l)(S1)), . . . , x̃
⊤(β(k)(Sm)− β(l)(Sm))]

⊤}

=
n

c2

m∑︂
j=1

E[x̃⊤(β(k)(Sj)− β(l)(Sj))]
2

≤ n

c1c2

m∑︂
j=1

∥β(k)(Sj)− β(l)(Sj)∥22

≲
n

c1c2
md−2α,

where the first and second inequality comes from (A2), Cauchy-Schwarz in-

equality and (A1), respectively.

Next, we apply Fano’s inequality, which can provide a lower bound on the

error probability in a multi-way hypothesis testing problem. Let θ(k) be a

random variable taking values in Θ, we have

inf
Ψ
P(Ψ ̸= θ(k)) ≥ 1−

n
c1c2

md−2α + log 2

logN
,

where Ψ is a measurable mapping Ψ : X n → Θ, which is a test function.

Combining this inequality with the reduction from estimation to testing,

inf
β̃

sup
β0∈Hp

Eβ0

[︂
∥β̃ − β0∥22

]︂
≳ (d+m)−2α

(︃
1−

m
c1c2

n
d2α

+ log 2

logN

)︃
.

We attempt to make n
d2α

small enough to have an appropriate lower bound.
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Set d ≍ m, when n ≤ m2α. Otherwise d ≍ n
1
2α , which leads to

inf
β̃

sup
β0∈Hp

Eβ0

[︂
∥β̃ − β0∥22

]︂
≍ (n−1 +m−2α)

with probability greater than 0.

Therefore,

lim
a→0

lim
n→∞

inf
β̃

sup
β0∈Hp

P
(︃⃦⃦⃦

β̃ − β0

⃦⃦⃦2
2
≥ a

(︁
n−1 +m−2α

)︁)︃
> 0.

Proof of Theorem 2.4.2. Define

ℓn(β) =
1

mn

n∑︂
i=1

m∑︂
j=1

(︂
Ỹ i(Sj)− xĩ

Tβ(Sj)
)︂2

,

and ℓ(β) = E[ℓn(β)].

Considering the following optimization problem:

minimize ∥f∥H

subject to f(x) = g(x) for all x ∈ S

It is well known (Green and Silverman, 1994) that the solution of this opti-

mization problem can be characterized as T α(g), where T α is a bounded linear

operator mapping BH into H. The approximation error of spline interpolation

for f can be bounded. By Theorem 6.27 [Sch07], we have ∥T α(f)− f∥22 ≲

max1≤j≤m |Sj+1 − Sj|2α ∥Dαf∥22, where Dαf is the αth derivative of f . Com-

bining it with the assumption (A4) and β0 residing in a bounded space, which

leads to

∥T α (β0)− β0∥22 ≲ m−2α.
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Define the linear interpolation function h(s) as:

h(s) = γj
Sj+1 − s

Sj+1 − Sj

+ γj+1
s− Sj

Sj+1 − Sj

, Sj ≤ s ≤ Sj+1, j = 1, · · · ,m− 1

where γj = β̂(Sj)− β0(Sj). It is easy to see β̂ = T α(β0 + h). Thus,

∥β̂ − β0∥22 = ∥T α(β0 + h)− β0∥22 ≤ ∥T α(β0)− β0∥22 + ∥T α(h)∥22.

We have already known the first term is upper bounded, so now we need to

find the upper bound of ∥T α(h)∥22.

∥T α(h)∥22 ≲ ∥h∥22

≲
1

m

m∑︂
j=1

p∑︂
k=1

(β̂k(Sj)− β̂0k(Sj))
2

= ∥β̂ − β0∥2s,

where ∥β∥2s = 1
m

∑︁m
j=1

∑︁p
k=1(βk(Sj))

2. Recall ℓ(β) = E[ℓn(β)], we have

ℓ(β)− ℓ(β0) =
1

mn

n∑︂
i=1

m∑︂
j=1

Ex̃

{︂
E
[︂
(Ỹ i(Sj)− x̃⊤

i β(Sj))
2 − (Ỹ i(Sj)− x̃⊤

i β0(Sj))
2|x̃
]︂}︂

≥ 1

mn

n∑︂
i=1

m∑︂
j=1

E[(β0(Sj)− β(Sj))
⊤x̃ix̃

⊤
i (β0(Sj)− β(Sj))]

≥ 1

c1m

m∑︂
j=1

p∑︂
k=1

(β0k(Sj)− βk(Sj))
2

=
1

c1
∥β − β0∥2s,

where the first and second inequality is respectively deduced from (A3) and

(A1). As a consequence,

∥β − β0∥2s ≲ ℓ(β)− ℓ(β0).
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Since β̂ is the optimal solution of ℓn(β)+λ∥β∥H, we always have the following

inequality:

ℓn(β̂) + λ∥β̂∥H ≤ ℓn(β0) + λ∥β0∥H.

For a given L, define a set D(L) =
{︁
β ∈ BH : ∥β − β0∥2s ≤ cL

}︁
. Besides,

define the function

Zn(L) = sup
β∈D(L)

|(ℓn(β)− ℓ(β))− (ℓn (β0)− ℓ (β0))| .

Then,

∥β̂ − β0∥2s + λ∥β̂∥H ≲ ℓ(β)− ℓ(β0) + λ∥β̂∥H ≤ Zn(L) + λ∥β0∥H.

Therefore,

∥β̂ − β0∥2s ≲ m−2α + Zn(L) + λ∥β0∥H.

Let R1, . . . , Rn be a Rademacher sequence. The contraction principle yields

E[Zn(L)] ≤ 2E sup
β∈D(L)

1

nm

⃓⃓⃓⃓
⃓

n∑︂
i=1

m∑︂
j=1

Ri

[︂
(Ỹ i(Sj)− x̃T

i β(Sj))
2 − (Ỹ i(Sj)− x̃T

i β0(Sj))
2
]︂⃓⃓⃓⃓⃓

≲ E sup
β∈D(L)

1

nm

⃓⃓⃓⃓
⃓

n∑︂
i=1

m∑︂
j=1

Ri

[︁
x̃T
i (β0(Sj)− β(Sj))

]︁⃓⃓⃓⃓⃓
≲ sup

β∈D(L)

∥β0 − β∥2sE{
p∑︂

k=1

(
1

n

n∑︂
i=1

Rix̃ik)
2}

1
2

≤ L

√︃
p

n
,

where the second inequality holds because the square function is local Lipschitz

given a compact subset.

According to Talagrand’s concentration inequalities [Tal96], for every pos-
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itive number ε,

P(Zn(L) ≥ L

√︃
p

n
+ ε) ≤ P(Zn(L) ≥ E[Zn(L)] + ε)

≲ exp

{︄
− ε2

2(Bn +
L

n
√
n
ε)

}︄
,

where Bn = E
[︃
sup
β∈BH

∑︁n
i=1 |(bni(β)− bi(β))− (bni(β0)− bi(β0))|2

]︃
, bni(β) =

1
mn

∑︁m
j=1(Ỹ i(Sj) − x̃T

i β(Sj))
2, and bi(β) = Ex̃[bni(β)]. Applying the contrac-

tion principle again, we have Bn ≲ L2

n2 , which yields that

P(Zn(L) ≥ L

√︃
p

n
+ ε) ≲ exp

{︄
− ε2

2(L
2

n2 + Lε
n
√
n
)

}︄
.

Taking L = c( 1√
n
+ λ),

∥β̂ − β0∥22 ≲ m−2α +Op(L
1√
n
) + λ∥β0∥H = Op(m

−2α + n−1 + λ),

so to reach the optimal rate, setting λ ≍ (n−1 +m−2α).

2.4.2 Optimal Rate of Convergence under Random De-

sign

Theorem 2.4.3. Suppose the kernel eigenvalues µk of the RKHS decay at

a rate k−2α for some α > 0. If the conditions (A1) (A2) hold, then for the

random design,

lim
a→0

lim
n→∞

inf
β̃

sup
β0∈Hp

P
(︃⃦⃦⃦

β̃ − β0

⃦⃦⃦2
2
≥ a

(︂
(nm)−

2α
2α+1 + n−1

)︂)︃
> 0,

where the infimum is taken over all possible estimators β̃ based on the obser-

vations.
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Theorem 2.4.4. Suppose the true parameter β0 lies in a closed bounded ball

of H, denoted as BH. Under the conditions of Theorem 2.4.3, then for the

random design

lim
a→0

lim
n→∞

sup
β0∈BH

P
(︃⃦⃦⃦

β̂ − β0

⃦⃦⃦2
2
≥ a

(︂
(nm)−

2α
2α+1 + n−1

)︂)︃
= 0,

where β̂ is the estimator obtained via minimizing the cost functional with pa-

rameter λ ≍ (nm)
−2α
2α+1 .

Therefore, combining Theorem 2.4.3 and 2.4.4 leads to the minimax opti-

mality of β̂ under random design if the tuning parameter is of order (nm)−2α/2α+1.

Similar as the previous result, a phase transition takes place when m is of or-

der n1/2α. If m is large enough, i.e., m ≫ n1/2α, the convergence rate of the

random design is identical with that of the fixed design. If the functional re-

sponse is sparsely sampled, i.e., m is below the order n1/2α, we conclude that

the optimal rate of the random design is of order (nm)−2α/2α+1. The conclusion

can be drawn that compared with the fixed design, the random design enjoys

a better convergence rate before the phase transition occurs.

Proof of Theorem 2.4.3. The proof is similar as that of 2.4.1. We first define

βθ =
1√
M

2M∑︂
j=M+1

θj
√
µjϕj(s), θ = (θM+1, . . . , θ2M) ∈ {0, 1}M ,

where M would be specified later. Through the Varshamov-Gilbert bound, we

know the hamming distance H(θ, θ′) ≥ M
8

and N ≥ 2
M
8 . As a consequence,

µ2M

8
≤ ∥βθ−β′

θ∥22 = 1
M

∑︁2M
j=M+1(θj−θ′j)

2µj ≤ µM . Since the kernel eigenvalues

µk decay at a rate k−2α,

M−2α ≲ ∥βθ − β′
θ∥22 ≲ M−2α.
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Similarly, the K-L divergence can be bounded by

DKL(Pβ
θ(k)

∥Pβ
θ(l)

) = nE
[︂(︁
x̃⊤β(k) − x̃⊤β(l)

)︁
V−1

(︁
x̃⊤β(k) − x̃⊤β(l)

)︁⊤]︂
≤ nm

c1c2

⃦⃦
β(k) − β(l)

⃦⃦2
2

≤ c0nmM−2α.

Applying Fano’s lemma yields

inf
β̃

sup
β0∈Hp

Eβ0

[︂
∥β̃ − β0∥22

]︂
≳ (M)−2α

(︃
1− c0nmM−2α + log 2

logN

)︃
≥ (M)−2α

(︃
1− 8c0(nm)M−2α−1

log 2
− 8

M

)︃
.

If we choose M ≍ (mn)1/(2α+1) and an appropriate positive constant c0, we

can have

inf
β̃

sup
β0∈Hp

Eβ0

[︂
∥β̃ − β0∥22

]︂
≍
(︂
(nm)−

2α
2α+1

)︂
with probability greater than 0.

If we consider β as an unknown constant function, the problem turns to

estimate the mean from n i.i.d.samples. It is well known that 1/n is the

minimax optimal rate [KT12], which means

lim
a→0

lim
n→∞

inf
β̃

sup
β0∈Hp

P
(︃⃦⃦⃦

β̃ − β0

⃦⃦⃦2
2
≥ an−1

)︃
> 0.

Proof of Theorem 2.4.4. In the following proof, we suppose Sj’s follow uniform

distribution.

Note that

β̂ = argmin
β∈H

{ℓn(β) + λ∥β∥H} ,
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where ℓn(β) =
1

nm

∑︁n
i=1

∑︁m
j=1(Ỹ ij − x̃⊤

i β(Sij))
2. And

β̄ = argmin
β∈H

{ℓ(β) + λ∥β∥H} ,

where ℓ(β) = E[ℓn(β)].

Define

ℓn,λ(β) = ℓn(β) + λ∥β∥H; ℓλ(β) = ℓ(β) + λ∥β∥H.

Besides, let β̃ = β̄ − 1
2
G−1

λ Dℓn,λ(β̄), where Gλ = 1
2
D2ℓλ(β̄) and D is the

Fréchet derivative.

Since β̂ − β0 = (β̄ − β0) + (β̂ − β̃) + (β̃ − β̄), we aim to bound the three

terms separately.

First, consider the following settings:

β0(·) =
∑︂
k≥1

akϕk(·); β(·) =
∑︂
k≥1

bkϕk(·).

Then

ℓ(β) = E[
1

mn

n∑︂
i=1

m∑︂
j=1

(Ỹ ij − x̃⊤
i β(Sij))

2]

= E[
1

mn

n∑︂
i=1

m∑︂
j=1

(Ỹ ij − x̃⊤
i β0(Sij) + x̃⊤

i β0(Sij)− x̃⊤
i β(Sij))

2]

= E[Ỹ 11 − x̃⊤
1 β0(S11)]

2 + E[∥x̃⊤(β0(s)− β(s))∥22]

= E[Ỹ 11 − x̃⊤
1 β0(S11)]

2 + c0
∑︂
k≥1

(ak − bk)
2,

where c0 = E[x̃x̃⊤]. Hence,

b̄k = ⟨β̄, ϕk⟩L2 = argmin{c0(bk − ak)
2 + λµ−1

k b2k} =
c0ak

c0 + λµ−1
k

.
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Therefore,

∥β̄ − β0∥22 =
∑︂
k≥1

(b̄k − ak)
2

=
∑︂
k≥1

(
λµ−1

k

c0 + λµK−1
)2a2k

≤ λ2 sup
k≥1

µ−1
k

(c0 + λµ−1
k )2

∑︂
k≥1

µ−1
k a2k

≤ λ2 sup
k≥1

µ−1
k

(c1 + λµ−1
k )2

∥β0∥H.

If λµ−1
k < c1, supk≥1

µ−1
k

(c1+λµ−1
k )2

≤ c−1
1 λ−1. If λµ−1

k ≥ c1, since µk ≍ k−2α, we

want to find the supremum of f(k) := k2α

(c1+λk2α)2
. The first-order derivative of

f(k) is negative when k2α ≥ c1λ
−1, so supk≥1 f(k) ≤ c−1

1 λ−1.

Hence,

∥β̄ − β0∥22 ≤ λ∥β0∥H.

Next, we want to bound β̃ − β̄. We can easily show that

Gλϕk = (1 + λµ−1
k )ϕk.

More details about the second-order Fréchet derivatives can refer to [SC+13].

Since Dℓn,λ(β̄) =
∑︁

k≥1(Dℓn,λ(β̄)ϕk)ϕk,

E∥β̃ − β̄∥22 = E∥1
2
G−1

λ Dℓn,λ(β̄)∥22

=
1

4
E

[︄∑︂
k≥1

(1 + λµ−1
k )−2(Dℓn,λ(β̄)ϕk)

2

]︄
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Note that

E[Dℓn,λ(β̄)ϕk]
2

= E[Dℓn,λ(β̄)ϕk −Dℓλ(β̄)ϕk]
2

= E[Dℓn(β̄)ϕk −Dℓ(β̄)ϕk]
2

=
4

n2m2

n∑︂
i=1

Var

[︄
m∑︂
j=1

(Ỹ ij − x̃⊤
i β̄(Sij))ϕk(Sij)

]︄

=
4

n2m2

n∑︂
i=1

{︄
Var

[︄
E(

m∑︂
j=1

(Ỹ ij − x̃⊤
i β̄(Sij)ϕk(Sij)|S)

]︄
+ E

[︄
Var(

m∑︂
j=1

Ỹ ijϕk(Sij)|S)

]︄}︄

=
4

n2m2

n∑︂
i=1

{︄
Var

[︄
m∑︂
j=1

(x̃⊤
i β0(Sij)− x̃⊤

i β(Sij))ϕk(Sij)

]︄
+ E

[︄
Var(

m∑︂
j=1

Ỹ ijϕk(Sij)|S)

]︄}︄

We first deal with the first term on the right-hand side:

Var

[︄
m∑︂
j=1

(x̃⊤
i β0(Sij)− x̃⊤

i β(Sij))ϕk(Sij)

]︄

= mVar[(x̃⊤
i β0(Si1)− x̃⊤

i β(Si1))ϕk(Si1)]

≤ mE[(x̃⊤
i β0(Si1)− x̃⊤

i β(Si1))ϕk(Si1)]
2

≤ mE(x̃⊤
i β0(Si1)− x̃⊤

i β̄(Si1))
2∥ϕk∥22

≤ m

c1
∥β0 − β̄∥22∥ϕk∥22

≤ λm

c1
∥β0∥H∥ϕk∥22.

Then, the second term can be rewritten as following:

E

[︄
Var(

m∑︂
j=1

Ỹ ijϕk(Sij)|S)

]︄

= E

[︄
m∑︂

j.h=1

ϕk(Sij)ϕk(Sih)ΣỸ Ỹ [j, h]

]︄

= m(m− 1)

∫︂
S×S

ϕk(s)ΣỸ Ỹ [s, t]ϕk(t)dsdt+m

∫︂
S
ϕ2
k(s)ds.
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Therefore, E[Dℓn,λ(β̄)ϕk]
2 ≲ (nm)−1+ckn

−1, where ck =
∫︁
S×S ϕk(s)ΣỸ Ỹ [s, t]ϕk(t)dsdt.

Hence,

E∥β̃ − β̄∥22 ≤ (nm)−1
∑︂
k≥1

(1 + λµ−1
k )−2 + n−1

∑︂
k≥1

(1 + λµ−1
K )−2ck.

Since
∫︁∞
1

1
(1+λµ−1

k )2
dk ≍

∫︁∞
1

1
(1+λk2α)2

dk, let r = λ1/2αk, we have

∫︂ ∞

1

1

(1 + r2α)2
λ−1/2αdr ≤ λ−1/2αc.

Observe that

∑︂
k≥1

(1 + λµ−1
k )−2ck ≤

∑︂
k≥1

(1 + µ−1
k )ck = E∥Ỹ ∥2Wα

2
≤ ∞,

where ∥f∥2Wα
2
=
∫︁
f 2 +

∫︁
(f (α)2.

Thus,

E∥β̃ − β̄∥22 ≲
1

nm
λ−1/2α +

1

n
.

The rest is to bound β̂ − β̃.

β̂ − β̃ = β̂ − β̄ +
1

2
G−1

λ Dℓn,λ(β̄)

=
1

2
G−1

λ D2ℓλ(β̄)(β̂ − β̄) +
1

2
G−1

λ Dℓn,λ(β̄).

Note that −Dℓn,λ(β̄) = Dℓn,λ(β̂) − Dℓn,λ(β̄) = D2ℓn,λ(β̄)(β̂ − β̄), where

the second equality holds since the third-order Fréchet derivative of ℓn,λ is 0.

Therefore,

β̂ − β̃ =
1

2
G−1

λ [D2ℓ(β̄)(β̂ − β̄)−D2ℓn(β̄)(β̂ − β̄)].
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Then

∥β̂ − β̃∥22 =
∑︂
k≥1

(1 + λµ−1
k )2[

1

nm

n∑︂
i=1

m∑︂
j=1

(β̂(Sij)− β̄(Sij))ϕk(Sij)

−
∫︂
S
(β̂(s)− β̄(s))ϕk(s)ds]

2

≤
∑︂
k≥1

(1 + λµ−1
k )2∥β̂ − β̄∥22

[︄∑︂
k1≥1

1

nm

n∑︂
i=1

m∑︂
j=1

ϕk1(Sij)−
∫︂
S
ϕk1(s)ds

]︄2
≤ Op(

1

nmλ
1
2α

)∥β̂ − β̄∥22

= op(∥β̂ − β̄∥22), if nmλ
1
2α → ∞.

By triangle inequality we have

∥β̂ − β̄∥22 ≤ ∥β̂ − β̃∥22 + ∥β̃ − β̄∥22,

then (1− op(1))∥β̂ − β̄∥22 ≤ ∥β̃ − β̄∥22. As a consequence,

∥β̂ − β̄∥22 = Op(∥β̃ − β̄∥22) = op(
1

n
+

1

nmλ
1
2α

).

To wrap it up,

∥β̂ − β0∥22 ≤ ∥β̂ − β̃∥22 + ∥β̃ − β̄∥22 + ∥β̄ − β0∥22

= Op(
1

n
+

1

nmλ
1
2α

+ λ).

If we choose λ ≍ (nm)−
2α

2α+1 , ∥β̂ − β0∥22 ≤ Op(n
−1 + (nm)−

2α
2α+1 ).
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Chapter 3

Numerical Analysis

In this chapter, we first test the estimation performance of our proposed

method using simulation data in both fixed and random designs. In addition,

conformal prediction methods are employed to obtain a prediction band for the

response curve. Besides simulation studies, the proposed methods are applied

to two real datasets: the diffusion tensor imaging (DTI) data and hippocampus

surface data from NIH Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study.

3.1 Simulation Results for Estimation Accu-

racy

Firstly, we evaluate the accuracy of the proposed estimator in Gaussian

copula functional linear regression model defined in (2.2) for both fixed and

random designs, and we use β̂copula to denote the proposed estimator. We com-

pare its root mean integrated square error (RMISE) with that of the varying

coefficient model (VCM) estimator β̂ under the least square (LS) loss function,

which is directly performed on (Y ,x).
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3.1.1 Fixed Design

The simulation data are generated from the following model:

Ỹ i(Sj) = x̃i1β1(Sj) + x̃i2β2(Sj) + x̃i3β3(Sj) + ϵi(Sj),

for i = 1, . . . , n; j = 1, . . . ,m, where ϵi(Sj) ∼ N (0, 0.1), and (x̃i1, x̃i2, x̃i3) ∼

N (0,Σxx) with (Σxx)kℓ = 0.7|k−ℓ|. The locations {Sj}mj=1 are evenly sampled

from [0, 1]. We set β1(s) = exp(−s2), β2(s) = 4s(1−s), and β3(s) = sin(s)+s3.

The Gaussian kernel with σ = 0.2 is used to construct the RKHS and the

tuning parameter λ is selected via GCV.

Different combinations of n and m are considered: n = {100, 300, 500} and

m = {50, 100}. In each setting, we set Yij = 3Ỹ ij , for j = 1, · · · , (m/2);Yij =

exp(Ỹ ij), for j = (m/2)+1, · · · ,m; xi1 = x̃5
i1−2, xi2 = x̃5

i2−2, and xi3 = 3x̃3
i3+

5. Then our observations consist of (Yij, xi1, xi2, xi3), i = 1, . . . , n, j = 1, . . . ,m.

We repeat the simulation 100 times under each setup. To measure and

compare the accuracy of the estimators, the RMISE is calculated as follows

RMISE(β̂k) =

(︄
m−1

m∑︂
j=1

(︂ˆ︁βk (Sj)− βk (Sj)
)︂2)︄1/2

for k = 1, 2, 3.

Table 3.1 displays the simulation results for each estimator across 100 simu-

lation runs, and the standard errors are shown in the parentheses. Directly

assuming that Y and x have a linear relationship and ignoring the potential

non-linearity would lead to severe estimation errors.

To visually view the behavior of our estimator, we draw the estimated coef-

ficient functions when n = 500 and m = 100. Figure 3.2 displays their shapes

based on one randomly selected simulation run. Our estimator can closely fit

the true coefficient functions. Figure 3.1 shows the selection procedure for the
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Table 3.1: RMISE of the estimators β̂copula and β̂ in the fixed design.

β̂copula β̂

(n,m) β1 β2 β3 β1 β2 β3

(100, 50) .043(.026) .048(.014) .040(.012) .630(.238) .625(.235) .545(.300)

(100, 100) .043(.010) .041(.008) .040(.032) .664(.215) .641(.421) .494(.170)

(300, 50) .022(.017) .023(.014) .025(.010) .633(.180) .528(.329) .488(.241)

(300, 100) .023(.007) .022(.012) .023(.008) .640(.185) .514(.211) .412(.130)

(500, 50) .018(.015) .019(.006) .019(.004) .635(.186) .582(.156) .504(.094)

(500, 100) .020(.008) .017(.006) .016(.012) .614(.271) .554(.239) .574(.098)

smoothing parameter λ via GCV, and we choose the optimal λ corresponding

to the minimum of GCV values.

3.1.2 Random Design

The way to generate data for the random design is similar as above, except

that we first evenly sample some fixed grid points {Sγ}, γ = 1, · · · ,m from

[0, 1], then we generate the observed response points Ỹ i(Sij) via

Ỹ i(Sij) = x̃i1β1(Sij) + x̃i2β2(Sij) + x̃i3β3(Sij) + ϵi(Sij),

for j = 1, · · · , r, where r < m, and in the simulation we set r equals to 80%

of m. The r observed values are independently picked from the m locations

for each i, i = 1, · · · , n, and the rest m− r values of Ỹ i are treated as missing

values. In this way, we ensure that the response curve is observed at different

location points for each subject. Next we apply the same marginal transfor-

mations to obtain (Y ,x).

We investigate the performances of β̂copula and β̂ under the random design

via RMISE (Table 3.2), whose results are consistent with that of the fixed

design in terms of the comparison of these two estimators. In addition, from
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Figure 3.1: GCV values versus λ (fixed design).

Figure 3.2: The estimated β̂(s) and the true β0(s) when n = 500, m = 100 in
the fixed design.

34



Table 3.2: RMISE of the estimators β̂copula and β̂ in the random design.

β̂copula β̂

(n,m, r) β1 β2 β3 β1 β2 β3

(100, 50, 40) .057(.008) .062(.008) .057(.006) .746(.971) .636(.092) .598(.322)

(100, 100, 80) .050(.025) .050(.002) .046(.017) .712(.305) .628(.040) .562(.132)

(300, 50, 40) .030(.002) .032(.004) .030(.003) .700(.250) .550(.061) .510(.136)

(300, 100, 80) .027(.002) .028(.001) .025(.006) .646(.213) .622(.125) .492(.208)

(500, 50, 40) .024(.009) .024(.012) .022(.010) .647(.259) .597(.189) .479(.276)

(500, 100, 80) .023(.003) .021(.015) .020(.002) .636(.019) .609(.149) .474(.275)

Figure 3.3: The estimated β̂(s) and the true β0(s) when n = 500, m = 100
and r = 80 in the random design.

Table 3.2 and Figure 3.3, we see estimators under the random design perform

worse in general than in the fixed design, which is reasonable since the random

design setting applied here can be viewed as a sparse version of the fixed design.

The estimators’ performances will be improved with r close to m.
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3.2 Simulation Results for Conformal Predic-

tion

In this section, we focus on testing the output of Algorithm 1 with two

nonconformity measures M0 and Mσ in terms of coverage rate and size. We

follow the same way to generate simulation data as in the previous fixed design,

but inspired by our real datasets (DTI and hippocampus surface data), we

consider two kinds of synthetic settings to generate Y : In the first case, the

response curve has equal variability over all s ∈ [0, 1], which is fulfilled by

setting Yij = Φ(Ỹ ij), for j = 1, . . . ,m when generating the observed functional

response. This equal variability situation fits our DTI data analyzed in section

3.3.1. The second case is designed to explore the performance of nonconformity

measures M0 and Mσ when the response curve shows unequal variability,

which is consistent with hippocampus data’s situation. We set Yij = 2Φ(Ỹ ij)−

0.5, for j = (m/5) + 1, . . . , 4m/5, and the rest Yij = Φ(Ỹ ij).

We still consider the six combinations of n and m in the fixed design. The

size of the training set n1 is set to be n/2 under each combination, which means

the calibration set has an equal size to the training set. Once nonconformity

scores are evaluated in the calibration set, we generate a new observation

(Yn+1,xn+1) (which is i.i.d. to the original sample) 500 times. The empirical

coverage rate is calculated as the fraction of how many times its prediction

band covers the new response curve. The size of the prediction band is 2q0

when we choose M0 and
∫︁
s∈S(2qσ) ·σD1(s)ds when we choose Mσ. The whole

procedure is repeated 100 times so that we can assess the variability of the

coverage rate and size when the original sample changes. In all simulations we

set α = 0.1.

Conformal prediction results are shown in Table 3.3 and Table 3.4, where
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Table 3.3: Conformal prediction results with α = 0.1 when the synthetic data
has equal variability.

PBM0(Ŷ n+1) PBMσ(Ŷ n+1)

(n,m) C(Yn+1) l(Yn+1) C(Yn+1) l(Yn+1)

(100, 50) .902(.046) .974(.102) .902(.043) .950(.075)

(100, 100) .907(.040) 1.042(.084) .901(.044) 1.017(.085)

(300, 50) .900(.028) .900(.036) .900(.024) .886(.038)

(300, 100) .908(.029) .972(.046) .902(.023) .946(.033)

(500, 50) .900(.023) .880(.030) .901(.025) .868(.026)

(500, 100) .899(.024) .948(.030) .900(.024) .928(.024)

C(Yn+1) and l(Yn+1) respectively indicate the empirical coverage rate and the

size of prediction bands. From Table 3.3, we find that the effect of the modu-

lation function is not significant when the synthetic data has equal variability,

whose averaged sizes under different combinations are slightly smaller. Both

nonconformity measures give us prediction bands of the desired coverage rate

(≈ 0.9). This finding ensures us to apply the ordinary supremum metric as

the nonconformity measure for simplicity. However, Mσ shows its strength

in Table 3.4. It helps to justify our conjecture that the modulation function

is useful to obtain a more efficient prediction band if the variability is not

constant.

3.3 Real Data Analysis

Two real data examples are analyzed in this section: DTI data and hip-

pocampus surface data from the ADNI study (http://adni.loni.usc.edu/), which

was launched in 2004 to explore biological markers (e.g., neuroimaging, cere-

brospinal fluid (CSF), and blood markers) to determine which can be treated

as predictors of Alzheimer’s disease (AD) and mild cognitive impairment. We
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Table 3.4: Conformal prediction results with α = 0.1 when the synthetic data
has unequal variability.

PBM0(Ŷ n+1) PBMσ(Ŷ n+1)

(n,m) C(Yn+1) l(Yn+1) C(Yn+1) l(Yn+1)

(100, 50) .905(.048) 1.870(.189) .902(.040) 1.566(.137)

(100, 100) .898(.044) 1.979(.174) .903(.045) 1.614(.105)

(300, 50) .903(.026) 1.735(.083) .902(.020) 1.430(.054)

(300, 100) .902(.028) 1.858(.081) .897(.029) 1.530(.069)

(500, 50) .901(.021) 1.696(.069) .904(.020) 1.412(.044)

(500, 100) .900(.022) 1.816(.054) .900(.024) 1.508(.050)

aim to demonstrate the performance of our proposed method in dealing with

functional data in the real world.

3.3.1 ADNI DTI Data

We first apply our method to the DTI dataset, which includes 214 subjects.

Fractional anisotropy (FA) is chosen to describe the degree of anisotropy of

a diffusion process in our study, and this dataset consists of 214 FA curves

measured at 83 regularly spaced grid points along the corpus callosum (CC)

fiber tract after preprocessing the DTI data.

We are interested in investigating how the subject’s age, education years

and Alzheimer’s Disease Assessment Scale-Congnitive subscale (ADAS) score

affect the structure of FA curves. Here, xi = (age, education years, ADAS)⊤

and Yi(s) is the i-th FA curve in our proposed model. Note that the intercept

term is not needed for the copula model, since it is absorbed in the transfor-

mation functions. The estimated coefficient curves are displayed in Figure 3.4.

We see that the effects of age and ADAS are negative on the diffusion proper-

ties, and this result is consistent with that of [Zha+21]. Number of education

years seems to be an irrelevant covariate for the diffusion properties.
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(a) (b)

(c)

Figure 3.4: Estimated curves of βage, βedu and βADAS.
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For comparison, we also consider the ordinary varying coefficient method

under the LS loss (without copula) with xi = (1, age, education years, ADAS)⊤.

To evaluate the performance of these methods, we randomly split the data into

a testing set with 50 subjects, and a training set with 164 subjects. The ran-

dom splitting is performed 100 times independently, and each time prediction

error (PE), defined as PE =
∫︁
(Ŷ (s)− Y (s))2ds, is calculated on the test set.

The average PE of our method is 0.0057 with standard error 0.0008. With-

out considering the existence of unknown transformations, the average PE is

0.0059 with σ = 0.0008, which is very close to the previous one. However, if

we randomly pick five FA curves from each training set and add value 3 as

outliers, we find that the Gaussian copula function-on-scalar regression model

is more robust to outliers, whose average PE is 0.0058 with σ = 0.0008. Nev-

ertheless, the second method attains average PE = 0.02 and σ = 0.0057. The

FA curves in one test set and predicted FA curves on this set are shown in

Figure 3.5, Figure 3.6 and Figure 3.7. The right panel of Figure 3.7 exhibits

the poor prediction performance of the second method when outliers exist.

We randomly pick one observation and treat it as the unknown one Zn+1.

Equally splitting the rest observations to one training set and one calibration

set to calculate the conformal prediction band. Since the variability of DTI

data seems to be constant over different locations, M0 should be adequate

for a valid and efficient prediction set. The random sampling procedure is

repeated 500 times, and we find that 90.3% of the generated prediction bands

under α = 0.1 successfully cover the new FA curve. One conformal prediction

band is shown in Figure 3.8 along with the true and estimated response curves.
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Figure 3.5: FA curves in the test set

Figure 3.6: Predicted FA curves: the left panel is from proposed model; the
right panel does not consider there exists unknown transformation.

Figure 3.7: Predicted FA curves with outliers: the left panel is from proposed
model; the right panel does not consider there exists unknown transformation.
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Figure 3.8: The Conformal prediction band for one FA curve: the solid red
line indicates the true FA curve; the solid blue line represents the predicted
FA; the dashed blue lines are the prediction band.

3.3.2 Hippocampus Surface Data

To study the structure of hippocampus extracted from magnetic resonance

imaging (MRI), surface-based hippocampal morphometry is applied to sub-

jects in the ADNI dataset. Hippocampus is a complicated brain structure lo-

cated in the temporal lobe, which is essential for human’s learning and memory

ability [AD12]. Thus, it is a main target region in AD research [Don+19].

One can build a 3D model relying on surface-based measures for better

understanding of the change of hippocampus as the disease progresses. In our

study, the radial distance is adopted to measure the hippocampal structure and

plot the surface images for each subject, which shrinks with the hippocompus

atrophy due to the deterioration of AD [Tho+04]. The left panel of Figure 3.9

shows the values of radial distances on one observation’s hippocampus surface.

For convenience of analysis, we use conformal parameterization to convert each

3D model to two matrices (left and right), based on which we can draw 2D
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left and right hippocampus images, as shown in Figure 3.9.

After preprocessing, there are 798 ADNI1 subjects in our dataset, whose

age range from 55 to 92. We treat the comformal mapping (the left and

right hippocampus 2D images) as our functional responses. Since the previous

analysis of DTI data indicates that the effect of education year is ignorable, we

choose age and mini mental state examination (MMSE) score (10-30, where

lower scores mean more extent of dementia) as the covariates. As before, we

implement our proposed method and the regular one to estimate coefficients

and then predict a new hippocampal surface.

We randomly choose 160 subjects as the test set, and train the models in the

rest dataset. Figure 3.10 depicts the true 3D hippocampal structure of one test

subject and predicted surfaces obtained from each method. Panel (c) of Figure

3.10 indicates that our proposed method outperforms the competitor. So next

we focus on the estimated coefficient functions generated from our method.

Figure 3.12 and Figure 3.13 display coefficient images of βage and βMMSE for

each hippocampus, from which we know higher MMSE scores correspond to

larger radial distances and less possibility of AD. The effect of age is negative

and it is consistent with our previous discovery. What’s more, the MMSE

score plays a more important role in predicting the hippocampal structure.

We also obtain the conformal prediction band for the test subject shown in

Figure 3.10. Due to unequal variability, the standard deviation function is

used as the modulation function. The 3D realization of the prediction band is

displayed in Figure 3.11.
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Figure 3.9: Left: One subject’s original 3D hippocampal surfaces; Middle:
2D left hippocampus image after conformal parameterization; Right: 2D right
hippocampus image.

(a) (b) (c)

Figure 3.10: (a) One test subject’s true 3D hippocampal surfaces image; (b)
Predicted surfaces via the proposed model; (c) Predicted surfaces via the or-
dinary VCM under LS loss.

(a) (b)

Figure 3.11: (a) 3D surface image of the lower conformal prediction band; (b)
3D surface image of the upper conformal prediction band.
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Figure 3.12: Coefficient images for the left hippocampus. Left to Right: βage,
βMMSE.

Figure 3.13: Coefficient images for the right hippocampus. Left to Right: βage,
βMMSE.
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Chapter 4

Conclusions and Future

Directions

4.1 Conclusions

This thesis has developed a Gaussian copula function-on-scalar regression

to relax the linear assumption in conventional function-on-scalar linear regres-

sion. Since Kendall’s tau was employed to estimate the covariance matrix, we

obtain a closed form for the estimator of coefficient functions in a RKHS with-

out the knowledge of marginal transformations. Split conformal prediction has

been conducted to quantify the uncertainty in the prediction procedure, which

gives rise to finite-sample valid prediction sets under minimal assumptions and

is adaptable to different variability of functional response. Moreover, we es-

tablished the optimal convergence rate on the estimation of coefficient func-

tions and proved that the proposed estimator achieves the minimax rate under

both fixed and random designs. Finally, to investigate the performance of our

method in practice, simulation studies and real data analysis were conducted,

and demonstrated that the Gaussian copula function-on-scalar regression is
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more suitable to characterize the relationship between scalar predictors and

functional responses.

4.2 Future Directions

Future directions of research related to this thesis are as follows:

1. In the thesis, we follow the idea proposed by [CZ18] to use the Gaussian

copula to model the relationship between the functional response and scalar

covariates. But in practice, we can hardly justify Gaussian copula fits the

data well at the very beginning. Thus we aim to come up with procedures to

determine the optimal one from a pool of candidate copula models.

2. We only discuss the situation when the number of predictors is small.

One interesting topic is investigating sparse Gaussian copula function-on-scalar

regression in high dimensional with l1 penalty introduced into model 2.2.

3. In the literature of functional data analysis, statistical inference has

not been well established for many functional regression models. Conformal

inference may provide new insights and is definitely worth further investiga-

tion. Specifically, choosing an ideal nonconformity score that can lead to more

efficient prediction sets for functional data is still unsolved.
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