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ABSTRACT 

Train protection and control systems are crucial for improving railway safety by reducing operator-related accidents. 
However, they shift operators from manual control to monitoring, presenting both advantages and challenges. This change 
requires rapid assimilation of vast information, risking mental overload and performance degradation. Therefore, 
assessment and prediction of the workload associated with train systems is essential. 
This paper examines mental workload studies in train operator settings, categorizing them by their approaches (subjective-
objective, analytical-empirical), methods, metrics, and the types of train cab systems studied. It also analyzes how train 
technology affects operator workload, emphasizing the importance of addressing workload during system design for safe 
and efficient railway operations. Our analysis highlighted a preference for the subjective-empirical approach for analyzing 
train operators' workload, often applied after system prototypes and simulator experiments are available. Early workload 
analysis is recommended for user-centred design, preventing operator errors and costly redesigns. Furthermore, the 
literature presented diverse findings on the effects of in-cab systems and automation on train operators' workload. These 
disparities may arise from system characteristics, individual differences, environmental factors, operational conditions, and 
infrastructure variations. Additionally, differences in the stages of information processing studied can contribute to varying 
workload outcomes for the same system. 

1 INTRODUCTION 
 

The concept of workload, as defined by Wickens and 
Tsang (2015), is the balance between the resources 
required for a task and those available to the operator. 
This balance includes various elements such as 
physical, visual, auditory, and cognitive aspects 
(Halliday et al., 2005). Mental workload, distinct from 
physical tasks, focuses on the cognitive demands on 
individuals (Hamilton and Clarke, 2005), and is the 
interplay between a task's demands and the operator's 
mental capacity (Kruger, 2008). 

The impact of workload on operator performance is 
crucial and is illustrated in Figure 1.   

 

 
Figure 1. Workload versus performance (FRA, 2014). 

Figure 1 highlights how both under-load and over-
load can detrimentally affect performance. Specifically, 
under-load can lead to fatigue, boredom, and a decline 
in situational awareness, while over-load might result in 
exhaustion and compromised problem-solving abilities 
(FRA, 2014; Robinson et al., 2015).  

Despite the importance of workload in system design 
and operator performance, there is no unifying approach 
for defining, quantifying, and measuring mental 
workload (Foulkes, 2004; Jex, 1988). This gap is 
particularly evident in the context of train operations, 
where workload intricacies are critical for safety and 
efficiency. Current methodologies include time-based 
assessments, which compute workload as a ratio of time 
spent on tasks to available time, and task-based 
evaluations, which contrast mental effort against 
individual capacity (Hamilton and Clarke, 2005; 
Parasuraman et al., 2008; Wang et al., 2016). 
Furthermore, various methodologies and tools exist for 
measuring mental workload. To gain a comprehensive 
understanding of mental workload, several scholars —
Xie and Salvendy (2000), Miller (2001), Cain (2007), 
Kruger (2008), Young et al. (2015), Wilson et al. (2017), 
and Heard et al. (2018) — have reviewed and 
categorized different approaches for defining, 
quantifying, and measuring mental workload. 

These techniques fall into two primary categories: 
objective-subjective and empirical-analytical (Nneji, 
2019; Rusnock et al., 2015). Objective methods rely on 
real-world facts, such as task performance metrics and 



 

 
 

physiological indicators, whereas subjective methods 
depend on personal perceptions of workload (Heard et 
al., 2018). Empirical and analytical classifications offer 
another perspective. Empirical techniques are based on 
observed evidence, often from laboratory or field 
studies, while analytical methods hinge on theoretical 
reasoning, frequently employed in early system design 
stages (Rusnock et al., 2015; Xie and Salvendy, 2000). 

While many studies on train operators' workload 
exist, there is a lack of a comprehensive review that 
unifies these diverse approaches for a specific focus on 
train operators. Such a review is vital for enhancing 
system design and rail transportation efficiency. This 
paper fills this gap by analyzing the existing literature on 
this topic. 

The paper is structured as follows: Section 2 
presents the background, and Section 3 categorizes 
workload studies into subjective-empirical, subjective-
analytical, objective-empirical, and objective-analytical. 
Section 4 summarizes these studies, and Section 5 
concludes with key insights and implications of the 
review. 

 

2 BACKGROUND 
 

The measurement of mental workload, a pivotal aspect 
in the field of human factors and ergonomics can be 
dissected into two primary dimensions: objective versus 
subjective and empirical versus analytical. This 
categorization leads to four distinct categories of 
workload measurement approaches, each with its 
unique methods and metrics (see Figure 2 ) (Rusnock et 
al., 2015). 

a. Subjective-Empirical Measures: This category 
comprises methods that gather subjective opinions, 
typically via self-report questionnaires following 
simulator experiments. Such methods aim to estimate 
workload as experienced by the individual directly. 
Prominent examples include the NASA-TLX (Hart and 
Staveland, 1988), SWAT (Reid and Nygren, 1988), 
Cooper-Harper (Cooper and Harper, 1969), MRQ (Boles 
and Adair, 2001), Overall Workload (Jung and Jung, 
2001), and Workload Profile (Tsang and Velazquez, 
1996). These tools are crucial in capturing the operator's 
perceived effort and stress, offering insights into their 
subjective experience of workload. 

b. Subjective-Analytical Measures: In this 
approach, workload estimation relies on the expertise of 
subject matter experts or experienced users (Xie and 
Salvendy, 2000). These assessments are based on 
comparisons with similar systems or previous 
experiences. Techniques in this category, such as 
checklists and walkthrough methods (Evans, 2017), are 
particularly useful at the early design stages of systems, 
where empirical data from prototypes might not yet be 
available (Rusnock et al., 2015). They provide a 
preliminary understanding of the expected workload in 
new or modified systems. 

c. Objective-Empirical Measures: This category 
involves the direct assessment of objective workload 
metrics. These metrics can include task performance 
indicators (like error frequency or response time) and 

physiological measurements (such as heart rate or eye 
movement). Such assessments are typically conducted 
in controlled environments like laboratories or simulators 
(Rusnock et al., 2015; Wilson et al., 2017; Xie and 
Salvendy, 2000). These methods are valuable for 
quantitatively assessing workload in scenarios that 
closely mimic real-world conditions. 

d. Objective-Analytical Measures: These 
methods integrate task, environmental, and personal 
knowledge into mathematical models for workload 
assessment. They often involve detailed task analysis 
and understanding the system, operator, task, context, 
and modelling approaches. Techniques in this category 
are essential during the early design stages when 
empirical data are unattainable. Examples include 
Control Theory, Information Theory, Queuing Theory, 
Timeline Analysis and Prediction (TLAP), Visual 
Auditory Cognitive Psychomotor (VACP), W/INDEX, 
and various simulation models and human performance 
modelling tools like ATLAS, IMPRINT, and IPME 
(Rusnock et al., 2015; Wilson et al., 2017; Xie and 
Salvendy, 2000). 
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Figure 2. Workload measurement approaches and 
methods. 
 

3 TRAIN OPERATORS' WORKLOAD ASSESSMENT   
STUDIES 
 

Several studies have been conducted in the railway 
sector to explore the mental workload of train operators, 
examining both existing operational conditions and the 
impact of newly implemented train control systems. This 
section provides a comprehensive review of the diverse 
approaches employed in these studies to assess 
workload, offering a detailed insight into the 
methodologies and findings within this important area of 
research. 

 
3.1 Subjective-empirical studies on train operators' 

workload 
  

The study of subjective-empirical approaches to assess 
train operators' workload has been a focus of numerous 
researchers, including Gibson et al. (2007), Spring et al. 
(2009), Dunn and Williamson (2012), Scott and Gibson 
(2012), Large et al. (2014), Robinson et al. (2015), 
Basacik et al. (2015), Hely et al. (2015), Van Der Weide 



 

 
 

et al. (2017), Brandenburger et al. (2018), 
Brandenburger et al. (2019), Huang et al. (2019), and 
Verstappen et al. (2022). This section reviews key 
findings from these studies, emphasizing their 
methodologies and contributions to understanding the 
workload in train operations. 

Gibson et al. (2007) examined the impact of Train 
Protection Warning Systems (TPWS) on operators. 
Using simulator experiments, they collected subjective 
responses on workload through the Driver IWS rating, 
particularly for two improved TPWS driver machine 
interface (DMI) variants. Their findings underscored the 
potential benefits of these design modifications. Scott 
and Gibson (2012) also investigated the TPWS DMIs, 
employing the NASA-TLX method. Their results showed 
generally low workload measures, offering limited 
differentiation between the performances of the DMIs. 
Robinson et al. (2015) and Basacik et al. (2015) both 
utilized simulator experiments and the NASA-TLX for 
subjective workload measurement. Robinson et al. 
(2015) focused on the Automatic Warning System 
(AWS), uncovering that various factors influence 
workload. Notably, they found that AWS could lead to 
underloading in less demanding driving scenarios, and 
that increasing workload in such cases positively 
impacts self-reported measures of workload, arousal, 
and fatigue. Large et al. (2014) and Verstappen et al. 
(2022) conducted comprehensive studies on the Driver 
Advisory System (DAS) using subjective-empirical 
workload assessments. While Large et al. (2014) 
applied NASA-TLX, Verstappen et al. (2022) used the 
Rating Scale Mental Effort (RSME). Their research 
indicated that although DAS systems support efficient 
operation, they require operators to process 
considerable information, potentially leading to mental 
overload, especially in scenarios demanding rapid 
interpretation of prompts. Spring et al. (2009) explored 
the workload associated with the Automatic Monitoring 
Aid (AMA) system in Australia. Their methodology 
involved simulator experiments, assessing subjective 
workload perceptions using NASA-TLX and the 
Subjective Work Underload Checklist (SWUC). Their 
findings suggested that increased automation in train 
driving could reduce mental workload to suboptimal 
levels. Dunn and Williamson (2012) also used NASA-
TLX to assess Australian train operators' perceived 
workload, discovering that task complexity significantly 
impacts mental workload. Hely et al. (2015) compared 
the workload under Automatic Train Protection (ATP) 
and non-ATP conditions, noting that ATP, while 
enhancing safety, also increases attentional demands. 

Studies by Van Der Weide et al. (2017), 
Brandenburger et al. (2018), and Brandenburger et al. 
(2019) focused on the European Train Control System 
(ETCS). Using subjective workload metrics like NASA-
TLX and DLR-WAT, these studies generally found that 
ETCS tends to reduce mental workload compared to 
traditional systems. Huang et al. (2019) conducted an 
analysis combining both objective and subjective-
empirical approaches. Their subjective analysis, based 
on the NASA-TLX metric and real-world observations, 

concluded that the workload in manual driving mode is 
significantly higher than in automatic mode. 

 
3.2 Subjective-analytical studies on train operators' 

workload  
 
Research conducted by Wreathall et al. (2003), Foulkes 
(2004), Halliday et al. (2005), Wreathall et al. (2007a), 
Wreathall et al. (2007b), Roth et al. (2013), Simoes et al. 
(2016), and Van Der Weide (2017) represents pivotal 
subjective-analytical approaches in understanding train 
operators' workload. 

Halliday et al. (2005) examined the In-cab Signal 
Reminder Device (ICSRD), noting its potential to 
enhance safety by reducing dependency on trackside 
signals. However, they identified an increase in 
cognitive demands, especially in interpreting semaphore 
signals. Wreathall et al. (2003) and Roth et al. (2013) 
delved into the implications of Positive Train Control 
(PTC) systems. Their research, leaning on expert 
opinions and subjective evaluations, suggested that 
PTC systems might reduce workload in simpler 
operations but increase it in complex or emergency 
scenarios. Further studies by (Wreathall et al., 2007a; 
2007b) also highlighted the impact of PTC systems, 
finding an increased workload due to non-informative 
alarms and manual data input requirements. Foulkes 
(2004) and Van Der Weide (2017) explored the workload 
associated with the European Train Control System 
(ETCS). Based on Subject Matter Experts (SMEs), 
Foulkes's study indicated that ETCS Level 2, which 
eliminates lineside signals, could decrease mental 
workload relative to traditional systems but also flagged 
potential workload increases during transitions into and 
out of ETCS areas. Van Der Weide (2017) observed a 
generally lower workload for operators using ETCS 
compared to the legacy ATB system, with highly 
experienced operators even reporting instances of 
boredom. Simoes et al. (2016) undertook a subjective 
analysis using DALI (Driving Activity Load Index), an 
adaptation of the NASA-TLX. Their study leveraged 
expert insights to evaluate the workload impact of 
different train operation tasks. This approach offered a 
detailed understanding of how various operational 
aspects influence the mental workload of train 
operators. 

 
3.3 Objective-empirical studies on train operators' 

workload 
 
This section highlights studies employing objective-
empirical methods, including works by Robinson et al. 
(2015), Basacik et al. (2015), Hely et al. (2015), Gillis 
(2016), Balfe et al. (2017), Sebok et al. (2017), Huang et 
al. (2019), and Nneji et al. (2019). 

In the realm of train operators' workload studies, a 
substantial focus has been placed on objective-
empirical approaches, with some researchers also 
integrating subjective metrics for a more comprehensive 
analysis. For instance, Robinson et al. (2015) focused 
on objective measures like heart rate and response 
times to study the workload effects of the Automatic 



 

 
 

Warning System (AWS), supplementing these with 
subjective assessments such as the NASA-TLX. 
Basacik et al. (2015)  combined reaction time and error 
rate analysis with physiological data (skin conductance, 
heart rate) and subjective feedback to explore cognitive 
underload in train driving. Hely et al. (2015) assessed 
workload in Automatic Train Protection (ATP) using 
objective metrics like speed, acceleration, and response 
times, alongside eye-tracking and subjective 
evaluations. Similarly, Huang et al. (2019) emphasized 
objective measures, particularly reaction times across 
shifts, and included subjective assessments to enrich 
their analysis. 

Later studies, such as those by Gillis (2016), Balfe et 
al. (2017), Sebok et al. (2017), Huang et al. (2019), and 
Nneji et al. (2019), predominantly focused on objective-
empirical methods. Gillis (2016) focused on Cognitive 
Task Analysis (CTA) of train operation tasks, combining 
simulator experiments with direct observations of train 
operators to scrutinize their responses in different 
scenarios. Balfe et al. (2017) extracted task load data 
from on-train-data-recorders (OTDR), analyzing task 
times and calculating task time pressures. Sebok et al. 
(2017) investigated the impact of Trip Optimizer (TO) 
and PTC systems on operator workload, assessing 
human error rates in different workload-level scenarios. 
Nneji et al. (2019) conducted a study on the workload 
effects of PTC systems, utilizing real-world 
observations. They applied Task Analysis (TA) and 
assessed time pressure to understand the system's 
impact. The study revealed that in heavy traffic 
conditions, automation provided by PTC systems could 
be more effective than a freight conductor in managing 
the workload of locomotive engineers. However, in 
contrast, this automation might negatively affect 
operator performance in typical short-haul freight rail 
scenarios. 

 
3.4 Objective-analytical studies on train operators' 

workload 
 

This section reviews the application of objective-
analytical methods by researchers such as Foulkes 
(2004), Hamilton and Clarke (2005), Blanchard (2013), 
Groshong (2016), Verstappen et al. (2017), and Wang 
et al. (2021), highlighting their contributions to 
understanding the workload in train operations. 

Foulkes (2004) investigated the mental workload in 
the European Train Control System (ETCS), employing 
Task Analysis (TA) and the Workload Assessment Tool 
(WAT) to focus on task duration and cognitive demands. 
Hamilton and Clarke (2005) used cognitive theory and 
Visual, Auditory, Cognitive, and Psychomotor (VACP) 
measures to model train operators' workload under 
ETCS, validating their model by comparing VACP 
predictions with observed NASA-TLX values. Blanchard 
(2013) performed a detailed analysis of Cambrian train 
operations, evaluating workload using VACP metrics. 
The study highlighted that while automation reduces 
manual task frequency, it increases the complexity and 
cognitive demands associated with in-cab tasks. 
Groshong (2016) explored how different train control 

systems affect cognitive aspects of train operation, 
particularly decision-making and information 
processing. Verstappen et al. (2017)  assessed the 
workload in the Netherlands Railways' in-cab systems 
using the PARRC model, task analysis, and VACP 
analysis. They found that monitoring new devices while 
driving elevates workload due to increased visual and 
cognitive demands. Wang et al. (2021) developed a 
Timed Petri Net-based mental workload evaluation 
model, conducting a driving simulator experiment to 
validate their approach for system task optimization. 

 
4 AN OVERVIEW OF THE TRAIN OPERATORS' 

WORKLOAD STUDIES 
 

This section presents a consolidated overview of various 
studies on train operators' workload, as detailed in Table 
1. This table methodically outlines the methodologies, 
metrics, and systems each study examined. The 
majority of the 30 studies reviewed, predominantly from 
the US and UK, varied in their approach – some 
analyzed workload under existing train systems, while 
others assessed the effects of new in-cab systems and 
automation. 

Particularly in Europe and America, studies focusing 
on the European Train Control System (ETCS) and the 
Positive Train Control (PTC) system form a significant 
part of this research area. A marked trend in these 
studies is the preference for subjective-empirical 
methods, with the NASA-TLX tool being commonly 
used. Furthermore, the analysis indicates a preference 
for empirical workload assessment methods, combining 
subjective and objective metrics to validate findings, as 
shown in Figure 3. This preference suggests a tendency 
among railway companies to delay comprehensive 
workload analysis until the development of system 
prototypes or the availability of simulator experiments. 
While beneficial for testing in realistic or simulated 
environments, this strategy might overlook the 
advantages of early-stage analysis, which is crucial for 
optimizing operator interfaces, automation, and 
information presentation (Eggemeier et al., 1985; 
Endsley, 1995). 

The findings from the train operators' workload 
studies reveal diverse and sometimes contrasting 
effects of in-cab systems and automation on train 
operators' workload. Such variability in outcomes 
emphasizes the intricate nature of workload 
assessment, which is affected by a multitude of factors, 
including system features, individual operator 
characteristics, environmental conditions, and 
operational dynamics.  



 

 
 

Table 1. A review of the train operators' workload assessment and prediction studies. 

ID Authors Country Subjectiv/ 
Objective 

Empirical/ 
Analytical 

Data sources Methods and Metrics System 

1 Wreathall et al. (2003) US Subjective Analytical SMEs - PTC 

2 Foulkes (2004) UK Subjective, 
Objective Analytical SMEs TA, Task time, WAT ETCS 

3 Hamilton and Clarke 
(2005) UK Objective 

 Analytical Documents 
review 

CTA, Task time, Time 
pressure, VACP analysis ETCS 

4 Halliday et al. (2005) UK Subjective Analytical SMEs - ICSRD 

5 Wreathall et al. (2007a) US Subjective 
 Analytical SMEs - PTC 

6 Wreathall et al. (2007b) US Subjective 
 Analytical Documents 

review, SMEs - PTC 

7 Gibson et al. (2007) UK Subjective Empirical Simulator 
experiments IWS TPWS 

8 Spring et al. (2009) Australia Subjective Empirical Simulator 
experiments NASA-TLX, SWUC AMA 

9 Dunn and Williamson 
(2012) Australia Subjective Empirical Simulator 

experiments NASA-TLX - 

10 Scott and Gibson (2012) UK Subjective Empirical Simulator 
experiments NASA-TLX TPWS 

11 Roth et al. (2013) US Subjective Analytical SME, 
Observations - PTC 

12 Blanchard (2013) UK Objective Analytical 
Documents 
review, 
Observations 

TA, VACP, Frequency of 
driving tasks - 

13 Large et al. (2014) UK Subjective Empirical Simulator 
experiments NASA-TLX DAS 

14 Robinson et al. (2015) UK Subjective, 
Objective Empirical Simulator 

experiments 
NASA-TLX, Physiological & 
Performance measures AWS 

15 Basacik et al. (2015) UK Subjective, 
Objective Empirical Simulator 

experiments 
NASA-TLX, Physiological & 
Performance measures - 

16 Hely et al. (2015) Australia Subjective, 
Objective Empirical Simulator 

experiments 
NASA-TLX, Performance 
measures, & Eye-tracking ATP 

17 Groshong (2016) US Objective Analytical Documents 
review, SMEs CTA, Number of actions - 

18 Simoes et al. (2016) Portugal Subjective Analytical SMEs DALI (adapted the NASA-
TLX) - 

19 Gillis (2016) Belgium Objective Empirical 
Simulator 
experiments 
Observations 

CTA - 

20 Balfe et al. (2017) Ireland Objective Empirical OTDR TA, Task time, Time pressure - 

21 Sebok et al. (2017) US Objective Empirical Simulator 
experiments Performance measures TO, PTC 

22 Van Der Weide et al. 
(2017) Netherlands Subjective Empirical Simulator 

experiments RSMI ETCS 

23 Van Der Weide (2017) Netherlands Subjective Analytical SMEs - ETCS 

24 Verstappen et al. (2017) Netherlands Objective Analytical SMEs TA, PARRC, VACP analysis In-cab 
systems 

25 Brandenburger et al. 
(2018) Germany Subjective Empirical Simulator 

experiments NASA-TLX, DLR-WAT ETCS 

26 Brandenburger et al. 
(2019) Germany Subjective Empirical Simulator 

experiments NASA-TLX ETCS 

27 Nneji et al. (2019) US Objective Empirical Observations TA, Task time, Simulation, 
Time pressure PTC 

28 Huang et al. (2019) China Subjective, 
Objective Empirical Observations TA, Task time, NASA-TLX, 

Physiological measures - 

29 Wang et al. (2021) China Objective Analytical Documents 
review TPN - 

30 Verstappen et al. (2022) Netherlands Subjective Empirical Simulator 
experiments 

Physiological measures and 
Rating Scale Mental Effort  DAS 



 

 
 

This complexity necessitates a detailed and careful 
interpretation of workload study results within the 
context of train operations. 
 

 
Figure 3. The applied approaches in train operators' 
workload studies.  
 

5 CONCLUSIONS 
 

This paper provided a review of studies focused on the 
mental workload of train operators, especially in the 
context of evolving train protection and control systems. 
Our analysis categorized these studies based on their 
methodologies—subjective vs. objective and analytical 
vs. empirical—while also considering the methods, 
metrics, and types of train cab systems examined. 

This review highlighted the prevalent use of 
subjective-empirical methods in train operators' 
workload studies, with a focus on evaluations conducted 
post-prototype development or through simulator 
experiments. However, this approach sometimes 
overlooks the benefits of early workload analysis, which 
is essential for user-centric design and error prevention. 
Furthermore, the review revealed diverse impacts of in-
cab systems and automation on workload, influenced by 
factors like system characteristics, operator individuality, 
and environmental conditions. This variability 
underscores the complexity of workload assessment in 
railway operations and the need for comprehensive 
evaluation methodologies. 

For future research, there are two critical directions: 
Firstly, analyzing the workload of train operators in 
Canadian railways, particularly post-implementation of 
the Enhanced Train Control (ETC) system, would 
provide valuable insights into the effects of advanced 
control systems in different national contexts. Secondly, 
future studies should address the lack of consideration 
for contextual factors in analytical workload models. This 
would enhance understanding of how environmental 
and situational variables impact operator workload, 
leading to more effective and adaptive system designs. 

Overall, a balanced approach is recommended to 
integrate both subjective and objective methods as well 
as analytical and empirical methods in the early and later 
stages of system development. Such a strategy will 
contribute significantly to ensuring railway operations' 
safety and efficiency while improving train operators' 
overall well-being and performance. 
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