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A bstract

This thesis is concerned with the evaluation of the performance characteristics of para­

meter estimation techniques based on the classical Cramer-Rao lower bound (CRLB) 

for unbiased estimation, and uniform CRLB (UCRLB) for biased estimation. These 

evaluations are conducted in the context of both single-tone and multiharmonic sinu­

soidal signals contaminated by AWGN.

Three unbiased frequency estimators are studied in the case of contaminated 

single-tone signals. The linear regression estimation (LRE) algorithm is derived in de­

tail for the full range of SNR, and its performance is compared against CRLB together 

with the other estimators. The parameter estimation for harmonic/subharmonic sinu­

soidal signal is studied in detail under the assumption tha t noise variance is unknown 

a priori. The CRLBs are derived and verified by simulation. For biased estima­

tion, three SNR estimators are evaluated by applying the UCRLBs, and a modified 

algorithm for estimating the bias gradient is presented.
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N otations

• X , Y  : Uppercase letters are used to represent random variables, random vec­

tors, and random processes.

• x. y : Lowercase letters represent the realizations of the random variables, ran­

dom vectors, and random processes.

•  R  : the set of real numbers.

•  0  : the iV-dimensional parameter space.

• R iVxP : the N  x P  real-valued matrix space.

•  S(m) : the Kronecker delta sequence.

•  H  {•} : the discrete-time Hilbert transform operator.

•  9 : a parameter vector 0 = [6 1 , 6 2 , - ■ ■ , 9P]T.

• 6 = 9(X ) : an estimator of 6.

•  ||d|| : the Euclidean norm of vector d.

• f(K ', 6 ) •' the probability density function of X_ parameterized by the parameter 

vector 6.

• E[\ : the expectation operation.

• J\f{0, a 2) : the Gaussian probability density function with a mean of zero and a 

variance of a2.

• EL(6 ) : the mean vector E  ( 9 ) of 9, where 9 is the true underlying parameter.
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• h(6) : the bias of 9, i.e. m(0) — 9.

•  e r f ( x ) : the error function.

• (-)T : matrix or vector transpose operation.

•  (-)"1 : matrix inverse operation.

(k — m({L) j  (k — m{9•  covg (̂ 0J orC~e : the N  x N  covariance matrix of 9, E

• varg (jlj : the variance of 9.

•  F  (0) : the N  x N  Fisher information matrix for vector 9.

•  8 : a user-specified upper bound on the length of the bias-gradient vector.

•  V : the gradient operator V
_d_ _ d ] T 
d01, ' " ’ d0p '

•  B (9 ,8) : the uniform Cramer-Rao lower bound on varg (j[^ for estimators with 

bias b{9_) such tha t ||V6|| < 8.

• dFn : the minimizing bias-gradient vector which characterizers B(9,8).

• A : a scaling constant determined by the solution to the constraint equation on 

the bias gradient (Eqn. (4.13)).

• Ik{x) : the kth order modified Bessel function of the first kind.

•  iFi (a, b, x) : the confluent hypergeometric function of the first kind.

• r(-) : the Gamma Function.

•  In  : the N  x N  identity matrix.

• Ph : an orthogonal projection matrix P/j = H  {HTH^ 1 H T £ R NxN.
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C hapter 1 

Introduction

1.1 Introduction to Param eter Estim ation

In signal processing systems, an important task is to extract information from the 

observed data contaminated by noise. Usually, one needs to estimate the value of one 

parameter or the values of several parameters from the noisy data. For example, in the 

field of communications, one needs to estimate the carrier frequency of a modulated 

signal so tha t the signal can be demodulated to baseband [1]. In radar processing 

systems, one is interested in determining the position of an aircraft, as in the case of 

airport surveillance radar [2]. In speech recognition, it is needed to extract the spectral 

envelop of the voice by using a model of speech called linear prediction coding which 

is characterized by the model parameters [3]. In all these systems, one is faced with 

the problem of extracting values of parameters based on the observed data set. This 

is the problem of parameter estimation.

Let us take a look at a simple case in which the DC value is to be determined in 

a noisy data set:

x [n] = A  +  w [n], n — 0,1, • • • , TV — 1 (1.1)

where the parameter A  represents the DC value and w represents additive white 

Gaussian noise (AWGN) with a Gaussian probability density function (PDF) of zero 

mean and of variance a 2, denoted by J\f(0, a 2). Therefore, based on the observed data 

set X_ =  [x [0], x  [1], ■ • • ,x [ N  — 1]]T C R N, one would like to estimate A. Intuitively,

1
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it would be reasonable to estimate A  as

( 1 .2 )

i.e. as the sample mean of the data.

1.1.1 M athem atical M odel for E stim ation

The choice of an estimator that will perform well for a particular application depends 

upon many considerations. Of primary concern is the selection of a suitable data 

model. The data model should be comprehensive enough to embody the principal 

features of the data, but at the same time simple enough to allow for an estimator 

that is optimal and easily implemented.

Mathematically, one could conduct an experiment and obtain N  independent ob­

servations or a TV-point observed data set X_ that depends on an unknown but deter­

ministic parameter vector 9 — [9\, $2 , ■ ■ ■ , 9P]7 taking on values in a parameter space 

<9 C R p. Based on the data, 9 can be determined or an estimator can be defined 

as [4] :

where g is some function. As the data set consists of random variables and the data 

size is definite, all the theory and techniques of statistical estimation can be used to 

address the problem.

As an estimator itself is a random variable, its performance can only be described 

completely statistically or by its PDF. Suppose now that there is an unknown real

by a distribution, a mean, a variance, and so on. The mean value of an estimator is 

defined by

(1.3)

1.1.2 B ias, Variance and M SE

parameter 9 € R . An estimator of 9 is actually a real-valued statistic 9, characterized

2
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mg =  E  9 , (1.4)

where £?[•] denotes the expectation operation.

Bias is defined as the expected value of the error, the difference due to mismatch 

between the estimation algorithm and the actual value of 8

An estimator is said to be unbiased if the bias is 0 for all values of 9 ,  or equivalently,

The variance Gg of the estimation arises from the statistical fluctuations due to 

statistical uncertainty in the observed data X_ and is defined as

To measure the overall quality of an estimator, the mean square error (MSE) is 

often computed. It is well known that the MSE is a function of both the bias and the 

variance in accordance with

In particular, if the estimator is unbiased, then the mean square error is simply the 

variance of the estimator.

1.1.3 C ram er-R ao Lower Bound

An important question in parameter estimation is whether an estimator has certain 

desired properties, in particular, if it converges to the actual value of the unknown

bg{9) =  E  9 — 9 = mg — 9. (1.5)

if the expected value of the estimator is the parameter being estimated.

(1 .6 )

M SE{9)

a 2g + b 2g ( 9 ) . (1.7)

3
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parameter it is estimating. One typical property of an estimator is unbiasedness, 

meaning that on the average, the estimator hits its target. Prom (1.7), the overall 

quality of an estimator is equal to the estimation variance if the bias is zero. Therefore, 

for unbiased estimation, the natural question is whether the estimator shares some 

optimality properties in terms of its sampling variance. The best estimator should 

be the one with the smallest possible variance which is bounded by some theoretical 

lower bound.

There is such a bound, well known as the Cramer-Rao lower bound (CRLB) [4], 

giving the minimal achievable variance for any unbiased estimator. Suppose the goal 

is to estimate a vector parameter 9 which is deterministic but unknown, and assume 

that the estimator 9 is unbiased. The CRLB bound will allow us to place a bound 

on the variance of each element. Let /  (X; 9) be the PD F of measured data which is 

parameterized by the parameter vector 9, where the semicolon is used to denote this 

dependence. The following theorem is a definition of CRLB bound.

Theorem 1.1 (Cramer-Rao Lower Bound) Let us assume that the PDF satisfies 

the “regularity” conditions

\ d l n f ( X - 9 )
[ 99

where the expectation is taken with respect to f  (X; 9). Then, the covariance matrix 

of any unbiased estimator 9 satisfies

=  0, for all 9 (1.8 )

C i - F ~ (1.9)

where the ^  0 sign is interpreted as meaning that the matrix is positive semidefinite. 

The Fisher information matrix F  (9) is given as

d9id9j ( 1.10)

for i = 1 , 2 ,p; j  = 1 ,2 ,. . .  ,p, where the derivatives are evaluated at the true value
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of d and the expectation is taken with respect to f  (X; 6).
r? In f  ( X - 0)

In the above theorem, -------v~~’ is called the score function. It is defined to
a d

be the gradient of log-likelihood function In /  (X; 0), given a statistical model with a 

PDF of / (X ;0 ) .

Although many variance bounds exist [5-8], the CRLB bound is by far the easiest 

to derive. It sets a lower bound on the variance of any unbiased estimator. This can 

be extremely useful in several ways:

1. It might allow one to assert that an estimator is the minimum variance unbiased 

(MVU) estimator. If an estimator is found to achieve the CRLB bound, then it is an 

MVU estimator.

2. It provides a benchmark against which one can compare the performance of 

any unbiased estimator. If the variance is close to the CRLB bound, this means the 

unbiased estimator is “good”.

3. It alerts one to the physically impossible task of finding an unbiased estimator 

whose variance is less than the bound. That is, it is physically impossible to find an 

unbiased estimator whose variance outperforms the CRLB bound. This is very useful 

in feasibility studies.

4. The theory behind the CRLB bound can tell us if an estimator exists that 

achieves the bound.

In parameter estimation problems, the goal is to obtain an optimal estimator, if 

no such estimator exists, then one can resort to an approximately optimal estimator. 

If this is still not available, a suboptimal estimator will need to be found.

1.1.4 O verview  to  E xisting  E stim ation  Approaches

Basically, there are two different classes of estimation approaches available for the 

parameter estimation.

1. Classical approaches to estimation. In these approaches, the unknown p  x  1 

parameter vector 9 is assumed to be a deterministic constant vector, and the data

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information is characterized by the PDF f(J£',9), where the PDF is functionally 

dependent on 9.

2. Bayesian approaches. In contrast to classical approaches, here the parameter 

vector 6 is assumed to be a random vector. This approach augments the data infor­

mation with a prior PDF f  (9) which describes the knowledge about 9 (before any 

data are observed). This is summarized by the joint PDF f  {X_,9_) or, equivalently, 

by the conditional PDF of f(2L\9) (data information) and the prior PDF f  (9) (prior 

information).

This thesis is mainly concerned with the classical approaches of parameter esti­

mation. Before proceeding further, some concepts regarding the estimation accuracy 

need to be introduced.

• Efficiency: An estimator is said to be an efficient estimator of a parameter if:

a) it is unbiased,

b) it attains CRLB bound.

•  A sym ptotically  unbiased: an estimator is asymptotically unbiased if E  

9, as data size N  —> oo.

•  A sym ptotically  efficient: an estimator asymptotically efficient if var 9 

C RLB , as data size N  —► oo.

•  Consistency: an estimator 9 is consistent if, given any e > 0,

J im  Pr 1 \9 — 9\ >  e |  = 0  

where N  is the sample data size.

•  Threshold effect: the MSE rises very rapidly as SNR decreases within a 

low range of SNR. The SNR at which this effect is first apparent is called the 

threshold.

6
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Classical E stim ation Approaches

In the classical estimation, the parameters of interest are assumed to be deterministic 

but unknown. For this category, the following approaches are available [4,9]: mini­

mum variance unbiased estimator (MVUE), best linear unbiased estimator (BLUE), 

maximum likelihood estimator (MLE), least squares estimator (LSE) and the method 

of moments, etc. In the following, the estimation methods are introduced respectively.

M inim um  Variance U nbiased E stim ation The MVUE estimator is an unbiased 

estimator with minimum variance for all 0. That is, the variance of MVUE for each 

component is minimum among all unbiased estimators. In practice, it is desirable to 

find the estimator whose bias is to be zero and the estimator minimizes the variance. 

Sometime it is called the best unbiased estimator (BUE), because it is the “best” 

estimator one can get using only unbiased estimators. For example, when trying to 

estimate the mean of a random variable with Gaussian distribution, given a measure­

ment data set X_ =  [ x(0), x(l) ,  • ■ • , x ( N  — 1)]T C R/v, two estimators can be chosen. 

One is the sample mean re =  — 2_^ Q x [n \ and the other is the sample median x, 

which is the middle of a distribution. They are both natural estimators of the mean 

of a normal population. It can be proven tha t both are unbiased, but x  has a smaller 

variance than the estimator of median x. In fact, x  is the MVUE for the random 

variable mean.

In MVU estimation, 6 achieves the CRLB bound, and is therefore said to be 

efficient. However, It is not always possible to find MVUE estimators. Sometimes 

the efficient estimator may not exist, and hence this approach may fail.

B est Linear Unbiased E stim ator An estimator is called best linear unbiased 

estimator (BLUE) if it is

a) Linear (linear function of a random variable);

b) Unbiased.

7
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c) Efficient.

A BLUE estimator can be defined as

JV-1

6 = ^ 2  cinx [n\
71=0

where x[n] is the data set whose PDF /  (X; 9) depends on an unknown parameter 9. 

The estimator has the minimum variance of all unbiased estimators that are linear in 

X . If the data are Gaussian, then the BLUE is also the MVU estimator.

M axim um  Likelihood Estim ator This estimator is defined as the value of 9 that 

maximizes the likelihood function, which is functionally the same in form as the PDF 

of the sample data. Actually, the likelihood function L  is the function obtained by 

reversing the roles of X  and 9 in the PDF; that is, 9 is viewed as the variable and X  

as the given information (which is precisely the point of view in estimation):

for 9 in parameter space 0  and X  in data set S.

The method is intuitively appealing, as the values of the parameters to be esti­

mated are the ones that would have most likely produced the observed data. Since the 

natural logarithm function In is monotonically increasing function of its argument, 

the maximum value of L(9\X),  if it exists, will occur at the same points as the max­

imum value of ln[L(9\2Q]. This latter function is called the log likelihood function 

and in many cases is easier to work with than  the likelihood function (usually because 

the density / ( X \9) has a product structure).

MLE is not optimal in general. Under certain conditions on the PDF, however, 

the MLE is efficient for large data sets as N  —> oo (asymptotically). Hence, asymp­

totically it is the MVU estimator.

From a statistical point of view, this method is considered to be more robust 

(with some exceptions) and yields estimators with good statistical properties. In

L(9\x) =  f ( m ) (1.12)

8
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other words, MLE methods are versatile and apply to most models and to different 

types of data. In addition, they provide efficient methods for quantifying uncertainty 

through confidence bounds. The MLE estimators become minimum variance unbiased 

estimators as the sample size increases.

There are only two drawbacks to MLE’s, but they are important ones. Firstly, 

maximum likelihood estimates can be heavily biased for small number of samples. The 

optimality properties may not apply for small number of samples. Secondly, although 

the idea behind the maximum likelihood estimation is simple, the implementation 

is mathematically intense. Calculating MLE’s often requires specialized software 

for solving complex non-linear equations. Using today’s computer power, however, 

mathematical complexity is not a big obstacle.

Least Squares Estim ator The least squares approach to parameter estimation 

chooses 8 to minimize the sum of the squared deviations between the observed re­

sponses and the functional portion of the model

N - 1

J{e)  = ^ 2 ( x [ n \ - s [ n ] f  , (1.13)
71—0

where the signal s depends on 8, and x  is the signal plus noise w: x[n] = s (n; 6) +  

w [n ]. The minimum value of J  (8) is called the least square error. For example, let 

us consider the straight-line model,

x  [n] =  80 +  8xy [n] + w  [n] , (1-14)

where y[n] is a known sequence, 8q and 8i are the two parameters to be estimated, 

which represent the intercept and slope of the line respectively. For this model the 

least squares estimates of the parameters would be computed by minimizing

N - 1

J (9) =  ^ 2  [n] -  (80 + ^ y[n\)
71=0

(1.15)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By taking partial derivatives of J  (6) with respect to 6q and 9\ , by setting each 

partial derivative to zero, and by solving the resulting system of two equations with 

two unknowns, one gets the following estimators for the parameters:

(1.16)

(1.17)

where x  =  (1 / N )  Y J Im  x[n], y = ( l / N )  y[n}.

Minimizing a LSE error criterion does not in general translate into minimizing the 

estimation error. Also, if w is a Gaussian random vector, then the LSE is equivalent 

to the MLE.

M ethod o f M om ents This method is based on the solution of a theoretical equa­

tion involving the moments of a PDF. It is a way of generating estimators: set the 

distribution moments equal to the sample moments, and solve the resulting equations 

for the parameters of the distribution. For example, let us consider the kth. moment 

of a random variable with zero mean given data set A . The A;th statistical moment 

is

Then, one can choose as estimates those values of the parameters tha t are solutions 

of the equations

where k =  1,2, • • • ,p.

When moment methods are available, they have the advantage of simplicity, that 

is, easy to determine and simple to implement. The disadvantage is tha t they are

(1.18)

and the kth  sample moment is

(1.19)

f*k = m k, (1.20)

10
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often not available and they do not have the desirable optimality properties of MLE 

and LSE estimators. The primary use of moment estimates is as starting values for 

the more precise maximum likelihood and least squares estimates.

Although for the moment method the estimator has no optimality properties, it 

can be useful if the data record is long enough.

B ayesian E stim ation Approach [4]

In the Bayesian estimation approach, the parameter 9 of interest is a random vec­

tor whose particular realization must be estimated. The motivation for doing so is 

twofold. First, if some prior knowledge about 9 is available, it can be incorporated 

into the estimator. The mechanism for doing this requires us to assume that 9 is 

a random vector with a given prior PDF. Classical estimation, on the other hand, 

finds it difficult to make use of any prior knowledge. The Bayesian approach, when 

applicable, can therefore improve the estimation accuracy.

Second, Bayesian estimation is useful in situations where an MVU estimator can­

not be found, as for example, when the variance of an unbiased estimator may not be 

uniformly less than tha t of all other estimators. In this instance, it may be true that 

for most values of the parameter an estimator can be found whose mean square error 

may be less than that of all other estimators. By assigning a PDF to 6, strategies 

can be devised to find that estimator. The resulting estimator can then be said to be 

optimal “on average,” or with respect to the assumed prior PDF of 0.

There are some general estimation approaches based on Bayesian philosophy. Here 

a brief introduction is given just to the following methods.

M inim um  M ean Square Error (M M SE) E stim ator The data model is that 

the joint PDF of X,0 or /  (X,9)  is known, where 9 is now considered to be a random 

vector 9 =  [9\, 92, ■ ■ ■ , 9P]T. Usually, f (X \9)  is specified as the data model and /  (9) 

as the prior PDF for 9, so that /  (A, 9) = f ( X \ 9 ) f  (9) . The estimator 9.L minimizes

11
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the Bayesian MSE:

B m se  (9i) =  E  (&i -  d^j , (1.21)

where the expectation E[-\ is with respect to f  (X, 8t).

In the non-Gaussian case, this will be difficult to implement.

M axim um  A  Posteriori (M A P) Estim ator In MAP estimation, the data model 

is the same as for the MMSE estimator. The estimator is the value of 8 that max­

imizes or, equivalently, the value tha t maximizes f ( X \ 8 ) f  (8). The performance of 

the estimator depends on the joint PDF f ( X , 8 ) ,  therefore, no general formula of 

the estimator is available. If X , 8 are jointly Gaussian, then the performance of the 

estimator is identical to that of the MMSE estimator.

Linear M inim um  M ean Square Error (LM M SE) E stim ator This data model 

is that the first two moments of the joint PDF / ( X \8) are known. The estimator is

and the error e* =  8i — 8{ has zero mean and variance. If X , 8 are jointly Gaussian, 

then this is identical to the MMSE and MAP estimators.

Actually, if X . 8 are jointly Gaussian, all the above estimation techniques are 

essentially the same.

C hoosing an E stim ator

It has been seen th a t at times it is not possible to assure the existence of an optimal 

estimator, an example being the search for the MVU estimator in classical estimation. 

In other instances, even though the optimal estimator could easily be found, it could 

not be implemented, an example being the MMSE estimator in Bayesian estimation 

[4]. For a particular problem, one is neither assured of finding an optimal estimator, 

or even if the optimal estimator can be found, it is not possible to implement it.

i = E  (#) +  CfcC i ( X - E Q 0 ) ( 1 .22)

12
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Therefore, it becomes critical to have at one’s disposal knowledge of the estimators 

that are optimal and easily implemented, and furthermore, to understand under what 

conditions one can justify their use.

In general, the search for an appropriate estimator for a signal-processing problem 

should begin with the search for an optimal estimator tha t is computationally feasible. 

If the search fails, then suboptimal estimators should be investigated.

Depending on the assumptions on the signal and noise, the data may have the 

form of the classical or Bayesian linear model, so one could find the optimal estimator 

easily. However, even if the estimator is optimal for the assumed data model, its 

performance may not be adequate. Thus, the data model may need to be modified. 

The flowchart in Fig 1.1 describes the considerations in the selection of an estimator.

Signal processing problem

YesYes

No No

Yes Bayesian 
^  approach

No

No Yes

Prior 
knowledge ?

Prior 
knowledge ?

Dimensionality 
a problem ?

New data model 
or

take more data ?

Bayesian
approach

No
solution

Classical
approach

Figure 1.1: Classical versus Bayesian Estimation

W ith prior knowledge such as the PDF of estimator, a Bayesian approach could be 

used. Even if dimensionality is not a problem, the use of prior knowledge as embodied

13
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by the prior PDF will improve the estimation accuracy in the Bayesian sense. That 

is to say, the Bayesian MSE will be reduced.

If no prior knowledge is available, the data model will be forced to be re-evaluated 

(to reduce dimensionality of the problem) or else more data points are needed. This 

may result in bias errors due to modeling inaccuracies, but at least the variability 

of any resultant estimator would be reduced. Then, one could resort to a classical 

approach.

1.2 Concluding Remarks

This chapter has introduced the basic parameter estimation problems and the com­

monly used estimation methods. There are two kinds of estimation methods, the Clas­

sical estimation method and the Bayesian estimation method. The former method 

assumes th a t the parameter vector 9 is a deterministic constant vector, where the 

latter the parameter vector 6 is assumed to be the observation of a random vector. 

The performance of an estimator can be evaluated in terms of its bias and variance. 

Preferably, one wants to find an unbiased estimator with the minimum variance. But 

in reality this may not be always possible. Therefore, it is needed to compare dif­

ferent estimators with the same criteria in order to locate the “best” estimator. In 

this regard, the classical CRLB bound may be used to compare the variance of the 

unbiased estimators. The following chapters will introduce different applications of 

CRLB bound in evaluating the estimators performance.

14
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Chapter 2 

Param eter E stim ation for Single 
Tone Sinusoidal Signals

The preceding chapter introduced estimation theory and Cramer-Rao Lower Bound 

(CRLB) on the estimation variance. This chapter is mainly concerned with the es­

timation problems for single-tone sinusoidal signal contaminated by additive white 

Gaussian noise (AWGN). Three existing estimation techniques are reviewed, namely 

linear regression estimator (LRE), maximum likelihood estimator (MLE), and linear 

prediction estimation (LPE). Extensions to linear regression are also presented for 

both low and high SNR ranges. The performance of these techniques is investigated 

by comparing with the CRLB bound.

2.1 Introduction

Estimating the frequency of sinusoidal signals contaminated by noise has been the 

focus of research for quite some time. It has important applications in such areas as 

communications, radar, sonar and geophysical seismology. For example, in location 

systems, e.g. radar or sonar, the measurement of the Doppler frequency is important 

because it would permit the estimation of the radial velocity of the target.

Generally speaking, frequency estimation problems can be categorized into three 

different cases.

Case 1: single-tone frequency estimation. In this case, the signal consists of a

15
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single, constant-frequency, sinusoid. This is the oldest and simplest frequency esti­

mation problem. A classical paper by Rife and Boorstyn [10] examined this case using 

the maximum likelihood estimation (MLE) method. Also see the papers in [11-13].

Case 2: multi-harmonic frequency estimation. In this case, the signal is composed 

of sum of harmonically related sinusoids. For example, suppose frequency informa­

tion is to be from acoustic sources such as rotating machinery. Then, non-linear 

effects within the generating system often give rise to harmonics and subharmonics 

of the fundamental frequency of interest. In these situations, case 1 does not model 

the physical situation adequately, so a signal model which accounts for the added 

harmonics should be used. See the papers in [14-18].

Case 3: multi-tone frequency estimation. This problem occurs in certain envi­

ronments where several tonal sources of differing frequencies may be present in one 

signal. In some applications, it may be possible to apply single-tone techniques in 

this situation, but it is more desirable to account for the extra problem complexity 

by altering the signal model. Refer to the papers in [19-21] for further information.

Each of the above cases assumes a different signal model which is to be fitted to 

measured data, requiring different estimation algorithms for different models. There 

are numerous papers on the estimation problems for sinusoidal signal contaminated in 

noise. In this thesis, discussions are confined to the first two of the above-mentioned 

cases, i.e. single-tone frequency estimation and multi-harmonic frequency estimation. 

This chapter will discuss case 1 and the next chapter will deal with case 2.

Let us consider a single-tone sinusoidal signal which has been corrupted by noise 

in the receiver. The received samples x(n)  can be expressed as

x(n)  =  A 0 cos [co0T n  +  60] + w(n), n  = 0,1, • • • , N  — 1, (2.1)

where N  is the number of samples received, and w{n) represents the additive white 

Gaussian noise (AWGN) with a mean of zero and a variance of a 2. Therefore,

E  [w (n)] =  0,

16
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and

E  [w (n ) w (n +  m)] =  a25(m),

where S(to) is the Kronecker delta sequence, and E  [•] represents the statistical ex­

pectation operator. The goal will be to estimate the frequency uq from Appoint noisy 

data {x(n), n = 0,1, ■ • • , N  — 1}. Three estimation techniques based on this data 

model are presented in the following sections.

2.2 Linear Regression Estim ator

This section is firstly concerned with a review of single frequency estimation technique 

proposed by Tretter [22]. This is followed by a generalization of Tretter’s work by 

lifting the restriction on high SNR to general values of SNR.

2.2.1 A nalytic  Signal M odel and H ilbert Transform

Let us rewrite Eqn. (2.1) in the form

x(n) = A) cos +w(n) ,  n = 0,1, ■ • ■ , N  — 1, (2 .2)

where <fi{n) =  ujqT n  +  0o. In this estimation method, the signal x (n ) is replaced by 

the corresponding “analytic signal” 1

r(n) = x(n) + j H  {x(n)}

= Ao cos + j A qH  {cos [(j>(n)]}+ w(ri) + j H  {w(n)}

= A o e P ^  + z(n), n = 0,1, • ■ • , N  — 1, (2.3)

where H  {■} represents the discrete-time Hilbert transform operator, and

z(n) = w(n ) +  j H  (u;(n)} . (2.4)

1 In an “analytic signal”, the spectrum of the signal vanishes either for positive or for negative 
frequencies.

17
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The Hilbert transform operator can be visualized as a linear time-invariant noncasual 

digital filter operator with an impulse response sequence [23]

2 sin2 (rnr/2)
h(n) =  <

or the frequency response

■ »  n  +  0 7r n
0 , n =  0

(2.5)

H(ejuj) =  (  ^ ’ n < U } < 0  . (2.6)
I  — J ,  0  <  U! <  TV

Let us define

7i(n) = H  {w(n)} . (2.7)

Then, r](n) can be written in terms of a convolution sum in accordance with

OO
r/(n) =  w(k)h(n — k), n = 0,1, • • • , N  — 1. (2.8)

k= —00

It can be shown (see Appendix A) th a t w(n) and 77(77) are zero-mean Gaussian 

random variables, each with a variance of a 2, and they are uncorrelated (and so are 

statistically independent as they are Gaussian).

As in [22], one can express Eqn. (2.3) as

r(n) =

Let us define

1 +  ^ - z { n ) e - j ^ oTn+eo) 
Ao

A Qej (“oTn+9o)' (2.9)

V ( n )  4  J L z ( n ) e - j ( “ o T n + 0 o)

Ao
=  vj(n) + j v Q(n), (2 .10)

where subscript denotes the “in-phase” component, and subscript “Q” denotes the 

“quadrature” component of 77(77). The sequence defined by Eqn. (2.10) is a complex 

Gaussian process. This is due to the fact tha t the Hilbert transform is a linear 

operator and any linear operation on a Gaussian random variable yields a Gaussian 

random variable.

18
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Some details of the statistical characteristics of v(n) is summarized as follows. 

From the definition of v(n), it can be shown that

E[v(n)} = 0, 

E[\v{n)  |2] =  2a

From Eqn. (2.10), one has

Vj (n)  = Re
A q

z(n)e -j(cj0Tn+8o)

and

A n
[■w(n) cos(uJoTn +  9) +  77(71) sin(cj0T n  +  9)],

z(n)e - j(u>oTn+0o)

= —  [rj(n) cos(uJoTn + 9) — w(n) sin(L0 0T n  + 9)]. 
Aq

(2.11a)

(2 .11b)

(2 .12)

(2.13)

Since w(n) and rj(n) are both zero-mean and independent Gaussian distributed ran­

dom variables, it is easy to verify that

£ > ,(n )]  =  £[«o(n)] =  0,

£ M » )w « (» )] =  0 ,

(2.14)

(2.15)

and that

E  [vj(n)\ = E  [uj(ra)] =  (2.16)

From Eqns. (2.14) - (2.16), one can easily arrive at Eqn. (2.11). Therefore v/(n) 

and vq(h) are uncorrelated Gaussian random variables of zero mean and variance of 

a 2 / A q. Consequently, they are also statistically independent due to the fact tha t they 

have Gaussian statistics. These characteristics will be used for the derivation of the 

probability density function (PDF) of phase noise.

19
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2.2.2 D erivation o f th e  P D F  of P hase N oise for Full S N R  
R ange

Tretter [22] proposed a linear regression estimator for the amplitude A0, frequency

were assumed to be constant over the observation interval. Tretter considered the 

high SNR case which leads to a model of the phase noise tha t is Gaussian. This 

chapter extends his results by considering the PDF of the phase noise over the full 

range of SNR.

Let us rewrite Eqn. (2.9) as

From Eqn. (2.20), <j>(n) acts as an additive noise on the phase 9q and is called as 

“phase noise” . It is desirable to know p$ (</>), the PDF of random variable (pin).

For convenience, omit the explicit dependence of a(n) and <p(n) on time n, and 

relabel vi(n) as i and V q ( u ) as q. Then, the following relationships exist between 

random variables i and q, and random variables a and 0  :

lo0 and phase 0o of the signal model r(n). The parameters A 0, and Oq of the tone

r (n) = [(1 +  ty(n)) + j v Q(n)\ A 0ej(uJoTn+0o\ (2.17)

Moreover, let

a (n)e '0(n) =  (1 4-V[(n)) + j v Q(n), (2.18)

where

a(n) = [[1 +  u /(n )]2 +  v2Q(n) \ 1/2 , (2.19a)

(2.19b)

Then, the analytic signal in Eqn. (2.17) can be simplified as

r (:n) =  A 0a(n)ej[uioTn+do+4,(-n)]. (2 .20)

a [(1 + i ) 2 A q 2] 1 , (2.21a)

(2.21b)
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In order to determine p& ((f)), one must find the joint PDF of a and cf> first. This is 

given by [24]

J
i,q
a, 4>

where P i , Q ( i , q )  is the joint PDF of i and q, and J hq  
a, <f>

(2 .22)

is the Jacobian of the

transformation as given by

J hq  
a, (f>

di di
da dd) 
dq dq (2.23)

da d(f>

Recall that i and q are statistically independent Gaussian random variables with 

mean of zero and variance of a 2 (c.f. Eqns. (2.14)-(2.16)). It is also convenient 

to set

s =
A V

reducing the joint PDF of i and q to

p i a i h q )  =Pi(i)PQ(q)  = exp
i2 + q2

(2.24)

(2.25)
2tts2 * \  2s2

It can be observed from Eqn. (2.24) that s2 has the property of being the reciprocal 

of the signal to noise ratio (SNR). In this way, S N R  = 1/s2. From Eqn. (2.21) one 

has

i =  a cos (f> — 1, 

q — asin<^,

(2.26a)

(2.26b)

so that

From Eqn. (2.26)

J h q  
a, <f>

cos <f> —a sin <f) 
sin (f) a cos 4>

= a.

i2 + q2 = a2 — 2a cos 6 + 1 .

(2.27)

(2.28)
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Substitute Eqn. (2.28) into Eqn. (2.25), then invoke the result together with Eqn. 

(2.27) in Eqn. (2.22) to obtain

. . 1 f  a2 — 2a cos (f) + 1
PA,*{a,4>) =  2 ^ “ <S‘P ( ---------- ^5-------- (2.29)

where a ^  0, and — n ^  <p < n. Thus, Eqn. (2.29) is the desired joint PDF of random 

variables a and <f>.

The PDF of the phase noise is given by

poo

=  /  PA,$(a,<l>)
Jo

da (2.30)

1 /  1 )  / “  f  a2 a cos<A
=  2 ^ e x p ( - ^ ) l  a e x p { - 2 ^ + — ) da- <2'31>

By using the identity [25]

Jp OO

' x  exp (—fix2 — 2vx) dx 
o
1 v Fir ( v2 

2/j, ~  2fl \  Ji 6XP \ j j i
1 — erf (2.32)

in Eqn. (2.31) and by identifying /a =  ^  and v = — one can obtain

2ns2 V 2s2 ;  r  ' V 2 ™  ^ \  2s2

where

is the error function.

7T S
COS 4>exp I/ cos2 4>

1 — erf
cos<

V2S2 ) .

(2.33)

erf (x)
7r

exp (—f2) dt

Eqn. (2.33) is the exact expression for the phase noise PDF over all SNR value, 

which is an extension of the result in [22] for the PDF of the phase noise. It is clear 

that for high SNR (i.e., for small s2), this expression tends to the limiting Gaussian 

PDF

g(<P) =
V2

: exp
7TS 2s2

(2.34)
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True P hase  Noise pdf and High/Low SNR Approximations
1 .4
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P hase Angle (radians)

Figure 2.1: Plots of Eqns. (2.33) (solid line), (2.34) (dashed line), and (2.35) (dotted 
line) for s2 =  0 .1.

For low SNR (i.e., for large s2), the limiting PDF is the uniform distribution over 

interval [—7r, 7t) as

* ($  =  (  2 ^ ’ _ 7 r ^ <7r . (2.35)
( 0 , elsewhere

Fig. 2.1 shows the plot of the PDFs as in Eqns. (2.33), (2.34) and (2.35) for s2 =  0.1, 

and it is noted tha t the phase noise PDF in all cases is symmetric about a mean

of (j> =  E  \<j) (n)] =  0. This is also obvious from Eqn. (2.33) since cos <p =  cos (—0).

Furthermore, one can see from 2.1 that for high SNR, the limiting PDF of Eqn. (2.34) 

is a good approximation to Eqn. (2.33).
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2.2.3 D etailed  D erivation o f T retter’s Linear R egression Es­
tim ator

The Tretter [22] linear regression estimator should be derived here with the new phase 

PDF in Eqn. (2.33) in the M l SNR range. However, the approach adopted here is 

somewhat different from that in [22].

Recall from Eqn. (2.20) that

r(n) =  A 0a(n)ej[“oTn+e°+<p{n)]. (2.36)

Let us set 9 (n) — L0 0T n  + 90 + (t)(n) which is the instantaneous phase of r(n) obtained 

by applying a phase unwrapping algorithm to the argument of r(n). Let us assume 

as in [22] that 9 (n ) is available for n = n0, ■ ■ ■ ,n Q + N  — 1, where tiq is some initial 

or starting time instance.

Also as in [22], define the error sequence energy

—1
E ( u 0,90) =  ^  [9 (n) -  uj0T n  -  90f  . (2.37)

n=riQ

This implies tha t it is desirable to attem pt to fit the best straight line segment co0T n +  

9o to the data {9 (n )} , where “best” is defined in the least squares sense. This is a 

classical “linear regression” problem. The notation in Eqn. (2.37) assumes that n 0, 

N  and T  are fixed constants predetermined by the experimental setup used for the 

measurement sequence (r(n)} . It is desired to minimize E  with respect to lu0 and 90. 

Thus, one can write

(co0, 9q) =  argm inE  (u0,90) , (2.38)
V 7 (uofi)

i.e. tJo and 90 are the choices of loq and 9q th a t minimize E,  and so are the best 

estimates of frequency and phase in the least squares sense. Let us define the vectors
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a =  [cjq 0o]T, and f3 =  [nT 1]T. Then, Eqn. (2.37) can be rewritten as

n g + N —1

E ( a )  = J 2
71=710

n o + N —l

= 2 3  \P2 (n) — 20 (n) f3T a  +  a r f3/3r a\

=  p — 2qTa  +  a TP a , 

where p =  y ^ 1 („ ), ,  =  ^  („ ), m d  p  =  W
/  ^n—riQ ~  > n= no  — /

lD0 0q be the estimator of a  tha t minimizes E  (a) so that

(2.39)

n0+ N —1 rp
. Let a  =

d_
da

E  (a) =  0 . (2.40)

Then, by substituting Eqn. (2.39) into Eqn. (2.40), one can obtain linear system of 

equations

P a  = q. (2.41)

Therefore, the estimator is given by

where q -

n o + N —l

E nTe(n)
n=no
no+N—l

23 ++
n=no

rr

, p  =

QL =  P ~ 1q,

n o + N —l
P  £

71=710
n0+ N —1

E »
71=710

710+AT— 1

r E
71=710

Tio +  N  1

E i

n

71=710

(2.42)

Through some straightforward manipulations, one can finally obtain the following 

estimator

U) o
do

12
T 2N 2(N2 -  1)

N  - T ( N n 0 +  A)
- T ( N n 0 + A) T 2 (.N n 2Q +  2 4n0 +  B)

UQ+N—l
X) nT9(n)

71=710
t io + A T - I

E 0(n)
71=710

(2.43)
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where

A =

B  =

N ( N - l )
2

(N  — 1)N(2N — 1) 
6 '

(2.44)

(2.45)

Eqn. (2.43) is the same as Eqn. (12) in [22].

As suggested in [22], let us now assume that n0 is chosen to satisfy

N tiq -F A  — 0,

so tha t no =  — ̂ -(N — l ).2 Then, Eqn. (2.43) can be simplified to

(2.46)

U) 0
do

12
T 2N 2(N 2 -  1)

N  0

0 ~ T 2{ N ~  1)N(N  + 1)
J. z

no-\-N—1
52 nT9(n )

n=7lQ
no + iV -1

E d(n)
n=no

From Eqn. (2.47), the simplified estimator can be written as :

12
u> o —

T N ( N 2 -  1)

( N - 1)/2

n e (n ^
n = - (T V - l ) /2

( N - 1)/2

= jj E «w-
n = —(TV—1)/2

From Eqn. (2.48), the mean of uj0 and that of d0 can be obtained as

(2.47)

(2.48a)

(2.48b)

E  [c2?0] —
12

T N ( N 2 -  1) 

12
T N ( N 2 -  1) 

12
T N ( N 2 -  1)

l2u0T  
T N ( N 2 -  1)

E
(iV—1)/2

Y 1  n 9 ^
n = —(TV—1)/2 

(T V -lJ/2

^  nE[o;0r n  +  d0 +  0 (n)]
n = —(TV—1)/2  

(TV—1)/2

n (u0T n  +  d0)
n = —(TV—1)/2  

(TV—1)/2

E n
n = —(TV—1)/2

2This implies that jV is odd.
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12w0 N { N 2 -  1)
(2.49)

N ( N 2 -  1)

and
(TV-1)/2

-  jV  X ]  {u q T u  +  6>o)

n = —(TV—1)/2 

(TV-1)/2

n = —(TV—1)/2

=  =  0O. (2.50)

From Eqn. (2.49), it can be seen that the frequency estimator is unbiased for 

all SNRs (and the estimator for initial phase is also unbiased from Eqn. (2.50)). 

This conclusion is an extension of the result by Tretter which was based on the 

assumption of high SNRs. So the unbiased CRLB bound can be applied to evaluate 

the performance of the estimator in the full range of SNR.

2.3 M axim um  Likelihood Estim ator

The basic theory can be found at Scharf [9] (see also Rife [10]). The MLE estimation 

wo is the value of coq that maximizes the PDF of the observation data.

The data model is the same as Eqn. (2.1) in the above. The data has a Gaussian 

distribution with a PDF of

Ao cos (cjqT n  +  do) is the mean of data.

The maximization of f(x-,6) in Eqn. (2.51) is not an easy task, as it consists of 

the multiplication of exponential functions. One can resort to using the In operation 

to the equation to get the so called log likelihood function (LLF). Because the In

TV-1

= J ~[f(x (n)-d)

TV-1

(2.51)

where 9 = [w0 A 0 90 a 2]T is the parameter vector to be estimated, and nn = E  [x(n]]
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function is a monotonically increasing function, the maximum of / (x; 9) will occm at 

the maximmn of its LLF

N  1
1 n f ( x \0 )  = In (2v a 2) -  —  [x{n) -  p j 2 . (2.52)

n= 0

2.3.1 A lgorithm

This algorithm includes 4 steps to estimate 9.

1) Estimation of noise variance a2: Let the derivative of LLF with respect to the 

variance be set zero

d
da2

In f{x;9)
N N - 1

2a 2 2 (a2)2\ J ri=0

=  o.
t2=a2

Then, one can obtain a2, the estimator of a2, as

N - 1

^  ^  ~  Vn
n — 0

2) Estimation of initial phase 9o'- Let

JV—1

V2 = ^  ~  Vnf
71=0

and substitute Eqn. (2.54) into Eqn. (2.51) with a2 = o 2 Yl
N

(2.53)

(2.54)

(2.55)

. Then, Eqn. (2.51)

becomes

i n / ( s £ )  =  - ^ ln ( 7 7 y2)  -  y -  (2-56)

From Eqn. (2.56), 90 can be estimated as 90 tha t maximizes In f(x',9),  or equally,
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minimizes V 2. From Eqn. (2.55), V 2 can be obtained as

y2 = ^ \ x (n ) - =  ^ [ x 2{ n ) - 2^ nx { n ) + ^ l ]
? i = 0  n = 0

N - l  N - l

= Y ^y x2(n) — 2Ap x(n)  cos (upTn +  Op)
71= 0  71=0

N - l

cos2 (COqT u +  Oq)

N - l  N - l

x2(n) — 2A 0 x(ri) cos (uipTn +  90) +  A q
n = 0  n= 0

AT

71= 0

N - l

= £2(n) — 2A0 Re
71= 0

N - l

e-je° Y  x(n)e~ju}oTri
71=0

a 2 N+ A I - . (2.57)

From Eqn. (2.57), Op can be estimated as 6p tha t maximizes PDF by letting

N - l

e-je° Y x (n )e~jU1°Tn
71= 0

=  0 .

Then,

By setting

Re

JV-l

JV-l

- j e ~ j0° Y  x (n )e~j“°Tn
71=0

0 .

(2.58)

(2.59)

Y  x{n)e-ju’oTn = X ( oj0) = \X  (cj0) j (2.60)
71= 0

where X{oS) is the discrete-time Fourier transform (DTFT) of x(n), n = 0,1, • • • , N  —

JV-l

x ( u )  = Y x in )e~juTn■
71=0

Eqn. (2.59) can be rewritten as

Re { —j  \X  (<j„)| ej ^ (a;o)- 0o]} =  0. (2.61)

Therefore, from Eqn. (2.61), the estimator of initial phase can be obtained as

9q =  <t>x (uo) =  arg [X (<j0)] . (2.62)
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3) Estimation of amplitude A 0: Substitute Eqns. (2.60) and (2.62) into Eqn. 

(2.57), one has
N~* A2N

V 2 = J 2  x2(n ) -  2Ao I*  (wo) | +  (2-63)
n = 0

By setting the derivative of V 2 with respect to A q to zero

-J-j-V2 = - 2  \X  (w0) | +  AqN  = 0, (2.64)OAq

the estimate A 0 of A q is obtained as

Ac = |  \X (w„)|. (2.65)

4) Estimation of frequency w0: Substituting Eqn. (2.65) into Eqn. (2.63) will lead

to
N - l

TV v uyi 2TV2

N - l

r 2 (n.)  -

TV

V 2 =  Y . A n ) - ‘i ^ \ X ( ^ ) \ 2 + A i \ X ( u 0)\2 N  (2.66)
71=0

=  (2.67)
71=0

So, the estimate w0 of w0 is given by

Wo =  argm inV 2 =  argm ax|X (w 0) | . (2.68)UJO OJQ

To sirmmarize, the ML estimator of d = [wo A q 0o a 2]T is obtained as

w0 =  arg max |X(w0) | , (2.69)
ujo

A 0 = - \ X ( u 0)\, (2.70)

d0 =  argpf(wo)] , (2.71)

1 N
a 2 = — ^ [ x ( n )  -  A 0 cos(w0T n +  do)]2 . (2.72)

71=1

The MLE can reach the CRLB bound when the data size is large enough. One of

the disadvantages of this is that it is computationally intense. However, the relation­

ship of ML estimation to the discrete Fourier transform can be exploited to increase 

the computational speed with the help of fast Fourier transform (FFT) algorithm.
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2.4 Linear Prediction Estim ator

A computationally simpler algorithm called linear prediction estimation (LPE) for 

frequency was first proposed by Kay in [11]. This technique is based on the complex­

valued sinusoidal signal contaminated in AWGN noise given by

x(n) = A 0ej ^ on+e°̂  + w ( n ) , n = 0, N  — 1 (2.73)

where A q represents the amplitude, lu0 € [—tt, ir) is the angular frequency, 9q repre­

sents the initial phase, and w(n) represents the zero mean complex-valued AWGN 

noise variable with variance a 2 and are i.i.d.. The parameters (Ao, ujo, 90) are deter­

ministic but unknown constants and the frequency loq is to be estimated. The other 

two parameters A 0 and loq are considered to be nuisance parameters.

There are two kinds of LPE estimators, namely, unweighted LPE estimator and 

weighted linear prediction estimator (WLPE). The algorithms are as follows:

1) The unweighted LPE frequency estimator is simply given by

LOq = Z R Im log R

where
iV“1 1 

^  =  5 Z  - t f z r [ x (n )x *(n ~  !)■
71=1

(2.74)

(2.75)

In Eqn. (2.74), /[•] denotes the phase of a complex number, and log represents the 

principal value of the log function. In Eqn. (2.75), * denotes complex conjugate 

operation.

2) The W LPE frequency estimator is given by

u)o — Z R = Im log A!

where
JV -l

R  — v (n) x(n)x*(n — 1),

(2.76)

(2.77)
n = l
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and where

(2.78)

The further discussion regarding this technique can be readily found in [26-28].

2.5 Unbiased CRLB bound and Performance Com­
parison

In an estimation system, it is important to have benchmarks th a t identify the best 

estimation tha t can be made with the available data. The unbiased CRLB bound 

introduced in Chapter 1 is a good candidate for this purpose. Although there are 

many other bounds exist, the CRLB is the most used criterion for its simplicity and 

easy-to-calculate property.

In this section, computer simulations are carried out to evaluate the single-tone 

frequency estimation performances of the above reviewed methods (i.e., the LRE, 

MLE and two LPE estimators) by comparing their estimation variances against the 

CRLB bounds for various SNR values. 3

In [10], the unbiased CRLB bound on the estimation variance for the data model 

similar as in this chapter was derived as

The performances comparison is carried out by the Monte Carlo simulations of 

the above frequency estimators with the single-tone data sizes of N  = 31, 61 and 

101, respectively. Figs. 2.2 to 2.4 are three typical results of the simulations. All 

numerical results are obtained by averaging over 500 Monte Carlo simulations. It can 

be observed from Figs. 2.2 to 2.4 that:

1) The variances of the three estimators are higher than the CRLB bounds for all 

SNRs. This is as expected, because the unbiased CRLB bound determines the best

achieved accuracy for all unbiased estimators.

3 The normalized standard deviation is used as the the square root of variance divided by the 
corresponding SNR.

C R L B  =
12a2 6

(2.79)
A%T2N ( N 2 -  1) S N R  • T 2N  (N 2 — 1)'
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2) The Tretter estimator has the smallest variance among the four estimators 

considered at very low SNRs. This is very desired at conditions where the received 

signal is very noisy. At very high SNRs, the Tretter estimator is slightly better than 

the other two estimators in terms of the estimator variance. Therefore, it is the “best” 

estimator for the above frequency estimation problem at these SNR ranges. Only at 

the middle range of SNRs (i.e. —5 dB to 8 dB), the Tretter estimator is outperformed 

by the MLE estimator, but is still better than the LPE estimators.

3) The estimator variances are in reversely proportional to the SNRs for all four 

estimators. Especially, with increasing SNRs, the variances of MLE and LRE es­

timators tend to approach the CRLB bound. Hence, they are efficient frequency 

estimators.

4) By comparing Figs. 2.2 to 2.4, it can be found tha t with lager N,  i.e. more 

data points, the estimator variances and CRLB bounds decrease their values.

5) It needs to be noticed that the variance of MLE estimator decreased dramati­

cally when SNR is smaller than 3 dB for N  = 31 (c.f. Fig. 2.2). This phenomenon is 

called “threshold effect” . The Tretter estimator has the similar threshold effect but 

with a different start point of SNR =  8 dB for N  =  31. It is well known that nonlinear 

estimation is generally plagued by threshold effect. At low SNRs, there is usually a 

range of SNRs in which the estimation error rises very rapidly as SNR decreases. The 

SNR at which this effect first becomes apparent is called the threshold.

6) The threshold effect is undesirable in parameter estimation and should be 

avoided as much as possible. It can be observed tha t for different data size N ,  the 

threshold value is different for the same estimator. For example, the threshold of the 

MLE estimator is 0 dB for N  = 61 (c.f. Fig. 2.3), and is —3 dB for N  = 101 (c.f. Fig. 

2.4). The starting point of threshold effect in Fig. 2.2 (N  = 31) occurs sooner than 

in Fig. 2.3 (N  =  61) and much sooner than Fig. 2.4 (IV =  101), implying that larger 

data size will lead to a later occurring of the threshold effect. This is because that 

larger data size means more information regarding the parameter available, leading
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V arian ce  of F re q u en c y  Estim ation ( N = 31 )

V  T retter F re q u en c y  E stim ator

O U nw eighted LP E stim ator 
f  W eighted  LP E stim ator

s
5Q

CO

mgOz

10'3

10’4

SN R  (dB)

Figure 2.2 : Comparisons of the sample variance of the estimators against the CRLB 
bound for N  =  31.

to more accurate parameter estimation, or less estimator variance at the same SNR. 

Therefore, it is preferable to get as much data points as possible in order to obtain a 

better estimation accuracy when the SNR is low.

7) The last point is that the MLE estimator has the lowest threshold value among 

all estimators at the same data size N.  In situation where data size is a constraint 

condition, the MLE estimator should be considered as the most preferable one.

2.6 Conclusions

In this chapter, the LRE estimator by Tretter [22] has been developed in a more 

general manner. The Tretter estimator has the disadvantage tha t it requires as input
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V ariance  of F req u en cy  Estim ation ( N = 61 )

 CRLB Bound
v  T retter F re q u en c y  Estim ator

U nw eighted  LP E stim ator 
W eigh ted  LP E stim ator

.1
a■p
■uc
55
s
i
o
z

SN R  (dB)

Figure 2.3: Comparisons of the sample variance of the estimators against the CRLB 
bound for TV =  61.
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V ariance  of F re q u en c y  E stim ation ( N as 101 )

 CRLB Bound
v  T re tte r  F re q u en c y  E stim ator 
*  ML estim a to r 
c  U nw eighted  LP E stim ator 
•t W eighted  LP E stim ator

s
s8oE
c(0
CO
?
MiOz

SN R  (dB)

Figure 2.4: Comparisons of the sample variance of the estimators against the CRLB 
bound for N  = 101.
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an unwrapped estimate of the phase. If the SNR is high, this is not a great problem. 

However, if the SNR is low, the noise causes ±27r radian phase ambiguities which are 

an additional source of error in the frequency estimates, and which was not accounted 

for by the models considered either in this thesis or in [22]. This is perhaps the best 

justification for only considering the high SNR case in [22]. But, in general, Tretter’s 

LRE estimator has the smallest variance among the four estimators concerned at both 

very low SNRs and very high SNRs, except that at the middle range of SNRs (e.g. 

-5dB to 8dB), the Tretter estimator is outperformed by the MLE estimator. In all 

SNR range, LRE estimator is better than the two LPE estimators in the sense that 

it has less estimator variance.

The MLE estimator has smaller threshold SNR values than the Tretter estima­

tor which is a very desired characteristic in application where SNR is a constrained 

condition. One of the disadvantages of MLE estimator is that it is computationally 

intense. However, the relationship of ML estimation to the discrete Fourier transform 

can be exploited to increase the computational speed with the help of fast Fourier 

transform (FFT) algorithm.

The LPE estimators seem to be worse than the other two methods in the sense 

tha t it has higher estimation variance for all SNRs and larger starting SNR values of 

threshold effect under the same data size. But it has the advantage that it does not 

require unwrapped phase estimates as input, therefore, it is simple to compute and 

implement.
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Chapter 3 

Param eter E stim ation for 
M ultiharm onic Sinusoids

The preceding chapter was concerned with parameter estimation problems for single 

frequency sinusoidal signal contaminated by AWGN noise. This chapter deals with 

the corresponding parameter estimation problems for multiharmonic sinusoids signal 

contaminated by AWGN noise.

3.1 Introduction

Parameter estimation for multitone sinusoidal signals in noise has been well reported 

in the hitherto literature. Typical techniques include the maximum likelihood esti­

mation (MLE) [20], multiple signal classification (MUSIC) estimation [29], and the 

subspace method [14]. However, these techniques have paid little attention to sinu­

soidal signals with harmonics and subharmonics. In [20], the MLE approach was 

applied to the signals consisting of multiple sinusoids in noise under the assumption 

that there is no special harmonic relationship between the sinusoidal components. 

Harmonic and subharmonic signal components exist in many signal processing appli­

cations. For example, in speech signal processing problems, many acoustic sources 

such as rotating machinery have non-linear effects within the generating system, and 

often give rise to  harmonics and subharmonics besides the fundamental component. 

To properly characterize such signals, the harmonics and subharmonics should be
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taken into account. The work of [30] contained in part a derivation of the Cramer- 

Rao Lower Bound (CRLB) for the case of a real multiharmonic signal, measurements 

of which are assumed to commence at time t = 0 .

Recently, Zarowski and Kmpyvnytskyy [31] developed a modified iterative cosinor 

algorithm (MICA) for the temperature data containing circadian rhythms for head- 

injured patients. In the MICA model, the period of the circadian rhythm for the 

patient, called the patient’s “tau” and denoted by T, is to be estimated together with 

the harmonic and subharmonic components of the data. In [31], the CRLB bound 

for the estimation of tau  was derived but it was assumed that the noise variance is 

known a priori. This paper presents the derivation of CRLB bounds for the case 

that the variance is unknown. The derivations also include the CRLB bounds for 

other parameters such as amplitudes of harmonics and subharmonics, noise variance, 

and the SNR. Computer simulation results are also given to verify and interpret the 

CRLB bounds.

The remainder of this chapter is organized as follows. Section 2 is the statement 

of the problem. The CRLB bounds are derived for the case that the noise variance 

is not known a priori, in section 3. Section 4 presents the simulation results and 

performance comparison. The conclusions are given in Section 5.

3.2 Statem ent o f the Problem

Let us consider the MICA algorithm for a circadian rhythm data set |.s(n)} given by

Nh
s(n) — [Ak cos(ujkn) + Bk sin(tuA;n)] +

k=l
Ns

[Ck cos(um/k) +  H jsin (con/k)] +  w(n),  (3.1)
fc=2

where n = 0,1, N  — 1, with N  being the length of the data set. Moreover, 

oj =  2nTs/ T  G (0,7t), with Ts being the sampling period, Ak, Bk,Ck, Dk G R , and 

{w(n)} is a sequence of independent, identically distributed (i.i.d.) AWGN noises
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with zero mean and an unknown variance of a2. Then, one can define the amplitude 

vector

Q L  [ - ^ 1 5  '  ’ * 5 7 - ^ 1 7  '  '  ’ 7 7

C2 , ■ ■ ■ , CNs,D 2, • • • , D Nsf  G R p ,

and the sinusoidal signal vector

x [n; T] = [cos(wn), • • • , cos^iVtfn), sin(um), • • • , 

sin(LoNHn), cos(tun/2), ■ ■ ■ , cos(uon/ N$), 

sin ( l o t i / 2 )  , • • • , sin (ton/Ns)]T G R p ,

where P  = 2(Np + Ns  — 1). Compactly, Eqn. (3.1) can be rewritten as

s(n) = x T [n; T]a  + w(n ).

Let us define the parameter vector

.T  rp 2~\T

(3.2)

(3.3)

(3-4)

0 — [oT T  a2] — [9-1,02, • • • 7 9p, 9p+1, 9p+2] , (3.5)

where [0\, 02, ■ ■ ■ ,0p] = a T, 0p+\ =  T, and 0p+2 = o2. Then, the problem under con­

sideration is to estimate 0 from N  points of noisy data s = [s (0), s ( 1 ) , ■ • ■ , s (TV — I)]7’ G 

R  v . The PDF of s is given by

P(s;0) =  X— exp ^  [s(n)
(2tt<72)T  { za  n=0

It is also convenient to define the matrix

x [n;T}a]‘ (3.6)

X ( T )

x T [0 ;T] 
x t [ 1 - T \

x T [N -  1;T]

G R N x P (3.7)

and

A  (T) = X T (T) X  (:T ) G R P x P (3.8)
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together with p = sTs € R , and g (T ) =  X T (T ) s  £ R p . 1 Then, Eqn. (3.6) may be 

rewritten as a log likelihood function (LLF) as2

In p(s; 6) =  In ----- — w -  (s -  X a f  (s -  X a )
( 27T(72) T  10

=  ~  In (2vrcr2) -  ^  (aTA a  -  2gTa  +  p) . (3.9)

The data model developed above will be used in the next section for the derivation 

of the desired CRLB bounds.

3.3 The Derivation o f CRLBs

For the CRLB bounds to exist, the regularity condition [4]

d Inp(s\ 9)
E =  0 (3.10)

de

must be satisfied. From Theorem 3.2 of [4] it must be the case tha t for all 6 the regu­

larity condition of Eqn. (3.10) holds. To begin, let s =  [s (0), s (1), ■ ■ • , s ( N  — 1)]T =

X a  and w =  [w (0), w (1), • • • ,w (N  — 1)]T, so that

s = X a  + w, (3.11)

E[s] -  X a ,  (3.12)

and

E \g \  = E [ X Ts ]

=  E  [XT ( X a  +  w)] = X TX a  

= Aa.  (3.13)

1Here, T  is used in two different contexts, namely, as a subscript to denote matrix transposition, 
and as the signal period.

2 In the following, signal dependence on T  is omitted from the notation for the sake of simplicity.
So g stands for g (T ), X  for X  (T ), and A for A (T ), etc.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From Eqn. (3.9), the three components of the gradient of LLF are obtained as 

d\np(s;9)  1
da

<91np(s; 9)
d T  

d Inp(s; 9)
da2

From Eqn. (3.14), one has

E

(g -  A a ) ,

1 dg1
-a

1 r dA  
-a -7= a ,

a 2 d T  ~  2a2~  d T '

=  +  ( - a ~  ~  2~ ~ + '

d\np(s]ff)
da = z 2 E k ~ M

[Aa — Aa]

= 0,

(3.14)

(3.15)

(3.16)

(3.17)

and the second regularity component

1 dgTE
31np(s; 9)

= E
dT

1 ..T dA
ry —  ry  ry

a2 d T ~  2a2~  d T ~
1

2a2
1

2E2
1

2a2
1

2E2
0.

_ „  r T1 d X  T dA
2E [ s  ] -r^QL-QL g f ®

' d X  T ( d X T v  v T d X  .
2a TX T—= -  a T — — X  + X T—  a  

dT  ~  \  d T  d T

a TX T-— a  — a
d T ~  -  d T
d X

? d x T X a

T V T ®Xa X  -r— a  
d T ~

T T d X  ■ 
a  X  — a

(3.18)

Let us take a look at the third component of regularity condition:

E
<91np(s; 9) 

da2 H  —o E  \aTA a  — 2gTa  +  pi
2a2 2 (a2)2 L_ “  ~ ~  J
N

2a2 2 (cr2)2
[aT A a  — 2aTA  (T) a  + E  [p]] . (3.19)
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By taking into account the fact that

E \p } =  £ [ s r s] 

=  E  [Xa +  w]T [Xa + w\

=  E  [aTX TX a  + a TX Tw +  u F X a  +  wTw] 

--- a TA a  + N a 2,

Eqn. (3.19) can be simplified as 

<91np(s;£)

(3.20)

E da2
=  — H-----  —2 [ar A a  — 2aTA a  + a TA a  +  N a 2]

2<t 2 (cr2)

^  1  A 7" 2— “  ̂ ^  H , _oiVcr
2o-2 2 (a2)2

0. (3.21)

In accordance with Eqns. (3.17), (3.18) and (3.21), the regularity condition in 

Eqn. (3.10) is satisfied.

The next step is to determine the elements of the CRLB matrix. Let us define

A = diag { a2, a 2, • ■ • , a 2} G R N x N (3.22)

which is the covariance matrix for a AWGN process. In this case, the last term  of 

Eqn. (3.9) can be rewritten as

lnp(s; 9) = In (2na2) — ^ [s — X a ]T A  1 [s — l a ] .
Zi z

In the derivations to follow, it is useful to note that

A = E  [(s — X a ) ( s -  X a f

=  E  [ssr  — saTX T — X a s T +  X a a TX T]

= E  [mT] -  X a a TX T -  X a a TX T +  X a a TX T 

=  E  [ssT] — X a a r X T,

so that

E  [ssT] =  A  +  X a a TX T. 
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Prom [4], the covariance matrix C~e of an unbiased estimate 8 of 8 satisfies the 

CRLB bond

- i/ (3.26)

where F(8) is the Fisher information matrix (FIM). For the problem under consider­

ation, the FIM m atrix is defined as

F(6) = {Fijd),  i , j  = 1,2,3}

=  E l

/ d\np(s-,8)
da

d\np{s-,8) ( <91np(s;0)\ d\np(s]8) dlnp(s-,8) \

d\np[s]8)
[ V da  J  d T  do2 J

da2 j

— E { G ( 9 ) } ,

where
[ Gn (0) G 1 2  0 

G{0) = G21(8) G22( i
G3 1  (8 ) G%2  (i

From Eqn. (3.27), it can be observed tha t G I

G13(0) 
G23 (8) 
G3 3  (8) 

= GT (t

G (6) are in turn  defined as

Gn  (0)
5 In p(s;8) 

da
5 In p(s;8) 

da

G12 {£ -

G 13 (8) 

G2 1  (0) 

G22(8)

G 23 (8)

G31 (0)

C 32 (8)

d\np{s\0) d\np(s]8)  
~da d T  ’

d In p(s; 8) d Inp(s; 8)
da do2

= Gt12 )

d Inp(s; 8) d Inp(s] 8)
d T  d T  : 

d Inp(s] 8) <91np(s; 8)
d T da2

= Gt13 ,

= G23 ,

G3 3  m  =
d Inp(s-, 8) 

da2
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(3.27)

(3.28)

(3.29)

. Then, the elements of

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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In this way, one should compute the matrix elements G\\ (<9), G12 (#), G13 (6), 

G 2 2  (#)> G23 (0) and G33 (6). It can be shown that

1
G 1 1 - (a2Y

\ g - A a ]  [ g -  A a ] '

= -—̂ 2  [XTs -  X TXa]  [sTX  -  a TX TX] 

= — ^ X TssTX  -  X TsaTX TX  -  X TX a s TX  +  X TX a a TX X T. (3.39) 
(a2)

As Fix (#) =  E  [Gn (9)], one can obtain 

{a2) 2Fn (9)

= X t E  [ssT] X  -  X t E  [s] a TX TX  -  X TX a E  [sT] X  +  X TX a a TX X T 

= X T (A +  X a a rX T) X  -  X TX a a TX TX  -  X TX a a rX TX  

+ X TX a a rX X T

= X TAX,  (3.40)

leading to

Eqns. (3.12) and (3.20) have been used in the derivation of Eqn. (3.40). 

Now, substituting Eqns. (3.14) and (3.15) into Eqn. (3.31) leads to

(3.41)

G 1 2 (0)

1

(a2y
1

dg
d T

T ~n 1 r dA  
or —=■ — - a  -==a

dT~

1

’ T ( d X x T 
a 1

\ g - A a ]

n d A
\ d T

,d X  
~dT

s  a  — a
-  2“  d T ~

\ X T s — Aa]

X TssT^ E a  -  A a s ^ a  -  y X TsaT
,d X
5 F i

1
2‘

dA
dT

a
1 „ T dA  '
2A m  & f S

(3.42)
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As F \ 2  (d) =  E  [G\ 2  (0)], one has

{cr2) 2F12(e) = (a2Y E [ G 12m2\2

=  X T [A + X a a TX T] -  A a a TX T^ p a  (a2) 2
dT

v T  T dA  1 T dA  
X  X a a  ^ p a  + - A m  p p

d X

a

= x ‘ A w *
(3.43)

where Eqns. (3.12) and (3.20) have been used in the derivation of Eqn. (3.43). 

Therefore, one can obtain

Fi2 = h x T w &- (3-44)
Next, from Eqn. (3.34) and F22 (9) = E  [G22 (0)], it can be shown that

{o2) 2F22{e) = {a2) 2E[G22{9)}

dg 1 
dT ~  2~ dT

1 r dA
■ -OC  2~ d T ~

21

T f d X \ T T 1 d X  1 T dA T f d X \ J
= ££ ( arj  F ^  “ 2s  a f '

1  r p  O A  r p  /  Q j i  \

2s  f f f ^  { m )  Xs
1 r dA T ( d X \ T ^  1 r dA T dA

 cr - ^ . o t a  — — X a  +  - a  — a a  —— <2_  qtj,—  \ d T J  ~  A~ d T —  dT'
 rP  _______ _  .

■a

T f d X \ T r A v  T ^ T 1 d X  1 T dA  
=  a  ( ] IA + X a a  X  \ -rr=a — - a

~  \ d T  J  1 —  J d T ~  2~  d T
1 T dA T f d X \ T ^ r , 1 T dA T dA  

“ 2 ^  d T m  d T )  ^ ] +  4a  d T ~  &Ta  

T f d X \ T
-  ( a r j

1 r dA r dAJ q,1  OLOL ----
4 d T —  d T

-L rp (J rp I d X  \  ,
- a  -  - a  — - a a  —— E  s| 

v__ 7 d T ~  2~  d T —  \ d T J  1
1 T dA T f d X \ T 
- a  — -aa  —-  j0_  9 r —  \ d r J  ,  ^

V r „  v  T vT i  d X  T d ( X TX ) T f d X \  ^;j  [A + X a a  X  ] — a - a   -pp a a  X a

r p f d X V  d X  T ^ T d X  T d X  1 rpdA rpdA 
= a  —— A —— a  — a  X  ——a a  X -^r= a +  - a  ——a a  -zr—a,

~  \ d T J  d T -  ~  d T —  d T ~  4 ~  d T —  dT
(3.45)

where Eqns. (3.12) and (3.20) have been used in the derivation of Eqn. (3.45). The

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



last term  of Eqn. (3.45) can be written as

11 r dA r dA x rji
- a  -r—-d  =  —a4_ dT— dT-  4- S T  S T

aa
B X T v  Td X
err s r a

a
Td X T ^  T d X T v  T d X T v  T v T d X  
■ -  X a a  .... A n +  a  -——- X a a  X  - —-a

d T
T ~irT &X rp+a X  — a a  d l

dT
d X T

d T dT-

X a  +  a TX T^ ^ a a TX T^ ^ ad T  -  -  d T —  g r p -

i r  Td X T v  T v T d X  T d X T v  T T d X
— a   X a a  X   a  +  a   X a a  X   a
A d T  d T  d T  d T

rp rpdX rp rpdX rp rp d  X  rp rp d  X
+aTX T— a a TX T— a  +  a TX T— a a TX T— a

1 T rp Td X  rp rpdX rp rpdX p rp <9X
2 2  X  X  — a  + a  X  X

T  v T  d X  p  VP d X  =  QL X  — a a  X  — a.

Substituting Eqn. (3.46) into Eqn. (3.45) gives

F22(d) =  E[G22{e)\
1 p f d x y  AdX 

(<t2)2~ varj dr~

=  —XOL
d X \ T d X

-d T  J  d T
a.

(3.46)

(3.47)

(3.48)

(3.49)

It should be pointed out that the identity — A  =  I  G R  x , where I  is a N  x N  

identity matrix., has been used in the derivation from Eqn. (3.47) to Eqn. (3.49). 

By following derivations similar to those leading to Eqns. (3.49), one can obtain

E [ G ^ m  = E l - \ g - A a ]
1 N

[aTd a  — 2 gTa  +  p\
2 a 2 2 (a2)2

=  AT~2AE  tfe “  ~  2gTa + p)]1 (a  )

=  ------- 3 E  [gaTA a  — 2ggT a  +  pg — A a a TA a  +  2AagTa — Aap ]
2 (cr2)

=  ^  ̂ 3 \AaaTA a  —  2 (A aaTA  +  a 2A) a  +  A a a 1A a  4- (N  +  2)a2Aa  

—A a a TA a  + 2 A a a TA a  — A a  ( a rA a  +  iVer2)]

=  ^ ^  3 [AaaTA a  — 2a2A a  +  (N  + 2)er2A r  — A a a 1Aa  — N a 2Aa^

=  0. (3.50)
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It should also be pointed out that the following identities (see Appendix C for the

derivations)

E  \ggT] = A a a TA a  +  a2A, (3.51)

E  [pp] =  A a a TA a  +  (N  +  2)a2Aa,  (3.52)

and

E\p\ = a TA a  + N a 2, (3.53)

have been used in the derivation of Eqn. (3.50).

Proceeding further, one can obtain

F13(e) = E[G13m  = o. (3.54)

Similarly, one has 

1 dgT
G 2 3  —

1 r p d A
o l  o r  ol

A 8 T ~  2a2 d T

and it can be shown that

N  
+2a 2 2 (a2)2

(aTA a  — 2 gTa  +  p)

(3.55)

e [ g  2 3  m
N

2 a 2 
1

2a4 
1

4cr6 
1

4<t6

d Inp(s-, 9) 
d T  ^

t  T  A n  T  \  (  1 ® g T  1(a  A a  — 2g a-\- p) [ — — a  — — a

(aTA a  -  2f a  +  p) ( 2 sT^ a  -

rp . rpljy\_ rp rp rp d
2a  Aas  -rr^a — 4a; gs ~^=a +  2ps - ^ a

TdX
~df-

cr2 d T '
dx_
d T '  

d X

2a2~  d T '

d T ' dT-

[aTA a  -  2f a  +  p]

1
4<r6

2aTA a a TX T^ - a  — 4 a r  (A a a TX T +  a 2X T) ^ ^ a +syj~̂  ' ' /̂  /dT-

+2 (aTA a a TX T + ( N  + 2)a2a TX T) a
dX_ 
dT

— (aTA a  — 2gTa + a TA a  +  N a 2)
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where the following identity has been used (see Appendix C for the derivations):

E  \gsT\ =  A a a TX T +  a2X T, (3.57)

and

E  [psT] =  a TA a a TX T + (N  +  2)a2a r X T.

Next, let us derive F33 (9) by firstly looking at

G33 (9) = |  “  +  2 (a ^ f  ^ A~  ~  +  ^

=  4 {aTA a  -  2gTa  + p -  N a 2) 2 .

After some mathematical manipulations on Eqn. (3.59), one can obtain

(3.58)

(3.59)

4 (cr2) 4 E  [G33 (<?)] =  E  (.a TA a  — 2gTa  +  p — N a 2) ‘

= 2 N ( a 2) 2 . (3.60)

Then,

F 3 3 (e )= E [G 33(d)} =
N

2 (a2)2 '

3 See Appendix C for detailed derivation.

(3.61)
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Finally, one can arrive at the FIM matrix as

m  = cr-2

X TX

cr
d X X
d T J

d T ~

X  a T
OXd X \

d T  J  dT
a 0

N
2cr2 -

(3.62)

B

0

0
N

where

2 (a2)2 J 

X TX

t  f d X \
d T  )

(3.63)

Y T d X
d T ~

a
d X Y  d X
dT  / d T

a
(3.64)

The inverse of the FIM matrix in Eqn. (3.62) is given by

B - 1 0
F - if

0 2 ( 0
N

(3.65)

In order to calculate the inverse of B,  let us represent B  in a partitioned form as

(3.66)B  = A n  A 12 
A 2 1  A 2 2

Then, the inverse is given by

B ~ l = {An — A 1 2 A 2 2 A 2 1 )
—  { A 2 2  —  A 2 1 A 1 1  A 1 2 )  A 2 1 A 1 I

{ A n  —  A 1 2 A 2 2  A 2 1 )  A 1 2 A 2 2

{A2 2  — A 2 1 A 1 1 A 1 2 )
(3 .67)

provided that A n  and A 2 2  are invertible. By comparing Eqn. (3.66) to Eqn. (3.64), 

one can make the following identifications:

A n  — ± X TX,  
a2

(3.68)

A 1 2  = 1 y t 9 X  
a2 d T

(3.69)

A 2 1  —
1 T (  d X  ̂  

a 2“  [ d T y

T

) (3.70)

A 2 2  =
1 r  ( d X ' '  

( d T  j
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) d T ~ (3.71)
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If T  is an unbiased estimate of T,  then it has a variance var(T),  around its mean 

value. Then, var(T) > V,  where V  is the CRLB bound given by

V = (A 2 2  — A2\AXi A12)

1 T f d X \ T d X  1 T ( d X
varj d r ~ ~  u2-

=  a

=  a

a

a

d Xd X X  
d T )  d T

a  —  ol
8 X \

X t - . X < X \

-1

-1

- x ( x Tx )  1x TdT J
d X
dT

OL

d X X
-dT J / - X [ X TX ]_1X T

d X
dT

a (3.72)

Similarly, if a  is an unbiased estimate of a, then it has a variance var(a), around 

its mean value. So, var(a ) >  U, where U is the CRLB bound for estimation of a  

given by

U =  (A n  — A 1 2 A 2 2  A 2 1 )

1
cr

1 v T d X  I T f d X \ T d X J_  T f d x y  y
a 2~  ( d T /

=  a

o

2 -  ( d r )  dT 

v T v  v T d x  (  T ( d x \ T d x  V 1 t ( d x \ T
X X - X — a ^ a  — a j  a  j  X

-1

r d x  f d x  y  d x  \  f d x
d T - \ \ d T - J  d T - )  V<9T

a X

- 1

(3.73)

The structure of Eqn. (3.73) has a geometric interpretation. From [32], let us 

consider a real-valued matrix H  £ R Nxp such tha t p < N,  where p is the rank of H. 

Then, the m atrix operator

Ph  = H ( H t H ) 1 H T £ R NxN (3.74)

is an orthogonal projection matrix (i.e., it is idempotent4 and symmetric). This 

im p lies that the real-valued vector x  £ R jV is projected into the subspace of vector

4 A matrix operator P  is idempotent if P 2 =  P
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space R jV spanned by the columns of H  under the operation Ph X. This theorem will 

be used in the problem under consideration.

Let
f ) y

(3.75)
9 X

V- = - d f a e n

This implies that

U = a 2 y i - y ( y Ty ) V '
- i

(3.76)

(due to the idempotency and symmetry of orthogonal projections). The matrix op­

erator

Pr = y ( y Ty r 1yT £ * NxN

is an orthogonal projection matrix. Therefore,

U = u2 [XTP ^ X ]_1

( P ^ X ) T P ^ X= a

e  R P x P

(3.77)

(3.78)

(3.79)

(3.80)

In Eqn. (3.78), P y X  is a length N  column vector, hence [ P y X ^  P y X  is its 

energy. This means tha t P  is a ratio of noise power a2 to signal power, having the 

connotation of the inverse of SNR. This is to be expected.

3.3.1 C RLB bound for S N R  estim ator

According to [4], the CRLB bound for estimator a  = g (9) is defined as

\Tdg (6) f  . p  dg (6)
(3.81)

dd w  de '

Here, the SNR ratio for the MICA signal model is defined as the ratio of the sum of 

fundamental frequency component power to the noise power in accordance with

A 2 +  B \
f3 = h(0)

<7
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Therefore, the CRLB bound for the SNR estimation is obtained as

(3.82)

where

—— v------- '  N s - 1  N s - 1

The above derived CRLB bounds for parameter estimation are useful in estimating 

how much data needs to be collected in order to achieve the desired accuracy for 

the MICA model. Much simulation and analytical work will be needed to verify 

and interpret the bounds in Eqns. (3.72), (3.73) and (3.82). This will be done by 

computer simulation in the next section.

This section is concerned with a computational confirmation of the CRLB bounds 

in Eqns. (3.72), (3.73) and (3.82). This is achieved by the Monte Carlo simulations 

for the above parameters using MLE algorithm. The simulations are based on a =

N  = 500, as during the simulations, if the data size is too small (e.g. N  = 100), the 

condition number of the m atrix A  becomes very large, rendering A  close to singular. 

This makes the estimation less accurate or even unreliable. Therefore, the data 

size of 500 is used to obtain the desired estimation accuracy. For each SNR point, 

500 independent Monte Carlo simulation results are carried out and the results are 

averaged to arrive at an estimation.

The estimation variances for parameters A l ,  B l  are plotted versus SNR (in dB) 

in Fig. 3.1, the estimation variance of cr2 and SNR are plotted in Fig. 3.2, and the 

estimation variance of T  is plotted in Fig. 3.3. It is observed from Figs. 3.1 - 3.2 that 

the simulated variance approaches the CRLB bound as SNR increases (as expected).

3.4 The Sim ulation R esults

[1,0.2,0.05,0.01,1,0.2,0.05,0.01,4,6,4,6]T in Eqn. (3.2). The data size is chosen as
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Normalized Standard Deviation of the estimation of A1
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Figure 3.1: The normalized standard deviation of the estimation of A l  (top) and B 1 
(bottom) versus SNR together with the CRLB bound (solid curves).

Normalized Standard Deviation of the estimation of sigma2

§ 1 0 '

SNR (dB)

Normalized Standard Deviation of the estimation of SNR

S N R  d B )

Figure 3.2: The normalized standard deviation of the estimation of a 2 (top) and S N R  
(bottom) versus SNR together with the CRLB bound (solid curves).
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N o rm llz e d  S t a n d a r d  D ev ia tio n  o f  th e  e s t im a tio n  o f  p a t ie n t  ta u  (T)

Figure 3.3: The normlized standard deviation of the estimation of T  together with 
CRLB bound (solid curve).

N o rm a liz e d  B ia s  o f  p a r a m e t e r  e s tim a tio n

"S .

S N R  (dB )

Figure 3.4: The estimation bias versus SNR.
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Since CRLB bound is the theoretical limit on the best possible unbiased estimation 

performance, no other estimation method can be expected to perform better than 

MLE at high SNRs. W ith decreasing SNR, the estimation variance becomes worse 

than the bound (again, as expected). The simulation results verify the validity of 

the derived CRLB bounds. However, at SNRs smaller than —5 dB, the simulation 

estimation variance for T  does not conform to the bound (c.f. Fig. 3.3), simply 

because the CRLB bound is valid for unbiased estimation only. At very low SNRs, 

the estimator tends to be biased as clear from Fig. 3.4, and the unbiased CRLB 

bound is not the valid bound anymore. In this case, the biased CRLB bound should 

be considered instead. For the simulation results, the unbiased CRLB bound is a very 

good predictor of the true variance for SNRs greater than about 14 or 15 dB.

3.5 Conclusions

This chapter has presented CRLB bounds for the unbiased estimation of parameters 

in circadian rhythm data model MICA under the assumption that noise variance is 

not known a priori. Much attention has been given to the detailed derivation of 

the Fisher information matrix in order to arrive at the unbiased CRLB bounds for 

the model under consideration. The resulting CRLB bounds have been confirmed 

through Monte Carlo simulations using the MLE estimation method. It has been 

observed that the estimators achieve the CRLB bound at high SNRs, but tha t at 

very low SNRs, the estimators tend to be biased and therefore the unbiased CRLB 

bound is no longer the valid bound. In this way, future work involves the study of 

the biased CRLB bound in MICA model.
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Chapter 4 

Uniform  Cram er-Rao Lower Bound

The performance of unbiased estimators can be evaluated by using the classical 

Cramer-Rao lower bound (CRLB) as discussed in the proceeding chapters. For biased 

estimators, the unbiased classical CRLB bound is no longer applicable because it does 

not take into account the estimation bias. Therefore, a new CRLB bound is needed 

when dealing with biased estimation problems. This chapter presents an overview of 

a recent uniform CRLB bound (UCRLB) proposed by Hero et al. [33]. This bound 

is applicable to any estimator whose bias gradient satisfies a user specified length 

constraint. Normally, the bias gradient needs to be estimated in order to apply the 

UCRLB bound. An algorithm for estimating the bias gradient was derived in the 

paper by Hero et al., but there is an oversight in their derivation of the estimation 

variance as shown in Eqn. (24) of [33]. In this chapter, the variance will be re­

derived to correct this error and the resulting formula has been acknowledged by the 

author [34,35]. It is then shown how to use the UCRLB bound to trace a curve sep­

arating the regions of achievable and unachievable performance in the bias-variance 

trade-off plane. The results will be used for the remainder of this thesis.

This chapter is organized as follows. Section 1 gives an introduction to the per­

formance evaluation for biased estimation problems. Section 2 discusses the conven­

tional biased CRLB bound and its limitations. Section 3 presents an overview of the 

UCRLB bound. Section 4 introduces a modified version of the bias gradient estima-
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tion algorithm to estimate the bias gradient length. This is followed by the modified 

formula for the variance of this estimation in Section 5. The concluding remarks of 

this chapter are given in Section 6.

4.1 Introduction

As in the previous chapters, let us consider the problem of the estimation of an 

p-dimensional parameter vector

0 =  [ 0 i , 0 2 , - ,0P}T e @  (4.1)

given an observation vector of random variables, say Y  E RA, having a probability 

density function (PDF) f y  (y; 8) ■ The parameter space 0  is assumed to be an open 

subset of p-dimensional Euclidean space R p. When an estimator 6 is biased, the 

mean-square error (MSE) of the estimator is an important measure of the estimation 

performance. As pointed out in Chapter 1, the MSE error is a function of both the 

bias and the variance crj of the estimator in according with

M S E e(6) = al(e) + bl(d). (4.2)

Recall that the MSE error for unbiased estimator is only dependent on the variance 

of estimation. However, if the estimation bias is not equal to zero, i.e. in biased 

estimation, one can observe from Eqn. (4.2) tha t any increase in MSE error can be 

due to an increase in the bias or variance of 8. While bias is due to “mismatch” 

between the average value of the estimation and its true value, variance is due to 

statistical fluctuations in the estimation. Usually, there exists a tradeoff between the 

bias and variance of the estimated parameter. One can reduce the variance only at 

the expense of increasing the bias or vice versa, reduce the bias only at the expense of 

increasing the variance. In the case of biased estimation algorithms, biased CRLB [36]

is available to place a bound on the total variance of any estimator with a given bias,

but it is strongly estimator dependent. That is, it will usually change when the 

estimator changes due to changes in the bias.
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Hero et al. [33] developed a lower bound, called uniform CRLB (UCRLB), on the 

estimation variance for any estimator whose bias gradient satisfies a user-specified 

length constraint. In this way, the resulting UCRLB bound is independent of the 

estimator under consideration. By means of UCRLB bound, one can explore the 

fundamental trade-offs between the bias and variance in biased estimation problems. 

Different estimators can effectively be compared by tracing out their performance on 

a bias-variance trade-off plane. This new UCRLB bound also provides a means for 

specifying achievable and unachievable regions in the bias-variance trade-off plane. In 

order to apply UCRLB bound in performance comparisons, the bias gradient has to 

be determined. In practice, the bias gradient is often not available analytically and 

must also be estimated. An algorithm for estimating bias gradient using computer 

simulations is presented in [33]. This algorithm only considers the problem of using 

a single data for estimating the parameter under consideration.

In this chapter, a modified relationship is developed for estimating the bias gra­

dient, mainly because the algorithm in the original paper by Hero et al. cannot be 

directly applied to many biased estimation problems, e.g. the SNR estimation prob­

lems to be discussed in next chapter. For this modified method, multiple data points 

are used to estimate a parameter instead of using a single data point. In conjunc­

tion with the resulting method, a new relationship formula is also developed for the 

determination of the variance of this bias gradient estimation.

4.2 Biased CRLB bound

Let us consider a non-random but unknown parameter vector 6 and assume that the 

observable random variable vector Y  has a PDF of f y  (y; 0) conditioned upon 6. Let 

t = t (Y) be an estimation of the scalar tg, where t : 0  —► R  is a specified function. 

Let this estimator have mean of mg =  Eg [f]. Then, the estimation bias is defined as

bg = m g -  tg, (4.3)
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and the estimation variance is defined as

ol  =  Eg (i-mng) 2 . (4.4)

The so called biased CRLB bound is given by [9]

Og > V m JFy (8)'Vmg (4.5)

=  CVtg + Vbg)TFy (8) (Vt£ +  Vbg), (4.6)

where Fy (8) is the Moore-Penrose pseudoinverse of the TV x TV Fisher information

matrix (FIM) defined as

Fy(8) = E d {[V \n fy (y ; , e ) ]  [V ln /y  (y; 0 ) f }  , (4.7)

d d lT
d d ^  'd8PJ 

rich can be seen to be estimator-

and where V represents the gradient operator V =

Eqn. (4.6) is the classical biased CRLB bound w' 

dependent due to the fixed bias gradient V6« of the estimator. This means that it 

can only be applied to the class of estimators which have a particular bias gradient 

function of Vbg. For example, it cannot be used to simultaneously place a bound 

for two estimators which have different but perhaps acceptable biases. Therefore, 

this biased CRLB bound only applies to a limited class of practical estimators, since 

seldom do two different estimators have the same bias gradient. A more general class 

includes the set of estimators whose bias gradient length is smaller than a specified 

threshold.

For unbiased estimators, bg — 0, and if the FIM is full-rank, the unbiased CRLB 

bound satisfies the relationship

o \  >  V TtgF y1 (8) Vtg_. (4.8)

The right hand side (RHS) of Eqn. (4.8) is only dependent on the FIM and is hence 

estimator-independent. The classical unbiased CRLB bound has been previously 

applied to compare different unbiased estimators.
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4.3 Uniform CRLB Bound

In biased estimation, the general form of the CRLB bound in Eqn. (4.6) is not 

estimator independent as pointed out before, but is a function of the gradient of 

the estimator bias Vbg = [dbg/ddi, ■ ■ ■ , dbg/d0p\T. This means that the classical 

biased CRLB bound in Eqn. (4.5) is only applicable to estimators with fixed bias 

gradient. The bias gradient vector is simply a measure of the sensitivity or coupling 

of a particular estimator’s bias function with respect to variations in the parameter 

8 . The k\h  component of this bias gradient vector specifies the influence of the fcth 

parameter 6 A large value indicates that the estimator is sensitive to changes in 

8k- The length || V6e|| of the bias gradient is a measure of the overall non-removable 

estimator bias. Since many different bias gradient vectors can correspond to the same 

overall bias (as measured by the bias gradient length), the restriction of a lower bound 

to a fixed bias gradient is not justified. Therefore, the classical biased CRLB bound 

is not capable of providing a meaningful comparison of different biased estimators 

that have acceptable bias but different bias gradients.

Hero et al. [33] presented a uniform CRLB bound on the variance of biased esti­

mators as shown in Theorem 4.1 for a simplified version.

Theorem 4.1 Let the PDF f y  (y , 8 ) have an associated FIM matrix Fy = F y ( 8 ) 

as in Eqn. (4-7), and let t be an estimator of the scalar differentiable function tg

of the parameter 8  — [8 1 , 8 2 ,- • • , 8 P\T. For a fixed 5 > 0, let the bias gradient of t

satisfy the norm constraint \\Vbg (f) || <  5, where \\z\ \ 2  =  zi f or an N-element 

real vector z. Then the variance of t satisfies

varg{i) > B  (8,5) (4.9)

= [v% + Fp [V i, + 4 , J  (4.10)

=  A2V% (/ +  A/),-)-1 Fy  [/ +  A /v 1 Vt2, (4.11)
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where in Eqn. (4-10)

—m in  =  - [ !  +  AFyJ 1 Vi„, (4.12)

and where A 'is given by the unique non-negative solution of the following equation 

involving the monotone decreasing, strictly convex function g (A) € 0, ||V/3g||2 given 

by

9 (A) =  i L i , i „  =  Vi» [/ +  AFy]-2 Vt„ =  <>2. (4.13)

For each 8, B  (6,8) provides a uniform lower bound on the variance varg (i) for a 

large class of estimators. A more general version of the UCRLB bound is given in [33] 

and applicable to a singular Fy.

Delta Sigmal (5 -c )  P lane

.2

.2
A chievable  R eg ion

55

E
z

U n ach iev ab le  R egion

Bias G radient Length: 8

Figure 4.1: The Normalized UCRLB bound on the 8 — o  trade-off plane.

The plot of the lower bound versus 8 gives rise to a curve (8 ,B (9 ,8 )) which 

indicates the best estimation performance of the estimators over a wide range of 

bias gradient vector length. The curve divides the bias gradient vector length and 

variance trade-off plane (or 8 — a  plane) into achievable and unachievable regions. 

Different estimators can be placed in the achievable region of the 8 — o  plane and 

their performance can be effectively compared.
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D elta  S lgm al P lane

Length of th e  b ias gradient: 6

Figure 4.2: The Normalized UCRLB bound on the 6 — a  tradeoff plane together with 
the corresponding SNR values.

The idea behind the UCRLB bound is that the length or norm of the bias gradient 

vector can be viewed as a measure of the total bias error of an estimator. Among all 

possible estimators with a given bias gradient vector length, there exists an ideal min­

imum variance estimator whose variance is the lower bound of all possible estimators 

with the given gradient vector length.

4.4 Estim ation o f the Bias Gradient

In order to compare the performance of an estimator against the UCRLB bound, one 

needs to determine both the estimator variance and the bias gradient vector length. 

From Eqn. (4.3), the bias gradient can be obtained as

Vbg =  Vmg  — Vtg, (4.14)

where bg = bg{6) for simplified notation.

Unfortunately, in most cases it is not possible to get an analytical relationship for
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Vrrig. Consequently, one must resort to estimating the bias bg and bias gradient Vbg 

also.

A statistically consistent relationship for estimating Vbg by computer simulations 

was presented in Eqn. (23) of [33] as given by:

(4.15)
i=1 L j=l

where t (Yl) represents the estimation i(Y)  of t(Y)  based on the single measurement 

Yi taken from the set of L measurements {Yt \ i — 1,2, • • • ,L}.

Unfortunately, Eqn. (4.15) cannot be applied to some estimators. For example, 

let us consider the SNR estimator defined as

where for the moment-based estimation algorithm, then one has
1 /2

A 2 = 2 (Y 2) 2 - U 4

Y 2 -  A 2

(4.16)

(4.17a)

(4.17b)

The above estimator will be discussed in detail in the next chapter. However, for 

the time being, one can observe tha t Eqn. (4.15) (which assumes estimation based on 

one data point only ) cannot be applied in this situation. This is because for N  = 1, 

one has Y 2 = Y 2, and Y A =  Y]4, so A 2 =  Y 2 but a 2 = 0. Thus, fi does not exist for 

N  = 1. In this case, we propose a modified estimation for the bias gradient as

V h  = E  \ i  Y ‘}) - 4  £  i  ( r « )
i= 1 L j=1

where Y ^  = [ Y ^  ■ • ■ Y $ ] T is the ith  set of N  statistically independent measured 

random variables, and / r ( b ^ 4 )  is their joint PDF.

Eqn. (4.18) is a more general formula for estimating the bias gradient. When 

N  =  1, it is the same as the Eqn. (24) in [33]. This modified estimation algorithm 

will be used in the next chapter for the discussion of SNR estimators.
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4.5 Derivation o f Variance o f Bias Gradient E sti­
m ation

In [33], the variance of the estimation of bias gradient is given by

s ( v h )  = j c o v e_ [ ( t ( Y )  -  In f Y (Y-, 6)]

[varg (t ('Y )) Fy4 +  VbgVTbg_ (4.19)
L ( L  — 1)

where Fy. =  Eg | [ V l n / y  (Yt:0)] [V ln /y  (Yi;9)]T j . Unfortunately, the last term  in 

Eqn. (4.19) is incorrect. A correct variance relationship will be derived as follows. 

From Eqn. (4.15), one can write the covariance matrix as

/  \

S COVg

L 2
COVg

= J^COVg

+E
i = l

E
i = 1

E
i—1 

L

i=i
V ln  f Y (Y-,0)

1 L
t  (Yi) - m e_ + m e_ -  Y  * (Yi)

V
j=l )

V ln /y

E (̂ (̂> — mi) V In /y  (W; £)
i = l

/  \

v
i=i
j¥=i

V ln / y ( r i;£)

/
^  ( ^ f y ) - m j  V ln /y  ( ^ 0 )
Z— 1

t/

L  L

fy E E K - 1«)) VIn /r «;2)
i=l j=l

(4.20)

In order to simplify Eqn. (4.20), the following two theorems will be used. 

Theorem 4-2 Suppose U, V  G R m are random vectors conditional on 8 G R m with
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mu  =  Eg [U], and m y  =  Eg [V], so that

covg (U +  V) — Eg (U + V ) (U  + V)T — (mu  +  m v ) (mu +  m v f (4.21)

Suppose m v  =  0, but mu Y  0. Then,

covg (U + V) = Eg [UUT +  V V T + U V T + V U T -  m p j ]  (4.22)

=  Eg [UUT -  mumjj\  +  Eg [V V T] + Eg[UVT] +  Eg [VUT] (4.23)
V

=covff(UtV)

= covg (U) +  covg (V) + covg (U, V ). (4.24)

Theorem 4-3 For any random variable Z  with PDF of f z (Z\ff), there exists the 

following identity

Proof:

Eg
,dln  f z (Z-d)

Eg
,d l n f z (Z-,£)

d0i
f  ^ l n  f z (z;£)

- L

d f z (z;0)
z  391
d

dz

- [  Zf z (zj 0)
i J Z

dz
86.

=

Prom the above Theorem 4.2, Eqn. (4.20) can be rewritten as:

(4.25)

(4.26)

s (vbg)  =-^covg[U  + V].

It can be shown that

mu = Eg Y , ( t ( Y i) - m s) V l n f Y (Yi;6)
i=l

=  Y j Eg[t(Yi) V \ n f Y (Yi- 6 ) ] ^ ^
i=1

(4.27)

(4.28)

(4.29)
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and

m v = Eg
L L

rr E E K - *«))v ln f y  (Y" s
i=  1 j = l

L L

i = l  j = l

Prom Theorem 4.1, one has

S ( ^ )  = ^  H i  (f7) +  coyi  (*0 +  E& {UyT) +  El ( V L j T ) ]  •

The first term  in Eqn. (4.32) is given by

COVg (U) =  COVg

i =  1

= Lcovg [(t (Yi) -  m j  V ln f Y (E;; 0)] ,

and the second term is given by

covg (V) = COVg

L L

i j E E h - * « »  v  ln f y ©
i= 1 .7=1

(L — 1)
rC<w0

L L

>Eq

i =  1 j = l  
3+i

L L L L

E E E E K - *«))v ‘n/y W;a( L - l )

■ [V ln /y (yi ; ®]T K - t « ) )

i=l /= 1  k=1 Z=1
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(4.32)

(4.33)

(4.34)

(4.35)



One can further simplify Eqn. (4.35) as follows:

cove (V )
L L  L

=  7 r 2 T ^ £ £ E  E,_ { (m , -  i(Y ,))  K  -  t (Vi)) [V ln f y  (Y,; ffl] •
j=l j=l /=1

j=£i

■ [vln f Y  ( Y ; a f } + E E E E s « ( K - i fi)] K  -  *(«)] ■
i=i j=i fc=i ;=i 

jzfii k ^ i  l ^ k

[Vln f Y (Yi-,6)\ [Vln f y ( Y k-9)}T]

(L  -  1)-

L L

i= 1 j= l
£ £  Eg (m, -  t (IS-)) [V In / y  (£ ,; 0)] [V ln f Y ( y ; i +

L L L+EEE f *  [(ra, - t ( y ) )  K - 1 ( H ) )  [ V l n / y  (Vi;®] [ V l n / y  (V);®
1 = 1  J= 1  /=1

1 L  L

=  7 r r T f £ £  ^  { [ K  -  i  (ISO)2] [[V l n / y  (Yi; 0)] [Vln  / y  ( y ; 0)
V / i= 1 1

j¥*

L L

£ £  [(m£ -  £(y)) [ V l n / y  (y; 0)] (m* -  t (Yj)) [ V l n / y  ( y ;0)] ’
4=1 J =  1

=  L, r L ~ ^  {var* T O )  F «  +  t ( ro» “  * « ) )  V  ln / y  (V); 0)] ■(T — 1J

) m £ - « « ) ) [ V l n / y ( y ; ® ] T] }

L  { ” “ r » (‘ « ) )  F n  +  El  [f M  V  In f y  (Vi; a ]  a  [ P  (Vi) V  ln / y  « ;  f f l f ] }

■Eg

L

(4.36)

The above derivation is based on the assumption tha t the y  are independently 

identical distributed (i.i.d.) random variables, and Eg [V ln /y  QS;0)] =  0.1 

From Eqn. (4.25), one can obtain

Vmg = f;fi[t(yi)Vln/y(yi;0)], (4.37)

JThis is due to Theorem 4.3 and the fact that /  / y  (Y^ff) dYt =  1.
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therefore,

cove (V) =  j — -  [vare (t (F*)) F Vi +  Vm, VTra J

Also the third term in Eqn. (4.32) can be obtained as

E e (U V T) =  E (« f f )  - ™ . )  V l n / y
1 = 1  

1 L ia e e  V l n / y  (Yk;0)
k=1 2=1 

l+k

=  r h l E E E ^ P T O - ’" . ] '
i=l fc=i z=i

I /#fe

• V In /y  (Fii ffl [V ln /y  ( U  f f l f  K  “  * W)]}

=  F 3 t | E E b s K [ « « ) - " > . ] •
i=l 2=1f 2̂ 2

•V ln /y  (Yi-e) [V ln /y  (Ê ;j

=  0 .

(4.38)

(4.39)

Similarly, the fourth term of Eqn. (4.32) is given by

Eg (VUT) = Eg
L L

L ri E E K -  < « ) )  v  In f r  « ;  0)
2=1 j = l

^(£(yfc) - mJ V ln /y  (rfc;£)
_/c=l

=  i r i E E E * { K - f « ) ] '
2=1 j=1 fc=l

jA*

•V ln / y  (yi; 0) [V ln f y  (Yk-8)]T [i (Yk) -  m j  }
1 L L

2=1 j= 1
j¥=i
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■Vln fy(Yi-,6) [Vln f y { Y i]0)]T}  

= 0 (4.40)

Finally, one can get

5 (v&£)

=  |lc c w £ [(t (Yi) -  r a j  V l n / y  [varg (t (Y)) F Yi + Vm£VTm£]

= -jrcovg [(£ (Yi) -  rrig) V l n / y  (Y; 9)\ + ^  ^  [varg (t  (Y))  Fy, +  Vra£VTm£] .

(4.41)

Eqn. (4.41) is the desired covariance of the biased estimation, correcting the error 

in Eqn. (24) in [33].

The variance of the proposed general bias gradient estimation in Eqn. (4.18) can 

be obtained in a similar manner as

5  ( ^ 0 = i cove-  v l n / y

[varg (t (Y w )) Fy(i) +  Vm£V r m£] , (4.42)+ L ( L - l )

where

F y W =  Eg |  [V ln f y  ( y (<);0)] [ V ln /y  (E (i);0)]T} . (4.43)

The first term  in the RHS of Eqn. (4.42) asymptotically decreases to zero with L  as 

1/L and is independent of the mean mg. The second term  in Eqn. (4.41) depends on 

mg only through its gradient and asymptotically decreases to zero with L  as 1 /L 2. 

Therefore, this bias gradient estimation is consistent.

The bias gradient estimation in Eqn. (4.18) is also unbiased which can be estab­

lished as follows:

l
E Vbg

=  i h E{±U=i .7=1
L

=  t z i Y e \
*=i IL j=i

V l n / y ( y « ; 0 ) - V t £ j

V l n / y ( y « ; ^ ) l - V t £
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E  [f (y«) V ln/y(yW ;0)] -  Vte

V m e — Vtg =  V V (4.44)

The above proof has used Eqn. (4.37). From Eqns. (4.44) and (4.42), the proposed 

bias gradient estimation in Eqn. (4.18) is an unbiased and consistent estimate for 

bias gradient Vbg.

4.6 Com putation o f UCRLB and Its Applications

The computation of UCRLB bound from Theorem 4.1 can be a difficult task when 

the number of unknown parameters is large due to the required large m atrix in­

versions. Often, one needs to compute the bound for several different values of S, 

and, equivalently, for several different values of A. Therefore, it is important to have a 

computationally efficient algorithm to compute Eqn. (4.12). The delta-sigma tradeoff 

curve can be computed by sweeping out A in the following step-by-step procedure.

1) Select A E (0, oo) .

2) Compute dmin = -  [I + AFy]-1 Vtg.

3) Compute the point (<f, B(S)) via

the 5 — a  plane, with or without SNR as an axis as shown in Figs. (4.1) and (4.2), 

respectively. A more general procedure may be found in [33] for the case of a large 

number of unknown parameters of 9k, k = 1, 2 , • • • ,p.

The UCRLB bound provides a useful means for the determinations of lower bound 

for any biased estimator whose bias gradient length is smaller than a specified value.

B(S) = A 2d linFydmi: (4.45)

and

—min—min *dT ■ d ■ (4.46)

Applying this method for several values of A allows one to trace the curve B{8) in

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Its applications can be readily found in the hitherto literature mainly in image es­

timation [33,37,38]. In [33], the UCRLB is used in for linear Gaussian and non­

linear Poisson inverse problems. In [37], two applications were presented to study the 

bias-variance trade-offs. One is a particular class of roughness penalized maximum- 

likelihood (PML) in single photon emission computed tomography (SPECT) image 

reconstruction, and the other one concerned one-dimensional edge localization es­

timation problem. In [38], two other applications in image processing problems are 

presented. The first one is the space alternating generalized expectation-maximization 

(SAGE), and the second one is for the penalized weighted least-squares estimation 

(WLSE). All these applications show pertinent results in studying the bias-variance 

trade-offs and performance comparison with the help of UCRLB bounds.

4.7 Concluding Remarks

This chapter has been concerned with a study of UCRLB bound for biased estima­

tion. The UCRLB bound provides an effective way to compare the performance of 

different biased estimators. Different biased estimation algorithms can be placed in 

the same variance-bias gradient plane to identify the best estimator. In most cases, 

computation of the UCRLB bound requires numerical methods. It should be no­

ticed that in general, the bias gradient also needs to be estimated, and a computer 

simulation method is available for this purpose as discussed in section 4. For some 

estimation problems, the method cannot be used directly such as in SNR estimation, 

therefore we have proposed a modified estimation method, also included in Section 4. 

Section 5 derived the formula for determination of variance of bias gradient estima­

tion, and correct an oversight of the original formula in the paper by Hero et al. [33]. 

Computational procedure and some applications of UCRLB bound were reviewed in 

Section 6.

The next chapter presents a new application of UCRLB bound, namely the SNR 

estimation for the single-tone signals contaminated by noise. The reason for applying
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UCRLB bound to the SNR estimation problem is twofold. Firstly, SNR is a very 

important parameter in signal processing applications and most parameter estimation 

problems are SNR dependent. Secondly, the SNR estimation is a nonlinear estimation, 

as it is defined as the ratio of the squared amplitude to the noise variance. Normally, 

the amplitude and variance must be estimated in order to obtain the SNR value by 

the nonlinear calculation. Since nonlinear estimation is inherently biased, the classical 

CRLB bound is not applicable anymore. A detailed discussion will be seen in the 

next chapter.
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Chapter 5 

Application o f UCRLB to  
Estim ation Techniques

This chapter presents a novel investigation of estimator performance based on the 

UCRLB bound. This investigation consists of two different applications, namely SNR 

estimation for a pure tone contaminated by additive white Gaussian noise (AWGN), 

and a comparison of the frequency and SNR estimators for multiharmonic signal in 

AWGN noise.

Before the formal introduction of UCRLB bound, the various estimators in the 

existing literature were compared by applying the classical CRLB bound on the es­

timator variance. This led to the fundamental problem that for biased estimators, 

the classical CRLB bound becomes grossly inaccurate at low SNR values, render­

ing itself an invalid lower bound1. In practical situations, many estimators, such as 

SNR estimators, are inherently biased. In this chapter, a performance comparison 

for biased estimators is conducted by tracing out the estimator performance on the 

bias gradient-variance space and comparing it to the surface specified by the UCRLB 

bound. The best SNR estimator can be identified as the one with the lowest estimator 

variance. At the mean time, it is the one closest to the UCRLB bound surface, be­

cause the UCRLB bound is the lower bound on the variance of any estimators whose 

bias gradient satisfies a user specified length constraint for the same data model.

1 As discussed in Chapter 4, the classical CRLB bound is only valid for unbiased estimators.
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Section 1 provides an introduction to the signal model for SNR estimation prob­

lems. Sections 2 to 4 are concerned with the investigation of three commonly used 

SNR estimation techniques available in the hitherto literature. These techniques in­

clude maximum likelihood estimation (MLE), and methods of lower order moments 

and higher order moments. The investigations are carried out in terms of estimating 

the SNR for a pure tone contaminated in AWGN. Section 5 presents the performance 

comparison of SNR estimators via Monte Carlo simulation and identifies the best SNR 

estimator out of the three estimators considered by employing the UCRLB bound. 

Section 6 presents the performance comparison using UCRLB bound for multihar­

monic signal estimation problem discussed in Chapter 3. Section 7 will conclude this 

chapter.

5.1 Signal M odel for SN R  estim ation

The problems associated with SNR estimation are of great importance in many areas 

of digital signal processing and digital communication systems [39-41]. This is mainly 

due to the fact tha t SNR is an important characteristic of these systems. Moreover, 

the knowledge of SNR is critical in other parameter estimation techniques. As is 

known, SNR estimators are inherently biased. Therefore, to compare the performance 

of SNR estimators, the UCRLB bound renders itself as a valid lower bound.

In the following sections, three SNR estimation techniques are discussed and their 

performance characteristics are compared with the UCRLB bound. The data model 

used is a single-tone signal contaminated in AWGN noise as given by

x(n) = Acos(u>0T n  +  <f>) +  w(n),  (5.1)

where w(n) represents an AWGN noise with zero mean and a variance of a 2. More­

over, (jJq represents the frequency, 0 represents the initial phase, and T  represents the 

system sampling period (assumed to be a known constant).

Let us define the deterministic but unknown parameter vector 9 = [91, 02, 9s, 9a}T
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=  [A, co0, 4>, <72]t  which is to be estimated. The SNR is defined as

A2 92
* = & - £ ■  (5-2) 

The CRLB bound for the data model in Eqn. (5.1) is determined in terms of the 

Fisher Information Matrix (FIM) as given by [4]

'd2]npx ($;<?)'
i m \ u  =  ~ E dOidOj

( i , j  = 1,2,3,4), (5.3)

where x  = [m(1), x(2) , • • • , x(N)]T is the vector of N  independent and identically 

distributed (i.i.d.) random variables with a PDF given by

P x  (x; 0) =  “ 2 )  exP |  Y I  [x ^  ~  A  cos^ 0Tn +  ^ )]21  • (5 ‘4 )

The data vector x  is used by the estimator for the purpose of estimating SNR of (3 

via the estimates of 9  in accordance with Eqn. (5.2).

The three SNR estimators discussed in this chapter will use the envelope x{n) of 

an “analytic signal” x(n) + jH(x(n)) ,  given by

x(n) = \ J x 2{n) +  H 2 [x(n)], (5.5)

where H  [•] represents the Hilbert transform operation (see Chapter 2).

It is known that the PDF of the envelop of a Gaussian signal is Ricean [1]. Suppose 

that there axe N  i.i.d. envelope random variables x(n), each having a Ricean PDF. 

Then, the joint PD F of the N  elements is

f-  n\ FT f ^ ( n ) r f M (n ) \  r x2 ( n ) + A 2] }p(x ;9) = [ [ ^ ^ I 0 { - ^ - ) e x p ------- — -----  , (5.6)
n — 1  ̂ \  /  L J )

where x  =  [x(l), x(2) , x(N)]T is the vector of the envelopes of the random

variables. The above PDF of Eqn. (5.6) will be used for the following sections in the 

derivation of the SNR estimators.
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5.2 M axim um  Likelihood SN R  Estim ator

The maximum likelihood (ML) method can be used to estimate the squared amplitude 

A 2, the frequency cL’0, the phase <fi, and the noise variance a 2. Subsequently, the SNR 

can be estimated in accordance with

A 2
2d

(5.7)

A similar estimation method can be found in [10] where the original data set x  was 

used instead of the envelope signal x.

It is convenient to define the log-likelihood function (LLF) as

L = ln p (x;0)
N

- s >
71=1

x(n)I0
Ax(n)

ln a'
2 x 2 (n) +  A 2 

2 a 2
(5.8)

where Ik (x) denotes the A;th order modified Bessel function of the first kind. 

In ML method, one needs to solve the following equations for A 2 and a2 :

=  0 ,
dL

8A2 A2
dL
da2 cr2

From Eqn. (5.9a), one has

N

71= 1 V

Ax(n)
a*

= 0.

1
2a2-

(5.9a)

(5.9b)

=  0 . (5.10)
A 2= A 2

Equivalently,
Ax(n)

N

£
a* x(ri) N

n = i  / A 5 ( n ) \  2 a 2\fJ A  2(j2
=  0, (5.11)

or

h
Ax(n)

 T^F ^ 2 x ( n ) -
N V A 2 ^ 1 Ax(n)

- 1  =  0. (5.12)
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From Eqn. (5.9b) one has

x(n)I0
Ax(n)

n = l  v

which can be simplified as:

o*
x n) + A2

2 (a2)'
=  0, (5.13)

N

E
71=1

h
A x (n ) \ (d2)2 2 (d2)2

IV TVA2
 9  ”1--------------n  o  — 0.

d2 2 (d2) 2

From Eqn. (5.12), it can be shown that

Ax{n)
N h

x ( n ) -
cr̂

n=i r I Ax(n)  
Jo

= n V p .

(5.14)

(5.15)

Substituting Eqn. (5.15) into Eqn. (5.14), one can get

+ E x ‘ (n) N  N A 2

(a2Y  ' 2 ( d 2) 2 d 2 2 (d2)- 2\ 2 =  0,

which can be simplified as

1 N
- 2 A 2 + — x 2 (n) +  i 2 -  2d2 =  0.

Finally, one can obtain

77=1

x 2 - A 2

(5.16)

(5.17)

(5.18)

where x 2 =  — d2 (n) is the average of TV squared-sample values of x(n). Eqn. 

(5.18) is basically the same as Eqn. (15) in [42],

From Eqn. (5.18), in order to get d 2, one must first find A2. The method to 

estimate A 2 is discussed next. Let

2x(n)‘\/A?. . Ax(n)  
w (n ) = -----<7* t2=a2 X 2 — A2

(5.19)
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Then, Eqn. (5.12) can be rewritten as

N
1 £ (n)Ii_________ i = o (5.20)

In general, one must use a numerical method in order to solve Eqn. (5.20) for A2. 

In [43], a  method was presented tha t converted the problem to solving a differential 

equation by means of the classical Runge-Kutta integration method [44] as follows. 

Let Af be the first estimate of the solution of Eqn. (5.20),

f  (  a 2\  = 1 v
^  > N ^ I 2h  J° [W » ]

One can get A 2 by finding the root of Eqn. (5.21) as

/,°° dA2

(5.21)

A 2 = A f  + - d f . (5.22)
h{Al) df

The classical Runge-Kutta integration method can then be directly applied to solving 

Eqn. (5.22). Let

h ! =  - /  ( i ? )  (5.23)

and

(*) =
d£_

dA2
(5.24)

If a fourth-order integration is used, the second approximation A2 is given by

Af — Af  +  — (ki +  2k2 +  2ks +  k f ) ,
6

(5.25)

where

k\

k2

h

k$

= htF (i?).
1

=  h1F ( A (  + - k 1 ),

h \F  ( Af  +  - k 2

= hi F (A f  +  h3)  .

(5.26)

(5.27)

(5.28)

(5.29)
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From Eqn. (5.21) one can calculate the derivative 

df  ( ^ )  =  ~ ( ^ 2)  ^ x ( n ) I i [ W( n ) ]
dA2 2N ^   ̂ —  -I0 [W(n)}

1 v -  , r^  A  M n ) }  Jo [W(n)} -  I f  [W{n)] d [W(n)} 
r r , 2 ^ x n̂ ) I I  [W(n)] dA2

But, from [45]

4  (x) = h - i  (x) — 4  (x) .cc

(5.30)

(5.31)

Therefore, Eqn. (5.30) can be rewritten as

x(n)Ii  [W(n)jd f ( A 2

dA2 2N
n =  1

N

N V A * ^

Jo [Win)]

h

where

d[W(ri)\ 
dA-2

_________________ IJ ________
W ( n ) I 0 [W(n)} I 20 [W{n)\ J

2 x(ri)\/A?

d[W{n)] 
dA2 ''

d
~dk2

=  x{n)-

x2 — A2 

x 2 +  A 2

(5.32)

(5.33)

(5.34)
A2 [x2 — A2

Care should be exercised when choosing the initial guess for Af.  This is due to the 

fact that Eqn. (5.20) has two zeros. One of these zeros is at A  — 0 and the other zero 

is the desired one. One should choose Af  so tha t the converged iterative solution for 

Af  could be achieved. For this purpose, an approximate-likelihood function for choos­

ing A f  was presented in [42] . From [46], one can have the following approximation 

equation

ln /“  = T T w | r  < 5 ' 3 5 )

where a =  0.36699205,6 =  0.36482285. By using Eqns. (5.35) and (5.19), one can 

rewrite Eqn. (5.10) as

' Ax{n )s 2
N

E
71=1

Id 
dA 2

a

1
Ax(n)

<7

N
2a2

=  0 ,

A1—A?
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which can be simplified as

^  \ d A 2
n = 1 v

A 2x2(n) 
a2 +  bAx(n) . ~  2a ~  

A 2= A 2

or finally as

- ~  =  °- O '* )
^  U P - A A  [ l + b W ( n ) f  “

Eqn. (5.36) is called approximate-likelihood equation which has no root at A  = 0, 

while preserving the second root tha t gives an approximate MLE estimate of A 2.

The ML estimation procedure is summarized as follows:

1) use a numerical technique to determine the solution of the approximate-likelihood 

equation of Eqn. (5.36) as Af  ;

2) use Af  as the first estimate for iterations into Eqn. (5.20) to get a solution of 

A 2 with the desired accuracy.

3) obtain a 2 simply by substituting A 2 into Eqn. (5.18).
A 2

4) finally, obtain the SNR estimator as (3 =
2a

5.3 SN R  Estim ation Based on Lower-Order M o­
m ents

The data model is the same as in Eqn. (5.6). This estimation method uses the 

averages of the first and second powers of envelope data points [42], From [1] (see 

Eqn. (1.1.140) on p. 31 with n =  2), a random variable x  with PDF given by Eqn. 

(5.6) has its kth moments as given by

E  [xk] =  (2cr2) fc/2 exp 1*1 1; . (5-37)

where i-Fi (a ,b ,x ) is the confluent hypergeometric function of the first kind given 

by [47,48]
00 / \ ~i

iF i(a ,b ,x )  = (5.38)
i=0 ^
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where
l — l

i) i = n  +
k=0

r(a + i)
~ T W ’

(5.39)

and where r(-) represents the Gamma Function. In this way, it can be shown that

E m  = ,/fcrexp ( - 4 j )  ^ ( f ; ! ; ^ ,

E  [z2] =  A 2 + 2ct2

(5.40)

(5.41)

By using the following mathematical average to substitute the statistical average

2

(5.42)

(5.43)

x

N

ar
=  7V ^ [£(n)

n—1

one can obtain A 2, the estimate of A 2, by using

'2a2 J
x = \ / - a e x p l  - - 3  ^  1,3 A 2 

2 ’ 2a2

or
—2 7T 2 x  — —a 

2
exp i l l  F i G - i i

2cr2 /  1 1 1 2 2(T2

From Eqn. (5.41), by replacing a 2 by a2 and A 2 by A 2, one gets

. 0  1a  =  -  
2

x 2 — A 2

By substituting Eqn. (5.46) into Eqn. (5.45), one can obtain

—2
X A ‘ exp -

A 2

or

_  1  ( i  _

x2 — A 2

A 2

lF' l ' l ; 1 ;p T 3 a

eXP “ =? F  ( 3 1 _ A2 
x 2 — A 2J  1 1 V2 ’ ’ x2 - A 2x2 4 i x *

From the following property of confluent hypergeometric function [49]

(5.44)

(5.45)

(5.46)

(5.47)

iFi (a, b, x) — exp(5)iFi (b — a , 6, —x ) , 
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one can simplify the third term of Eqn. (5.47) as

(5 '49)

-  ( 5 - 5 0 )

Finally, the estimations for A 2 and o 2 can be obtained by using the relationships

—2
X

X 2

a2 =

7r 
4 
1

A 2
x *

x2 — A2

iFx
x 2A 2/.

1 — A 2/ x 2
(5.51)

(5.52)

These relationships permit a simple procedure for the determination of A2. Since the 

quantity x / x 2 can be calculated directly form Eqn. (5.51) for a given value of A2/ x 2, 

values of x  / x2 over the range of admissible values of A2/ x 2 are first tabulated. More­

over, the solution of A2 can be obtained by simple table look-up and interpolation. 

Then, o2 can be obtained from Eqn. (5.52). Finally, the SNR estimate is obtained
A2

as/J =  ^ .

5.4 SN R  Estim ation Based on Higher-Order M o­
m ents

This moment based method was originally introduced in [42], discussing how to es­

timate SNR from the envelope of the analytic signal associated with a single-tone 

signal contaminated in AWGN noise.

For the moment based SNR estimation, one just needs the second (M2) and fourth 

moments (Afy) of x. The second moment is the same as tha t in Eqn. (5.41), while 

the fourth order moment is given from Eqn. (5.37) as

E  [xA] = A 4 +  8ct2A2 +  8a4 (5.53)

2There is an error in Eqn. (25) of [42] (c.f. Eqn. (5.51)).
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Using numerical averages to replace statistical means, and solving Eqns. (5.41) and 

(5.53), one can obtain the estimate for the squared-amplitude and signal variance 

explicitly as

A 2 = 2 ( x 2 ) — x 4
1/2

(5.54)

and

where

d2 = x 2 — A 2

2 =
n =  1

1 =

(5.55)

(5.56)
71=1

Therefore, the SNR estimator in terms of second and fourth order moments can 

be expressed as:

( i f - x4

x 2 — A 2
(5.57)

5.5 Investigations and Comparisons

This section will present Monte Carlo simulation results for the comparison of the 

performance characteristics of the three SNR estimation methods for the case of a 

single-tone signal contaminated in AWGN noise, as discussed in sections 2-4. The 

data size for the each run of the simulation is denoted by N ,  and the number of runs 

for each estimate is denoted by M.  In the resulting plots, the standard deviation is 

used which is defined as the square root of estimator variance. The biases or variances 

are then divided by the corresponding SNR values to obtain the normalized values. 

The Monte Carlo simulations are repeated for various data size N  to observe its effect 

on the estimation performance. For each data set, M  = 500 simulations were made 

to obtain the average value of the estimate.
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5.5.1 A pplication  o f th e  C lassical CRLB Bound

The classical CRLB bound is given by the right-hand side of the following relationship

[42]

^  i  i N w ' w - i i  , „ Rl
0 ' V n W  -! + (! + 2/3) [F(/3)-l]’ ' '

where a^ is the standard deviation of the SNR estimator, and F(,3) represents a 

certain function (c.f. Eqn. (5) of [42]) as

°o v3
exp ( ) dv. (5.59)

h  {VW v)

To simplify the formula, Benedict and Soong [42] gave an approximation to F(j3) as

(5 '60)

Simulations are conducted for three values of N,  namely N  = 51,101,201. Figs.

5.1 to 5.3 are the plots of simulation results for the three estimators showing their 

normalized standard deviations versus SNRs together with the classical CRLB bound. 

Fig. 5.1 is for N  = 51, Fig. 5.2 is for N  = 101 and Fig. 5.3 is for N  = 201. From 

the three figures, one can make the following observations. Firstly, when SNRs are 

small (e.g. smaller than 1), the simulated normalized standard deviations are less 

than what the CRLB bound predicts. Therefore, the classical CRLB bound is no 

longer the lower bound at very low SNRs. Secondly, increasing N  will decrease both 

the CRLB bound and the variance of the SNR estimators. For the same SNR, Fig.

5.1 shows the biggest variance, whereas Fig. 5.3 shows the lowest variance among the 

three cases. This is because larger N  means tha t more data points are available to 

make an estimate. Therefore, the estimates are more accurate resulting less estimator 

variance.

Figs. 5.4 to 5.6 are the plots of simulation results for normalized estimator biases 

versus SNRs for N  =  51, 101 and 201, respectively. It can be ovserved tha t the three
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S im u la te d  N o rm a liz ed  S ta n d a rd  D evia tion  a n d  th e  CRLB

—  Normlized CRLB

V M1M2 
O M2M4

coro’>©Q
(0TJc
CO
55
TJ0)
N<0
£oz

SNR

Figure 5.1: Normalized standard deviation versus SNR together with the classical 
CRLB for N  =  51.

Simulated Normalized Standard Deviation and the CRLBs

—  Normlized CRLB

V M1M2 
O M2M4

co
co'>Q>o■g
co■oc
co

CO
TJON
COE
oz

S N R ( = a )

Figure 5.2: Normalized standard deviation versus SNR together with the classical 
CRLB for N  — 101 .
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estimators are biased when SNRs are smaller than 2. Therefore, it is not appropriate 

to use the classical CRLB bound as a performance metric to compare the estimator 

performance. Among the three estimators, the ML method has the smallest bias and 

errors in all cases.

5.5.2 A pplication  o f the U C R L B  B ound to  S N R  E stim ation

bound on the SNR estimator variance. Therefore, the UCRLB bound should be 

used instead. As discussed in Chapter 4, the bias gradient must be known at the 

outset in order to use the UCRLB bound. Unfortunately, the bias gradient cannot 

be expressed in a closed-form analytical relationship. Consequently, one has to resort 

to an estimation technique to obtain its numerical value. In [33], an algorithm was 

developed for the numerical calculation of the bias gradient.

Unfortunately, the algorithm in [33] is not directly applicable to the above three 

estimators, mainly due to the fact tha t it uses only one data point to obtain the 

estimate. As mentioned in Chapter 4, it is not possible to use only one data point 

to estimate the SNR. For example, in the moments-based estimation algorithm, if 

one data point x( l )  is used for the estimation, then from Eqns. (5.55) and (5.56), 

x 2 = .x2(1) and x 4 =  x4(l). But from Eqn. (5.54), one gets A 2 =  0 which is not a 

valid estimate. Therefore, the algorithm fails.

To circumvent the above problem, we propose an algorithm involving M  simu­

lation rims of estimates based on N  data  points, so as to get one average estimate. 

Prom Eqn. (4.18) in Chapter 4, one can estimate the bias gradient for the SNR 

estimator in accordance with

From the discussion in section 5.5.1, the classical CRLB bound is not a valid lower

where x^> =  [x^  • • • x ^ ] T is the ith  set of L  statistically independent measured
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S im u la te d  N o rm a liz ed  S ta n d a rd  D ev ia tion  a n d  th e  C R L B s

—  Normlized CRLB 
*  ML 
V M1M2 
O M2M4

co

’>05D■g(0TJc(0w■oa>

oz

SNR

Figure 5.3: Normalized standard deviation versus SNR together with the classical 
CRLB for N  = 201 .

Simulated Normalized Bias

H e -  ML 
-V"" M1 M2 
-© - M2M4

CD 5

SNR

Figure 5.4: Normalized Bias versus SNR for N  = 51.
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S im u la te d  N o rm alized  B ias

ML
M1M2
M2M4

SNR

Figure 5.5: Normalized Bias versus SNR for N  = 101.

Simulated Normalized Bias
4.5

ML 
-V - M1M2 
-©- M2M4

3.5

«  2.5
2in

N(0
£
oz

0.5

-0.5

SNR

Figure 5.6: Normalized Bias versus SNR for N  =  201.
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random variables and p (5 ^ ; 0) is their joint PDF in accordance with

(4J)) +^2
2cr2cr* \ (74fc=i V

(5.62)

The elements of V ln p(x^ ;9 )  in Eqn. (5.61) are given by

ainj>(i< \S) _  y y  1 1 ' ‘ V ' V I (563)
E  Wa +  2 / „  ( v 5T4‘> /9^ '  ’ (5,63)

(4°) +(<' sjw-i a (v̂ r*?/̂ )
(5.64)

302 ^  1 02 ' 202 02 /o ^ £ ( 0 / 0 2 )

Figs. 5.7 to 5.9 are the plots of simulation results showing the estimator variances 

for the above three SNR estimators relative to the UCRLB bound for N  — 51,101 

and 201, respectively. The surface plot in each figure shows the bias-variance trade-off 

representing the UCRLB bound in the a —5 — S N R  space. The space above the bias- 

variance trade-off surface is the achievable region and all the SNR estimators should 

be placed here. The space below the surface is unachievable region which means no 

SNR estimator can reach it. If an estimator is lied on the surface, one can say that 

the estimator has reached the UCRLB bound.

It can be observed from Figs. 5.7 to 5.9 tha t all three estimators are within the 

achievable region and are bounded by the UCRLB bound. This implies tha t the 

UCRLB bound is a valid lower bound for the SNR estimators. The ML estimator 

has a better estimation accuracy than the other two moments-based methods. The 

higher order moments method has less computational complexity, as it only involves 

calculating the average of the squared data values as well as the average of the fourth 

power of data values. However, its performance is the worst among the three estima­

tors concerned according to the simulation results. In this way, there is generally a 

tradeoff between the implementation complexity and estimation accuracy. By com­

parison, the ML estimator has the best performance at only moderate complexity. 

Finally, it can be observed that increasing the data size N  will decrease the UCRLB

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Delta Sigmal Plane for SNR Estimation

UCRLB

SNR

Figure 5.7: Estimation variance of SNR estimators whthin a — 5 — S N R  space for 
N  =  51.

Della Sigmal Plane for SNR Estimation

UCRLB

*>•-•• M2M4
Ml M2

Figure 5.8: Estimation variance of SNR estimators whthin o  — 5 — S N R  space for 
N  =  101.
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Delta S igm al P la n e  for S N R  Estim ation
0.45.

0.4-

  UCRLB
MLE

 M1M2
M2M4

0.35

0.3-

0.25

0 .2 -

n 0.15-

0.05-
.--V — v

200

V 300
SNR

Figure 5.9: Estimation variance of SNR estimators whthin a — 8 — S N R  space for 
N  = 201.

bound as well as the estimator variances. Similarly, as in Figs. 5.1 to 5.3, increasing 

the data size N  will decrease the UCRLB bound and the estimator variances. For 

the same SNR, Fig. 5.7 shows the largest variance and the highest UCRLB bound 

surface where N  =  51, whereas Fig. 5.9 shows the smallest variance and the lowest 

UCRLB bound surface where N  =  201.

5.5.3 A pplication  o f th e  U C R L B  B ound to  M ultiharm onic  
E stim ation

In Chapter 3, the estimator performance for multiharmonic signal was compared 

to the classical CRLB bound. As noted there, at SNRs smaller than —5 dB, the 

simulation estimation variance for T, the signal period, does not conform to the 

bound (c.f. Fig. 3.3). This is because the estimator exhibits noticeable bias at 

very low SNRs (c.f. Fig. 3.4) and the classical CRLB bound is valid for unbiased 

estimation only. It was also mentioned there tha t some biased CRLB bound should be 

considered instead. Here, the UCRLB bound will be employed to resolve the above
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problem. Figs. 5.12 - 5.13 are the simulation results for N  = 500 and N  =  1000 

respectively. It is clearly shown that the UCRLB bound is the valid lower bound on 

estimator variance at very low SNRs.

Also one can employ UCRLB bound to other estimators, i.e. the SNR esti­

mator in harmonics signal contaminated in AWGN noise as discussed in Chapter

3. Remember that in Chapter 3, the classical CRLB bound is not the valid lower 

bound on estimator variance at very low SNRs. The estimator is based on a  = 

[1,0.2,0.05,0.01,1,0.2,0.05,0.01,4,6,4,6]r  as in Eqn. (3.2) in Chapter 3. To cal­

culate the UCRLB bound, one needs to estimate the bias gradient which can be 

obtained via the numerical method as discussed before. For the estimation of T, its 

gradient to the parameter 9 is obtained as

8T
—  =  [0 0 0 0 0 0 0 0 0 0 0 0 1  0]T . 
89

For the estimation of SNR, its gradient to the parameter 9 is

dp
89

0 0 0 —^ 0 0 0 0 0 0 0 02 /t2 , 2.2o* a ‘ (a 2Y

where ft represents the SNR.

The simulation results for SNR estimation are shown Figs. 5.10 (N  = 500) and 

5.11 (N  =  1000). It can be seen that the UCRLB bound is the valid bound on 

the estimator variance with regard to the estimation of S N R  for both figures. This 

is because the UCRLB has taken into consideration the estimation bias where the 

classic CRLB assumes the estimator is unbiased which is not true in cases being 

considered. One can still find the basic tendency that when N  increases, i.e. the data 

points increase, the estimator variance becomes close to the UCRLB bound and the 

estimation variance also decreases. This is because of the fact tha t the more data 

points available for estimation, the more accurately one can estimate the parameters. 

Similar conclusions can be drawn from the simulation results for T  estimation as 

shown in Figs. 5.12 (N  = 500) and 5.13 (N  = 1000).
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Norm alized Standard Deviation of SN R  Estimator T ogether with UCRLB

3.5-

Uniform CRLB 
ML e s tim a to r  of SN R

.11 2.5.

o T V ^ 4  0.5 0.6 0.7

SN R

Figure 5.10: Estimation variance of SNR estimator for harmonics whthin a —5—S N R  
space for N  = 500.

N orm alized  S ta n d a rd  D ev iation  of E s t im a to r  T o g e th e r  w ith UCRLB
0.35-

0.3- Uniform CRLB 
ML E s tim a to r of S N R

.2  0.25

0.2

£  0.15

0.05-

0.90.80.70.60.50.40.30.2

S N R

Figure 5.11: Estimation variance of SNR estimator for harmonics whthin a  —5 —S N R  
space for N  = 1000.
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Figure 5.12: Estimation variance of T  estimator whthin o — S — S N R  space for 
N  =  500.
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Figure 5.13: Estimation variance of T  estimator whthin a — 8 — S N R  space for 
N  =  1000.
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5.6 Conclusion

This chapter investigated three commonly-used SNR estimation techniques available 

in the literature and compared their performance to the newly developed UCRLB 

bounds. The investigation firstly shows that the classical CRLB bound is not a valid 

lower bound when SNR is small. Then the UCRLB bound is employed and shown 

to be the valid bound for SNR estimators. By placing the SNR estimators on the 

same variance-bias gradient plane for performance comparison, one can identify the 

“best” SNR estimator in terms of the estimation variance. Among the three SNR 

estimators, the ML method is better than the other two moments based estimation in 

the sense that it has less variance at all SNR values. The higher order moments based 

method is less accurate compared to lower order moments method while the former 

has less computation complexity. The other application of UCRLB also discussed in 

section 5.5 for the estimation of harmonic signal in AWGN noise. The simulation 

results show that the UCRLB is a valid bound for the estimator variance even at 

small SNRs.
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C hapter 6 

Sum m ary and Future W ork

6.1 Contribution and M ain R esults

This thesis has been concerned with the estimation of frequency, amplitude, phase, 

noise variance and SNR for two different data models, namely, single-tone and multi­

harmonic sinusoidal signals contaminated by AWGN noise. Investigations have been 

undertaken to compare the performance characteristic of different estimation tech­

niques to identify the best estimator in terms of the estimation variance relative to 

CRLB bound for unbiased estimation, and UCRLB bound for biased estimation es­

pecially. The contributions and main results of this thesis are summarized in the 

following [50,51].

1. The linear regression estimator (LRE) for the frequency of single-tone sinusoidal 

signals contaminated by AWGN noise [22] has been derived in a general manner in 

Chapter 2: [22] only considered the high SNR case, but in this thesis, the full SNR 

range has been taken into account and the detailed PDF of phase noise has been 

derived. The performance of three estimators, namely, MLE estimator, linear pre­

diction estimator (LPE), and LRE estimator, has been compared against the CRLB 

bound by Monte Carlo simulations. The results have shown that the LRE estimator 

is slightly more accurate than the other two methods in terms of estimation variance, 

except it has larger threshold than  the MLE estimator.

2. In Chapter 3, the unbiased estimation of parameters in circadian rhythm
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data model MICA [31] for harmonic/subharmonic sinusoidal signal contaminated in 

AWGN noise has been studied under the assumption that noise variance is not known 

a priori.: [31] assumed that the noise variance is known a priori. A new derivation 

of the Fisher information matrix has been given in order to arrive at the unbiased 

CRLB bounds for the model under consideration. The resulting CRLB bounds have 

been confirmed through Monte Carlo simulations using the MLE estimation method. 

It has been shown that the estimators achieve the CRLB bound at high SNRs, but 

that at very low SNRs, the estimators tend to be biased and therefore the unbiased 

CRLB bound is no longer the valid bound.

3. To compare the performance of biased estimators, a new bound called UCRLB 

bound [33] for biased estimation has been introduced in Chapter 4. A modified 

algorithm for estimating the bias gradient has been proposed in the general case 

when the estimation is based on multiple data points instead of a single data point: 

the latter was only considered in [33]. The original algorithm in [33] is not applicable 

to many estimation problems tha t use multiple data points, as in the case of SNR 

estimators discussed in Chapter 5. The proposed modified algorithm is therefore very 

useful when applying the UCRLB bound to the performance evaluation for those 

estimators.

4. A new equation for determining the estimation variance of the proposed bias 

gradient estimator has been presented in Chapter 4. The result has shown that the 

proposed bias gradient estimator is an unbiased estimator and its variance reaches 

zero when the data size approaches infinity. Based on this new derivation, an error 

has been located in Eqn. 24 of [33] which has a similar structure as the proposed one. 

A correct equation with detailed derivation has been e-mailed to Dr. Hero, the first 

author of [33], who later announced this error on his web page, c.f. [35].

5. Two new applications of UCRLB bound have been presented in Chapter 5. 

The first application concerns the performance comparison of SNR estimators for the 

single-tone signal contaminated by AWGN noise. The reason for applying UCRLB
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bound to the SNR estimation problem is twofold. Firstly, SNR is a very important 

parameter in signal processing applications and most parameter estimation problems 

are SNR dependent. Secondly, the SNR estimation is inherently biased, and the clas­

sical CRLB bound is not applicable to performance evaluations anymore. Chapter 5 

investigated three commonly-used SNR estimation techniques available in the liter­

ature and compared their performance to the newly developed UCRLB bound. By 

placing the SNR estimators on the same variance-bias gradient plane for performance 

comparison, one can identify the “best” SNR estimator in terms of the estimation 

variance. Among the above mentioned three SNR estimators, the simulation results 

show that the MLE method is better than the other two moments based estimation 

in the sense tha t it has less variance at all SNR values. The higher order moments 

based method is less accurate compared to lower order moments method while the 

former has less computation complexity.

The second application of UCRLB is in the estimation of harmonically related 

multitone signals contaminated by AWGN noise. In Chapter 3, it was argued that 

the classical CRLB bound is not a valid lower bound at low SNRs in that the estimator 

variance is smaller tha t the bound. In Chapter 5, this problem has been resolved by 

applying the new UCRLB bound as the metric for performance comparison. Also, 

the original UCRLB bound has been extended for multiple estimators, such as the 

estimation of multiple amplitude components in MICA model. The simulation results 

show that the UCRLB is a valid bound for the estimator variance even at small SNRs.

6.2 Future Work

1. The SNR estimation problems considered in Chapter 5 could be extended to other 

data models, such as the 8-PSK in complex AWGN noise as studied in [52] for the 

wireless communication systems. The UCRLB bounds should be derived and applied 

on those situations as well.

2. One may compare different SNR estimators, other than  methods discussed in
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this thesis, with the UCRLB bounds to identify the best estimator. In this thesis, only 

the most commonly used methods has been considered. There are more SNR estima­

tion techniques available in the literature, and also one can develop new algorithms 

to try  to obtain the best biased estimator by comparing the estimation performances 

against UCRLB bound.

3. There may be a better way to estimate the norm of the bias gradient for the 

calculation of UCRLB bound. In this thesis, a numerical method has been employed 

to estimate the bias gradient, and the length of bias gradient has been obtained by 

a simple square root operation of the average value to its squared components. This 

may cause some inaccuracy problems when plotting the points in delta-sigma plane. 

The boot strap method mentioned in [33] should be a good starting point to solve 

this problem.

4. Some other lower bounds may be studied. In this regard, Bellini-Tartara 

bounds [53,54] may prove to be choices as these bounds do not make any recourse 

if the estimator is biased or not. Presently, the UCRLB bound seems to be the best 

suitable bound for biased SNR estimators.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ppendix A

This appendix provides a proof for the validity of the following theorem.

Let w(n) represent an additive white Gaussian noise (AWGN) with a mean of zero 

and a variance of a 2, and let

OO

rj(n) = w (k)h(n  — k ) ,n  = 0,1, ■ • ■ , N  — 1, (A.l)
k= —o o

where h(n) is Hilbert transform sequence defined as

{ 2 sin2 (mr/2) . ^

0 , n = 0

Then,

1) r](n) is also a zero-mean Gaussian variable with a variance of a 2,

2) rj(n) and w(n) are uncorrelated.

Proof: Prom Eqn. (A.l), one has

OO

E[r](n)}= ^  E  [w (n)] h{n — k) =  0. (A.2)
k~ — o o

But,

(t>ww{m) = E[w  (n ) w (n  + m)} — a 25 (m ) ,
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where 6 (m) is the Kronecker delta sequence. Therefore,

<M™) =  E [r](n)ri(n + m)\

= E w(k)h(n — k ) ^  w(l)h(n + m  — l)
_k——oc l = —oo

o o  o o- E E E  [w(k)w(l)] h(n — k)h(n + m  — l)
k = —oo l= —o o  

o o  o o

=  E E a25 (I — k) h(n — k)h(n  4-m  — l)
k— —o o  / = —o o  

o o

=  a2h(n  — k)h(n + m  — k)
k= —o o  

o o

=  a 2 h(l)h(l +  m)

= a2c(m),

OO

where c(m ) =  h(l)h(l + m). Then,

£[r;2 (n)] =  <^(0)

=  <t 2 c ( 0 )
OO

E  a2(o-cr

From Parseval’s theorem

OO .. /*7f

E ' !2w = ^ /  iH(or^,
/ = - o o  ^ _ 7 r

Substituting Eqn. (2.6) into Eqn. (A.5), on can obtain

OO

E a2w =L
/=—oo

Consequently, Eqn. (A.4) can be simplified to

wi [m)  =  c r2 .

(A.3)

(A.4)

(A.5)

Therefore, 1) is satisfied.
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Furthermore, it can be shown that

OO

E  [w (n) 77 (m)] =  E  [w (n ) w (k)] h(m  — k )
k = —o o  

o o

=  a2 5{n — k)h{m  — k)
k— —o o

=  a 2h(m  — n),

and in particular

E  [w (n ) 77 (n)] =  a2h(0) =  0,

where Eqn. (2.3) has been used. Therefore, random variables w (n ) and 77 (71) 

uncorrelated. Therefore, 2) is satisfied.
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A ppendix B

This is to prove the validity of Eqns. (2.14) - (2.16) in Chapter 2, i.e.,

E[v,(n)\ = E  [«o(n)] =  0, 

E  [v, (»)ug(n)] =  0,

E  [v]{n)} = E  [i$(n)] =  f y

(2.14)

(2.15)

(2.16)

Proof: Prom Eqns. (2.12) and (2.13),

1
vj{n) =  Re 

1

— z(n )e -j(-UJoTn+6o)
Ao

—  [w (n ) cosfyfyTn +  0) +  rj(n) sinfyoTYi +  #)] 
A q

and

vQ(n) =  Im

Ao

At
■z(n)e—j(ujoTn+9o)

\r](n) cos(oj0T n  +  6) — w (n) sinfyoTn +  6)].

(B .l)

(B.2)

Since win) and 77(71) are both zero-mean Gaussian distributed random variables, it is 

easy to verify that

E[vi{n)} =  {E  [w(n)]cos(cuoTn + d) + E[ri(n)]sm(uJoTn + 6)} 
Ao

= 0. (B.3)

Similarly,

E [vQ(n)] = 0. 
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Therefore, the validity of Eqn. (2.14) is established.

Since w(n) and r/(n) are also independent Gaussian random variables, each with 

a variance of a2, one can obtain

=  - j2 E  {[w(n) cos(u0T n  +  0) + r]{n) s in ^o T n  +  0)\ ■
A
[77 (n) cos^oT n +  0) — w (n ) sinAoTYi +  #)]}

=  {E  [w (.n )rl(n )\ cos2(u>oTn + 0) — E  [rc2(n)] cos(u0T n  +  6) sm (u0T n  +  0)-
A
T E  [77s(tt.)] cos(u0T n  + 0) sin(u)oTn + 0) — E  [7/7(71)77(71)] sin^woTYi +  0)}

=  \~~°2 cos(uJoTn +  0) sm(oJoTn + 0) +  a 2 cos(uioTn +  0) sinA oT n +  0)]
A

=  0. (B.4)

Therefore, the vahdity of Eqn. (2.15) is established. Moreover,

E  [<v2j(n )]

=  -J2  E  [w (n ) cos(u>oTn +  0) +  77(71) sin(u>0T n  +  &)}2
A

=  l& { E [w2(n )\ cos2(u)QTn +  0) +  2E  [rj(n)w(n)\ cos(u/oTYi +  0) sinAoTrc +  0)+
A
+  E  [r]2(n)] sin2(loqT ti +  0)}

= [°"2 cos2(Lo0T n  + 0) +  a 2 sin2(uioTn +  0)]
A

(B.5)
A t

a2
Similarly,

E lVUn)\ =^2 -

Therefore, the validity of Eqn. (2.16) is established.
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A ppendix C

This appendix provides detailed derivations for some of the relationships originally 

appearing in Chapter 3. These include,

E  \ggT] = A a a TA  +  cr2A, (3.51)

E  [pg] =  A a a T A a  + (N  + 2)a2Aa, (3.52)

E  [gs;T] =  AactTX T +  a 2X T, (3.57)

E  [p^T] =  a TA a a TX T +  (N  +  2)a2a r X T, (3.58)

4 (a 2) 4E[G 33{e)] = 2N  (a2) 2 . (3.60)

Recall from Chapter 3 tha t s = X a  +  w, where w = [wiW2 ,...wn]t  G R jY is a 

sequence of independent, identically distributed (i.i.d.) AWGN variables with zero 

mean and an unknown variance of cr2. Recall also that s G R A, X  G H N x P , a  G R p , 

A  = X TX  G R PxP, p =  sTs G R , and g = X Ts G R p . Note that the following 

relationships of Eqns. (C .l) - (C.6) will be used in the derivations:

E  [w] = 0, (C.l)

E  [wTw] =  N a 2, (C.2)

E  [mmr ] =  cr2/v , (C.3)

E  [ w ym] =  0, (C.4)

E  \wTwwT~\ =  0, (C.5)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E  \wTwwTw\ =  (N 2 +  2N )a4. (C.6)

1. Derivation of Eqn. (3.51) :

E  \ggT] = E  [XTssTX] = X TE  [ssT] X . (C.7)

But, from Eqn. (3.25),

E  [ssT] =  X a a TX T + a2Ipj. (C.8)

Substituting Eqn. (C.8) into Eqn. (C.7) gives

E \g g T] = X T (X a c ? X T + a2IN) X

= A a a T A  +  a2 A, (C-9)

which is the result in Eqn. (3.51).

2. Derivation of Eqn. (3.52) :

E[pg\ = E[gp\

=  E [ X t s s t s ]

= X t E  [mT5] . (C.10)

But,

E  [ssTs] =  E  [(X a +  w) (aTX T +  w 1) (X a  +  u;)]

=  E  [.X a a TX TX a  + X a w Tw + w aTX Tw  +  wwTX a \

= X a a TX TX a  +  X a E  [wr u;] +  E  X a  +  E  [ tw T] X a

= X a a TA a  +  N a 2X a  +  2 a 2X a

=  X a a TA a  + (N  + 2)a2X a .  (C .ll)

Substituting Eqn. (C .ll) into Eqn. (C.10) leads to

E[pg\ = X T [X a a TA a  + (N +  2)a2X a]

=  X TX a a TA a  +  (N  +  2)a2X TX a  

= A a a T A a  + (N  + 2)a2A a, (C.12)
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which is the result in Eqn. (3.52).

3. Derivation of Eqn. (3.57) :

E [g sT] = E [ X t sst ]

=  X t E [ s s t ]

= X T [X a a TX T +  a2IN]

= A a a TX T +  a 2X T . (C.13)

which is Eqn. (3.57).

4. Derivation of Eqn. (3.58) :

E [ p f ]  = E [ F s F ]

=  E  [ ( F  X T +  uF) (X a  +  w) ( F X T +  uF) ] 

= E  [( F  X 1 X a  +  F X Tw +  uFXa  +  uFFj ( F X T +  uzr )]

= E  \oFXTX a a TX T +  wTwcFXT +  cFXTwvF +  wTX a w T]

= oFXTXaoF XT +  E  F  X t  +  F X T E  [unz;T] +  F X T E  [ t o t ]

=  (F  X T X  aoFXT +  N a 2F X T +  a 2a TX T + a 2F  X T

a TA a a TX T + (N  +  2 )a2F X T, (C.14)

which is the result in Eqn. (3.58).

5. Derivation of Eqn. (3.60) :

From Eqn. (3.59),

G33(0  =  +  [aTA a - 2 g r a +  p\

= 4 j4 (oFAa -  2f a  + p -  N o 2) 2 . (C.15)

Then,

4 (cr2) G33 (0)

= a TA a a TA a  — 4a TA a a TA a  +  4 a rggra  + 2aTA a  ( F  A a  +  iVer2) — 2N  a 2 F  A a
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—4a Tgp +  4N o2a TA a  + p2 — 2N o2 (aF A a  +  N o 2} +  N 2o4 

= —a TA a a TA a  4 - 4aTggTa — 4aTgp + 2N o2a TA a  +  p2 — N 2o4,

leading to

4 {o 2Y E [ G ^ m

= —a TA a a TA a  +  4ar E  \ggT] a  — 4a TE  [gp\ +  2N o 2a TA a  +  E  [p2] — N 2o4.
(C.16)

But,

E  [p2] =  E  [sTssTs]

=  E  [(qF X t  + w T) (X a  +  w) (ar X T +  uF} (X a  +  w)] (C .l7)

=  E  '\[a TA a a TA a  +  4wTX a w TX a  4- wTwwTw + 4aTA aw TX a  

+2ar A aw r w +  4 wTX aw Tw]

=  a T A a a TA a  +  4a TX TE  [unpT] X a  +  E  '\wTwwTw\

+ 2N o2a TA a  +  4a TX TE  [wwTi»]

=  a T A a a T A a  4 - 4o2a TX TX a  +  (N 2 +  2Ar)a4 4 - 2N o2a rA a  

= a TA<mTA a  + (4 +  2N )o2a TA a  + (N 2 +  2N )o4. (C.18)

Substituting Eqn. (C.18) together with Eqns. (C.9) and (C.12) into Eqn. (C.16) 

leads to

4 {o2) 4E[G 33m

=  —  a TA a a TA a  +  4a T [AaaTA  4- a2A ] a —  4a T [AaaTA a  4- (N  4- 2)o2Aaj 

4-2No2a TA a  +  [aTA a a TA a  +  (4 4- 2N )o2a r A a  +  (N 2 + 2N )o4] — N 2o4 

=  4o2a TA a  — 4(N  +  2)o2a r A a  + 2N o2a r A a  +  (4 +  2N )o2a FA a  +  2N o4 

= 2N  (o2) 2 , (C.19)

which is the result in Eqn. (3.60).
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