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Abstract

In this thesis, we prove the non-amenability of the Banach algebra B(E),

the Banach algebra of all operators on an infinite dimensional Banach space E,

where, for p ∈ [1,∞), E is an infinite dimensional Lp-space in the sense of Lin-

denstrauss and Pe�lczyński. In addition, we prove that SS(E), the Banach alge-

bra of all strictly singular operators on E, is not weakly amenable if E = C[0, 1]

or E = Lp[0, 1], where p ∈ [1,∞). Then we generalize this last result to all

infinite dimensional separable Lp-space E such that E �� �p,where p ∈ (1,∞).
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Chapter 1

Introduction and Preliminaries

The existence of a finitely additive set function which is invariant under a

certain group action was studied extensively in the days of Banach and Tarski.

It turns out that groups that possess a left invariant finitely additive measure

have nice properties and were called amenable by Mahlon M. Day in 1949. In a

totally different area of Mathematics, a certain type of cohomology, known as

Hochschild cohomology, was introduced in [Hoc45] by G. Hochschild in 1945

to study properties in abstract algebra, and was extended to the theory of

Banach algebras by H. Kamowitz in 1962, [Kam62].

In 1972, B. E. Johnson characterized amenable locally compact groups G

through the first cohomology group of the Banach algebra L1(G). In his mem-

oir, Johnson proved that a locally compact group G is amenable if, and only if,

the Banach algebra L1(G) has a trivial first cohomology group H1(L1(G), X∗).

Since then, the Banach algebras that satisfy the the last property, having triv-

ial first cohomology groups with coefficients in dual Banach bimodules, are

to be amenable . Due to Johnson’s work, the notion of amenability has been

transferred from groups to Banach algebras, and the theory of amenable Ba-
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Preliminaries

nach algebras has been developed ever since.

Over the years, several generalizations of amenability have been introduced

by numerous authors, among those is the concept of weak amenability. Weak

amenability of Banach algebras was first introduced for commutative Banach

algebras by W. Bade, P. C. Curtis and H. Dales in [BCD87], and was then

generalized by B. E. Johnson to general Banach algebras [Joh87]. A Banach

algebra A is weakly amenable if the first cohomology groupH1(A,A∗) is trivial.

Clearly, every amenable Banach algebra is weakly amenable.

Characterizing the amenable members of a certain class of Banach algebras

is interesting under many aspects. For instance, a C∗ algebra A is always

weakly amenable but A is amenable if, and only if, A is nuclear, [Con78] and

[Haa83]. The group algebra L1(G) is always weakly amenable but is amenable

if, and only if, the group G is amenable, [Joh72] and [Joh87]. Another Banach

algebra that so many researchers were interested in is the Banach algebra of all

approximable operators on a Banach spaceX, A(X), which is the norm closure

of the linear space of all finite rank operators on X. Under some conditions,

A(X) is nothing but K(X), the Banach algebra of all compact operators on

X. Extensive research has been done to characterize the weak amenability

and the amenability of the Banach algebra A(X) in terms of properties of the

underlying Banach space X. On the other hand, less work has been done to

investigate the weak amenability and the amenability of the Banach algebra

B(X) of all operators on a Banach space X, and, to the author’s knowledge,

no work has been done so far to investigate that of the Banach algebra SS(X)

of all strictly singular operators on X.

Investigating the amenability of the Banach algebra B(X) for an infinite

dimensional Banach space X was first motivated by the following questions

that were raised by B. E. Johnson in [Joh72]:
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Preliminaries

Question 1. Does there exist an infinite dimensional Banach space X such

that B(X) is amenable?

Question 2. Does there exist a Hilbert space H such that B(H) is amenable?

Since for any Hilbert space H, the Banach algebra B(H) is a von Neumann

algebra, i.e., a C∗-algebra such that B(H) = Y ∗ for some Banach space Y , the

amenability of B(H) was fully characterized due to a result by S. Wassermann

in [Was76] and the equivalence between nuclearity and amenability for C∗-

algebras, [Con78] and [Haa83]. Combining these results, it has been shown

that B(H) is amenable if, and only if, dimH < ∞, so in particular B(�2) is

not amenable. One expects that such a condition still holds in the Banach

space case. Surprisingly, an infinite dimensional Banach space EAH such that

B(EAH) is amenable exists due to S. Argyros and R. Haydon in [AH11].

For several years, it has not been known whether B(�p) is amenable for any

p �= 2, till 2004 when C. Read proved the non-amenability of B(�1). Read’s

proof was simplified by Pisier in [Pis04] and eventually was simplified even

more by N. Ozawa in [Oza04]. In [Oza04], N. Ozawa managed to provide a

proof that simultaneously establishes the non-amenability of several Banach

algebras, including B(�1) and B(�∞). Another contribution in this direction

was made by M. Daws and V. Runde in [DR07]. Their approach was to

investigate the consequences of the hypothetical amenability of the Banach

algebra B(�p), and they proved, among other results, that the amenability

of the Banach algebra B(�p) forces the Banach algebra �∞(K(�2 ⊕ �p)) to be

amenable. This last implication was the start of Runde’s work in 2010, where

V. Runde provided a proof that establishes the non-amenability of the Banach

algebra �∞(K(�2 ⊕ �p)), and hence that of the Banach algebra B(�p). In fact,

Runde’s result states that for any p ∈ (1,∞), the Banach algebra B(E) is not

amenable if E � �p(E) and E is an Lp-space in the sense of Lindenstrauss and
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Preliminaries

Pe�lczyński.

The purpose of this thesis is to generalize this last result by V. Runde. We

first prove the non amenability of B(E) if E is an infinite dimensional L1-space

such that E � �1(E) or if E is an infinite dimensional L∞-space such that

E � c0(E). Then, we prove that the Banach algebra B(E) is not amenable for

any infinite dimensional Lp-space E such that E �� �p(E), p ∈ [1,∞). Finally,

we prove that for a special class of Banach spaces, the Banach algebra SS(X)

is not weakly amenable, and hence not amenable. In particular, if p ∈ [1,∞)

the Banach algebras SS(Lp[0, 1]), and SS(C[0, 1]) are not amenable.

In Chapter One, we introduce some basic definitions and standard results

that have been used throughout this thesis. As a general guide, the results

we quote in Section One can be found in [FHH+10], [Rya13] and [Dal00].

Material of Section Two and that of Section Four can be found in [Run02],

whereas most of the results we quote in Section Three can be found in [LP68]

and [LR69]. In Chapter Two, we generalize Runde’s result and prove the non-

amenability of the Banach algebra B(E) for any infinite dimensional Lp-space

E (p ∈ [1,∞)). Chapter Three is dedicated to discussing the weak amenability

of the Banach algebra SS(E) for an infinite dimensional separable Lp-space E,

and we conclude this thesis with some remarks and open problems in Chapter

Four.

1.1 Banach Space Theory

Let X and Y be Banach spaces. By an operator T : X −→ Y we mean

a bounded linear map from X into Y , and the Banach space of all opera-

tors from X into Y will be denoted by B(X, Y ), and If X = Y , then we write

B(X). By IX ∈ B(X) we mean the identity operator on X and by a projection
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P ∈ B(X) we mean an operator P : X −→ X such that P (P (x)) = P (x) for

each x ∈ X, i.e., P 2 = P . If Z is a closed subspace of X, we will write Z ⊆ X.

All subspaces will be be assumed to be closed unless otherwise stated. A sub-

space Z ⊆ X is said to be complemented, and will be denoted by Z
c
↪→ X, if

there exists a projection P ∈ B(X) such that P (X) = Z. The dual space of X

is denoted by X∗, and the canonical pairing of X and X∗ is denoted by 〈., .〉.
Two Banach spaces X and Y are said to be isomorphic, in symbols X � Y ,

if there exists an isomorphism operator T ∈ B(X, Y ), that is, a bijection op-

erator T . If X � Y , then the Banach-Mazur distance between X and Y is

defined by d(X, Y ) := inf{‖T‖‖T−1‖ ;T is an isomorphism}.
An operator T ∈ B(X, Y ) is called compact if T (B1(X)) is relatively compact

in Y , where B1(X) is the unit ball ofX, and T is called strictly singular if there

is no infinite dimensional subspace Z ⊆ X such that T|Z is an isomorphism

into Y . The closed subspace of all compact operators from X into Y , respec-

tively all strictly singular operators from X into Y , is denoted by K(X, Y ),

respectively SS(X, Y ). If X = Y , then we write K(X) and SS(X).

Let (Xi)i∈Λ be a family of Banach spaces. We write Πi∈ΛXi for its Cartesian

product. For p ∈ [1,∞), we set

�p-
⊕
i∈Λ

Xi :=

{
(xi) ∈ Πi∈ΛXn ;

∑
i∈Λ

‖xi‖p < ∞
}
,

it is a normed space that becomes a Banach space if equipped with the norm

‖x‖p =
( ∞∑

i=1

‖xi‖p
)1/p

, x = (xi) ∈ �p-
⊕
i∈Λ

Xi.
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Furthermore, we define

�∞-
⊕
i∈Λ

Xi :=

{
(xi) ∈ Πi∈ΛXi ; sup

i∈Λ
‖xi‖ < ∞

}
,

which is, also, a Banach space under the norm

‖x‖∞ = sup
i∈Λ

‖xi‖, x = (xi) ∈ �∞-
⊕
i∈Λ

Xi.

By c0-
⊕

i∈Λ Xi we mean the closure of those (xi) ∈ �∞-
⊕

i∈Λ Xi for which

xi = 0 for all but finitely many i ∈ Λ. If Xi = X for all i ∈ Λ, then

we write �p(Λ, X), �∞(Λ, X) and c0(Λ, X) for �p-
⊕

i∈Λ Xi, �
∞-
⊕

i∈Λ Xi and

c0-
⊕

i∈Λ Xi, respectively, and if Λ = N and Xi = X for all i ∈ N, then we write

�p(X), �∞(X) and c0(X) for �p(N, X), �∞(N, X) and c0(N, X), respectively. If

X = C, then �p(X) = �p for all p ∈ [1,∞], and c0(X) = c0. A well-known

fact in functional analysis is that �p(�p) � �p(N2,C) � �p(C) = �p for all

p ∈ [1,∞], similarly c0(c0) � c0(N
2,C) � c0(C) = c0. For p ∈ [1,∞], let q be

the conjugate of p, i.e.,
1

p
+

1

q
= 1. We denote by (δn) (respectively, (δ

∗
n)) the

standard basis of �p or c0 (respectively, �q).

Let X and Y be Banach spaces. For x ∈ X and y ∈ Y , consider the

operator T : X∗ −→ Y defined by: T (f) = 〈f, x〉y, for all f ∈ X∗. Then

T ∈ B(X∗, Y ) with ‖T‖ = ‖x‖‖y‖. We write x⊗ y for T .

Let X ⊗ Y = span{x⊗ y : x ∈ X, y ∈ Y }. Then X ⊗ Y is a linear subspace of

B(X∗, Y ). One can define many norms on X ⊗ Y , however, we are interested

in the following two norms:

6



Preliminaries

1. The injective norm: For u =
n∑

i=1

xi ⊗ yi ∈ X ⊗ Y , define

‖u‖ε = sup
‖f‖=1

∥∥∥∥∥
n∑

i=1

〈f, xi〉yi
∥∥∥∥∥

Y

, f ∈ X∗.

Then ‖u‖ε is just the operator norm of u : X∗ −→ Y . The normed space

(X ⊗Y, ‖.‖ε) need not be complete. By X ⊗ε Y we mean the completion

of the normed space (X ⊗ Y, ‖.‖ε), and we call it the injective tensor

product of X and Y .

2. The projective norm: For u =
n∑

i=1

xi ⊗ yi ∈ X ⊗ Y , define

‖u‖π = inf
n∑

i=1

‖xi‖‖yi‖,

where the infimum is taken over all representations of u in X⊗Y . Then

(X ⊗ Y, ‖.‖π) is a normed space that need not be complete. Let X ⊗π Y

denote the completion of (X ⊗ Y, ‖.‖π). Then X ⊗π Y is called the

projective tensor product of X and Y .

For further information about norms on tensor product of Banach spaces we

refer the reader to [Rya13].

Definition 1.1. [Dal00] A Banach algebra A is a Banach space with an as-

sociative and distributive multiplication such that for all a, b ∈ A and for all

λ ∈ C λ(ab) = (λa)b = a(λb) and such that ‖ab‖ � ‖a‖‖b‖.
An involution on a Banach algebra A is a continuous map a → a∗ from A into

A such that for all a, b ∈ A and all λ ∈ C

• (a+ b)∗ = a∗ + b∗.

7



Preliminaries

• (λa)∗ = λa∗.

• a∗∗ = a.

• (ab)∗ = b∗a∗.

If in addition, ‖a∗a‖ = ‖a‖2 for all a ∈ A, then A is called a C∗−algebra.

Let A be a Banach algebra and let J ⊂ A be a closed subspace. If for all

a ∈ A and for all x ∈ J : ax ∈ J and xa ∈ J , then J is called an ideal. A

Banach algebra A is called unital if there exists an element 1 ∈ A such that

a1 = 1a = a for all a ∈ A. The element 1 is called a unit. If A is not unital,

then we define the unitization of A, A� = A × C. Under the multiplication

(a, λ).(b, γ) = (ab + λb + γa, λγ), A� becomes a unital Banach algebra with

unit 1 = (0, 1) that contains A as a closed ideal.

By a left (right) bounded approximate identity in A we mean a bounded

net (eα) such that lim
α

eαa = a (lim
α

aeα = a) for each a ∈ A. A bounded

approximate identity for A (BAI) is a bounded net (eα) which is both left

and a right bounded approximate identity. By a homomorphism φ between

two Banach algebra A and B we mean an operator ϕ : A −→ B such that

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A.

Example 1.1. Let X be a Banach space. Then B(X) is a unital Banach alge-

bra. Both K(X) and SS(X) are closed ideals in B(X), and K(X) ⊆ SS(X).

We should point out here that a Banach space isomorphism ψ ∈ B(X, Y )

between two Banach spacesX and Y induces a Banach algebra homomorphism

φ from the Banach algebra B(X) onto the Banach algebra B(Y ) defined as

follows: φ(T ) = ψTψ−1.

Some important results regarding the ideals K(X) and SS(X) for the classical

sequence spaces are the following:
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Theorem 1.2 (Pitt’s Theorem). [FHH+10, Proposition 4.49] Let 1 ≤ p < r < ∞
and let X = �r or c0. Then every operator T : X −→ �p is compact.

On the other hand, we have the following:

Theorem 1.3. [AK06, Theorem 2.1.9] Let 1 ≤ p �= r < ∞, then every

operator T : �p −→ �r is strictly singular.

Example 1.2. Let A be a Banach algebra. Then c0(A) and �
p(A), for p ∈ [1,∞],

are also Banach algebras under point-wise multiplication.

Theorem 1.4. [FGM67] Let p ∈ [1,∞) and X = �p or c0. Then K(X) is the

only non-trivial proper ideal in B(X).

For two Banach algebras A and B, the A⊗π B is always a Banach algebra

under the point-wise multiplication; i.e.,

(a⊗ b)(c⊗ d) = ac⊗ bd (a, c ∈ A, b, d ∈ B).

Definition 1.5. [Run02, Section 2.2] If A is a Banach algebra, then the cor-

responding diagonal operator Δ : A⊗π A −→ A is defined through

Δ(a⊗ b) = ab.

The following result is a well-known fact in operator theory, the proof of

which can be obtained from [Dal00, Corollary 2.9.15].

Theorem 1.6. Let A be a Banach algebra with a bounded approximate iden-

tity. Then �∞(A) also has a bounded approximate identity.

9
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1.2 Amenable Banach Algebras

In this section, we will present different, but equivalent, definitions of amenable

Banach algebras that are being used in this thesis, together with some main

properties and examples.

Definition 1.7. [Run02, Definition 2.1.1] Let A be a Banach algebra and

X be Banach space. Then X is called a Banach left A-module if a mapping

(a, x) �→ a.x from A×X intoX is bilinear and satisfies the following conditions:

1. for all a, b ∈ A, and for all x ∈ X : a.(b.x) = (ab).x.

2. there exists a positive constant C such that

‖a.x‖ ≤ C‖a‖‖x‖, (a ∈ A, x ∈ X).

If a mapping (a, x) �→ x.a is bilinear and satisfies the conditions:

1. for all a, b ∈ A, ∀x ∈ X : (x.a).b = x.(ab).

2. there exists a positive constant C such that

‖x.a‖ ≤ C‖a‖‖x‖, (a ∈ A, x ∈ X),

then X is called a Banach right A-module. X is called a Banach A-bimodule

if it is both a left A-module and a right A-module. such that

a.(x.b) = (a.x).b (a, b ∈ A, x ∈ X).

Let A be a Banach algebra and X and Y be Banach A-bimodules. A

homomorphism ϕ : X −→ Y is said to be a bimodule homomorphism if ϕ

10
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preserves the module multiplication, i.e.,

ϕ(a.x.b) = a.ϕ(x).b (a, b ∈ A, x ∈ X).

For any Banach algebra A, A⊗π A is a Banach A−bimodule through

a.(b⊗ c) = ab⊗ c and (b⊗ c).a = b⊗ ca (a, b, c ∈ A).

With respect to this module structure and the point-wise multiplication on

A⊗π A, the diagonal operator Δ is a bimodule homomorphism.

Definition 1.8. [Run02, Section 2.1] Let A be a Banach algebra and X be a

Banach A-bimodule. A bounded linear map D : A → X is called a derivation

if for all a, b ∈ A :

D(ab) = a.D(b) +D(a).b

If in addition, there exists x ∈ X such that for all a ∈ A:

D(a) = a.x− x.a,

then D is called an inner derivation.

Let Z1(A, X) ⊆ B(A, X) denote the closed subspace of all derivations from

A into X, and B1(A, X) denote the space of all inner derivations in Z1(A, X).

Then B1(A, X) is a subspace of Z1(A, X) that need not to be closed.

Definition 1.9. [Run02, Section 2.1] Let A be a Banach algebra and X be a

Banach A-bimodule. Then

H1(A, X) = Z1(A, X)/B1(A, X)

11
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is called the first Hochschild cohomology group of A with coefficients in X

It turns out that the module action of A on X is preserved by duality, and

hence we get:

Theorem 1.10. [Run02, Exercise 2.1.1] Let A be a Banach algebra and X be

a Banach A-bimodule. Then X∗ becomes a Banach A-bimodule through

〈x, φ.a〉 = 〈a.x, φ〉 and 〈x, a.φ〉 = 〈x.a, φ〉,

where a ∈ A, x ∈ X, and φ ∈ X∗. In this case, X∗ is called a dual Banach

bimodule.

Now we are ready to define the amenability and the weak amenability of

Banach algebras as defined by B. E. Johnson in [Joh72] and [Joh87].

Definition 1.11. [Run02, Definition 2.1.9 and Definition 4.2.1] A Banach

algebra A is called amenable if H1(A, X∗) = 0 for every dual Banach A-

bimodule X∗. If H1(A,A∗) = 0, then A is called weakly amenable.

Example 1.3. 1. Let G be an amenable locally compact group. Then the

Banach algebra L1(G) is amenable.

2. Every C∗-algebra is weakly amenable, but a C∗-algebra is amenable if,

and only if, it is nuclear.

3. C is an amenable Banach algebra with the usual product and norm.

4. Let Mn(A) denote the algebra of all n×n matrices with entries from the

Banach algebra A. Then Mn = Mn(C) is amenable. Moreover, if A is

amenable, then so is Mn(A).

12
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A question naturally arises: from the amenability of a Banach algebra, can

we determine whether another Banach algebra is amenable or not? Thankfully

in some cases, the answer is, yes we can.

Theorem 1.12. [Run02, Proposition 2.3.1] Let A and B be Banach algebras,

and let ϕ : A −→ B be a continuous homomorphism with a dense range in B.

If A is amenable, then so is B. In particular, if J ⊆ A is a closed ideal and

A is amenable, then A/J is amenable.

An immediate consequence of Theorem 1.12 is the fact that amenability

of Banach algebras is preserved by Banach algebras isomorphisms. Unfortu-

nately, the amenability of a Banach algebra A is not inherited by arbitrary

closed ideals in A. On the other hand, we have the following:

Theorem 1.13. [Run02, Theorem 2.3.7] Let A be an amenable Banach alge-

bra, and J be a closed ideal of A. The the following are equivalent:

(i) J is amenable.

(ii) J has a bounded approximate identity.

(iii) J is weakly complemented.

Theorem 1.14. [Run02, Theorem 2.3.10] Let A be an amenable Banach al-

gebra, and J be a closed ideal of A such that both J and A/J are amenable.

Then A is amenable.

Corollary 1.15. [Run02, Corollary 2.3.11] A Banach algebra A is amenable

if, and only if, its unitization A� is amenable.

Remark 1.16. The hereditary properties of weak amenability are not as nice as

those for amenability. For example, while the amenability of A� forces A to be
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amenable, this is not the case for weak amenability as shown by B. E. Johnson

and M. White in [JW] in which the authors proved that the augmentation

ideal J of the Banach algebra L1(SL(2,R)) is not weakly amenable but its

unitization J � is weakly amenable. Where for a locally compact group G with

a Haar measure h, the augmentation ideal J of the Banach algebra L1(G) is

defined as follows:

J = {f ∈ L1(G) :

∫
G

f dh = 0}.

We now turn our attention to an equivalent characterization for the amenabil-

ity of Banach algebras.

Theorem 1.17. [Oza04, Definition 1.2] Let A be a unital Banach algebra.

Then A is amenable if there exists a constant C > 0 such that: for any finite

set F ⊂ A and ε > 0, there exists T =
r∑

k=1

ak ⊗ bk ∈ A⊗ A such that

(i) Δ(T ) = 1.

(ii) ‖x.T − T.x‖π ≤ ε for all x ∈ F.

(iii) ‖T‖π ≤ C.

The following Theorem is an elementary fact, we will use the version from

[HR13].

Theorem 1.18 (Cohen’s Factorization Theorem). Let A be a Banach algebra

with norm ‖.‖ having a bounded left approximate identity [bounded by d]. If X

is a Banach left A-module with norm |||.|||, then A.X = {a.y : a ∈ A, y ∈ X}
is a closed subspace of X. More precisely, let z be an element in the closed

linear span S of A.X, and suppose that δ > 0. Then there exists an element

a ∈ A and an element y ∈ X such that

14
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(i) z = a.y.

(ii) ‖a‖ ≤ d.

(iii) |||y − z||| ≤ δ.

One implication of Theorem 1.18 is that for a Banach algebra with a

bounded left approximate identity, A2 = linear span{ab : a, b ∈ A} is dense in

A, [HR13, Corollary 32.26]. In fact, a stronger statement is also true:

Theorem 1.19. [Run02, Exercise 4.2.1(i)] If A is weakly amenable, then A2

is dense in A.

One last property of amenable Banach algebras is the following:

Proposition 1.20. [Run10a, Lemma 1.2] Let A be a unital amenable Ba-

nach algebra. Then for any ε > 0 and any finite set F ⊂ A, there are

a1, b1, ..., ar, br ∈ A such that the following holds:

r∑
k=1

akbk = 1 (1.1)

∥∥∥∥∥
r∑

k=1

xak ⊗ bk − ak ⊗ bkx

∥∥∥∥∥
A⊗πA

< ε (x ∈ F ). (1.2)

1.3 Lp-Spaces

In [LP68], J. Lindenstrauss and A. Pe�lczyński introduced a new class of Banach

spaces known as the Lp- spaces. These are spaces which locally look like the

�p-spaces. In this section we recall the definition of these spaces from [LP68]

and list some of their properties.

Definition 1.21. [LP68, Definition 3.1] Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞.

A Banach space E is said to be a Lp
λ-space if for every finite dimensional

15
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subspace Y ⊆ E, there are n ∈ N and an n-dimensional subspace Z ⊆ E such

that Y ⊆ Z and d(Z, �pn) ≤ λ, where d is the Banach-Mazur distance.

A Banach space E is said to be an Lp-space if it is an Lp
λ-space for some

λ < ∞.

Example 1.4. [LP68]

• Let p ∈ [1,∞]. Then Lp(μ)-spaces, i.e., spaces of p-integrable functions

on some measure space, �p are Lp-spaces.

• If p ∈ (1,∞), then �2 ⊕ �p and �p(�2) are mutually non-isomorphic Lp-

spaces.

• Let K be a compact Hausdorff space. The Banach space C(K) (the space

of continuous functions on K) and c0 are L∞-spaces.

• The class of L2-spaces coincides with the class of spaces isomorphic to

Hilbert spaces.

In 1972, H. Rosenthal proved the existence of other Lp-spaces. Rosenthal’s

result in [Ros70] led to the construction of infinitely many non-isomorphic

separable infinite dimensional examples in [Sch75], and eventually to the con-

struction of uncountable many isomorphically distinct separable infinite di-

mensional Lp-spaces in [BRS81].

Some properties of the Lp-spaces are:

Proposition 1.22. [LR69, Theorem III] Let E be a Banach space and p ∈ [1,∞].

Then

(i) E is a Lp-space if, and only if, its dual E∗ is a Lq-space; where q is the

conjugate of p.

16
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(ii) If E is a Lp-space, then any complemented subspace M ⊆ E which is

not isomorphic to a Hilbert space is a Lp-space. If p = 1 or ∞, then M

cannot be isomorphic to an infinite dimensional Hilbert space.

(iii) If E is a Lp-space, then E has the bounded approximation property.

The main properties of Lp-spaces that turn out to be useful in our study

of the amenability of the Banach algebras B(E) and SS(E) are the following:

Theorem 1.23. [LR69, Theorem 1.1] Let p ∈ [1,∞] and E be an Lp-space.

Then E is isomorphic to a subspace of Lp(μ) for some measure μ. Moreover,

if p ∈ (1,∞), then E is isomorphic to a complemented subspace of Lp(μ), and

if E is separable, then E is isomorphic to a complemented subspace of Lp[0, 1].

Theorem 1.24. [LP68, Proposition 7.3] Let p ∈ [1,∞) and let E be an infinite

dimensional Lp-space. Then E contains a complemented subspace isomorphic

to �p.

Theorem 1.25. [Rya13, Exercise 3.9] Let E and F be L∞-spaces. Then

E ⊗ε F is also an L∞-space.

Theorem 1.26. [GJW94, Theorem 6.4] Let p ∈ [1,∞] and let E be an Lp-

space. Then K(E) is amenable.

A distinguished result regarding the amenability of the Banach algebra

�∞(K(E)) if E is an Lp-space for some p is due to M.Daws and V.Runde in

[DR07], in which the authors proved the following:

Theorem 1.27. [DR07, Theorem 4.3] Let p ∈ [1,∞] and let Λ be an index

set. Then one of the following assertions is true:

• �∞(Λ,K(E)) is amenable for every infinite dimensional Lp-space E.

17
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• �∞(Λ,K(E)) is not amenable for any infinite dimensional Lp-space E.

Theorem 1.28. [Run10a, Theorem 3.2] Let p ∈ (1,∞). Then �∞(K(�2 ⊕ �p))

is not amenable.

Consequently, one has the following:

Corollary 1.29. [Run10a, Proposition 4.3] Let p ∈ (1,∞) and let E be an

infinite dimensional Lp-space. Then �∞(K(E)) is not amenable.

1.4 Non-Amenability of B(�p)
In his memoir [Joh72], B. E. Johnson asked:

• Is B(X) ever amenable for an infinite dimensional Banach space X?

[Joh72, 10.4].

• Is B(H) amenable for an infinite dimensional Hilbert space H? [Joh72,

10.2].

The Hilbert space case was solved shortly afterwards. In [Was76], S. Wasser-

mann showed that a nuclear von Neumann algebra had to be subhomogeneous.

This result together with the equivalence between nuclearity and amenability

for C∗-algebras means that B(H) can not be amenable unless dimH < ∞.

Ever since, some progress has been done to solve the general Banach space

case. In [Rea06], C. J. Read proved the following:

Theorem 1.30. [Rea06, Theorem 1.1] The Banach algebra B(�1) is not amenable.

Moreover, he showed that:

Theorem 1.31. [Rea06, Corollary 5.1] For p ∈ [1,∞]\{2} the Banach algebra

�∞ −
∞⊕
n=1

B(�pn) is not amenable.
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Read’s proof was simplified by Pisier in [Pis04], and eventually, N. Ozawa

simplified Pisier’s proof even further and provided a proof that simultaneously

established the non-amenability of several Banach algebras.

Theorem 1.32. [Oza04, Theorem 1] The Banach algebra B(�p) is not amenable

for p ∈ {1, 2,∞}, and for any p ∈ [1,∞] \ {2} the Banach algebra �∞ −
∞⊕
n=1

B(�pn) is not amenable.

Even though it is not explicitly stated in [Oza04], the proof of Theorem

1.32 works also for B(c0).
In [DR07], M. Daws and V. Runde investigated the consequences the hypo-

thetical amenability of B(�p) for p ∈ (1,∞) \ {2} would have, and they proved

the following:

Proposition 1.33. [DR07, Theorem 2.1] Let p ∈ [1,∞) and X be a Banach

space. Then

(i) the Banach algebra B(�p(X)) is amenable if, and only if, �∞(B(�p(X)))

is amenable.

(ii) the Banach algebra B(c0(X)) is amenable if, and only if, �∞(B(c0(X)))

is amenable.

Since ∀p ∈ [1,∞], K(�p) is amenable and hence has a BAI, then by The-

orem 1.6, �∞(K(�p)) also has a BAI. Consequently, the amenability of B(�p)
forces �∞(B(�p)) to be amenable by Proposition 1.33. Being a closed ideal in

�∞(B(�p)) with a BAI, �∞(K(�p)) is an amenable Banach algebra in its own.

Together with Theorem 1.27 and Theorem 1.28, one can easily see why the

following should hold:
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Theorem 1.34. [Run10a, Corollary 4.5] Let p ∈ (1,∞) and E be an Lp-

space such that E � �p(E). Then B(E) is not amenable. In particular, B(�p)
and B(Lp[0, 1]) are not amenable.

Remark 1.35. It is worth pointing out that not every Lp-space E is isomorphic

to �p(E). For instance; for p ∈ (1,∞) the Banach space E = �2 ⊕ �p is an

Lp-space and so is the Banach space �p(�2). Thus, E �� �p(E).
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Chapter 2

Non-Amenability of B(E)

In 2004, N. Ozawa provided a proof that simultaneously established the non-

amenability of some Banach algebras such as B(c0) and B(�p) if p = {1, 2,∞}.
Later on, V. Runde proved the non-amenability of the Banach algebra B(�p) for
all p ∈ (1,∞). In his paper [Run10a], Runde pointed out that Ozawa’s proof

could be used to establish the non-amenability of the Banach algebra B(�p),
though Runde’s result establishes the non-amenability of the Banach algebra

B(E) for the class of Lp-spaces E such that E � �p(E), where p ∈ (1,∞).

The purpose of the present chapter is to generalize Runde’s result. We first

prove the non-amenability of the Banach algebra B(E) for any L1-space (L∞-

space), such that E � �1(E), (respectively, E � c0(E)). The non-amenability

of the Banach algebra B(E) for any Lp-space E such that E �� �p(E) for any

p ∈ [1,∞), is shown in Section Two, and in Section Three we present examples

of L∞- spaces E for which the Banach algebra B(E) is, and is not, amenable.
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2.1 Non-Amenability of �∞(K(�p))

In this section we will prove the non-amenability of the Banach algebras

�∞(K(�1)) and �∞(K(c0)) by adopting Ozawa’s proof in [Oza04] which mainly

uses Lemma 2.3 below.

Before we start the proof, we should point out that an important role in

Ozawa’s proof has been played by the fact that the group SL(3,Z) is finitely

generated, which is due to a property called Kazhdan’s property, or property

(T ).

Recall that a topological group G is a group G endowed with a topology such

that the multiplication map (x, y) → xy : G×G −→ G and inversion are con-

tinuous. By a unitary representation (π,H) of a topological group G we mean

a group homomorphism π : G −→ U(H) such that for all ζ ∈ H, the map

g �→ π(g)ζ is continuous, where U(H) is the group of all unitary operators on

H. For a subset Q ⊂ G and ε > 0, π is said to have a (Q, ε)-invariant vector

if there exists ζ ∈ H such that sup
x∈Q

‖π(x)ζ − ζ‖ ≤ ε‖ζ‖.

Definition 2.1. A topological group G has Kazhdan’s property, or property

(T ), if there are a compact subset Q ⊂ G and an ε > 0 such that every

unitary representation (π,H) of G which has a (Q, ε)-invariant vector also has

a non-zero invariant vector.

Proposition 2.2. The group SL(n,Z) of all n×n matrices with determinant

equal to 1 and with entries in Z has property (T ) for all n ≥ 3, and hence

SL(n,Z) is finitely generated.

For more on Kazhdan’s property we refer to [BdLHV08].

Let ℘ be the set of all primes and fix ρ ∈ ℘. We write Zρ for the finite field
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Z/ρZ and define an equivalence relationship on Z3
ρ as follows: for any non-

zero points x, y ∈ Z3
ρ, x is equivalent to y if there is λ ∈ Zρ such that y = λx.

The resulting set of equivalence classes is called the projective plane over Zρ

and will be denoted by Pρ. Consider now the group SL(3,Z) that acts on

Z3
ρ through matrix multiplication, which induces an action of SL(3,Z) on Pρ.

Consequently, one has a unitary representation

πρ : SL(3,Z) −→ B(�2|Pρ|).

Choose a subset Sρ of Pρ such that |Sρ| = |Pρ| − 1

2
and define an invertible

isometry vρ ∈ B(�2|Pρ|) \ {πρ(SL(3,Z))} through

vρ(ex) =

⎧⎪⎨
⎪⎩

ex ;x ∈ Sρ

−ex ;x �∈ Sρ,

where (ex) is the standard basis for �2|Pρ|. Since the group SL(3,Z) is finitely

generated with generators say, x1, ..., xm, we will write π(xm+1) for vρ.

We can now state Ozawa’s Lemma as formulated in [Run10a].

Lemma 2.3. [Run10a, Ozawa’s Lemma] It is impossible to find, for each

ε > 0, a number r ∈ N with the following property:

for each ρ ∈ ℘, there are ζ1,ρ, η1,ρ, ..., ζr,ρ, ηr,ρ ∈ �2|Pρ| such that
r∑

k=1

ζk,ρ ⊗ ηk,ρ �= 0
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and for any j ∈ {1, ...,m+ 1}

‖
r∑

k=1

ζk,ρ ⊗ ηk,ρ − (πρ(xj)⊗ πρ(xj)(ζk,ρ ⊗ ηk,ρ)‖�2|Pρ|⊗π�2|Pρ|
≤

ε‖
r∑

k=1

ζk,ρ ⊗ ηk,ρ‖�2|Pρ|⊗π�2|Pρ|

To prove the main result, we require two more lemmas.

Lemma 2.4. [Oza04, Lemma 2.1] Let p ∈ {1, 2,∞} and q be the conjugate of

p, and let (δn) and (δ∗n) be the canonical unit vectors in �p and �q respectively.

Then for any N ∈ N and any operators S ∈ B(�p, �pN), R ∈ B(�q, �qN) the

following inequality holds:

∞∑
n=1

‖S(δn)‖�2N‖R(δ∗n)‖�2N � N‖S‖‖R‖.

Now, let P denote the disjoint union of {Pρ ; ρ ∈ ℘}. Then, one can make

the following identification:

�1 = �1(P) = �1 −
⊕
ρ∈℘

�1|Pρ|, (1)

and

c0 = c0(P) = c0 −
⊕
ρ∈℘

�∞|Pρ|, (2).

Lemma 2.5. Let X = �1 (or X = c0). Then �∞ −
⊕
ρ∈℘

B(�p|Pρ|) ⊆ �∞(K(X))

for p = 1 (respectively p = ∞).

Proof. We only prove the case X = �1.

For each ρ ∈ ℘, letPρ : �
1 −→ �1|Pρ| be the projection onto the first |Pρ|−coordinates,

and let Uρ = {PρTPρ ; T ∈ K(�1)}. Then, each Uρ is isomorphic to B(�p|Pρ|).
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Hence, for each ρ ∈ ℘, B(�p|Pρ|) ⊆ K(�1). Consequently, �∞ − ⊕ρ∈℘B(�p|Pρ|) ⊆
�∞(K(�1)).

Remark 2.6. • LetX = �1 (orX = c0). Then the Banach algebra �∞(B(X))

can be embedded into B(X).

• The Banach spaces �2|Pρ| and �1|Pρ| are finite dimensional and hence are

isomorphic.

Now, we are ready to prove the main result:

Theorem 2.7. Let X = �1 (or X = c0). Then the Banach algebra �∞(K(X))

is not amenable.

Proof. We will only prove the case when X = �1, the case X = c0 follows

analogously.

For the sake of contradiction, assume that �∞(K(�1)) is amenable, and so is

�∞(K(�1))� .

Let F = {(πρ(xj))ρ∈℘ ; j ∈ {1, ...,m + 1}} ⊆ �∞ − ⊕ρ∈℘B(�p|Pρ|) ⊆ �∞(K(�1)).

Let ε > 0, and obtain, by Proposition 1.20, a1, b1, ..., ar, br ∈ �∞(K(�1))� such

that T =
r∑

k=1

ak ⊗ bk ∈ �∞(K(�1))� ⊗π �
∞(K(�1))� satisfies the following condi-

tions:

Δ(T ) = 1 (2.1)

‖(πρ(xj)).T − T.(πρ(xj))‖π <
ε

m+ 1
(j = 1, ...,m+ 1). (2.2)

Let Pρ be as in Lemma 2.5, and define

Tρ(x) =
r∑

k=1

Pρakex ⊗P∗
ρb

∗
ke

∗
x ∈ �2|Pρ| ⊗π �

2
|Pρ|.
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Then

∑
x∈P

‖Tρ(x)‖�2|Pρ|⊗π�2|Pρ|
≥ ∣∣∑

x∈P

r∑
k=1

〈Pρakex,P
∗
ρb

∗
ke

∗
x〉
∣∣

=
∣∣∑
x∈P

r∑
k=1

〈bkP2
ρakex, e

∗
x〉
∣∣

= Tr(
r∑

k=1

bkPρak) = Tr(
r∑

k=1

akbkPρ)

= Tr(Pρ) = |Pρ|. (2.3)

On the other hand, letting S = Pρak and R = P∗
ρb

∗
k and applying Lemma

2.4, we get

∑
x∈P

‖Pρakex‖‖P∗
ρb

∗
ke

∗
x‖ � |Pρ|‖Pρak‖‖P∗

ρb
∗
k‖ ≤ |Pρ|‖ak‖‖bk‖

and hence,

∑
x∈P

r∑
k=1

‖Pρakex‖‖P∗
ρb

∗
ke

∗
x‖ ≤ |Pρ|

r∑
k=1

‖ak‖‖bk‖.

Thus,

∑
x∈P

‖Tρ(x)‖�2|Pρ|⊗π�2|Pρ|
� |Pρ|‖T‖.

Similarly,
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∑
x∈P

‖Tρ(x)− (πρ(xj)⊗π πρ(xj))Tρ(x)‖�2|Pρ|⊗π�2|Pρ|

� |Pρ|‖T − (πρ(xj)).T.(π
−1
ρ (xj))‖‖(πρ(xj))‖

� |Pρ|‖T.(πρ(xj))− (πρ(xj)).T‖ (Since each πρ(xj) is an isometry)

� ε

m+ 1
|Pρ| (by (2.2) above).

Thus

∑
x∈P

m+1∑
j=1

‖Tρ(x)− (πρ(xj)⊗π πρ(xj))Tρ(x)‖�2|Pρ|⊗π�2|Pρ|
� ε|Pρ| (2.4)

Combining (2.3) and (2.4) together, we get that there must be an x̂ ∈ P such

that

m+1∑
j=1

‖Tρ(x̂)− (πρ(xj)⊗π πρ(xj))Tρ(x̂)‖�2|Pρ|⊗π�2|Pρ|
� ε‖Tρ(x̂)‖�2|Pρ|⊗π�2|Pρ|

and thus, the following inequality holds for any j ∈ {1, ..,m+ 1}

‖Tρ(x̂)− (πρ(xj)⊗π πρ(xj))Tρ(x̂)‖�2|Pρ|⊗π�2|Pρ|
� ε‖Tρ(x̂)‖�2|Pρ|⊗π�2|Pρ|

which contradicts Lemma 2.3 by letting ζk,ρ = Pρakex and ηk,ρ = P∗
ρb

∗
ke

∗
x.

Hence, �∞(K(�1)) is not amenable.

Since the amenability of �∞(K(�1)) (respectively, �∞(K(c0))) is equivalent

to the amenability of �∞(K(E)) for any L1-space E (respectively, any L∞-space

E), we obtain:

Corollary 2.8. Let p ∈ [1,∞] and let E be an Lp-space. Then �∞(K(E)) is

not amenable.
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Proof. Since the case p ∈ (1,∞) had already been stated in Corollary 1.29,

we only need to prove the case p = 1,∞. So let p = 1 or ∞ and let E be

an Lp-space. Then by Theorem 1.27, �∞(K(E)) is amenable if, and only if,

�∞(K(�p)) is amenable. Since �∞(K(�p)) is not amenable, by Theorem 2.7,

then �∞(K(E)) is not amenable.

We recall that for any infinite dimensional Lp-space E such that E � �p(E),

the Banach algebra B(E) is not amenable for any p ∈ (1,∞) as shown by V.

Runde (Theorem 1.34). We now generalize this result:

Theorem 2.9. Let p ∈ [1,∞) and let E be an infinite dimensional Lp-space

(respectively, an infinite dimensional L∞−space) such that E � �p(E) (respec-

tively, E � c0(E)). Then B(E) is not amenable.

Proof. Let E be as above and assume towards a contradiction that B(E) is

amenable. Then, by Proposition 1.33 , �∞(B(E)) is also amenable. Since

�∞(K(E)) is a closed ideal in �∞(B(E)) with a bounded approximate identity,

the amenability of �∞(B(E)) forces �∞(K(E)) to be amenable, which contra-

dicts Corollary 2.8. Hence, B(E) is not amenable.
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2.2 Non-Amenability of B(E)

In this section, E is assumed to be an infinite dimensional Lp-space such that

E �� �p(E) with p ∈ [1,∞). We recall first, by Theorem 1.24, that E contains

a complemented copy of �p. Thus, E = X ⊕ �p, where X is either a Hilbert

space or an Lp-space. Consequently, B(E) has a matrix-like structure:

B(E) =

⎛
⎝ B(X) B(�p, X)

B(X, �p) B(�p)

⎞
⎠ .

In order to prove the non amenability of B(E), we will need the following the-

orem. Theorem 2.10 below is due to Grønbæk, Willis and Johnson ([GJW94]),

though the version we include here is the one mentioned in [DR07].

Theorem 2.10. [DR07, Theorem 1.2] Let A be a Banach algebra and let

P1 ∈ M(A) be a projection. Let P2 = IA − P1. Suppose further that the

diagonal map Δ maps P2AP1 ⊗π P1AP2 onto P2AP2. Then A is amenable if,

and only if, P1AP1 is amenable.

The notion M(A) stands for the multiplier algebra of A. A double multi-

plier on a Banach algebra A is a pair of operators, (L,R), on A which satisfies:

for all a and b ∈ A :

L(ab) = L(a)b; R(ab) = aR(b); and aL(b) = R(a)b.

The set of all double multipliers on A is denoted by M(A). Then M(A) is a

Banach space under the norm ‖(L,R)‖ = max{‖L‖, ‖R‖}, which becomes a

Banach algebra if endowed with the product (L1, R1)(L2, R2) = (L1L2, R2R1).

If A is unital, then M(A) = A. For more information about the multiplier

algebra we refer the reader to [Pal94, Sec. 1.2].
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Now, if X is a Banach space such that X = Y ⊕ Z, and by setting P1 to be

the projection onto Y and P2 to be the projection onto Z, Theorem 2.10 can

be stated as follows:

Proposition 2.11. Let X be an infinite dimensional Banach space such that

X = Y ⊕Z for some infinite dimensional subspaces Y and Z. Suppose further

that every operator on Z factors through Y , i.e., for all T ∈ B(Z), there are

operators R ∈ B(Y, Z) and S ∈ B(Z, Y ) such that T = RS. Then B(X) is

amenable if, and only if, B(Y ) is amenable.

We will first assume that X is a Hilbert space, and hence p ∈ (1,∞). In

order to prove the non amenability of B(E) in this case, the following long-

known fact in functional analysis will be needed. We will provide the proof

for the reader’s convenience.

Proposition 2.12. Let H be an infinite dimensional Hilbert space and let

p ∈ [1,∞) \ {2}. Then B(H, �p) = K(H, �p) if p < 2, and K(H, �p) � B(H, �p)

if p ≥ 2.

Proof. Assume first that p < 2 and let T ∈ B(H, �p). We want to prove that

the sequence (T (xn)) ⊂ �p has a convergent subsequence for any bounded

sequence (xn) ⊂ H.

So let (xn) ⊂ H be a bounded sequence and let Y = [xn] ⊆ H be the closed

linear span of {x1, x2, x3, ...}. Then Y � Z ⊆ �2, being a separable subspace

of H. Consider the operator T̃ = T|Y : Y −→ �p. Then T̃ can be viewed as a

bounded operator T̃ : �2 −→ �p. Since p < 2, then by Pitt’s Theorem, T̃ is

compact, and hence T (xn) has a convergent subsequence in �p. Since (xn) is

arbitrary, we get that T ∈ K(H, �p).

Now, let p > 2 and assume towards a contradiction that K(H, �p) = B(H, �p).
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Then, and since the conjugate of any compact operator is again a compact

operator, we get K(�q,H) = B(�q,H), where q < 2 is the conjugate of p.

Which contradicts the fact that the inclusion map i : �q −→ �2 is not compact.

Hence, K(H, �p) � B(H, �p) if p > 2. If p = 2, thenH contains a complemented

subspace isomorphic to �2. Let P : H −→ �2 be the projection operator onto

�2. Then P ∈ B(H, �2)/K(H, �2).

In fact, Proposition 2.12, establishes the non-amenability of the Banach

algebra B(H⊕ �p). This is due to the following result by Daws and Runde in

[DR07]. We will provide here the version included in [Run10a].

Lemma 2.13. [Run, Theorem 3.4.3] Let E and F be Banach spaces such that

B(E,F ) = K(E,F ) and K(F,E) � B(F,E). Then B(E⊕F ) is not amenable.

In particular, we have:

Corollary 2.14. Let p ∈ (1,∞) \ {2}, and let E be an infinite dimensional

Lp-space such that E = H ⊕ �p for some Hilbert space H. Then B(E) is not

amenable.

Proof. Let E be an infinite dimensional Lp-space such that E = H ⊕ �p for

some Hilbert space H. Then

B(E) =

⎛
⎝ B(H) B(�p,H)

B(H, �P ) B(�p)

⎞
⎠ .

If H is finite dimensional, then by combining Theorem 1.34 and Proposition

2.11, we conclude that the Banach algebra B(E) is not amenable. So assume

that dimH = ∞.
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If p ∈ (2,∞), then by the separability of �p and by Pitt’s Theorem, we get

K(E) =

⎛
⎝ K(H) K(�p,H)

K(H, �p) K(�p)

⎞
⎠ =

⎛
⎝ K(H) B(�p,H)

K(H, �p) K(�p)

⎞
⎠ .

Hence, the Calkin algebra C(E) has the form

C(E) = B(E)/K(E) =

⎛
⎝C(H) 0

J C(�p)

⎞
⎠ =

⎛
⎝C(H) 0

0 C(�p)

⎞
⎠⊕

⎛
⎝0 0

J 0

⎞
⎠ ,

where J = B(H, �p)/K(H, �p). Then, by Proposition 2.12, J �= 0. Assume now

that B(E) is amenable, then so is the Calkin algebra C(E). Consequently, the

complemented closed ideal

J̃ =

⎛
⎝0 0

J 0

⎞
⎠

is amenable, which contradicts Cohen’s Factorization Theorem (Theorem 1.18)

since J̃ is nilpotent. Hence, B(E) is not amenable.

Similarly, if p ∈ (1, 2), then by Proposition 2.12, we get

K(E) =

⎛
⎝ K(H) K(�p,H)

K(H, �p) K(�p)

⎞
⎠ =

⎛
⎝ K(H) K(�p,H)

B(H, �p) K(�p)

⎞
⎠ .

Consequently, the amenability of B(E) forces the Calkin algebra

C(E) =

⎛
⎝C(H) 0

0 C(�p)

⎞
⎠⊕

⎛
⎝0 L

0 0

⎞
⎠
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to be amenable, which forces the nilpotent complemented ideal

L̃ =

⎛
⎝0 L

0 0

⎞
⎠

to be amenable, where L = B(�p,H)/K(�p,H). Which is again a contradiction.

Hence, B(E) is not amenable.

Finally, to prove our main result the following will be needed:

For an infinite dimensional Lp-space E = X ⊕ �p, let P1, P2 ∈ B(E) be the

projections onto X and �p respectively. For each S ⊗R ∈ B(E)⊗B(E) define

the product (P1⊗P2)(S⊗R) = P1S⊗RP2 and (S⊗R)(P1⊗P2) = SP1⊗P2R.

Lemma 2.15. Let S,R ∈ B(E) and let P1 ∈ B(E) be the projection on X. If

d =
n∑

i=1

Ai ⊗ Bi ∈ B(X)⊗ B(X) such that Δ(d) = IX , then

Δ((S ⊗R)d) = Δ((S ⊗R)(P1 ⊗ P1))

Proof. Since P1(X) = IX , one has

Δ((S ⊗R)d) = Δ((S ⊗R)(P1 ⊗ P1)d)

=
n∑

i=1

SP1AiBiP1R

= SP 2
1R = SP1R

= Δ((S ⊗R)(P1 ⊗ P1))

Now, we are ready to prove our main result:
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Theorem 2.16. Let p ∈ [1,∞), and let E be an infinite dimensional Lp-space.

Then B(E) is not amenable.

Proof. We only need to prove the non-amenability of B(E) if E = X ⊕ �p,

where X is an Lp−space such that X �� �p(X).

Note first that if X is finite dimensional, then X � �pn for some n ∈ N. Hence,

X
c
↪→ �p and consequently, every operator on X factors through �p. Thus,

by combining Theorem 1.34 and Proposition 2.11, B(E) is not amenable. So

assume from now on that X is an infinite dimensional Lp-space such that

X �� �p(X), and let λ > 0 be such that ‖P2‖ ≤ λ.

Assume towards a contradiction that B(E) is amenable. Since X is also an Lp-

space, then X also contains a complemented copy of �p. Hence, every operator

T ∈ B(�p) factors through X. Consequently, and by Proposition 2.11, B(X)

is also amenable.

Since both B(E) and B(X) are amenable, then there are positive constants

C1, C2 such that for any ε1 > 0 and any ε2 > 0 and for any finite sets F1 ⊆ B(E)

and F2 ⊆ B(X), there are d1 ∈ B(E)⊗B(E) and d2 ∈ B(X)⊗B(X) such that

the following conditions are satisfied:

1. Δ(d1) = IE and Δ(d2) = IX .

2. ‖(IE ⊗ A− A⊗ IE)d1‖ < ε1 (∀A ∈ F1),

and

‖(IX ⊗ B − B ⊗ IX)d2‖ < ε2 (∀B ∈ F2).

3. ‖d1‖ ≤ C1 and ‖d2‖ ≤ C2.

Let C3 = λ2C1(C2 + λ), and let ε > 0.

For any finite set F = {Ti : i = 1, 2, · · · , n} ⊂ B(�p), let
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F̂1 =

⎧⎨
⎩T̂1i =

⎡
⎣0 0

0 Ti

⎤
⎦ : i = 1, 2, · · · , n

⎫⎬
⎭ ⊂ B(E) be the embedding of F into

B(E). Similarly, let F̂2 be the embedding of F into B(X). Since B(E) and

B(X) are amenable, find dF̂1
∈ B(E) ⊗ B(E) and dF̂2

∈ B(X) ⊗ B(X) such

that for any A ∈ F̂1,

‖(IE ⊗ A− A⊗ IE)dF̂1
‖ <

ε

λ2(C2 + λ2)
,

and define

dF = (P2 ⊗ P2)dF̂1
(dF̂2

+ P2 ⊗ P2).

Then

‖dF‖ ≤ ‖P 2
2 ‖ ‖dF̂1

‖ (‖dF̂2
‖+ ‖P 2

2 ‖) ≤ λ2C1(C2 + λ) = C3.

Letting d = dF̂2
in Lemma 2.15, we get

Δ(dF ) = Δ((P2 ⊗ P2)dF̂1
(dF̂2

+ P2 ⊗ P2))

= P2 Δ(dF̂1
(dF̂2

+ P2 ⊗ P2))P2

= P2 Δ(dF̂1
(P1 ⊗ P1 + P2 ⊗ P2))P2

= P2IEP2 = P 2
2 = P2 = I�p .
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Finally, let T ∈ F . Then

‖(IE ⊗ T − T ⊗ IE)dF‖ = ‖(IE ⊗ T − T ⊗ IE)(P2 ⊗ P2)dF̂1
(dF̂2

+ P2 ⊗ P2))‖
= ‖(P2 ⊗ P2)(IE ⊗ T − T ⊗ IE)dF̂1

(dF̂2
+ P2 ⊗ P2))‖

≤ ‖P2‖2 ‖(IE ⊗ T − T ⊗ IE)dF̂1
‖ ‖(dF̂2

+ P2 ⊗ P2))‖

<
λ2ε

λ2(C2 + λ2)
(C2 + λ2) < ε.

Equivalently, B(�p) is amenable, which contradicts Theorem 1.30 and Theorem

1.34. Hence, B(E) is not amenable.

Remark 2.17. In [AF96], A. Arias and J. Farmer proved that for a separable

Lp-space E with p ∈ (1,∞), the Banach algebra B(E) � B(�p). So the non-

amenability of B(E) for such an Lp-space E follows from Theorem 1.12 and

Theorem 1.34. Though, our proofs in Theorem 2.16 and Corollary 2.14 work

for any Lp-space E.
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2.3 On the non-Amenability of B(E) for an

L∞-space E

We dedicate this section to study the amenability of B(E) if E is an L∞-space.

We will present some L∞-spaces for which the Banach algebra of bounded

operators is, and is not, amenable.

Definition 2.18. An infinite dimensional Banach space X is said to have

few operators if every operator T ∈ B(X) is strictly singular perturbation

of the identity operator, that is T is expressible as S + λI for some strictly

singular operator S and some λ ∈ C. If every operator T ∈ B(X) is a compact

perturbation of the identity, then X is said to have a very few operators.

The existence of a Banach space with few operators was first proved by

Gowers and Maurey [GM93]. A Banach space with very few operators exists

due to S. Argyros and R. Haydon in 2009, and a Banach space with few but

not very few operators was constructed by M. Tarbard in 2012. Interestingly

enough, all three of these spaces are hereditarily indecomposable (HI) L∞-

spaces. In fact, it has been shown in [Fer97] that a complex Banach space

X is HI if, and only if, every operator from a subspace of X into X is a

strictly singular perturbation of a multiple of the identity. We recall that a

Banach space X is said to be hereditarily indecomposable (HI) if no infinite

dimensional subspace of X can be decomposed into a direct sum of further

two infinite dimensional subspaces.

Theorem 2.19. [GM93] There exists a hereditarily indecomposable infinite

dimensional, reflexive, separable real Banach space EGM such that every oper-

ator T on a subspace Y of EGM is a strictly singular perturbation of a multiple

of the identity operator.
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Theorem 2.20. [AH11] There exists a hereditarily indecomposable separable

L∞-space EAH with E∗
AH � �1 such that

B(EAH) = K(EAH)⊕ CI .

Theorem 2.21. [Tar12] Given any k ∈ N, k ≥ 2, there is a hereditarily

indecomposable separable L∞-Banach space EMk
with E∗

Mk
� �1 such that:

(i) There is a strictly singular non-compact operator S ∈ B(EMk
) such that

S is nilpotent of degree k, i.e., Sj �= 0, 1 ≤ j ≤ k − 1 and Sk = 0.

(ii) The set {Sj; j ∈ {1, ..., k − 1}} is linearly independent in the Calkin

algebra C(EMk
).

(iii) Every T ∈ B(EMk
) can be uniquely represented as

k−1∑
j=0

λjSj +K, where

λj ∈ R and K ∈ K(EMk
).

We will start by presenting an L∞-space E for which B(E) is amenable.

Consider the Banach spaceEAH constructed by Argyros and Haydon. V. Runde

in his expository paper [Run10b] pointed out that any finite direct sum of the

Banach space EAH provides a positive answer to the question raised in [Joh72,

Question 10.4].

Theorem 2.22. Let EAH be the Banach space of Argyros and Haydon. Then

B(EAH) is amenable. Moreover, for each n ∈ N, the Banach algebra B(En) is

amenable, where En =
n⊕

i=1

EAH .

Proof. Since B(EAH) = K(EAH) ⊕ CI , it is enough to prove the amenability

of K(EAH). Since EAH is an L∞-space, then by Theorem 1.26 , K(EAH) is
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amenable, and hence by Theorem 1.14, B(EAH) is also amenable. Moreover,

since K(En) ∼= Mn(K(EAH)), then K(En) is amenable. As B(En) = K(En) ⊕
Mn, and Mn is amenable, then B(En) is also amenable.

A natural question arises here: what happens if we take an infinite direct

sum of the space EAH? For instance, if E = c0 −
∞⊕
i=1

EAH = c0(EAH), is B(E)

still amenable?

In order to answer this question, the following proposition will be needed.

Proposition 2.23. [Rya13, Example 3.3] For any Banach space X, c0⊗εX �
c0(X)

In particular, one gets that c0 ⊗ε c0 = c0(c0) = c0, and hence we prove the

following:

Theorem 2.24. Let EAH be the space of Argyros and Haydon, and let E =

c0(EAH). Then B(E) is not amenable.

Proof. It is enough to prove that E is an L∞-space such that E � c0(E), as

for such Banach spaces Theorem 2.9 establishes the non-amenability of B(E).

Notice first that since E = c0(EAH), then by Proposition 2.23, E � c0⊗εEAH .

Thus by Theorem 1.25, E is a L∞-space. Moreover,

c0(E) � c0 ⊗ε E � c0 ⊗ε c0 ⊗ε EAH .

But c0 ⊗ε c0 � c0. Hence, E � c0(E).

Similarly, one can prove that B(C[0, 1]) is not amenable. To prove this,

recall first that the Cantor set Ω = {0, 1}N, the topological space that is

identified as the countable product of the two-point set {0, 1}, endowed with
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the product topology. The following is a well-known fact about the space of

all real valued, continuous functions on Ω.

Proposition 2.25. [AK06, Proposition 4.4.5] C(Ω) � c0(C(Ω)).

We will also need the following result by A. Miljutin in [Mil66].

Proposition 2.26 (Miljutin’s Theorem). Suppose K is an uncountable com-

pact metric space. Then C(K) � C([0, 1]).

Now, we prove

Theorem 2.27. The Banach algebra B(C(K)) is not amenable for any un-

countable compact metric space K. In particular, B(C[0, 1]) is not amenable.

Proof. LetK is an uncountable compact metric space. Then C(K) � c0(C(K))

since C(K) � C(Ω). Since, by Miljutin’s Theorem, C[0, 1] � C(K), we con-

clude that C[0, 1] � c0(C[0, 1]). Hence, by Theorem 2.9, both B(C[0, 1]) and

B(C(K)) are not amenable.

Finally, we will prove the non-amenability of the Banach algebra B(EMk
).

To do that, the following lemma is needed.

Lemma 2.28 ([Tar12]). For each k ∈ N, k ≥ 2, the Calkin algebra C(EMk
) is

isomorphic, as a Banach algebra, to the subalgebra A ⊂ Mk of all k× k upper

triangular Toeplitz matrices, i.e., the subalgebra A generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1
. . . . . .

. . . 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

j

: 0 ≤ j ≤ k − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Theorem 2.29. For each k ∈ N, k ≥ 2, the Banach algebra B(EMk
) is not

amenable.

Proof. It is enough to prove the non-amenability of the Calkin algebra C(EMk
).

Since C(EMk
) � A, then it is enough to prove the non-amenability of A.

Since A is the algebra of all k × k upper triangular Toeplitz matrices, then

every matrix M ∈ A can be expressed as M = α0Ik + α1B + ... + αk−1B
k−1,

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1
. . . . . .

. . . 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, assume towards a contradiction that A is amenable.

Then every complemented ideal is amenable by Theorem 1.13.

Consider now the ideal J = [Bk−1] ⊂ A, that is the ideal generated by the

operator Bk−1. Then J is a nilpotent ideal of degree two. Clearly, J is a closed

complemented ideal, and hence by Theorem 1.13, J is amenable, which con-

tradicts Cohen’s Factorization theorem. Thus, A , and consequently C(EMk
),

is not amenable.
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Chapter 3

On the Weak Amenability of

SS(X)

The class of strictly singular operators was first introduced by T. Kato in

[Kat58] as an extension of compact operators and in connection with the theory

of Fredholm operators. In general, strictly singular operators behave in a

different way compared to the way the compact operators do. For instance,

in general strictly singular operators are not stable under duality whereas an

operator T ∈ B(X, Y ) is compact if, and only if, T ∗ ∈ B(Y ∗, X∗) is compact.

However, an operator T ∈ B(Lp[0, 1]) is strictly singular if, and only if, T ∗ ∈
B(Lq[0, 1]) is strictly singular ([Mil70], [Wei77]).

A Banach space X is called simple if K(X) is the only non-trivial closed ideal

in B(X), in that case SS(X) = K(X). The Banach spaces that are known to

be simple so far are �p, p ∈ [1,∞), c0 and the Banach space EAH . On the other

hand, it has been shown that K(X) � SS(X) if X = Lp[0, 1] or X = C[0, 1]

and hence, Lp[0, 1] and C[0, 1] are not simple, [FGM67]. Moreover, V. Milman

proved that the product of any two strictly singular operators on Lp[0, 1] or
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C[0, 1] is in fact a compact operator, [Mil70]. In this chapter, we will first

generalize Milman’s results for any separable Lp-space E, with p ∈ (1,∞), and

then for such Lp-spaces, the non-amenability of the Banach algebra SS(E) will

be shown in Section Two.

3.1 The Product of Strictly Singular Opera-

tors

We start this section with the following fact:

Theorem 3.1. [FGM67] Let p ∈ [1,∞) \ {2} and let X = Lp[0, 1]. Then

K(X) � SS(X).

Later on, V. Milman proved the following:

Theorem 3.2. [Mil70] Let p ∈ [1,∞) and let X = Lp[0, 1] or X = C[0, 1].

Then TS ∈ K(X) for all T, S ∈ SS(X).

In order to prove that for any separable Lp-space such that E �� �p, the

Banach algebra SS(E) enjoys that same properties, the following lemma from

[JO74] is needed:

Lemma 3.3. [JO74, Corollary 1] Suppose that E is a separable Lp-space (1 <

p < ∞, p �= 2) such that no subspace of E is isomorphic to �2. Then E � �p.

Now we prove:

Theorem 3.4. Let p ∈ (1,∞) \ {2} and let E be a separable Lp-space such

that E �� �p. Then K(E) � SS(E).
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Proof. Let p and E be as above. Then by Lemma 3.3, there exists a subspace

Z � E such that Z � �2. Let J : �2 −→ Z be the isomorphism. Moreover,

by Theorem 1.24, E contains a complemented copy of �p. Set P to be the

projection P : E −→ �p. Now, for p < 2, let ip,2 : �p −→ �2 be the inclusion

map. Then by Theorem 1.3, the map ip,2 is a non-compact strictly singular

operator. Consequently, the map T : E −→ E

T = J ip,2 P

is a non-compact strictly singular operator on E.

Now, let p > 2 and let i2,p : �2 −→ �p and jp : �p −→ E be the embedding

of �2 into �p and the embedding of �p into E respectively. Then the map

S : E −→ E

S = jp i2,p J
−1

is a non-compact strictly singular operator on E since the map i2,p is a non-

compact strictly singular operator.

Theorem 3.5. Let p ∈ (1,∞) and let E be a separable Lp-space. Then TS ∈
K(E) for all T, S ∈ SS(E).

Proof. Let E be as above. Then by Theorem 1.23, E is isomorphic to a

complemented subspace of Lp[0, 1]. Thus, there exists a subspace Y ⊆ Lp[0, 1]

such that Lp[0, 1] = Y ⊕ E. Consequently,

B(Lp[0, 1]) =

⎛
⎝ B(Y ) B(E, Y )

B(Y,E) B(E)

⎞
⎠ .
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Now, let T, S ∈ SS(E). Clearly, the operators T =

⎛
⎝0 0

0 T

⎞
⎠ and S =

⎛
⎝0 0

0 S

⎞
⎠ ∈ SS(Lp[0, 1]). Consequently, by Theorem 3.2,

TS =

⎛
⎝0 0

0 TS

⎞
⎠ ∈ K(Lp[0, 1]) =

⎛
⎝ K(Y ) K(E, Y )

K(Y,E) K(E)

⎞
⎠ .

Thus, TS ∈ K(E). Since T and S were arbitrary, we get SS2(E) ⊆ K(E).
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3.2 The Non-Amenability of SS(X)

In this section, we will prove that SS(X) is not weakly amenable and hence

not amenable for a specific class of Banach spaces.

Theorem 3.6. Let X be an infinite dimensional Banach space such that

K(X) � SS(X) and such that TS ∈ K(X) for all T, S ∈ SS(X). Then

SS(X) is not weakly amenable.

Proof. Let X be as above and assume towards a contradiction that SS(X) is

weakly amenable. Then by Theorem 1.19, SS2(X) is dense in SS(X). Thus,

we get

SS(X) = SS2(X) ⊆ K(X) � SS(X),

which is a contradiction. Hence, SS(X) is not weakly amenable.

Remark 3.7. Using the same argument as in the proof of Theorem 3.6, one can

show that SS(X) does not have a BAI whenever X is a Banach space that

satisfies the conditions of Theorem 3.6.

Corollary 3.8. Let X be an infinite dimensional Banach space such that

K(X) � SS(X) and such that TS ∈ K(X) for all T, S ∈ SS(X). Then

SS(X) is not amenable.

Proof. Let X be as above and assume that SS(X) is amenable. Then SS(X)

is weakly amenable which contradicts Theorem 3.6.

In particular, we have

Corollary 3.9. Let p ∈ (1,∞) and let E be an infinite dimensional separable

Lp-space such that E �� �p, E = L1[0, 1] or E = C[0, 1]. Then SS(E) is not

weakly amenable.
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Remark 3.10. A Banach algebra A is called self-induced A ⊗A A � A, where

A ⊗A A = A ⊗λ A/N , where N = span{a.x ⊗ y − x ⊗ y.a ; a, x, y ∈ A}.
The concept of self-induced Banach algebras was introduced in [Grø95] as a

generalization of unital Banach algebras. It has been shown that every unital

Banach algebra is self-induced, and in fact every Banach algebra with a BAI is

self-induced. Another characterization for self-inducedness for Banach algebra

is the following: a Banach algebra A is self-induced if, and only if, A2 is

dense in A and every balanced bilinear map φ : A × A −→ C is of the form

φ(a, b) = f(ab) for some f ∈ A∗. The proof of Theorem 3.6 also means that

SS(Lp[0, 1]) for instance is not self-induced, even though both B(Lp[0, 1]) and

K(Lp[0, 1]) are self-induced.
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Chapter 4

Remarks and Open Problems

In this chapter, we make some remarks on our work and also some natural

questions related to some results obtained in this thesis.

4.1 Remarks On Chapter 2 and Related Prob-

lems

The problem of characterizing the amenability of the Banach algebra �∞(A)

in terms of properties of the underlying Banach algebra A is still open. In

[SG02], F. Sánchez and R. Garćıa claimed that under certain conditions, the

Banach algebra A∗∗ can be considered as a quotient of �∞(A); hence, if A∗∗ is

not amenable, then neither is �∞(A). Unfortunately, M. Daws and V. Runde

pointed out a mistake in the proof of Sánchez and Garćıa, and so far it is not

known whether Sánchez and Garćıa’s claim is true or not. As we focus on

the Banach algebra of all operators on infinite dimensional Banach spaces, we

consider the Banach algebra �∞(B(X)), which is not amenable whenever B(X)

is not amenable. In fact, even when B(EAH) is amenable, the Banach algebra
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�∞(B(EAH)) turns out not to be amenable. This follows from the fact that

�∞(B(EAH)) = �∞(K(EAH)) ⊕ �∞ and that the Banach algebra �∞(K(EAH))

is not amenable by Corollary 2.8.

Conjecture 1. For a Banach space X, the Banach algebra �∞(B(X)) is

amenable if, and only if, X is finite dimensional.

On the other hand, we think that the Banach algebra �∞(K(E)) is weakly

amenable for any Lp-space, p ∈ [1,∞], but we do not have a proof for that.

Open Problem 1. Let p ∈ [1,∞] \ {2}, and let E be an infinite dimensional

Lp-space. Is �∞(K(E)) weakly amenable? In particular, is �∞(K(�p)) weakly

amenable?

In his expository paper, V. Runde concluded his paper with the following ques-

tion, [Run10b, Question 3]:

Question. Is there an infinite dimensional Banach space X such that C(X)

is amenable and infinite dimensional?

We doubt that there is a positive answer for this question. As we saw in Sec-

tion 2.3, even finite dimensional Calkin algebras need not be amenable. We

think that the amenability of the Banach algebra B(X) forces any quotient

of B(X) to be finite dimensional, so we are wondering whether the following

conjecture is true or not:

Conjecture 2. For an infinite dimensional Banach space X, if B(X) is

amenable, then the Calkin algebra C(X) is finite dimensional. Moreover, if

J ⊆ B(X) is a closed ideal, and B(X) is amenable, then the quotient algebra

B(X)/J is finite dimensional.

Unfortunately, the Banach space EAH is simple, and hence we cannot test

whether this claim is true or not using this Banach space. On the other hand,

since the Banach algebra B(EGM) is amenable if, and only if, the Banach alge-

bra SS(EGM) is amenable, then investigating the amenability of the Banach
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algebra SS(EGM) for the Banach space of Gowers and Maurey will shed light

whether our claim is correct or not.

Open Problem 2. Is the Banach algebra SS(EGM) amenable?

Using Theorem 1.13, if SS(EGM) is amenable, then the closed ideal K(EGM)

is amenable if, and only if, it has a BAI. It is not known whether K(EGM) is

amenable or not.

Another approach to investigating the amenability of the SS(EGM) is to study

whether it has a BAI or not.

Finally, in Section 2.3, we proved that the Banach algebra B(X) is not amenable

for the classical L∞-spaces, and we provided examples of HI-spaces for which

the Banach algebra of all operators is, and is not amenable. So we ask:

Open Problem 3. For which L∞-spaces E are the Banach algebra B(E)

amenable?

4.2 Remarks on Chapter 3 and Related Prob-

lems

Definition 4.1. Let Y be a Banach space and let A ⊂ Y be a subset. Then A

is called spaceable if A∪{0} contains an infinite dimensional closed subspace.

Spaceability of subsets in vector spaces was first introduced in [AGS05].

If Y is taken to be the Banach algebra of all operators on a Banach space

X, and A is taken to be the quotient algebra of two closed ideals in B(X),

then the spaceability of A becomes a tool to measure how large is the quotient

algebra A. In [HRS15], Hernández et al. investigated the spaceability of the

set A = I1(X, Y )/I2(X, Y ) for some operators ideals I2(X, Y ) ⊆ I1(X, Y ),

and gave sufficient conditions on the Banach spaces X and Y to obtain the
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spaceability of A. Among other results, the authors proved the following:

Theorem 4.2. [HRS15] Let X be a Banach space such that X � �p(X) for

some p ∈ [1,∞) or X � c0(X). Then the Banach algebra SS(X)/K(X) is

spaceable if and only SS(X)/K(X) �= ∅.

The fact that SS(X)/K(X) �= ∅ plays a role in proving the non-amenability

of the Banach algebra SS(X) if X = Lp[0, 1] or X = C[0, 1]. Since the

spaceability of the quotient algebra SS(X)/K(X) is equivalent to the existence

of a non-compact strictly singular operator on those Banach spaces, we ask

the following question:

Open Problem 4. Let p ∈ [1,∞) and let E be an infinite dimensional Lp-

space such that E �� �p(E). Is SS(X)/K(X) spaceable?

Keeping in mind that the fact the product of strictly singular operators is

compact on X = Lp[0, 1] or X = C[0, 1] also plays a role in the proof of

Theorem 3.6 , we are wondering if Milman’s result can be generalized to general

Lp-spaces.

Open Problem 5. Let p ∈ [1,∞ \ {2} and let E be an infinite dimensional

Lp-space such that SS(X)/K(X) �= ∅. Is the product of any two strictly

singular operators compact?

We do not know if the spaceability of the quotient algebra A/J is sufficient

for the non-amenability of the Banach algebra A, so we generalize Conjecture

two:

Conjecture 3. Let A be an infinite dimensional Banach algebra, and let

J � A be a non-trivial closed ideal. Then if A is amenable, then A/J is not

spaceable.

We do not know whether the converse of Conjecture 3 is true.
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