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Abstract

The modelling of the electrical activity in cardiac tissue can enable re-

searchers to study heart phenomena such as arrhythmias which are difficult

to observe in vivo. However, the nature of the mathematical equations used

to represent these behaviors present multiple numerical difficulties which limit

their large scale usage. In this thesis, we have suggested the application of a

nested implicit Runge-Kutta method of order 4 (NIRK4) as a means of effi-

ciently solving the stiff cardiac cell models. By comparing its performance to

multiple common implicit and explicit solvers, we have established the advan-

tages of using NIRK4 when solving multiple cell models of varying complexities.

Due to recent experimental and modelling results, it was deemed advantageous

to investigate the effects of the temperature on the transmembrane potential.

Therefore, we developed a mathematical model by coupling Pennes’ bioheat

equation to the bidomain model to simulate the induced heat caused by car-

diac action potential. The influence of the temperature on ionic conductances

in the Aliev-Panfilov and Luo-Rudy cardiac cell models was also investigated.

Furthermore, the induced heat caused by the transmembrane potential’s prop-

agation was studied as a potential method for detecting spiral-waves.
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Chapter 1

Introduction

In 2007 heart diseases were the leading cause of death in the United States with

over 600 thousand deaths and a total mortality cost of over 80 billion dollars [1].

This exceeded the next cause of death, cancer, by nearly 50 thousand deaths.

In particular, sudden cardiac death due to ventricular fibrillation (VF) is the

most common and often the first manifestation of a coronary heart disease.

Due to the long periods of clinical validation and often prohibitive cost of

developing reliable new treatments for heart pathological conditions, the pace

of successful cardiac research is slowed. With the recent developments in the

fields of scientific computing and numerical techniques, the realistic applications

of cardiac mathematical modelling is increasing in use in modern medicine as

these models can allow researchers to study complex medical questions.

Electrocardiology models can be used to describe both the cellular and

tissue domain of the electrical activity in the heart. Cellular models seek to

accurately model the electrical activity of a single cardiac cell once a stim-

ulus current has been applied. These models predict the resulting potential

difference across the cell membrane based on a series of gating variables and

multiple ionic currents. Such models are known as ionic models and they are

often represented as electrical circuits which are then transformed into a sys-

tem of ordinary differential equations (ODEs). This approach is based on the
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1963 Nobel prize winning work of Hodgkin and Huxley which accurately mod-

elled the electrical potential across a giant squid axon [2]. Since then, many

models of varying complexity and accuracy have been developed. Hence, as

more complex models induced more variables to be added to increase the phys-

iological accuracy, the complexity in the numerical solving of these models is

also increased. The majority of difficulties that arise in solving these ODE sys-

tems are due to the fact that they are numerically very stiff. This means that

numerical stability is often the limiting factor in solving these equations. To

overcome the computational difficulties for solving cardiac cell models efficient

solvers must be used. The performance of these solvers will be heavily studied

in this thesis.

Most clinical applications for modelling the electrical activity in the heart

necessitate an accurate prediction of the propagation of this wave throughout

the whole heart tissue. This includes modelling defibrillation which can be dif-

ficult to observe in vivo[3] and which is thus one of the prime target of cardiac

clinicians. Since a large number of pathological conditions are associated with

the synchronous and dynamically relevant representation of the large number

of cells represented as tissue, simple cellular models are often not adequate

to reveal pathological phenomena to clinical researches. This means that the

cellular models must be coupled with partial differential equations (PDEs) in

order to accurately describe the propagation of the voltage potential differ-

ence through the myocardial tissue. Two popular models are often used for

this purpose: the monodomain and bidomain models. The bidomain model,

which became popular in the late 1970s, accounts for both the extra and in-

tracellular voltage potential. This model currently gives the best reflection of

electrophysiological waves in cardiac tissue and is the closest approximation

to the observed experimental data [4]. The bidomain model considers a sys-

tem of elliptic and parabolic non-linear PDEs, one for each of the intra- and

extracellular potentials, coupled with the ionic models. Unfortunately, this
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complexity leads to a model which is computationally intensive and algorith-

mically challenging to be realized. To partially reduce these challenges, the

monodomain model can be employed which consider equal isotropic ratios of

the extra- and intracellular domains and thus the two non-linear PDEs are

reduced to one parabolic PDE. This model is widely employed to describe, for

instance, the dynamics of a general excitable cardiac tissue. At the expense of

limited capabilities, the monodomain model is still adequate in some cases such

as reproducing the electrocardiogram (ECG). By coupling the monodomain or

bidomain model with the various cellular models available, it is possible to

study the propagation of the electrical wave throughout the heart using realis-

tic three dimensional geometries. However, the extreme computational demand

of solving these equations to obtain accurate and realistic results present several

challenges. These difficulties often necessitates the usage and the development

of various numerical techniques such as splitting methods, parallel solvers and

adaptive mesh techniques etc.

Previous research has also discovered the significant effect of the tempera-

ture on the behavior of the transmembrane potential. From the earliest models,

such as Hodgkin-Huxley, it has been demonstrated that the temperature can

have a definite influence on the movement of different ions through the mem-

brane channels [2]. Due to these changes, the duration of which the action

potential is stimulated can vary considerably depending on the temperature

of the environment. This action potential duration, known as APD, is a very

important characteristic of cardiac modelling. It is now believed that changes

in APDs can cause electrical alternans which are waves of electric potentials

of alternating durations. The reason for which these alternans are of special

interest is that this behavior has been strongly linked with the development

of cardiac arrhythmias[24]. Therefore it is meaningful to develop an accurate

model of cardiac tissue which includes temperature effects in order to facilitate

the study of these phenomena.
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Two specific goals are therefore presented in this thesis. First we will present

and investigate the performance of a new solver for cardiac cell models. Our

results will be compared with many of the most popular solvers used in this

application. Second, we will develop a realistic cardiac model in order to in-

vestigate the effects of temperature on the transmembrane potential.

This thesis is structure as follows. In chapter 2, we will present an overview

of the modelling techniques for the cardiac action potential which includes

both the cellular and tissue domains. In chapter 3, we will introduce multiple

methods for solving the ODEs and PDEs which arise in the models as well as a

possible coupling technique for these equations. Furthermore, in chapter 4 we

will introduce a new numerical technique for solving cardiac cell models and

compare its performance to that of many other popular methods. Moreover, in

chapter 5, we will propose a model for cardiac tissue which includes temperature

and demonstrate its effect on the action potential duration. Finally, chapter 6

will offer the conclusion.
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Chapter 2

Electrical Activity in the Heart

In the heart, the contractions are regulated by the propagation of an elec-

tric signal through the whole myocardium. Problems and irregularities in this

electric wave can lead to many potentially fatal changes in blood flow such as

ventricular fibrillation. Therefore, it is important to diagnose and further study

the mechanisms which can change this electrical signal. At the cellular level,

the potential difference across the semi-permeable membrane is caused by dif-

ferences in ionic concentrations across this structure. Furthermore, the passage

of many ions are dictated by channels in the membrane which are often voltage

controlled. Thus, a voltage above a certain threshold can allow the passage

of ions which change the concentration and therefore the potential difference

across this membrane. It is through this mechanism that the electric wave is

propagated from cell to cell and finally cause the flow of contractions in the

muscle which enable the pumping action of the heart. Figure 2.1 illustrates

a simplified example of the potential difference caused by a difference in ionic

concentration across a semi-permeable membrane.

In this chapter, we will introduce the fundamentals of cardiac cell modeling.

An overview of most ionic and simplifed models which will be used further in the

thesis will be presented in section 2.1. Meanwhile, section 2.2 will be devoted
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Figure 2.1: Illustration of the potential difference in a cell caused by flow of
ionic currents1

to an introduction of the Bidomain and simplified Monodomain tissue models

which must be coupled with the cell models in order to obtain accurate results

for myocardial simulations.

2.1 Cardiac Cell Models

The most fundamental step when modeling the electrical activity in the heart

is simulating the change in potential difference across the membrane at the

cellular level. Various mathematical models exist which differ by complexity,

accuracy and type of tissue. In this thesis, we will be using five different cell

1http://en.wikipedia.org/wiki/Membrane_potential
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models and two simplified models: Hodgkin-Huxley, Fox, Luo-Rudy, Courte-

manche, Tusscher, FitzHugh-Nagumo and Aliev-Panfilov. These models are

used throughout literature and present different computational difficulties. A

more complete description of these models are presented in the following sec-

tions.

2.1.1 Hodgkin-Huxley

In 1963, Alan Hodgkin and Andrew Huxley were awarded the Nobel prize in

Physiology or Medicine “for their discoveries concerning the ionic mechanisms

involved in excitation and inhibition in the peripheral and central portions of

the nerve cell membrane”[5]. Using the axon of a giant squid, they devised a

method for modelling the potential difference across a cell membrane which has

become the basis for all subsequent modern cardiac cell models. Their methods

involved first representing the cell membrane as an electric circuit as seen in

Figure 2.2.

Figure 2.2: Shows a visualization of the circuit used by Hodgkin and Huxley
when modeling the membrane potential of a squid giant axon [2]
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From basic circuit analysis we can see that the total current density Itot is

equal to:

Itot = Cm
∂E

∂t
+ Iion (2.1)

where Iion = INa + IK + Il, of which INa corresponds to the sodium current,

IK to the potassium current and Il to a leftover leak current. E represents the

potential difference across the membrane which, in order to retain consistency

with other notations, we will name V for the remainder of the derivation.

According to [6] after 200µs the Itot becomes negligible and therefore equation

2.1 can be simplified as:
∂V

∂t
= −Iion + Istim

Cm
(2.2)

where Istim is some initial stimulus current. From the circuit diagram 2.2 we

can also see that the three ionic currents can be represented as:

INa = gNa(V − ENa) (2.3)

IK = gK(V − EK) (2.4)

Il = gl(V − El) (2.5)

Furthermore, it was considered that the currents INa and IK were time-dependent

whereas Il was time independent and therefore had a linear relationship with

the potential difference. However, for the time-independent currents we can

express the conductances as a function of gating variables which represent the

probability of the opening or closing of the ion specific voltage-activated chan-

nels. This can be represented in the following form:

g = gmaxx (2.6)

where gmax is the maximum conductance and x is a gating variable which

fluctuates between 0 (fully closed channel) and 1 (fully opened channel) and
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can be described in the form of:

dx

dt
= αx(1− x)− βxx (2.7)

where αx and βx are voltage dependent rate constants. For the Hodgkin-Huxley

model it was determined that the experimental data best fit when using three

gating variables. Therefore, the full mathematical representation is described

by the following four differential equations:

dV

dt
=
−(INa + IK + Il + Istim)

Cm
(2.8)

dm

dt
= αm(1−m)− βmm (2.9)

dh

dt
= αh(1− h)− βhh (2.10)

dn

dt
= αn(1− n)− βnn (2.11)

For the full model please refer to Appendix A and for the waveform of the

transmembrane potential please see Figure 2.3.

(a) Transmembrane potential (b) Recovery variables

Figure 2.3: Waveforms for the Hodgkin-Huxley Model
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2.1.2 Luo-Rudy I

In 1991, Ching-hsing Luo and Yoram Rudy developed the more complex Luo-

Rudy I model based on the most recent experimental data obtained on mam-

malian ventricular tissue [7]. Their approach was similar to the that of Hodgkin

and Huxley, however, more ionic currents were considered:

Iion = INa + Isi + IK + IK1 + IKp + Ib (2.12)

Where IK1, IKp and Ib are time independent components of the potassium

current. Furthermore, Isi is the slow intake current which is the result of

the movement of calcium ions across the membrane. In total, the Luo-Rudy

model consists of a system of 8 ordinary differential equations and is presented

more fully in Appendix A. The waveform of the transmembrane potential and

recovery variables can be seen in Figure 2.4.

(a) Transmembrane potential (b) All other variables

Figure 2.4: Waveforms for the Luo-Rudy Model

2.1.3 Fox model

In 2001, Jeffrey Fox, Jennifer McHarg and Robert Gilmour presented the Fox

model of canine myocyte [9]. Built upon previous canine models, the Fox model

10



specifically addresses the inability of previous models in simulating stable elec-

trical alternans. Alternans describe a phenomena where the duration of the

action potential alternates between cycles. This is an especially interesting

abnormality for cardiac modelers as there is evidence that alternans are a pre-

cursor to ventricular arrhythmia and therefore ventricular fibrillation [8]. This

model uses 13 currents to describe the movement of ions across the membrane:

Iion =INa + IKl + IKr + IKs + Ito + IKp + INaK

+ INaCa + INab + ICab + IpCa + ICa + ICaK (2.13)

where INa and INab describe the sodium current, IK1, IKr, IKs, Ito and IKp

describe the potassium current and ICa, IpCa and ICab describe the calcium cur-

rent. Furthermore, ICaK is the potassium current through the calcium channel,

INaCa is the sodium and calcium exchange current and INaK is the sodium and

potassium pump current. The model consists of a system of 13 ODEs and the

full model can be found in Appendix A. The waveform of the transmembrane

potential are recovery variables are presented in Figure 2.5.

(a) Transmembrane potential (b) All other variables excluding CaSR

Figure 2.5: Waveforms for the Fox Model
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2.1.4 Courtemanche model

In 1999, Marc Courtemanche, Rafael Ramirez and Stanley Nattel presented

their human atrial myocyte model. The motivation of this model was to address

significant differences in physiology between human and animal data which

had previously been used when modelling atrial tissue [10]. This could help

further understand various different disorders in this heart region such as atrial

fibrillation. Their model consists of 12 ionic currents:

Iion =INa + IK1 + Ito + IKur + IKr + IKs + ICaL

+ IpCa + INaK + INaCa + INab + ICab (2.14)

These currents have similar definitions as found in the Fox model other

than IKur which corresponds to ultrarapid potassium current. This model

consists of 21 ODEs and can be found in Appendix A. The waveforms of the

transmembrane potential and recovery variables can be found in Figure 2.6.

(a) Transmembrane potential (b) All other variables excluding Nai,
Ki, Caup and Carel

Figure 2.6: Waveforms for the Courtemanche Model
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2.1.5 Tusscher model

Another model developed to study the effect of electrical alternans was that

of Ten Tusscher and Alexander Panfilov in 2006 [11]. Unlike the Fox model,

Tusscher used data from human mid-myocardial tissue to formulate the series

of equations. This included a more complex handling of the calcium dynamics

than their previous models. This includes 12 ionic currents as follows:

Iion =IK1 + Ito + IKr + IKs + ICaL + INaK

+ INa + INab + INaCa + ICab + IKp + IpCa (2.15)

These currents have the same definition as in the previous models discussed.

This model is also considered more computationally stiff and therefore harder

to solve than the previous models [29]. For the full discussion on stiffness please

refer to Chapter 3. This model presents a system of 18 ODEs that must be

solved to obtain the transmembrane potential. An example of the waveform of

the potential and recovery variables can be seen in Figure 2.7. Furthermore,

the full model can be found in Appendix A.

(a) Transmembrane potential (b) All other variables excluding Nai,
Ki, CaSR and Cass

Figure 2.7: Waveforms for the Tusscher Model
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2.1.6 Simplified Ionic Models

Depending on the intent of the study or the physiological phenomena that is

to be modelled, it is not always necessary to model the entire ionic cellular

function when simulating the tissue. Specifically, it can become nearly impos-

sible to obtain numerical results in a reasonable time-frame when attempting

to simulate a complex tissue. In these cases, it is advantageous to use simpler

two variable models which attempt to simulate the behaviour of the cellular

electric potential without requiring the solving of large systems of ODEs. Two

popular examples of these are the FitzHugh-Nagumo and the Aliev-Panfilov

models.

FitzHugh-Nagumo

The FitzHugh-Nagumo model first introduced in 1961 gives a fair representa-

tion of the waveform [12]. This model uses both an excitation and recovery

variable to model the polarisation and repolarisation of the action potential.

Although the form of the equations has remained quite consistent, the values

of the constants have been modified multiple times in order to increase the

accuracy of the waveform. Therefore, only two odes must be solved to obtain

the action potential:

dV

dt
= kV (V − a)(1.0− V )−W (2.16)

dW

dt
= ε(γU − βW ) (2.17)

where V is the membrane potential, W is the recovery variable and the

constants are chosen to obtain the desired form of the potential. The values for

the constants employed in this thesis are similar to the ones used in Belhamadia

et al. [13]. An example of the shape of the transmembrane potential and

recovery variable can be seen in Figure 2.8
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(a) Transmembrane potential (b) Recovery variable W

Figure 2.8: Waveforms for the Fitz-Nagumo Model

Aliev-Panfilov

Building upon the FitzHugh -Nagumo model, Rubin Aliev and Alexander Pan-

filov developed the Aliev-Panfilov simplified model in 1996 in order to improve

the shape of the action potential and address the restitution properties of car-

diac tissue [17]. Thus, the model addresses the relation between cycle length,

which is the time between heart beats, and the length of the duration of the

action potential. Once again this is important when attempting to simulate

arrhythmias in cardiac tissues. This simplified model is especially useful as

modelling the effects of changes in action potential duration often requires

long simulation times and therefore ionic models might be too computationally

intensive to feasibly be taken. As with the FitzHugh-Nagumo model Aliev-

Panfilov only requires the solving of 2 ODEs:

dV

dt
= kV (V − a)(1− V )− (VW ) (2.18)

dW

dt
= (ε+

u1W

u2 + V
)(−W − (kV (V − a− 1))) (2.19)

Where V is the transmembrane potential and W is the recovery variable.

Once again the values for the constants employed in this thesis are similar to
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the ones used in Belhamadia et al. [13]. An example of the waveform of the

transmembrane potential and recovery variable can be seen in Figure 2.9.

(a) Transmembrane potential (b) Recovery variable W

Figure 2.9: Waveforms for the Aliev-Panfilov Model

2.2 Cardiac Tissue Models

The human heart can contain hundreds of millions of cells. The orientation of

these muscle cells in the heart is quite complex. Using very recent diffusion

tensor magnetic resonance imaging results, Poveda et al. [50] have postulated

that the myocardial fibers have a helical architecture as seen in figure 2.10.

For further accuracy, it is possible to take this structure into account in tissue

modelling as was performed by Marcé-Nogué et al. [51] in 2013. However, for

simplicity and due to the fact that we will not be simulating 3-dimensional

results in this thesis, we will be assuming a homogeneous arrangement of the

cells in tissue.

A possible method for modelling the electrical activity at the organ level is

to simply simulate each individual cell and apply coupling between them. How-

ever, due to the extremely computationally expensive nature of this method

and the unnecessary level of accuracy it is generally preferable to employ a less
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Figure 2.10: Diffusion tensor image showing the helical orientation of myocar-
dial fibers as presented in [50]

brute force approach. In biomedical modelling we often group a large collec-

tion of cells as volume conductors which have the average values of the cells

contained in the region. In this context, it is necessary to split the volume into

sections which are small enough for the behavior we are trying to study but

large in comparison to the actual cellular level. Two methods which utilize this

approach at the tissue scale are the bidomain and monodomain models.

2.2.1 Bidomain Model

In 1978, Leslie Tung developed a volume conductors approach for simulating

myocardial tissue [22]. This method splits the domain into two parts: the intra-

cellular domain represents the potential inside the cell while the extracellular

domain considers the electric potential outside of the cell. The following series

of equations are the standard bidomain equations for cardiac tissue:
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∇ · (Mi∇v) +∇ · (Mi∇ue) = χCm
∂v

∂t
+ χIion (2.20)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 (2.21)

Although many complex boundary conditions have been proposed, for simplic-

ity the following Neumann boundary conditions are used:

n · (Mi∇v) = 0 (2.22)

n · (Me∇ue) = 0 (2.23)

However, in order to avoid numerical problems when solving equation 2.21 it

is, for instance, necessary to ground one of the sides with the following Dirichlet

boundary condition

ue(0) = 0 (2.24)

For a more thorough exploration of boundary conditions in the bidomain

model please refer to “Computing the Electrical Activity in the Heart” [15].

In the above equations Mi and Me are the conductivities in the intracellular

and extracellular domains respectively. The electric potentials ue, ui and v are

for the extracellular, intracellular and transmembrane regions where v = ui−ue.

Furthermore, Cm is the capacitance of the cell membrane, χ is the membrane

area to volume ratio and Iion is the ionic current which we obtain from the

cellular models. Finally n is simply the normal to the boundary. However,

a system of partial differential equations is often very complex to solve and

therefore a simpler tissue model is regularly desired to obtain more reasonable

computational time. This simplified model is known as the monodomain tissue

model.
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2.2.2 Monodomain Model

In certain instances it is possible to assume that the conductivities Mi and

Me have equal anisotropy ratios. This means that they are equal to one pro-

portional to the other and therefore Me = λMi where λ is a scalar. If this

assumption is made we can simplify the bidomain equations 2.20 to 2.23 to the

following equation:

λ

1 + λ
∇ · (Mi∇v) = χCm

∂v

∂t
+ χIion (2.25)

with boundary conditions:

n · (Mi∇v) = 0 (2.26)

where λ is a scalar and all other variables have the same definition as described

in the previous section. Although the monodomain equations are much less

complex, they do have limitations. First off, it is very difficult to chose a proper

value of λ in order to obtain proper behavior in the myocardium. Furthermore,

equal anisotropy is not the case in human tissue and many electrophysiological

conditions will not manifest themselves in simulations using this simplified

model.

Nevertheless, both the monodomain and bidomain models alone are not

adequate in simulating the complex cardiac behavior for realistic heart geome-

tries. As can be seen in equations 2.20 and 2.25 the tissue models contain a

variable for the ionic current passing through the membrane. These currents

are described by the ionic and simplified cell models that were discussed in

section 2.1. Since these cell models are represented by a system of ODEs while

the tissue models involve a series of PDEs, it is necessary to use a splitting

method in order to enable the solving of both systems simultaneously. This

splitting technique as well as the numerical methods used for solving the ODEs

and PDEs will be discussed in chapter 3.
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Chapter 3

Numerical Methods

In chapter 2, we presented a mechanism for representing the complex behavior

of cardiac electrical activity in a usable mathematical form. However, the

derived equations contain series of coupled ODEs and PDEs which cannot be

solved analytically. Furthermore, the nature of these equations can be very

computationally complex and therefore efficient and robust solvers must be

used in order to obtain accurate solutions within a reasonable time frame.

In this chapter, we will first be detailing multiple ODE solvers which have

previously been used in literature for solving the cardiac cell models. This

will be followed by a presentation of a PDE solver well suited for both the

Monodomain and Bidomain tissue models. Finally we will offer a splitting

method which will enable us to obtain results from the coupled tissue and cell

models.

3.1 Solving Ordinary Differential Equations

When simulating the cardiac cell models previously discussed in chapter 2, it

is necessary to solve a system of ordinary differential equations which have the

following form:
dy

dt
= f(y, t) (3.1)
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Since the cardiac cell ODEs model are non-linear, it is not possible to solve

them analytically and therefore a robust solver much be developed. In this

section, we will first be introducing basic ODE solving concepts such as the

theory behind the Forward Euler and Runge-Kutta methods. This will then be

followed by describing more complex efficient solvers better suited for cardiac

cell models.

3.1.1 Forward Euler Method

The Forward Euler method is the simplest and most common numerical solver

for ordinary differential equations. This method is based on considering the

derivative of a function at a point as equal to its slope at that location. There-

fore, we have the following equation:

dy

dt
= f(t, y) ≈ ∆y

∆t
(3.2)

Figure 3.1: Example of a function that will be solved using the Euler Method
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From Figure 3.1, we can see that the slope can be approximated as:

f(tn, yn) ≈ yn+1 − yn
tn+1 − tn

(3.3)

By rearranging and using an iteration step size of h = ∆t we obtain the fol-

lowing form for the explicit Euler method:

yn+1 = yn + hf(tn, yn) (3.4)

Therefore, if we have an initial value we can obtain an approximate solution

for the value y. However, this method often requires very small step sizes to

obtain accurate results which is computationally expensive. Thus, higher order

methods should be considered. These will be presented in the next section.

3.1.2 Runge-Kutta Methods

To increase the order of accuracy of the Euler method, Taylor series expansion

can be used to create a wide range of ODE solvers with a varying degree of

accuracy. When studying Runge-Kutta methods it is first necessary to famil-

iarize ourselves with the Butcher tableau. This tableau is a popular, simple

representation of the more traditional long formed equations of Runge-Kutta

methods. They are presented in the following form:

c1 a11 a12 . . . a1m

c2 a21 a22
...

...
...

. . .
...

cm am1 . . . . . . amm

b1 b2 . . . bm

(3.5)

The entries of a Butcher tableau is all that is needed to construct all the

Runge-Kutta methods. The intention is to use these entries and apply them
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to the following equations:

yn+1 = yn +
m∑
i=1

biki (3.6)

ki = hf(ti + cih, yn + h

m∑
j=1

aijkj) (3.7)

For instance, the classic fourth order Runge-Kutta method (RK4) can be

represented by using the following Butcher tableau:

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(3.8)

Based on this tableau and by using equations 3.6 and 3.7 we get the following

formula for the classic RK4:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.9)

k1 = hf(tn, yn) (3.10)

k2 = hf(tn +
h

2
, yn +

h

2
k1) (3.11)

k3 = hf(tn +
h

2
, yn +

h

2
k2) (3.12)

k4 = hf(tn + h, yn + hk3) (3.13)

From this we can see that the Forward Euler method can also be represented

with the following Butcher tableau:

0 0

1
(3.14)
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The above examples, RK4 and Euler, are considered explicit methods as

the new solution yn+1 is only dependent on the previous solutions yn. However,

cardiac cell models are often considered stiff and therefore the limited stability

of explicit methods may not be sufficient. Stiffness will be further discussed in

the following section.

3.1.3 Stiff ODEs

Although the strict definition of stiffness is still very controversial in numerical

analysis, an ODE is generally considered stiff when the numerical solution is

unstable and very small step-sizes are usually necessary. This is largely caused

by a solution which rapidly changes values, as in the case of cardiac cell models.

Figure 3.2: Illustration of the solution of a stiff ODE using forward Euler and
RK4 with step-size=0.1 which depicts instability

From Figure 3.2 we can see that a simple and easy stiff ode, y′ = −25y,

solved with the Forward Euler method exhibits instability in the solution

whereas the higher order RK4 method gives a relatively accurate result using

the same step-size. Nevertheless, it is possible to further increase the stability

of the solution by using a set of numerical solvers known as implicit methods.

These techniques will be discussed in the following section.
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3.1.4 Implicit Methods

If we look at the generalized butcher tableau of Equation 3.5 we can see that

all the previous explicit methods have a value of zero for anything on and to

the right of the diagonal of the A matrix. If this was not the case, however,

when substituting the values to the equations 3.6 and 3.7, we would obtain a

series of equations which would depend on future values. These would therefore

necessitate the usage of root solving techniques such as Newton’s method. Al-

though this is more computationally expensive compared to explicit methods,

but it leads to very accurate results. Now to illustrate how a Butcher tableau

can lead to implicit methods, we give the following example:

1 1

1
(3.15)

This corresponds to the following equation:

yn+1 = yn + hf(tn + h, yn+1) (3.16)

which is known as the implicit or backward Euler method. As we can see

yn+1 cannot be isolated and therefore it is necessary to use Newton’s method

as the equation is non-linear.

Newton’s method attempts to numerically find the solution to the equation

F (x) = 0 when given an initial estimate. In the case of Implicit Euler, F (x)

will be yn − x + hf(tn + h, x). Newton’s method is an iterative solver who’s

algorithm is as follows:

xk+1 = xk −
F (xk)

F ′(xk)
(3.17)

However, equation 3.17 is only valid when F is a single equation. If F cor-

responds to a system of equations, as is the case in cardiac cell models, it is
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necessary to adapt the method and transform it as follows:

J(xk)(xk+1 − xk) = −F (xk) (3.18)

In equation 3.18, F now corresponds to an array of functions containing the

series of equations which must be solved. Furthermore, J is the jacobian of the

function F , which consists of a matrix containing all the partial derivatives of

the function F with respect to the vector xk and is as follows:

J(xk) =


∂F1

∂x1k
· · · ∂F1

∂xmk
...

. . .
...

∂Fm

∂x1k
· · · ∂Fm

∂xmk

 (3.19)

Since no analytical function for the jacobian can be obtained it is necessary

to approximate its value. This is done by calculating the slope of F (xk) at a

location very near to xk. Therefore, each element in the jacobian matrix can

be approximated as follows:

∂Fm
∂xmk

≈ Fm(xmk + tol)− Fm(xmk − tol)
2tol

(3.20)

where tol is a very small number such as ∼ 10−10. At every time-step of the

implicit Euler solver it is necessary to do multiple iterations of Newton’s method

before obtaining the solution. This greatly increases the computational time of

each step of the ODE solver. However, implicit methods generally have much

higher stability properties.

Using the previous example of a stiff ODE, as seen in figure 3.2, we can now

compare results using this first order implicit Euler method with those of RK4.

These two solutions are shown in figure 3.3. As we can see from this figure,

the implicit Euler method is much more stable and provides a more accurate

solution than that of RK4 despite being only of first order accuracy. Therefore,
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since larger step-sizes could potentially be used when solving unstable solutions,

implicit methods could save on the solving time of stiff ODEs. In the case

of cardiac cell models, the stiff nature of the ODEs make the usage of higher

ordered implicit methods very attractive. This can be seen with the application

of ESDIRK3 and SDIRK4 in literature [16] [19]. These higher ordered implicit

methods will be introduced in the following sections.

Figure 3.3: Illustration of the solution of a stiff ODE using RK4 and implicit
Euler with step-size=0.1

Higher Ordered Fully Implicit Methods

Fully Implicit methods are not limited to a first order of accuracy. Many higher

ordered methods exist that are fully-implicit and are used when solving very

stiff ODEs. For example the popular RADAU5 [18] method is of fifth order

accuracy and very stable as it is fully implicit; it has the following Butcher

tableau:

4−
√

6
10

88−
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

y1 16−
√

6
36

16+
√

6
36

1
9

(3.21)

If we were to transform the first three rows of the Butcher tableau into it’s
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equations we would obtain:

k1 = hf

(
t+ h

4−
√

6

10
, yn + h(k1

88−
√

6

360
+ k2

296− 169
√

6

1800
+ k3
−2 + 3

√
6

225
)

)
(3.22)

k2 = hf

(
t+ h

4 +
√

6

10
, yn + h(k1

296 + 169
√

6

1800
+ k2

88 + 7
√

6

360
+ k3
−2− 3

√
6

225
)

)
(3.23)

k3 = hf

(
t+ h, yn + h(k1

16−
√

6

36
+ k2

16 +
√

6

36
+ k3

1

9
)

)
(3.24)

As we can see from equations 3.22-3.24, all three equations for the ks will

be dependent on all three values of the ks. Therefore, we cannot use Newton’s

method directly and will instead have to solve the following system of equations:

(M)(kj+1
l − kjl ) = Fl(k

j
l ) (3.25)

Fl = −kjl + f(tn + clh, yn + h
n∑
i=1

alik
j
i ) (3.26)

where kj+1
l is the new solution to Newton’s method, a, b and c are the elements

of the Butcher tableau and M is as follows:

M =


I − h× a11 × J(xj) −h× a12 × J(xj) −h× a13 × J(xj)

−h× a21 × J(xj) I − h× a22 × J(xj) −h× a23 × J(xj)

−h× a31 × J(xj) −h× a32 × J(xj) I − h× a33 × J(xj)


(3.27)

Here J(xj) is the jacobian of the function and I is the identity matrix. As

we can see, this matrix can potentially get very large. For example, if we

were to solve the Courtemanche cell model that contains 21 ODEs with the

RADAU5 method, the M matrix would be 63× 63. This means that a 63× 63

linear system would need to be solved at every Newton’s iteration at every time

step in our ODE solver. Despite the high stability of this method, the added

computational complexity of the large linear systems negates the potential
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computational advantage of the larger step-sizes used [19]. Therefore, it would

be advantageous to find a numerical method that has the stability properties

of implicit methods without the need to solve large systems of equations.

3.1.5 Singly Diagonally Implicit Runge-Kutta Methods

A different class of implicit solvers is the singly diagonally implicit Runge-Kutta

(SDIRK) methods. Although they are implicit methods and therefore require

the usage of a root solving method, the size of the linear systems that must be

solved is significantly reduced. All SDIRK methods have only null values to the

right of the diagonal in the A matrix of the Butcher tableau (eq 3.5). In this

thesis, we will be presenting results obtained by the fourth order SDIRK4 [19]

and third order ESDIRK3 [16] methods both of which have previously been

used in solving cardiac cell models. The E in ESDIRK3 stands for explicit as

the first stage is explicit. Both Butcher tableaus are presented below:

0 0

c2 a21 γ

c3 b̂1 b̂2 γ

c4 b1 b2 b3 γ

y1 b1 b2 b3 γ

c2= 0.87173304301691799884

c3= 1

c4= 1

γ= 0.43586652150845899942

a21= 0.43586652150845899942

b̂1= 0.49056338842178057060

b̂2= 0.073570090069760429950

b1= 0.30880996997674652335

b2= 1.4905633884217805707

b3= −1.2352398799069860932

(3.28)

1
4

1
4

3
4

1
2

1
4

11
20

17
50

−1
25

1
4

1
2

371
1360

−137
2720

15
544

1
4

1 25
24

−49
48

125
16

−85
12

1
4

y1
25
24

−49
48

125
16

−85
12

1
4

(3.29)
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Now if we were to transform the Butcher tableau of ESDIRK3 into its

equations we obtain:

k1 = hf(t, yn) (3.30)

k2 = hf(t+ hc2, yn + h(a21k1 + γk2) (3.31)

k3 = hf(t+ hc3, yn + h(b̂1k1 + b̂2k2 + γk3)) (3.32)

k4 = hf(t+ hc4, yn + h(b1k1 + b2k2 + b3k3 + γk4)) (3.33)

and for SDIRK4 we obtain:

k1 = hf(t+ h
1

4
, yn +

h

4
k1) (3.34)

k2 = hf(t+ h
3

4
, yn + h(

1

2
k1 +

1

4
k2)) (3.35)

k3 = hf(t+ h
11

20
, yn + h(

17

50
k1 +

−1

25
k2 +

1

4
k3)) (3.36)

k4 = hf(t+ h
1

2
, yn + h(

371

1360
k1 +

−137

2720
k2 +

15

544
k3 +

1

4
k4)) (3.37)

k5 = hf(t+ h, yn + h(
25

24
k1 +

−49

48
k2 +

125

16
k3 +

−85

12
k4 +

1

4
k5)) (3.38)

From equations 3.30-3.38 we can see that as long as the A matrix is empty

to the right of the diagonal it is possible to use Newton’s method directly to

solve for the various k variables individually. This property greatly reduces

the size of the linear system that must be solved when compared to the fully-

implicit methods. Nevertheless, all the k’s can be solved simultaneously using

LU factorisation. As Newton’s method is the most time-consuming step in the

solver, some efforts have been made to decrease the computational time while

keeping its efficiency. These modified root-finding algorithms will be explored

in the following section.
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Simplified Newton’s Method

One of the costliest steps in implicit methods is the usage of Newton’s method.

The constant recalculation of the jacobian and the potentially slow conver-

gence can be too computationally expensive and cause the loss of any advan-

tage gained by the increase in stability. However, it is possible to modify the

classic Newton’s equation 3.18 in order to increase both its rate of convergence

and eliminate the necessity to recalculate the jacobian at each iteration. The

formulation of these simplified Newton’s methods are dependent on the numer-

ical ODE solver used. For more information on modified Newton’s method for

ODE solvers, please refer to [18]. For ESDIRK3 it was found that the following

Newton’s formula was the most efficient [16]:

(I − hγJ)(km+1
i − kmi ) = km + f(t+ hci, yn + h

i−1∑
j=1

aijkj + γkmi ) (3.39)

where the above values correspond to the Butcher tableau equations found in

Equation 3.28. For SDIRK4 we use the following formula [18]:

(I − h

4
J)(km+1

i − kmi ) = km + f(t+ hci, yn + h
i−1∑
j=1

aijkj +
1

2
kmi ) (3.40)

Furthermore, in order to avoid recalculating the jacobian at every iteration

of Newton’s method, we suppose that the value will remain relatively constant

and approximate it as:

J ≈ ∂f

∂y
(tn, yn) (3.41)

for both ESDIRK3 and SDIRK4. Finally the jacobian of equation 3.41 will be

decomposed using LU factorization and used for the implicit equations needed

for all the ks. By using these simplified Newton’s methods we have decreased

the computational complexity of all the implicit solvers and have further in-

creased their appeal in the application of cardiac cell models.
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Despite the advantages of the SDIRK methods, some attempt to increase

the stability of the solver while avoiding root-solving methods. These ap-

proaches are known as the Rush-Larsen methods which are specifically de-

signed for usage in cardiac cell models and will be explored in the following

two sections.

3.1.6 Rush-Larsen Method

In 1978, Stanley Rush and Hugh Larsen applied a first order solver to membrane

models which take advantage of the structure of the ODEs found in cardiac cell

models [21]. The Rush-Larsen (RL) method is still very widely used in cardiac

cell modelling and actively researched [29]. The basis of their approach comes

when considering the gating variables which have ODEs of the following form:

dy

dt
=
yinf − y
τy

(3.42)

where yinf and τy are dependent only on the transmembrane potential V . If we

assume that in the interval between tn+1 and tn the potential is constant, then

equation 3.42 can be solved analytically in this interval as follows:

yn+1 = yinf + (yn − yinf) exp

(
−h
τy

)
(3.43)

For all other ODEs in the model that are not in the form of equation 3.42 we

apply the forward Euler method as described in section 3.1.1. This method

has been shown to be faster than the classical forward Euler method as well as

allowing the usage of larger step-sizes [29].

3.1.7 Second Order Rush-Larsen Method

An extension of the Rush-Larsen method was presented by Sundnes et al. in

2009 which had an increased order of accuracy of 2 (RL2) [14]. This method
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employs the exact same technique for the gating variables as seen in equation

3.43. However, unlike the classic method this equation is performed from tn

to tn+ 1
2

and then again from tn+ 1
2

to tn+1. Furthermore, the non-gating ODEs

are not simply solved with the Euler method but a Taylor expansion is used.

Thus, for the ODEs of the form:

dyi
dt

= f(yi) i = 1, · · · , k (3.44)

We perform a Taylor expansion around a value η and obtain:

dyi
dt

= fi(η) + (yi − ηi)
∂

∂yi
fi(η) (3.45)

Which can then be solved analytically as:

yi(t) = ηi +
a

b
(exp(bh)− 1) (3.46)

where a = fi(η) and b = ∂fi(η)/∂yi. Furthermore, only the diagonal values of

the jacobian must be calculated to obtain the values for b:

∂fi(η)

∂yi
≈ fi(η1, · · · , ηi + δ, · · · , ηk)− fi(η)

δ
(3.47)

where δ is very small such as ∼ 10−10. The algorithm for solving the ODEs of

the form 3.44 is done in two steps:

1. Using η = yn, we apply equation 3.46 from tn to tn+1/2 and denote the

solution as yn+1/2

2. Now we can substitute the values of η as follows

η = (y1
n+1/2, · · · , yin+1/2, · · · , ykn+1/2)

and apply it to equation 3.46 from tn+1/2 to tn in order to obtain our final
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solution of yn+1.

This method retains the stability of the Rush-Larsen method while increas-

ing the order of accuracy by one.

In this section, we presented various different methods that have been used

in an attempt to increase the efficiency of solving the ODEs of the cardiac cell

models. Since the solving of these ODEs are often the most time consuming

part of cardiac tissue modeling, the search for increasingly accurate and efficient

solvers is still an active area of research. Our contribution in this area will be

presented in chapter 4 where a novel fourth order fully-implicit method will be

introduced and studied in the context of cardiac cell modeling.

First, however, it is necessary to explore a technique which will enable us

to couple the above ODE solvers with the PDEs of the tissue models. This will

be presented in the following section.

3.2 Splitting Method for Solving Coupled Equa-

tions

When modeling the electrical activity of the heart, the information given by

the cardiac cell models are necessary but not sufficient in providing a full de-

scription of the propagation of electric waves across the heart tissue. For this,

it is necessary to incorporate the tissue models such as the bidomain and mon-

odomain models. The Bidomain model contains two PDEs as follows:

∇ · (Mi∇v) +∇ · (Mi∇ue) = χCm
∂v

∂t
+ χIion (3.48)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 (3.49)
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Equation 3.48 has an parabolic form while equation 3.49 has an elliptic form.

In contrast, the Monodomain model only has one PDE of the following form:

λ

1 + λ
∇ · (Mi∇v) = χCm

∂v

∂t
+ χIion (3.50)

which is also of parabolic form. However, both the Monodomain and Bidomain

models include a term for the ionic currents flowing through the cell membrane

here written as Iion. The value for Iion, however, is given by the cell models and

therefore consists of a series of ODEs that must be solved. For simplicity, it

would be advantageous to be able to independently solve the ODEs and PDEs

despite the fact that they are coupled. A first order splitting technique will be

used in order to solve the tissue models as is described in detail in “Computing

the Electrical Activity in the Heart” [15].

The first step in this splitting technique is to divide the simulation time

into many much smaller time intervals which will be denoted as ∆t. Therefore,

each value of the potentials at a time tn is denoted as v(tn) = vn, ue(tn) = une

and tn+1 = tn + ∆t. The steps for solving the coupled model will be as follows:

1. Solve the cell model from t = tn to t = tn + ∆t with initial conditions vn

and wkn:

χCm
∂v

∂t
= −Iion(v, wk) (3.51)

∂wk

∂t
= f(v, wk) k = 0 · · ·m (3.52)

Here wk represents all the other variables which are described by ODEs in

the cardiac cell models of section 2.1. Therefore, for example, in the case

of the Fox model this step would involve solving a system of 13 ODEs. In

this step, the ODEs must be solved using any of the numerical techniques

previously described in section 3.1. The solution of these equations will

be saved as vODE = vn+1 for the transmembrane potential and wkn+1 for

all other ODEs.
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2. Solve the system of PDEs from t = tn to t = tn+∆t with initial conditions

vn = vODE and une

∇ · (Mi∇v) +∇ · (Mi∇ue) = χCm
∂v

∂t
(3.53)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 (3.54)

The solutions for this stage will be denoted as vn+1 and un+1
e . Once this

stage is completed the time is advanced, tn+1 = tn + ∆t, and we return

to step 1. This is continued until the end of the time interval that is

to be studied. If we wish to use the Monodomain equation instead of

Bidomain, most of the steps are the same. The difference arises in step

2 where equation 3.54 is not used and equation 3.53 is replaced with

equation 3.50 but without the −Iion term.

Although similar, both the elliptic and parabolic PDEs must be numerically

solved using different techniques. Many methods exist for solving PDEs, how-

ever, we will be using an implicit finite difference method for the calculations.

This will be discussed in detail in the following section.

3.3 Solving PDEs with Finite Difference

The basic premise of the finite difference method comes from approximating

the derivatives in a similar way as was described in section 3.1. We first ap-

proximate the partial derivative by approximating the slope. This can be done

using forward difference:

∂f

∂t
≈ f(t+ h)− f(t)

h
(3.55)
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where h is a small step-size used. This method is of first order accuracy.

Another method of first order accuracy is that of backward difference:

∂f

∂t
≈ f(t)− f(t− h)

h
(3.56)

Nevertheless a second order accurate method can also be constructed as

with the central difference method:

∂f

∂t
≈ f(t+ (1/2)h)− f(t− (1/2)h)

h
(3.57)

However, in the tissue models some of partial derivatives are of second order.

In order to solve these higher order derivatives we can perform the central

difference a second time:

∂2f

∂t2
≈f

′(t+ (1/2)h)− f ′(t− (1/2)h)

h
(3.58)

f(t+ h)− 2f(t) + f(t− h)

h2
(3.59)

Using equations 3.55, 3.56 and 3.59 it is possible to construct appropriate

solvers for both the elliptic and parabolic PDEs. These will be discussed in

the following sections. Although the same technique can be used for higher

dimensions, all derivations will be made assuming we will be simulating a one

dimension fiber.

3.3.1 Solving Parabolic PDEs

In the case of the parabolic PDE we have the following equation in 1-D:

Mi
∂2v

∂x2
+Mi

∂2ue
∂x2

= χCm
∂v

∂t
(3.60)

Now we can start replacing the partial derivatives with the finite difference

equations. First begin by replacing ∂v
∂t

with the forward difference equation
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3.55 and then replace both second order partial differential equations with the

second order central difference equation 3.59:

Mi
v(x+ ∆x)− 2v(x) + v(x−∆x)

∆x2
+Mi

ue(x+ ∆x)− 2ue(x) + ue(x−∆x)

∆x2

= χCm
v(t+ h)− v(t)

h
(3.61)

Where ∆x is the spatial step-size and h is the temporal step-size. For

simplicity, we will assume for the remainder of the derivation that j represents

the position and n represents the time step; i.e vj = v(x), vj+1 = v(x + ∆x),

vn = v(t) and vn+1 = vn. Therefore, equation 3.61 is identical to the following:

Mi

vnj+1 − 2vnj + vnj−1

∆x2
+Mi

uenj+1 − 2uenj + uenj−1

∆x2
= χCm

vn+1
j − vnj

h
(3.62)

Although this algorithm can be applied directly to solve for vn+1
j , we must

remember that stability is often the limiting factor for cardiac tissue. Therefore,

by instead applying backward difference (equation 3.56) to dv
dt

and substituting

n− 1 with n for the v variables, we can obtain the following numerically stable

solver:

Mi

vn+1
j+1 − 2vn+1

j + vn+1
j−1

∆x2
+Mi

uenj+1 − 2uenj + uenj−1

∆x2
= χCm

vn+1
j − vnj

h
(3.63)

By rearranging this equation we obtain the following:

(1 + 2r)vn+1
j − rvn+1

j+1 − rvn+1
j−1 = (r)uenj+1 − (2r)uenj + (r)uenj−1 + vnj (3.64)

where r = Mih
χCm∆x2

. From here we can see that equation 3.64 is a linear system
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that can be solved with the usage of any solver of systems of linear equations.

For our purpose we used LU factorization to solve this system. This solver has

a second order of accuracy with respect to space and a first order accuracy with

respect to time. If we wish to use the monodomain model instead of bidomain,

equation 3.64 is simply modified as follows:

(1 + 2r)vn+1
j − rvn+1

j+1 − rvn+1
j−1 = vnj (3.65)

where r = Mih
χCm∆x2

. A similar approach can be taken in order to solve the

elliptic equation. This will be explored in detail in the next section.

3.3.2 Solving Elliptic PDEs

In the case of the elliptic PDE, we have the following equation in 1-D:

(Mi +Me)
∂ue
∂x2

= −Mi
∂2v

∂x2
(3.66)

Now using central difference (eq. 3.59) on both PDEs and assuming we’ll

be solving for a future value, we obtain:

uen+1
j+1 − 2uen+1

j + uen+1
j−1

∆x2
=

−Mi

Mi +Me

vn+1
j+1 − 2vn+1

j + vn+1
j−1

∆x2
(3.67)

Once again this is a system of linear equations which can be solved using

any linear system solver. As with the parabolic PDEs we decided to use LU

factorization.

3.3.3 Boundary Conditions

From the previous sections, it can be noticed that all of our numerical solutions

require values at the boundaries in order to obtain a solution. For the Bidomain
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model we have 3 sets of boundary conditions which are as follows:

n · (Mi∇v) = 0 (3.68)

n · (Me∇ue) = 0 (3.69)

ue(0) = 0 (3.70)

Equations 3.68 and 3.69 are considered Neumann boundary conditions whereas

3.70 is a Dirichlet boundary condition. For the Dirichlet boundary we may

simply substitute the value directly into our solutions. However, the Neumann

boundaries require a bit more effort. Since we wish to preserve the second order

of accuracy it is necessary to use a second order method for approximating

the boundary condition. This method, similar to our derivations of the finite

difference methods for PDEs, can be found in “Mathematically Modelling the

Electrical Activity of the Heart”[28] and is presented as follows in 1-D:

−3vn+1
0 + 4vn+1

1 − vn+1
2

2∆x
= 0 (3.71)

vn+1
l−2 − 4vn+1

l−1 + 3vn+1
l

2∆x
= 0 (3.72)

−3uen+1
0 + 4uen+1

1 − uen+1
2

2∆x
= 0 (3.73)

uen+1
l−2 − 4uen+1

l−1 + 3uen+1
l

2∆x
= 0 (3.74)

Here l represents the size of the fiber, i.e l = xmax/∆x, and n represents

the current time step of the solution. In the case of the Monodomain model,

we have to use only equations 3.71 and 3.72. As we can see, the equations are

implicit in order to preserve the stability of our implicit PDE solvers. Therefore,

the boundaries cannot be solved separately from the main solution; they must

be included directly in the matrix of the PDE solver at each time step and

solved concurrently with the values at all other spatial locations. With these
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boundary conditions it is now possible to use the splitting method to completely

solve the Bidomain model numerically. The final algorithm will be given in the

next section.

3.4 Combined Algorithm for Solving the Bido-

main Model

By combining all the information provided in the previous sections it is possi-

ble to construct a complete algorithm for solving the Bidomain model. Here

we’ll assume that we’re solving a one-dimensional fiber with Neumann bound-

ary conditions using a first order splitting method with the Aliev-Panfilov cell

model. This can be solved using the following series of instructions:

1. Solve the cell model from t = tn to t = tn + ∆t with initial conditions

vn and wn using any technique described in section 3.1. The ODE solver

will have to be applied at every location j:

∂vj
∂t

= kvj(vj − a)(1− vj)− (vjwj) (3.75)

dwj
dt

= (eps+
u1wj
u2 + vj

)(−wj − (kvj(vj − a− 1))) (3.76)

The values will be saved as vODE = vn+1 and wn+1 and will contain

elements for every location from j = 0 to j = l.

2. Solve the system of PDEs from t = tn to t = tn + ∆t:

(a) Solve the parabolic equation by applying LU decomposition to the
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following system with initial conditions vn = vODE and une :



−3 4 −1 0 · · · 0

−r (1 + 2r) −r 0 · · · ...

0
. . . . . . . . . . . .

...

0 · · · 0 −r (1 + 2r) −r

0 · · · 0 1 −4 3





vn+1
0

...

...

...

vn+1
l


=



0

(r)uen2 − (2r)uen1 + (r)uen0 + vn1
...

(r)uenl − (2r)uenl−1 + (r)uenl−2 + vnl−1

0


(3.77)

Where r = Mi∆t
χCm∆x2

. The results of this step gives the values for vn+1.

(b) Solve the elliptic equation by applying LU decomposition to the

following system with initial conditions vn+1 and une :



−3 4 −1 0 · · · 0

r1 −2r1 r1 0 · · · ...

0
. . . . . . . . . . . .

...

0 · · · 0 r1 −2r1 r1

0 · · · 0 1 −4 3





uen+1
0

...

...

...

uen+1
l


=



0

(r2)vn+1
2 − (2r2)vn+1

1 + (r2)vn+1
0

...

(r2)vn+1
l − (2r2)vn+1

l−1 + (r2)vn+1
l−2

0


(3.78)

Where r1 = 1
∆x2

and r2 = Mi

Mi+Me

1
∆x2

. This step gives us the results

for un+1
e .

Once these steps are completed, the values for un+1
e , vn+1 and wn+1 are

saved then the solution is advanced to tn+1 = tn + ∆t and we return to

step 1. This is repeated until we reach the end of the time interval that

is to be studied.

As we can see from this algorithm, the ODE solver will be applied exten-

sively as it is required for every temporal and spatial position. Therefore, any

increase in efficiency in the ODE solver can significantly decrease the compu-

tational time required to simulate cardiac tissue. In the following chapter, we

will be introducing an implicit Runge-Kutta method that has yet to be applied
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in the context of electrophysiology. The unique properties of this solver seems

to make it ideally suited for cardiac cell models and, therefore, its performance

will be compared with that of multiple other popular methods.
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Chapter 4

Nested Implicit Runge-Kutta

Method of Order 4

When modelling the electrical activity in the heart, solving the stiff ODEs in the

cardiac cell models is often the most time consuming portion of the simulation

by a significant factor [16]. Therefore, there is much incentive to improve

the efficiency of solving these systems of ODEs in order to greatly decrease

the extensive computational time of tissue simulations. For this reason, the

application of new ODE solvers to cardiac cell models is still an important

active area of research.

In 2001, Sundnes et al used a 3rd order implicit Runge-Kutta method in solv-

ing the ODEs of a stiff human cardiac model when coupling with the bidomain

equation [16]. It was found that this method saved significant computational

time when compared to a similarly ordered explicit solver. In contrast, Spiteri

and Dean used an explicit-implicit Runge-Kutta solver which employed a split-

ting method in an attempt to only use the implicit solver when stability was

necessary while defaulting to the more rapid explicit solver [19]. This method’s

performance was compared with a collection of other popular implicit and ex-

plicit solvers. However, Runge-Kutta methods are not the only family of solvers

that have been explored for this application. In 2009, Sundnes et al. proposed
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a second order Rush-Larsen method which was found to be much more efficient

than the classical first order Rush-Larsen [14]. However, in 2012 Marsh et al.

compared the performance of the classical Rush-Larsen method with that of

their own generalized Rush-Larsen method and found that RL outperformed

their own method for all but the most stiff cell models [29]. Nevertheless, a

search for increasingly efficient solvers of cardiac cell models is ever-present.

In this chapter, we will be presenting a Nested Implicit Runge-Kutta method

of order four (NIRK4) and comparing its performance to that of previously

studied solvers of cardiac cell models. This method, first introduced in 2006

by Gennady Kulikov and Sergey Shindin, is fully implicit and A-stable [20].

As previously discussed in chapter 3, fully-implicit methods are rarely used

due to the computational complexity caused by the large linear systems that

must be solved. However, one of the unique characteristics of NIRK4 is its

explicit internal stages which reduces the solver to one non-linear equation.

These characteristics will be explored in more detail in the following section.

Furthermore, its performance will be compared with multiple ODE solvers for

various cell models of increasing complexity.

4.1 Numerical Method

First, let us examine the Butcher tableau of NIRK4:

0 0 0 0 0

c2
1

6(c21+θ)−5

12
1−θ

2
1−θ

2

6(c21+θ)−7

12

1− c2
1

7−6(c21+θ)

12
θ
2

θ
2

5−6(c21+θ)

12

1 0 1
2

1
2

0

0 1
2

1
2

0

(4.1)

where c2
1 = (3−

√
3)/6 and θ = 1/2 + 2

√
3/9. Now the explicit internal stages

of this method allows us to simplify all the equations corresponding to the
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Butcher tableau into the following:

yk+1 = yk + h(b1f(tk + c1h,x1) + b2f(tk + c2h,x2)) (4.2)

x1 = a11yk + a12yk+1 + h(d11f(tk,yk) + d12f(tk+1,yk+1)) (4.3)

x2 = a21yk + a22yk+1 + h(d21f(tk,yk) + d22f(tk+1,yk+1)) (4.4)

a11 = θ a12 = 1− θ a21 = θ

a22 = θ b1 = 1
2

b2 = 1
2

c1 = 3−
√

3
6

c2 = 3+
√

3
6

d11 = 6θ−2−
√

3
12

d12 = 6θ−4−
√

3
12

d21 = −6θ+4+
√

3
12

d22 = −6θ+2+
√

3
12

As you can see, equations 4.2, 4.3 and 4.4 can all be combined into one large

formula which has only yk+1 as its unknown. Therefore, Newton’s method can

be applied directly to this one equation while keeping the high order of 4. In

contrast, Newton’s method must be applied three and four distinct times in

ESDIRK3 and SDIRK4 respectively. This property makes NIRK4 especially

attractive to the large systems of stiff ODES found in cardiac cell models.

Furthermore, as with SDIRK4 and ESDIRK3, it is possible to use a sim-

plified Newton’s method for NIRK4 to further increase its efficiency. We used

the following simplified formula [20]:

(I − h

4
J)2(ym+1

k − ymk ) = yk + h(b1f(tk + c1h,x
m
1 ) + b2f(tk + c2h,x

m
2 )) (4.5)

where the above values can be found in Section 4.1. Furthermore, in order

to avoid recalculating the jacobian at every iteration of Newton’s method we

suppose that the value will remain relatively constant and approximate it as:

J ≈ ∂f

∂y
(tn+1 + h, yn+1) (4.6)
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By using this simplified Newton’s method, we have further decreased the com-

putational complexity of NIRK4.

4.2 Results for Solving Cardiac Cell Models

4.2.1 Calculating the Norm

In order to properly compare the performance of multiple ODE solvers, it is

imperative to calculate the error of the numerical solution when compared to

the actual results. When an analytical solution is possible this is rendered

quite easy as the result can be compared directly to its theoretical values.

However, for cardiac cell models this is not possible as the ODEs cannot be

solved analytically. Nevertheless, we must still be able to compare the accuracy

of the numerical solvers. Therefore, in these cases it is necessary to create a

reference solution which would have a negligible error when compared to the

solutions calculated in our tests. In the case of the cell models, we solved the

reference solution using a variable step solver than is included in the MATLAB

software called ODE45. This solver uses a popular variable step-size 5th order

Runge-Kutta method called the Dormand-Prince technique. For our reference

solution we specified a very small error tolerance of ∼ 10−15 for the relative and

absolute tolerances. Appropriate reference solutions take very long to calculate

and require much memory to store.

After obtaining a reference solution, we would like to estimate the error of

our solution in order to compare the accuracy of our many numerical solvers.

Calculating the norm between these two solutions is well suited for this purpose.

In theory, the p-norm of a solution is as follows:

||x||p = (
N∑
i=0

|xi|p)1/p (4.7)
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Furthermore, if we solve for when p approaches infinity we obtain:

||x||∞ = max(|xi|) 0 ≤ i ≤ N (4.8)

which is called the infinity norm. In our case, we define the error as:

ei = V i
ref − V i (4.9)

where Vref and V are the values of the transmembrane potential for the refer-

ence and calculated solutions respectively. Therefore, we are generally trying

to calculate:

||e||∞ = max(|V i
ref − V i|) 0 ≤ i ≤ N (4.10)

Another popular method when comparing numerical methods in biomedical

modelling is the Relative Root-Mean Squared error (RRMS). In the context of

cardiac cell models, a solution is considered of adequate accuracy when it has an

RRMS of maximum 5% [19][14]. For our application, the RRMS is calculated

as follows:

||e||RRMS =

√√√√∑N
i=0(V i − V i

ref )2∑N
i=0(V i

ref )2
(4.11)

4.2.2 Comparing Implicit Methods with NIRK4

In this section, the performance and the robustness of NIRK4 will be investi-

gated. We therefore consider the two complex cardiac cell models of Fox and

Luo-Rudy. These models were solved using three implicit methods: ESDIRK3,

SDIRK4 and NIRK4. This enabled us to compare the NIRK method with im-

plicit solvers previously used in electrocardiology. For both these models, an

elevated initial condition for the transmembrane potential was used in order to

stimulate the membrane instead of using a stimulus current. This value was

V = −40mV for Fox and V = −35mV for Luo-Rudy. Furthermore, the length

of simulation was 300ms for Fox and 350ms for Luo-Rudy which is adequate
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time for the cell to return to a rest state. Finally, the infinite norm was cal-

culated using 100 points evenly spaced throughout the simulation as similarly

used in Dean et al. [19]. The results of the infinite norms and the simulation

times for varying step-sizes are presented in Tables 4.2 and 4.1.

LuoRudy I: Step-Size h = 0.1
Methods ||e||∞ CPU(s)

ESDIRK3 0.23 0.69
Sdirk4 4.49e-2 0.77

NIRK4 2.58e-2 0.61

LuoRudy I: Step-Size h = 0.05
Methods ||e||∞ CPU(s)

ESDIRK3 4.15e-3 1.28
Sdirk4 2.35e-3 1.52

NIRK4 4.98e-4 1.21

LuoRudy I: Step-Size h = 0.025
Methods ||e||∞ CPU(s)

ESDIRK3 4.19e-4 2.52
Sdirk4 1.42e-4 3.08

NIRK4 1.73e-5 2.34

Table 4.1: Luo-Rudy results for implicit methods

As can be seen in Table 4.1, for the Luo-Rudy model NIRK outperforms the

more popular singly diagonally implicit methods. For every step-size tested,

NIRK4 exhibits both a smaller error while decreasing the total computational

time necessary when compared to ESDIRK3 and SDIRK4. Furthermore, we

can see that the fourth order of accuracy is maintained for SDIRK4 and NIRK4

while the third order is maintained for ESDIRK3 despite using the more effi-

cient simplified Newton’s method. In order to confirm the superior performance

of NIRK4 we will perform the same test for the more complex Fox model whose

results are presented in table 4.2.

As presented in Table 4.2, NIRK4 again clearly outperforms the similarly
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Fox: Step-Size h = 0.1
Methods ||e||∞ CPU

ESDIRK3 0.158 0.589
Sdirk4 2.94e-2 0.647

NIRK4 2.2e-2 0.622

Fox: Step-Size h = 0.05
Methods ||e||∞ CPU

ESDIRK3 1.99e-3 1.168
Sdirk4 1.25e-3 1.283

NIRK4 2.46e-4 1.248

Fox: Step-Size h = 0.025
Methods ||e||∞ CPU(s)

ESDIRK3 5.71e-4 2.332
Sdirk4 1.10e-4 2.577

NIRK4 2.83e-5 2.464

Table 4.2: Fox results for implicit methods

ordered SDIRK4 in every step-size used as the error and computational time

is significantly decreased when using NIRK4. However, when compared with

ESDIRK3, we can see that the computational time is slightly lower for this

lower ordered method than that of NIRK4. Nevertheless, this comes at the

cost of an increase of an order of magnitude in error when compared with the

more accurate NIRK4 method.

From these results, we believe that the properties of the NIRK4 method

allows for a superior performance when compared to those of the more pop-

ular implicit methods ESDIRK3 and SDIRK4. Now, in the following section,

we will compare NIRK4’s performance to that of the first and second order

Rush-Larsen methods. The Rush-Larsen methods, specifically designed to take

advantage of the unique properties of cardiac cell models, are the most widely

used methods of solving these models [30].
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4.2.3 Comparing Rush-Larsen and NIRK4

In much of literature, the stated advantage of the Rush-Larsen method is that

it is very efficient when wanting to obtain a result that is within 5% RRMS of a

reference solution [14][29]. Therefore, in order to further explore the advantages

of NIRK4 it is imperative to compare its performance to that of Rush-Larsen

in obtaining the stated error value. In order to accomplish this, we performed

tests on the Courtemanche, Luo-Rudy, Fox and Tusscher cell models using the

Rush-Larsen of order 1(RL), the Rush-Larsen of order 2(RL2) and the NIRK4

methods. The performance of Rush-Larsen methods using cell models has been

investigated in Sundnes et al. [14]. In this section, we use the same conditions

presented in [14] to compare the results of RL and RL2 with those of the NIRK4

method. Therefore, all simulations were performed from 0 to 10 ms using an

initial potential difference of V = −40mV to stimulate the solution. The step-

sizes of the numerical solvers were gradually adjusted until we obtained a value

of 5%, 1% and 0.2% error RRMS. The results of the simulation times and step-

sizes used for the numerical methods are presented in Tables 4.3, 4.4, 4.5 and

4.6. The Rush-Larsen results of Tables 4.3 and 4.4 are very similar to those

found in the 2009 paper by Sundnes et al.[14].

In table 4.3, we can see that NIRK4 outperforms both the second and first

order Rush-Larsen methods at every error tolerance level tested using the Luo-

Rudy model. Due to its ability to use larger step-sizes, the computational

time was significantly lowered when compared to RL and RL2 especially as we

increased the desired accuracy.

In the case of the more complex Courtemanche model, table 4.4 shows that

once again the NIRK4 results exhibit a decrease in computational time for all

error tolerances tested when compared to RL and RL2.

For the Fox model, the results of NIRK4 and RL2 are identical at the 5%
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LuoRudy I: RRMS=5%
Methods step-size CPU (s)

RL 0.014 0.056
RL2 0.11 0.012

NIRK4 0.152 0.009

LuoRudy I: RRMS=1%
Methods step-size CPU (s)

RL 0.0028 0.242
RL2 0.038 0.033

NIRK4 0.152 0.009

LuoRudy I: RRMS=0.2%
Methods step-size CPU(s)

RL 0.00055 1.206
RL2 0.016 0.067

NIRK4 0.095 0.019

Table 4.3: Results of Rush-Larsen and NIRK4 methods for Luo-Rudy

Courtemanche: RRMS=5%
Methods step-size CPU (s)

RL 0.011 0.136
RL2 0.1 0.031

NIRK4 0.21 0.025

Courtemanche: RRMS=1%
Methods step-size CPU (s)

RL 0.0022 0.62
RL2 0.04 0.112

NIRK4 0.18 0.029

Courtemanche: RRMS=0.2%
Methods step-size CPU(s)

RL 0.00045 3.088
RL2 0.017 0.184

NIRK4 0.08 0.069

Table 4.4: Results of Rush-Larsen and NIRK4 methods for Courtemanche
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Fox: RRMS=5%
Methods step-size CPU (s)

RL 0.01 0.093
RL2 0.1 0.017

NIRK4 0.15 0.017

Fox: RRMS=1%
Methods step-size CPU (s)

RL 0.0025 0.356
RL2 0.035 0.041

NIRK4 0.15 0.017

Fox: RRMS=0.2%
Methods step-size CPU(s)

RL 0.0005 1.728
RL2 0.15 0.096

NIRK4 0.11 0.021

Table 4.5: Results of Rush-Larsen and NIRK4 methods for Fox

error tolerance as seen in table 4.5. However, once the tolerance is lowered, the

NIRK4 method once again exhibits a significant advantage when comparing its

computational time to that of RL and RL2.

In the case of the Tusscher model, Rush-Larsen of order 2 gives the quickest

result for the largest error tolerance. However, once a more accurate solution

is desired, NIRK4 gives a significantly more computationally efficient result.

As can be deduced from the results obtained, when simulating the Luo-

Rudy, Courtemanche, Fox and Tusscher models, NIRK4 has clear advantages

to the very popular Rush-Larsen methods. When compared to the far more

common classic RL method, NIRK4 outperformed at every tolerance for every

model tested. However, RL2 outperformed NIRK4 once in the Tusscher model

and performs equally once in the Fox model at 5%RRMS. Nevertheless, at all

other tolerances and models NIRK4 gives significantly faster results than RL2.

By considering the results presented in both this and the previous sections,
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Tusscher: RRMS=5%
Methods step-size CPU (s)

RL 0.0175 0.076
RL2 0.12 0.022

NIRK4 0.14 0.03

Tusscher: RRMS=1%
Methods step-size CPU (s)

RL 0.0035 0.365
RL2 0.035 0.071

NIRK4 0.14 0.03

Tusscher: RRMS=0.2%
Methods step-size CPU(s)

RL 0.00075 1.65
RL2 0.016 0.154

NIRK4 0.13 0.03

Table 4.6: Results of Rush-Larsen and NIRK4 methods for Tusscher

we deduce that NIRK4 has significant advantages to the other more popular

methods that have previously been studied in literature. Due to the increase

in accuracy compared to the ESDIRK3 and SDIRK4 methods, combined with

a usual decrease in computational time, we deem NIRK4 to have an increased

performance to the singly diagonally implicit methods when solving the Fox and

Luo-Rudy cell models. For further information on the performance of NIRK4 in

comparison to other implicit methods, please refer to our previous work detailed

in [31]. Furthermore, with its decrease in solving time for same error tolerances,

we regard the NIRK4 method as more efficient when solving the four cell models

as compared to classic Rush-Larsen as well as being frequently superior to the

Rush-Larsen method of order 2 especially at lower error tolerances. All of

the numerical techniques necessary to obtain the results in this chapter were

programmed with C++. The analysis was then performed using MATLAB.

In the following chapter, we will be concentrating on the behavior of the

propagation of the electrical signal in cardiac tissue. Based on this chapter, the
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NIRK4 solver will always be used whenever we include complex cardiac cells

to the tissue models. Experiment has shown that changes in temperature have

significant impact on the conduct of the transmembrane potential. Therefore,

in order to study multiple phenomena that could be affected by the temper-

ature, it would be advantageous to add temperature effects to cardiac tissue

and cell models. An overview of this new model, along with simulations involv-

ing special consideration for the effect of temperature on the action potential

duration will be the concentration of chapter 5.
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Chapter 5

Including Temperature

Dependence to Tissue and Cell

Models

Electrophysiological models can be used to accurately describe the propagation

of the transmembrane potential in both the tissue and cellular domains. This

is done using the Bidomain model, as described in section 2.2.1, and coupling

it with the wide array of available cell models as introduced in section 2.1.

However, the models detailed so far do not take into consideration any possible

effects caused by changes of temperature in the tissue.

Motivation for including temperature effects in these simulations arise from

experimental evidence which currently suggests that changes in temperature

can have significant influence on the action potential duration (APD) [26] [32].

APDs are of especial interest in cardiac modeling as, for instance, alteration in

these durations can lead to the formation of electrical alternans. These alter-

nans, which are characterized by periodic changes in APDs, are of preeminent

interest to researchers as they’ve been linked to causing spiral waves which

can lead to arrhythmias such as ventricular fibrillation, a phenomena which

has proved difficult to study in vivo [24]. Furthermore, Yamazaki et al. have
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shown that regional cooling prolonged the APD and promoted termination of

ventricular tachycardias in rabbit hearts [33].

In 2006, Bini et al [23] proposed a modification of the FitzHugh-Nagumo

model which includes the addition of temperature influence on the behavior of a

simulated nerve cell. This was followed in 2009 by the inclusion of temperature

in the Hodgkin-Huxley nerve cell model to further increase the accuracy of this

behavior. Similarly, Gizzi et al. [47] added temperature dependence to ionic

intestine models in order to assess it’s possible effects during surgery. Finally,

very recent work by Fenton et al. [26] and Filippi et al. [27] have developed a

cell model that includes temperature influence and applied it to a monodomain

model for studying spiral wave effects in canine heart tissue.

Temperature effects on the electrical wave have two sources. First off, prop-

agation of the electric wave itself induces changes in temperature caused by the

joule effect. This effect causes changes in temperature of ∼ µoC magnitude in

the myocardium and therefore has very little effect on APDs. However, it has

been proposed that the behavior of this localized heat source could be used

as a potential method for visualizing the tip of spiral waves using thermal de-

tectors [23]. This would have significant importance in multiple applications.

Secondly, from the original work by Hodgkin and Huxley, temperature is shown

to have a significant effect on the rate of change of cell conduction variables

[2]. Subsequent modifications by FitzHugh [35] and Moore [36] also show linear

changes of ionic conductances with respect to temperature. These alterations

in the cellular responses to changes in temperature can have profound effects

on the behavior of the transmembrane potential including APDs.

In this chapter, we will introduce the two above mentioned temperature

effects on the bidomain model, which is considered the most realistic math-

ematical model in electrocardiology. Therefore, we will begin by introducing

Pennes’ bioheat equation and its coupling with the bidomain tissue model. This

will be followed by suggesting changes to the simple 2 ODE Aliev-Panfilov and
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the more complex 8 ODE Luo-Rudy models which allow for the inclusion of

temperature effects at the cellular level. Finally, we will provide multiple simu-

lations in order to study the consequences of temperature changes on the action

potential in a one and two dimensional tissue.

5.1 Mathematical Model

As was previously discussed in section 2.1, the Aliev-Panfilov model can re-

produce more realistic shapes of the cardiac action potential when compared

to other simplified models such as FitzHugh-Nagumo. Furthermore, it can re-

produce the APD restitution characteristic observed in the experiments [17].

Although this model uses dimensionless units, the simulation results could be

compared to experimental studies. For instance, according to experimental ob-

servations presented in Elharrar and Surawicz [37] each non-dimensional time

unit corresponds to 12.9ms in the Aliev-Panfilov model, and the actual trans-

membrane potential is recovered by Vm[mV ] = −80 + 100U . For more details

the reader is refereed to Nash and Panfilov [38]. In this work, we have scaled

the Aliev-Panfilov model to obtain physiologically interpretable values and the

modified equation are given by:

Iion(Vm,W ) = −((
k

v2
amp

)(Vm−vrest)(Vm−va)(Vm−vpeak))−(Vm−vrest)W (5.1)

G(Vm,W ) =
1

12.9
(ε0 +

µ1W

(Vm − vrest)/vamp + µ2

)×

(−W − (k(
Vm − vrest
vamp

)((
(Vm − vrest)

vamp
)− a− 1)))

(5.2)

This can then be included in the bidomain tissue model which was first

presented in section 2.2:
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

χCm
∂Vm
∂t
−∇ · (Mi∇Vm) = ∇ · (Mi∇ue)− χIion(Vm,W )

∇ · ((Mi +Me)∇ue) = −∇ · (Mi∇Vm)

∂W

∂t
= G(Vm,W ),

(5.3)

However, despite now having a dimensional model with more realistic car-

diac behavior, we still lack the ability to study any temperature effects. In

order to accomplish this, we must first consider Pennes’ Bioheat equation [34].

This equation, first introduced in 1948, seeks to describe the transfer of heat

in biological tissue and is as follows:

ρcp
∂T

∂t
= ∇ · (k∇T ) + b(Ta − T ) + A0 (5.4)

Where k is the thermal conductivity, T is the temperature, Ta is the ar-

terial temperature, b is heat sink strength due to blood perfusion, A0 is the

metabolic heat generation, ρ is the tissue density and cp is the tissue heat ca-

pacity. However, this equation does not take into consideration the effect of

the propagation of the electric wave on the temperature. This response can be

included simply by considering the joule effect, the heat generation rate per

unit volume from an electric field p (see [39]and [23]):

p = j · (−∇Vm) (5.5)

where j is the current density as follows:

j = −σ∇Vm (5.6)

and where σ is the electrical conductivity tensor. This equation is incorpo-

rated as an internal source term in equation (5.4) which leads to the coupling
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between the heat transfer in the tissue and the transmembrane potential in

the myocardium. Furthermore, the terms for the metabolic heat and blood

perfusion can be combined[23] as the generated heat is rapidly redistributed

throughout the tissue [40] [41]:

ρcp
∂T

∂t
= ∇ · (k∇T ) + bc(T

∗ − T ) + σ∇Vm · ∇Vm (5.7)

where bc is the combined term for any metabolic or blood perfusion effects

and T ∗ is the temperature of the environment. We can see from the structure

of the equation 5.7 that this PDE is parabolic with respect to T . Therefore,

by using the same approach as detailed in section 3.3.1 and applying central

difference to approximate ∇Vm, we obtain the following numerical equation:

k
T n+1
j+1 − 2T n+1

j + T n+1
j−1

∆x2
+bc(T

∗−T n+1
j )+σ

(
V mn

j+1 − V mn
j−1

2∆x

)2

= ρcp
T n+1
j − T nj

∆t
(5.8)

where j and n represent the position in the space and time domains respec-

tively. Furthermore, ∆x and ∆t are the spatial and temporal step-sizes.

Nevertheless, the temperature also has a significant influence on the ionic

behavior in the cells. This must therefore be included in the Aliev-Panfilov

model in order to accurately represent the consequences of temperature changes

on the action potential. First, modifications by FitzHugh [35] and Moore [36]

include the linear changes of ionic conductances with respect to temperature

as follows:

Iion(Vm,W, T ) = η(T )Iion(Vm,W ) (5.9)

Where

η(T ) = A(1 +B(T − T0)) (5.10)

where A and B are constants and T0 is a reference temperature which, in the

case of cardiac cells, will be 37oC. Furthermore, Hodgkin and Huxley studied
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the effects of temperature on the rate of change of the conductance variables

where it was deemed appropriate to use Q10 factors to modify these variables:

G(Vm,W, T ) = φ(T )G(Vm,W ) (5.11)

where

φ(T ) = Q
(T−T0)/10
10 (5.12)

where Q10 is the said temperature coefficient. By coupling Pennes’ equation,

the bidomain tissue model and the dimensional Aliev-Panfilov cell model with

included temperature coefficients, we obtain the following system of equations:



χCm
∂Vm
∂t
−∇ · (Mi∇Vm) = ∇ · (Mi∇ue)− χIion(Vm,W, T ),

∇ · ((Mi +Me)∇ue) = −∇ · (Mi∇Vm),

∂W

∂t
= G(Vm,W, T ),

ρcp
∂T

∂t
= ∇ · (k∇T ) + bc(T

∗ − T ) + σ∇Vm · ∇Vm.

(5.13)

Therefore, in order to apply the splitting technique to solve equations 5.13,

we can perform steps 1 and 2 as detailed in section 3.4. This is followed by

one final step where the parabolic PDE of Pennes’ bioheat equation is solved
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by applying LU factorization to the following system:

−3 4 −1 0 · · · 0

−r (1 + 2r + bc∆t
ρcp

) −r 0 · · · ...

0
. . . . . . . . . . . .

...

0 · · · 0 −r (1 + 2r + bc∆t
ρcp

) −r

0 · · · 0 1 −4 3





T n+1
0

...

...

...

T n+1
l


=



0

T nj + bc∆tT ∗

ρcp
+ σ∆t

ρcp

(
V mn

j+1−V mn
j−1

2∆x

)2

...

T nj + bc∆tT ∗

ρcp
+ σ∆t

ρcp

(
V mn

j+1−V mn
j−1

2∆x

)2

0


(5.14)

where r = ∆tk/(ρcp). In this equation, V m are the results of the first parabolic

equation solver in step 2a) of section 3.4. Furthermore, Neumann boundary

conditions are used for the temperature and we applied initial conditions T 0 =

T ∗ when needed. This step is employed from t = tn to t = tn + ∆t and the

results for T n+1 are saved before advancing the solution to tn+1 = tn + ∆t and

returning to step 1 of section 3.4.

However, note that the inclusion of the joule effect causes numerical chal-

lenges as the action potential of the heart is a stiff function. As the joule effect

includes the gradient of this function, this value tends to go to infinity. This

numerical challenge has also been mentioned in Bini et al. [25]. Therefore,

small spatial step-sizes and more stable implicit methods as described in sec-

tion 3.3 will be necessary for solving these PDEs. We now have the necessary

tools to simulate the influence of temperature on the propagation of the cardiac

action potential as will be studied in the following sections.
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5.2 Effect of Temperature Changes on the APD

In order to study the realistic effects of temperature on the cardiac action

potential, we must first assign reasonable values to all the necessary constants

in equations 5.13, 5.1, 5.2, 5.10 and 5.11. For the Aliev-Panfilov model, we used

the values found in Belhamadia et al. [13]. However, to obtain a dimensional

version of the wave it was necessary to modify the model in order to obtain a

potential with a resting voltage of−85mV and peak value of 40mV as described

in the previous section. The values of the constants used in the Aliev-Panfilov

model are listed in table 5.1.

constant value
k 8
a 0.15
u1 0.2
u2 0.3
ε0 0.002
Vrest −85
Vpeak 40
Vamp Vpeak − Vrest
Va Vampa+ Vrest

Table 5.1: Constants used in dimensional Aliev-Panfilov

In the case of the bidomain tissue models, many values for the constants are

available for equation 5.3. For the surface to volume ratio χ and the capacitance

Cm, we used the calibrated parameters obtained by Franzone et al. [42]. In the

case of the conductances Mi and Me we used constant values in the longitudinal

directions. These values were taken from LeGuyader et al. [43] which were

experimentally measured from canine myocardial tissue. The above constants

are given in table 5.2.

For Pennes’ Bioheat equation 5.7, there is limited experimental data avail-

able for the heat properties of cardiac tissue [25]. However, for the values of the
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constants values units
χ 1000 cm−1

Cm 1 µF/cm2

Mi 2 µA/mV/cm
Me 3 µA/mV/cm

Table 5.2: Constants used in bidomain tissue model

thermal conductivity k, the density ρ and the heat capacity cp, experimentally

determined values for cardiac muscle were presented in Mcintosh and Ander-

son [44]. For σ, it was deemed appropriate to simply use the value for the

conductivity of the extracellular tissue. Finally, for the metabolic and blood

perfusion term bc we were unable to find an experimental equivalent for cardiac

tissue. However, in Tasaki et al. [40] [41] the heat caused by the propagation of

the electric wave in both an olfactory and myellinated nerve fiber was rapidly

reabsorbed by the medium (∼ 30ms). Therefore, despite possible differences

in behavior of myocytes to nerve cells we performed a parametric study in or-

der to reproduce this re-absorption as performed in Bini et al. [25]. For the

constants used in Pennes’ Bioheat equation please refer to table 5.3

constants values units
ρ 1.084× 10−3 kg/cm3

cp 3676 J/kg/oC
k 5.6× 10−6 J/ms/cm/oC
σ 3 µA/mV/cm
bc 8× 10−5 J/ms/cm3/oC

Table 5.3: Constants used in Pennes’ bioheat equation

As the Aliev-Panfilov model has not previously been used to study tempera-

ture effects, constants for equations 5.11 and 5.12 are not available in literature

in the context of this cell model. However, in Ashihara et al. [45], they provided

calculated values for the Q10 of both the APD and the conduction velocity (CV)
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of simulated cardiac tissue. These Q10 values can be calculated as follows:

Q10(APD) =

(
APD27oC

APD37oC

)10/(37oC−27oC)

(5.15)

Q10(CV ) =

(
CV27oC

CV37oC

)10/(37oC−27oC)

(5.16)

As we’ve determined all of the physical parameters necessary, we can begin

by numerically simulating a 1-D tissue of 10cm length. The initial condition

of Vm is 40mV when x ≥ 7cm and −85mV otherwise which provides adequate

stimulus for the electric wave. The other two initial conditions are ue = 0 and

W = 0 for the entire length of the fiber. These calculations also used ∆t = 0.1

and ∆x = 0.1 as step-sizes with a simulation time of 1200ms. Furthermore, the

APDs were calculated as the time between the two points where the potential

is 95% of its resting value of -85mV at the middle of the fiber (x = 5cm).

Additionally, a constant conduction velocity was assumed and calculated using

the time difference between the first crossing of 0.95(Vrest) at locations x = 0cm

and x = 5cm.

By using a parametric analysis we found that the constants of table 5.4

enabled us to obtain the Q10 values of table 5.5 which are near identical to

those stated in Ashihara et al. [45]. The calculated values obtained are also

very similar to those experimentally measured in Kiyosue et al. [46]. The waves

used to calculate the Q10(APD) can be seen in figure 5.1 and those used to

calculate Q10(CV ) can be seen in figure 5.2.

constants values
A 1
B 0.081
Q10 1.9

Table 5.4: Temperature constants used in Aliev-Panfilov equations
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Figure 5.1: Changes in APD used to measure Q10(APD)

T ∗ = 37oC T ∗ = 27oC Q10 measured
APD(ms) 346 694 2
CV (cm/ms) 1.28× 10−2 5.85× 10−3 2.19

Table 5.5: Measured APD, CV and Q10 values from simulation

Using these values, we could then investigate the effects of relatively small

changes in temperature on the action potential durations. From figure 5.3 we

can see that small increases in temperature significantly decreased the APD

while a decrease in temperature produced an APD increase. This behavior is

as expected when compared to experimental results [32].
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(a) Vm used to measure CV at T ∗ =
37oC

(b) Vm used to measure CV at T ∗ =
27oC

Figure 5.2: Changes in CV used to measure Q10(CV )

Figure 5.3: Changes in APD due to small modification of tissue temperature

By applying a stimulus current of Istim = 500 when 9 ≤ x ≤ 10 every

1000ms with resting initial conditions for the transmembrane potential, we can

further observe this conduct for multiple waves in the surface plots presented

in figure 5.4.
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(a) Vm at T ∗ = 37oC (b) Vm at T ∗ = 43oC

Figure 5.4: Surface plots of multiple transmembrane potential waves at different
temperatures

Furthermore, by virtue of the inclusion of Pennes’ bioheat equation to the

bidomain model it is possible to study the effect of the electrical wave prop-

agation. In figure 5.5 we present the temperature and electric waves at the

point x = 5cm. From these images, we can see that the temperature increases

by ∼ µoC whenever the transmembrane potential experiences rapid changes

in magnitude. This increase in temperature is then rapidly reabsorbed by the

medium. This behavior is similar to those found in the simulations of nerve and

intestine cells [23] [25] [47] as well as experimentally observed in myellinated

and non-myellinated nerve fibers [40] [41]. This effect has been proposed as a

potential method for detecting the tips of spiral waves in tissue [23] [25].
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(a) Vm and temperature at T ∗ = 30oC (b) Vm and temperature at T ∗ = 37oC

(c) Vm and temperature at T ∗ = 43oC

Figure 5.5: Temperature and potential waves at multiple environmental tem-
peratures

The simple Aliev-Panfilov model allows for simulations to be made in a

reasonable time frame by avoiding the necessity of solving large systems of

stiff ODEs. Therefore, the Aliev-Panfilov model which includes temperature

provided an efficient way to ensure that experimental behavior could be repli-

cated in a simplified model. However, many more physiologically relevant and

complex models have previously been solved in this thesis. Therefore, in the

following section we will attempt to use a similar approach of including tem-

perature effects in the Luo-Rudy cell model in order to increase the realism of

the results.
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5.3 Including Temperature Dependence to the

Luo-Rudy Ionic Model

The Luo-Rudy cardiac cell model provides advantages to the simplified Aliev-

Panfilov model as it attempts to accurately simulate the underlying ionic activ-

ity which influences the transmembrane potential. This allows for more options

in studying cardiac dynamics which arise from changes in ion concentrations

such as treatments with drugs [17]. Therefore, it was deemed beneficial to

attempt to include temperature effects to an ionic cardiac cell model. For

this purpose the Luo-Rudy model was used as it is the simplest ionic model

previously studied in this thesis.

When adding temperature dependence to the model, we applied the same

technique as with Aliev-Panfilov. The linear changes of ionic conductances as

represented by equation 5.10 was applied to the transmembrane term. Further-

more, the variation in the rate of change of conductances due to temperature

can be included using Q10 values as described in equation 5.12. Therefore,

these equations can be included in the Luo-Rudy model as follows:

Iion(T ) = −η(T )(Iion) (5.17)

dm

dt
= φ(T )(αm(1.0−m)− βmm) (5.18)

dh

dt
= φ(T )(αh(1.0− h)− βhh) (5.19)

dj

dt
= φ(T )(αj(1.0− j)− βjj) (5.20)

dd

dt
= φ(T )(αd(1.0− d)− βdd) (5.21)

df

dt
= φ(T )(αf (1.0− f)− βff) (5.22)

dx

dt
= φ(T )(αx(1.0− x)− βxx) (5.23)
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dCai
dt

= φ(T )(−0.0001Isi + 0.07(0.0001− Cai)) (5.24)

Where the remaining variables can be found in appendix A.2 and η(T ) and

φ(T ) corresponds to equations 5.10 and 5.12 respectively.

Unlike the simple Aliev-Panfilov model, solving the Luo-Rudy cell model

when coupled with the bidomain model offers more numerical complexity. First,

the stiff nature of the ionic model necessitates an efficient ODE solver. This con-

dition was satisfied by using the NIRK4 method whose properties are uniquely

suited for the ODEs of cardiac cell models as was discussed in chapter 4. Fur-

thermore, the increase in computational time due to this more complex ionic

model necessitated the usage of the largest step-sizes possible while retaining

accuracy. For our purposes, it was deemed that ∆t = 0.2 and ∆x = 0.05

satisfied these conditions. As with Aliev-Panfilov, the simulations were made

of a 10cm 1-D fiber for during a time interval from t = 0 to t = 1200ms. The

values of the constants used in both Pennes’ bioheat equation and the tissue

model are the same as those employed when solving Aliev-Panfilov and can be

obtained in tables 5.2 and 5.3. The initial condition used to stimulate the fiber

was Vm = 20mV when x ≥ 9cm and Vm = −85mV otherwise. For all other

initial conditions please refer to table 5.6.

Variable Initial Condition
T T ∗

ue 0
m 0.00167
h 0.928
j 1
d 0.00298
f 0
x 0.00602
Cai 0.000178

Table 5.6: Initial conditions for simulating bidomain with Luo-Rudy

However, it is still necessary to determine the values for the constants A,
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B and Q10 that will be used in the simulations. Previous work by Kiyosue et

al. [46] and Klöckner et al. [48] has experimentally shown that the Q10 values

are different for the various channel conductances. However, these Q10s are

of the same magnitude and often have very similar values. Therefore, for the

sake of simplicity our model will use only one constant value of Q10 for all the

conductances. As with Aliev-Panfilov, we manipulated the parameters Q10, A

and B in an attempt to obtain a final measured value of Q10(APD) = 2 and

Q10(CV ) = 2.2 as was obtained in Ashihara et al. [45]. The values for the

constants are given in table 5.7 while the measured APD, CV and respective

Q10 values taken where x = 5cm are presented in table 5.8. The waves used to

calculate these values are also presented in figures 5.6 and 5.7.

constants values
A 1
B 0.086
Q10 1.22

Table 5.7: Temperature constants used in Luo-Rudy equations

T ∗ = 37oC T ∗ = 27oC Q10 measured
APD(ms) 380.4 776 2.04
CV (cm/ms) 5.3× 10−2 2.45× 10−2 2.17

Table 5.8: Measured APD, CV and Q10 values from Luo-Rudy simulation

In figure 5.6, we can see that there is also a significant decrease in action

potential amplitude between the wave where T ∗ = 37oC and T ∗ = 27oC. This

was also observed to a lesser degree in the Aliev-Panfilov model as can be

seen in figure 5.1. This is consistent with behavior reported in Fenton et al.

[26] which also observed a decrease of action potential amplitude with lowering

temperature in both experiment and simulation.
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Figure 5.6: Changes in APD used to measure Q10(APD) in Luo-Rudy

Using the constants stated in table 5.7, we can once again study the effect

of small temperature changes on the electric potential. In figure 5.8, we can

once again see that a small decrease in temperature causes a significant increase

in the APD while a small increase in temperature induces the opposite when

compared to the reference temperature of T ∗ = 37oC. This is as expected from

our previous results from Aliev-Panfilov as well as experimental results [32].

Furthermore, we can once again investigate the slight heat induced by the

transmembrane potential as described by Pennes’ bioheat equation. In figure

5.9, we see that a small variation of temperature of ∼ µoC is obtained when the

potential is rapidly polarised. This behavior is similar to that presented with

Aliev-Panfilov as well as previous modelling work and experimentally detected

results (see section 5.2). However, unlike in the results of Aliev-Panfilov, there

was very little detectable changes in temperature during the repolarization
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(a) Vm used to measure CV at T ∗ =
37oC

(b) Vm used to measure CV at T ∗ =
27oC

Figure 5.7: Changes in CV used to measure Q10(CV ) in Luo-Rudy

phase of transmembrane potential. This can be attributed to the much more

gradual return to equilibrium of the wave when compared to Aliev-Panfilov.

Once again, all simulations performed in the current and in the previous

section were generated using numerical techniques programmed in C++. These

results were then analyzed in MATLAB.

By virtue of the stable and efficient NIRK4 ODE solver, it was possible to

simulate the bidomain model coupled with Luo-Rudy in order to investigate

the effects of temperature on the transmembrane potential described by this

more complex cardiac cell model. The usage of cardiac cell models in compar-

ison to simplified models was preferred as it allows for the investigation of the

effect of underlying physiological currents which is of especial interest in drug

treatment research. Using only one value for the constants Q10, A and B it was

possible to obtain results exhibiting behavior similar to both experiment and

the previous Aliev-Panfilov simulations. Furthermore, with Luo-Rudy we were

able to obtain small changes in temperature caused by the transmembrane po-

tential although the form of this wave was slightly different as previously seen

in Aliev-Panfilov.
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Figure 5.8: Effect of small temperature changes on APD in Luo-Rudy

5.4 Spiral Wave Detection with Action Poten-

tial Induced Temperature Changes

In the previous sections, we mentioned that the heat produced by the action

potential has been proposed as a possible method for detecting spiral waves

using thermal detectors. This was advocated due to the modelling work by

Bini et al. [25] [23] which found that this temperature peaks near the tip of the

spiral wave when simulating nerve cells coupled with the monodomain model.

Therefore, in this section we will investigate whether this behavior will also be

present when simulating cardiac action potentials using the bidomain model.

The detection of spiral-waves are of considerable interest to cardiac re-

searchers as the phenomena has been linked with tachycardia and fibrillation.

However, it is not possible to study spiral waves in one dimension. Therefore,

in this section it will be necessary to extend our model to a two dimensional
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(a) Vm and temperature at T ∗ = 30oC (b) Vm and temperature at T ∗ = 37oC

(c) Vm and temperature at T ∗ = 43oC

Figure 5.9: Temperature and potential waves at differing temperatures using
Luo-Rudy

surface. For this purpose, we will use the MEF++ numerical software provided

by the GIREF group at Laval University1. Our model has been simulated using

a quadratic finite element method for spatial discretization along with a fully

implicit second order scheme for the temporal derivatives. Further information

on the usage of this method for solving cardiac tissue using the Aliev-Panfilov

model can be found in Belhamadia et al. [49].

Using MEF++, we will first attempt to simulate the effect of temperature

on the regular action potential of 2-D tissue with the Aliev-Panfilov model and

then extend our work to the spiral wave.

1For more information on GIREF’s work and the MEF++ software please visit: http:

//www.giref.ulaval.ca/mef.html
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5.4.1 Regular 2-D Wave Simulations

In these simulations, we will be using identical constants as those previously

presented in the 1-D case of section 5.2. Therefore, the values of the constants

for Aliev-Panfilov, the bidomain model, Pennes’ equation and the temperature

constants can be viewed in tables 5.1, 5.2, 5.3 and 5.4 respectively. Additionally,

the values for the conductivities used are the same irrespective of direction.

Furthermore, the initial conditions applied are as follows:

Vm =

 40
√
x2 + y2 < 3

−85 otherwise

ue = 0 W = 0 T = T ∗

Where x and y are the spatial values. Finally, the 10cm × 10cm sheet was

simulated for 1300ms and the results can be seen in figure 5.10.

In figures 5.10a and 5.10b, we can see the images for the transmembrane

potentials at T ∗ = 27oC and T ∗ = 37oC obtained at a single point in time.

Here we observe that the area of the excited potential is larger for the warmer

tissue. This is due to the faster speed of propagation at higher temperatures.

Furthermore, in figures 5.10c and 5.10d we can see that a region of elevated

temperature is formed at the front of the propagating transmembrane wave.

This is as expected from the 1-D results of figure 5.5. Finally, by plotting

the values for both the action potential and the temperature at the central

point (5, 5) for the entire interval of simulation, we obtained figures 5.10e and

5.10e. From these figures we observe that the decrease in temperature produces

an increase in action potential duration as was the case in all previous 1-D

simulations. All 2-D images were produced using paraview while the plots

were generated in MATLAB.
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T ∗ = 27oC T ∗ = 37oC

(a) Vm at t=747ms (b) Vm at t=408ms

(c) 107(T − T ∗) at t=747ms (d) 107(T − T ∗) at t=408ms

(e) Vm and 107(T − T ∗) at the center
point (5,5)

(f) Vm and 107(T − T ∗) at the center
point (5,5)

Figure 5.10: 2D simulations of cardiac tissue at T ∗ = 27oC and T ∗ = 37oC
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5.4.2 2-D Spiral Wave Simulations

Now that we are confident of the accuracy of the 2-D model, we can investigate

the behavior of spiral waves. In order to produce spiral waves it is necessary

to use more realistic tissue constants. Therefore, we will employ conductivities

which differ based on the direction of the myocardial fibers. This is achieved

by employing a tensor instead of a constant for the Mi, Me and σ values in the

bidomain model. The following tensor values were obtained from Belhamadia

et al [49] and applied to our model:

Mi =

 3 0

0 0.32

 Me =

 2 0

0 1.24

 σ =

 2 0

0 1.24


In order to obtain the desired shape of the wave, we simply used a spiral

wave obtained on a fine mesh as the initial conditions. All other constants used

are identical to those provided in the previous 2-D example. Furthermore, in

these simulations a constant environmental temperature of T ∗ = 37oC was

maintained. A time evolution for the 2-D spiral wave action potential and

its induced temperature increases are presented in figure 5.11. Using figure

5.11, we can deduce that as the spiral wave evolves, an accumulation of heat

develops near the tip of the spiral wave. Thus, we have confirmed that this

property could potentially be used for detecting the location of spiral tips. All

2-D simulations were visualized using Paraview software.
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(a) Vm at t=600ms (b) 107(T − T ∗) at t=600ms

(c) Vm at t=720ms (d) 107(T − T ∗) at t=720ms

(e) Vm at t=1080ms (f) 107(T − T ∗) at t=1080ms

Figure 5.11: Spiral waves and its induced heat
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In this chapter, we presented two possible ionic models for studying the

effect of temperature changes on the electrical activity in the heart. Aliev-

Panfilov is a simplified model which has the advantage of computational ef-

ficiency. Thus, with Aliev-Panfilov it is possible to study the effects of tem-

perature in 2-D and 3-D tissue within a reasonable time frame using standard

computers. However, the added computational complexity of studying an ionic

cardiac cell model such as Luo-Rudy can be decreased significantly by using

more efficient ODE solvers such as the NIRK4 method which was introduced

in the previous chapter. The underlying physiological basis for this model al-

lows for the investigation of effects that are outside the scope of Aliev-Panfilov

such as drug treatments. Nevertheless, both models exhibited a decrease in

conduction velocity, an increase in action potential duration and a decrease

in amplitude when lowering temperature. This is consistent with both exper-

imental results and previous modelling work. Finally, using Pennes’ bioheat

equation we could simulate the heat produced by the action potential duration

due to the joule effect. This could potentially be used as a method of detecting

spiral-waves, a phenomena that is present in deadly cardiac arrhythmias. In

the following chapter, we will provide a brief conclusion of the results as well

as highlighting the possible limitations and future directions suggested by our

research.
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Chapter 6

Conclusion

Modelling the electrical activity of the heart presents numerous numerical chal-

lenges. However, these models offer insight into multiple phenomena such as

cardiac arrhythmias which have proved difficult to study in vivo. Currently,

the most accurate tissue for simulating the action potential in cardiac tissue

is that of the bidomain model. This model is comprised of a coupling of the

cellular domain, represented as a system of ODEs describing the influence of

ionic movements through the membrane on the electric potential, and the tissue

domain represented as a system of PDEs. Despite major advances in computer

technology, the stiff nature of the potentially large system of ODEs can limit

the usage of these models for realistic 3D simulations as the computational time

and resources can be very extensive. However, by using more complex and sta-

ble numerical methods, it is possible to decrease the computational time of the

cardiac cell solving component which can translate to significant decreases in

overall simulation time.

In chapter 4 of this thesis, we presented a fourth order nested implicit

Runge-Kutta method for solving the cardiac cell models. Due to its internal

explicit steps, the NIRK4 method could be simplified into one implicit equa-

tion that requires a single application of Newton’s method. This fully implicit

method was therefore deemed uniquely well suited for cardiac cell modelling
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as the increase in stability could be obtained while limiting the increase in

computational complexity caused by the large linear systems of other high or-

der implicit methods. Therefore, in order to investigate the performance of

NIRK4, we compared the computational times and accuracy of this method

with that of the more popular ESDIRK3 and SDIRK4 solvers which have pre-

viously been studied as a means of solving these systems of ODEs. In these

tests it was found that NIRK4 usually presented a decrease in computational

time and increase in accuracy for the Luo-Rudy and Fox cell models. Having

been satisfied by its performance when compared to other implicit solvers, we

attempted to investigate its capability when contending with the most popular

numerical method used in cardiac cell modelling: the Rush-Larsen method of

order 1 and 2. Therefore, we compared the step-size and computational time

in order to obtain an accuracy within 5%RRMS error of a reference solution

using the NIRK4, Rush-Larsen of order 1 and Rush-Larsen of order 2 solvers.

In these simulations, it was found that NIRK4 had superior performance when

compared to RL1 as well as performing better than RL2 in the majority of

instances. This was tested on the Luo-Rudy, Fox, Courtemanche and Tusscher

cell models which exhibit a range of complexities.

However, there are some limitations to the results presented in chapter 4.

First, most coupling techniques used when combining the cell and tissue models

are limited to first and second orders of accuracy. Therefore, the high degree of

accuracy of NIRK4 would be restricted to that of this coupling method. Never-

theless, due to the increase in stability of NIRK4 it is believed that the resulting

usage of larger step-sizes could produce an overall decrease in computational

time. This behavior was observed in the comparisons between NIRK4 and

the RL1 and RL2 methods. In order to ensure that the advantages of NIRK4

continue when simulating cardiac tissue, it would be beneficial to compare the

performance of NIRK4 with other solvers when simulating cardiac tissue using

the bidomain model.
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By coupling the NIRK4 solver with implicit elliptic and parabolic PDE

solvers, it was possible to accurately simulate cardiac tissue. However, the

models presented up to this point did not include any influence that could be

caused by temperature effects. This can be of especial interest to heart tissue

modellers as recent studies have investigated the influence of temperature on

action potential duration: a property associated with the formation of spiral-

waves and arrhytmias. Therefore, by including terms which reflect both the

linear changes and variations in the rate of changes of ionic conductances due to

temperature, it was possible to modify the Aliev-Panfilov and Luo-Rudy models

in order to add temperature dependence. With these models, we observed

increases in action potential durations and decreases in conduction velocities

with the lowering of environmental temperature. This resulted in measured

Q10s for the CVs and APDs similar to those previously provided in literature.

Furthermore, using Pennes’ bioheat equation coupled with the bidomain model

and the joule effect, we could simulate the heat produced by the transmembrane

potential. This effect can be used as a possible method for detecting spiral

waves in cardiac tissue as can be seen in the series of spiral wave images.

Nevertheless, a limitation of the temperature dependent cardiac models

presented is the lack of experimental results. As there is very little information

available for heat produced by the transmembrane potential in the heart, it

was necessary to verify our results with that of nerve models when choosing

the values of the constants in the bioheat equation. Furthermore, the values

of the Q10s in the Luo-Rudy model were assumed to be the same regardless

of the ionic conductances which is not experimentally accurate. This could

have a non-physiological influence on the properties of the action potential

results. Nevertheless, until more experimental data is available it is necessary

to make reasonable assumptions in order to obtain results which exhibit realistic

behavior. In future studies, it will be advantageous to study the possible usage

of temperature modifications as a means of controlling spiral waves.
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Using a first order splitting technique with implicit PDE solvers and a

new efficient and stable fourth order Runge-Kutta method, it was possible to

simultaneously simulate the action potential dependence on temperature as well

as the heat produced by this electric wave. With this tool, the investigation of

interesting temperature based phenomena can be studied.
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Appendix A

Cardiac Cell Models

A.1 Hodgkin-Huxley Model

ER = −75 (A.1)

Cm = 1 (A.2)

ENa = ER + 115 (A.3)

EK = ER− 12 (A.4)

EL = ER + 10.613 (A.5)

gNa = 120 (A.6)

gK = 36 (A.7)

gL = 0.3 (A.8)

αm =
−0.1(V + 50)

exp(−0.1(V + 50))− 1
(A.9)

βm = 4 exp(−(V + 75)/18) (A.10)

αh = 0.07 exp(−(V + 75)/20) (A.11)
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βh =
1

(exp(−0.1(V + 45)) + 1)
(A.12)

αn =
(−0.01(V + 65))

(exp(−0.1(V + 65))− 1)
(A.13)

βn = 0.125 exp((V + 75)/80) (A.14)

INa = gNam
3h(V − ENa) (A.15)

IK = gKn
4(V − EK) (A.16)

IL = gL(V − EL) (A.17)

Iion = INa + IK + IL (A.18)

dV

dt
=
−(Iion− Is)

Cm
(A.19)

dm

dt
= ((αm(1−m))− (βmm)) (A.20)

dh

dt
= ((αh(1− h))− (βhh)) (A.21)

dn

dt
= ((αn(1− n))− (βnn)) (A.22)

A.2 Luo-Rudy I model

I =

 −25.5 0 ≤ t ≤ 1

0 otherwise
(A.23)

Kplusi = 145.0 (A.24)

Kpluse = 5.4 (A.25)

Naplusi = 18.0 (A.26)

Napluse = 140.0 (A.27)
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gNa = 23.0 (A.28)

gKp = 1.83 ∗ 10.0−2.0 (A.29)

gb = 3.921 ∗ 10.0−2.0 (A.30)

Cm = 1.0 (A.31)

Eb = −59.87 (A.32)

R = 8314.0 (A.33)

T = 310.0 (A.34)

F = 96484.6 (A.35)

PR = 1.833 ∗ 10.0−2.0 (A.36)

ENa =
RT

F
log(

Napluse

Naplusi
) (A.37)

αx = (5.0 ∗ 10.0−4.0)
(exp(0.083(V + 50.0))

exp(0.057(V + 50.0)) + 1.0
(A.38)

βx = (1.3 ∗ 10.0−3.0)
exp(−0.06(V + 20.0)

(exp(−0.04(V + 20.0)) + 1.0
(A.39)

αm =
0.32(V + 47.13)

1.0− exp(−0.1(V + 47.13))
(A.40)

βm = 0.08 exp(
−V
11.0

) (A.41)

αd = (0.095)
exp(−0.01(V − 5.0))

(exp(−0.072(V − 5.0)) + 1.0)
(A.42)

βd = 0.07
exp(−0.017(V + 44.0))

exp(0.05(V + 44.0)) + 1.0
(A.43)

αf = 0.012
exp(−0.008(V + 28.0))

exp(0.15(V + 28.0)) + 1.0
(A.44)

βf = 0.0065
exp(−0.02(V + 30.0))

exp(−0.2(V + 30.0)) + 1.0
(A.45)
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αh =

 0 V ≥ −40

alphah = 0.135 exp(−80.0−V
6.8

); otherwise
(A.46)

βh =


1.0

0.13(1.0+exp(
−(V +10.66)

11.1
)

V ≥ −40

3.56 exp(0.079V ) + (3.1(10.05.0) exp(0.35V )) otherwise
(A.47)

αj =

 0 V ≥ −40

(−1.2714(10.05.0) exp(0.2444V )−3.474(10.0−5.0) exp(−0.04391V ))(V+37.78)
1+exp(0.311(V+79.23))

otherwise

(A.48)

βj =


0.3 exp(−2.535∗(10.0−7.0)V )

1.0+exp(−0.1(V+32.0))
; V ≥ −40

0.1212 exp(−0.01052V )
1.0+exp(−0.1378(V+40.14))

; otherwise
(A.49)

Esi = 7.7− (13.0287 log(Cai)) (A.50)

Isi = 0.09d ∗ f(V − Esi) (A.51)

gK1 = 0.6047

√
Kpluse

5.4
(A.52)

EK1 =
RT

F
log(

Kpluse

Kplusi
) (A.53)

EK =
RT

F
log(

(Kpluse) + (PR ∗Napluse)
Kplusi+ (PR ∗Naplusi)

) (A.54)

Xi =

 1 V ≤ −100

2.837(exp(0.04(V+77.0))−1.0)
(V+77.0) exp(0.04(V+35.0))

otherwise
(A.55)

gK = 0.282

√
Kpluse

5.4
(A.56)

IK = gK ∗ x ∗Xi(V − EK) (A.57)
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gamma = exp(0.06175 ∗ (V − EK1− 594.31)) (A.58)

αK1 =
1.02

1 + exp(0.2385 ∗ (V − EK1− 59.215))
(A.59)

βK1 =
0.49124 exp(0.08032(V − EK1 + 5.476)) + gamma

1.0 + exp(−0.5143(V − EK1 + 4.753))
(A.60)

K1infinity =
αK1

αK1 + βK1

(A.61)

IK1 = gK1 ∗K1infinity(V − EK1) (A.62)

EKp = EK1 (A.63)

Kp =
1.0

1.0 + exp(7.488−V
5.98

)
(A.64)

IKp = gKp ∗Kp ∗ (V − EKp) (A.65)

Ib = gb ∗ (V − Eb) (A.66)

INa = gNa(m3.0) ∗ h ∗ j ∗ (V − ENa) (A.67)

Iion = INa+ Isi+ IK + IK1 + IKp+ Ib (A.68)

dV

dt
=
−(Iion+ I)

Cm
(A.69)

dm

dt
= αm(1.0−m)− βm ∗m (A.70)

dh

dt
= αh(1.0− h)− βh ∗ h (A.71)

dj

dt
= αj ∗ (1.0− j)− βj ∗ j (A.72)

dd

dt
= αd(1.0− d)− βd ∗ d (A.73)

df

dt
= αf ∗ (1.0− f)− βf ∗ f (A.74)

dx

dt
= αx(1.0− x)− βx ∗ x (A.75)

dCai
dt

= −0.0001 ∗ Isi+ 0.07 ∗ (0.0001− Cai) (A.76)
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A.3 Fox model

I =

 −80 0 ≤ t ≤ 1

0 otherwise
(A.77)

dV

dt
= −(iNa+iCa+iCaK+iKr+iKs+ito+iK1+iKp+iNaCa+iNaK+ipCa+iNab+iCab+I)

(A.78)

ENa =
RT

F
ln(Nao/Nai) (A.79)

iNa = gNam
3hj(V − ENa) (A.80)

E0m = V + 47.13 (A.81)

αm =
0.32E0m

1− exp(−(0.1) ∗ E0m)
(A.82)

βm = 0.08 exp(−(V )/11) (A.83)

dm

dt
= αm(1−m)− βmm (A.84)

αh = 0.135 exp((V + 80− shifth)/− (6.8)) (A.85)

βh =
7.5

1 + exp(−(0.1)(V + 11− shifth))
(A.86)
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dh

dt
= αh(1− h)− βhh (A.87)

αj = 0.175
exp(

V+100−shiftj
−23

)

1 + exp(0.15(V + 79− shiftj))
(A.88)

βj = 0.31 + exp(−(0.1)(V + 32− shiftj)) (A.89)

dj

dt
= αj(1− j)− βjj (A.90)

iK1 =
gK1K1infinityKo

(Ko +KmK1)(V − EK)
(A.91)

K1infinity =
1

2 + exp(1.62F
RT

(V − EK))
(A.92)

EK =
RT

F
ln(

Ko

Ki

) (A.93)

RV =
1

1 + 2.5 exp(0.1(V + 28))
(A.94)

iKr = gKrRVXkr

√
Ko/4(V − EK) (A.95)

Xkrinf =
1

1 + exp(−(2.182)− 0.1819V )
(A.96)

tauXkr = 43 +
1

exp(−(5.495) + 0.1691V ) + exp(−(7.677)− 0.0128V )
(A.97)
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dXkr

dt
=
Xkrinf −Xkr

tauXkr
(A.98)

EKs =
RT

F
ln(

Ko + 0.01833Nao
Ki + 0.01833Nai

) (A.99)

iKs = gKsX
2
ks(V − EKs) (A.100)

Xksinfinity =
1

1 + exp(V−16
−13.6

)
(A.101)

tauXks =
1

0.0000719 V−10
1−exp(−(0.148)(V−10))

+ 0.000131 V−10
exp(0.0687(V−10))−1

(A.102)

dXks

dt
=
Xksinfinity −Xks

tauXks
(A.103)

ito = gtoXtoYto(V − EK) (A.104)

αXto = 0.04516 exp(0.03577V ) (A.105)

βXto = 0.0989 exp(−0.06237V ) (A.106)

dXto

dt
= αXto(1−Xto)− betaXtoXto (A.107)

αY to =
0.005415 exp(V+33.5

−5
)

1 + 0.051335 exp(V+33.5
−5

)
(A.108)
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βY to =
0.005415 exp(V+33.5

5
)

1 + 0.051335 exp(V+33.5
5

)
(A.109)

dYto
dt

= αY to(1− Yto)− βY toYto (A.110)

iKp = gKpKpV (V − EK) (A.111)

KpV =
1

1 + exp(7.488−V
5.98

)
(A.112)

fNaK =
1

1 + 0.1245 exp(−(0.1)V F
RT

) + 0.0365sigma exp(−V F
RT

)
(A.113)

sigma =
1

7
∗ (exp(

Nao
67.3

)− 1) (A.114)

iNaK =
iNaKmaxfNaK(1 + (KmNai

Nai

1.5
))Ko

Ko +KmKo

(A.115)

iNaCa =
KNaCa

((K3
mNa) + (Na3

o))(KmCa + Cao)(1 +Ksat exp((eta− 1)V F
RT

))
∗

(exp(eta ∗ V F

RT
)(Na3

i )Cao − exp((eta− 1)V
F

RT
)(Na3

o)Cai) (A.116)

ipCa =
ipCamaxCai
KmpCa + Cai

(A.117)

ECa =
RT

2F
ln(

Cao
Cai

) (A.118)
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iCab = gCab(V − ECa) (A.119)

iNab = gNab(V − ENa) (A.120)

iCa = iCamaxfdfCa (A.121)

iCamax =

PCa
Csc

4V ∗F 2

RT
(Cai ∗ exp(2V F

RT
)− 0.341Cao)

exp(2V F
RT

)− 1
(A.122)

iCaK =

PCaK

Csc
f ∗ d ∗ fCa

1+
iCamax
iCahalf

1000V ∗ F 2

RT
(Ki ∗ exp(V F

RT
)−Ko)

exp(V F
RT

)− 1
(A.123)

finfinity =
1

1 + exp(V+12.5
5

)
(A.124)

tauf = 30 +
200

1 + exp(V+20
9.5

)
(A.125)

df

dt
=
finfinity − f

tauf
(A.126)

dinfinity =
1

1 + exp( V+10
−(6.24)

)
(A.127)

E0m = V + 40 (A.128)

taud =
1

0.25 exp(−(0.01)V )
1+exp(−(0.07)V )

+ 0.07 exp(−(0.05)∗E0m)
1+exp(0.05E0m)

(A.129)
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d(d)

dt
=
dinfinity − d

taud
(A.130)

fCainfinity =
1

1 + ( Cai
KmfCa

)3
(A.131)

taufCa = 30 (A.132)

dfCa
dt

=
fCainfinity − fCa

taufCa
(A.133)

Jup =
Vup

1 + (Kmup

Cai
)2

(A.134)

gamma =
1

1 + ( 2000
CaSR

)3
(A.135)

Jrel =
Prelf ∗ d ∗ fCa(gamma ∗ CaSR − Cai)

1 + 1.65 exp( V
20

)
(A.136)

Jleak = Pleak(CaSR − Cai) (A.137)

βSR =
1

1 +
CSQNtotKmCSQN

(KmCSQN+CaSR)2

(A.138)

dCaSR
dt

=
βSR(Jup − Jleak − Jrel)Vmyo

VSR
(A.139)

βi =
1

1 + CMDNtot∗KmCMDN

(KmCMDN+Cai)2

(A.140)
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dCai
dt

= βi(Jrel+Jleak−Jup−(
ACap ∗ Csc
2F ∗ Vmyo

∗(iCa+iCab+ipCa−2∗iNaCa)) (A.141)

variable value variable value variable value

V -94.7 R 8.314 T 310

F 96.5 gNa 12.8 m 0.00024676

h 0.99869 shifth 0 j 0.99887

shitj 0 gK1 2.8 KmK1 13

gKr 0.136 XKr 0.229 gKs 0.0245

Xks 0.0001 gto 0.23815 Xto 0.00003742

Yto 1 gKp 0.002216 iNaKmax 0.693

KmNai 10 KmKo 1.5 KmCa 1380

KmNa 87.5 KNaCa 1500 Ksat 0.2

eta 0.35 KmpCa 0.05 ipCamax 0.05

gCab 0.0003842 gNab 0.0031 PCa 0.0000226

PCaK 0.000000579 iCahalf -0.265 Csc 1

f 0.983 d 0.0001 fCa 0.942

Cai 0.0472 KmCMDN 2 CMDNtot 10

Vmyo 0.00002584 ACap 0.0001534 CaSR 320

Pleak 0.000001 KmCSQN 600 CSQNtot 10000

Vup 0.1 Kmup 0.32 Nai 10

Ki 149.4 Ko 4 KmfCa 0.18

Prel 6 VSR 0.000002 Nao 138

Cao 2000
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A.4 Courtemanche model

variable value variable value variable value

V -81.18 R 8.3143 T 310.0

F 96.4867 Cm 100.0 stimstart 50.0

stimduration 2.0 stimamplitude -2000.0 gNa 7.8

m 2.908e-3 h 9.649e-1 j 9.775e-1

gK1 0.09 KQ10 3.0 gto 0.1652

oa 3.043e-2 oi 9.992e-1 ua 4.966e-3

ui 9.986e-1 gKr 0.029411765 xr 3.296e-5

gKs 0.12941176 xs 1.869e-2 gCaL 0.12375

d 1.367e-4 f 9.996e-1 fCa 7.755e-1

KmNai 10.0 KmKo 1.5 iNaKmax 0.59933874

gBNa 0.0006744375 gBCa 0.001131 gBK 0.0

INaCamax 1600.0 KmNa 87.5 KmCa 1.38

Ksat 0.1 gamma 0.35 iCaPmax 0.275

Krel 30.0 u 2.35e-112 v 1.0

w 0.9992 tautr 180.0 Iupmax 0.005

Kup 0.00092 Caupmax 15.0 CMDNmax 0.05

TRPNmax 0.07 CSQNmax 10.0 KmCMDN 0.00238

KmTRPN 0.0005 KmCSQN 0.8 Nai 1.117e1

Cai 1.013e-4 Ki 1.39e2 Carel 1.488

Caup 1.488 Vcell 20100.0 Nao 140.0

Cao 1.8 Ko 5.4

ENa =
RT

F
log(

Nao
Nai

) (A.142)

iNa = Cm ∗ gNam3h ∗ j ∗ (V − ENa) (A.143)
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αm =

 3.2 V = −47.13

0.32V+47.13
/

1.0− exp(−(0.1)(V + 47.13)) otherwise
(A.144)

βm = 0.08 exp(
−(V )

11.0
) (A.145)

minf =
αm

αm + βm
(A.146)

taum =
1.0

αm + βm
(A.147)

dm

dt
=
minf −m
taum

(A.148)

αh =

 0.135 exp(V+80.0
−(6.8)

) V < −40

0 otherwise
(A.149)

βh =

 3.56 exp(0.079V ) + 3.1E5 ∗ exp(0.35V ) V < −40

1.0
0.13(1.0+exp(V +10.66

−11.1
))

otherwise
(A.150)

hinf =
αh

αh + βh
(A.151)

tauh =
1.0

αh + βh
(A.152)

dh

dt
=
hinf − h
tauh

(A.153)
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αj =


(−(1.2714E5) exp(0.2444∗V )−(3.474E−5) exp(−(0.04391)V ))(V+37.78)

1.0+exp(0.311(V+79.23))
V < −40

0 otherwise

(A.154)

βj =

 0.1212 exp(−(0.01052)V )
1.0+exp(−(0.1378)(V+40.14))

V < −40

0.3 exp(−(2.535E−7)V )
1.0+exp(−(0.1)(V+32.0))

otherwise
(A.155)

jinf =
αj

αj + βj
(A.156)

tauj =
1.0

αj + βj
(A.157)

dj

dt
=
jinf − j
tauj

(A.158)

EK =
RT

F
log(

Ko

Ki

) (A.159)

iK1 = Cm ∗ gK1
V − EK

1 + exp(0.07(V + 80.0))
(A.160)

ito = Cm ∗ gto ∗ oa3.0 ∗ oi(V − EK) (A.161)

αoa = 0.65(exp(
V −−(10.0)

−(8.5)
) + exp(

V −−(10.0)− 40.0

−(59.0)
))−(1.0) (A.162)

βoa = 0.65(2.5 + exp(
V −−(10.0) + 72.0

17.0
))−(1.0) (A.163)
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tauoa =
(αoa + βoa)

−(1)

KQ10

(A.164)

oainfinity = (1.0 + exp(
V −−(10.0) + 10.47

−(17.54)
)−(1.0) (A.165)

doa

dt
=
oainfinity − oa

tauoa
(A.166)

αoi = (18.53 + 1.0 ∗ exp(
V −−(10.0) + 103.7

10.95
))−(1.0) (A.167)

βoi = (35.56 + 1.0 ∗ exp(
V −−(10.0)− 8.74

−(7.44)
))−(1.0) (A.168)

tauoi =
(alphaoi + betaoi)

−(1.0)

KQ10

(A.169)

oiinfinity = (1.0 + exp(
V −−(10.0) + 33.1

5.3
))−(1.0) (A.170)

doi

dt
=
oiinfinity − oi

tauoi
(A.171)

gKur = 0.005 +
0.05

1.0 + exp(V−15.0
−(13.0)

)
(A.172)

iKur = Cm ∗ gKur ∗ ua3.0 ∗ ui(V − EK) (A.173)

αua = 0.65(exp(
V −−(10.0)

−(8.5)
) + exp(

V −−(10.0)− 40.0

−(59.0)
))−(1.0) (A.174)
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βua = 0.65(2.5 + exp(
V −−(10.0) + 72.0

17.0
))−(1.0) (A.175)

tauua =
(alphaua + betaua)

−(1.0)

KQ10

(A.176)

uainfinity = (1.0 + exp(
V −−(10.0) + 20.3

−(9.6)
))−(1.0) (A.177)

dua

dt
=
uainfinity − ua

tauua
(A.178)

αui = (21.0 + 1.0 ∗ exp(
V −−(10.0)− 195.0

−(28.0)
))−(1.0) (A.179)

βui =
1.0

exp(V−−(10.0)−168.0
−(16.0)

)
(A.180)

tauui =
(αui + βui)

−(1.0)

KQ10

(A.181)

uiinfinity = (1 + exp(
V −−(10.0)− 109.45

27.48
))−(1.0) (A.182)

dui

dt
=
uiinfinity − ui

tauui
(A.183)

iKr = Cm ∗ gKr ∗ xr ∗
V − EK

1.0 + exp(V+15.0
22.4

)
(A.184)

αxr =

 0.0015 |V + 14.1| < 1E − 10

0.0003 ∗ V+14.1
1.0−exp(V +14.1

−(5.0)
)
otherwise

(A.185)
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βxr =

 3.7836118E − 4 |V − 3.3328| < 1E − 10

0.000073898 ∗ (V−3.3328)

exp(V −3.3328
5.1237

)−1.0
otherwise

(A.186)

tauxr = (αxr + βxr)
−(1.0) (A.187)

xrinfinity = (1.0 + exp(
V + 14.1

−(6.5)
))−(1.0) (A.188)

dxr

dt
=
xrinfinity − xr

tauxr
(A.189)

iKs = Cm ∗ gKs ∗ (xs2.0(V − EK) (A.190)

αxs =

 0.00068 |V − 19.9| < 1E − 10

0.00004 (V−19.9)

1.0−exp(V −19.9
−(17.0)

)
otherwise

(A.191)

βxs =

 0.000315 |V − 19.9| < 1E − 10

0.000035 (V−19.9)

exp(V −19.9
9.0

)−1.0
otherwise

(A.192)

tauxs = 0.5(αxs + βxs)
−(1.0) (A.193)

xsinfinity = (1.0 + exp(
V − 19.9

−(12.7)
))−(0.5) (A.194)

dxs

dt
=
xsinfinity − xs

tauxs
(A.195)
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iCaL = Cm ∗ gCaL ∗ d ∗ f ∗ fCa(V − 65.0) (A.196)

dinfinity = (1.0 + exp(
V + 10.0

−(8.0)
))−(1.0) (A.197)

taud =


4.579

1.0+exp(V +10.0
−(6.24)

)
|V + 10| < 1E − 10

1.0−exp(V +10.0
−(6.24)

)

0.035(V+10.0)(1.0+exp(V +10.0
−(6.24)

))
otherwise

(A.198)

dd

dt
=
dinfinity − d

taud
(A.199)

finfinity =
exp(−(V+28.0)

6.9
)

1.0 + exp(−(V+28.0)
6.9

)
(A.200)

tauf = 9.0(0.0197 ∗ exp(−(0.03372.0)(V + 10)2.0) + 0.02)−(1.0) (A.201)

df

dt
=
finfinity − f

tauf
(A.202)

fCainfinity = (1.0 +
Cai

0.00035
)−(1.0) (A.203)

taufCa = 2.0; (A.204)

dfCa
dt

=
fCainfinity − fCa

taufCa
(A.205)

sigma =
1.0

7.0
∗ (exp(

Nao
67.3

)− 1.0) (A.206)
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fNaK = (1.0 + 0.1245 exp(
−(0.1)FV

RT
) + 0.0365sigma ∗ exp(

−(F )V

RT
))−(1.0)

(A.207)

iNaK = Cm ∗ iNaKmax ∗ fNaK ∗
1.0

1.0 + (KmNai
Nai

)1.5
∗ Ko

Ko +KmKo

(A.208)

ECa =
RT

2.0F
∗ log(

Cao
Cai

) (A.209)

iBNa = Cm ∗ gBNa ∗ (V − ENa) (A.210)

iBCa = Cm ∗ gBCa(V − ECa) (A.211)

iBK = Cm ∗ gBK(V − EK) (A.212)

iNaCa =Cm ∗ INaCamax×

exp(gamma∗F∗V
RT

)(Na3.0
i )Cao − exp( (gamma−1.0)∗F∗V

(RT )
)(Na3.0

o )Cai

(K3.0
mNa +Na3.0

o ) ∗ (KmCa + Cao) ∗ (1.0 +Ksat exp( (gamma−1.0)V ∗F
RT

))
(A.213)

iCaP = Cm ∗ iCaPmax
Cai

0.0005 + Cai
(A.214)

Vrel = 0.0048Vcell (A.215)

irel = Krel(u
2.0) ∗ v ∗ w ∗ (Carel − Cai) (A.216)
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Fn = 1.0E3(1.0E− 15 ∗Vrel ∗ irel−
1.0E − 15

2.0F
∗ (0.5iCaL− 0.2iNaCa)) (A.217)

tauu = 8.0 (A.218)

uinfinity = (1.0 + exp(
−(Fn− 3.4175E − 13)

13.67E − 16
))−(1.0) (A.219)

du

dt
=
uinfinity − u

tauu
(A.220)

tauv = 1.91 + 2.09(1.0 + exp(−Fn− 3.4175E − 13

13.67E − 16
))−(1.0) (A.221)

vinfinity = 1.0− (1.0 + exp(−(Fn− 6.835E − 14)

13.67E − 16
))−(1.0) (A.222)

dv

dt
=
vinfinity − v

tauv
(A.223)

tauw =


6.0∗0.2

1.3
|V − 7.9| < 1E − 10

6.0 ∗ (1.0−exp(
−(V −7.9)

5.0
))

(1.0+0.3 exp(
−(V −7.9)

5.0
))1.0(V−7.9)

otherwise
(A.224)

winfinity = 1.0− (1.0 + exp(
−(V − 40.0)

17.0
))−(1.0) (A.225)

dw

dt
=
winfinity − w

tauw
(A.226)
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itr =
Caup − Carel

tautr
(A.227)

iup =
Iupmax

1 + Kup

Cai

(A.228)

iupleak = Iupmax ∗
Caup

Caupmax
(A.229)

CaCMDN = CMDNmax ∗
Cai

Cai +KmCMDN

(A.230)

CaTRPN = TRPNmax ∗
Cai

Cai +KmTRPN

(A.231)

CaCSQN = CSQNmax ∗
Carel

Carel +KmCSQN

(A.232)

Vi = Vcell ∗ 0.68 (A.233)

Vup = 0.0552Vcell (A.234)

dNai
dt

=
−(3.0) ∗ iNaK − (3.0 ∗ iNaCa + iBNa + iNa)

ViF
(A.235)

dKi

dt
=

2.0iNaK − (iK1 + ito + iKur + iKr + iKs + iBK)

Vi ∗ F
(A.236)

B1 =
2.0iNaCa − (iCaP + iCaL + iBCa)

2.0Vi ∗ F
+
Vup ∗ (iupleak − iup) + irel ∗ Vrel

Vi
(A.237)
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B2 = 1.0+TRPNmax∗
KmTRPN

(Cai +KmTRPN)2.0
+CMDNmax∗

KmCMDN

(Cai +KmCMDN)2.0

(A.238)

dCai
dt

=
B1

B2
(A.239)

dCaup
dt

= iup − (iupleak + itr ∗
Vrel
Vup

) (A.240)

dCarel
dt

= (itr − irel)(1.0 + CSQNmax ∗
KmCSQN

(Carel +KmCSQN)2.0
)−(1.0) (A.241)

ist =

 stimamplitude stimstart ≤ t ≤ stimstart + stimduration

0 otherwise
(A.242)

Iion = iNa+ iK1 + ito+ iKur+ iKr+ iKs+ iBNa+ iBCa+ iNaK + iCaP + iNaCa+ iCaL

(A.243)

dV

dt
=
−(Iion + ist)

Cm
(A.244)
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A.5 Tusscher model

variable value variable value variable value

V -85.423 R 8314.472 T 310.0

F 96485.3415 Cm 0.185 Vc 0.016404

stimstart 10.0 stimduration 1.0 stimamplitude 52.0

stimamplitude 0 Pkna 0.03 gK1 5.405

gKr 0.153 Xr1 0.0165 Xr2 0.473

gKs 0.098 Xs 0.0174 gNa 14.838

m 0.00165 h 0.749 j 0.6788

gbna 0.00029 gCaL 0.0000398 d 3.288e-5

f 0.7026 f2 0.9526 fCass 0.9942

gbca 0.000592 gto 0.294 s 0.999998

r 2.347e-8 PNaK 2.724 Kmk 1.0

KmNa 40.0 KNaCa 1000.0 Ksat 0.1

α 2.5 gamma 0.35 KmCa 1.38

KmNai 87.5 gpCa 0.1238 KpCa 0.0005

gpK 0.0146 Cao 2.0 Rprime 0.8978

Cai 0.000153 CaSR 4.272 Cass 0.00042

k1prime 0.15 k2prime 0.045 k3 0.06

k4 0.005 EC 1.5 maxsr 2.5

minsr 1.0 Vrel 0.102 Vxfer 0.0038

Kup 0.00025 Vleak 0.00036 V maxup 0.006375

Bufc 0.2 Kbufc 0.001 Bufsr 10.0

Kbufsr 0.3 Bufss 0.4 Kbufss 0.00025

Vsr 0.001094 Vss 0.00005468 Nai 10.132

Nao 140.0 Ki 138.52 Ko 5.4

iStim =

 −stimamplitude stimstart ≤ t ≤ stimstart + stimduration

0 otherwise
(A.245)
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ENa =
RT

F
log(

Nao
Nai

) (A.246)

EK =
RT

F
log(

Ko

Ki

) (A.247)

EKs =
RT

F
log(

Ko + Pkna ∗Nao
Ki + Pkna ∗Nai

) (A.248)

ECa =
0.5 ∗RT

F
log(

Cao
Cai

) (A.249)

αK1 =
0.1

1.0 + exp(0.06(V − EK − 200.0))
(A.250)

βK1 =
3.0 exp(0.0002(V − EK + 100.0)) + exp(0.1(V − EK − 10.0))

1.0 + exp(−(0.5)(V − EK))
(A.251)

xK1inf =
αK1

αK1 + βK1

(A.252)

iK1 = gK1 ∗ xK1inf

√
Ko

5.4
(V − EK) (A.253)

iKr = gKr

√
Ko

5.4
∗Xr1 ∗Xr2(V − EK) (A.254)

xr1inf =
1.0

1.0 + exp(−(26.0)−V
7.0

)
(A.255)

αxr1 =
450.0

1.0 + exp(−(45.0)−V
10.0

)
(A.256)
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βxr1 =
6.0

1.0 + exp(V+30.0
11.5

)
(A.257)

tauxr1 = αxr1 ∗ βxr1 (A.258)

dXr1

dt
=
xr1inf −Xr1

tauxr1
(A.259)

xr2inf =
1.0

1.0 + exp(V+88.0
24.0

)
(A.260)

αxr2 =
3.0

1.0 + exp(−(60.0)−V
20.0

)
(A.261)

βxr2 =
1.12

1 + exp(V−60.0
20.0

)
(A.262)

tauxr2 = αxr2 ∗ βxr2 (A.263)

dXr2

dt
=
xr2inf −Xr2

tauxr2
(A.264)

iKs = gKs(Xs
2.0)(V − EKs) (A.265)

xsinf =
1.0

1.0 + exp(−(5.0)−V
14.0

)
(A.266)

αxs =
1400.0√

1.0 + exp(5.0−V
6.0

)
(A.267)

βxs =
1.0

1.0 + exp(V−35.0
15.0

)
(A.268)
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tauxs = αxs ∗ βxs + 80.0 (A.269)

dXs

dt
=
xsinf −Xs
tauxs

(A.270)

iNa = gNa(m
3.0)h ∗ j(V − ENa) (A.271)

minf =
1.0

(1.0 + exp(−(56.86)−V
9.03

))2.0
(A.272)

αm =
1.0

1.0 + exp(−(60.0)−V
5.0

)
(A.273)

βm =
0.1

1.0 + exp(V+35.0
5.0

)
+

0.1

1.0 + exp(V−50.0
200.0

)
(A.274)

taum = αm ∗ βm (A.275)

dm

dt
=
minf −m
taum

(A.276)

hinf =
1.0

(1.0 + exp(V+71.55
7.43

))2.0
(A.277)

αh =

 0.057 exp(−(V+80.0)
6.8

) V < −40

0 otherwise
(A.278)

βh =

 2.7 exp(0.079V ) + 310000.0 exp(0.3485V ) V < −40

0.77
0.13(1.0+exp(V +10.66

−(11.1)
))

otherwise
(A.279)
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tauh =
1.0

αh + βh
(A.280)

dh

dt
=
hinf − h
tauh

(A.281)

jinf =
1.0

(1.0 + exp(V+71.55
7.43

))2.0
(A.282)

αj =


(−(25428.0) exp(0.2444V )−6.948E−6∗exp(−(0.04391)V ))(V+37.78)

1.0+exp(0.311(V+79.23))
V < −40

0 otherwise

(A.283)

βj =

 0.02424 exp(−(0.01052)∗V )
1.0+exp(−(0.1378)(V+40.14))

V < −40

0.6 exp(0.057V )
1.0+exp(−(0.1)(V+32.0))

otherwise
(A.284)

tauj =
1.0

αj + βj
(A.285)

dj

dt
=
jinf − j
tauj

(A.286)

ibNa = gbna ∗ (V − ENa) (A.287)

iCaL =gCaL ∗ d ∗ f ∗ f2 ∗ fCass ∗ 4.0(V − 15.0)
(F 2.0)

RT
×

0.25 ∗ Cass ∗ exp(2.0 ∗ (V − 15.0) ∗ F
RT

)− Cao
exp(2.0 ∗ (V − 15.0) ∗ F

RT
)− 1.0

(A.288)

dinf =
1.0

1.0 + exp(−(8.0)−V
7.5

)
(A.289)
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αd =
1.4

1.0 + exp(−(35.0)−V
13.0

)
+ 0.25 (A.290)

βd =
1.4

1.0 + exp(V+5.0
5.0

)
(A.291)

gammad =
1.0

1.0 + exp(50.0−V
20.0

)
(A.292)

taud = αd ∗ βd + gammad (A.293)

dd

dt
=
dinf − d
taud

(A.294)

finf =
1.0

1.0 + exp(V+20.0
7.0

)
(A.295)

tauf = 1102.5 exp(
−((V + 27.0)2.0)

225.0
)+

200.0

1.0 + exp(13.0−V
10.0

)
+

180.0

1.0 + exp(V+30.0
10.0

)
+20.0

(A.296)

df

dt
=
finf − f
tauf

(A.297)

f2inf =
0.67

1.0 + exp(V+35.0
7.0

)
+ 0.33 (A.298)

tauf2 = 562.0 exp(
−((V + 27.0)2.0)

240.0
) +

31.0

1.0 + exp(25.0−V
10.0

)
+

80.0

1.0 + exp(V+30.0
10.0

)
(A.299)
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df2

dt
=
f2inf − f2

tauf2

(A.300)

fCassinf =
0.6

1.0 + (Cass
0.05

)2.0
+ 0.4 (A.301)

taufCass =
80.0

1.0 + (Cass
0.05

)2.0
+ 2.0 (A.302)

dfCass

dt
=
fCassinf − fCass

taufCass
(A.303)

ibCa = gbca ∗ (V − ECa) (A.304)

ito = gto ∗ r ∗ s(V − EK) (A.305)

sinf =
1.0

1.0 + exp(V+20
5.0

)
(A.306)

taus = 85.0 exp(
−((V + 45.0)2.0)

320.0
) +

5.0

1.0 + exp(V−20.0
5.0

)
+ 3.0 (A.307)

ds

dt
=
sinf − s
taus

(A.308)

rinf =
1.0

1.0 + exp(20.0−V
6.0

)
(A.309)

taur = 9.5 exp(
−((V + 40.0)2.0)

1800.0
) + 0.8 (A.310)
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dr

dt
=
rinf − r
taur

(A.311)

iNaK =PNaK ∗
Ko

Ko +Kmk

∗ Nai
Nai +KmNa

×

1

1.0 + 0.1245 exp(−(0.1) ∗ V ∗ F
RT

) + 0.0353 exp(−(V )F
RT

)

(A.312)

iNaCa =KNaCa×

(exp(gamma∗V ∗F
RT

) ∗ (Na3.0
i ) ∗ Cao − exp( (gamma−1.0)∗V ∗F

RT
)(Na3.0

o ) ∗ Cai ∗ α)

((Km3.0
Nai) + (Na3.0

o )) ∗ (KmCa + Cao) ∗ (1.0 +Ksat ∗ exp( (gamma−1.0)∗V ∗F
RT

))
(A.313)

ipCa = gpCa ∗
Cai

Cai +KpCa

(A.314)

ipK = gpK ∗
(V − EK)

1.0 + exp(25.0−V
5.98

)
(A.315)

iup =
V maxup

1.0 + (Kup)2.0

(Cai)2.0

(A.316)

ileak = Vleak ∗ (CaSR − Cai) (A.317)

ixfer = Vxfer ∗ (Cass − Cai) (A.318)

kcasr = maxsr −
maxsr −minsr
1.0 + ( EC

CaSR
)2.0

(A.319)

k1 =
k1prime
kcasr

(A.320)
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k2 = k2prime ∗ kcasr (A.321)

dRprime

dt
= −(k2) ∗ Cass ∗Rprime + k4 ∗ (1.0−Rprime) (A.322)

O = k1 ∗ (Ca2.0
ss ) ∗ Rprime

k3 + k1 ∗ (Ca2.0
ss )

(A.323)

irel = Vrel ∗O ∗ (CaSR − Cass) (A.324)

Caibufc =
1.0

1.0 +Bufc ∗ Kbufc

(Cai+Kbufc)2.0

(A.325)

Casrbufsr =
1.0

1.0 +Bufsr ∗ Kbufsr

(CaSR+Kbufsr)2.0

(A.326)

Cassbufss =
1.0

1.0 +Bufss ∗ Kbufss

(Cass+Kbufss)2.0

(A.327)

dCai
dt

=Caibufc×

(
(ileak − iup) ∗ Vsr

Vc
+ ixfer − 1.0 ∗ (ibCa + ipCa − 2.0 ∗ iNaCa) ∗

Cm

2.0 ∗ 1.0 ∗ Vc ∗ F
)

(A.328)

dCaSR
dt

= Casrbufsr ∗ (iup − (irel + ileak)) (A.329)

dCass
dt

= Cassbufss ∗ (−(1.0) ∗ iCaL ∗
Cm

2.0 ∗ 1.0 ∗ Vss ∗ F
+ irel ∗

Vsr
Vss
− ixfer ∗

Vc
Vss

)

(A.330)
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dNai
dt

= −(1.0) ∗ (iNa + ibNa + 3.0 ∗ iNaK + 3.0 ∗ iNaCa)
(1 ∗ Vc ∗ F ) ∗ Cm

(A.331)

dKi

dt
= −(1.0) ∗ (iK1 + ito + iKr + iKs + ipK + iStim − 2.0 ∗ iNaK)

(1.0 ∗ Vc ∗ F ) ∗ Cm
(A.332)

Iion = iK1 + ito + iKr + iKs + iCaL + iNaK + iNa + ibNa + iNaCa + ibCa + ipK + ipCa

(A.333)

dV

dt
= −(Iion + iStim) (A.334)
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