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ABSTRACT 

The fast development of new technologies related to sensor solutions, cyber-physical-

systems, cloud computing, the Internet of Things (IoT) and their applications in the 

industry has led to a new modern era where the industry itself has faced a new industrial 

revolution called Industry 4.0. With the help of machine learning techniques, sensory 

solutions and the application of IoT, Industry 4.0 has been able to achieve fully 

autonomous and intelligent processes that can communicate with each other and could 

be located hundreds of miles away. As a consequence, in the presented work, an 

implementation of the concept mentioned earlier is acquired to create an intelligent 

reconfigurable measurement system technology that takes multiple outputs from 

different sensors (pressure sensor, accelerometer, temperature, and light absorption) 

and performed the data analysis and data acquisition. The methodology used is an 

advanced analytics framework of machine learning as an end-to-end model with a 

combination of nonlinear multi-layers for structuring the multi-sensor fusion, this 

framework uses a deep learning approach, which is an end-to-end learning structure 

that takes the outputs of the multi-sensor network and performs classification, data 

linearization and calibration for the different sensors. The multi-sensor data fusion is 

performed using a centralized architecture (microcontroller and PC), taking an IoT 

implementation for data transfer. The data alignment and data associations are 

performed within a desktop PC using a microcontroller as a communication node. Then, 

a convolutional neural network is used for classifying the data and then pass it to a deep 

fully connected neural network for its linearization and calibration. The validation of 

the methodology is performed using 150, 000 data points as reference for the calibration 

and linearization processes as well as the classification of the data coming from the 

multi-sensor system. A user-to-system communication framework is designed to 



iii 

 

perform the multi-sensor fusion and also to enable the user control of the processes. 

With the communication framework mentioned above, an easy-to-use device has been 

designed and developed to help to understand the structure of sensor fusion using deep 

learning as a contribution to the academic learning community.  

 The contributions of the presented work lie in the usage of a deep learning 

framework for multi-sensor fusion with a centralized low-cost architecture. The main 

focus is to create a low-cost solution for sensor fusion that relies on the application of 

an Internet of Things (IoT) and machine learning data structures; this will help to prove 

how using machine learning methods can contribute to the construction of such 

measurement system.  It is concluded that a multi-sensor fusion approach using deep 

learning as a framework model gives excellent results compared to benchmark methods 

for the integration of different sensors, accomplishing at the same time the linearization 

and calibration of the outputs coming from these sensors. 
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Chapter 1 Introduction 

This chapter introduces the thesis, describes the work done, and gives motivation for 

the research; it also states the background and state-of-the-art of current methodologies. 

The preliminary research questions and objectives of the research project are also 

defined.  

1.1. Motivation 

Intelligent systems have a high presence around the world, from industry to smart cities; 

all with two common characteristics, the use of sensors and big data. An example of 

the advancement of intelligent implementations is Industry 4.0, where different 

machines and processes are connected through the internet or locally to share 

information about their current or specific state of a process in order to achieve smart 

manufacturing (1). In previews years, the scientific community proposed different 

methods for handling data and analyzing environments with multiple agents such as the 

ones found in smart manufactures. Nevertheless, traditional methods cannot be 

efficiently applied to smart manufacturing because they intensely rely on human 

expertise and proper feature extraction to achieve excellent performance (2).  Other 

challenges found are a proliferation of multimodal data, multicollinearity among data 

measurements, among others. All of the shortcomings mentioned above are taken as 

motivation to create an intelligent measurement system that can acquire data from a 

multi-sensor environment that could efficiently perform feature extraction, 

linearization, and calibration of a high dimensionality feature space using data fusion 

using a machine learning framework. This intelligent system will serve as proof of 

concept in the use of machine learning methods for measurement systems.  
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1.2. Machine Learning in Modern Industry 

The industry has been evolving in the last century, from Industry 2.0 where new 

technologies are developed using machines power by electricity to Industry 3.0 that 

took advantage of the advancement in electronics and computers to change from an 

analog to a digital era (3). In recent years a new concept has arisen, Industry 4.0, this 

modern concept takes into it a lot of new technologies such as IoT, cloud computing, 

3D printing, cyber-physical systems, and artificial intelligence. Machine learning (ML) 

is part of artificial intelligence; it uses statistical methods to handle big data, which 

have complex dimensionality. There are many traditional methods in machine learning 

that are used for smart manufacturing, such as Boltzmann and support vector machines 

(SVM), but because of the rapid growth of data coming from manufacturing systems 

(4), it has been challenging to make an efficient feature extraction of high dimensional 

feature spaces. For instance, new approaches to overcome the drawbacks of traditional 

machine learning techniques have been developed (2,5). One of the flourishing machine 

learning methods is deep learning. This method uses a neural network structure that is 

more robust in feature learning, model training, and model construction (6). 

 The use of machine learning for smart manufacturing helps improving control 

systems (ICS) within a process. Data mining has been proposed for ease of data 

processing in controlling ICS’. Data mining applications include solutions for 

supervisory control, operation control and parameter predictions (7). Despite the 

advantages of data mining, its robustness in modelling and feature extraction seems 

shadowed by deep learning (DL) techniques. The methods found in DL serve a higher 

hierarchical data representation that helps in handling big data. 
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1.2.1. Deep Learning as a Tool for Smart Manufacturing 

Because of the advancements in the field of deep learning, its application in smart 

manufacturing has increased over the past years. There are many applications of DL in 

manufacturing, such as production, operation, test and evaluation, among others (2,8–

11). In general, the advantage proposed by deep learning is the minimum requirement 

of human interference. In traditional methods, feature extraction is done by experts in 

the field, leading to a time-consuming process and human error (12). Deep learning 

overcomes the shortcomings of traditional machine learning methods by transforming 

the data inputted into the deep learning framework to an abstract representation of the 

same data that helps in feature extraction.  

1.2.2. Data and Information Fusion 

Dealing with data coming from a multi-sensor framework can be challenging. 

Information fusion is proposed to deal with multi-sensor networks that present a 

complex data representation. In some scenarios, information fusion can be addressed 

as data fusion, meaning that information from different sources is analyzed and 

combined for parameter estimation, system control, forecasting and intelligent 

processes control (13–15). Information fusion can also be defined as a high-level 

process that helps in the correlation, a combination of data/information and its 

association from single and multiple sources to evaluate a particular stage within a 

system and how that new information representation can be used for fault detection, 

state correction, forecasting, and threat assessments. In the data fusion domain, there is 

a wide variety of intelligent methods proposed at the data and decision level; these 

methods involve decision trees, support vector machines, among others (16,17). The 

advantage of using multi-sensor fusion strategies along with decision level algorithms 

is that offers higher generalization for complex sensor networks across a substantial red 



4 

 

 

of data. Information fusion and its applications in the modern world have been widely 

studied, from smart cities to the development of fully interconnected manufacturing 

processes, and have proved successful (2,7,11). The impact of using information fusion 

in smart manufacturing has resulted in having better decision-making structures.  

1.2.3. IoT Systems for Information Fusion 

In smart manufacturing, where hundreds of processes and machines are interconnected, 

there is a need for using the Internet of Things and data science to achieve a reliable 

and efficient information fusion (15,18,19). The full integration of sensors devices 

plays an essential role in IoT systems. One of the capabilities of IoT systems is that it 

gives the possibility of measure and understand complex environments in a highly 

interconnected network of sensors. IoT systems play a crucial part in Information 

fusion, take the example of a fully interconnected sensor network, the amount of data 

coming from different sensors that compose that network will be considerably large. 

By using information fusion with machine learning methods, it is possible to handle big 

data, this is true because the DL framework works well with big data and has been 

proved in the literature (5). 

1.3. Reconfigurable Measurement System: Multi-Sensor Fusion 

The term “reconfigurable” is used in this context as a way of referring a system that is 

used by multiple and diverse sensors where data acquisition, data analysis, data 

correction, and calibration could be performed. In this way, a system that has learned 

about the non-idealities that characterized each of the multiple sensors could perform a 

self-assessment of the new data inputted into the system. The framework, as stated in 

previous sections, uses multi-sensor fusion that takes a machine learning approach for 

sensor fusion. The idea behind using sensor fusion is to integrate signals that could be 
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either complementary, redundant or cooperative for the sensor network. By applying 

sensor fusion, it is possible to interconnect the information coming from different 

sensors using a centralized framework, namely the Arduino microcontroller and the 

Wifi module, that communicates with a processing unit where data can be stored and 

processed. This method will help to capture the variance of the different sensors in order 

to improve the calibration method and to use as best as possible the redundancy that 

could be found in each device. 

1.4. Challenges in the Application of Deep Learning and Multi-sensor Fusion in 

Industry 4.0 

Despite the vast advantages that deep learning provides to smart manufacturing, there 

are still drawbacks (20). The shortcomings of deep learning methods such as 

convolutional neural networks (CNN) and deep neural networks (DNN) are that they 

require a high amount of computational power and represent difficulties in training. In 

the case of DNN, it has a long-term dependence that could be saved over time. The 

present work introduces a solution that attempts to overcome the drawbacks of DL 

models by proposing low-cost hardware and low-computational complexity; this means 

that the proposed methodology can be implemented in a wide range of applications. 

Although Industry 4.0 presents advantages in providing an environment with multiple 

sensors and interconnected processes to various methods like IoT, it also presents a 

complex sensor network with very diverse sensor technology making them prompt to 

data imperfections, correlation, alignment and calibration issues (13). Traditional 

methods used for sensor calibration, e.g. accelerometers (21–24), require to design a 

complex and robust error model to describe errors and non-ideal parameters within the 

accelerometer, this requires expert knowledge and in some methods (25–27) requires 
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to constrain the model based on different assumptions. The solution proposed addresses 

the issues mentioned early by introducing a new methodology for multi-sensor fusion 

using sensor data classification and calibration method based on a supervised learning 

framework that uses a CNN for classification and a DFCNN for calibration. 

1.5. Research objectives 

The main objective of the proposed research is as follows: 

“Design and develop a reconfigurable measurement system based on multi-sensor data 

fusion using deep learning as a method for calibration, linearization and classification 

of the signals using a controlled environment and an IoT solution for sensor 

integration.” 

For the design and development of the measurement system, the objectives (Os) 

are subdivided into the following actions.  

O1. Sensor calibration (i.e, temperature, pressure, and accelerometer) using deep 

neural networks as a probabilistic frame using supervised learning.   

O2. Design a convolutional neural network for signal classification and its 

integration with the calibration module.  

O3. Design an IoT solution for low-cost sensor integration and data communication 

using a reconfigurable measurement system.  

The objective 1 (O1) is developed using a machine learning method that consists of 

a convolutional and a deep neural network for calibration, linearization and 

classification of a multi-sensor fusion system, which is the first contribution of the 

thesis. The design of an IoT solution for sensor integration (O3) and the development 



7 

 

 

of a method for acquiring and analyzing the data from the measurement system (O2), 

which is the second contribution of this thesis.   

1.6. Organization of the thesis 

This thesis comprises of five chapters. Chapter 1 presented a brief introduction to 

research motivation, background literature review, machine learning in modern 

industry, data and information fusion, deep learning methods, and multi-sensor fusion 

that frames the research objectives. In Chapter 2, the design and development 

methodology for the reconfigurable measurement system is presented. Chapter 3 fulfills 

O1 and highlights a two-axis accelerometer calibration and nonlinear correction using 

neural networks: design, optimization, and experimental evaluation method and results. 

Chapter 4 presented a multi-sensor data fusion structure using deep learning: 

classification and data correction, which addresses (O2 & O3). Chapter 5 provides 

conclusions and summarizes research contributions, limitations, and future work. 
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1.7. The General outline of the reconfigurable measurement system 

The presented reconfigurable measurement system architecture takes as a base model 

the general construction blocks of a measurement system found in Figure 1. Based on 

that architecture, the presented method proposes a new architecture using deep learning 

for control and calibration of the different sensing units using a Wi-Fi implementation 

shown in Figure 2.  

 

Figure 1 Disadvantages of the traditional measurement system architecture 

 

Figure 2 Proposed architecture for the reconfigurable measurement system 
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Chapter 2  Reconfigurable Measurement System: Design and Development  

2.1. Introduction  

In order to accomplish the objectives presented in Chapter 1, it needs to develop a 

measurement system with data acquisition and analysis methods that could be used to 

implement multi-sensor fusion for calibration and error correction using an IoT system 

for sensor communication. To understand better the importance of multi-sensor module 

fusion let us introduce an example. Imagine an environment where multiple sensors are 

connected to different locations; each of them measures identical or different 

measurands. Each measurement from the sensors needs to be acquired and analyzed for 

a given objective e.g., monitoring and calibration; in general, we can define the process 

of calibration as to compare a known measurement to a measurement of a given sensor 

that needs to be calibrated. A multi-sensor environment can be composed of many 

different sensors that might or not be from the same manufacturer; the information 

acquired might not be ideal and could have nonlinear behaviour. To address the 

problems of calibration and correction of nonidealities, sensor fusion along with 

machine learning, is needed. A low-cost objective is adopted to develop the proposed 

reconfigurable measurement system. By accomplishing a low-cost implementation, it 

is intended that the framework developed could have a wide range of applications in 

Small and Medium Size Enterprises (SMEs) and training in educational institutions.  

In general, sensors work on transduction mechanisms, defined as  “the act of 

transforming information or signals” (28). There is a wide range of sensors that can 

translate a phenomenon from one physics domain to another.  This capability of sensors 

makes them an essential device for any process or application. Three sensors that are 

key in many industrial and monitoring applications are used to construct the 
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reconfigurable sensor modules in order to design a reconfigurable measurement system 

that can prove the advantages of sensor-fusion-based calibration using machine 

learning over traditional calibration methods. The number and variety of sensor can be 

expanded to accommodate even more modules and do tests on them, but because of 

time constrain the sensors used for each module has been constrained to three. The 

sensors are listed as follows: 

• Accelerometer:  A device that can sense static or dynamic acceleration in 

local gravitational acceleration (g) 

• Barometric pressure: A sensor that measures the ambient barometric 

pressure in Pascals 

• Temperature: A sensor that measures ambient temperature 

The proposed reconfigurable measurement system will consist of three sensor 

modules; each module will have an accelerometer, barometric pressure sensor, and 

temperature sensor. Each of them can be connected to the system in an interchangeable 

manner, making the system reconfigurable for different sensors. The idea of designing 

modules with a combination of sensors with different principles of operation and 

sensing capabilities is to demonstrate how calibration and sensor-fusion can be 

accomplished using a reconfigurability approach in a measurement system using 

machine learning as a probabilistic framework. All modules have a temperature and 

barometric pressure sensor to measure temperature and atmospheric pressure locally, 

which will allow us to validate and calibrate for temperature and pressure corrections 

on each module. These three devices can be used for monitoring of different processes 

or even for multi-measurand measurement of a single process. By using various signals 

sources from the sensors, it will be possible to create a method using the DL method 
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that can calibrate and categorized the signals. Finally, the development of the 

reconfigurable measurement system along with the ReMS software can serve as a 

teaching and learning tool for students and workers that need to understand how the 

data acquisition and analysis is done using a machine learning framework for sensor 

fusion. 

The Sections 2.1.1 to 2.1.3 introduce and explain each sensor and its principle 

of operation as well as their nonlinearities and drawbacks inherent of each sensor. In 

Section 2.2, the methodology design for the experimentation is introduced along with 

a general overview of how the data acquisition and analysis are done as well as the 

design of the IoT sensor network. Then in Section 2.3 is explained software design used 

as a communication interface for the sensors and the user, following by Section 2.4 that 

show the user interface and the control and plotting elements. Section 5 presents a 

general conclusion about the design of the system that addressed the advantages and 

limitations of the system. 

2.1.1. Accelerometer Sensor Module 

Accelerometers are inertial sensors, meaning that it is possible to measure forces acting 

on them due to motion. Each of them has different characteristics that distinguish from 

one another. One might accomplish better resolution, sensitivity, or higher cost/benefit 

ratio. These devices are widely used even in costumer entertainment products, such as 

gaming consoles, gaming controllers, cellphones, among others. It is considered the 

head device for inertial measurement. One of the primary uses of accelerometers is for 

crash car detection; the accelerometer allows designing a smart system that could 

deploy the air-bags in order to protect the passengers of the vehicle (29). Other main 

applications are vibration analysis for machinery, and civic structures (30,31). Because 
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of the paramount importance that accelerometers have in industry and consumer 

applications, it is necessary to correct them for any nonlinearity that can affect the 

output of the sensor. Novel accelerometers have been proposed in the literature, these 

high-performance accelerometers might have better stability or resolution (32), but the 

cost of such devices is expensive. 

Nevertheless, the advancements in the nanofabrication process had lead to have 

low-cost sensors that can be applied even in applications that demand high accuracy. 

That is why, for the proposed measurement system, the accelerometer is selected to 

perform its calibration and nonlinear correction. The details of how the calibration 

process is performed can be found in Section 3. In order to design the accelerometer 

module, an understanding of how accelerometers work is needed. In general, 

accelerometers can detect large or small vibrations due to acceleration or tilt 

movements; each accelerometer has a different sensing axis that can detect acceleration 

or tilt movements on each axis. In order to mimic tilt movements with the 

 

Figure 3 Accelerometer sensor module, in the schematic the connections are not 

presented for simplicity of the figure. 
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accelerometer, a mechatronics system is designed with a stepper motor used for 

controlling the position and speed of the accelerometer and a supporting structure. The 

schematic of the accelerometer module can be found in Figure 2.1. 

2.1.2. Pressure Sensor Module 

The pressure sensors are micromechanical devices that use different methods to 

measure pressure; these methods include piezoelectric, capacitive, piezoresistive, 

optical, and resonant sensing principles (33). Pressure sensors, among many sensors, 

suffer from hysteresis, which is a fundamental error that corresponds to almost 30% 

degradation of the sensor performance (34). There are many methods found in the 

literature that address hysteresis, but most of them refer to the material design of sensors 

(35–37). Conventional methods for addressing hysteresis are the Bounc-wen model and 

the Dahl model based on phenomenology. The former model is easy-to-implement with 

the limitation of been dependant on its initial status, and the later been challenging to 

implement (38). A deep neural network framework is used to address the intrinsic 

sources of error like hysteresis and nonlinearities, that could resolve the limitations of 

the methods mentioned above. In the presented work, the design of a pressure module 

is conducted to evaluate the pressure sensor and a barometric pressure sensor. This 

pressure sensor can sense the pressure in hoses, tiers or any pipe that has fluid on it with 

pressure differentials.  

 A mechatronics test module is designed to test the pressure sensor. This module 

consists of a linear actuator, a hose, a syringe, and a Printed Circuit Board (PCB) with 

the circuit needed for connecting the pressure sensor, the schematic of the pressure 

module can be seen in Figure 2.2. The pressure sensor module is fully controlled with 

the software developed for this purpose described in Section 2.3. The parameters that 
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can be controlled are stroke length, speed and acceleration. The data range for the 

experiment taken for evaluation can be from 5 to 25 PSI. The connection is done with 

an Arduino UNO microcontroller that maps the values from 163 bits to 900 bits. The 

microcontroller is connected to the ReMSI, and the data is being acquired, stored and 

evaluated for a given experiment environment.  

2.1.3. Light Absorption Module  

Light is electromagnetic radiation that serves as a tool for measuring and analyzing 

water sediment, bacteria particles in water, the chemical composition of materials, 

among many other applications. There are measurement systems used for 

contamination detection in water that takes signals from a sensor network and performs 

sensor-fusion for water monitoring, but this approach is expensive and requires 

complex controls (39,40). Some methods implement an IoT framework with low-cost 

sensors for water monitoring (41). This solution is successfully applied but did not 

address the issues encountered with error correction and nonlinearities from the sensors. 

Figure 4 Pressure sensor module, in the schematic the hose that connects the 

syringe with the pressure sensors is not presented for simplicity of the figure. 
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For the design of this light module, this thesis presented a method using sensor-

fusion with a machine learning framework along with an IoT implementation to 

perform data characterization and data correction. A schematic of the sensor module 

can be seen in Figure 5.  

This module consists of one light-emitting diode, photodiode, a water storing tank, 

and a PCB with the electric circuit. The light-emitting diode generates a light source 

that passes through the water storing tank, then the light is reflected and refracted inside 

the tank and pass through it, the reaming light will charge the photodiode resulting in a 

generation of electric current that is transferred to the Arduino microcontroller. The 

microcontroller then communicates with the software interface (refer to Section 2.3) to 

store the data in a local database. 

  

 
Figure 5 Light absorption sensor module, there is a container inside the module 

where water can be poured in and analyzed. 
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2.2. Methodology  

As stated in Section 1, the main objective of the present work is to develop a multi-

sensor measurement system that can implement sensor-fusion with the help of a 

machine learning framework using a low-cost system. In order to accomplish the main 

objective, it is necessary to design sensor modules as described in Section 2.1.1 to 2.1.4. 

These sensors work together with the Arduino microcontroller as a centralized 

architecture where data is converted from analog to digital and then pass it to the ReMSI 

to perform the real-time plotting and sensor fusion. 

Each of the modules designed for the measurement system is connected using the 

serial protocol and using a local network connected through Wi-Fi using AT 

commands. The signals acquired by the accelerometer are digital pulses that can be 

transformed into a range of 0 to 1026 bits using either the Wi-Fi module or the Arduino 

microcontroller. The pressure sensor is handled in the same manner, but the signal is 

analog, an A/D conversion is done using the Arduino microcontroller or Wi-Fi module 

depending on IoT configuration. For the light absorption sensor the signal is analog as 

well and is converted to a digital output using the same method as the other sensors. All 

the signals are converted to meaningful data using correlation equations that help to 

translate from the digital output in bits to either pressure or acceleration measurements 

in kilopascals and meters per second squared. After the data is converted, the software 

detailed in Section 2.3 is used for plotting the data at a rate of 12 samples per second 

and controlling the mechatronic system inherent in each sensor module. From the 

interface, it is possible to control the system to change the current state of the 

experimentation. The data obtained is then stored as a CSV file. After the data is 

acquired, it is used by the machine learning framework to perform data fusion, 

classification and calibration.  
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2.2.1. Modules Interconnectivity   

The Internet of things is applied to interconnect the sensor modules. For doing so it is 

necessary to use a Wi-Fi device in each multi-sensor module. The Wi-Fi module 

selected for the design possesses a 32-bit CPU that can be used as an application 

processor. This gives the capability of connecting each sensor using serial protocol or 

Wi-Fi using a local network through AT commands. The data coming from the sensors 

and the mechatronic system at each sensor module can be controlled using the Wi-Fi 

module or the Arduino board; both are configured and set up to be used with the 

software interface. 

2.2.2. Data Analysis and Acquisition 

A machine learning framework based on neural networks is used for the data analysis 

after the acquisition through the sensors. This framework takes into consideration the 

optimization, regularization and overfitting of the NN. For the optimization process, 

three methods are used, gradient descent, gradient descent with momentum, and 

ADAM; each method can be seen in detail in Section 3.2. The general parameters for 

this framework can be changed as per user request, which means that a full 

parameterization can be done to accomplish a particular benchmark for a given 

problem, i.e. linearization, calibration or forecasting. Depending on the module used 

and the nature of the data that is going to be analyzed, a specific NN design can be done 

and applied to evaluate its performance. All the data acquired from either by serial 

protocol or the IoT is being normalized before using it as training data for the NN. 

Details about the normalization of the data can be found in Section 3.3.3. 
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2.3. Graphical User Interface Design 

To fully design the measurement system, it is necessary to have software that could , in 

this case, along with the system. Many methods and solutions exit for measurement 

systems with data acquisitions provided by industries around the world like National 

Instruments (42), but their solutions are expensive and complex. In order to maintain a 

low-cost and straightforward profile for the proposed framework, the virtual interface 

for the measurement system is developed. The interface is designed using Visual Studio 

2017 with C# as the core programming language. Within the solution, a python script 

with the design of the neural network is used. The neural network script is composed 

of a fully automated neural network with gradient optimization, regularization and 

overfitting methods designed from scratch with most influential mathematical libraries. 

The main interface of the software can be seen in Figure 6.  

From the interface, it is possible to select the sensor module of which the data 

acquisition and analysis need to be performed. Once the sensor is selected, the user is 

then prompted to the module control window which shown in Figure 7. Within this 

window, it is possible to change the parameters of the mechatronic system that controls 

 

Figure 6 Main interface of the reconfigurable measurement system software 

(ReMS). 
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the sensor module and perform the data acquisition with data that will be stored in a 

local database. 

A picture of the user interface for the data analysis, which corresponds to the NN 

script, is presented in Figure 8. Many parameters can be changed from the interface, 

including regularization technique, learning rate, neuron number, hidden layers, 

gradient optimization, number of epochs and the cost function to use depending on the 

objective, i.e., linearization, classification and calibration. All data stored from the 

interface is kept as a CSV file that can be used later as an input file for the data analysis 

of the data. It can also be saved as a separated file for further reference. 

 

Figure 7 Accelerometer control windows 
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2.4. Conclusion  

In this chapter, an overview of the design of the sensor modules and ReMS is 

introduced. The necessity of the novel design of the measurement system, as well as 

the limitations and capabilities of the system, are also presented. Further work needs to 

be done in optimizing how the data is being plotted in real-time within the interface. . 

It is essential to state that the current solution has wide applications in Industry, but also 

have applications in Academia for teaching and training porpuses. This represents an 

excellent system for students and workers that want to have a first approach to machine 

learning and sensor-fusion understanding. The proposed system also provides a 

solution for calibration, linearization and classification of sensor signals.  

  

 

Figure 8 Data analysis interface. The interface allows us to import data and 

parameterize the neural network. 
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Chapter 3  Two-axis Accelerometer Calibration and Nonlinear Correction Using 

Neural Networks: Design, Optimization, and Experimental Evaluation 

Accelerometers are the most common devices used for high precision tasks such as 

body motion analysis and structural monitoring. Nevertheless, these devices are 

subjected to non-linearities because of their non-ideal micro-fabrication processes. 

Several methods exist in the literature which addresses calibration methods to solve 

non-linearity problems. However, there is no method that can calibrate the 

accelerometer output without knowing the error model of the device. This chapter 

presents a methodology to approximate the output of a low-cost two-axis thermal 

accelerometer based on neural networks (NN) for calibration and non-linear 

corrections. This method uses the output of the accelerometer and the Earth’s 

gravitational acceleration expected at a static position as data for training. The proposed 

method uses different optimization methods (ADAM, gradient descent, and gradient 

descent with momentum) to find the best solution using half mean squared error as the 

cost functions for evaluation. Experiments are conducted and presented to validate the 

NN-based calibration method using 2,800 unseen data points. 

3.1. Introduction 

The primary utilization of accelerometers is in inertial navigation systems (43–46); 

moreover, in recent years, its application in human motion detection and analysis has 

proved to be successful (47–49). Because of the broad applicability of accelerometers, 

there is a latent need to have accurate and reliable measurements. This need has lead 

companies to design new sensors with cutting-edge nano-fabrication processes to 

achieve highly sensitive and precise devices. Nevertheless, there are still sources of 

non-linearity in the fabrication and implementation of these devices, including; errors 



22 

 

 

from installation, mutual axis misalignment errors, large offsets, affectation by biases, 

and gain factor variations. Consequently, calibration methods have been designed and 

implemented for error and non-linearity correction in accelerometers, which have been 

broadly studied in the literature (21,24,27,29,50–54). 

Most calibration methods utilize multi-position, which uses an optimal 

estimation for accelerometer error parameter estimation. These methods use velocity 

and position errors for calibration of non-linearities, but in some implementations, it 

requires accurate and sophisticated laboratory equipment (27,50,53,54). Nonetheless, 

not too many people can access this kind of equipment and could present an 

implementation problem. For overcoming this problem, researchers have developed 

self-calibration procedures that do not require the use of any external equipment 

(21,24,29,51,52). However, even with the novelty methods proposed by researches, 

there are still problems encounter in the calibration of accelerometers, namely: 

robustness of the method, calibration time, implementation problems, and idealization 

of the error model. 

The work presented by Batista et al. (50) prosed a new calibration method with 

dynamic filtering for bias and gravity estimation, this solution allows both offline and 

online calibration but does not present any optimal rotation methodology and still uses 

a motion rate table for calibration. In the estimation method proposed by Liu et al. (51), 

good results are found for constructing the apparent gravitational acceleration. This 

method assumes that the noise is directly projected into the apparent acceleration, which 

allows calculating the accelerometer parameters reducing the alignment error nearly to 

zero. Nevertheless, the robustness of the method is not clearly stated because of its case-

specific implementation. A self-calibration method of nonlinearity errors for RINS is 
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presented by Gao et al. (27). This method assumes only second-order nonlinearity 

errors and states that the velocity error is equal to the velocity outputs and uses optimal 

estimation with navigation errors for estimating the parameters. The method showed 

good results and did not require any external device, but because of the many 

assumptions on the accelerometer error model, the robustness and widely 

implementation cannot be assured.  Frosio et al. (52) proposed a calibration method 

with the Akaike Information Criterion (AIC) for model selection and proved that the 

quadratic loss function is well suited for calibration procedures, but did not consider 

non-linearities due to model complexity limitations. A method that uses a mathematical 

model for calibration of accelerometer parameters is presented by Won (24). This 

method utilizes a six-parameter error model and six arbitrary positions to solve for those 

parameters, but prior knowledge of gains and biases is required. Ye et al. (21) proposed 

a six-parameter error model with G-optimality based on the design of experiments with 

a new linearization strategy solved by recursive least square estimation. Even though 

the procedure proved to be successfully applied in his experimentation, the method 

lacks to provide nonlinear corrections and only assumes positive values of the scale 

factor. Qureshi (55)  introduced an on-field calibration method that does not require 

external equipment; in this method, a new rotation schema is presented. Newton's 

method with backtracking is used for solving the mathematical model with nine error 

parameters allowing to estimate sensor orientations, gain factors, misalignment, biases, 

and alignment angles. The drawback found in this novel approach is that the estimated 

values should start as close as possible to the actual values and that the calibration time 

is significant. 
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Having into account all the drawbacks and considerations mentioned above, a 

need for a new calibration method that could address the limitations of current methods 

is necessary. That is why a novel calibration approach based on neural networks with 

nonlinear behaviour correction taking as test subjects the MENSIC 2125M, GY251, 

and MMA7371 accelerometers is presented. This novel method does not consider the 

estimation of the error parameters using an explicit solution solved by an iterative 

method but instead considers using a dynamic neural network with using diverse 

optimization methods to find the best model that fits the outputs signals of the sensor 

to the actual values of acceleration at static positions. The underlying assumption for 

this approach is considering the square of the sum of all accelerometer's outputs to be 

equal to the square of the local gravitational acceleration. Because the values of 

acceleration at each static position are known, the neural network model can be trained 

and implemented using regression to approximate the real value as closely as possible 

to the output of the accelerometer. Design and optimization of the neural network are 

conducted along with a cost-function analysis. A comparison between an explicit 

method found in (25) and the neural network proposed in this approach is made to prove 

the usefulness and validated the neural network method. 

This chapter is divided as follows. The general design and description of the 

accelerometer error model are found in Section 3.2. Neural Network design and 

optimization methods can be shown in Section 3.3. Experimental results of the neural 

network and discussion about the optimization method are presented in Section 3.4. 

Finally, conclusion and further work are found in Section 3.5. 
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3.2. Two-Axis Accelerometer Error Model and Description 

The low-cost MEMSIC 2125M accelerometer used in this method is a dual-axis, 

linear motion sensor with integrated signal conditioning. It has functional capabilities 

for measuring varying and constant acceleration; significant parameters of this device 

are presented in Table 1. 

Table 1 MEMSIC 2125 Main parameters 

Its functionality differs from the conventional accelerometers found in many 

applications such as capacitive, piezoelectric, spring-mass system-based 

accelerometers, etcetera. The microfabrication employed is a monolithic CMOS IC 

process. This sensor’s principle of operation is based on heat transfer by natural 

convection; the proof mass is the gas stored inside the chamber (56,57). The inclination 

setup from a horizontal position and the installation angle errors are shown in Figure 

9. 

Parameter 
Values and Units 

Min Typical Max Units 

Measurement range 3.0  - - g 

Nonlinearity - 0.5  - % of FS 

Alignment error - 1.0  - arc  

Transverse Sensitivity - 2.0  - % 

Sensitivity, Digital Outputs 11.8  12.5  13.2  % duty cycle/g 

0g Offset 0.1−  0.0  0.1  g 

0g Dutty Cycle 48.7  50  51.3  % duty cycle 

0g Offset Over Temperature - 1.5  - mg / C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 (A) Inclination angle
x

 in x-direction and inclination angle y  in y-

direction, (B) Installation angle error 
yx

  from the reference frame ,
f f

y x to body 

frame 
b

y  
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The gravity equation is used to find the relationship between the inclination 

angle, which is the angle between the gravitational force and the sensing axis. This 

equation is expressed as follows 

sin

sin

x

y

X g

Y g





= 

= 
  (1) 

where X  and Y  are the accelerometer outputs in axis x  and y , respectively, 
x  and 

y  are the inclination angles and g  is the gravitational force. Because of the 

construction of the accelerometer, it is not possible to achieve accurate measurements 

of inclination angles higher than 60 . This behaviour produces a nonlinear output for 

values between 60  and 90 ,  as shown in Figure 10. 
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Figure 10 Acceleration outputs of X and Y axis versus tilt angle. There is a nonlinear 

behavior when reaching above 50 degrees angle. 
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A stepper motor is used to change the tilt angle into different positions to 

recreate the nonlinearity found in Figure 10, and acquire data from those positions to 

perform calibration. The stepper motor has a controlled acceleration that let us regulate 

the velocity trajectory of the motor. The accelerometer will measure both the static and 

dynamic accelerations; nevertheless, static acceleration is only considered for the 

proposed calibration methodology. A picture of the hardware setup can be found in 

Figure 11. The positions needed for calibration are stationary at 0° then moved to 25 

different stationary positions that cover 0° to 90°, which is the optimal sensing 

capabilities of the accelerometer. This process will allow us to reach a complete angle 

scheme from “0g” to “+1g” in the x-axis. The purpose of doing this is to acquire as 

much data as possible at different positions to feed the neural network and characterized 

in the best way possible in the accelerometer model. 

This thermal accelerometer has a build-in signal conditioning module, meaning 

that x  and y  outputs are digital. For the current system, an Arduino UNO 

microcontroller is used and connected through a serial port to a desktop PC that has the 

software developed by the Laboratory of Intelligent Manufacturing Design and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 11 Hardware setup used for experimentation and accelerometer evaluation 
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Automation (LIMDA) for acquiring and analyzing the data with a build-in deep neural 

network framework that can be parameterized by the user. The outputs 
outXD  and 

outYD  

are programmed at 100 Hz with a zero-g output at 50% duty cycle, and sensitivity of 

the scale factor is 12.5% duty cycle per g. The acceleration can be calculated using the 

ratio T1/T2, which is found in equation (3). The maximum resolution acquired from 

the system is 0.4 mg,  and the noise floor sets the lower limit (refer to Table 1). The 

maximum reference acceleration taken for static calibration is 29.8379  /  m s that it 

corresponds to Edmonton, Canada gravitational acceleration. 

1

2

, 500 8
T

X Y
T

 
 
 

= −    (2) 

The general conditions of testing are at 23 degrees Celsius and temperature drift 

is not considered for the analysis. The environment is considered ideal in the sense that 

no external vibrations or stimulus is done to the testing devices. This allows testing the 

device and considers that the signal coming from it is due to the variation of the 

accelerometer itself. The objective of the various analysis is determining how much the 

accelerometer output is off from the value of acceleration given by the controlled 

environment.  

3.2.1. Nonlinear Accelerometer Model 

Even though the objective of this work is not to derive the error model of this two-axis 

accelerometer, the general representation of the nonlinear model of this device is 

presented to evaluate and compare it to the neural network calibration model.  

Coarsely speaking, micromechanical electrical systems (MEMS) can be 

affected by nonlinearity and error sources. They could be inherited from the 

microfabrication process or even by the noise coming from voltage/amperage sources.  
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The significant sources of error that described the accelerometer output can be derived 

and expressed explicitly in order to be solved and correct the accelerometer output. The 

most general and simplest error model that considers scale factors and biases, as.  

o =   +a F K a b   (3) 

where 2 2
K  is a diagonal matrix that comprises the scale factors, 2 2

F  is a 

diagonal matrix that includes the misalignment of the sensitive axis 2
b . The 

installation error is defined as the misalignment between the sensitive axis frame and 

the body frame; it is essential to be considered to achieve a better error model. Can be 

represented by F  and is derived as 

1 0

1x

 
 
 

F =   (4) 

where 
x

  represents the misalignment error between the sensitive axis x  and y  in the 

horizontal plane. Sensor bias is equally important and is estimated for the nonlinear 

model of the accelerometer. It is described as the signal when no inputs are presented; 

this is an acceleration-insensitive error defined as 

T

x yb b  b =   (5) 

where 
x

b  and 
y

b  are the unknown bias of the outputs in X  and Y  respectively. The 

accelerometer scale factor is considered and is affected by cross-axis factors. It can be 

seen from Table 1 that the transverse sensitivity of this accelerometer is typically ±2% 

of the sensor output; this affects the linearity of the sensor and limits the highest 

accuracy that could get. The scale factor can be defined as the ratio of the change in 

output voltage and the unit of change of acceleration. For the current analysis, the 

voltage is directly converted to PWM and then into acceleration based on equation (3). 

The scale factor is represented by K  as 
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0

0

x

y

k

k

 
 
 

K =   (6) 

where 
xk  and yk  are the scale factors (cross-axis factors) at each output. To define the 

acceleration vector is used  , 
x y

a a=
o

a  , that is represented by the orthogonal frame  
f

x  

and 
f

y  (body sensor frame). Based on the equations above, a vector representing the 

unknown parameters can be expressed as 

T

x y x x yk k b b  =     (7) 

The key of this calibration method relies on the assumption that the sum of the 

accelerometer outputs is equal to the square of the gravitational force when the system 

is stationary, described as 

2 2 2

g x ya a a= +   (8) 

where 
x

a  and 
y

a  are the output acceleration in X  and Y  respectively and 2

g
a  is the local 

gravitational acceleration. The same equation can be expressed in terms of the sensor 

offset and scale factor as follows: 

( ) ( ) ( )( )
222

0g x x x x y x x y y ya k a b k a b k a b = + + + + +   (9) 

where 0  represents the accelerometer noise, ( ) ~  0, Σ . If the above formula does 

not match the gravity vector, the error is calculated by 

( ) ( ) ( )( )
22 2

0a x x x x y x x y y y ge k a b k a b k a b a = + + + + + −   (10) 

It is possible to expand equation (10) to rearrange it and taking the i-th sample 

so we can linearize it based on (25), such as 

2 2 2 2 2

02 2 2i xi xi yi yi x y xi yi xi xi xi yi yi yi ik a k a k a a k b a k b a   − = + + + ++  (11) 
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where represents the constant residuals values of the expansion of equation (11), 

defined as 

2 2 2 2 22 2 2 2 2i x y x x y x y x x x y y x y x y x yk a b b k b a k b a k b a b b   = + + + + + +  (12) 

The terms left at the right of (11) will help to arrange a new set of parameters 

that consider the square and products of the main unknown parameters

( ), , , ,xx yy xy x yk k k b b , this new set can be defined as 

( )2 2

1 5 , ,2 ,2 ,2xx yy xy yy xy y yy xk k k k k b k b − =   (13) 

Equation (11) can be rewritten as 

2 2

1 2 3 4 5i x y x y x ya a a a a a      − = + + + +   (14) 

We can expressed (14) in matrix form as 

0n n n n− = +       (15) 
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3.3.  Neural Network Design 

For the present calibration method, a neural network is utilized instead of explicitly 

finding a mathematical expression to estimate the best parameters for the accelerometer 

error model (as stated in Section 3.2).  Because we choose not to adopt a defined 

mathematical expression to calibrate and compensate for nonlinearities, this problem 

statement regards to be solved with a learning system. The learning system of our 

choosing is a neural network that has proved to be suitable to solve complex nonlinear 

problems with easiness by outperforming other machine learning methods like kernel 

machines. In simple words, a standard neural network is an arrangement of numerous 

single neurons that connect processes; each of these produces a sequence of real-value 

activations (6).  All of these neurons connected at each stage in the network will carry 

out the nonlinear transformation of the activation functions throughout the network. 

These values carried out through the network will help us to learn weights that will be 

incurred to obtain the desired set of parameters for calibrating the accelerometer output

  outa . Neural networks can learn very complicated nonlinear relationships between the 

inputs and the target, but that makes them prompt to overfit the data, we will further 

discuss this in Section 3.4. The approach adopted for this learning system is to consider 

it as supervised learning in which all the inputs of the system are independent of 

previews output events, that allow us to predict the data based on a targeted output (i.e., 

actual static acceleration values). 

The first important step in designing an excellent neural network is to have a useful 

feature representation (e.g., accelerometer outputs in x and y), which means that data 

collection is a fundamental part of achieving a good learning model; it does not matter 

to have the best predictive model if the data is poorly collected. That is why, for the 
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current experimental evaluation, the method developed by LIMDA lab is used to 

acquire the data from the accelerometer and to perform the data analysis at the same 

time using a python script with the neural network framework. Nevertheless, an 

extensive expertimentation taking temperature drift is not presented in this method.  The 

linear approximation used in this design is linear regression, which can be thought of 

as a probabilistic model that reduces parameter estimation. The general representation 

of the neural network can be seen in Figure 12. 

The neural network function is described as ( );f  θ  that is expressed by a linear 

model; this model can be defined as  ( ) T; ,f b b = +w w  which features a two-

dimensional vector   ( 2d = ) defined by the two-axis variables 2 2  x ya a+ , a bias 

vector b , and a two-dimensional prediction output vector ta  ( 2m = ). The neural 

network also consists of a set of hidden layers that map the representation of the input 

vector as a new n-dimensional representation ( )k n= . These hidden layers in the 

 

Figure 12 Neural network structure diagram. The neural network inputs ax  and ay are 

accelerometer outputs of x and y axis respectively, the outputs cxa  and cya are the 

calibrated and corrected acceleration outputs. 
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network are vector-valued, and its dimensionality determines the width of the model; 

each node in the hidden layer is indexed by  1, ,k n  . The transformation of a linear 

weighting of   is represented by 
k

h  which is represented as a ReLU function as 

( )

1

ReLU

ReLU

d

k j kj kj

j

k k

h w b

w b





=

 
= + 

 

= +


 (16) 

where 
d

kw   is the weight on the first layer that produces the k-th node in the hidden 

layer and ReLU stands for rectifier linear unit; defined as ( ) ( )ReLU max 0,
k k

w w = . The 

use of ReLU as an activation function is due to its demonstrated capabilities for better 

training of neural networks. The hidden layer representation of the inputs in   on a 

higher dimensional vector is  1 2, , , kh h h h=  with ( )( )1

1 1 1ReLU
k

k k kh w b
−

− − −= + , and 

( )( )k

k k kh w b = +  for ( ) ( ) ( )1 2

1 2, ,
k

kw w w  . The idea is that each time that we 

transform the input   to h , the new representation h  will become the input for the next 

transformation until we reach the final hidden layer of the network; this process is called 

forward propagation, which means that the linear relationship between the inputs, 

weights, and its nonlinear activation is carried out forward through the end of the 

network. In the proposed neural network design ca  , meaning that linear regression 

should be used on the final hidden layer to learn weights d mw  such that 

( ) ( )f =xW xW  it can be approximated to the real acceleration vector 
t

a . The 

dimensions of the predicted output vector should be 
my . 

The logic behind this model is to compute the gradient of the network function 

at each hidden layer, been the output of the neural network expressed by 
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( )( ) ( )( )( ) ( )( )1

1 2 1

H H H

H Hf f f f 
−

− W W W   (17) 

where 
( ) ( ) ( )1 2 1 1
1 2

, , , H
Hk m k k d k −  

  W W W , and 1 2,, , Hf f f  denote the 

differentiable transfer function. Gradient descent (GD) is used for computing the 

gradient; it will find stationary points on the plane of the function. GD can find a global 

minima solution, but as we will see in Section 3.4, its efficiency is lacking when it is 

compared to different optimization methods. Our main objective with GD is to find an 

optimum point where the function converges and where the cost is minimum, leading 

to the error function defined as; 

( )( ) ( )( )( )( )1

1 1 :

1

Err = ,
m

H H H

H H k k

k

L f f f y −

−

=

W W W   (18) 

Once the error function is defined, and the forward-propagation is done, the 

procedure to update the weights learned in the first stage of the neural training is next. 

The first step is to forward and compute the variables h  and then ( )f  . The second 

step is to calculate the error between what the neural network predicted for the values 

of acceleration and the actual correct values; this can be done by using the mean square 

loss function. The error got from loss function is propagated back to the first 

transformation layer (1st hidden layer); this method is called back-propagation. Back-

propagation allows us to update the weights based on the error obtained from the first 

forward propagation in order to reduce the error and better fit our predictive model to 

our correct model. In a wide range of scenarios, loss functions become nonconvex 

because of the nonlinearity of the neural network. 
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3.3.1. The loss functions 

The mean squared error (MSE) which is the squared deviation of the prediction 

made by the neural network and the actual values of acceleration that varies through 

each sample, this loss function can be expressed as, 

( ) ( )( )
2

1

1 m
i i

i

J h x y
m


=

= −  (19) 

where m  is the number of samples, ( )ih x  is the i-th predicted value from the NN, and 

iy  is the i-th true acceleration value of the controlled environment labelled for each 

input x , in this case, the value for 
iy  should be the local gravitational acceleration at 

i-th value. It is known that MSE is more susceptible to outliners and some researches 

have advised not to use it for forecasting. Nevertheless, the proposed method uses MSE 

for approximating the accelerometer output. The requirement for using the MSE with 

the accelerometer dataset is to scale the data to values within the same range (58). In 

order to evaluate and decide the best loss model for our current calibration procedure, 

we are going to work with two different loss functions. The primary consideration for 

this neural network design is to choose a loss function that can prevent gradients from 

going to minimal values. Let the first be the mean square error function, and the second 

the half mean squared error function. The equation of the half mean square error 

(HMSE) can be written as, 

( ) ( )( )
2

1

1

2

m
i i

i

J h x y
m




=

= −  (20) 

this equation presents more stability when doing the partial derivatives with respect to 

each of the variables in the loss function. The objective to introduce it in this experiment 
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is to see how much can affect our gradient optimization when using methods such as 

Adam, which makes gradient descent faster. 

3.3.2. Optimization Algorithms Selection 

Gradient-based optimizers help to approximate the cost function to a low value. 

However, they present disadvantages, one of them being that it is challenging to find 

convergence on nonconvex loss functions in any parameter initialization if the function 

is too complex and there are no enough iterations. The later can lead gradient descent 

to stall at a local minimum. Another disadvantage of gradient descent is that it takes too 

much time to converge when we have large datasets; that is why, for this application, 

mini-batch gradient descent is implemented. With mini-batch gradient descent, we only 

loop over mini-batches of data instead of using the whole dataset. It is worth mentioning 

that mini-batch gradient descent will slightly oscillate in the direction of the optimal 

point (global minimum). Nevertheless, the main issue of optimization methods remains, 

which is its sensitivity to initial parameterization. That is why an optimum learning rate 

value should be considered to tune-up and optimize the NN. The gradient update over 

the weights and biases can be defined as 

( ) ( ) ( )

( ) ( ) ( )

h h h

h h h

d

b b db





= −

= −

W W W
  (21) 

where 1,  , h n=   is the hidden layer number,   is the learning rate, and 
( )h

dW  is the 

gradient of the parameter W  at the hidden layer h . It can be seen from previous 

equations that the weights are being updated by a rate of the gradients for each 

parameter that serves to smooth the learning process. 

Gradient descent with momentum is an optimization algorithm that takes the 

past gradients of the parameters W  and b  to smooth their updates by a new factor v . 
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The factor mentioned earlier is called velocity and will slow or increase the velocity of 

the gradient to converge to a global minimum. Gradient descent with momentum takes 

a new optimization parameter  ; its function is to give the gradient momentum by 

averaging past gradient points. The gradient updates can be expressed as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

1

1

h h

h h

h

h

h

h

b b

h h

h h

b

v v d

v v db

v

b b v

 

 





= + −

= + −

= −

= −

w W

W

W

W W
 (22) 

where 1,  , h n=   is the hidden layer number,   is the learning rate v  is the 

velocity and  0,1    is momentum. By using the preview optimization method, we 

can apply gradient descent and oscillate in a smoother way to the global minima. 

In order to validate the optimization of the proposed neural model, we need to 

compare it with one of the best optimization methods for training neural networks, 

Adam. This method relies on calculating an exponentially weighted average of the past 

gradients; in contrast with gradient descent with momentum that only takes the average. 

Then it takes the exponentially weighted average of the squares of past gradients and 

updates the parameters by dividing both results and multiply them by the learning rate, 

making the gradient to move faster in the direction of the global minimum and slower 

in the opposite direction; this prevents overshooting and random searching through the 

gradient. 
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The gradient update is defined as 

( ) ( ) ( ) ( )

( )

( )

( )

( ) ( ) ( ) ( )

( )

( )
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( ) ( ) ( )
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1 1

1
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
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





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

=
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−
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 (23) 

where ( )h
d

v
W

 is the biased first-moment estimate of the gradient W  at hidden layer h , 

( )ˆ
h

d
v

W
 is the bias-corrected first-moment estimate, ( )h

d
s

W
 is the biased second raw 

moment estimate, ( )ˆ
h

d
s

W
 is the bias-corrected second raw moment estimate and   is a 

small number that prevents dividing by zero (59). 

3.3.3. Training and Test Data Selection 

As stated before, s software is used to acquire data from the accelerometer at 

different positions selected by the user. For the design of this calibration procedure, a 

total of 25 positions from 0 to 90 degrees are taken; this will help to cover a broad range 

of angular positions. The total amount of data collected is of 65,000 data pairs, each 

pair corresponding to x  and y  output values from the accelerometer. In order to feed 

the data into our neural network model, the data are normalized to have a range between 

[0, 1]. The maximum acceleration value that the accelerometer should output is 

296.78427641  /m s , with that value been one in the normalized dataset. By doing this, 

we can learn and train the neural network using the ReLU and sigmoid activation 

functions that work from values in a range of [0, 1]. For the training set, 80% of the 
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dataset is taken, and 20% for the test set. The training and test datasets are further 

divided into mini-batches; these batches are equally randomly selected from each set. 

Each mini-batch contains 32 pairs of samples; this value of samples has proved to 

provide the best results during training at the cost of computational performance. In 

each iteration, the batches are populated, but each sample cannot appear twice in each 

batch. Results for both training and test sets are presented in Section 3.4. For validation 

purposes, a new dataset containing 2,100 pairs of samples different from the training 

and test set is used to confirm that the neural network offers the best model for unseen 

data.  

3.3.4.  Regularization Method  

When dealing with machine learning algorithms, a couple of concepts arise; 

generalization error, training error, and test error. These errors depend on the algorithm, 

their implementation, and the data used for training and testing the model. In order to 

reduce these errors is essential to restrict the machine learning model by using 

regularization techniques. These techniques are early stop, L1 regularization, L2 

regularization, and soft weight sharing. For deep neural networks, a common and 

compelling regularization technique is called dropout. This technique allows us to shut 

down some neurons in each iteration of the training process of the neural network. What 

is done is to evaluate a probability value in each neuron and set a threshold, each neuron 

below that threshold will be shutdown (set its value to zero). Those dropped neurons 

will not contribute to the training process, helping the network not to overfit the training 

set. This method is used in the forward and backpropagation. The intuition is that a new 

model is evaluated at each iteration because we are changing the number of neurons at 

each hidden layer for a specific iteration, this provides accertanty into the model by 
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combining different neural models and choose the best for the current calibration 

procedure (60). A representation of dropout can be seen in Figure 13. 

3.4. Deep Neural Network Results 

A series of experimentations are conducted to validate the proposed network design; 

this validation uses a data acquisition, and analysis method built into a software 

solution. This method, as stated before, is developed by LIMDA at the University of 

Alberta. The method allows us to test different sensors in order to acquire and analyze 

the data coming from each sensor. With this method, the motor speed that controls the 

accelerometer position and acceleration can be regulated, and a dataset containing the 

samples of the experimentation can be created on a CSV file. 

Several experiments are conducted; the first experiment takes a neural network 

of only one hidden layer with a constant number of epochs, a learning rate of 0.3 and 

0.1, and a loss function evaluation using MSE and HMSE. The second experiment takes 

a neural network of two hidden layers with the same number of epochs as in experiment 

number one; the learning rate is considered to be 0.3 and 0.1 and uses MSE and HMSE 

as loss functions. The third experiment only considers a value of 0.01 for the learning 

 

 

 Figure 13 Dropout representation, a probability p is set on the hidden layers. Each 

neuron at each layer bellow the probability threshold will be shut down. 
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rate and two hidden layers, using the same loss functions as in previous experiments. 

The fourth and last experiment takes four hidden layers and a learning rate of 0.3 and 

0.1, with the same loss functions as before. The number of neurons for all experiments 

varies from 5 to 300 neurons. The objective is to see how well the neural network 

performs, giving the current dataset, and see how well the parametrization of these 

experiments help the calibration procedure. The reason behind it is that the target of 

this calibration procedure is to be executed for low-cost implementations, giving the 

capability of broad applicability. 

3.4.1. Experimental Setup  

The four experiments are performed ten times each, in order to make sure that 

the results from the neural network are not merely a stochastic coincidence. A total of 

100 tests per setting are conducted; for the iterative method, 600 epochs are selected to 

make the gradient descent. As stated before, each setup will be evaluated with a 

different number of neurons from five to 300. General parameters for each experiment 

can be found in Table 2. The training time of the neural network with Adam 

optimization method is presented in Table 4 in the Appendix. The reason for choosing 

a small number of epochs and learning rates and a varying number of neurons is to 

provide a fast, but at the same time, a generalized design that can yield the best accuracy 

and low computation performance. Moreover, different optimization methods will be 

used to optimize the overall performance of the neural network, along with a study of 

the affectation of using MSE and HMSE as loss functions. The parameters for the 

optimization methods will remain constant throughout the evaluation process. 
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Table 2 Calibration experiment: Neural network parameters 

3.4.2. Experiment No.1: Discussion and Results  

The results for the loss function of experiment number one after 600 epochs are 

shown in Figures 14 – 17; these results are the average after running each setting ten 

times with each optimization method, the average results for all experiments can be 

seen in detail in Table 3 (only results from Adam are presented). It can be inferred from 

Figures 14 and 16 that with a large learning rate, the gradient will descent faster to find 

a solution, but at the same time, with more noisy steps that might affect finding the best 

optimal solution and could end up oscillating around the global minimum. It is also 

interesting to see that Adam optimization method, which is one of the most powerfull 

methods, is capable of finding better solutions than gradient descent and gradient 

descent with momentum only when the number neurons are between 5 to 100. After 

100 neurons, Adam ultimately failed in finding even a local minimum; this 

 

Parameter. 

Experiment No.1 

Parameter 

Experiment No.2 

Graph 

A 

 Graph 

B 

Graph 

C 

Graph 

D 

Graph 

A 

Graph 

B 

Graph 

C 

Graph 

D 

LR 0.3 0.3 0.1 0.1 LR 0.3 0.3 0.1 0.1 

HD 1 1 1 1 HD 2 2 2 2 

CF MSE HMSE MSE HMSE CF MSE HMSE MSE HMSE 

EP 600 600 600 600 EP 600 600 600 600 

  

Parameter. 
Experiment No.3 

Parameter 
Experiment No.4 

Graph A  Graph B Graph A Graph B Graph C Graph D 

LR 0.01 0.01 LR 0.3 0.3 0.1 0.1 

HD 2 2 HD 4 4 4 4 

CF MSE HMSE CF MSE HMSE MSE HMSE 

EP 600 600 EP 600 600 600 600 

*Values for Adam and Momentum remain constant throughout all the experiments

( )8

1 2
0.9, 0.9, 0.999, 1 10   

−

= = = =  a mini batch size of 32 remains unchanged for each experiment. 
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demonstrates that for high learning rates Adam does not perform well because of the 

fast speed in which is going down through the grading to find a solution. On the other 

hand, we can see that when using the HMSE cost function, we can gain performance 

out of Adam but still do not find the optimal solution. It is important to note that gradient 

descent and momentum are steadier than Adam, and they benefit from more neurons, 

but less performance is obtained from using HMSE. 
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Figure 14 Experiment No.1. Results using HMSE loss function and learning rate of 0.3. 
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Figure 16 Experiment No.1. Results using HMSE loss function and learning rate of 0.3 

Figure 15 Experiment No.1. Results using MSE loss function and learning rate of 0.1 
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From Figures 15 and 17, it is evident that using a lower learning rate of 0.1 

helps all optimization methods to get more stable and reliable predictions on the training 

data. It can also be seen that there is not much of a difference from using MSE and 

HMSE, but in general, it can be implied that HMSE gives more steady results than 

MSE. Even though the results show in Figure 17 are promising, none of the settings 

for this first experiment can get the right solution on the unseen data set. By using 

Equation 8, it is possible to evaluate the solution made by the neural network. The best 

solution for this first experiment on the unseen dataset can be seen in Figure 18 are 

having 200 neurons, an HMSE loss function, a learning rate of 0.1 and only one hidden 

layer yielded a good and reasonable solution, but training with these settings in a low-

cost microcontroller is too computationally expensive. 
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Figure 17 Experiment No.1. Results using HMSE loss function and learning rate of 0.1 
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3.4.3. Experiment No.2: Discussion and Results  

If we think about the design of a neural network, the logic will dictate that if we 

have more layers and neurons, the accuracy will increase, but sometimes logic is not 

what we are expecting. Prove of that logic are the results obtained by the neural network 

tested with two hidden layers. It can be seen from the results of experiment number two 

in Figures 19 and 20 that Adam optimization method fails in finding an optimal 

solution in the first five neurons setting, after increasing the neurons Adam only got 

worse but can be attributed to the large learning rate of 0.3. On the contrary, gradient 

descent and gradient with momentum managed to have a decaying learning process, 

which is expected. Gradient with momentum as an optimization process has shown the 

best behaviour of not overfitting the data; we can see that it has the best results on the 

unseen data but not on the training data which is useful if we look for a method that 

could help to generalized well. From Figures 21 and 22, we can see that Adam 

 

 Figure 18 Corrected acceleration after training the neural network with LR = 0.1, 

Epochs = 600, HD = 1 and 200 neurons. Y axis presents the square of gravitational 

acceleration, X axis are the number of samples. 
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optimization starts to behave as expected, finding a solution with a neural network of 

50 neurons. On the other hand, gradient descent and gradient with momentum 

performed worst with a small learning rate; that could be attributed to the fact that a 

significant learning rate along with a more complex network might work best for getting 

a better solution than a small, reliable, but expensive learning rate. The behaviour of 

gradient descent and gradient with momentum seems to be on decaying when 

increasing the number of neurons, but because the objective is to get the best and fast 

neural network design, further training will become infeasible computational speaking. 
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Epochs = 600, HD = 1 and 200 neurons. 

 

 

 

Figure 22 Experiment No.2. (A) Results using HMSE loss function, and learning rate 

0.1. Figure above shows the corrected acceleration after training. 
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From Figure 22, it can be seen that HMSE helped to stabilize Adam 

optimization method; with this method, it is possible to find a reasonable solution. 

Nevertheless, after the 50th neuron Adam started to overfit the data, the unseen data 

error started to increase, and the training error to decrease, which leads to overfitting 

—for gradient descent and gradient with momentum, using HMSE affected in the way 

of making it slower buy with a steady error decay. Figure 23 presents the overfitting 

behaviour found in experiment number two, were no optimization method found an 

optimal solution. 

3.4.4. Experiment No.3: Discussion and Results  

For this experiment, the learning rate is set to 0.01, which is our lower limit for 

avoiding having a heavily computational neural network design. Results for this 

experiment are found in Figure 24, where only two hidden layers, up to 100 neurons 

and either MSE or HMSE as cost functions, are considered. The trend so far is that 

neither gradient descent nor gradient with momentum needs a small learning rate to 

perform their best. From Figure 24 - (A) and - (B) it can be seen that momentum and 

gradient descent got almost the same solutions with not too much change,  as we said 

before, is because those methods are slower than Adam. Looking now at Adam, we can 

see that it greatly benefits from the lower learning rate of 0.01. From previous 

experiments, we see that using HSME help to stabilized Adam when reaching a high 

number of neurons but at the cost of decreasing performance. Gradient descent and 

gradient with momentum still do not get the right parametrization to perform as good 

as Adam, but as we can see from Equation 25, Adam is optimized to speed up the 

gradient. An interesting behaviour arises from Figure 24 - (A), were Adam showed a 

decrementing tendency on the unseen data error but and incrementing tendency on the 
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training error; this is consider underfitting. The best optimal solution is found by Adam 

using HMSE as the loss function. 
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Figure 24 Experiment No.3. (A) Results using MSE loss function, and learning rate 
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It is of primal importance to stand that there is no possibility of having a steady 

free-noise output on the accelerometer. The neural network is helping to reduce the 

variance and linearize the data, in order to calibrate the outputs of the accelerometer. 

3.4.5. Experiment No.4: Discussion and Results  

The main objective of this experiment is to see how much of a performance gain 

can be obtained by increasing the number of hidden layers to four. The learning rate is 

kept as in experiment number one, with values of 0.3 and 0.1, the number of neurons is 

constrained to 100. As in previous experiments, the purpose is to obtain a fast but 

generalized neural network that could yield the best solution for our calibration 

methodology; having more neurons and hidden layers could improve the neural 

network but might affect the computational complexity. The results of this experiment 

can be seen in Figures 25 and 26, the results are shown for Adam optimization are not 

presented because they failed and stalled in the gradient process. Gradient descent and 

gradient with momentum increased their performance significantly; they are able to 

reduce the performance metric to 0.01, which is not possible in previous experiments. 

The behaviour mentioned above helps us to understand how gradient descent and 

gradient with momentum are steadier than Adam optimization method but require a 

more complex neural network design to perform well. Even though GD and MTM 

performed way better than before, it is not possible to find an optimal solution. The 

results presented in Figures 27 and 28 shown how Adam fails on the way down through 

the gradient and how gradient with momentum is available to get a good reduction on 

the cost function but still did not found and minimum solution of the gradient. The 

experiment is stopped when reaching four layers and a learning rate of 0.1, the reason 

behind this is that selecting a more significant number of layers and learning rate will 
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significantly contribute to the training time. Because our primary goal is to be able to 

apply the current calibration method in systems with low computation capabilities, 

doing further analysis on smaller parameters will be meaningless. There is a way of 

optimizing the training of the neural network using GPU acceleration, but it is out of 

the scope of the presented calibration method. The solution with the parameters of 

Figure 27 of gradient descent and gradient with momentum can be seen in Figure 29, 

and a solution on the unseen data of Adam optimization is shown in Figure 30. 
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Figure 25 Experiment No.4. (A) Results using MSE loss function, and learning rate 

0.1. 
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Figure 27 Experiment No.4. (A) Results using MSE loss function, and learning rate 

0.3 
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Figure 28 Corrected acceleration after training the neural network with LR = 0.3, 

Epochs = 600, HD = 4 and 50 neurons trained by MSE.  

Figure 29 Corrected acceleration after training the neural network with LR = 0.1, 

Epochs = 600, HD = 4 and 50 neurons trained by HMSE. 
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3.4.6. Accelerometer Nonlinear Correction 

In Section 3.2, it is stated that the MEMSIC 2125M thermal accelerometer has 

a nonlinear behaviour from 50 to 90 degrees when using a single axis for measuring 

acceleration (Figure 10). That nonlinearity can lead to misreadings or can limit the 

usability of the sensor; that is why the experimentation done using neural networks can 

also help to correct that nonlinearity. Out of all the experiments conducted for the 

design of the best neural network for the calibration procedure, the best possible 

configuration that is able to get the smallest SRMSE can be seen in Figure 27. The best 

configuration for the proposed calibration method is having two hidden layers, a 

hundred neurons, a learning rate of 0.01, HMSE as the loss function and Adam 

optimization method. This configuration gave us the fasted and more reliable solution 

for the calibration method with a significant reduction of the SRMS error, achieving a 

lowing 0.01% from the original SRMS error found on the unseen dataset. One of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30 Corrected acceleration after training the neural network with LR = 0.1, 

Epochs = 600, HD = 4 and 50 neurons trained by HMSE. Y axis presents the square 

of gravitational acceleration, X axis are the number of samples. 
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advantages of using neural networks over traditional methods is that neural networks 

learn higher-order nonlinear representations of the inputs and outputs of the data, that 

helps to find significant characteristics from the data that help, like in this case, to 

reduce nonlinearities by learning the right set of weights and biases. 

Figure 31 shows the nonlinear correction at 90 arc angle (Figure 10) after using 

the optimal configuration for our calibration method, where we can see that the 

accelerometer output at 90 arc angle is around 4292.5  /m s  moreover, after the 

correction, it is about 2 496  /m s , which is the actual value at that angle position. The 

versatility of this network design is proven, and significant error correction from the 

inherent nonlinearities of the accelerometer design is corrected. Because of the method 

used for the current procedure can be pre-trained with different configurations, it is 

capable of making online corrections of the data and autocorrect it if new serves as a 

calibration method and can correct nonlinearities found inherent on the device. The 

only limitation found in this approach is that if the application explicitly requires 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Corrected acceleration after training the neural network with LR = 0.01, 

Epochs = 600, HD = 2 and 100 neurons trained by HMSE.  
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knowing the parameters of the error model for the accelerometer, it will not be able to 

provide them and that the training the neural network can be an extensive process. The 

next step in the current research is to evaluate the online capabilities for calibration and 

signal correction of the proposed calibration methodology. 

3.4.7. Neural Network-Based vs Error Model-Based Calibration Method 

The proposed calibration method based on a neural network shown excellent 

results for the nonlinear behaviour of the sensor. Nevertheless, to validated even further 

this approach, a comparison with an explicit error model is needed (i.e., model derived 

in Section 3.2). After solving the equation 15 and getting the parameters for the current 

accelerometer, we calibrated the accelerometer output at 90 degrees arc and compared 

it with the results found using the proposed neural network method with Adam 

optimization. The results can be seen in Figure 32; this result has shown how the 

proposed method overcomes the accelerometer error model method and is capable of 

achieving a better and more stable accelerometer output. This validates the proposed 

calibration method. 

 

Figure 32 Corrected acceleration after training the neural network with LR = 0.01, 

Epochs = 600, HD = 2 and 100 neurons trained by HMSE. 
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3.5. Static and Dynamic Results 

There exist a significant variation of accelerometers. Because of that, it is essential to 

validate the calibration method with different test devices. Previous results have shown 

significant improvements for the MEMSIC accelerometer. The same neural network 

architecture used for that accelerometer will be used for the GY251 and the MMA7371. 

It is considered a static and dynamic test for evaluating the new accelerometers. The 

results for the static analysis using the GY251 are presented in Figure 33. The GY251 

is a three-axis accelerometer, it can sense 1.5 to 3g depending on the configuration 

selected on the device. The experiment is carried out with a maximum of 1.5g capacity. 

It is firstly tested at static conditions by sensing the acceleration at 90 degrees angle 

with the y-axis being the most sensitive to the local gravitational acceleration. It can 

bee seen that the acceleration is very unstable, this is because the y-axis accelerometer 

does not present with the best output for measuring acceleration. It can be seen that 

after calibrating the output, the accelerometer data is able to be corrected in its entirety. 

Figure 33 Data before and after calibration for the GY251 accelerometer. 
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 The GY251 accelerometer present different sensitivities on each axis. This is 

because of its construction and design. The output at -90 to 90 degrees angle should be 

the same at each position within that range by summing up the square of the output of 

each axis with  𝑔
2 =  𝑥

2 +  𝑦
2 +  𝑧

2, but because of the nonlinearities found in the y-

axis, the output oscillates from 1.15 to 0.98 g. This behaviour should not be ideal and 

can be corrected using the calibration method. It can be seen from Figure 34 the 

nonlinear behaviour of the accelerometer. The accelerometer is moved at constant 

acceleration within the -90 to 90 degrees. It is clear from the figure that the acceleration 

fluctuates a lot. In theory, the result should show a constant acceleration of 1 g. This is 

because is moved at constant acceleration, and the three components of the 

accelerometer should be equal to the local gravitational acceleration. The output of the 

accelerometer is corrected after the calibration of the accelerometer. It still shows 

nonidealities in the output, but these are minimum comparing to the original data.  

Figure 34 Calibration of acceleration from -90 to 90 degrees using the GY251 

accelerometers. 
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The MEMSIC 2125 accelerometer presented a lot of variation at 30 degrees angle. 

Because this device has only two axes, it is very susceptible to changes in acceleration 

at different angles. The manufacturer suggests using the accelerometer only for sensing 

acceleration using the positive direction of rotation at the x-axis. In order to overcome 

this problem, the nonlinearities in the x-axis are corrected using the presented method. 

The test is done measuring the acceleration at 30 degrees using just the two-axis by 

applying Equation 8, the results are shown in Figure 35. The acceleration outputted by 

the sensor is around 0.498 to 0.485 g, resulting in a 20.128m s  variation and an 

overall error of 20.1575m s . Even though the error seems to be small, it is almost the 

same as the variation found in the measurements. After the calibration is done, the 

variation along with the error is reduced to 20.0014m s and 0.0016 respectively.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Calibration of acceleration at 30 degrees using the MEMSIC 2125 thermal 

accelerometer. 
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3.6. Conclusion 

In the proposed calibration methodology, different configurations of a neural 

network are conducted for correcting the data coming from a two-axis thermal 

accelerometer. A method developed by the Laboratory of Intelligent Manufacturing, 

Design, and Automation is used for data acquisition and analysis. Design and 

optimization of the neural network are conducted, and a comparison between 

configurations is presented. For validating the neural network model, ten tests are 

conducted for each of the experiments in different settings, having a total of 3600 tests. 

By analyzing the mean square, half mean square, and square root mean square error a 

selection of the best network model for the current calibration method is made. 

Concluding that a neural network with two hidden layers, a hundred neurons in each 

layer, a learning rate of 0.01, 100 epochs, and Adam optimization, is the best setting to 

train a fast and robust neural network. These settings are used to trained ten times the 

neural network to validate the configuration and make sure that the results were 

consistently gotten. The average SRMSE is 0.0071648700 g, with a standard deviation 

of 0.0014401521 g, which corresponds to 0.01% of the original error from the dataset. 

This neural network design allows us to achieve the lowest error when evaluating the 

unseen dataset and avoiding overfitting of the training set. It is also proven its 

robustness on correcting the nonlinearities found inherent in the accelerometer design, 

where the neural network is able to correct around 96% of the nonlinearity of the sensor 

and is even capable of getting better results when compared to an explicit accelerometer 

error model method. In chapter 4 is demonstrated how this method can be used for 

multi-sensor fusion, and how using a fusion architecture can help to improve the 

calibration method by correcting errors from multiple sensors within a sensor network. 
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Chapter 4  Multi-sensor Data Fusion Using a Deep Learning Architecture: 

Classification and Error Correction 

Sensor networks are used in many applications, the number of sensors that construct 

the network can be complex and lead to issues such as data imperfection, correlation 

and alignment. In this work, a data fusion approach is proposed to solve the issues 

mentioned early by implementing a deep learning approach, such as convolutional and 

deep neural networks. Data from a controlled environment is taken from five 

accelerometers, five barometric pressure sensors, and five temperature sensors. The 

data taken from the sensors is passed to a CNN and DNN to perform the multi-sensor 

fusion and calibration of the sensors. The CNN and DNN are trained using a supervised 

learning model, taking the actual values of barometric pressure, temperature, and 

acceleration for the calibration of the sensors using the DNN and taking a dataset with 

values from the fifteen sensors for training the CNN as a multi-class binary 

classification problem to fuse the data to have a better representation from each sensor 

model. Results for both classification and calibration are presented and as well as the 

design of the deep learning architectures for the given task. It is then concluded that the 

multi-sensor data fusion approach using a CNN and DNN architectures is successful by 

accomplishing 100% accuracy for classification of the data and a mean absolute error 

(MAE) less than 64 10 g−  when calibrating the output of the sensor. 

4.1. Introduction 

Low-cost sensors present considerable advantages in many applications, such as 

industrial processes for monitoring, commercial products, scientific research, among 

others. Using low-cost sensors helps in reducing the cost and operational complexity of 

many applications (61,62). Furthermore, devices like accelerometers, pressure sensors 
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and temperature sensors have been used in critical applications like health monitoring, 

degradation monitoring, and human activity recognition (8,63–66). There is immense 

importance of having reliable data from these low-cost sensors because they can be 

affected by errors either from their construction or by noise introduced from other 

sources. The errors from the sensors can multiply when constructing an extensive 

sensor network. Other issues from these sensor networks are the imperfection of data, 

diversity of sensor technologies, processing framework, and data misalignment (13).  

Researches have proposed different data fusion approaches for specific 

applications that address some of the issues found in multi-sensor fusion as explained 

below. Traditional methods used for sensor fusion include Kalman filters and Bayesian 

algorithms (67). The typical data fusion architecture is Joint Directors of Laboratories 

Fusion Subpanel (68). This architecture has four levels that modelled the data fusion 

architecture and its based on input/output data and not algorithm fusion. Nevertheless, 

its construction is focused on military applications, and its implementation might be not 

flexible enough for a given problem. There has been a considerable number of attempts 

to use sensor-fusion for signal analysis and fault diagnosis. The work presented in (69), 

proposes a multi-sensor data fusion using a support vector machine for motor fault 

detection. This method shows great results for the fault control system, but it is based 

on restricting the variables to be Gaussian, and it still requires expert knowledge for the 

design of the system parameters. A multi-source data fusion proposed in (70), this novel 

method uses deep learning fruit recognition for smart refrigerators. It is able to achieve 

a 0.97 accuracy on the deep learning model. Although the experimental configuration 

turned out to be complicated, the method presented the strength of using deep learning 

for data fusion. Some methods rely on other algorithms, like the work presented in (12). 

This method uses a multi-sensor approach using fuzzy clustering and predictive tools. 
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It is able to achieve excellent prediction performance that even outperformed the SVM 

classifier and neural network fitting model, but the training and parametrization of the 

proposed algorithm are complex and greatly depend upon the user expertise.  

A condition-based monitoring data fusion approach (31) is designed for the 

diagnosis of bearings using accelerometers and load cells. The features from one 

mechanical system might not be the same for others because each system has its 

characteristics. Feature extraction should be done adaptively. The novel approach uses 

PCA for the feature reduction module and KNN classifier for bearing condition by 

adopting the waterfall fusion model for the data fusion structure. This data fusion 

method presented a CBM; nevertheless, feature extraction is done manually from the 

data that is processed, and the intricate signal processing and fault diagnostic accuracy 

might not be stable. An out-of-the-box solution of multi-sensor fusion for daily body 

activity recognition is proposed in (71). This novel method uses an enabled ensemble 

approach from a wifeless body sensor network with a Fog computing environment 

using a decentralized architecture. In general, the approaches and methods found in the 

literature, present different solutions that use a combination of statistical methods, 

classification algorithms and machine learning to accomplish data fusion, proving the 

importance and novelty of those methods.  

The multi-sensor fusion model is constructed using sensor theory, classification 

and calibration method as the objective of sensor fusion,  and the deep learning 

architecture knowledge. The advantages of using deep learning have reached many 

fields such as vision systems, image identification, speech recognition, sentiment 

analysis, among others (7,60,66,72,73). One of the most influential characteristics of 

deep learnings is its ability for feature extraction, along with the reduction of human 

interference that translates to less uncertainty due to human error. Another 
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characteristic of deep learning is that is possible to create a complex mapping between 

multiple features from a sensor network that correlates specific states like fault 

conditions or simple state monitoring. All of the previous statements help as a 

motivation for using machine learning as a statistical tool for multi-sensor fusion. 

The specific objective of the multi-sensor fusion is to perform calibration of a 

sensor network that produces multiple outputs in a controlled system at a stable state. 

The data analysis done for calibrating the sensors within the network can improve even 

more by decreasing the amount of information that could be redundant and using the 

variability of outputs on different sensors for a given measurand, which is handed over 

to the central processing node. The main idea of developing this information fusion 

model is to solve calibration issues using data classification in multi-sensor 

environments. 

4.2. Data Fusion Framework 

The multi-sensor fusion framework for the present work consists of three main stages, 

data acquisition, control unit, and data classification and calibration. The first stage is 

fulfilled by using a network of sensors connected through Wi-Fi modules that will send 

the information of a measurand to a centralized processing unit. The connections of the 

sensors to the WiFi module are made using the I2C bus, and any pre-processing is done 

either within the sensor board or the processing unit built in the Wi-Fi module. Signal 

pre-processing or conditioning is not a primary concern for the proposed method, the 

outputs of the sensor are considered as current values of pressure, acceleration and 

temperature for the given controlled environment. In the second stage, all values from 

the fifteen sensors that compose the network are passed by a centralized unit. From the 

centralized unit, the data is passed to a PC with a user interface where the data is 
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analyzed, which corresponds to the third stage. In this stage, the classification of the 

measurements and their calibration is performed. The machine learning framework is 

shown in Figure 36. It can be seen from the figure that the unlabeled data 
1 2, ,..., nU U U  

from each sensor within the network is used as the input for the CNN. By using a 

supervised learning method, the unlabeled data is then labelled and fused to get a better 

representation of each measurement. The labelled data [ , , ]f f fP Acc T  representing 

measurements for pressure, acceleration and temperature serve as input for the DNN 

where calibration is performed, and calibrated measurements [ , , ]c c cP Acc T  are 

obtained. By acquiring the fused measurements for each sensor, the calibration of all 

the sensors can be done at once. 

4.3. Experiment Design, Data Acquisition and Control Unit 

The experimental setup consists of five different modules composed of a barometric 

pressure sensor, an accelerometer, a temperature sensor and a Wi-Fi module with an 

integrated 32-bits CPU. Each module is set in a controlled system where measurements 

of barometric pressure, acceleration and temperature are made. The measurements from 

each of the sensors are passed to the Wi-Fi module that then sends the information to 

an Arduino UNO connected to a desktop computer with a Graphical User Interface 

Figure 36 Machine learning framework for multi-sensor fusion. 

 



69 

 

 

(GUI) where a given user can store, plot and analyze the data. The pre-signal 

conditioning or pre-processing is not covered in the scope of this work. 

After the data is stored, the measurement batches for each module are inputted 

into a CNN as one-dimensional vectors. These vectors contain data that are not labelled 

from the multi-sensor network. The data mentioned above are then classified and 

separated into new vectors containing measurements from a single measurand. Those 

new vectors have enough information about each sensor that can be used for 

constructing a generalized model of the devices using the DNN. In order to accomplish 

the calibration of the sensors, it is necessary to create a model to represent the 

characteristics of each device. In the case of accelerometers, many methods use 

different error models and estimation algorithms to solve the nonlinearities within the 

accelerometer (22,27,51,52). The presented multi-sensor fusion method gives a new 

approach for calibrating sensor measurements based on data fusion and deep learning. 

The architecture used for sensor calibration is a Deep Neural Network (DNN) that has 

proved useful in solving complex nonlinear problems (74–76). 

The first step of the calibration will be to train the neural network with a batch of 

data taken from the classified dataset created by CNN. Once the training is done, a 

validation step is made using unseen data from another small dataset. A schematic of 

the system interconnection is shown in Figure 37. The schematic shows the sensor 

modules composed by a barometric pressure sensor, accelerometer, temperature sensor 

and Wi-Fi module as components for the sensor network. Each module is connected to 

the Arduino UNO which communicates with the computer where the calibration and 

classification are done.  
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All the sensor modules that compose the sensor network are exposed to the same 

conditions and, in theory, they should give the same output for each measurand.  Table 

3 presents a summary of the sensors used to construct the experimental setup and their 

measurement range of a specific measurand. The type of sensor and their model can be 

seen from the first column in the table. The columns numbered from 1 to 5 show the 

measurements range for each sensor. As we can see, even though the conditions in the 

environment are the same, the measurement range for each sensor is different.  

 

Sensor. 
Measurement Range for Sensor No. 

1 2 3 4 5 

Pressure 

(BMP280) 

94638.75 – 

94646.86 

94608.3 – 

94648.03 

94612.8 – 

94619.56 

94613.17 – 

94706.94 

94695.88 – 

94704.71 

Accelerometer 

(MPU-6050, 

MX2125, GY251) 

1.108333 – 

1.206562 

1.110667 – 

1.224481 

1.104987 – 

1.145775 

1.144856 – 

1.218494 

1.044795 – 

1.100243 

Temperature 

(DS18b20) 
22.4 – 22.63 

22.65 – 

23.42 

23.41 – 

23.46 

22.56 – 

23.47 

22.96 – 

23.06 

VALUES OF PRESSURE, ACCELERATION, AND TEMPERATURE ARE IN PA, G’S (LOCAL GRAVITATIONAL ACCELERATION 

BEING 1), AND CELSIUS RESPECTIVELY. 

 
Figure 37 Experimental setup schematic. 

Table 3 Range of output values of the multi-sensor network 
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4.4. CNN and DNN Background Theory 

The main difference between traditional machine learning and CNN is that the former 

uses automatic feature extraction and discriminative classifier in one model. CNN 

operates using a linear operation called convolution, which is a mathematical operation 

used instead of matrix multiplication in one or more hidden layers within a neural 

network. In general, the structure of a convolutional neural network is the construction 

of fully connected layers and a handful of convolutions, activation functions and 

pooling. Pooling is a mathematical operation that most convolutional network uses. 

When dealing with sensor data, it is essential to give more importance to recent 

measurements, so if we want to get an estimate of a series, it will be required to use a 

weighted average within the convolution function as: 

( ) ( ) ( )s t x a w t a da=  −   (24) 

where ( )x a  is the output of the sensors that serve as the input of the convolution, 

( )w t a−  is the weighted function called the kernel, t  is the current time, a  is the age 

of the sensor's measurement and ( )s t  is the feature map of the convolution. The 

convolution function can be also expressed as 

( ) ( )( )*s t u w t=   (25) 

The outputs of the sensors are discretized, giving data at regular intervals of 12 

samples per second. In that manner, the convolution function can be expressed as a 

discrete function: 

( ) ( )( ) ( ) ( )12 * 12
a

s t u w t u a w t a


=−

= = −   (26) 



72 

 

 

The learning algorithm chosen will adapt the input and kernel often by the 

learning algorithm as multidimensional arrays called tensors. In order to represent the 

infinite summation of the tensor into a finite summation over the samples obtained from 

the sensor network, it is necessary to consider not zero entries only where the points are 

stored. To represent the convolution equation in an n-dimensional representation 

without flipping the kernel, we write it as: 

( ) ( )( ) ( ) ( ), * , 12 ,  ,
m n

S i j I K i j U i m j n K m n= = + +   (27) 

The sparse connectivity of CNN makes this architecture ideal for problems 

where the inputs have a high-dimensional space improving statistical efficiency. That 

is one of the reasons why this architecture works well for time-series classification (77). 

The CNN architecture uses two hidden convolutional layers that are compounded of a 

convolutional function without flipping the kernel and a Maxpooling function, which 

modifies, even more, the output from the convolutional function. The last two layers of 

the CNN are two dense fully connected layers and an output layer with the sigmoid 

activation function. The idea of using two dense FCL is that after acquiring the 

meaningful information that characterizes each of the vector inputs, it will unfold the 

output from the Conv Layers to pass it to a non-sparse connectivity layer that will 

convert the higher-dimensional representation of the data to a lower dimension. That 

converted data then is passed to the output layer that uses a sigmoid function. Because 

the problem states a multi-classification problem, a categorical cross-entropy loss 

function is needed for evaluating the gradient when training the CNN.  In this case, a 

different approach is made by considering the problem as a binary classification. The 

output layer will be a vector  
T

0 1 2 3c c c c c= , where [0,1]jc = , represents the 

probability of the input bellowing to an unclassified class measurement (0), a pressure 
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measurement class (1), an acceleration measurement class (2), or a temperature 

measurement class (3). The reason behind using a sigmoid function at the output layer 

is that we want to model the probability of a class as a Bernoulli distribution, meaning 

that we want each probability of a class to be independent of the other classes as: 

1
( | )

1 exp( )
j i

j

P c u
z

=
+ −

.  (28) 

Deep neural networks work by modelling the interaction of the inputs and 

outputs using matrix multiplication with separate parameters. These parameters along 

with a combination of nonlinear activation functions will represent the input at a higher 

level. With the data converted to a higher n-dimensional representation and the 

combination of multiple hidden layers, it will be possible to learn specific features about 

the inputs that will allow correcting the data based on an actual value of a given 

measurement. This method does not intend to know an implicit formula that could give 

the error model of a given sensor. Instead, it learns from the data-fused measurements 

from the controlled environment and gives a global model that expresses the behaviour 

of each sensor based on the input data. Linear regression is used along with the DNN 

to get a linear estimation of the inputs. 

 The function that describes the DNN is given by ( );f   is expressed by a 

linear model defined as  

( ); , Tf w b w b= +   (29) 

where ( )5d =  is a five-dimensional vector corresponding to the classified sensor 

outputs of each measurand           
T

f xf yf zf fP Acc Acc Acc T =   , w  is the weighted vector 

and b  is a bias vector. The hidden layers that construct the deep of the network have a 
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nonlinear activation function. In this particular scenario, the Rectifier Liner Unit is the 

activation function because of its well-know application in improving neural networks 

(38,78,79).  The transformation of the linear function  is expressed by 
kh which is 

expressed by the ReLu function as: 

( )

1

ReLU

ReLU

d

k j kj kj

j

k k

h w b

w b

=

 
= + 

 

= +


 (30) 

In order to achieve convergence on the neural network, the gradient needs to be 

computed through the whole network and then updated based on the value of the loss 

function given a weight update 
kw . The error function to be minimized using the 

gradient algorithm can be expressed as: 

( )( ) ( )( )( )( )1

1 1 :

1

Err = ,
m

H H H

H H k k

k

U f f f y−

−

=

W W W   (31) 

The mean absolute error is chosen as the loss function for optimizing the gradient. 

The variation of the absolute difference between the input values and the predicted 

values defined the MAE as: 

 ( ) ( )( )
2

1

1

2

m
i i

i

J h u y
m =

= −   (32) 

Gradient-based optimizers are very useful in complex DNN because they help to 

optimize the learning rate for each of the weighted values at each stage within the 

network. The best optimizer found in the literature is Adam, which has been widely 

used in many machine learning applications. The update gradient algorithm is 

expressed in Equation 23 in Section 3. 
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The neural network structure is presented in Figure 38. The input layer consists 

of a vector with the fused sensor outputs T[ , , ]f f fP Acc T . The data is then transformed 

using the hidden layers 1 2 6( , ,..., )h h h  activated by the ReLU function. The number of 

neurons in each layer are 1 2 3 4 5 620, 30, 80, 50, 30, 20n n n n n n= = = = = = . The outputs 

from the network are the calibrated sensor measurements , ,c c cP Acc T  for each sensor. 

  

Figure 38 Deep Neural network. The neural network input fP
 is the data-fused 

pressure sensor outputs of barometric pressure, fAcc
 is the data fused accelerometer 

outputs of acceleration, fT
 is the data-fused temperature sensor outputs of 

temperature. The outputs cP
, cAcc

, and cT
 are the corrected values of barometric 

pressure, acceleration, and temperature respectively.  
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 The convolutional neural network structure is presented in Figure 39. This 

network consists of a 1D input vector 
1 5[ ,..., ]u u  with 12 features that correspond to the 

time steps of the data taken by the Wi-Fi module. Two convolutional layers are used, 

each of them with a convolution function and max pooling. After the convolutional 

layers are applied a set of two fully connected layers is used as a final stated for the data 

classification. These two layers use ReLU as the activation function and with the 

number of neurons being 
1 50n = and 

2 30n = respectively. After the last fully 

connected layer, a binary cross-entropy function is applied. The labels at the output 

layer are converted to binary numbers. The output values , ,f f fP Acc T  are the fused 

measurements for each measurand. 

 

  

 

 Figure 39 Conv and MaxP represent the convolution function and Maxpooling 

functions respectively. FCL stands for a fully connected layer, the output 𝑃𝑓,  𝐴𝑐𝑐𝑓, 

and  𝑇𝑓 are the datafused values for pressure, acceleration and temperature. 
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4.5. Experimental Results and Discussion 

The experiments for the data classification are conducted using an adaptive learning 

method described in Section 4.6. A number of 150 epochs over a dataset containing 

18,000 data samples from the multi-sensor network is used for training and validation 

of the CNN. An optimization algorithm is used for selecting when to stop the training 

based on a given parameter. This parameter is set to stop when reaching 100% of the 

validation accuracy. Because we are dealing with a low-cost data fusion and sensor 

calibration implementation, we want to have a low computational complexity when 

training the model in order to train for any new given sensor in the network. From 

Figure 4.5, it can be seen that the validation and training loss values are showing a good 

learning decay meaning that the CNN is working as expected for classifying the data. 

As stated before, an optimized learning algorithm as used to stop the training at the best 

moment. The training as stops at the 35th epoch when the validation accuracy is 100%, 

although the figure shows an accuracy of only 86% for the training data. This is a good 

behaviour of the deep learning architecture because is not overfitting over the training 

data. Once the data is classified, new vectors containing clustered data for each 

measurand are passed again to the GUI for its calibration. This method of using the 

CNN presents the fusion of the data from five sources of acceleration, pressure, and 

temperature measurements to only five vectors. The idea of applying this method to a 

sensor network is we want to reduce the variance of the measurements by training the 

machine network architectures with data from sensors that have different specifications, 

but that should give the same results for the given static scenario.  
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Figure 40 (A) Validation and training loss for the multi-class classification. It can be 

seen that the CNN model was constantly learning using the training dataset and the 

validation loss shown a decay behavior as expected from the CNN training. (B) Multi-

class classification accuracy of training and validation dataset, with three different 

classes. 
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The acceleration data are got using four distinct accelerometers with the same 

mechanical characteristics. As shown in Table 4, the measurements obtained by them 

present a lot of variance from one another. This variance should not be presented, 

because the environment where the system module is tested is static.  A small variation 

between the sensors is considered acceptable but, in this case, the variation is 

21.7627m s  which is considered significant depending on the application. The results 

of the experiment after applying the statistical learning method are shown in Figure 41, 

the accelerometer data is correctly calibrated and the variation of the measurements 

reduced to 20.098m s give a 95% improvement in the error of the accelerometers 

sensors. This calibration is applied jointly to all the accelerometers achieving stable and 

reliable measurements.  

 

 Figure 41 Corrected data from the DNN model for acceleration data from five 

different accelerometers. The x-axis shows the value of the gravitational acceleration 

and the y-axis show the sample number.  
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The results for the barometric sensor calibration are found in Figure 42. For the 

barometric pressure sensor, five identical sensors are used to acquire the pressure data. 

It might be seen that using the same sensor will add bias to the model but in fact, does 

not. The reason for this is because in the experiment it is found that despite each sensor 

is within the same environment, the variation of measurements is considerably large. It 

the case of the accelerometer it can be expected because each sensor is from a different 

manufacturer.  The variation is almost 100Pa and is off by 600Pa  the actual barometric 

pressure value. By using the deep neural network, it is possible to calibrate the sensor. 

Although the variance of the sensor remained close to 100Pa the off-set is significantly 

reduced 125Pa  from the actual measurement which represents a reduction of 80% of 

the error. The calibration of these sensors, as in the accelerometer case, is conducted 

jointly to the five pressure sensors.   

 

 Figure 42 Corrected data from the DNN model for pressure data coming from five 

different pressure sensors. The x-axis shows the value of the absolute pressure and the 

y-axis show the sample number. The corrected data is the output after inputting the 

sensor values dataset into the DNN.  
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The temperature sensors presented an odd behaviour when sensing the temperature of 

the room. The environment temperature is controlled but small changes are accepted 

because they might be flow currents that can flow at unforeseen intervals. Even though 

there are considerations made for temperature variations, the temperature sensing from 

the sensors variated almost three degrees Celsius at the same place at an exact time. 

The huge difference between measurements can be addressed to overheat in the sensor 

or current spikes on the connections that could lead to heating the board. Further 

consideration and analysis should be considered for the calibration of the temperature 

sensor. Nevertheless, despite the odd behaviour, the calibration of the sensors is done 

and the results are found in Figure 43. The results where perfect, correcting the ambient 

temperature in the controlled environment got from a reference calibrated temperature 

sensor; this result shows a perfect calibration because the sensor model is not 

complicated and is simple enough.  

 

 Figure 43 Corrected data from the DNN model for temperature data from five 

different temperature sensors. 
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Five new datasets containing un-seen data by the deep neural network is used to validate 

the calibration of the accelerometers. Each dataset contains a total of 500 samples at 0 

degrees angle. Base on the theory from the manufacturer and the accelerometers, the 

total acceleration should be 1.1 g, where each g represents the Edmonton, Canada local 

acceleration. The accelerometers used where three GY251 and one MMA7631 for 

validation. From Figure 44 it can be seen that the calibration is successful; the variation 

of the acceleration reduced from 0.1 g to 0.0075 g which represents a 98% error 

reduction from the original sensor output. One thing to remember is that there is still 

variation in the output because it is impossible to get an ideal acceleration output.  

 

 

 Figure 44 Corrected Data for acceleration data. The x-axis shows the value of 

temperature and the y-axis show the sample number. 
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4.6. Conclusion 

A multi-sensor fusion method using a machine learning architecture for data fusion, 

elimination of redundancy and calibration of the sensor errors is proposed. Its design is 

based on an IoT implementation using Wi-Fi modules with three different sensors each 

(temperature, pressure, and acceleration). The Wi-Fi modules are used for data 

acquisition and as a transmission node to a single centralized unit that serves as the data 

analysis and data storage node. A GUI is interfaced with the centralized unit to 

communicate with the different Wi-Fi modules to configure or send commands via the 

“ATC” protocol. Deep learning frameworks such as CNN and DNN are effectively 

used to perform data fusion and data calibration. The results showed the effectiveness 

of using CNN as a method for data fusion and DNN as a generalized model for 

calibration of multiple sensors by reducing the errors for temperature, pressure, and 

accelerometers sensors by 100%, 80% and 95% respectively. A learning optimization 

algorithm is used for selecting the best construction for a low-cost/complexity 

implementation. Further work should be done in expanding the capabilities and 

robustness of the method by using more sensors for different measurands and a dynamic 

environment. 
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Chapter 5  Conclusion 

6.1. General conclusion 

In the presented work,  low-cost sensors (pressure, accelerometer and temperature) are 

used to build a Reconfigurable Measurement System (RMS). This measurement system 

is capable of connecting different sensor modules using either Wi-Fi or serial port 

connections interchangeably. The versatility of the system allowed us to apply a fully 

integrated controlled method using a Graphical User Interface connected to the central 

controller unit (based on Arduino UNO). The reconfigurable measurement system is 

then used as a testbench for multi-sensor fusion and sensor calibration using a machine 

learning architecture along with the GUI, which is designed with a built-in python script 

for applying deep learning algorithms. A first calibration approach is made using a dual-

axis thermal accelerometer. The data acquisition is made using the central control unit 

and the GUI connected to the reconfigurable module by providing a controlled 

environment for acquiring a static dataset at different positions from 0 to 90 degrees.  

Once the dataset is acquired, a neural network optimization method is used for the 

calibration of the sensor using the dataset. The usefulness and novelty of the RMS are 

demonstrated by showing how it supported in constructing a new multi-sensor fusion 

method with a machine learning framework as a statistical tool for classification and 

sensor calibration. 

Furthermore, the data fusion method proposed using a CNN has shown some good 

results in the sensor fusion of the modules connected through the RMS by minimizing 

the redundancy of the measurements and allowing them to have a better data 

representation. The new classified data through the CNN is processed with the proposed 

DNN approach. This implementation step provided good results for a multi-sensory 
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environment for calibration. Instead of using a well-defined mathematical error model 

for each of the sensors and use an estimation algorithm like Kalman filters for solving 

the variables in the error model, the neural network learned a higher dimensional 

representation of the outputs. This representation helped to model the sensor network 

leading to the correct calibration of each sensor with an MAE less than 4e-06. Five 

more datasets containing acceleration measurements from three GY251, and one 

MMA7631 are calibrated using the deep learning model trained. Each of the sensors is 

giving a different output even though they are exposed to the same environment and 

conditions. After the calibration of the sensors, the output is corrected, and therefore 

the desired output can be obtained. The method does not force the acceleration output 

to correct the mechanical properties of each sensor, that is why there is still variation 

from one sensor to another, but the values from which they vary are reduced, giving a 

more reliable final output. This method can be used even with a more extensive sensor 

network, with a wider variety of pressure, accelerometer and temperature sensors. For 

integrating different devices in the network, and the training of CNN and DNN should 

be done using transfer learning as a tool for fast training. 

6.2. Research contributions 

The contributions of this research can be summarized as follows: 

• Design and optimization of a probabilistic framework based on deep neural 

networks for calibration of sensors and sensor networks using supervised 

learning. 

• Design a methodology for multi-sensor fusion using convolutional neural 

networks as a fusion tool and its integration with a deep neural network as 

a calibration procedure. 
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• Design sensor network with an Internet of Things implementation for 

sensor integration and data communications using multi-sensor fusion.  

6.3. Research limitations 

The current research presents the following limitations: 

• The data coming from the sensors is assumed as univariate samples of a given 

measurand.  

• Any pre-processing or signal condition analysis is considered to be done at each 

sensor level, meaning that the manufacturer of the low-cost sensor is already 

giving a solution for A/D or is done by the central control unit.  

• There is no dynamic analysis for the calibration of the sensors or the sensor 

fusion method. For achieving the data fusion, a controlled environment is given 

to acquire as much data as possible to construct the system model. 

6.4. Future research 

Even though the system is used in a real experiment scenario, the environment is ideal, 

meaning that it does not consider sudden changes in the environment found in dynamic 

scenarios. Further work should be done in improving the capabilities of the ReMSI 

system and the multi-sensor fusion method in order to be fully implemented in 

applications such as: 

• Industry 4.0: Application of plug-and-play Wi-Fi modules that can be placed in 

machinery or strategical location within a process for monitoring, data analysis 

and integration of different processes using multi-sensor fusion.  

• 3D printing: Implementation of sensor modules for monitoring pressure, 

temperature and vibration variations that could affect a printing process. 
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• Robotics: Implementation of the easy-to-use modular sensors in devices like 

robotic arms, autonomous robots and drones. These modules can give 

versability to the devices mentioned early. This will allow having a variety of 

sensors that could be connected and calibrated via serial port or Wi-Fi. 

Further research should be done in the deep learning framework to improve the 

proposed methodology. These improvements should address the limitations of the 

machine learning architecture. The future work in the machine learning architecture 

should be as follows: 

• Allowing more variation of measurands to achieve a more robust method to 

provide solutions to problems found in Industry 4.0 and robotics. 

• Using deep compression should be considered to improve the computational 

complexity in order to perform data analysis within a low-cost microcontroller.  

• Future improvements on the deep learning architecture should be made to 

include analog signal analysis for correcting voltage variations, current drops, 

or delay within a sensor network. 
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Appendix 

This section presents the training time results of the calibration method based on neural 

networks. The results presented here only show the training time for the Adam 

optimization method. 

Table 4 Time of training of calibration method using neural networks. LR stands for 

Learning Rate and HD for Hidden Layer. 

 

Neuron 

Number 

Time in Seconds 

LR of 0.3 

and 1 HD 

LR of 0.3 

and 2 HD 

LR of 0.1 

and 1 HD 

LR of 0.1 

and 2 HD 

LR of 0.01 

and 1 HD 

LR of 0.01 

and 2 HD 

5 176 199 149 183 190 220 

10 188 219 153 184 192 229 

15 168 209 152 196 200 235 

20 172 207 156 189 201 246 

25 178 215 155 196 200 248 

30 177 224 159 203 206 245 

40 184 228 167 206 206 242 

50 187 235 165 209 208 244 

100 192 233 162 211 217 265 

150 196 271 171 223 225 268 

200 189 280 177 255 232 320 

300 201 318 183 273 242 309 


