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Abstract

Many models exist to study earthquake fault systems to gain a fundamental

understanding of the dynamic processes that occur during an earthquake. We

study cellular automata (CA) models to replicate a simple earthquake fault

model. We find that the dynamics of a CA model can be simplified to a

statistical Markov process. This offers a new insight into how an earthquake

sequence may develop and suggests that some underlying processes are more

probable than others. We compare the Markov model to the CA model and

find that they are in good agreement. Lastly, we implement heterogeneities into

the CA model as varied structures which complicate model dynamics. We find

heterogeneities generate swarm events and temporal clustering visible within

their time series. Therefore, the overall shape and slope of the frequency-size

relation is modified. This suggests that scaling depends on the underlying

spatial distribution of heterogeneities. A fundamental understanding of the

basic processes can help predict the behavior of more complex mixed systems,

which is the ultimate goal of this project.
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Chapter 1

Introduction

1.1 Motivation and contribution

This thesis aims to study earthquake dynamics through a numerical model that

can help link qualitative features of earthquakes observed in nature to underly-

ing governing physics. Studying the interconnected fields of cellular automata,

self-organized criticality, and critical phenomena can greatly aid our under-

standing of complex processes such as earthquakes. A large body of informa-

tion can be obtained from lattice models for earthquakes such as the universal

Gutenberg-Richter scaling, the generation of foreshocks and aftershocks, and

the effect of heterogeneous structures.

One of the main contributions of this thesis is the development of a predic-

tive statistical model that captures the fundamental processes that occur within

the cellular automaton earthquake fault model. This requires an in-depth anal-

ysis into how a cellular automaton evolves. We further contribute with a com-

prehensive analysis of the dynamics that originate from the implementation

of heterogeneities. Beyond the numerical model, we discuss the implications

of our results. These include the origin of spatiotemporal clustering within

the time series, changes in the scaling of the frequency-size distributions, the

dynamics of the internal stress distribution, how avalanche sequences develop

and lastly the spatial clustering of events.
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1.1.1 Questions to answer

The questions we aim to answer are as follows. 1) How are magnitude-frequency

distributions influenced within a cellular automaton model? 2) When do swarms

of events and spatial clustering occur? 3) Under what circumstances do we see

classic foreshock-mainshock-aftershock sequences in the resulting time series?

4) What is the likelihood of small-scale failure leading to large magnitude seis-

micity? 5) What does the slip history look like for the largest events? 6) Can

we predict, and therefore understand, the behavior of our model based on our

initial parameters?

Answering these questions provides insight into the (un)predictability of

small-scale events triggering larger magnitude seismicity, thus identifying diag-

nostic patterns for successful mitigation.

1.2 Thesis structure

This thesis is organized as follows. Chapter 2 reviews the background litera-

ture of the slider-block earthquake fault model. Thereafter, the purpose is to

describe the transition from a Newtonian mechanics fault model into a sim-

plified automaton fault model. Chapter 3 describes the theory of the cellular

automaton model, the implementation of inhomogeneities and the relation be-

tween plate update time (simulation time) and physical time (time proxy). We

briefly describe the implementation of the hexagonal grid within our model. A

back-of-the-envelope model statistic is derived, along with a review on how to

calculate the fractal dimension in order to study spatial correlations. Chapter 4

formulates a new proposed Markov model to statistically replicate the process

of the cellular automaton model. We demonstrate how an analytical probability

distribution can be calculated from the transition matrix for both homogeneous

and inhomogeneous cellular automaton models. Lastly, we present a Markov

chain Monte Carlo algorithm. Chapter 5 focuses on the examining the results

of the homogeneous cellular automaton model, along with analyses of the in-

ternal system details. Chapter 6 provides the results of the alternative Markov

model, and compares the results to the homogeneous cellular automaton model.
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Chapter 7 is a in depth analyses of the results obtained from the inhomoge-

neous cellular automaton models. In particular, two distinct inhomogeneous

models are studied: i) the inhomogeneous block model, and ii) the inhomoge-

neous structure model. These are compared to the proposed Markov model as

well. Chapter 8 is an in-depth discussion of the results and their implications

towards earthquake dynamics. Lastly, Chapter 9 summarizes the thesis and

proposes some future work.
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Chapter 2

Background

2.1 Introduction

The topic of industrial activity possibly inducing earthquakes remains an active

research subject. It is unclear how greatly natural seismicity can be influenced

by inhomogeneities and underlying structures. It is probable that the likelihood

for induced seismicity depends on many formation conditions such as the in-situ

stress, mechanical properties, treatment conditions and other heterogeneous

reservoir factors (Warpinski et al., 2001). Modeling techniques exist that vary

in their underlining physics and spatial scales. We employ the cellular automata

(CA) model to study the effects of variously distributed inhomogeneities on a

system with long range stress interaction with emphasis on fault network and

system scales.

This discrete model is simple, yet capable of producing complex patterns

also observed in earthquakes (Rundle and Klein, 1993). The proposed CA

model is a self-organized criticality (SOC) many-body system that evolves to-

wards an attractor in form of a critical point (Bak et al., 1987, 1988; Olami

et al., 1992). The rationale behind this study is that the dynamic system

exhibits behavior much like real earthquakes.
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2.2 Universal Scaling Law

In seismology, the Gutenberg-Richter (GR) empirical law recognized that seis-

micity is statistically self-similar in a wide range of scales worldwide (Gutenberg

and Richter, 1954). The Richter magnitude ML, unitless, is a measure of the

magnitude of an earthquake determined from the logarithm of the maximum

amplitude recorded by a seismograph after accounting for amplitude atten-

uation due to the distance between the source (earthquake) to the receiver

(seismograph) (Richter, 1935). This power law relation between earthquake

magnitude and frequency is expressed as

log10NML
= a− bML (2.1)

or

NML
= 10a−bML , (2.2)

where NML
is the number of earthquakes having Richter magnitude greater or

equal to ML, and a and b are constants (Gutenberg and Richter, 1954). The

a value indicates the total seismicity of the region, whereas the constant b is

a measure of the proportions of large and small earthquakes. A larger b value

will have a greater proportion of small earthquakes, whereas a smaller b value

will have a lower proportion of small earthquakes. Generally, the constant b ≈
1 observed worldwide suggests self-similarity (Gutenberg and Richter, 1954),

although variations in the b constant have been noted for shallow and deep

earthquakes due to underlining stress regimes (Pacheco et al., 1992; Frohlich

and Davis, 1993).

The use of the Richter magnitude ML was replaced by the moment magni-

tude scale Mw as a more physically accurate method for describing the mag-

nitude of events. The moment magnitude scale Mw, dimensionless, can be

expressed in terms of the scalar seismic moment M0, N·m, as

Mw =
2

3
log10(M0)− 10.7,where M0 = µAD, (2.3)

and µ is the shear modulus, A is the area of the fault rupture, and D is the

average displacement (Kanamori, 1978). The moment magnitude Mw is mag-

5



nitude scale that is converted from the scalar seismic moment M0, where M0 is

a physical measure proportional to the total energy released in an earthquake.

The seismic moment M0 is obtained from observed seismograms once the effect

of propagation, attenuation, and geometry of the fault are removed (Kanamori,

1978). Therefore, the moment magnitude Mw (Eq. 2.3) provides estimates of

the earthquake size that is valid over a wider range of magnitudes, but in

agreement with older previous magnitude scales such as the Richter magnitude

ML.

Combining Equations 2.2 and 2.3, the Gutenberg-Richter relation can be

re-expressed as a power law proportional to the moment M0 as

NM0 ∼ NTM
−2/3b
0 ,where NT = 10a, (2.4)

and NM0 is the total number of events with a moment greater or equal to M0,

and NT is the total seismicity of the region (Serino et al., 2011). The universal

scaling relation of Equation 2.4 has been the study of various models, including

the original spring-block model of Burridge and Knopoff (1967).

2.3 Earthquake Fault Models

2.3.1 Burridge-Knopoff (BK) Model

Studying earthquake fault models was introduced by Burridge and Knopoff

(1967) and their laboratory experiments of earthquake sequences. Originally,

the spring-block model consisted of a leading spring pulling a one-dimensional

spring-block system that would produce a series of impulsive motion of varying

magnitudes in between quiet intervals, as shown in Figure 2.1. The system

consisted of blocks of equal mass m connected with identical springs Kc.

The displacement of every block after every event was recorded; thereafter

using Hooke’s law the potential energy released from all springs at each event

was calculated. Given that the driving motor pulls at a constant velocity v,

the rate of displacement from a reference point is proportional to time. This

allowed for the system to be stopped after a shock to note the coordinates of all

masses. Thus, the potential energy is expressed as a function of the coordinates

6



Figure 2.1: A schematic diagram of Burridge and Knopoff (1967) laboratory
spring-block model. The front block is pulled at a constant velocity v on a
rough surface, which effectively charges the system creating shocks of varying
magnitudes in between quiet periods. All blocks have identical masses m and
spring constants Kc.

of the system and not time.

The model demonstrated that small shocks would sometimes trigger a cas-

cade of slippage that resulted in major shocks at a quasi-periodic occurrence.

Furthermore, using the Gutenberg-Richter relation (Eq. 2.1) and the general

energy-magnitude relation of

M = α +
2

3
log10E, (2.5)

both equations combine to give

log10N/N0 ∼ −
2

3
b log10E, (2.6)

where log10N/N0 is the logarithm of the number of shocks with potential energy

release greater than E against the logarithm of E (Gutenberg and Richter,

1955; Burridge and Knopoff, 1967). The frequency-energy diagram exhibits a

power-law distribution from the stick-slip behavior of the system, as shown in

Figure 2.2.

To further examine the role of friction along a fault, the equations of motion

and velocity-weakening friction law of the BK model were implemented into a

numerical model. The equation of motions of the blocks of the generalized

model is expressed as

miẍi = Kc(xi+1 − 2xi − xi−1) +KL(xi + vt) + fi, (2.7)

where mi is the mass of the ith block, x is the displacement of the ith block,

Kc the coupling spring constant, KL the loading plate spring constant, v is the

7



Figure 2.2: Burridge-Knopoff model results of potential energy as a function
of time (left) and frequency-energy diagram (right) for their system with all
springs equal. Modified Figures 4 and 5 of the BK model (Burridge and
Knopoff, 1967).

loader plate constant velocity multiplied by a time t, and where fi includes the

frictional forces, radiative effects and viscosity for the ith block (Burridge and

Knopoff, 1967). Typically, KL � Kc with a ratio of KL/Kc = 0.01 used in the

numerical simulations at slow loading velocities. The schematic diagram of the

generalized BK model is shown in Figure 2.3.

Figure 2.3: Schematic diagram of the BK numerical model (Burridge and
Knopoff, 1967). A one-dimensional system of springs and blocks on a rough
surface with a loader plate acting on all blocks via a loading spring KL. All
blocks are interconnected with identical spring constants Kc with the loading
plate being pulled at a constant velocity v. The loader plate acts on every block
of the system creating shocks of varying magnitudes in between quiet periods.

The nonlinear differential equations were numerically integrated using the

Runge-Kutta procedure. The computed results showed a generalized process

of the laboratory model described earlier, but allowed Burridge and Knopoff

8



(1967) to examine a more complex fault with a viscous region that acted as a

time delay barrier to the transmission of the shock. The model statistics such

as potential energy, total energy, block coordinates, velocities and accelerations

were also computed. Lastly, Burridge and Knopoff (1967) results showed that

the introduction of a time-delaying viscous region into the model produced

the occurrence of aftershocks that take place following a major shock. The

viscous region divided a group of blocks that form a chain analogous to a

strongly seismic fault and a second group of blocks that represent a weaker

seismic fault. The aftershock quake would correspond to the continuation of

the mainshock motion through the viscous material to the other fault blocks.

Since then, many variations of the original BK model have been proposed

to replicate the self-similarity in observed seismicity, along with other seismic

phenomena such as spatiotemporal clustering, scaling of average slip and stress

release, foreshock and aftershock sequences, heterogeneities of fault surface or

a system of faults.

Carlson and Langer (1989) examined a deterministic one-dimensional spring-

block system similar to the original BK model and observed complex and

chaotic system behavior. The homogeneous model showed that it was capa-

ble of replicating the Gutenberg-Richter scaling law under nonlinear velocity-

weakening friction. Carlson et al. (1991) further examined the BK model of

a fault and highlight the distinction between smaller localized events and the

larger delocalized events, where small events primarily smooth the system’s

elastic-energy density and larger events roughen it.

Nakanishi (1990, 1991) introduced a cellular automaton version of the BK

model that simplifies the mechanical model into a simpler threshold based

model, where slip occurs if the force on a block exceeds a predefined threshold.

A cellular automaton is a simplified mathematical model used to investigate

self-organization or an emerging pattern between blocks interactions (Wolfram,

1983). Only one block is allowed to move at any given time with all other blocks

assumed to be stuck. Afterwards, part of the force of the slip is redistributed to

the neighboring blocks that may iteratively slip in turn. This approach allows

for a simulation of the numerical BK model to be less computationally intensive

and allows to investigate a larger array of blocks. Nakanishi (1990, 1991)
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found similar results to those of Carlson and Langer (1989); although both

models are completely homogeneous, they both exhibit spatial and temporally

inhomogeneous behavior with a power-law distribution of event sizes.

2.3.2 Chain-reaction Source Model

Otsuka (1972b) was one of the first to propose a two-dimensional version of

the BK model, as shown in Figure 2.4, where each block has four neighbouring

blocks and slip or block motion occurs parallel to the direction of loading. Not

only did this increase the number of elements, but it also allowed to simulate

spatial slip patterns. The numerical simulation consisted of a total of 2000

blocks with 100 blocks crosswise and 20 blocks lengthwise. It was noted that

slippage of small clusters occurred more frequently than the larger ones. A less

computationally expensive probabilistic model was proposed as an alternative

to the BK model; this probabilistic approach bears resemblance to the Markov

chain model we propose in Chapter 4.1.

Figure 2.4: A two-dimensional implementation of the BK model (Otsuka,
1972b). Blocks are interconnected with identical spring constants Kc and to
the loading plate via a loading spring KL. The loading plate is being pulled
at a constant velocity v relative to the frictional surface with block motion
occurring parallel to the direction of loading plate.

The alternative model is a chain-reaction source model that conceptualized

the magnitude-frequency relation as a probability controlled phenomenon (Ot-

suka, 1972a). A chain reaction starts with a single slip which can propagate
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into new slips of neighboring blocks each with a probability of p. This process

is repeated until all rupture progression has halted with the resulting number

of slips being the total number of successes from all steps; Figure 2.5 illustrates

this stochastic concept model for two nearest neighbors. The author suggests

that the extent of the focal region and the amount of energy liberated during

a seismic event is a result of probability controlled fracture formation.

Figure 2.5: Chain-reaction source model that simulates the progression of slips
of the spring-block model through a stochastic process (Otsuka, 1972a). In step
1, the model starts with a single failure (white circle) which may induce two
new slips each with a probability p. This process is repeated until all rupture
chains have halted (black circle). In this case the resulting number of slips is 4
(1+2+1).

2.3.3 Rundle, Jackson and Brown (RJB) Model

Dieterich (1972b,a) examined the role of time-dependent friction as a possible

mechanism for aftershocks from a numerical model based on the BK model.

Later, Rundle and Jackson (1977) implemented a slider block model with mass-

less blocks based on the models of Dieterich (1972a) and Burridge and Knopoff

(1967) to simulate earthquake sequences of a fault. The model parameters

where chosen to replicate faulting of a granitic rock along a frictional surface

with model dimensions with displacement in cm, time in years, plate velocity

in cm/year and stress in kbar. The seismic behavior of the model was fairly

representative of reality, although the stress drops and average magnitudes did

not agree as well.
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The idea of utilizing cellular automaton models to replicate complex systems

through the dynamics of simple interaction is easier to implement and very

effective at simulating macroscopic physical systems (Von Neumann and Burks,

1996). The CA model is a conceptual 2-D model with each block having certain

states that respond to inputs in a predefined set of rules. It is possible to

represent classical mathematical processes through the many body interactions

of a CA model.

Bak et al. (1988) examined self-organized criticality (SOC) in which a sand-

pile model evolves into critical states while remaining robust to varied initial

conditions, system parameters, and under the presence of quenched random-

ness. The authors argue that studying the general behavior of the system

based on discrete cellular automata offers the advantage of being much easier

to implement and analyse than system based on continuous partial differential

equations. These generalized systems can evolve towards a self-organized crit-

ical state with spatial and temporal power-law scaling behavior with possible

application to earthquakes (Bak et al., 1988; Bak and Tang, 1989).

Rundle and Brown (1991) presented a simplified cellular automaton model

based on previous spring-block models (Rundle and Jackson, 1977; Dieterich,

1972a; Burridge and Knopoff, 1967). This model idealized the contact surfaces

of a block as massless microscopic contact points that fail and slip relative to

each other in a stick-slip process. Each microblock is an asperity, or rough

stuck surface, on the underside of the macroscopic block, as shown in Figure

2.6. A microblock is frictionally stuck to the surface until local forces become

large enough to break the contact and cause the block to jump laterally to a

new local equilibrium position plus a random overshoot. The RJB automaton

model replaces the details of the microscopic cohesion-decohesion of a block

with a simple jump rule, which is appropriate for small loading plate velocities

v. Increases in velocities produce a decrease in frictional resistance, otherwise

known as velocity weakening. Therefore, an increase in plate velocity v pro-

duces an excess number of lattice clusters for a brief duration allowing slip on

the lattice to catch up. The bottom of the macroscopic block, see Figure 2.6,

becomes divided into an L× L lattice of joining microscopic squares as shown

in Figure 2.4.
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Figure 2.6: Rundle and Brown (1991) macroscopic block being dragged over a
contacting surface at a velocity v by a ram-piston Kc at a normal force of NF .

The force σi of the ith square is calculated as

σi(t) = pi(t) +
∑
j

Tijφj(t), where φj(t) = sj − vt, (2.8)

and pi is the externally applied force and Tij is an interaction between the

squares neighbors’ (Green’s function). The parameter φ is the slip deficit with

sj being the total distance block j has slipped relative to the loading plate

translating at a velocity v at a time t; in other words, the amount the block

lags behind the driving fixture (Brown et al., 1991). Block slip is parallel to

the direction of motion of the loading plate.

The system is evolved by incrementing t by δt producing a force of δσi =

−
∑

j TijV δt > 0 at all sites. Each block is assigned a failure envelope σFi with

slip occurring if σi > σFi . If slip occurs, the amount of slip is si = (σD−σi)/Ts,
where σD is the dynamic frictional strength and Ts is the self-interaction term.

The RJB automaton model evolves following the rules of:

1. Begin with random initial conditions si(0), set pi(0).

2. Increment time t by δt.

3. Calculate local stress σi.

4. (a) Fix time t, locate all active sites (σi > σFi ).

(b) Adjust slip of all such sites as si → si + δsi, set σi → σD.

5. Repeat step 4 until no active sites remain.

6. Repeat step 2-5 until t reaches set end time.
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The model contains two timescales Γ and ∆, where Γ is the average time

for a microblock to fail upon sufficient shear force and ∆ is the average time

interval between successive application of shear forces. The model of Rundle

and Brown (1991) matches macroscopic laboratory observations in the limit

of ∆ � Γ meaning that the loading plate does not move while an event is

occurring. As an aside, the order of slip adjustments should not matter as time

is fixed while adjustments to the slip are made for all failed sites.

2.3.4 Olami, Feder and Christensen (OFC) Model

Olami et al. (1992) presented a nonconservative cellular automaton that dis-

plays self-organized criticality equivalent to the two-dimensional Burridge-Knopoff

spring-block model. The system is mapped onto a square L×L array of blocks.

The blocks are driven by the relative motion of the loading plate, where the

total force on a block Fi,j is expressed as

Fi,j = Kc[4dxi,j − dxi−1,j − dxi+1,j − dxi,j−1 − dxi,j+1] +KLdxi,j, (2.9)

where dxi,j is the relaxed position of block (i, j) with elastic constants Kc and

KL (Olami et al., 1992). When a site reaches a threshold value (Fi,j ≥ Fthr) an

earthquake is triggered and the process of relaxation begins. For Olami et al.

(1992) model, the redistribution of strain after a local slip at a position (i, j)

is given by

Fi±1,j → Fi±1,j + δFi±1,j,

Fi,j±1 → Fi,j±1 + δFi,j±1, (2.10)

Fi,j → 0,

where the increases in nearest-neighboring force are

δFi±1,j =
Kc

4Kc +KL

Fi,j = αFi,j,
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δFi,j±1 =
Kc

4Kc +KL

Fi,j = αFi,j, (2.11)

where α is the elastic ratio. The Olami et al. (1992) model evolves using the

following algorithm:

1. Set all sites to a random initial force Fi,j

2. If there are any active site (Fi,j ≥ Fthr) then redistribute the force Fi,j to

neighbors according to the rules

(a) Fn,n → Fn,n + αFi,j,

(b) Fi,j → 0,

where Fn,n are the strains for the four-nearest neighbors.

3. Repeat step 2 until no active sites remain.

4. Locate site with the block closest to slip max(Fthr − Fi,j) and add the

difference to all sites and return to step 2.

The total number of relaxations in the evolution of the earthquake is pro-

portional to the energy E released during an earthquake (Eq. 2.6), from which

a power law distribution can be plotted of the number of observed earthquakes

with energy greater than E.

Olami et al. (1992) noted that the continuous, non-conservative cellular

automaton exhibits SOC behaviour for a wide range of elastic ratios α under

varied system size L and external noise. As the lattice size is varied for L =15,

25, 35, and 50, the exponent of the power law remains constant for a fixed

elastic ratio α, while the maximum possible earthquake energy scales with the

system size as L2.2. Olami et al. (1992) simulated results for an 35× 35 block

system with varied elastic constants α are shown in Figure 2.7; the variance

observed in the scaling exponent, or slope, depends on the elastic constant

α. As the elastic constant α is lowered the movement of the blocks becomes

increasingly uncorrelated due to the decrease in block interactions.
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Figure 2.7: Simulated results for the probability density of having an earth-
quake of energy E as a function of E. The curves correspond to models with
an elastic constant of α = 0.10, 0.15, 0.20, and 0.25, from left to right. Modified
Figure 2a from Olami et al. (1992).

2.4 The BK, RJB and OFC models

The BK model consists of blocks of mass m interconnected by springs of con-

stant Kc resting on a surface with a velocity dependent friction force. These

blocks are connected by springs KL to a loader plate moving at constant ve-

locity v (Burridge and Knopoff, 1967). Numerically solving the BK model is

computationally difficult, therefore a simpler formulation was implemented in

the form of the RJB model.

The RJB model simplifies the friction force of the block into a stick-slip

model where individual blocks are assigned a failure threshold σF and a residual

threshold σR (Rundle and Jackson, 1977; Rundle and Brown, 1991). An initial

position is assigned to the blocks, along with an internal stress that incorporates

the forces due to the coupling springs Kc and the loading springs KL. In

simplification, when a block fails its displacement ∆x is given as

∆x =
σi − σR
KL + qKc

, (2.12)

16



where q is the number of neighbors of a block (Rundle and Jackson, 1977;

Klein et al., 2017). The blocks are assumed to have zero mass to neglect

inertial forces in the motion of the blocks, therefore the extent of motion is

underestimated (Rundle and Jackson, 1977). Rundle and Jackson (1977) note

that this simplification should mainly affect the generation of seismic waves

and should not affect the model statistics greatly.

In earthquakes the stress transfer occurs over long range, therefore the num-

ber of interconnected neighboring blocks q tend to be much greater than the

four nearest neighbors of q = 4 of a two-dimensional system (Klein et al.,

1997, 2000). Within the RJB model, when a block is moved a distance ∆x the

amount of stress dissipated is given as ∆σdiss, RJB = KL∆x (Klein et al., 2017).

Therefore, the amount of stress dissipated ∆σdiss, RJB when a block is moved

is given by

∆σdiss, RJB = KL[
σi − σR
KL + qKc

], (2.13)

for the RJB model (Klein et al., 2017). Within the OFC model, the amount of

stress dissipated is given as

∆σdiss, OFC = α(σi − σR), (2.14)

where the fraction α represents the amount of stress lost and not redistributed

to the neighboring blocks (Klein et al., 2017). Hence, the amount of stress lost

after a failure can be made identical for the RJB and OFC models by setting

Equations 2.13 and 2.14 equal to each other, which simplifies to

α =
KL

KL + qKc

. (2.15)

After dissipation, if both the RJB and OFC models have identical lattice

systems and number of neighboring cells q than the amount of stress left to be

transferred to neighboring blocks is identical (Klein et al., 2017). Therefore, in

terms of stress on each block the RJB and OFC models can be made equal.

It should be noted that the RJB model has a natural definition of energy,

namely the energy stored in the springs, whereas the OFC model has no natural

definition of energy (Klein et al., 2017). In simplification, the fraction 1-α
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represents the elastic ratios that governs the stress transfer to neighboring

blocks after a block’s failure, whereas σi represents the internal stress of a

given block that incorporates the sum forces from the coupling springs Kc and

the loading springs KL.

2.5 Model Ingredients

Simulations of the BK model require solving Newton’s equation of motion which

is very time consuming, thus CA models have been proposed as an alternative.

These CA models ignore the mass of the blocks, therefore neglecting the inertia

of the blocks, and simplify the motion of the blocks by using a jump or transition

rule (Rundle and Klein, 1993; Xia et al., 2008). Rundle and Klein (1995)

argue that inertia is less important than other entropic and internal energies as

seismic radiation loss during an earthquake is less than 5−10% (Kanamori and

Anderson, 1975). Likewise, a jump rule friction law is utilized to create a stick-

slip block motion of the blocks identical to a Mohr-Coulomb law where failure

σF and residual σR thresholds are specified to create a failure mechanic (Olami

et al., 1992; Rundle and Brown, 1991; Rundle and Klein, 1995); equivalently,

the slip (failure) of the block on the frictional surface can be thought to occur

when µs > µd where µs and µd are static and sliding coefficients of friction,

respectively, of the rough surface.

This allows to simulate systems that are much larger and extend to two-

dimensions or three-dimensions compared to the one-dimensional Burridge-

Knopoff models (Bak et al., 1988). Bak et al. (1988) note that both two and

three dimensional systems can evolve towards a power law scaling behavior

with an universal exponent. Systems in the near mean-field limit (infinite

range) that exhibit mean-field critical points require long range stress transfer

and a large enough lattice to overcome the finite size effect (Bak and Tang,

1989; Klein et al., 1997, 2000, 2007).

A certain amount of randomness, or noise, is also required such that the

evolution of the system does not synchronize. These may be a certain amount

of disorder set at initial model conditions, a randomness introduced into the

failure threshold (static friction) over time, or simply choosing a site at random
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to additionally add stress onto (Turcotte, 1999; Pelletier, 2000; Castellaro and

Mulargia, 2001).

Furthermore, it is necessary that the systems be dissipative (energy re-

leased) either across the lattice or at the boundaries with energy fed into the

system in bulk or through the boundaries (Bak and Tang, 1989). The flux

of energy occurs in two timescales, being the very slow loading time (energy

given) and the fast block rupture time (energy released). The loading rate can

be considered as a slow tectonic buildup, whereas the rate of elastic rebound

is much greater. In order to ensure that the rate of loading is always much

less than the rate of rupture, tectonic loading may only occur as long as all

blocks are stable (Bak et al., 1988; Rundle and Brown, 1991; Gabrielov et al.,

1994; Pelletier, 2000). In real cases of earthquakes tectonic loading may be in

the order of a century, whereas the largest earthquake may be as long a couple

of minutes (Gabrielov et al., 1994). In our CA model, the slow time scale is

called plate update time tpu with the fast development of the avalanche called

the inner plate update time tin.

2.6 Modern Model Variations

The cellular automaton version of the BK model has been the subject of consid-

erable interest in seismology, along with the concept of self-organized criticality

and seismicity. A self-organized system is one that naturally evolves to critical

states without detailed specification of the initial conditions, while remaining

robust with respect to variations of parameters and the presence of quenched

randomness (Bak et al., 1988). Janosi and Kertesz (1993) concluded that var-

ious amounts of conservation (dissipation) and randomness both affect critical

behavior and scaling; furthermore, the characteristic avalanche sizes for any

non-conservative system is restricted to being smaller than the system size.

When blocks are only connected to nearest-neighbouring springs the number

of earthquakes ns with s slipped blocks exhibit a power-law dependence on s as

ns ∼ s−x, with x ≈ 2 (Xia et al., 2005). A generalized version of the CA models

has been formulated to include more realistic long range stress transfer (R� 1)

rather than just the nearest-neighbors (R = 1), where R is the radius from a

19



given block to the surrounding blocks (Rundle and Klein, 1993). This way, each

block is connected to many other blocks, thus generating a mean-field behavior,

cluster structure and spinodal nucleation; the spinodal corresponds to the limit

of metastable states with fluctuation about a critical point responsible for the

observed scaling of avalanche sizes (Rundle and Klein, 1995; Klein et al., 1997,

2000, 2007). These CA models with long-range stress transfer, R → ∞, have

been shown to exhibit clustering scaling that can be described by the Fisher

droplet model distribution (nucleation process) as

ns = n0
exp(−∆hs)

sτ
, (2.16)

where ns is the non-cumulative count of failed cells with size s (Fisher, 1967;

Klein et al., 2000, 2007). As such, n0 is a measure of the seismicity, whereas

∆h is the limit of stability (spinodal), and τ = 3/2 (mean-field exponent) for

systems with long range stress transfer (Klein et al., 2000, 2007). Therefore,

constants n0 and ∆h of Equation 2.16 are analogues to constants NT and b of

Equation 2.4.

Gabrielov et al. (1994) examined different fast time dynamics, where fast

time is associated with the fracture event for two broad classes; a series and a

parallel model. In a series model, an instantaneous release of stress at a failed

site is followed by a transfer of some fraction of the stress to the neighbouring

sites. If the amount of stress released is reduced to zero (residual threshold),

then the model displays a 1/f size-frequency law for low dissipation parameters

termed periodic chaos. If the amount of stress released is reduced by a fixed

amount a periodic behavior appears, but to a lesser degree. In a parallel model,

there is a relatively slow release of stress at a failed site with instantaneous

transfer of stress to neighboring cells. Theses models converge to a power law,

but with an exponential cutoff that depends on the dissipation parameter of

the system.

Ramos et al. (2006) observed nontrivial quasiperiodic behavior in their vari-

ation of the OFC model with the period of large avalanches proportional to the

degree of dissipation. When noise is added, as either variations in the dissipa-

tion parameters or the failure thresholds of blocks, the periodicity diminishes

while the system remains showing the avalanche size distribution that follows
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a power law.

Xia et al. (2005, 2008) simulate the BK model with variable range stress

transfer and found that a system with long range stress transfer R� 1 and high

dynamic friction force α ≤ 1 (damped motion) is consistent with the behavior

of long range CA models. The scaling regime for a BK model with α→ 0 and

R � 1 was found to be consistent with an equilibrium spinodal critical point

and a mean-field exponent of τ = 3/2 as described by Klein et al. (2000). For

low dynamic friction force α ≥ 1 and large R the system becomes nonergodic

(spatial and temporal averages are not constant over time and space) due to

quadiperiodic behavior of stress.

Tiampo et al. (2003, 2007) employ the Thirumulai-Mountain fluctuation

metric (Thirumalai and Mountain, 1993) to seismic data and the slider block

model to evaluate effective ergodicity or rather if stationarity and equilibrium

states exists in earthquake fault models. The authors suggest that equilibrium

in fault systems exists between large events that drive the system out of equi-

librium for some time after which a quasiequilibrium state is re-established;

these fault systems display some dynamics of driven mean-field systems seen

in numerical simulations such as the slider block models.

Other studies have utilized the CA model to examine earthquake dynam-

ics such as magnitude and scaling, clustering, spatial heterogeneities or dam-

age, foreshocks and aftershocks (De Rubeis et al., 1996; Castellaro and Mula-

rgia, 2001; Serino et al., 2010; Dominguez et al., 2013; Kazemian et al., 2015).

De Rubeis et al. (1996) proposed an alternative model that examined the crit-

ical behavior generated by a pre-existing fractal geometry of the fault. Their

study suggests that roughness of the fault is related to the earthquake statistics,

and thus observed scaling relations. Castellaro and Mulargia (2001) considered

different loading such as time-dependent loading (one initiating failure), and

random loading of individual lattice sites (numerous initiating failures). As a

greater number of random initiating failures are introduced the system becomes

more dissipative with the frequency-size distribution of all events becoming

bell-shape as small sized events tend to disappear.

Serino et al. (2010) examined the role of damage with two variants; the

first is where a site has several lives prior to becoming dead after which it no
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longer interacts with the system, and the second being where the dead site dis-

sipates all received stress. The first variant effectively decreases the simulated

system to a smaller size, whereas the second increases the system’s dissipa-

tion. Incorporating damage into the CA models has been shown to change

scaling with the idea that variations in the scaling exponent b is affected by

underlying fault systems, which may vary from one tectonic region to another

(Serino et al., 2010). Dominguez et al. (2013) examined the influence of spatial

inhomogeneities due to damage and inhomogeneous stress dissipation; spatial

distributions of inhomogeneities affect scaling even if system dissipations are

equivalent. Kazemian et al. (2015) incorporated heterogeneities in the form

of strong cells that have higher failure thresholds (σFasp) than the surrounding

cells (σF ). The introduction of these heterogeneities produced foreshock and

aftershock sequences similar to the spatial and temporal clustering observed in

natural seismicity.

Serino et al. (2011) propose that various amounts of damage (stress sink)

occurring in the fault system can be incorporated into a modified GR scaling

(Eq. 2.16) in the form of

ns =
N

1− q
exp(−q2s)

sτ
, (2.17)

where ns is the non-cumulative count of failed cells with size s, q is the amount

of damage sites and N is the average seismic activity on an undamaged sys-

tem (q = 0). In real fault systems the varying levels of damage can be caused

by different levels of fracture or gouge; as the amount of damage q increases

the occurrence of large events decreases, while the occurrence of small events

increases. Serino et al. (2011) suggest that the underlying GR scaling is de-

pendent on the degree of damage over the entirety of the fault system.

A detailed sensitivity analysis of the OFC model and influence of asperities

with low noise has been studied by Gu (2016), where noise η is the fraction

randomness added to a cell’s residue stress after failure σR(1± η). In general,

the OFC model’s system stress evolves into a periodic state with very low

noise (0% < η < 0.1%) with the system behavior becoming quasiperiodic with

moderate noise (10% < η < 30%). For high noise (η > 30%), there is no

apparent periodic behavior.
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Gu (2016) attributes this periodicity due to the system’s memory of previous

events; as noise increases the system’s mixing time decreases along with a

decrease of the period. Likewise, a system’s memory decreases as the system

size L and long range interaction R increases, although to a much lesser impact

than increasing noise. The behavior of a single asperity significantly improved

scaling while introducing periodicity to the lattice if the failure threshold is

significantly higher than surrounding cells (Gu, 2016).

As a summary, the BK and RJB models aimed to construct a numerical

model to explore the role of friction along a two-dimensional fault and to inves-

tigate the underlying seismology (earthquakes) (Burridge and Knopoff, 1967;

Rundle and Jackson, 1977; Rundle and Brown, 1991). The OFC model sim-

plified the dynamics of earthquakes and suggested association to a nucleation

phenomenon (Klein et al., 2000, 2007). As the model grew in size, the cellular

automaton models have taken the role of simulating fault systems consisting of

multiple single faults (Serino et al., 2011, 2010; Dominguez et al., 2013). Con-

ceptually, these models went from modeling single faults (dozen kilometers)

to fault systems (hundred kilometers). Within this study we conceptualize the

CA model as the latter with our implementation of asperities (inhomogeneities)

representing faults within a larger system.

In the next chapters, we describe the CA model implementation in more

detail, then derive a theoretical model to predict its behavior based on absorb-

ing Markov chains. This is followed by an in-depth numerical and analytical

analysis of the effect of heterogeneities on failure patterns.
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Chapter 3

Cellular Automaton Theory

3.1 Cellular Automaton

The cellular automaton model discussed is an extension of the OFC model, see

previous chapter, but with the redistribution of stress considered over a much

longer range than the four nearest neighbors. Likewise, the amount of stress

dissipated is dependent on a dissipation parameter that effectively incorporates

the elastic ratios. The failure of a block is no longer a function of a velocity

dependent friction law, but rather a simplified threshold implementation. The

stresses acting on a block due to the springs have also been simplified into a

single unitless internal stress value. Nonetheless, the CA model remains the

easiest way to simulate and modify a simple earthquake fault model.

3.1.1 Homogeneous Model

The 2-D cellular automaton is composed of cells that form in a general square

grid. In our case, the model’s coordinate system is arranged into a hexagonal

grid through offset coordinates created by J. Kazemian (unpublished). The

circularity of a hexagonal grid makes it the preferred method for modelling

fluid movement and connectivity (Birch et al., 2007). The lattice grid has L

by L hexagonal cells with periodic boundaries. Within the lattice, each cell is

assigned a residual threshold σR (stuck) and a failure threshold σF (slip). As

a note, the model uses a single failure threshold σF to determine the failure
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Figure 3.1: An individual hexagonal lattice cell. Each cell is assigned a residual
threshold (σR ± η), an internal stress (σi) and a failure threshold (σF ).

Figure 3.2: A lattice grid containing L by L hexagonal cells. Each individual
cell within the lattice has an internal stress σi that lies between the residual
threshold and failure threshold, as shown with the colorbar.

of a cell rather than two or three principal stresses. We impose randomness

on the residual threshold σR ± η, where η is uniformly distributed noise. Each

cell is assigned a random internal stress σi such that σR < σi < σF , as shown

in Figure 3.1. After initialization, the lattice will have a uniformly distributed

internal stress distribution, as shown in Figure 3.2. To further remove the

dependence of initial conditions the model is left to run for an extended period

prior to collecting any statistics.

To initiate a failure event the entire lattice is searched for a cell closest to

failure or in other words having the least stress difference of min(σF −σi). This

minimum stress difference of min(σF − σi) is added to each cell of the entire
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lattice. The process of inducing a single initiating failure within the lattice is

known as a plate update time tpu. At this point, a minimum of one failure

must occur within the system.

Consequently, the initiating failure has a stored potential stress of σF −σR.

The internal stress σi of the failed cell is lowered to its residual threshold

σi = σR ± η; conceptually, after a failure the strain on the cell is set to its

relaxed position plus or minus some random overshoot. A fraction of the stress,

given by (1 − α)[σF − σR], is equally redistributed among neighboring cells

within a cell radius of R as long range stress transfer. The fraction α is a

dissipation parameter that lies in between 0 < α ≤ 1. Another portion of the

released stress, given by α[σF−σR], is permanently lost. If no stress dissipation

existed, that is α = 0, the total system stress would quickly increase such that

a never-ending chain reaction of cell failures would occur.

Physically, the long range stress transfer R represents the coupling between

a cell and it’s surrounding neighboring cells; it is analogous to Green’s function

of the earth. It has been suggested that a more appropriate interaction range

should follow a 1/R3 decay, but for simplicity we have assumed a uniform

stress redistribution (Klein et al., 2000). Within a given plate update time

there might be subsequent cell failures that occur due to the long range stress

redistribution; these are referred to as inner plate update times tin.

The lattice is searched to flag any additional cell failures σi ≥ σF that are

due to occur after the redistribution of stress from previously failed cell(s). If so,

the flagged cell(s) are iteratively failed and the process of stress redistribution

(1− α)[σi − σR] within a range of R is repeated at their coordinates, where σi

may be larger than σF . Therefore, the cells involved within the range R are

slightly different between each inner plate update time tin. Additionally, the

amount of stress released σi−σR during subsequent cell failures is not constant

and may vary depending on the given internal stress σi of the failing cell. Once

a cell fails, their internal stress is set to σi = σR ± η, where η is a random

overshoot. Within any given inner plate update time, any one cell may only

fail once.

The end of an inner plate update time tin is when all flagged cells have

failed. The total number of cells failures m that occurred during that inner
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plate update time tin is recorded in a failure sequence {1, . . . ,m}. Afterwards,

the inner plate update time is increased tin = tin+1 and the lattice is iteratively

searched to flag any additional cell failures σi ≥ σF that are due to occur after

the most recent redistribution of stress. If so, the process of cell failures and

stress redistribution is repeated. Potentially, any one cell may fail once more

at the next inner plate update time.

Once all subsequent cell failures and stress redistribution have occurred,

in other words σi < σF for all cells, the failure sequence has come to a halt

{1, . . . , 0}. At a given plate update time tpu, the final size of the event is the

sum of the failure sequence {1, . . . , 0} across all inner plate updates tin; this is

how we simulate our time series of the total cumulative cell failures Scum per

plate update time tpu. During the inner plate update times tin, or development

of the failure sequence, time is fixed. In other words, the avalanche sequences

occur instantaneously compared to the loading rate of the system. Each cell

failure is counted as having generated an earthquake of magnitude one, where

the sum of all cell failures in a plate update tpu is considered as the total

magnitude of that event.

Finally, the plate update time step is increased by one tpu = tpu + 1. At the

next plate update time, the entire described process is repeated and the lattice

is searched once again for a new min(σF −σR) to induce one failure. Shown in

Figure 3.3 is a flowchart of the process outlined above.

Shown in Figure 3.4 is a top down view that demonstrates the basic dynam-

ics of the model. Starting with Figure 3.4a, the center cell (orange) represents

a cell closest to failure. The model’s redistribution range is R = 2. Prior to a

plate update no cell failures have occurred. In Figure 3.4b, the minimum stress

difference of min(σF − σR) is added to the entire lattice to initiate one failure.

At the first inner plate update there is always one cell failure.

In Figure 3.4c, the center cell has subsequently failed and redistributes

a fraction of its internal stress to the surrounding cells within the range of

R. After failure, the center cell’s internal stress σi is lowered to the residual

threshold σR. Due to the redistribution of stress, the two surrounding cells have

their internal stress σi above their failure threshold σi ≥ σF . At the second

inner plate update time two cell failures have occurred.
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Figure 3.3: Flowchart of the Cellular Automaton. The failure sequence
{1, ..., 0} is built by inducing the failure of the most critically stress cell
min(σF − σi) and propagating the avalanche sequence at each inner plate up-
date time tin until all due cells have failed. This process is repeated for a
predefined number of plate update times tpu.
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Subsequently, in Figure 3.4d, two outer edge cells have redistributed a frac-

tion of their stress to their respective surrounding cells. Their internal stresses

σi are lowered to the residual threshold σR. Since there are no longer any cells

with σi ≥ σF the avalanche process has come to a halt. At the end of this

plate update time the cumulative number of failures is three, with one failure

occurring at the first inner plate update time and two failures occurring at the

second inner plate update time, as shown in Figure 3.5.

Afterwards, the next plate update time tpu = tpu + 1 takes place; the mini-

mum stress difference of min(σF −σi) is added to each cell of the entire lattice

to initiate a cell failure and the process is repeated.

At the very beginning, the lattice is initialized with uniform randomly dis-

tributed internal stresses σi such that σR − η < σi < σF . Prior to collecting

data from the model, a burn-in period is ran to remove any transient effects

prior to recording data. As a reference, in Castellaro and Mulargia (2001) OFC

model stationarity is achieved when the net stress input is roughly equal to the

net stress output in roughly 106 plate updates, whereas Serino et al. (2011)

utilize a 4× 106 plate updates burn-in period.

3.1.2 Inhomogeneous Model

A cellular automaton model with inhomogeneities better represents a fault sys-

tem with varying degrees of damage present as a collection of faults or microc-

racks (Serino et al., 2010;Serino et al., 2011;Dominguez et al., 2013;Kazemian,

2013;Kazemian et al., 2015). In our model, inhomogeneities are incorporated

as asperities with an increased failure threshold σFasp compared to a normal

cell, as shown in Figure 3.6. Therefore, an asperity has a greater capacity to

store and release stress back into the system. The addition of inhomogeneities,

along with their spatial distributions, greatly affects the statistical distribu-

tion of earthquakes (Dominguez et al., 2013;Kazemian et al., 2015;Klein et al.,

2017). A modified Gutenberg-Richter scaling approach suggested by Serino

et al. (2011) incorporates different levels of damage found in a lattice system.

Yet, exactly how various inhomogeneous structures further change frequency-

magnitude scaling is still under study.
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Figure 3.4: Top down view of a lattice system demonstrating the basic dy-
namics of the system. a) The center cell (orange) is closest to failure with
the model’s redistribution range set to R = 2. Prior to a plate update no cell
failures have occurred. b) The minimum stress difference has been added to
the entire lattice to initiate one failure (red). The center cell will redistribute
a fraction of its stress within a stress transfer range of R = 2 prior to the next
inner plate update time. c) Note that the previously failed cell has its internal
stress lowered to the residual threshold (white). Due to the previous failure,
two additional cells with the range R are brought to failure (red). At the second
inner plate update time two cell failures have occurred. d) The two previously
failed cells have redistributed a fraction of their stress to their respective sur-
rounding cells. Their internal stresses are lowered to their residual thresholds
(white). There are no longer any cells to fail, therefore the avalanche process
has come to a halt.
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Figure 3.5: Inner plate update to plate update. At the end of this plate update
the cumulative number of failures is three, with one failure occurring at the
first inner plate update and two failures occurring at the second inner plate
update.

Figure 3.6: A normal cell (left) compared to an asperity cell (right) that has
an increased failure threshold σF . An asperity acts as a stress sink until failure
occurs and a greater amount of stress is released back into the system.
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3.1.3 Plate update time and physical time

Our model has two time scales, which are called plate update time tpu and

physical time tphys. Traditionally, the Burridge and Knopoff (1967) model

uses a rigid driving plate to load stress unto the spring-blocks via the loading

springs KL. These blocks are driven by a loading rate much lower than the

rate of elastic rebound of the slipped block (Pelletier, 2000). Yet, in computer

modeling the motion takes place in discrete jumps otherwise known as a plate

update. To ensure that the loading rate is always much less than the slip event

of the blocks loading may only occur while all blocks are stable. During a slip

event, or inner plate update time tin, time is frozen and no loading occurs.

In our case, a plate update time tpu is an iterative step in our model that

adds the minimum stress min(σF−σi) to all lattice cells required to fail a single

cell closest to the failure threshold. This assures that in most cases a single

unstable block initiates an avalanche effect while increasing computational ef-

ficiency.

In classical mechanics, the loading plate exerts a force uniformly onto the

lattice equivalent to L2KLV∆t, where L2 is the total system cells, V the plate

velocity and ∆t a discrete time step (Burridge and Knopoff, 1967;Olami et al.,

1992). In the CA models, we add ∆σ = min(σF − σi) units of stress to each

cell, therefore increasing the total system stress by L2∆σ. Therefore, both

formulas can be equated and solved for time ∆t, which we refer to as a time

proxy tphys that can be considered as the tectonic time scale of the model. We

can relate physical time steps tphys, dimensionless proxy to time, to the added

stress ∆σ, dimensionless, at a given plate update time steps through

tphys =
∆σ

KLV
= c∆σ, (3.1)

where c is a constant depending on a fixed driving plate velocity V and spring

constant KL (Kazemian and van der Baan, 2015). Therefore, the cumulative

amount of stress added
∑

∆σ at each plate update time tpu is proportional to

the physical time tphys. This allows us to relate plate update time tpu to physical

time tphys and examine recurrence times between events in proportional steps,

as shown in Figure 3.7. Conceptually, loading the model occurs at tectonic time
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Figure 3.7: The number of cell failures as a function of plate update time
tpu (left) and physical time tphys (right). Knowing the amount of stress ∆σ
added at a given plate update time the events can be proportionally spaced in
physical time.

Figure 3.8: The number of cell failures as a function of physical time for
three different model time series. An identical stress cutoff, dashed line, is
assigned for all models so that the data is representative of identical physical
time frames. Although all three models have a total of five plate updates the
physical time in which they complete all plate updates is different.

scales (years), whereas the failure sequence is said to occur instantaneously

(fixed time).

Furthermore, a physical time cutoff can be set between various CA models

such that the data collected are representative of identical physical time rather

than identical plate update times. As shown in Figure 3.8, all three models

have a total of five plate updates, yet the physical time in which they complete

all plate updates may differ. Assigning a physical time cutoff for all models is

important in the study of seismic hazard which requires models to have a time

datum.
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3.1.4 Hexagonal grid versus square grid

Generally, the CA models are implemented in a square grid for simplicity as it

uses the cartesian coordinates (x, y) with both axes orthogonal to each other.

In our case, the model’s coordinate system is arranged into a hexagonal grid

through offset coordinates implemented by J. Kazemian (unpublished). Time

series characteristic and time-frequency distributions are unaffected, which has

been validated by running comparison tests with a square grid implementation.

The advantage of using a hexagonal grid is when movement paths and connec-

tivity are important, as the hexagonal lattice is the most compact arrangement

of many equal circles (Birch et al., 2007; Patel, 2018). The arrangement of

hexagonal grids can either be in vertical columns (flat topped) or horizontal

rows (pointy topped) with the main difference being orientation (Patel, 2018).

For a hexagonal grid the total number of surrounding cells at a radius R is

calculated as

Nhex = 3R(R + 1) = 3R2 + 3R, (3.2)

and for a square grid as

Nsqr = (2R + 1)(2R + 1)− 1 = 4R2 + 4R. (3.3)

The square grid encompasses a greater number of surrounding cells when

compared to the hexagonal grid at equal radii. Shown in Figure 3.9, is a

hexagonal grid and square grid with the outline of three radii’s of R = 1, 2, 3.

The total number of surrounding cells can be made equal between both grids by

increasing the radius R for the hexagonal grid. The CA scaling statistics in a

square coordinate system do not significantly change for a large enough radius

R > 10 (Gu, 2016). We also find that time-series characteristics and frequency-

magnitude distributions remain unaffected between square and hexagonal grid

implementations; yet the hexagonal coordinate storage leads to additional space

left at the four corners of the square lattice.

At the time of writing a bug exists within the implementations of the hexag-

onal grid regarding the periodic boundaries. Corresponding to the center of

the map, there should be six mirror boundaries rather than the four currently
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Figure 3.9: A hexagonal grid (left) and square grid (right). From the center
cell (5,5) three radii’s of R = 1, 2, 3 are outlined for both grids. The square grid
encompasses a greater number of surrounding cells compared to the hexagonal
grid for equal radii.

present in the square map. Therefore, the areas in questions are the corners of

the square mapping used to store the coordinates of the hexagonal grid. Given

that the radius R is significantly less than the length of the lattice L we expect

the influence to be insignificant; this has been validated through by running

comparison tests between implementations of square and hexagonal coordinate

systems.

3.1.5 Back-of-the-envelope Calculations

A conceptual model can be constructed for the total number of failures ntot cell

expected from a single cell interacting with itself as a function of applied exter-

nal stress ∆σ. The internal stress σi of an individual cell would depend on the

residual threshold σR, failure threshold σF , and the stress dissipation param-

eter α. To initiate failure within the single cell the minimum stress difference

of σF − σi is added. Consequently, the single cell fails and releases its total

potential stress of σF − σR. A fraction of the stress, given by α[σF − σR], is

dissipated or lost. The remaining released stress, given by (1 − α)[σF − σR],

is returned to the cell itself. Therefore, the single cell concept model does

not have the dynamic interaction between neighboring cells of the CA model.
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Within the CA model, the internal stress σi of a failed cell would be lowered to

the residual threshold σR with the remaining stress distributed to surrounding

cells.

Shown in Figure 3.10 are three single cell systems with dissipation param-

eters of a) α = 1.00, b) α = 0.50, and c) α = 0.25. Let all three systems

have residual thresholds of σR = 0.00 and failure thresholds of σF = 1.00 with

the evolution of physical time tphys given by the sum of the applied external

stress of
∑

∆σ. At a physical time tphys = 0 the internal stress for the cell

of each system begin at their residual thresholds σi = σR. At a physical time

tphys = 1.00 the cells internal stress would reach their failure threshold σi = σF .

Subsequently, part of the internal stress is permanently lost given by α[σF−
σR] from the cell, shown as grey bars and arrow. The rest of the internal stress

is given back to the cell. After a failure, the internal stress of a cell with a stress

dissipation of α = 1.00 always starts at the residual threshold (100% empty).

Likewise, the internal stresses of cells with stress dissipation of α = 0.50 and

0.25 start 50% and 25% empty after failure, respectively. At a physical time

of tphys = 2.00 the total number of failures for systems a) α = 1.00 is 2, b)

α = 0.50 is 3, and c) α = 0.25 is 5.

From Figure 3.10, once each system has reached steady state at tphys = 1.00

the three systems follow a recursive pattern. Hence forth, the total number of

failures after the external stress of ∆σ = 1.00 for systems a) α = 1.00 is 1,

b) α = 0.50 is 2, and c) α = 0.25 is 4. From the conceptual model, the total

number of failures ntot cell at a physical time tphys is given as

ntot cell =
tphys

(σF − σR)α
, (3.4)

where tphys is the cumulative amount of stress added, dimensionless, into the

system
∑

∆σ, α is the dissipation parameter, and σF and σR are the failure

and residual thresholds, respectively. It follows that as the physical time tphys

increases so does the total number of cell failures ntot cell, while increasing (σF−
σR) and dissipation parameter α decreases the total number of cell failures. In

extension, the total cumulative number of failures ntot over L2 identical cells

becomes
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Figure 3.10: Evolution of single cell as a function of physical time, where
each cell starts empty (white). Once the internal stress reaches the failure
threshold σF part of the internal stress is permanently lost, shown as grey bars
and arrow, with a part of the internal stress retained (black). If σR = 0.00
and σF = 1.00, the total number of failures after physical time tphys = 2.00 for
system a) α = 1.00 is 1, b) α = 0.50 is 2, and c) α = 0.25 is 4.
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ntot =
tphysL

2

(σF − σR)α
. (3.5)

The total cumulative number of failures ntot cell and ntot are non-dimensional

counts of the number of times cell(s) are expected to fail as a function of added

stress tphys or time proxy given their relative stress capacity σF−σR, dissipation

α, and model size L2. This sort of back-of-the-envelope calculations gives some

idea of the statistics expected from the CA model.

3.1.6 Fractal dimension

The correlation integral is a measure of spatial correlation, from which the

correlation exponent is a kind of fractal dimension (Grassberger and Procaccia,

1983). To quantitatively study the spatial distribution of seismic events the

correlation integral C(r) is calculated as

C(r) =
2

N(N − 1)
Nr(R < r), (3.6)

where Nr(R < r) is the number of pairs whose distance R is less than r, and

N is the total number of events (Hirata et al., 1987). If the distribution has a

fractal structure, C(r) is expressed by

C(r) ∝ rD, (3.7)

where D is a kind of fractal dimension called the correlation exponent for

small r and a sufficiently large number of points (N > 100) (Grassberger and

Procaccia, 1983; Hirata et al., 1987). If the events are distributed randomly

in two dimensions the fractal dimension is defined as D = 2 with any lesser

fractal dimension indicative of clustering of events along a lineation (D = 1)

or point (D = 0). We will use the D value to analyse spatial characteristics in

failure patterns for both homogeneous and inhomogeneous CA models.
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Chapter 4

Markov Chain Theory

4.1 Predictive Model

Understanding natural phenomena of complex systems is one of the biggest

challenges as nature consists of many interacting processes in a cause-effect

relationship. A set of simple rules can constitute a physical system that poses

as a mystery when considered as a whole. Generally speaking, the forward

process of examining model outcomes has been emphasized rather than the-

oretical analysis. We find that the results of a homogeneous CA model can

be replicated by modeling a stochastic process with an appropriate underlying

stress distribution for the system.

4.1.1 Building a Transition Matrix

Assuming that the internal stress σi of all cells within the lattice is uniformly

distributed between the failure threshold σF and the residual threshold σR the

probability density function P (σi) and cumulative distribution function D(σi)

(Beyer, 1987) are given as

P (σi) =


0 for σi < σR

1
σF−σR

for σR ≤ σi ≤ σF

0 for σi ≥ σF

(4.1)
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D(σi) =


0 for σi < σR

σi−σR
σF−σR

for σR ≤ σi ≤ σF

1 for σi ≥ σF .

(4.2)

The probability that the internal stress σi is greater than σF − ε is

P (σi > σF − ε) = D(σF )−D(σF − ε), (4.3)

where ε is a predefined threshold. Combining Equations 4.3 and 4.2 gives

P (σi > σF − ε) = 1− (σF − ε)− σR
σF − σR

=
ε

σF − σR
, (4.4)

which is the probability that an internal stress σi is greater than σF − ε. From

the binomial distribution it is possible to determine the discrete probability

distribution of having an n number of cells with internal stress of σi > σF − ε
out of a total of N Bernoulli trials of success or failure (Papoulis and Pillai,

2002). The total number of Bernoulli trials N depends on the total number of

surrounding cells within a radius R calculated as

N = 3R(R + 1) (4.5)

for a hexagonal lattice. The binomial distribution gives the discrete probability

distribution Pp(n|N) of obtaining n successes (failed cells) out of N Bernoulli

trials (total surrounding cells) at a probability of success of p calculated as

Pp(n|N) =
N !

n!(N − n)!
pn(1− p)N−n, where n = 0, 1..., N. (4.6)

The probability of success p for the Bernoulli trial is determined as p =

P (σi > σF − ε) from Equation 4.4. Essentially, the binomial distribution gives

the probability that n number of cells will fail from the redistribution of ε units

of stress to the surrounding N neighboring cells. For a single cell failure, the

amount of stress uniformly redistributed to neighboring cells can be calculated

as
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ε =
(σF − σR)(1− α)

N
=

(σF − σR)(1− α)

3R(R + 1)
, (4.7)

where σF , σR, α and R are constant predefined system parameters. But, the

success probability p is not constant for each inner plate update time as it

depends on the number of m cells that failed at the previous inner plate update

time during an avalanche sequence. Therefore, the variable εm is the amount of

stress uniformly redistributed to each neighboring cell after m number of cell

failures calculated as

εm = ε m =
(σF − σR)(1− α)

3R(R + 1)
m, with m = 0, 1, ..., N. (4.8)

It is implied that no overshoot (σi > σF ) occurs meaning that the stress

released from any one cell failure is always consistent. This is a simplification of

the CA model as a single cell can accumulate an internal stress larger than its

failure threshold. Furthermore, within the CA model, the cells involved within

the range R are slightly different between each inner plate update time tin, but

still overlap due to the intersection of the redistribution radii R. Additionally,

the calculations for εm amount of stress uniformly redistributed givenm number

of cell failures assumes that the surrounding cells within the radius R do not

change, thus further simplifying the CA model statistics.

The success probability depends on the amount of stress released εm at a

given inner plate update time. At a given inner plate update time, the number

of cell failures can range from m = 0, .., N , and therefore the amount of stress to

be redistributed given by εm. Combining Equations 4.4 and 4.8, the probability

pm that an internal stress σi is greater than σF − εm becomes

pm = P (σi > σF − εm) =
εm

σF − σR
=

=
(1− α)m

3R(R + 1)
, where m = 0, 1, ..., N. (4.9)

Likewise, the binomial distribution of Equation 4.6 becomes

Ppm(n|N) =
N !

n!(N − n)!
pnm(1− pm)N−n, (4.10)
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where m = 0, 1..., N and n = 0, 1, ..., N.

The binomial distribution gives the discrete probability distribution Ppm(n|N)

of obtaining n successes (failed cells) out of N Bernoulli trials (surrounding

cells) at a probability of success of pm, where pm (Eq. 4.9) varies depending on

the number of cell failures m at that given inner plate update time. Effectively,

the probability of success pm depends on the dissipation parameter α and the

total number of surrounding cells within a radius R, and not the failure σF and

residual σR thresholds of the system.

We can construct an (N+1)×(N+1) square transition matrix M from the

binomial distributions Ppm(n|N) (Kemeny and Snell, 1960). Therefore, each

row of the transition matrix is the discrete probability of obtaining a varied n

number of failures out of a total of N trials given a fixed probability of success

pm; each column of the transition matrix is the discrete probability of obtaining

a fixed n number of failures out of a total of N trials given a varied probability

of success pm.

Each i-th row and j-th column entry in the transition matrix M is calcu-

lated as

Mij = Ppi−1
(j − 1|N) = Ppm(n|N), (4.11)

where i = m+ 1 and j = n+ 1,

and where Ppm(n|N) is the binomial distribution from Equation 4.10. In matrix

form, the transition matrix M is given as

M =


Pp0(0|N) Pp0(1|N) . . . Pp0(N |N)

Pp1(0|N) Pp1(1|N) . . . Pp1(N |N)
...

...
. . .

...

PpN (0|N) PpN (1|N) . . . PpN (N |N)

 . (4.12)

Each element of the transition matrixM is non-negative and each row adds

to unity
∑

jMij = 1, being a property of the binomial distribution (Papoulis

and Pillai, 2002). The transition matrix M is used to describe the transitions
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of a stochastic process where a process moves from state to state. If at any inner

plate update time tin the process is in state Sm, then on the next inner plate

update time it may move to state Sn with a probability M(m+1)(n+1) = Mij.

4.1.2 Markov Chain

Let’s consider a discrete-time random process {Xtin , tin = 0, 1, ...} at an in-

ner plate update time tin within a system with a finite set of states Sm =

{S0, S1, ..., SN}. Therefore, each state Sm corresponds to the number of cell

failures m = 0, ..., N at a given plate update time. If Xtin = Smtin
then the

system is in state Sm at an inner plate update time tin. The functions Xtin

are said to be outcome functions with the set of functions {Xtin , tin = 0, 1, ...}
called a stochastic process (Kemeny and Snell, 1960). Furthermore, if the num-

ber of states are finite in a stochastic process, then the process is called a finite

stochastic process (Kemeny and Snell, 1960).

A finite Markov process is a finite stochastic process if the transition prob-

abilities of moving to the next outcome function Xtin+1 only depend on the

present outcome function Xtin and not on the previous outcome functions

Xtin−1
, . . . , X0 (Kemeny and Snell, 1960). This condition is referred to as the

Markov property given a

Pr(Xtin+1 = Sn|Xtin = Sm, Xtin−1 = Smtin−1 , . . . , X0 = Sm0) =

= Pr(Xtin+1 = Sn|Xtin = Sm), (4.13)

where Pr(Xtin+1 = Sn|Xtin = Sm) is the transition probabilityM(m+1)(n+1)(tin) =

Mij(tin) at an inner plate update time tin (Kemeny and Snell, 1960; Pishro-Nik,

2014). In other words, a Markov process only depends on the outcome of the

immediate present to predict the future.

A finite Markov chain is a finite Markov process such that the transition

probabilities Mij(tin) do not depend on the inner plate update time tin, and

therefore denoted by Mij (Kemeny and Snell, 1960). Therefore, it is assumed

that the transition matrix M is fixed and does not change with the inner plate

update time, but we may choose to vary the initial probability distribution at
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the very first outcome function X0 at tin = 0.

Considering the Markov chain {Xtin , tin = 0, 1, ...}, where Xtin ∈ S =

{0, 1, ..., N}, and where the initial probability distribution π0 of the outcome

function X0 at time tin = 0 is a row vector given as

π0 = [Pr(X0 = S0) Pr(X0 = S1) . . . P r(X0 = SN)]. (4.14)

The initial probability distribution π0 gives the probabilities for the various

starting states, whereas the transition matrix M determines how the Markov

chain process will develop (Kemeny and Snell, 1960).

Let πtin be the row vector which gives the probability that the random

process Xtin will be in state Sm after tin number of steps given as

πtin = [Pr(Xtin = S0) Pr(Xtin = S1) . . . P r(Xtin = SN)]. (4.15)

From the Chapman-Kolmogorov equation the induced measure of the out-

come πtin for a finite Markov chain with an initial probability vector π0 and

transition matrix M is given as

πtin = π0M
tin (4.16)

whereM is raised to the power tin (Kemeny and Snell, 1960; Pishro-Nik, 2014).

Therefore, to study the outcome functions of a finite Markov chain we only need

to study the powers of the transition matrix.

To better understand a Markov chain, we classify states to understand the

possible directions that a stochastic process can proceed (Pishro-Nik, 2014).

If it is possible to go from state Sm to state Sn, then state Sn is said to be

accessible from state Sm. Two states Sm and Sn are said to communicate if

they are accessible from each other. A Markov chain is said to be irreducible

if all states communicate with each other.

A state is said to be recurrent if at any time we leave that state we will return

to that state in the future with a probability one; otherwise, if the probability

of returning is less than one, the state is called transient (Pishro-Nik, 2014). In
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particular, a state which when entered cannot be left is said to be absorbing ; a

chain whose recurrent states are absorbing is called an absorbing Markov chain

(Kemeny and Snell, 1960).

4.1.3 Absorbing Markov Chain

Within the transition matrixM , each i-th row represents a current state Si−1 =

Sm with the j-th column representing the probability to move to state Sj−1 =

Sn. It can be shown that state S0, or row one, is a state that halts the avalanche

process and acts as an inhibitor. Calculating the probability of success of pm

(Eq. 4.9) for m = 0, or zero failed cells, simplifies to

p0 = P (σi > σF − ε0) =
(1− α) ∗ 0

3R(R + 1)
= 0. (4.17)

Subsequently, the binomial distribution for Pp0(n|N) (Eq. 4.10) simplifies

to Pp0(0|N) = 1 and Pp0(1, ..., N |N) = 0, which simplifies the transition matrix

M into an absorbing Markov chain in the form of

M =


1 0 . . . 0

Pp1(0|N) Pp1(1|N) . . . Pp1(N |N)
...

...
. . .

...

PpN (0|N) PpN (1|N) . . . PpN (N |N)

 . (4.18)

In the long-term behavior of the absorbing Markov chain we would like

to know the probability distribution πtin (Eq. 4.15) as tin → ∞, otherwise

known as the limiting distribution (Pishro-Nik, 2014). From the Chapman-

Kolmogorov equation (Eq. 4.16) the limiting distribution πtin→∞ simplifies

to

lim
tin→∞

πtin = π0M
tin =

= [Pr(Xtin = S0) Pr(Xtin = S1) . . . P r(Xtin = SN)] = [1 0 . . . 0], (4.19)

meaning that regardless of the initial probability distribution π0 the Markov

chain will be absorbed into state S0 with a probability 1 and stay there for

all dissipation parameters between 0 < α ≤ 1. Hence, raising the transition
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matrix M (Eq. 4.18) to greater and greater powers, the matrices approach a

matrix whose first column are all 1, and 0 elsewhere.

All the possible outcomes can be presented as a tree with each Markov

chain a possible path through the tree, and each path made of segments called

branches (Kemeny and Snell, 1960). The transition probabilities at each branch

are called branch probabilities (Kemeny and Snell, 1960).

Once the Markov chain is absorbed into state S0 at an arbitrary inner plate

update end time tend the path probability Ppath can be calculated as the product

of all branch probabilities given as

Ppath =

tend∏
tin=0

Pr(Xtin+1 = Sn|Xtin = Sm), (4.20)

where the branch probability Pr(Xtin+1 = Sn|Xtin = Sm) is simply the transi-

tion probability M(m+1)(n+1) = Mij (Kemeny and Snell, 1960). It follows that

the sum of all branch probabilities, or all possible outcomes, must be one.

Lastly, the cumulative number of failures Scum for a Markov chain is the

sum of all states Smtin
traversed at an inner plate time tin until being absorbed

into state S0 at an inner plate update end time tend. It is calculated as

Scum =

tend∑
tin=0

Smtin
. (4.21)

4.2 Application of Markov Chains

Effectively, the transition matrix can be used to simulate the stochastic process

based on underlying CA model parameters. At the start of each inner plate

tin = 0 of the CA model a single event m = 1 is induced within the entirety of

the system, which is equivalent to starting in state S1, row two, within the tran-

sition matrix. Thereafter, identical to the CA model, the stress redistributed

to the surrounding N neighboring cell is ε1 (Eq. 4.8) with a probability of p1

(Eq. 4.9) that an internal stress σi is greater than σF − ε1.
Given the binomial distribution Pp1(n|N) (Eq. 4.10) with a probability p1

for n = 0, 1, ..., N Bernoulli trials a single outcome of n number of failed cells

will occur at the next inner plate update time tin = tin + 1. But, rather than
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re-calculating the binomial distribution Ppm(n|N) for the varying preceding

failures m and induced failures n, all of the possible transitions are tabulated

into the transition matrix M .

Therefore, the process starts at tin = 0 in state S1 with an induced event

of size m = 1 with the transition probabilities given by the row M1,j for all

columns j. Given the succeeding number of failed cells n the process moves

into state Sn with a transition probability M1,(n+1). At an inner plate update

time of tin = 1, the process is now in state Sn and can move into another state

with transition probabilities given by the row M(n+1),j for all columns j. This

process is continued until reaching state S0 or row 1; state S0 is an absorbing

state with all other states S1, . . . , SN being transient states.

4.2.1 Example

As an example, let us consider a homogeneous hexagonal system defined by

the system parameters of σF = 1, σR = 0, α = 0.05, and R = 1. Within the

CA model, σF and σR correspond to the failure and residual thresholds of a

cell, respectively, with α being the dissipation parameter of the system. The

stress transfer radius is set to R = 1, or a one neighboring cell radius, to keep

the size of the transition matrix M at a minimum.

From Equation 4.5, the total number of surrounding cells N within a radius

of R = 1 is N = 6. Given the number of surrounding cells, the total number

of potential cells failures m at a given inner plate update time cannot exceed

N = 6. Therefore, the set of all possible states Sm at a given inner plate update

time range from Sm = {S0, S1, ..., S6}.

The amount of stress uniformly redistributed to each neighboring cell εm

(Eq. 4.8) after any m number of cell failures simplifies to

εm =
(σF − σR)(1− α)

3R(R + 1)
m =

(1− 0)(1− 0.05)

3(1 + 1)
m =

0.95

6
m, (4.22)

where m = 0, 1, ..., 6. Given an internal stress σi uniformly distributed between
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σF and σR the probability pm that σi > σF − εm (Eq. 4.9) is calculated as

pm =
(1− α)m

3R(R + 1)
=

(1− 0.05)m

3(1 + 1)
=

0.95m

6
, (4.23)

where m = 0, 1, ..., 6. As a side note, the probability of success pm is indepen-

dent of the failure σF and residual σR thresholds of the system. The binomial

distribution (Eq. 4.10) becomes

Ppm(n|N) =
N !

n!(N − n)!
pnm(1− pm)N−n =

6!

n!(6− n)!
pnm(1− pm)6−n, (4.24)

for the probability of success pm for m = 0, 1..., 6 given failures and n = 0, 1..., 6

potential failures. Each element of the transition matrix Mij is calculated from

the binomial distribution Ppm(n|N) (Eq. 4.11), where the probability of success

(cell failure) pm given m previous cell failures varies row wise and the number

of potential cell failures n varies column wise.

Given the system parameters of σF = 1, σR = 0, α = 0.05, and R = 1, the

binomial distribution is given by Equation 4.24. Every element of the transition

matrix Mij is calculated from the binomial distribution Ppm(n|N) (Eq. 4.24)

for every m given cell failures (row) and n potential cell failures (column) and

is approximately

M =



1 0 0 0 0 0 0

0.35 0.40 0.19 0.05 0.01 0 0

0.10 0.28 0.33 0.21 0.07 0.01 0

0.02 0.11 0.26 0.31 0.21 0.08 0.01

0 0.03 0.11 0.26 0.32 0.22 0.06

0 0 0.02 0.09 0.26 0.39 0.24

0 0 0 0 0.03 0.23 0.74


, (4.25)

where individual values of Mij have been rounded for clarity. Within the tran-

sition matrix M , each state Sm is a row, where row one is the absorbing state

S0 and all other rows are transient states S1, . . . , S6. To visualize the possible
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Figure 4.1: A directed graph of a Markov transition matrix (Eq. 4.25) with a
total of 7 states. State S0 is an absorbing state, red circle, with states S2, . . . , S6

being transient states, black circles. The transition probabilities are shown in
the colorbar ranging from low probability (dark blue) to high probability (dark
red).

transitions a directed graph of the Markov chain is shown in Figure 4.1 with

state S0 being an absorbing state, red circle, and states S1, . . . , S6 being tran-

sient states, black circles. The transition probabilities are shown in the colorbar

ranging from low probability (dark blue) to high probability (dark red).

Consider the absorbing Markov chains shown in Figure 4.2 as possible out-

comes. In step 0, all Markov chains start in state S1 which is equivalent to

starting with one failure to reproduce the processes of the CA model. Hence

forth, given the probabilities from the transition matrix M a succeeding num-

ber of states Sm, orm failures, are realized until the Markov chain is terminated

at state S0.

As the Markov chain gets longer the branch probability Ppath decreases;

therefore, the probability of having a greater number of cumulative failures Scum

decreases. Furthermore, there are multiple paths to an identical cumulative

number of failures. As shown in Figure 4.2, the third and fourth Markov

chains have cumulative failures of three, yet the third Markov chain sequence

of {S1, S1, S1, S0} is nearly three times more likely than the fourth Markov

chain {S1, S2, S0}.
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Figure 4.2: Five possible absorbing Markov chains from the transition matrix
M (Eq. 4.25). In step 0, all absorbing Markov chains start in state S1 and
continue until they terminate at state S0. Shown are the branch probabilities
for each segment, along with the cumulative failures and path probabilities for
each path.

4.3 Frequency-Size Probability Distribution

4.3.1 Predicting Homogeneous Models

The interest of studying CA models stems from the existence of a universal

Gutenberg-Richter like scaling consistent with those observed of real earthquake

fault systems (Tiampo et al., 2007). For the CA models, model statistics

are gathered over a large simulation runtime known as plate update times.

In theory, it is possible to construct an analytical frequency-size probability

distribution from the absorbing Markov chains.

Given that all absorbing Markov chains are finite there are also a finite

number of paths that sum to a specific cumulative number of failures Scum

(Eq. 4.21). The probability that a cumulative number of failures P (Scum) will

occur is the sum of all path probabilities Ppath (Eq. 4.20) for that specific

number of failures Scum calculated as

P (Scum) =
∑

Ppath(Scum). (4.26)

As an example, Figure 4.3 shows all possible paths up to a cumulative
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Figure 4.3: All possible paths up to a cumulative number of failures Scum = 4.
In step 0, all absorbing Markov chains start in state S1 and continue until
they terminate at state S0. The branch probabilities for each segment Mij and
cumulative failures for each path Scum are shown.

number of failures Scum = 4. In step 0, all absorbing Markov chains start in

state S1 and continue until they terminate at state S0. The branch probabilities

for each segment are given from the transition matrix Mij. Summing over all

path probability Ppath (Eq. 4.26) for a given cumulative number of failures Scum

(Eq. 4.21) gives the probability P (Scum) (or frequency) that a given cumulative

number of failures Scum (or size) occurs.

Therefore, one simply needs to compute all integer partitions and permuta-

tions of a given cumulative number of failures Scum. Unfortunately, calculating

all partitions and permutations for a large cumulative number of failures quickly

becomes computationally expensive. Therefore, the analytical frequency-size

probability distribution is limited to the low cumulative number of failures of

say Scum ≤ 17.

To get the frequency-size distribution for the homogeneous models one sim-

ply multiplies the analytically calculated frequency-size probability distribution
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P (Scum) by the total number of simulated plate update times tpu given as

ns = P (Scum)× tpu = P (s)× tpu, (4.27)

where ns is the count of events of size s; the size s is the shorthand notation

for the cumulative number of failures Scum that occur within one plate update

time with ns being the shorthand notation for the non-cumulative count of

failed cells of size s (Klein et al., 2000, 2007). Therefore, from the transition

matrix M we can calculate the frequency-size distribution given any constant

(homogeneous) system parameters of σF , σR, α, and R. But what if our model

is a mixed system with cells that vary in σF , σR, and α? Below, we discuss

how to predict such mixed models assuming a fixed stress transfer radius R.

4.3.2 Predicting Mixed Models

In order to get the frequency-size distribution for mixed model, we consider

the mixed (inhomogeneous) model as the sum of individual and independent

homogeneous models. In other words, the inhomogeneous model is the sum of

independent homogeneous parts. Although a simplistic approach, this allows

us to examine the influences that may originated from different submodels

interacting with each other.

An issue that arises is that the analytical frequency-size distribution deter-

mined from the transition matrix M is for a homogeneous model with con-

stant dissipation parameter α, stress transfer radius of R, and failure σF and

residual σR thresholds. Whereas, when an inhomogeneous model consists of

homogeneous subsystems the effective number of plate updates tpu simulated

for each homogeneous subsystem should vary depending on their seismogenic

contribution. Therefore, the effective number of plate updates tpu that each ho-

mogeneous subsystem is simulated for varies depending on their representative

size L2, and their failure σF and residual σR thresholds. Utilising an effective

number of plate updates to simulate each homogeneous subsystem is needed

because each subsystem may complete an equal amounts of plate updates tpu,

but within different physical time tphys frames.

Given a n finite number of homogeneous subsystems, we calculate a tran-
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sition matrix M and a frequency-size probability distribution P1(s), . . . , Pn(s)

for every homogeneous subsystem as discussed in the previous section. Addi-

tionally, we need to calculate appropriate contributions or weights w1, . . . , wn

for every n homogeneous subsystem given that subsystem parameters (σF , σR,

α) vary. The mixture probability density function Pmix(s) is given as

Pmix(s) =
n∑
i=1

wiPi(s), (4.28)

where wi are the weights and Pi(s) the frequency-size probability distribution

for the i-th homogeneous subsystem. We calculate the fraction of size fi that

the i-th homogeneous subsystem represents from the whole system given as

fi =
L2
i

L2
, (4.29)

where L2
i is the size of the subsystem divided by the total system size L2. To

account for the differences in the failure σFi
and residual σRi

thresholds for the

i-th homogeneous subsystem, we calculate the relative failure ratio ri given as

ri =
min(σF − σR)

σFi
− σRi

, (4.30)

wheremin(σF−σR) is the lowest difference in the failure and residual thresholds

from all n homogeneous subsystems. Each ratio ri is calculated relative to

a baseline min(σF − σR) value, since subsystems with greater differences in

the failure and residual thresholds would not contribute as significantly in the

mixture probability density function Pmix(s). Therefore, the weight wi for the

i-th subsystem is calculated by multiplying both the fraction of size fi (Eq.

4.29) and relative failure ratio ri (Eq. 4.30) which simplifies to

wi = firi =
L2
i min(σF − σR)

L2[σFi
− σRi

]
. (4.31)

The calculated weight wi is not a function of the dissipation parameter α,

as it is already accounted for in the transition matrix M and in extension the

analytical frequency-size distribution Pi(s) of the i-th homogeneous model. To

get the frequency-size distribution for the inhomogeneous models, we multiply
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the mixture probability density function Pmix(s) (Eq. 4.28) by the total number

of simulated plate updates tpu which simplifies to

ns = Pmix(s)× tpu = tpu

n∑
i=1

wiPi(s) = tpu

n∑
i=1

L2
i min(σF − σR)

L2[σFi
− σRi

]
Pi(s), (4.32)

where ns is the count of events of size s for the inhomogeneous model. There-

fore, if all of the failure σF and residual σR thresholds are equal between models

the assigned weights only dependent on the fraction of size fi. But, if differ-

ences exist in the relative failure ratio ri of the models, then an additional

weighting is assigned based on the given model’s hardness σFi
− σRi

relative to

a baseline model’s hardness min(σF − σR).

The analytical size-frequency distributions P (s) or Pmix(s) are limited to

low sizes s ≤ 17, nonetheless low cumulative number of failures are more sta-

tistically probable compared to larger number of failures. This is because the

transition matrix M has a single absorbing state S0 with all other transition

probabilities between states Sm occurring with a probability of less than one.

It follows that as the Markov chain gets longer the path probability Ppath (Eq.

4.20) decreases. To obtain a more complete frequency-size distribution an al-

ternative sampling method is needed.

4.4 Markov Chain Monte Carlo

We utilize a Markov chain Monte Carlo (MCMC) method to repeatably sample

absorbing Markov chains from the binomial distribution Ppm(n|N), or equiva-

lently the transition matrix M , to simulate the time series of the total cumu-

lative cell failures Scum per plate update time tpu. The Markov chain Monte

Carlo algorithm is implemented as follows.

Firstly, the system parameters σF , σR, R, α, tpu are specified, where σF and

σR are the failure and residual thresholds, R is the cell radius for stress transfer,

α the dissipation parameter, and tpu the total number of plate update times to

be simulated. From the cell radius R, the total number of surrounding cells N

is calculated (Eq. 4.5). Within each plate update tpu a single failure m = 1 is
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initiated, equivalent to starting the Markov chain in state S1.

Given the current number of failures m, the probability of success pm (Eq.

4.9) is calculated. The binomial distribution Ppm(n|N) with parameters speci-

fied by the number of trials N , and probability of success pm for all n trials is

computed. From the computed binomial distribution Ppm(n|N) a random sam-

ple for the new number of failures m is generated; the probability of occurrence

Ppm(m|N) (transition probability) given the new failure m is calculated. We

update the Markov chain {S1, ..., Sm} and move to the next inner plate update

time tin = tin + 1 until the number of failures is m = 0 and the Markov chain

has been absorbed into state S0.

Once the Markov chain has reached state S0, the cumulative number of

failures Scum (Eq. 4.21) and path probability Ppath (Eq. 4.20) are calculated

for the final absorbed Markov chain {S1, ..., S0}.
If the total number of plate update times tpu to be simulated has not been

reached, a new plate update time is started, and the entire process is repeated.

A question that arises in reference to the CA model, how much physical time

tphys passes between each plate update time tpu? Knowing the amount of stress

added ∆σ at each plate update time tpu allows for the examination of the

recurrence times between events in proportional time steps.

At a given plate update time within the CA model, ∆σ = min(σF − σi)

units of stress is added to each cell to initiate a single failure event. Therefore,

the ∆σ units of stress added is the total minimum amount of stress sampled

from the L2 number of cells within the entire system. Replicating this process

for the Markov chain Monte Carlo algorithm, we sample L2 random internal

stresses σi from the probability density function of P (σi) (Eq. 4.1). From the

total L2 samples of σi, the stress added at that particular plate update time

is given as ∆σ = σF − max(σi). Lastly, the flowchart for the Markov chain

Monte Carlo algorithm is summarized in Figure 4.4.
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Figure 4.4: Flowchart of the Markov Chain Monte Carlo algorithm. The
absorbing Markov chain {S1, ..., S0} is built by repeatedly random sampling
from the binomial distribution Ppm(n|N) for each inner plate update time tin
until reaching the absorbing state S0. This process is repeated for a predefined
number of plate update times tpu.
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Chapter 5

Cellular Automaton

Homogeneous Results

In this chapter, we examine homogeneous CA models for varied dissipation

parameters α (elastic ratios) that define the stress transfer to neighboring cells

after a failure. Varying the dissipation parameter of the system affects the

scaling exponent, or slope, of the frequency-size distribution. Examining the

homogeneous CA model results allows us to validate our implementation with

others and with our proposed Markov chain (MC) model.

Furthermore, we investigate system details such as the internal stress distri-

bution, avalanche sequences, spatial clustering, and model expectancies. An ac-

curate understanding of the internal stress distribution of the CA model is cru-

cial in modeling the Markov process. Examining the avalanche sequences and

spatial clustering of events offers insight into how an earthquake may evolve.

Lastly, the model expectancies serve as a basic conceptual validation.

5.1 Homogeneous Model

In this section, we examine the results for our homogeneous CA model. The

2-D model is a square lattice with a length of L = 256 cells with periodic

boundary conditions. For all cells, the failure threshold is set to σF = 1.0

with a residual threshold of σR = 0.0 ± η, where η is a random uniformly
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distributed noise between η = [−0.1,+0.1]. The long range stress redistribution

radius is R = 16, meaning that every failed cell uniformly transfers stress to

N = 816 neighbours (Eq. 3.2) within a hexagonal implementation. We find

that increasing the long range stress redistribution R beyond R > 16 does not

make the power law scaling significantly better, as noted by Gu (2016) as well,

while significantly increasing computational time required to run the model.

We simulate the model for a wide range of chosen dissipation parameters

α, where α = 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, and 1.00. Examining a range of

different values of α allows us to later compare the CA model to the proposed

MC model. Prior to simulation, the internal stresses of each cell are uniformly

randomly distributed between −η < σi < σF . Afterwards, the system was sim-

ulated for 2×106 plate updates to remove any transient effects before recording

the size, or number of failed cells, for the next 106 plate updates. All model

statistics reported are after this 2× 106 burn-in period.

5.1.1 Time Series

A snippet of the time series up to tphys = 1 is shown in Figure 5.1 for different

dissipation parameters α. From the time series, as the dissipation parameter

increases from α = 0.05 (Fig. 5.1 top subplot) to α = 1.00 (Fig. 5.1 bot-

tom subplot) the average size of an event decreases. For all cases, the time

series events remain random and unpredictable with no signs of foreshock and

aftershock sequences prior to a large sized event, a seismic property that has

been observed in nature (Omori, 1894; Utsu et al., 1995). With no diagnostic

precursor or seismic activity prior to a random large event, forecasting is im-

practical. This is in accordance with the original BK model where aftershocks

were introduced into the numerical model through a viscous region that created

time delayed shocks between two fault regions (Burridge and Knopoff, 1967) or

as some form of heterogeneities present in CA models (De Rubeis et al., 1996;

Castellaro and Mulargia, 2001; Kazemian et al., 2015).

Table 5.1 summarizes the total stress, or physical time, required for all mod-

els to complete 106 plate updates along with the total plate updates completed

given the physical time cutoff of tphys = 15.2101. From Table 5.1, one expects
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Figure 5.1: Physical time series of events (number of failed cells) for varied
dissipation parameters, shown in legend, over 1 unit of physical time. From top
to bottom, as the dissipation parameter α increases the size of events decreases.

that as the dissipation parameter α increases so should the total physical time

needed to complete an equivalent number of plate updates. This is because a

system with a lower dissipation parameter should be closer to failure relative

to a more dissipative system. Discrepancy in the total physical time needed to

complete all 106 plate updates for different dissipation parameters is expected

due to the stochastic nature of the process and should decrease as the model

runtime is increased.

5.1.2 Frequency-Size Distribution

The non-cumulative frequency-size distributions for all of the homogeneous

models are shown in Figure 5.2, along with the theoretical OFC model for

mean-field scaling, plotted as a black line, given as ns ∼ s−3/2 for long range

interaction (R� 1) and low dissipation parameters (α→ 0) (Klein et al., 2000,

2007). In plotting the non-cumulative frequency-size distributions an identical

physical time cutoff (tphys = 15.2101) was used for all models, which gives fair

comparison between their seismogenic index (intercept).

The non-cumulative frequency-size distribution is a log-log scale histogram
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Dissipation Total physical time Total plate updates
parameter α for 106 plate updates for tphys = 15.2101

0.05 15.2101 1,000,000
0.10 15.2338 998,415
0.20 15.2560 996,953
0.40 15.2551 997,011
0.60 15.2653 996,293
0.80 15.2600 996,711
1.00 15.2585 996,770

Table 5.1
Total stress added, proportional to physical time, to each homogeneous CA
model over 106 plate updates and the total number of plate updates completed
given a physical time cutoff of tphys = 15.2101.
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Figure 5.2: Non-cumulative frequency-size distribution for varied dissipation
parameters α increasing from right to left. The distributions suggest that as
the dissipation parameter increases both the intercept and slope increase. The
black line has a slope of −3/2 predicted from the scaling of OFC models with
low dissipation and long range interactions.

60



with integer bin sizes (x-axis) with the measure of frequency given as counts

(y-axis). The log-linear slope, otherwise known as b-value, gives the propor-

tionality of large to small events; a large slope indicates more similar sized

events, while a small slope indicates a larger range of sizes. Because the data

from all models is over equal periods of time (physical time cutoff) the inter-

cept, or a-value, gives the seismogenic index or frequency of small sized events.

Unlike earthquake catalogues, the numerical data do not suffer from magnitude

of completeness, which is a minimum magnitude above which it is thought that

all earthquakes are recorded reliably (above background noise) (Naylor et al.,

2010).

As the dissipation parameter α increases, we observe an increase in the slope

from −3/2 towards −5/2 (b-value) and an increase in the intercept (a-value)

in Figure 5.2; therefore, we observe a decrease in the maximum expected size

(magnitude) with an increase in small size events. A higher stress dissipation

suppresses the occurrence of large sized events since a greater fraction of po-

tential stress is lost from the system, while a low dissipation approaches the

mean-field scaling plotted as the black line (Klein et al., 2007).

In the limit of α = 1.00, we find each event size equals one with essentially

a probability of one (Fig. 5.1 and 5.2) because all stress is dissipated after a

plate update time with the algorithm bringing the cell with the highest internal

stress concentration to failure in the next iteration.

Figure 5.2 shows an exception since an event of size two s = 2 exists indi-

cating that two cells had failed at a given plate update time. Likely, both cells

had identical internal stresses σi, or a difference less than machine precision,

such that adding min(σF − σi) at the beginning of a plate update failed both

cells. This phenomenon has also been noted by others (Klein et al., 2000).

Another way of examining the data is by plotting the interevent times with

the mean physical times (y-axis) between events of size s (x-axis) on a log-

log scale, as shown in Figure 5.3. Whereas the non-cumulative frequency-size

distribution plots the count of an event of size s, the interevent plot shows the

mean physical time t̄s between events of size s for all 106 plate updates. In

Figure 5.3, the solid color curve is the mean interevent physical time t̄s, with the

top and bottom dashed lines showing the third (Q3) and first (Q1) quantiles,

61



10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

CA Homogeneous Models

0.05

0.10

0.20

0.40

0.60

0.80

1.00

Figure 5.3: Mean interevent physical time t̄s between events of size s for varied
dissipation parameters. Top and bottom dashed lines are the third and first
quartiles, respectively, for a given curve. As the dissipation parameter increases
the mean interevent physical time t̄s for a given sized event s increases.

respectively, for that given curve. For sparse data, particularly the tail end of

the curve, the calculated mean interevent physical time and quantiles have lots

of variability and gaps in data.

Generally, the mean interevent physical time (or period) increases as the

event size s increases for all models. Likewise, the interevent physical time t̄s

for the largest size events is similar for all models although the actual max-

imum observed size increases with decreasing dissipation parameter α. More

specifically, the mean physical time between events of size s < 10 decreases as

the dissipation parameter α increases. But, for event sizes of s > 10 the mean

physical time decreases as the dissipation parameter decreases. Therefore, a

high dissipation system has an increased occurrence of small sized events with

a reduced occurrence of larger sized events. The opposite occurs for a low

dissipation system, where there is a reduced occurrence of small sized events

with an increased occurrence of larger sized events. This observation also ex-

plains the change in the slope (b-value) for the non-cumulative magnitude-size

distributions (Fig. 5.2).
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5.2 System details

Additionally, at the end of every 500-th of the total 106 plate updates we output

a snapshot of the internal stresses of all cells and the lattice’s inner plate failure

sequence tin; furthermore, we output the cumulative failures of each cell within

an interval of 500 plate updates. Therefore, we have an idea of the internal

stress distribution as the system evolves, how an avalanche sequence might

develop spatially and the cumulative number of failures for every cell. This

gives us 2× 103 snapshots from the total 106 plate updates.

5.2.1 Internal Stress Distribution

Shown in Figure 5.4, are the internal stress snapshots, left subplot, and the

resulting histogram, right subplot, for models with dissipation parameters of

α = a) 0.05, b) 0.20, and c) 0.80, from top to bottom. Regardless of the

dissipation parameter, the internal stress distribution is approximately uni-

formly distributed between σR + η < σi < σF (0.1 < σi < 1.0) as shown

on the histograms. A sloping trend is observed between σR − η < σi < σF

(−0.1 < σi < +0.1) since a cell’s internal stress σi is set to σi = σR ± η after

a failure, where η is a uniformly distributed random number. Therefore, the

residual stress σR of a cell after failure is governed by the distribution from

which η is sampled.

Due to the stochastic nature of the CA model, there are deviations from a

uniform internal stress distribution since the histogram is for a single plate up-

date time. Shown in Figure 5.5, are the cumulative or stacked histograms of the

internal stresses for models with dissipation parameters of α = 0.05, 0.20, 0.80

across all 2 × 103 snapshots. Although not included, the same internal stress

distributions were noted for all other homogeneous models (α = 0.05, 0.10,

0.20, 0.40, 0.60, 0.80, and 1.00).

Physically, we expect that a system with a lower dissipation parameter

(α = 0.05) distributes a larger amount of internal stresses between neighbouring

cells compared to a system with a greater dissipation parameter (α = 1.00)

because less stress is removed in each plate update time. Yet, regardless of

the dissipation parameter α the underlying internal stress distribution remains
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Figure 5.4: Internal stress snapshot shown on the left subplot with histogram
of the lattice shown on the right subplot. From top to bottom, the plots
are for models with dissipation parameters α of a) 0.05, b) 0.20, and c) 0.80.
As the dissipation parameter increases the internal stress distribution remains
uniformly distributed between σR + η < σi < σF (0.1 < σi < 1.0) and nearly
identical across models.
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Figure 5.5: Cumulative internal stress histogram for all 2× 103 snapshots for
models with dissipation parameters of α = a) 0.05, b) 0.20, and c) 0.80. In all
cases, the internal stress distribution approaches a uniform distribution between
σR+η < σi < σF (0.1 < σi < 1.0) with deviations between σR−η < σi < σR+η
(−0.1 < σi < +0.1).

65



approximately uniformly distributed for σR + η < σi < σF . The tail end at

σR − η < σi < σR + η is instead governed by the implementation of noise η

within the CA model.

At the next plate update the minimum stress min(σF −σi) is added to each

cell of the system, thus shifting the internal stress distributions σi towards the

failure threshold σF . Any internal stress greater than the failure threshold

σi > σF are reset to σi = σR ± η. It follows that the main initiators and

propagators of an avalanche of failures are the cells with internal stresses closest

to the failure threshold σF .

5.2.2 Avalanche Sequences

At the beginning of a plate update, a single failure event is induced which may

develop into an avalanche sequence of failed blocks otherwise known as the slip

history. In seismology, asperities are areas of a fault held together by a local-

ized region of high strength that are resistive to breaking (Lay et al., 1982).

The observed variability in the slip distribution of an earthquake has been sug-

gested as being governed by the varying degrees of asperities present within the

slipping fault surface (Lay et al., 1982). These asperities with varied roughness

govern the rupture process, ground motion and seismic release observed during

a large slip event (Lay et al., 1982; Delouis et al., 2010; Candela et al., 2011).

Shown in Figure 5.6 is the size (cumulative failures) plotted against a given

inner plate update time tin for the three largest events for models with dis-

sipation parameters of α = 0.05, 0.20, 0.80 across all 2 × 103 snapshots. For

a model with low dissipation α = 0.05, Figure 5.6a, we observe that the slip

history is highly variable with greater fluctuations in size. As the dissipation

parameter increases, Figure 5.6b and c, the slip history decreases in size and

duration. As expected, models with low dissipation parameters transfer greater

amounts of stress to neighboring cells, thus creating more complex and lengthy

ruptures. Examining the slip history for all homogeneous models, Figure 5.6,

we notice that the peak, or main event, of a developing avalanche may occur

at the beginning, middle or end of the slip history.

Within the CA model, the variability in the slip distribution and the propa-
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gation of a rupture is controlled by critically stressed regions (as defined by the

areas with large concentrations of cells close to failure) that exist within the sys-

tem and not the presence of asperities (as defined by stronger cells with higher

failure thresholds). This suggests that variations in the slip history may not

be enough to imply the presence of asperities (variations in failure strength).

Lastly, (Rundle and Klein, 1995) observed similar results in their implementa-

tion of the homogeneous massless blocks connected to nearest neighbors blocks.

The authors suggest that such a phenomenon is possible within a homogeneous

model if several patches simultaneously fail analogous to a nucleation process

(Monette and Klein, 1992).

Shown in Figure 5.7 are the spatial distributions of the three avalanche

events (black cell), from left to right, for models with dissipation parameters of

α = a) 0.05, b) 0.20, and c) 0.80, from top to bottom. Each avalanche is initi-

ated at the failed cell marked by the red circle. The long range stress transfer

for a failed cell is R = 16, where the released stress is uniformly redistributed

among Nhex = 816 surrounding cells. Systems with low dissipation parameters

transfer greater amounts of stress to neighboring cells, thus creating a larger

cluster.

From Figure 5.7, the cluster may propagate away from the initially induced

failure, shown as a red circle. Given that the models are homogeneous, and the

internal stress distribution is approximately uniform across the lattice (Fig.

5.4), the clustering of failed cells should be evenly distributed. The fractal

dimension D gives a quantitative measure of the spatial clustering of events,

where D = 2 indicates complete randomness in cell failure distribution (see

subchapter ). Shown in Figure 5.8 are the correlation integral C(r) versus

distance r for all of the previous spatial distributions of the three avalanche

events, from left to right, for models with dissipation parameters of α = a) 0.05,

and b) 0.20, from top to bottom. The correlation integral C(r) are computed

using Equation 3.6. No correlation integral C(r) are computed for models with

high dissipation parameters (α > 0.40) as their clusters have less than one

hundred events (too few samples).

The fractal dimension D is fit using a linear regression model over the linear

part of the curve for a radius interval of 1 ≤ r ≤ 20 (small r) and is shown in the
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Figure 5.6: Size plotted against inner plate update time tin of the three largest
avalanche sequences from all 2× 103 snapshots for models with dissipation pa-
rameters of α = a) 0.05, b) 0.20, and c) 0.80, from top to bottom, respectively.
The slip, or individual events, are highly variable and may further propagate
within critically stressed regions. Systems with low dissipation parameters
transfer greater amounts of stress to neighboring cells, thus creating a more
complex slip history.
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Figure 5.7: Spatial distribution of the three avalanche events, where a black
cell represents a failure, for models with dissipation parameters of α = a) 0.05,
b) 0.20, and c) 0.80. Each avalanche is initiated at the red circle, with a stress
transfer radius of R = 16. Systems with low dissipation parameters transfer
greater amounts of stress to neighboring cells, thus creating a larger cluster.
The rupture initiation point is often not in the center of the total rupture area.
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title bar, along with the standard error in the estimate. When estimating the

fractal dimension D, if the data fall on a straight line then this is an indication

that the spatial distributions of events have fractal structures (Hirata et al.,

1987). Therefore, the fractal dimension D is estimated for clusters within ra-

dius intervals of 1 ≤ r ≤ 20. The fractal dimension is found to be roughly equal

to D = 2 for the dissipation models of α = 0.05, 0.20, Figure 5.8a and b, where

clusters have over N > 100 events. The fractal dimension of D ≈ 2 suggests a

random distribution in the location of the events for the homogeneous models.

Likewise, fractal dimensions of D = 1 and D = 0 suggest a distribution of

events along a lineation and a point, respectively. For greater radius the slope

of the correlation integral C(r) versus distance r decreases, suggesting a more

linear spatial distribution of events. At large radii, r > 102, the spatial distri-

bution of events becomes point like with a slope of D = 0. Lastly, determining

the fractal dimension becomes unpractical for systems with high dissipation

parameters (α > 0.40) as the maximum number of events in a cluster decreases

as shown in the non-cumulative frequency-size distributions, see Figure 5.2.

5.2.3 Model Expectancies

All of the CA models are simulated for a total of 106 plate updates for which

we track the cumulative failures of each cell in intervals of 500 plate updates.

Therefore, we can compare the total number of failures for an individual cell

ntot cell at the end of all 106 plate updates from our CA model results and the

simplified self-interacting conceptual model (Eq. 3.4); the results are summa-

rized in Table 5.2. For the conceptual model, the dissipation parameter α,

and the total physical time tphys used in Equation 3.4 vary, while the failure

threshold σF = 1.0 and residual threshold σR = 0.0 remain constant.

The mean and the standard deviation of the cumulative number of individ-

ual cell failures from the CA model match very closely the values of the simple

self-interacting conceptual model. This suggests that the system at large be-

haves uniformly. There are no large deviations from the expected mean value

of ntot cell calculated from the concept model (Eq. 3.4), therefore suggesting

that there is no preferential flow of stress either into (higher failures) or out of
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Figure 5.8: Correlation integral C(r) versus distance r for each of the three
largest avalanche sequences, left to right, from all 2× 103 snapshots for models
with dissipation parameters of α = a) 0.05, and b) 0.20, from top to bottom.
The fractal dimension D, shown in figure title bar with standard error, is
determined from the slope, shown as a red line, fitted over a linear part of the
curve 1 ≤ r ≤ 20.
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Dissipation Total physical time Mean total failures Total failures
parameter α for 106 plate updates from CA model concept model

0.05 15.2101 303.33 ± 1.09 304.20
0.10 15.2338 152.02 ± 0.82 152.34
0.20 15.2560 76.17 ± 0.65 76.28
0.40 15.2551 38.10 ± 0.54 38.14
0.60 15.2653 25.43 ± 0.52 25.44
0.80 15.2600 19.06 ± 0.45 19.08
1.00 15.2585 15.25 ± 0.47 15.26

Table 5.2
Total stress added, proportional to physical time, to each homogeneous model
over 106 plate updates. The table includes the mean and standard deviation
of the cumulative number of individual cell failures from the CA model, and
the cumulative number of individual cell failures calculated from the simplified
self-interacting conceptual model (Eq. 3.4). The failure threshold σF = 1.0
and residual threshold σR = 0.0 remain constant between the varied models.

(lower failures) the cells within the system.
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Chapter 6

Markov Chain Results

In this chapter, we predict the analytical frequency-size probability distribu-

tion from the transition matrices of the previously examined homogeneous CA

models. Furthermore, using Markov chain Monte Carlo sampling (MCMC) we

replicate the time series, frequency-size distribution, interevent time plot, and

avalanche sequences of the homogeneous CA models.

6.1 Transition Matrices

Given the system parameters of σF = 1.0, σR = 0.0, R = 16 for α =

0.05, 0.20, 0.40, 0.60, 0.80, and 1.00 we calculate the transition matrix M (Eq.

4.18) for every model. Within the CA model, σF and σR correspond to the

failure and residual thresholds of a cell, respectively, with α being the dissipa-

tion parameter of the system. The stress transfer radius is set to R = 16, for

a total of N = 816 neighboring cells within a hexagonal grid (Eq. 3.2), which

results in a (N + 1)× (N + 1) transition matrix M for each system.

Shown in Figure 6.1 are the transition matrices for three of the models

with varied dissipation parameters of α = a) 0.05, b) 0.20, and c) 0.80 with

logarithmic transition probabilities (base 10) given the large range of values.

Within the transition matrix M , each i-th row represents an m-th current

state Si−1 = Sm with the j-th column representing the probability to move to

the n-th state Sj−1 = Sn, where the transition probabilities are given by the
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colorbar. For all transition matrices, state S0 is the absorbing state with all

other states S1, . . . , S817 being transient states.

From the transition matrices (Fig. 6.1), as the dissipation parameter α→ 0

the most likely transition probabilities approach the main diagonal, whereas as

α → 1 the transition probabilities approach the first column. Therefore, as

the dissipation parameter α increases, it becomes more probable to transition

from a given state Sm to a lower state Sn. From the transition matrix, we

construct an analytical frequency-size probability distribution by computing all

possible paths, and their cumulative probabilities P (Scum), up to a cumulative

number of failures of Scum = 17; these are later plotted along the frequency-size

distributions sampled from the MCMC method.

6.2 Markov Chain Monte Carlo

We utilize the MCMC to repeatably sample absorbing Markov chains from

the transition matrix M given the system parameters of σF = 1.0, σR = 0.0,

R = 16, L = 256 for α = 0.05, 0.20, 0.40, 0.60, 0.80, and 1.00. The total number

of plate updates to be simulated is set to 106, identical to the CA models. For

each plate update, the Markov chain begins at state S1, or one induced failure,

at the inner plate update of tin = 1 and continues until the Markov chain has

been absorbed into state S0. For each plate update tpu, we save the Markov

chain at every inner plate update tin (avalanche sequence), cumulative failures

Scum (size), and the units of stress added ∆σ to induce a failure (tphys).

6.2.1 Time Series

A snippet of the MCMC (positive values) and CA (negative values) time series

up to tphys = 1 is shown in Figure 6.2 for different dissipation parameters α.

From the time series, as the dissipation parameter increases from α = 0.05

(Fig. 6.2 top subplot) to α = 1.00 (Fig. 6.2 bottom subplot) the average size

of an event decreases. For all cases, the time series is random and unpredictable

with no signs of foreshock and aftershock sequences prior to a large sized event,

identical to the CA model results.
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Figure 6.1: Calculated transition matrices M for three varied dissipation pa-
rameters of α = a) 0.05, b) 0.20, and c) 0.80 given identical system parameters
of σF = 1.0, σR = 0.0, R = 16. Given a current state Sm the transition prob-
ability to a potential state Sn is shown by the colorbar in a logarithmic scale,
base 10, given the large range of values. A system with a low dissipation pa-
rameter may reach higher states Sn, whereas a system with a high dissipation
is bound to lower potential states Sn.
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Figure 6.2: Physical time series of events (number of failed cells) for varied
dissipation parameters over 1 units of physical time from the MCMC (posi-
tive values) and CA (negative values) models. As the dissipation parameter
increases the size of events decreases. Both models are in good agreement.

A physical time cutoff of tphys = 15.2101 was used for the non-cumulative

frequency-size distributions, identical to the homogeneous CA models. Table

6.1 summarizes the total stress, or physical time, required for all MCMC mod-

els to complete 106 plate updates, along with the total plate updates completed

given the physical time cutoff. From Table 6.1, the total physical time needed

to complete an equivalent number of plate updates is independent of the dis-

sipation parameter of the model. This is because for the MCMC model, the

physical time steps are sampled from identical uniform internal stress distribu-

tions (σR < σi < σF ) for a samples size of L2, see Figure 4.4.

For the CA models, the total physical time tphys needed to complete an

equivalent number of plate updates tpu decreases with decreasing dissipation

parameter α as the system should be closer to failure. For the CA model, see

Table 5.1, the total physical time to complete 106 plate updates can be seen to

increases from tphys = 15.2101 to 15.2585 for a system with a dissipation pa-

rameters of α = 0.05 and 1.00, respectively. Comparatively, the total physical

time needed to complete 106 plate updates for the MCMC model does not show

a decrease in physical time. This would suggest that differences in the internal
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Dissipation Total physical time Total plate updates
parameter α for 106 plate updates for tphys = 15.2101

0.05 15.2802 995,394
0.10 15.2594 996,822
0.20 15.2744 995,830
0.40 15.2817 995,402
0.60 15.2595 996,755
0.80 15.2650 996,326
1.00 15.2515 997,263

Table 6.1
Total stress added, proportional to physical time, to each MCMC model over
106 plate updates and the total number of plate updates completed given a
physical time cutoff of tphys = 15.2101. The physical time cutoff is identical to
the homogeneous CA models.

stress distribution exist for CA models with different dissipation parameters.

6.2.2 Frequency-Size Distribution

The non-cumulative frequency-size distributions for both the MCMC (circles)

and CA (crosses) models are shown in Figure 6.3, along with the theoreti-

cal OFC model with mean-field scaling of ns ∼ s−3/2 plotted as a black line

(Klein et al., 2000, 2007). The black diamonds are the analytically calculated

frequency-size probability distributions multiplied by the total number of plate

updates tpu completed given a physical time cutoff of tphys = 15.2101 for the

MCMC models (Table 6.1). The physical time cutoff is identical for both

MCMC and CA models.

The predicted frequency-size distributions, plotted as black diamonds, match

the MCMC frequency-size distribution very accurately, particularly for well

sampled non-cumulative event counts ns. Visually, both the analytical (black

diamond) and MCMC models (circles) are also in good agreement with the

frequency-size distributions of the homogeneous CA models (crosses). As the

dissipation parameter α increases, we observe an increase in both the slope

and intercept in Figure 6.3; therefore, we observe a decrease in the maximum

expected size (magnitude) with an increase in small size events. Likewise, a

higher stress dissipation suppresses the occurrence of large sized events, while
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Figure 6.3: Non-cumulative frequency-size distributions for the MCMC (cir-
cles) and CA (crosses) models for varied dissipation parameters α. The black
diamonds are the analytically calculated frequency-size distribution for the
Markov process. Both MCMC and CA models are in good agreements and
suggest that as the dissipation parameter increases both the intercept and
slope increase. The black line has a slope of −3/2 predicted from the scaling
of OFC models with low dissipation and long range interactions.

a low dissipation approaches the mean-field scaling, plotted as the black line,

predicted for OFC models (Klein et al., 2007).

The CA model with a dissipation parameter of α = 1.00 has three instances

out of a million plate updates where two events where simultaneously induced

at the beginning of a plate update. Although very rare, there is a chance that

the internal stresses of two cells are equal or within machine precision of each

other.

Shown in Figure 6.4 are the interevent plots of the mean physical time

t̄s between events of size s for all 106 plate updates; it can be thought of as

the average time between events of size s. In Figure 6.4, the solid and dotted

curves are the mean interevent physical time t̄s for the MCMC and CA models,

respectively, with the top and bottom dashed lines being the third (Q3) and first

(Q1) quartiles for the MCMC models. Again, both MCMC and CA models are

in good agreement with each other. At the tail end of the curves, the data are

sparse and therefore the calculated mean interevent physical time t̄s contains

78



10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Varied Homogeneous Models

0.05

0.10

0.20

0.40

0.60

0.80

1.00

0.05

0.10

0.20

0.40

0.60

0.80

1.00

Figure 6.4: Mean interevent physical time t̄s between events of size s for varied
dissipation parameters from the MCMC (solid curve) and CA (dotted line)
models. The top and bottom dashed lines are the third and first quartiles for
the MCMC models. As the dissipation parameter increases the mean interevent
physical time t̄s for a given sized events s increases. The MCMC and CA models
are nearly identical.

lots of variability and gaps in data.

From Figure 6.4, the mean interevent physical time (or period) increases as

the event size s increases for all MCMC models (solid curve), which is in good

agreements with the homogeneous CA models (dotted line). The interevent

physical time t̄s for the largest size events is found to be similar across all

MCMC models, also a feature of the mean interevent plot of the CA models.

Identical to the homogeneous CA models, a high dissipation system has an

increased occurrence of small sized events with a reduced occurrence of larger

sized events. The opposite occurs for a low dissipation system, where there

is a reduced occurrence of small sized events with an increased occurrence of

larger sized events. Therefore, the results of a homogeneous CA model can

be replicated by modeling a stochastic process with a proper underlying stress

distribution for the system.
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6.2.3 Avalanche Sequences

At the beginning of a MCMC plate update, a single failure event is induced

which may propagate into new failures depending on the underlying transition

matrix of the system. An assumption for the MCMC model is that the internal

stress distribution remains unchanged after a failure, whereas in the CA model

there would be a slight decrease in the systems internal stress after any given

failure. On the other hand, within the CA model an induced failure might

occur near or at a critically stressed region aiding in the development of an

avalanche sequence.

Shown in Figure 6.5 is the size (cumulative failures) plotted against a given

inner plate update time tin for three events for the MCMC models with dissipa-

tion parameters of α = a) 0.05, b) 0.20, and c) 0.80. The avalanche sequences

for the MCMC models were chosen to be equal, or nearly equal, in total cu-

mulative size as the avalanche sequences of the homogeneous CA models (Fig.

5.6). Due to the complex evolution of both models, the many ways an avalanche

may develop and the limited number of observations it is unlikely that both

MCMC and CA models will have identical avalanche sequences.

Nonetheless, for a model with low dissipation α = 0.05, Figure 6.5 top, we

observe that the slip history is highly variable, and shows fluctuations in size

identical to those of the CA model (Fig. 5.6a). As the dissipation parameter

increases, Figure 6.5 b and c, the slip history decreases in size and duration as

well. System with low dissipation parameters have increased probabilities to

induce a failure of equal or larger size, thus their avalanche sequences (Markov

chains) tend to be longer and more complex.

Examining the transition matrices of 6.1 suggests that the avalanche se-

quences, or Markov chains, are more probable to develop along a preferred

path. For large sequences it is more probable that an avalanche sequence

steadily increases and decreases. As the dissipation parameter α decreases the

avalanche sequences are more likely to stay at the same state or to transition

to a greater state. Inversely, for high dissipation parameters the avalanche

sequence is much more probable to transition to a lower state.

Within the MCMC model, the variability in the avalanche sequences is

purely a stochastic process governed at large by the internal stress distribution
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Figure 6.5: Size plotted against inner plate update time tin of the three
avalanche sequences for MCMC models with dissipation parameters of α =
a) 0.05, b) 0.20, and c) 0.80. The slip, or individual events, are highly variable
and depend on the path taken by the absorbed Markov chain. Systems with low
dissipation parameters have transition matrices that increase the probability
of transitions to greater states, thus creating more complex slip history.
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of the system. In many ways, this simplified MCMC approach can recreate the

results of the more complex CA model.
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Chapter 7

Cellular Automaton

Inhomogeneous Results

In seismology, areas of a fault held together by a localized region of high

strength that are resistive to breaking are referred to as asperities (Lay et al.,

1982). The effect of asperities has been described with two models. In the as-

perity model, the failure initiates at a strongly coupled region and propagates

into the weaker zones, while in the barrier model the rupture initializes within

the weaker zone and propagates into a strongly coupled region where the fac-

ture may continue or seize (Lay et al., 1982). Within our inhomogeneous CA

model, we observe that asperities may behave as either one.

The most important factors of asperities are their distributions of strengths,

the average ratio of asperity strength to the surrounding, and the spatial distri-

bution of surrounding fault strengths (Kanamori, 1981). These factors would

influence the foreshock sequences, quiescence period and precursory swarms,

respectively.

In seismology, an asperity patch is thought to be the cause of spatial and

temporal characteristics of earthquakes (Aki, 1984; Yamanaka and Kikuchi,

2004). In our model, inhomogeneities are incorporated as asperities with an

increased failure threshold compared to a normal cell. Therefore, an asperity

has a greater capacity to store and release stress back into the system once it

fails. The addition of inhomogeneities into the CA model has been shown to add
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temporal and spatial clustering as observed in natural earthquakes (Kazemian

et al., 2015).

In this chapter, we examine inhomogeneous CA models as large block as-

perities (first subchapter) and as varied structures (second subchapter). Why

do asperities create temporal and spatial clustering within time series plots

and how does it affect the scaling exponent (slope) and intercept (seismogenic

index) of the frequency-size distribution? Along side, we include the predicted

Markov chain (MC) frequency-size distribution for mixed systems.

Lastly, we investigate how the internal stress distribution, avalanche se-

quences, spatial clustering, and model expectancies are modified by the imple-

mentation of asperities.

7.1 Inhomogeneous Block Models

To examine the basic role of inhomogeneities in our model we varied the per-

centage of asperities within the model as a conglomerate block. The 2-D model

has a lattice size of L = 256 cells, a long range stress redistribution of R = 16

with periodic boundary conditions. The dissipation parameter of α = 0.05 was

kept constant with the failure thresholds of the normal cells set to σF = 1.0,

and σFasp = 11.0 for the asperities. All cells have identical residual stresses

of σR = 0.0 ± η, where η is a random uniformly distributed noise between

η = [−0.1,+0.1]. Therefore, the noise η remains fixed between all models,

regardless of the failure threshold. We consider five different cases with 0%,

25%, 50%, 75%, and 100% percent of asperities present within the model, see

Figure 7.1. Prior to simulation, the internal stresses of each cell are uniformly

randomly distributed between −η < σi < σF , as previously done for the ho-

mogeneous CA models. The impact of noise is discussed in a later part of this

chapter. In all cases, the system was simulated for 2 × 106 plate updates to

remove any transient effects before recording the size, or number of failed cells,

for the next 106 plate updates.
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Figure 7.1: Various inhomogeneous block models with normal cells (σF = 1.0)
in white and asperities (σFasp = 11.0) in black. Models shown have asperity
percentages ranging from a) 25%, b) 50%, c) 75%, and d) 100%. The total
lattice size is 256 by 256 hexagonal elements.

7.1.1 Time Series

A snippet of the time series up to tphys = 11 is shown in Figure 7.2 for block

models containing different fractions of asperities, along with the benchmark

model with no asperities (asp = 0.00). From the time series, the addition of

asperities increases the maximum expected event size when compared to the

no asperity model (asp = 0.00). Notably, the asp = 0.75 model produces

nearly double the maximum size when compared to all other models. As the

percentage of asperities increases, the time series develop temporal and periodic

clustering or synchronized failures of cells. Visually, the periodicity of the time

series clusters between the various block models is very similar. Therefore, the

failure threshold of the asperities governs the quiescence period between the

clusters. An increase in σFasp would result in an increase in quiescence period

∆tphys between major clusters because more stress, and thus physical time, is

needed to bring stronger cells to failure.

When comparing the benchmark no asperity model (asp = 0.00) with the

complete asperity model (asp = 1.00) there is a distinct difference in the time

series clustering. Although both models are homogeneous with respect to their

failure thresholds, the asperity model asp = 1.00 generates time series clusters,

whereas the no asperity model asp = 0.00 does not. The cause of the difference
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Figure 7.2: Physical time series of events (number of failed cells) for varied
block models over 11 units of physical time. As the percentage of asperities
increases a more complex temporal clustering appears with an increase in the
maximum size compared to the benchmark no asperity model (asp = 0.00).
The regular peaks are particularly visible for the asp = 0.75 model. Model
structures are shown in Figure 7.11.

is discussed in this chapter and in a later chapter.

Given that the asperities failures are synchronized, it is possible to predict

the average physical time period of the cluster (t̄cluster) from Equation 3.4 by

setting ntot cell = 1 and solving for t̄cluster. Therefore, we find that t̄cluster =

ntot cell(σFasp − σR)α = 1(11 − 0)0.05 = 0.55, which can be visually confirmed

from the times series of the clusters in Figure 7.2.

An identical physical time cutoff (tphys = 15.2101) for all models gives fair

comparison between the various models and their seismogenic index (intercept)

in the non-cumulative frequency-size distributions. Table 7.1 summarizes the

total stress, or physical time, required for all block models to complete 106 plate

updates along with the total plate updates completed given the physical time

cutoff. From Table 7.1, as the percentage of asperities increases so should the

total physical time needed to complete an equivalent number of plate updates.

This is because the presence of asperities increases the average failure threshold,

or hardness, of the system.

Interestingly, when comparing the two homogeneous models of only normal
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Asperity Total physical time Total plate updates
block model for 106 plate updates for tphys = 15.2101
asp = 0.00 15.2101 1,000,000
asp = 0.25 19.7113 771,337
asp = 0.50 28.9180 527,117
asp = 0.75 54.0634 284,660
asp = 1.00 940.9927 20,010

Table 7.1
Total stress added, proportional to physical time, to each inhomogeneous block
model over 106 plate updates and the total number of plate updates completed
given a physical time cutoff of tphys = 15.2101.

cells asp = 0.00 and only asperities asp = 1.00, the total physical time re-

quired to complete 106 plate updates greatly increases from tphys = 15.2101 to

940.9927. Given that a homogeneous model with no asperities requires a run-

time of tphys = 15.2101 for a failure threshold of σF = 1.0, if the inhomogeneous

model physical time scaled linearly we would expect that an increased failure

threshold would require a runtime of approximately tphys = 15.2101 × σFasp =

15.2101 × 11 = 167.3111. Instead, the simulated asp = 1.00 model requires a

total of tphys = 940.9927 to complete all 106 plate updates. Briefly, this is due

to the synchronized failures of asperities that significantly change the dynamics

of the CA model, as later discussed in this chapter.

7.1.2 Frequency-Size Distribution

The non-cumulative frequency-size distributions for all of the inhomogeneous

block models are shown in Figure 7.3 as circles, with a physical time cut-

off of tphys = 15.2101 used for all models. The predicted Markov chain (MC)

frequency-size distributions for inhomogeneous models are plotted as black dia-

monds for their respective block models. Lastly, the black line is the theoretical

scaling of a homogeneous OFC model.

For the CA block models, as the percentage of asperities increases the inter-

cept decreases, while the slope remains constant. Therefore, there is a reduction

in the occurrence of small to large sized events (100 < s < 103) with the pres-

ence of asperities. Yet, there is a significant increase in the range and the

87



maximum expected size (magnitude) with the presence of asperities, particu-

larly for the asp = 0.75 block model. Lastly, the homogeneous asperity model

asp = 1.00 shows a slight dip in the slope with a suppression of events between

the range of 1 < s < 5 × 101. This is also present in the interevent time plot,

shown later, for which all 106 plate updates are used.

For the predicted MC block models, plotted as diamonds, the intercept

is seen to decrease with increasing percentage of asperities. The predicted

frequency-size distributions for mixed systems is calculated as the sum of in-

dividual homogeneous MC models (Eq. 4.32). As the percentage of asperities

increases the predicted frequency-size distributions increasingly deviates from

the CA frequency-size distributions. In particular, for asp = 0.75 and 1.00

models there is a decrease in small sized events compared to the Markov chain

models. Whereas the CA model for asp = 0.00 is in good agreement with the

predicted MC model, the asp = 1.00 CA model is not. This suggests that the

implementation of asperities behaves significantly different to normal cells.

Shown in Figure 7.4 are the interevent times plots of the mean physical time

t̄s between events of size s for all 106 plate updates. In Figure 7.4, the solid

color curve is the mean interevent physical time t̄s, with the top and bottom of

the dashed lines showing the third (Q3) and first (Q1) quartiles, respectively,

for that given curve. For sparse data, particularly the tail end of the curves, the

calculated mean interevent physical time and quantiles have lots of variability

and gaps in data.

Generally, the mean interevent physical time (or period) increases as the

event size s increases for all block models. Towards the tail end of the plot

large events are under sampled for all models resulting in a sporadic curve.

As the percentage of asperities increases there is an increase in the interevent

physical time (decreased occurrence) for events of identical size s. Identical to

the non-cumulative frequency-size distribution, there is a change in the slope

for the asp = 1.00 model between the range of 101 < s < 102 with a decrease

in the mean interevent physical time (increased occurrence) for large sized

events. This change in slope is not present in any other block model, nor for

the homogeneous asp = 0.00 model with a lesser failure threshold. We will

return to this point when discussing the influence of noise variance.
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Figure 7.3: Non-cumulative frequency-size distribution as circles for CA block
models along with the predicted Markov chain distributions as black diamonds.
The CA distributions suggest that as the block percentage of asperities in-
creases (top to bottom distributions) the intercept decreases, while the slope
stays constant. The predicted Markov chain models also suggest that the in-
tercept should decrease with increasing asperities, but to a greater extent than
the CA models. For the CA models, asperities increase the maximum size from
the baseline homogeneous asp = 0.00 model, particularly the asp = 0.75 block
model having the greatest maximum magnitudes (smax ≈ 3 × 104). The CA
blocks models have a low dissipation parameter of α = 0.05. The black line has
a slope of −3/2 predicted from the scaling of OFC models with low dissipation
and long range interactions.
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Figure 7.4: Mean interevent physical time t̄s between events of size s for var-
ied block models. Top and bottom dashed lines outline of the third and first
quartiles, respectively, for a given curve. As the percentage of block asperi-
ties increases the mean interevent physical time t̄s for a given sized events s
increases. Uniquely, the asperity model asp = 1.00 has a change in the slope
between the range of 101 < s < 102 with a decrease in the mean interevent
physical time for larger sized events.
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7.2 System details

Additionally, at the end of every 500-th of the total 106 plate updates we output

a snapshot of the internal stresses of all cells and the lattice’s inner plate failure

sequence tin, and cumulative failures of each cell for a total of 2×103 snapshots.

7.2.1 Internal Stress Distribution

Shown in Figure 7.5 are the internal stress snapshots, and their respective

histograms, for block models of asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00, from

top to bottom. The internal stress snapshot for the block model asp = 0.00 (no

asperity) model is shown in a previous chapter, see Figure 5.4a. The internal

stress distributions for all asperity block models show a triggering front of cells

with high internal stress (about to fail) followed by cells with low internal

stress (previously failed). These triggering fronts appear to travel away from

the normal cells and inwards into the asperity blocks. Therefore, the normal

cells may load the asperity blocks at the boundaries, thus creating a triggering

front that travels inward into the asperities. The temporal clustering observed

in the time series is the result of the trigger front advancing inwards within the

asperity block.

For the homogeneous asperity model asp = 1.00, there are no normal cells,

yet the internal stress distribution organizes itself much the same way. A trig-

gering front sweeps periodically through the entire system, being the origin of

the major time series clustering. This large triggering front appears to originate

from the consistent bands of cells of alternating internal stresses found at the

top the lattice, Figure 7.5d. These cells organize themselves as a subsystem fail-

ing at shorter timescales relative to the rest of the system, until triggering the

larger wavefronts that make their way downwards across the rest of the system.

As a side note, this banded subsystem has been validated to be present within

the square lattice implementation, as well as the current hexagonal lattice, and

is not an error in periodic boundaries.

As the percentage of asperities increases, the histogram of the internal stress

distribution for asperities becomes less uniform and shifts towards a unimodal

distribution with a peak at the center, as shown in Figure 7.6. The internal

91



stress distribution of the normal cells remains uniformly distributed.

At the next plate update the minimum stress min(σF −σi) is added to each

cell of the system to induce a failure. At large, the normal cells subsystem

behaves independent of the asperity blocks. If an asperity does fail at the

boundary of the normal cells a large cluster of failures occurs within the normal

cells due to the relatively large stress release. Yet, the time series clustering

originates from the propagation of failures due to the asperity block. Given

that the internal stresses within the asperities are synchronized in wavefronts,

once a failure does occur it is likely that a chain reaction of events propagates

along the critically stressed regions where the internal stresses are near the

failure threshold σF .

7.2.2 Avalanche Sequences

At the beginning of a plate update, a single failure event is induced which may

develop into an avalanche of failed cells otherwise known as the slip history.

The presence of asperities has been shown to create temporal clustering within

the time series (Fig. 7.2). Do avalanche sequences initiate at an asperity and

propagate outwards towards weaker zones (asperity model), or does the rupture

initiate at a weaker zone and propagate towards the asperities (barrier model)?

Shown in Figure 7.7 are the three largest avalanche sequence from all 2 × 103

snapshots for block models asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00. For the

avalanche sequences, shown in Figure 7.7, the failure of an asperity at a given

inner plate update tin is marked with a colored black circle; this is omitted for

the asp = 1.00 avalanche sequences for clarity. The avalanche sequence for the

block model asp = 0.00, no asperities, is shown in Figure 5.6a.

From the block models asp = a) 0.25, b) 0.50, c) 0.75, the slip history is

variable with the largest event not necessarily corresponding to the failure of an

asperity. Instead, the failure of asperities, black circles, are spread throughout

the rupture sequences. Likewise, the initial failure at tin = 1 may be initiated at

an asperity and propagate outwards, or it may initiate at a normal cell and make

its way towards the asperities. This is better shown in the spatial distributions

of the three avalanche events, from left to right, for the block models a) 0.25,
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a)

b)

c)

d)

Figure 7.5: Internal stress snapshot shown on the left subplot with histogram
of the lattice shown on the right subplot. From top to bottom, the plots are
for models with asperity blocks of asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00.
For the internal stress snapshot of the asp = 0.00 model, see Figure 5.4a. The
internal stress distributions for all asperity block models show structure in the
form of a failure wavefront. From the histograms (logarithmic scale), as the
percentage of block asperities increases the internal stress distribution of the
asperities becomes unimodal.
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a) b)

c) d)

Figure 7.6: Cumulative internal stress histogram (logarithmic scale) for all
2× 103 snapshots for block models asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00.
For the cumulative internal stress histogram of the asp = 0.00 model, see Figure
5.5a. In all cases, as the percentage of asperities increases the internal stress
distribution approaches a unimodal distribution with a center peak, whereas
the normal cells remain uniformly distributed.

94



Figure 7.7: Size plotted against inner plate update time tin of the three largest
avalanche sequences from all 2× 103 snapshots for block models asp = a) 0.25,
b) 0.50, c) 0.75, and d) 1.00. The avalanche sequence for the block model
asp = 0.00, no asperities, is shown in Figure 5.6a. The failure of an asperity
at a given inner plate update tin is marked with a black circle; this is omitted
for the asp = 1.00 avalanche sequences for clarity. The slip sequences are
highly variable with the failure of asperities, black circles, spread throughout
the avalanche. The largest event in the slip sequences does not necessarily
indicate the failure of an asperity.
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b) 0.50, c) 0.75, and d) 1.00, from top to bottom. Each avalanche is initiated

at the failed cell marked by the red circle, where the failures of normal cells are

plotted in black and the failures of asperities are plotted in blue.

As seen from the spatial clusters of the block models, Figure 7.8, failure

may begin at an asperity and propagate along other asperities and possibly

propagate to the surrounding normal cells (asperity model). Likewise, there

may be instances where the failure initiates at the normal cells and propagates

to the boundaries of the asperities, that may or may not fail (barrier model).

Spatially, failures of asperities are distributed along critically stressed wave-

fronts, whereas the failures of the normal cells tend to be clustered around a

previously failed asperity or evenly spread out. From the avalanche sequence,

once an asperity does fail it is more likely that other asperities failures will sub-

sequently fail given their close proximity. Equally, if the avalanche sequence

does reach the normal cells the last avalanche sequence will most likely end

within the normal cells rather than the asperity cells.

The failure behavior for the homogeneous asperity model asp = 1.00 is

completely different to the other block models. In the asp = 1.00 model,

the failure sequence propagates as a wavefront across the lattice. A large sized

events would mean that the failure wavefront has propagated further across the

lattice compared to a smaller sequence, as shown in Figure 7.8d. Therefore, the

slip sequences of Figure 7.7d are very similar in shape with the main difference

being the slip duration, which is proportional to avalanche size.

The fractal dimension D was fit for radius intervals of 1 ≤ r ≤ 20 (small

r), along with the standard error in the estimate, shown in Figure 7.9. For

small radii, the fractal dimension of D ≈ 2 suggests a random distribution in

the location of the events. For greater radii the slope of the correlation integral

C(r) versus distance r decreases, suggesting a transition towards a more linear

spatial distribution of events. At large radii, r > 102, the spatial distribution

of events becomes point like with a slope of D = 0.
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Figure 7.8: Spatial distributions of the three avalanche events, from left to
right, for the block models asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00, from
top to bottom. Each avalanche is initiated at the failed cell marked by the red
circle, where the failures of normal cells are plotted in black and the failures of
asperities are plotted in blue.
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Figure 7.9: Correlation integral C(r) versus distance r for each of the three
largest avalanche sequences, left to right, from all 2 × 103 snapshots for block
models asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00. The fractal dimension D,
shown in figure title bar with uncertainty, is determined from the slope, shown
as a red line, fitted over a linear part of the curve 1 ≤ r ≤ 20.
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Asperity Total physical time Mean total failures Total failures
model for 106 plate updates from CA model concept model

asp=0.00 15.2101 303.33 ± 1.09 (nrm) 304.20 (nrm)
asp=0.25 19.7113 392.65 ± 1.65 (nrm) 394.23 (nrm)

35.70 ± 0.46 (asp) 35.84 (asp)
asp=0.50 28.9180 572.51 ± 10.50 (nrm) 578.36 (nrm)

52.34 ± 0.47 (asp) 52.58 (asp)
asp=0.75 54.0634 988.55 ± 130.26 (nrm) 1081.27 (nrm)

97.59 ± 0.55 (asp) 98.30 (asp)
asp=1.00 940.9927 1704.45 ± 0.75 (asp) 1710.90 (asp)

Table 7.2
Total stress added, proportional to physical time, to each block model over
106 plate updates. The table includes the mean and standard deviation of the
cumulative number of individual cell failures for normal cells (nrm) and asperity
cells (asp) from the CA model, and the cumulative number of individual cell
failures calculated from the simplified self-interacting conceptual model (Eq.
3.4). The dissipation parameter α = 0.05 and residual threshold σR = 0.0
remain constant between the block models.

7.2.3 Model Expectancies

All of the CA models are simulated for a total of 106 plate updates for which

we track the cumulative failures of each cell in intervals of 500 plate updates.

Therefore, we can compare the total number of failures for an individual cell

ntot cell at the end of all 106 plate updates from our CA model results and the

simplified self-interacting conceptual model (Eq. 3.4); the results are summa-

rized in Table 7.2. The failure thresholds of the asperity cell σFasp = 11.0 and

normal cell σF = 1.0 vary depending on the cell, along with the total physical

time tphys taken to complete all 106 plate updates, while the dissipation param-

eter α = 0.05 and residual threshold σR = 0.0 remain constant. Likewise, the

cumulative number of individual cell failures over 106 plate updates for all of

the inhomogeneous block models are shown in Figure 7.10.

Overall, when considering the standard deviation, the mean cumulative

number of individual cell failures from the CA model for both the normal cells

and asperity cells are approximately within the predicted values of the concep-

tual model. At large, this suggests that the normal and asperity block behave

uniformly. Yet, as the percentage of asperities increases within the block model,
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Figure 7.10: Cumulative number of failures for each cell over 106 plate updates
for block models asp = a) 0.25, b) 0.50, c) 0.75, and d) 1.00. Low cumulative
number of failures appear to be at the boundaries of the asperity block.
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there is a decrease in the mean failure of the normal cells compared to the pre-

dicted concept model. A decrease in the mean total number of failures for a

normal cell would suggest a deficiency of stress flow into the normal cells, which

would result in lower failures. As shown in Figure 7.10a-c, the cumulative num-

ber of failures for the normal cells are decreased at the borders of the asperities,

but not uniformly along the boundary. From the block models asp =0.25, 0.50,

and 0.75 the cumulative number of failures for the normal cells found at the

boundaries of the asperities can be as low as ntotcell = 378, 484, and 464, re-

spectively. Given that the asperities fail less often than the normal cells, it is

expected that the normal cells at the borders of the asperities have a reduced

total number of failures. Yet, Figure 7.10 shows that this failure deficit is not

evenly spread at every border, or even in every block model. Furthermore, we

note that the cumulative number of failures for the asperities near the border

do not fail more frequently than those further within the asperity block.

Lastly, the cumulative number of failures for the homogeneous asperity

model asp = 1.00, Figure 7.10d, are not evenly distributed. The band of cells

at the top of the lattice, from which the failure wavefront originates, have a

slightly increased cumulative number of failures compared to the rest of the

cells. Therefore, these top cells establish a static subsystem that fails at a

periodicity that is irregular to the sweeping failure wavefront that makes its

way across the lattice.

A question that arises is why is this band found at the top edge of the

model, and not randomly distributed elsewhere such as in the middle of the

lattice? Possibly this is an inherent feature due to the order in which cells are

failed, where within the code the internal stresses of cells are read and failed

in horizontal scan lines from the top to bottom. Therefore, when the entire

lattice is near failure the sequence in which cells are read and failed may act

as a seed in creating this top horizontal band of cells with slightly increased

cumulative failures. This has not been validated within our model.
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Figure 7.11: Various inhomogeneous structure models with normal cells (σF =
1.0) in white and asperities (σFasp = 11.0) in black. Models shown have varied
structures with asperity percentages ranging of a-c) 5%, and d) 25%. The total
lattice size is 256 by 256 hexagonal elements.

7.3 Inhomogeneous Structure Models

To examine the effect of structure in our model we varied the spatial distribu-

tion of asperities within the lattice system. Identical to the previous inhomo-

geneous block models, all other model parameters were kept identical, such as

α = 0.05, σF = 1.0, σFasp = 11.0, σR = 0.0 ± 0.1, and L = 256. We consider

four different cases that vary in structure with three models having 5% percent

of asperities (frac, lin frac, rnd B1) and one model containing 25% of asperities

(rnd B16), see Figure 7.11. Structures include a) random walk (frac), b) lin-

ear fractures (lin frac), c) random blocks of width 1 (rnd B1), and d) random

blocks of width 16 (rnd B16). The benchmark homogeneous model contains

no asperities. Identical to the previous section, the internal stresses of each

cell are uniformly randomly distributed between −η < σi < σF . In all cases,

the system was simulated for 2 × 106 plate updates to remove any transient

effects before recording the size, or number of failed cells, for the next 106 plate

updates.
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7.3.1 Time Series

A snippet of the time series up to tphys = 11 is shown in Figure 7.12 for struc-

ture models, along with the benchmark model with no asperities. From the

time series, the structure of the asperities changes the shape of the clustering

and the maximum event size, while the quiescence period between the clus-

ters remains identical. In detail, the frac model (Fig. 7.12b) shows a clear

foreshock, mainshock and aftershock sequence with very similar foreshocks and

aftershocks in duration and size. The lin frac model (Fig. 7.12c) also shows

a foreshock, mainshock and aftershock sequence, yet the foreshock sequences

have a slight decrease in seismicity prior to the mainshock. The rnd B1 model

(Fig. 7.12d) has approximately a doubling in the maximum size of the main-

shock compared to the frac, and lin frac models and shows very little, if any,

foreshock or aftershock sequences. Lastly, the time series of the rnd B16 model

(Fig. 7.12e), which contains 25% asperities, shows a random and unpredictable

large sized event much like the benchmark no asperity model. Although this

model contains five times the percentage of asperities compared to the other

structure models, its maximum magnitude is much less.

In the structure models, where clustering does occur for models frac, lin

frac, and rnd B1, the predicted average physical time period between the clus-

ter can be calculated in the same manner as the block models (Eq. 3.4) as

t̄cluster = ntot cell(σFasp − σR)α = 1(11 − 0)0.05 = 0.55. Therefore, the quies-

cence period between clusters for inhomogeneous models is governed by the

failure and residual thresholds of the asperity cells, along with the dissipation

parameter of the system.

An identical physical time cutoff (tphys = 15.2101) is used for all structure

models for the non-cumulative frequency-size distributions. Table 7.3 summa-

rizes the total stress, or physical time, required for all models to complete 106

plate updates, along with the total plate updates completed given the physical

time cutoff. Given that the frac, lin frac, and rnd B1 models have equal per-

centage of asperities the total physical time needed to complete all 106 plate

updates is approximately identical. The rnd B16 model requires a greater

amount of physical time to complete all plate updates due to the increased

percentage of asperities.
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Figure 7.12: Physical time series of events (number of failed cells) for varied
structure models, see legend, over 11 units of physical time. Formation of
periodic and frequent earthquake clusters or swarm events are seen for the
fracture (frac), linear fracture (lin frac), and block width 1 (rnd B1) models.
Notably, the largest peaks sizes s > 105 are observed for the rnd B1 model.
The block width 16 (rnd B16) model shows a random and unpredictable time
series similar to the benchmark model. Model structures are shown in Figure
7.11. The benchmark homogeneous model with no asperities is the asp = 0.00
model.

Asperity Total physical time Total plate updates
block model for 106 plate updates for tphys = 15.2101

asp=0.00 15.2101 1,000,000
frac 16.0022 950,804

lin frac 16.0161 949,751
rnd B1 16.0267 949,194
rnd B16 19.9832 760,433

Table 7.3
Total stress added, proportional to physical time, to each structure block model
over 106 plate updates and the total number of plate updates completed given
a physical time cutoff of tphys = 15.2101.
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7.3.2 Frequency-Size Distribution

The non-cumulative frequency-size distributions for all of the inhomogeneous

structure models are shown in Figure 7.13 with a physical time cutoff of tphys =

15.2101. For structured asperity models we observe negligible decrease in the

intercept (or seismogenic index) with the greatest changes being in the slope

and the maximum expected size (magnitude). In particular, there is a reduction

in the occurrence of small to large sized events (101 < s < 103) with a significant

increase in the range and the maximum expected size (magnitude), particularly

for the rnd B1 model. The rnd B16 model behaves differently to the other

structure models, where we observe a decrease in the intercept while the slope

remains similar to the previously examined CA block models. Unlike the CA

block models, the CA structure models increase the slope, or b-value, in the

non-cumulative frequency-size distribution.

The predicted MC structure models, plotted as diamonds, are calculated

as the sum of individual homogeneous MC models (Eq. 4.32). Therefore, the

predicted MC models for the frac, lin frac, and rnd B1 are identical as they

all contain 5% of asperities. The MC models predict that greater percentages

of asperities will decrease all seismicity while maintaining a constant slope.

Conversely, the CA models suggest that the underlying asperity structures

influence the slope and the maximum expected magnitude. Therefore, the

discrepancies between the predicted MC models and the CA models suggest

that these differences originate due to the interaction between the asperities

and normal cells.

Shown in Figure 7.14 are the interevent plots of the mean physical time t̄s,

solid color curve, between events of size s for all 106 plate updates where the

dashed lines outline the third (Q3) and first (Q1) quartiles, respectively. For all

structure models containing asperities, there is an increase in the mean physical

time t̄s (decreased occurrence) for events of size s > 2 × 101 compared to the

homogeneous model. As previously shown in Figure 7.13, the decrease of small

sized events comes at the cost of increased maximum magnitudes. For small

sized events s < 2×101 the mean interevent physical time t̄s for the frac, lin frac,

rnd B1 and no asperity models behave very similarly. Furthermore, the frac, lin

frac and rnd B1 models are nearly identical between the magnitude ranges of
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Figure 7.13: Non-cumulative frequency-size distribution as circles for CA struc-
ture models along with the predicted Markov chain distributions as black dia-
monds. Compared to the baseline model, the asperity structures increase the
slope and the range of the maximum expected size (magnitude) while the in-
tercept remains constant. The rnd B1 model generates the greatest maximum
magnitudes (smax ≈ 2× 106) compared to all other structure models. For the
rnd B16 model, there is a decrease in the intercept while the slope remains
constant similar to the previous results examined for the block models. The
CA structure models have a low dissipation parameter of α = 0.05. The black
line has a slope of −3/2 predicted from the scaling of OFC models with low
dissipation and long range interactions.
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Figure 7.14: Mean interevent physical time t̄s between events of size s for
varied structure models. Top and bottom dashed lines represent the third and
first quartiles, respectively, for a given curve. For all structure models con-
taining asperities, there is an increase in the mean physical time t̄s (decreased
occurrence) for events of size s > 2×101 compared to the homogeneous model.
For models frac, lin frac, and rnd B1 the mean interevent physical time t̄s curve
is nearly identical between the magnitude ranges of 100 < s < 102 with devia-
tions at larger magnitudes. For the rnd B16 model there is an increase in the
interevent physical time (decreased occurrence) for events of identical size s.

1 < s < 102 with deviations occurring between them at larger magnitude ranges

s > 102. The rnd B16 model is more similar to the block models previously

examined, where there is an increase in the interevent physical time (decreased

occurrence) for events of identical size s.

7.4 System details

At the end of every 500-th of the total 106 plate updates we output a snapshot

of the internal stresses of all cells and the lattice’s inner plate failure sequence

tin, and cumulative failures of each cell for a total of 2× 103 snapshots.
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7.4.1 Internal Stress Distribution

Shown in Figure 7.15 are the internal stress snapshots, and their respective his-

tograms, for models a) frac, b) lin frac, c) rnd B1, and d) rnd B16. The internal

stress distributions for all asperity structures show greater variations, where a

single asperity structure may have cells with low internal stresses (blue) and

high internal stresses (yellow). Visually, we can identify a synchronization of

internal stresses across asperities that appear to originate from earlier initiat-

ing asperity failure zone(s) (bright blue) as seen in the frac, lin frac and rnd

B1 models. Effectively, the asperities structures are in communication with the

surrounding asperity structures within the long range stress transfer of R = 16.

Therefore, the temporal clustering observed in the times series would originate

from one or more failure wavefronts that initiate in an asperity structure and

propagate outwards towards the surrounding asperities.

For the structure model rnd B16 (Fig. 7.15d), the asperity blocks behave

differently from the rest of the structured models and show an internal stress

distribution more similar to the large block models previously examined. The

internal stresses of the asperity blocks organize themselves into smaller block

subsystems that behave similarly to the large block models previously exam-

ined. The internal stress distributions for the rnd B16 blocks show triggering

fronts that form at the normal cells boundaries and propagate inwards into the

asperity blocks. Therefore, the surrounding normal cells may load the asperity

blocks at the boundaries, thus creating a triggering front that travels inward,

or at times across, the block asperities.

The histogram of the internal stress distribution, Figure 7.16, shows that the

asperities have a unimodal distribution with a peak at the center, whereas the

internal stress distribution of the normal cells remains uniformly distributed.

Looking at individual snapshots from Figure 7.15a-c, the internal stress dis-

tribution of the frac, lin frac and rnd B1 models show gaps in between 1 <

σi < 1.6, 1 < σi < 2, and 1 < σi < 4, respectively. Compared to the previ-

ously examined block models, the internal stresses of the structure asperities

are more tightly clustered. This is most likely due to the low percentage (5%)

of asperities within the system, as the rnd B16 model shows a greater spread in

the internal stresses of the asperities. At the next plate update the minimum
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Figure 7.15: Internal stress snapshot shown on the left subplot with histogram
(logarithmic scale) shown on the right subplot. From top to bottom, the plots
are for models with structure of a) frac, b) lin frac, c) rnd B1, and d) rnd
B16. Visually, we can identify a synchronization of internal stresses across the
asperities that appear to originate from earlier asperity failure zone(s) (cyan
blue). The internal stress distributions for the rnd B16 blocks show failure
fronts that form at the normal cells boundaries and propagate inwards, or
across, the asperity blocks.
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Figure 7.16: Cumulative internal stress histogram (logarithmic scale) for all
2×103 snapshots for structure models a) frac, b) lin frac, c) rnd B1, and d) rnd
B16. In all cases, the internal stress distribution of the asperities is a unimodal
distribution with a center peak, whereas the normal cells remain uniformly
distributed.

stress min(σF − σi) is added to each cell of the system, and the internal stress

distribution of the asperities shifts towards the failure threshold of σFasp = 11.0.

7.4.2 Avalanche Sequences

At the beginning of a plate update, a single failure event is induced which may

develop into an avalanche of failed cells otherwise known as the slip history.

The presence of structured asperities creates temporal clustering with varied

foreshock, mainshock and aftershock sequences, as shown in the time series

(Fig. 7.12). How does the spatial distribution of asperities surrounding weaker

normal cells influence the avalanche sequences? Shown in Figure 7.17 are the
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three largest avalanche sequence from all 2 × 103 snapshots for the structure

models a) frac, b) lin frac, c) rnd B1, and d) rnd B16. For the avalanche

sequence, the failure of an asperity at a given inner plate update tin is marked

with a black circle.

From the structure models a) frac, b) lin frac, c) rnd B1, and d) rnd B16, the

slip history is variable with the largest event in the sequence not necessarily

corresponding to the failure of an asperity. The failure of asperities, black

circles, are spread throughout the rupture sequences. Furthermore, an induced

failure at tin = 1 may begin at an asperity and propagate outwards, or it

may initiate at a normal cell and make its way towards the asperities. This is

better shown in Figure 7.18 with the spatial distributions of the three avalanche

events, from left to right, for the structure models a) frac, b) lin frac, c) rnd B1,

and d) rnd B16, from top to bottom. Each avalanche is initiated at the failed

cell marked by the red circle, where the failures of normal cells are plotted in

black and the failures of asperities are plotted in blue.

Examining both the avalanche sequences and the spatial distributions (Fig-

ures 7.17 and 7.18) shows that the initiating failures do not necessarily corre-

spond to the center of the failure cluster. Instead, the major cluster of failed

cells tend to be around failed asperity cells due to the relatively large release

of stress to the weaker surrounding normal cells. Furthermore, from all of

the snapshots for all structure models, the avalanche sequences were found to

always terminate within the weaker normal cells.

The fractal dimension D was fit for radius intervals of 1 ≤ r ≤ 20 (small

r), along with the standard error in the estimate, shown in Figure 7.19. For

small radii, the fractal dimension of D ≈ 2 suggests a random distribution in

the location of the events. Given that the inhomogeneous structures are much

less in length than the stress transfer range, the fractal dimension D effectively

measures the random distribution of events due to the stress transfer range

rather than the asperity structures.
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Figure 7.17: Size plotted against inner plate update time tin of the three
largest avalanche sequences from all 2 × 103 snapshots for structure models
a) frac, b) lin frac, c) rnd B1, and d) rnd B16. For the avalanche sequences,
the failure of an asperity at a given inner plate update tin is marked with a
black circle. The slip sequences are highly variable with the failure of asperities
spread throughout the avalanche. As an asperity fails it may induce failure in
nearby asperities.
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Figure 7.18: Spatial distributions of the three avalanche events, from left to
right, for the structure models a) frac, b) lin frac, c) rnd B1, and d) rnd B16,
from top to bottom. Each avalanche is initiated at the failed cell marked by
the red circle, where the failures of normal cells are plotted in black and the
failures of asperities are plotted in blue. Large clusters of failed cells tend to
be around asperity structures.
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Figure 7.19: Correlation integral C(r) versus distance r for each of the three
largest avalanche sequences, left to right, from all 2×103 snapshots for structure
models a) frac, b) lin frac, c) rnd B1, and d) rnd B16, from top to bottom. The
fractal dimension D, shown in figure title bar with uncertainty, is determined
from the slope, shown as a red line, fitted over a linear part of the curve
1 ≤ r ≤ 20.
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Asperity Total physical time Mean total failures Total failures
model for 106 plate updates from CA model concept model
frac 16.0022 310.69 ± 12.96 (nrm) 320.04 (nrm)

29.00 ± 0.04 (asp) 29.09 (asp)
lin frac 16.0161 303.87 ± 15.72 (nrm) 320.32 (nrm)

29.00 ± 0.06 (asp) 29.12 (asp)
rnd B1 16.0267 272.81 ± 18.48 (nrm) 320.53 (nrm)

29.01 ± 0.12 (asp) 29.14 (asp)
rnd B16 19.9832 383.86 ± 19.18 (nrm) 399.66 (nrm)

36.19 ± 0.40 (asp) 36.33 (asp)

Table 7.4
Total stress added, proportional to physical time, to each structure model over
106 plate updates. The table includes the mean and standard deviation of the
cumulative number of individual cell failures for normal cells (nrm) and asperity
cells (asp) from the CA model, and the cumulative number of individual cell
failures calculated from the simplified self-interacting conceptual model (Eq.
3.4). The dissipation parameter α = 0.05 and residual threshold σR = 0.0
remain constant between the structure models.

7.4.3 Model Expectancies

All of the CA models are simulated for a total of 106 plate updates for which

we track the cumulative failures of each cell in intervals of 500 plate updates.

The results for the total number of failures for an individual cell ntot cell at

the end of all 106 plate updates from our CA model results and the simplified

self-interacting conceptual model (Eq. 3.4) are summarized in Table 7.4. The

failure thresholds of the asperity cell σFasp = 11.0 and normal cell σF = 1.0

vary depending on the cell, along with the total physical time tphys taken to

complete all 106 plate updates, while the dissipation parameter α = 0.05 and

residual threshold σR = 0.0 remain constant. Likewise, the cumulative number

of individual cell failures over 106 plate updates for all of the inhomogeneous

structure models are shown in Figure 7.10.

From Table 7.4, the mean cumulative number of normal cell failures de-

creases from the frac, lin frac, and rnd B1 models, although all three mod-

els have approximately 5% asperities with nearly identical total physical time

needed to complete 106 plate updates. Therefore, the spatial distribution of

structure asperities influences the failure statistics of the CA model. A decrease
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Figure 7.20: Cumulative number of failures for each cell over 106 plate updates
for structure models a) frac, b) lin frac, c) B1, and d) B16. Low cumulative
number of failures appear to be in areas with larger asperity density.
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in the mean total number of failures for a normal cell would suggest a deficit

of stress flowing into the normal cell resulting in lower cumulative failures. As

shown in Figure 7.20, the cumulative number of failures for the normal cells

is strongly decreased at the borders of certain but not all asperity structures.

For the frac, lin frac, rnd B1, and rnd B16 models the cumulative number of

failures for the normal cells found at the boundaries of the asperities can be as

low as ntotcell = 242, 256, 231, and 284, respectively. Given that the asperities

fail less often than the normal cells, it is expected that the normal cells at the

asperities have a reduced total number of failures, yet some clusters show a

greater deficit. Most likely, some asperity structures spatially distribute them-

selves into a more effective barrier geometry, or stress sink, and inhibit the

propagation of avalanches through the neighboring normal cells.
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Chapter 8

Discussion

8.1 Homogeneous Models

8.1.1 Cellular Automaton

From the CA homogeneous time series, see Fig. 5.1, the average size event is

governed by a system’s ability to dissipate stress. As a system’s dissipation pa-

rameter α decreases, the average size event s increases. Therefore, greater stress

dissipation supresses the occurrence of larger events while increasing the occur-

rence of smaller events; this is highlighted in the non-cumulative frequency-size

distributions of Figure 5.2.

The non-cumulative frequency-size distribution is a Gutenberg-Richter like

relation, see Equation 2.4, between an s size event and its measure of fre-

quency ns. The frequency-size distributions for the homogeneous models (Fig.

5.2) confirm that as the stress dissipation parameter α increases larger size

events occur less frequently, while the occurrence of smaller events increases.

The intercept of the frequency-size distribution has been interpreted as a sys-

tem’s capacity to generate earthquakes, analogous to the a-value from the GR

relation. Likewise, the slope, or b-value, of the scaling relation determines the

relative frequency of large events versus smaller events.

In terms of seismology, the homogeneous CA models would suggest that a

dissipative system has an increase in both the slope (b-value) and intercept (a-
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value), meaning that a greater proportion of small sized events are generated

over large sized events. We note that as the dissipation parameter decreases,

the distribution approaches a constant slope of −3/2, as suggested for an OFC

model with low dissipation and long range interactions (Klein et al., 1997). As

an aside, it has been observed that for CA models the number of earthquakes

ns with s size events exhibit power law scaling of ns ∼ s−3/2 with some authors

suggesting that earthquake dynamics can be described by equilibrium statistical

mechanics (Klein et al., 1997, 2000).

Often ignored is the context of timescales within the CA models. In terms

of seismic hazard, the probability that an event will occur within a given time

window is necessary in risk assessment. In our model two timescales exist, the

plate update time tpu and the physical time tphys. The plate update time tpu is

an iterative step used to simulate the model, whereas the physical time tphys is

related to the amount of stress added at each plate update time tphys used as

a non-dimensional time proxy, see Equation 3.1.

This allows us to examine the mean interevent time t̄s (or period) between

s sized events for all homogeneous CA models, as shown in Figure 5.3. For all

homogeneous CA models, the interevent plot suggests that on average the time

between small sized events is less than for larger sized events. A system’s ability

to generate larger sized events depends on the dissipation parameter α, but the

interevent plot suggests that the average period between that system’s largest

sized events is nearly identical across all homogeneous models. Therefore, a

system with a high dissipation parameter generates small sized events more

frequently, but not large sized events.

We find that the internal stresses of the homogeneous CA models are ap-

proximately uniformly distributed between σR + η < σi < σF , as shown in Fig-

ures 5.4 and 5.5. Between the range of −η < σi < +η the internal stress distri-

bution is primarily governed by the implementation of noise within the model.

At the beginning of a plate update time the minimum stress min(σi − σF ) is

added to the entire system, thus shifting the histogram towards σF . Although

all homogeneous CA models have nearly identical internal stress distributions

the dynamics of the system after a failure are different. Once a failure occurs

(σi ≥ σF ), a fraction of the stress (1 − α)[σi − σR] is redistributed equally to
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neighboring cells, therefore a system with a lower dissipation parameter can

bring a greater number of cells to failure. As a note, the internal stress distri-

bution of a system with a dissipation parameter of α = 1.00 is entirely governed

by the initialized internal stress distribution as no stress transfer occurs during

simulation.

Within the CA model the transfer of energy occurs within two timescales,

the plate update time tpu (slow loading rate) and the inner plate update time

tin (fast energy release). The inner plate update time tin would represent the

rupture sequence that occurs during the slip of an earthquake. We find that

the avalanche sequences are highly variable with the main event, or peak slip,

occurring anytime during the slip history, see Figure 5.6. This suggests that the

variations in the slip history do not necessarily originate from heterogeneities

(variations in failure strength) but can originate within a homogeneous medium

as variations in internal stresses. Furthermore, we examined the spatial clus-

tering of the avalanche sequences, shown in Figure 5.7, and find that the cluster

may propagate away from the initially induced failure. Often, the rupture ini-

tiation point (red circle) is not the center of the total rupture area. The size of

the cluster greatly depends on the system’s dissipation parameter.

In seismology, the fractal dimension (D-value) has been used to investigate

the spatial characteristics in the failure of events, see Equations 3.6 and 3.7.

For the homogeneous CA models, we find that the fractal dimension for clusters

is approximately equal to D = 2 within a radius interval of 1 ≤ r ≤ 20. This

suggests that the events are approximately randomly distributed within the

two-dimensional model, which is expected given that the internal stress of the

CA models are themselves uniformly distributed (Figure 5.4). Lastly, we find

that the mean total failures of an individual cell within the CA model closely

matches those of a simplified concept model, see Table 5.2. This suggests that

the system behaves uniformly without any preferential flow of stress towards a

particular region.
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8.1.2 Markov chain Monte Carlo

Fundamentally, Markov chains are governed by the transition matrices. By

assuming a stationary and uniformly distributed internal stress distribution

we statistically replicated the time series, frequency-size distributions and in-

terevent times between events for a much more complex CA model. The time

series were shown to have identical size scaling across all dissipation param-

eters α, and the analytically derived frequency-size distribution and MCMC

sampling algorithm are in good agreement with the CA model, see Figures 6.2

and 6.3, respectively. Furthermore, the mean interevent physical time between

events of size s (Fig. 6.4) can be said to be identical between the MCMC and

CA models.

Where discrepancies are observed is in the total physical time needed to

complete equivalent plate updates tpu as a function of the dissipation parame-

ter α. We expect that a system with a low dissipation parameter is on average

closer to failure compared to a more dissipative system. This is true of the CA

models (Table 5.1), where the average physical time required to complete 106

plate update times systematically increases with increasing dissipation param-

eter. Therefore, on average the internal stress distribution for low dissipation

systems is ever so slightly closer to the failure threshold. For the MCMC

sampling algorithm, the internal stress distribution is assumed to be constant

regardless of dissipation parameter, and thus it is unable to capture this dis-

tinction, see Table 6.1.

Nonetheless, examining the CA process as a Markov process offers impor-

tant statistical inferences. Examining the transition matrices of 6.1 suggests

that the avalanche sequences, or Markov chains, are more probable to de-

velop along a preferred path. For large sequences it is more probable that an

avalanche sequence steadily increases and decreases. As the dissipation param-

eter α decreases the avalanche sequence has increased probabilities to stay at

the same state or to transition to a greater state. Inversely, for high dissipation

parameters the avalanche sequence is much more probable to transition to a

lower state with some states becoming practically unreachable. Because some

avalanche sequences are more probable than others, it is likely that the spread

observed in the non-cumulative frequency-size distribution for large s events
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sizes is due to the probabilistic nature of the system rather than a sampling

issue (Fig. 6.3).

Lastly, the cutoff size at large event sizes s in the frequency-size distribution

has been suggested to be a finite size effect of the CA models (Olami et al.,

1992). The cutoff size effect is illustrated in Figure 6.3 for both MCMC (cir-

cle) and CA (cross) models. It is interesting to note that we also observe a

cutoff size for the MCMC models despite that the model is a Monte Carlo sam-

pling method (flowchart Figure 4.4). Within the MCMC model, the Markov

chain is not bound by system size, but instead continues until it is absorbed

into state S0. This would suggest that the cutoff size in the non-cumulative

frequency-size distribution is due to the dissipative nature of the system, rather

than a finite size effect. Lastly, in this study we have calculated an analytical

non-cumulative frequency-size distribution for both the block and structure in-

homogeneous models, but no Markov chain Monte Carlo models. As discussed

below, predicting the behavior of mixed systems is more complicated as the

interaction between heterogeneities leads to a non-stationary internal stress

distribution.

8.2 Inhomogeneous Models

Within our model, asperities have increased failure thresholds relative to the

surrounding cells (σFasp > σF ), therefore these heterogeneities increase the

hardness of the system. When an asperity cell does fail, it redistributes a

greater amount of stress to its neighboring cells relative to the failure of a

normal cell. If the asperity is surrounded by normal cells, this would result

in a larger than average cluster of failed normal cells. What is interesting is

the occurrence of temporal clustering that is produced as larger events build

up (foreshock) or gradually decrease (aftershock) after the main shock (largest

size event) across multiple plate update times. In nature, various seismicity

patterns are observed before major earthquakes, such as foreshocks, preseismic

quiescence, precursory swarms and these provide some clue about the state of

stress in the fault zone (Kanamori, 1981).
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8.2.1 Block Models

The physical time series of Figure 7.2 show the presence of swarm events or

temporal clustering, particularly for block models asp = 0.50, 0.75, and 1.00.

These three models show temporal clusters with foreshock, mainshock, and

aftershock sequences that vary in shape. A common feature between the block

models is the quiescence period between clusters. We find that the average

physical time period t̄cluster between clusters is given as t̄cluster = (σFasp−σR)α,

which accounts for the total stress required to fail an asperity (σFasp − σR) and

the dissipation parameter α of the model. As the percentage of asperities, or

model hardness, increases so does the physical time required to generate an

equivalent catalogue of 106 events, as shown in Table 7.1.

The non-cumulative frequency-size distributions of the CA block models,

Figure 7.3, suggest that the seismogenic index and probability of small sized

events (s<103) decreases as the percentage of asperities increases. Likewise,

the predicted Markov chain models, diamonds, would support the idea that

as the percentage of asperities increase the seismicity of the system (a-value)

decreases while the slope (b-value) remains identical. For the asp = 1.00 model,

we observe a change in slope between the range of 101 < s < 102, which is

highlighted in the interevent time plot, Figure 7.4. Although the asp = 1.00

model is homogeneous, or without the presence of normal cells, we do not

observe this behavior for the no asperity asp = 0.00 model. From Figure 7.4,

we find that the mean physical time t̄cluster between events of size s increases

as the percentage of asperities increases. As an aside, we find that the slope

discrepancy observed in the asp = 1.00 block model is removed if system noise

η is set as a fraction of a cell’s failure threshold (σR = 0.0± η × σF asp) rather

than a fixed noise level (σR = 0.0± η). Further in this chapter, we discuss how

low noise affect the behavior of the CA model.

From the snapshots of the block models, Figures 7.5 and 7.6, we find that

the internal stresses of the asperities are not uniformly distributed as the normal

cells. From Figure 7.5, the internal stresses of all asperity block models show

a triggering front of cells with high internal stress (about to fail) followed by

cells with low internal stress (previously failed). We find that these triggering

fronts appear to travel away from the normal cells and inwards into the asperity
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block. Why do the internal stresses of asperities configure themselves as such?

Given that the normal cells fail more regularly than the asperities, the failures

of the normal cells at the boundary of the asperity blocks may act as a seed in

defining the configuration of the internal stresses of the asperities. As suggested

by Figure 7.10 and Table 7.2, there is a decrease in cumulative number of normal

cell failures particularly at the boundaries of the asperity blocks. Lastly, the

distance between these wavefronts is approximately the stress transfer radius

of the system defined as R = 16.

From the avalanche sequences and spatial distributions of the CA block

models, Figures 7.7 and 7.8, we find that failure may begin at an asperity and

propagate along other asperities or normal cells. Likewise, failure may initiate

at a normal cell and propagate at the boundaries of the asperities that may

or may not fail. From the avalanche sequences, if an asperity cell does fail

it is more likely that other asperities will subsequently fail given their close

proximity. Equally, if an avalanche sequence does reach the normal cells than

the avalanche sequence will likely end within the weaker normal cells. For the

spatial distribution of events, we find that a fractal dimension of D ≈ 2 for

radius intervals of 1 ≤ r ≤ 20, see Figure 7.9. Within a radius interval less

than the stress transfer (r < R), the spatial distribution of events is uniformly

randomly distributed. For the asp = 1.00 block model, the slope of the cor-

relation integral C(r) reflects the linear spatial distribution of events at larger

radii (r > 20), see Figures 7.7 and 7.8.

8.2.2 Role of structure

We further investigated the effects of inhomogeneities by varying their spatial

distributions in more complex structures, see Figure 7.11. As shown in the

time series of Figure 7.12, the foreshock, mainshock and aftershock sequences

vary depending on the asperity structure. This suggests that spatial distribu-

tions of inhomogeneities play a key role in the observed earthquake sequences.

Although models frac, lin frac, and rnd B1 contain 5% asperities their physical

time series are quite different from the no asperity model. In particular, the rnd

B1 structure model generates the largest sized events (smax ≈ 105) compared
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to the frac, and lin frac models (smax ≈ 5× 104).

Similar to the CA block models, we find that the quiescence period between

clusters is governed by the failure and residual thresholds of the asperity cells,

along with the dissipation parameter of the system. Therefore, the average

physical time period between clusters is given as t̄cluster = 0.55, just as observed

in the CA block models.

From the non-cumulative frequency-size distribution, see Figure 7.13, we

observe that as the percentage of asperities increases there is a slight decrease

in small to medium sized events (s < 103), but an increase in the range of larger

size events (s > 103). From the interevent plots, Figure 7.14, we observe an

increase in the mean physical time t̄s (decreased occurrence) for events of size

s > 2× 101 compared to the homogeneous model. Furthermore, the structure

models frac, lin frac, and rnd B1 are nearly identical at small magnitude ranges

(1 < s < 102) but begin to deviate at greater magnitudes. The rnd B16

model behaves more similar to the previously discussed block models, where

we observe a decrease in the occurrence of small size events (s < 103), but an

increase in the maximum expected magnitude. All structures models require

additional physical time to complete 106 plate updates times relative to the no

asperity model (asp = 0.00), as shown in Table 7.3. The physical time needed

to complete 106 plate updates is nearly identical between the frac, lin frac, and

rnd B1 models, which all contain 5% asperities.

The predicted MC structure models, plotted as diamonds, are calculated

as the sum of individual homogeneous MC models, see Equation 4.32. There-

fore, the predicted MC models for the frac, lin frac, and rnd B1 are identical.

The MC models suggest that greater percentages of asperities will decrease the

seismogenic index (a-value) while maintaining a constant slope (b-value). Con-

versely, the CA models suggest that the underlying asperity structures influence

the slope and the maximum expected magnitude. Therefore, the discrepancies

between the predicted MC models and the CA models suggest that these differ-

ences originate due to the interaction between the asperities and normal cells

rather than a combination of two independent systems.

Similar to the previously examined block models, we find that the internal

stresses of the structure asperities are not uniformly distributed, see Figures
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7.15 and 7.16. Rather, the internal stresses of the asperities are more tightly

clustered around a unimodal distribution. At the next plate update time tpu,

the minimum stress min(σF−σi) is added to the entire system and the internal

stresses of the asperities shift toward the failure threshold σFasp . Therefore, the

origin of the clustering observed in the time series would be the results of the

internals stresses of the asperities reaching the failure threshold σFasp = 11.0

and sequentially failing.

Yet, the spread in internal stresses of the asperities (Fig. 7.15) does not

explain how the inhomogeneities fail in such a short period of physical time, as

observed in their times series (Fig. 7.12). Necessarily, once asperities beginning

to fail a self-reinforcing process is initiated where asperities within the stress

redistribution radius are also quickly brought to failure. This would suggest

that time series clustering is influenced by the distribution of asperities, the

stress transfer range and the dissipation parameter of the system. We note

that although the asperities are scattered throughout the lattice their internal

stresses are coordinated among each other, as shown in Figure 7.15.

From the avalanche sequences and spatial distributions of the CA structure

models, Figures 7.17 and 7.18, we find that failure sequences patterns behave

similar to those of the CA block models. Therefore, a failure may begin at an

asperity and propagate along other asperities or normal cells. Likewise, failure

may initiate at a normal cell and propagate at the boundaries of the asperities

that may or may not fail. From the avalanche sequences, if an asperity cell

does fail it is more likely that other asperities will subsequently fail given their

close proximity. Since the asperity structures are surrounded by weaker normal

cells, we find that all of the structure models avalanche sequences end within

the normal cells.

For the spatial distribution of events, we find that a fractal dimension of

D ≈ 2 for radius intervals of 1 ≤ r ≤ 20, see Figure 7.19. Given that the

inhomogeneous structures are much less in length than the stress transfer range,

the correlation dimension D effectively measures the random distribution of

events due to the stress transfer range rather than the asperity structures.

Lastly, Table 7.4 and Figure 7.20 suggest that some asperity structures spatially

distribute themselves into a more effective barrier geometry, or stress sink, and
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therefore inhibit seismicity in surrounding regions. Table 7.4 would also suggest

that a large deficit in the total failure of normal cells, and thus greater stress

flow into the asperity cells, hardly increases the mean failures of the asperity

cells.

8.2.3 Low noise and asperities

Examining the system details of both the CA block and structure models reveals

that the internal stresses of the asperities are synchronized among themselves,

see Figures 7.5 and 7.15. Therefore, once the majority of asperities are on the

verge of failure a triggering front makes it way across the system setting off

a cascade of asperities into synchronized failure. These cascading failures are

the origin of the temporal clusters observed within the time series for both

inhomogeneous models, see Figures 7.2 and 7.12.

The question becomes, why are the internal stresses of the asperities syn-

chronized? To answer this question, we examine again the implementation of

noise. Within our CA models, noise added to the residual stress was kept fixed

at σR ± 0.1 for both the normal cells and the asperity cells. Effectively, for

a normal cell the noise is set to 10% of the failure threshold, whereas for an

asperity cell the noise is approximately 0.9% of its failure threshold. Gu (2016)

has studied the OFC models under low noise conditions and finds that noise

affects the queue-jumping hypothesis and the mixing of phase space.

The principal of the queue-jumping hypothesis is as follows. At each plate

update a cell with the minimum stress difference of min(σi − σR) is brought

to failure; therefore we can imagine that there is a certain order or queue in

cell failures. After a cell’s failure, the cell is re-assigned to the back of the line

(σi = σR ± η). With higher noise, the recently failed cell can jump within the

queue, whereas with zero noise it must go to the back of the queue. Therefore,

with very little noise η the periodicity in a cell’s failure is much more constant.

The mixing of phase space refers to the total potential outcomes or config-

urations that a system may evolve through. Under low noise or zero noise, the

dynamics of the system are restricted to evolve along a nearly identical path-

way. Therefore, a low noise system does not have access to all of the probability
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space. Within our CA model, this would suggest that a system under very low

noise will not have access to a set of avalanche sequences. This might explain

the increased spread observed in the non-cumulative frequency-size distribution

for the asp = 1.00 model relative to the other block models, see Figure 7.3.

Is low noise enough to explain the time clustering observed within the CA

models? Not quite. Within a low noise environment, the periodicity in the fail-

ure of cells is greatly constrained, but not synchronized. The internal stresses

may be synchronized as an initial condition. In our case, prior to simulation

the internal stresses of each cell are uniformly randomly distributed between

−η < σi < σF , where σF is the failure threshold of the normal cells (σF = 1.0)

and not the asperity cells (σF asp = 11.0). After the burn-in period of 2 × 106

plate updates, we observe that the internal stresses of the asperities internal

may increase in spread as the system organizes itself into an equilibrium, see

Figures 7.5 and 7.15.

Lastly, we have run the inhomogeneous CA structure models with low noise

(η ± 0.1), but with asperities internal stresses initialized between −η < σi <

σFasp and find that no foreshock or aftershock sequences are observed within

the time series. We also find that asperities with high noise (η ± 1.1), but

initial internal stresses of −η < σi < σF do not produce foreshocks and after-

shocks. This confirms that in order for time series clustering to occur within

the inhomogeneous CA models, both low noise and a point of synchroniza-

tion of the internal stresses of the asperities is required. Is it possible that

an inhomogeneous model with randomly distributed internal stresses, but low

noise can eventually synchronize? Perhaps with some external help, such as

a catastrophic event that sweeps across the system. In nature, this would be

equivalent to a large magnitude teleseismic earthquake. This concept has not

been validated within our CA model.
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Chapter 9

Conclusion and suggested future

research

9.1 Conclusions

The cellular automaton model is a simple lattice model that is able to capture

properties observed in natural fault systems. Through the dynamics of the

CA model we can begin to understand the physical origins of the phenomena’s

observed in real earthquake faults.

The homogeneous CA models suggest that a system’s ability to dissipate

stress influences the observed scaling of the frequency-size distribution. A

higher dissipation parameter increases both the slope, b-value, and the in-

tercept, a-value, of the frequency-size distribution. Greater stress dissipation

capabilities suppress the occurrence of larger events while increasing the occur-

rence of smaller events. We find that homogeneous CA models under moderate

noise cannot replicate the spatiotemporal clustering within their time series.

Within the homogeneous CA model, avalanche sequences show great variabil-

ity within their slip histories. Once an event is induced, an avalanche sequence

is controlled by areas with large concentrations of cells close to failure. Addi-

tionally, we find that the internal stress distribution of the homogeneous CA

systems is approximately uniformly distributed.

Furthermore, we replicate the dynamics of the CA model with a Markov
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process. We construct a transition matrix by assuming an appropriate under-

lying stress distribution for the system. The transition matrix suggests that

some transitions between states are more probable than others. Therefore,

some event sizes are more likely to occur than others, thus providing insight

into the origin of the spread observed at large sized events in the frequency-

size distribution. Furthermore, the transition matrix allows us to calculate an

analytical frequency-size probability distribution for each homogeneous model

by summing the probability of outcome for every possible pathway leading up

to a cumulative size of Scum = 17. Moreover, we can repeatably simulate the

Markov chains given our transition matrix to replicate the avalanche sequences,

time series, frequency-size distribution, and interevent times between events.

We generally find that the MCMC model is in good agreement with the

homogeneous CA models. The homogeneous CA model is shown to require

less physical time to simulate as the dissipation parameter decreases, whereas

the MCMC model does not. These are subtleties within the internal stress

distribution of the CA models that are not captured by the MCMC model.

The role of asperities is complicated, but in general these inhomogeneities

add rigidity to the system. Therefore, we find that as the percentage of as-

perities increases a greater amount of added stress is required to complete an

equal number of plate updates. Overall, we observe a decreased occurrence

of smaller sized events with an increased or extended range in the occurrence

of largest sized events. We also determined that the extent of these changes

is strongly influenced by the underlining heterogeneous structures. We find

that asperities affect the overall shape and slope of the frequency-size relation,

therefore suggesting that scaling depends on the underlying spatial distribution

of heterogeneities.

Furthermore, the addition of asperities can introduce spatiotemporal clus-

tering apparent in the physical time series and greatly contribute to increasing

the range and expected maximum magnitudes. From examining the system

details of inhomogeneous CA models, we conclude that necessary conditions of

spatiotemporal clustering are low noise and synchronization of internal stresses

between heterogeneities. This leads to a clustered internal stress distribution

for the asperities, which can no longer be approximated by a uniform distribu-
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tion. It follows that the predicted MC models cannot accurately predict the

scaling of the inhomogeneous models.

Lastly, we find that the avalanche sequence may initiate within an asperity

or a normal cell. Normal cell failures tend to be around failed asperities, as these

asperities release a greater amount of stress back into the system. Moreover,

avalanche sequences with the CA structure model are found to terminate within

the weaker normal cells. We also find that some heterogeneous structures are

more effective than others in acting as a barrier, or stress sink, and suppress

the seismicity of surrounding areas. The precise role of structures is still under

investigation, but the asperities size and shape appear to contribute greatly to

changes in seismicity. Lastly, any future predictive models must try to capture

the interaction that occurs between normal cells and inhomogeneities.

9.2 Suggested future research

The fields of cellular automata, self-organized criticality, and critical phenom-

ena lead to many insights into complex processes such as earthquakes. Is it

possible to create analytical predictions to forecast the time series, earthquake

slip histories, and frequency-magnitude relation thus helping predict seismic

hazard?

This thesis proposed a new statistical approach in studying the processes

of the cellular automaton lattice model. In particular, it highlights the im-

portance of knowing the distribution of stresses within a given system. Yet,

predicting the expected behavior of mixed systems is more complicated as the

interaction between heterogeneities are no longer negligible. Furthermore, un-

der low noise conditions the internal stress distribution of asperities is no longer

stationary. Therefore, more work is required to determine how factors such as

stress transfer, stress dissipation, system noise, and spatial configurations af-

fect the stress distribution as a function of time. Once the significance of each

factor is understood, they can be implemented into a non-stationary Markov

process to analyze in detail the dynamics of an evolving system.
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