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Abstract 

Background: The Autism Observation Scale for Infants (AOSI) has been used to investigate 

early features of children with an increased likelihood (IL) of a later diagnosis of autism 

spectrum disorder (ASD). Though independent research groups have evaluated its use in IL 

infant siblings (younger siblings of the children with ASD), recent studies have examined the 

AOSI’s use in other IL populations. Since first published in 2005, an assessment of the AOSI’s 

discriminatory and predictive utility in infant siblings and other IL populations is warranted. In 

addition, growing access to sophisticated computational technology has facilitated increased use 

of powerful computing techniques such as machine learning in research and healthcare spaces. 

While common in clinical and research fields, ASD research has yet to fully leverage this 

technology. Currently, Bussu et al. (2018) is the only study to have generated supervised 

machine learning classifiers using early AOSI data. 

 

Objectives: (1) examination of research assessing the individual classification properties and 

group differences of the AOSI across different IL groups from 6-18 months, (2) generation of 

supervised machine learning classifiers using 12-month AOSI and Mullen Scales of Early 

Learning (MSEL) data in a cohort of infant siblings (n=373), and (3) assessment of classifier 

performance at predicting 36-month ASD diagnosis in infant siblings from two Canadian 

longitudinal studies (n=92; n=90). 

 

Methods: A systematic search for relevant articles was conducted across six databases: 

CINAHL, EMBASE-OVID, ERIC, JSTOR, PubMed, and Web of Science, with articles 

independently reviewed for inclusion and exclusion criteria by two reviewers. Supervised 
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machine learning classifiers using logistic regression (with and without regularization) and 

support vector machines using linear, polynomial, and radial basis function kernels were 

generated in R/RStudio using combinations of participant biological sex, 12-month MSEL 

standard scores (Visual Reception, Receptive Language, Expressive Language, Fine Motor, and 

Early Learning Composite), and 12-month AOSI item-level and Total Score data. Factor analysis 

(informed by principal axis parallel analysis) was used as a means of reducing item-level AOSI 

data dimensionality during modelling to mitigate model overfitting. Classifiers were assessed by 

their ability to predict 36-month ASD diagnosis in subsets of infant siblings (n=92; n=90) from 

two Canadian longitudinal cohorts. 

 

Results: The systematic search identified 354 articles with 17 meeting inclusion criteria. Four IL 

infant populations were assessed: younger siblings of children diagnosed with ASD, and infants 

with Fragile X Syndrome (FXS), Tuberous Sclerosis Complex (TSC), and Down Syndrome 

(DS). The systematic review had three main findings. First, five studies reported individual 

classification properties, although they did not use a consistent approach. Second, stable group 

differences emerged between IL non-ASD, IL-ASD, and infants at low likelihood of ASD (i.e., 

no family history) beginning at 12 months. Third, meta-analyses resulted in a large effect size for 

comparisons between low likelihood and IL-ASD samples and a moderate effect size for 

comparisons of IL non-ASD and IL-ASD samples. For supervised machine learning classifiers 

built with 12-month data, best-performing classifiers across all algorithm types were between 76-

77% accurate and had areas under the curve (AUC) between 0.73 and 0.76. Though their 

specificity was excellent (0.94-1.0), they were characterized by extremely poor sensitivity (0-

0.19). Relative to the performance of a 12-month AOSI Total Score cut point of 7 at predicting 
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36-month ASD diagnosis (informed by Youden index assessment; AUC = 0.66, sensitivity = 

0.52, specificity = 0.74), machine learning classifiers had enhanced AUC and specificity, but 

significantly decreased sensitivity. The best-performing classifiers in this study yielded higher 

accuracy, AUC, and specificity (but not sensitivity) relative to the best performing classifier 

generated by Bussu et al. (2018) using 14-month data (accuracy = 64%, AUC = 0.71, sensitivity 

= 0.61, specificity = 0.67) using similar machine-learning methodology. 

 

Conclusion: Utility of the AOSI to identify early signs of ASD in IL populations, including 

infant siblings of children diagnosed with ASD, FXS, TSC, and DS was demonstrated. Though 

the best-performing supervised learning classifiers performed below levels recommended for 

early screening, accuracy, AUC, and specificity were moderately improved relative to those 

generated by Bussu et al. (2018) using 14-month AOSI data. Further exploration into feature 

selection, extraction, or inclusion of 12-month AOSI and MSEL data may allow continued 

refinement of machine learning models built using 12-month clinical data and capable of 

predicting ASD at 36-months.  
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interpretations of the results. No part of this thesis has been previously published.   

 

For the machine learning study reported in Chapter 3, while Lori-Ann Sacrey, Lonnie 

Zwaigenbaum, and I designed the study, I was wholly responsible for its conduct. I generated all 
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Chapter 1: Introduction 

Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental condition characterized by 

differences in social-communication, the presence of restricted interests, repetitive behaviours, 

and/or atypical responses to sensory input (APA, 2013). The Centre for Disease Control and 

Prevention (CDC) estimates that the community prevalence rate of ASD in the United States is 1 

in every 44 children by age 8 (Maenner et al., 2021). Though sex differences in ASD diagnostics 

have been observed (males being four times as likely than females to be diagnosed; Baio et al., 

2018), sex difference in older youth and adults may reflect camouflaging of ASD symptoms or 

phenotypic differences in females that may lead to delayed or missed diagnoses 

(Tubío-Fungueiriño et al., 2021). Some populations are at increased likelihood (IL) of being 

diagnosed with ASD due to environmental and/or genetic factors such as increasing paternal age, 

premature birth, Fragile X Syndrome, Down syndrome, and Tuberous Sclerosis Complex 

(Hultman et al., 2011, Capal et al., 2017, Agrawal et al., 2018, Abbeduto et al., 2014). Relative 

to a general community population, ASD prevalence in these different IL contexts is 

considerably elevated (Numis et al., 2011, Ozonoff et al., 2011, Abbeduto et al., 2014, Szatmari 

et al., 2016, Hahn et al., 2020). While studying these IL can be beneficial due to the increased 

prevalence rates, it is important to note that IL infants do not constitute a homogenous group; IL 

infants who go on to receive an ASD diagnosis have been shown to be distinct from IL infants 

who do not (Brian et al., 2014, Estes et al., 2015).  

 

ASD diagnoses carry with them a lifetime of direct and indirect costs related to medical and 

healthcare expenses, therapeutics, (special) education, productivity loss for family or caregivers, 

accommodations, respite care, and out-of-pocket expenses (Rogge & Janssen, 2019). It is 

estimated that by 2029, the societal lifetime social cost of ASD is expected to grow from $7 

trillion to US $11.5 trillion (Cakir et al., 2020). Given that the annual costs that families spend to 

support individuals with ASD are enormous (often well beyond what the annual income for 

families), provision of supportive care necessitates access to external resources and supports 

(Dudley et al., 2014). However, in Canada, access to supports or funding for ASD individuals is 

often restricted based on eligibility criteria including symptom severity, intelligence quotient cut-

offs, or intellectual disability (Dudley et al., 2014). If supports can be obtained, a complicating 

issue is that they may be substandard or inadequate (Dudley et al., 2014). When time, energy, 

https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.15585%2Fmmwr.ss7011a1
https://doi.org/10.15585%2Fmmwr.ss6706a1
https://doi.org/10.15585%2Fmmwr.ss6706a1
https://doi.org/10.1007/s10803-020-04695-x
https://doi.org/10.1038/mp.2010.121
https://doi.org/10.1016/j.pediatrneurol.2017.06.010
https://doi.org/10.1542/peds.2018-0134
https://doi.org/10.3389%2Ffgene.2014.00355
https://doi.org/10.1212/WNL.0b013e3182104347
https://doi.org/10.1542/peds.2010-2825
https://pubmed.ncbi.nlm.nih.gov/25360144
https://doi.org/10.1016/j.jaac.2015.12.014
https://doi.org/10.1016/j.jaac.2015.12.014
https://pubmed.ncbi.nlm.nih.gov/32661519
https://doi.org/10.1016/j.rasd.2014.07.021
https://www.doi.org/10.1186/s11689-015-9117-6
https://doi.org/10.1007/s10803-019-04014-z
https://doi.org/10.1016/j.rasd.2019.101502
https://dx.doi.org/10.2139/ssrn.2379633
https://dx.doi.org/10.2139/ssrn.2379633
https://dx.doi.org/10.2139/ssrn.2379633
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and funding is limited and/or existing community infrastructure falter, supportive care for 

individuals falls to families or caregivers (Dudley et al., 2014). Though there are many barriers 

to ASD-related care (e.g., shortage of healthcare services, physician knowledge, cost of services, 

family and individual knowledge, language, and stigma; Malik-Soni et al., 2021), there is a 

growing awareness of the benefit and long term impact early detection has on individuals and 

their families with ASD.  

 

Early identification of children with developmental conditions can facilitate early intervention 

services which can improve functional outcomes of the child and decrease the impact of the 

delay or disability on the child and family (AAP, 2001). Though the logistic and financial 

challenges associated with early screening and detection of ASD are still being explored, these 

studies point to the benefits of early detection and diagnosis. The importance of early ASD 

diagnosis (Gardner et al., 2013, Fuller & Kaiser, 2019, Towle et al., 2020) is underscored by the 

increasing recognition of the benefits early intervention has for children with ASD at improving 

functional outcomes (Fuller & Kaiser, 2019, Dawson et al., 2010, Pickles et al., 2016, Noyes-

Grosser et al., 2018, Kodak & Bergmann, 2020). Though enhanced early ASD screening and 

detection is not the answer to all the issues faced by individuals and families with ASD, it 

potentially has compounding benefits – especially given that early ASD diagnosis is very stable 

from early to mid-childhood (Brian et al., 2016). Increased early access to developmental 

monitoring and, in the case of ASD diagnosis, earlier access to intervention resources has the 

potential to serve a dual role of supporting individuals with ASD as well as their families. This is 

an important consideration as families or caregivers of children with ASD often experience 

challenges when navigating multiple systems in search of or access to support services 

(Crossman et al., 2020). Enhanced early screening and detection technology therefore has the 

potential to not just facilitate access to support services, but also kickstart families and caregivers 

with respect to the knowledge and education required to navigate healthcare and support service 

services systems to best support their child (Towle et al., 2020). Though there is evidence to 

support the utility of ASD-specific screens at 18 and 24 months, screening prior to 24 months old 

may be associated with higher false-positive rates than screening after 24 months (Zwaigenbaum 

et al., 2015). While research has already established the long-term stability of ASD diagnosis in 

children ≥ 24 months of age, further research is required to substantiate stability of ASD 

https://dx.doi.org/10.2139/ssrn.2379633
https://www.nature.com/articles/s41390-021-01465-y
https://pediatrics.aappublications.org/content/108/1/192.short
https://doi.org/10.1016/j.rasd.2013.01.004
https://doi.org/10.1007/s10803-019-03927-z
https://doi.org/10.1155/2020/7605876
https://doi.org/10.1007/s10803-019-03927-z
https://doi.org/10.1542/peds.2009-0958
https://doi.org/10.1016/S0140-6736(16)31229-6
http://doi.org/10.1097/IYC.0000000000000121
http://doi.org/10.1097/IYC.0000000000000121
https://doi.org/10.1016/j.pcl.2020.02.007
https://doi.org/10.1177%2F1362361315614979
https://doi.org/10.1542/peds.2019-1895I
https://doi.org/10.1155/2020/7605876
https://doi.org/10.1542/peds.2014-3667D
https://doi.org/10.1542/peds.2014-3667D
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diagnoses prior to 24 months of age – especially in the context of early screening Zwaigenbaum 

et al., 2015). Given that early screening initiatives are only as effective as the access to resources 

and appropriate follow-up allows them to be (Zwaigenbaum et al., 2015), development of new 

tools or further exploration and refinement of existing assessment tools such as the Autism 

Observation Scale for Infants (AOSI) is necessary if future early screening efforts are to be 

expanded.  

 

The AOSI is a brief, 19-item observational measure designed to characterize early behavioural 

signs of ASD between 6 and 18 months in a familial cohort of infants at increased likelihood of 

the disorder (i.e., are infant siblings of children diagnosed with ASD; Bryson et al., 2008). The 

AOSI assesses multiple overlapping constructs that characterize prodromal ASD (e.g., social 

communication, emotional regulation, atypical sensory-motor behaviours, repetitive behaviours, 

etc.) within an interactive, play-based context in which behaviour can be systematically elicited 

by trained examiners (Bryson et al., 2008). Parents are encouraged to assist in making their child 

feel comfortable during assessment (and are present in the room during assessment), however 

they are otherwise encouraged to assume an observer role (Bryson et al., 2008). The AOSI takes 

approximately 20 minutes to complete with sessions videotaped to both assist in behavioural 

ratings and provide a database for future analysis (Bryson et al., 2008). Though the AOSI has 

been validated for use in IL infant siblings, research groups are just starting to assess the tool’s 

utility in identifying early signs of ASD in other IL populations even though early signs of ASD 

may be expressed differently across them. Since first published in 2005, there has been no 

critical examination of the AOSI’s performance in infant siblings or any other IL population. 

Accordingly, an in-depth examination of published research assessing the AOSI’s classification 

properties and group differences when applied to IL populations 6-18 months old is warranted.  

 

The American Academy of Pediatrics (AAP) recommends universal ASD screening for 

consistent practice and optimal detection of young children with early ASD symptomology 

across varied contexts. However, pediatricians are limited by an economy of scale and time; they 

are already required to complete an increasing number of tasks including screening for non-ASD 

conditions during child visits (Zwaigenbaum et al., 2015). Major barriers to ASD screening 

include (1) lack of time and inadequate reimbursement, (2) logistical issues including work flow, 

https://doi.org/10.1542/peds.2014-3667D
https://doi.org/10.1542/peds.2014-3667D
https://doi.org/10.1542/peds.2014-3667D
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1542/peds.2014-3667D
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lack of familiarity, scoring difficulties, (3) lack of office base systems needed for referrals / 

outcome monitoring (Zwaigenbaum et al, 2015). In addition, identifying developmental delays in 

children can be problematic if they only become apparent at ages when specific developmental 

milestones expected to be reached are missed (AAP, 2001). Screening for a condition based on 

missed major developmental milestones can lead to late recognition and intervention (AAP, 

2001). Given that provision of accurate and accessible diagnoses is a fundamental challenge of 

not just autism-specific healthcare but global healthcare in general, modern techniques like 

artificial intelligence and machine learning are showing increasing promise in revolutionizing 

healthcare by facilitating provision of precise and personalized diagnoses (Richens et al., 2020).  

 

Machine learning is a branch of artificial intelligence and computer science focused on utilizing 

data and computer algorithms to imitate the way humans think and learn to gradually improve 

their accuracy and performance (IBM, 2020). There are numerous advantages to using machine 

learning in health research. For instance, machine learning can be flexible and scalable, allowing 

for deployment in many different areas including risk stratification, diagnosis, classification, and 

survival predictions (Ngiam & Kor, 2019). When applied to clinical or research contexts, 

machine learning can enable analysis of increasingly diverse types of data that can summarily be 

incorporated into models used to help predict disease risk, diagnosis, and even treatment 

modalities (Ngiam & Kor, 2019). One major benefit of applying machine learning to data 

analysis modalities is that it can allow for rapid evaluation of different combinations of factors or 

variables as a means of determining which combination provides the best accuracy and 

predictive power when assessing for a given outcome. In ASD machine learning research, one of 

the primary goals is developing strategies to minimize diagnostic time with improved accuracy 

(Eman et al., 2020). Leveraging the use of machine learning techniques on large existing clinical 

or research datasets can be one means by which we better our understanding on the early 

emergence or characteristics of ASD. This information, in turn, could prove invaluable for future 

efforts into the refinement of existing (or the creation of new) tools used for early ASD screening 

or detection capacities.  

 

This thesis is organized into two main sections. The first section (Chapter 2; Study 1) is a 

systematic review and meta-analyses investigating the use of the AOSI with particular focus on 

file:///C:/Users/Surface/OneDrive/Documents/Autism%20Research%20Centre/Light%20Reading%20(PDFs)/2015%20Zwaigenbaum%20et%20al___Early%20screening%20of%20ASD%20-%20recommendations%20for%20practice%20&%20research.pdf
https://pediatrics.aappublications.org/content/108/1/192.short
https://pediatrics.aappublications.org/content/108/1/192.short
https://pediatrics.aappublications.org/content/108/1/192.short
https://doi.org/10.1038/s41467-020-17419-7
https://www.ibm.com/cloud/learn/machine-learning
https://doi.org/10.1016/S1470-2045(19)30149-4
https://doi.org/10.1016/S1470-2045(19)30149-4
http://dx.doi.org/10.1109/ICITISEE48480.2019.9003807
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exploring the AOSI’s classification properties across different IL groups of 6-18 months old 

infants. The second section comprises a machine learning study (Chapter 3; Study 2) exploring 

the utility and performance of AOSI data in the context of generating predictive supervised 

machine learning classifiers. The content reported in Chapter 2 and 3 are reported in a paper-

based format. Accordingly, both Chapter 2 and 3 contain details pertaining to background 

information, methods, results, and discussion. While Study 1 and 2 are stand-alone, the results of 

Study 1 informed critical methodological decisions for Study 2. In particular, the choice of 

building predictive models using 12-month data was predicated on the meta-analytical results 

from Study 1. 
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Chapter 2: Study One 

Background 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by 

differences or impairments in social-communication and the presence of restricted interests, 

repetitive behaviours, and/or atypical responses to sensory input (American Psychiatric 

Association 2013). The current community prevalence rate of ASD as reported in the United 

States by the Centers for Disease Control and Prevention (CDC) is 1 in every 44 children by age 

8 (Maenner et al., 2021). There are some populations who are at an increased likelihood (IL) for 

developing ASD due to environmental or genetic factors such as increasing paternal age, 

children with premature birth, fragile X syndrome (FXS), and tuberous sclerosis complex (TSC; 

Hultman et al., 2011, Capal et al., 2017, Agrawal et al., 2018, Abbeduto et al., 2014). Because 

ASD is characterized by highly complex and variable phenotypic presentation, it is important to 

assess the utility of any measure attempting to investigate early features of ASD.  

 

The importance of early diagnosis (Gardner et al., 2013, Fuller & Kaiser, 2019, Towle et al., 

2020) is highlighted by the increasing recognition of the benefits of early intervention for 

children with ASD (Fuller & Kaiser, 2019, Towle et al., 2020, Dawson et al., 2010, Bonis 2015, 

Pickles et al., 2016, Noyes-Grosser et al., 2018). It is important for primary care practitioners to 

provide referrals to specialists and early intervention services (Zwaigenbaum et al., 2015). Given 

that diagnosis of ASD is very stable from early to mid-childhood (94% of infant siblings of 

children with ASD followed from ages 3 to 9 years retained a diagnosis in Brian et al., 2016’s 

study), tools that aid in early identification of ASD have potential utility to facilitate access to 

early intervention services. 

 

The Autism Observation Scale for Infants (AOSI) is a brief, 19-item observational measure that 

was initially designed to characterize early behavioural signs of ASD between 6 and 18 months 

in a familial cohort of infants at increased likelihood of the disorder (i.e., are infant siblings of 

children diagnosed with ASD; Bryson et al., 2008). The AOSI assesses multiple overlapping 

constructs that characterize prodromal ASD (e.g., social communication, emotional regulation, 

atypical sensory-motor behaviours, repetitive behaviours, etc.) within an interactive, play-based 

context in which behaviour can be systematically elicited by trained examiners (Bryson et al., 

https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.15585%2Fmmwr.ss7011a1
https://doi.org/10.1038/mp.2010.121
https://doi.org/10.1016/j.pediatrneurol.2017.06.010
https://doi.org/10.1542/peds.2018-0134
https://doi.org/10.3389/fgene.2014.00355
https://doi.org/10.1016/j.rasd.2013.01.004
https://doi.org/10.1007/s10803-019-03927-z
https://doi.org/10.1155/2020/7605876
https://doi.org/10.1155/2020/7605876
https://doi.org/10.1007/s10803-019-03927-z
https://doi.org/10.1155/2020/7605876
https://doi.org/10.1542/peds.2009-0958
https://doi.org/10.3109/01612840.2015.1116030
https://doi.org/10.1016/S0140-6736(16)31229-6
http://doi.org/10.1097/IYC.0000000000000121
https://doi.org/10.1542/peds.2014-3667D
https://doi.org/10.1177%2F1362361315614979
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
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2008). The AOSI has been validated in IL infant siblings and research groups are now assessing 

the tool for use in identifying early signs of ASD in other populations of infants at IL for ASD 

including infants who were born premature, or who have underlying genetic or neurological 

conditions such as Down Syndrome (DS; Sanderson 2016, Hahn et al., 2020). Yet, early signs of 

ASD may be expressed differently across these populations. The purpose of this systematic 

review and meta-analysis is to provide an in-depth examination of research assessing the 

individual classification properties and group differences of the AOSI across different IL groups 

from 6-18 months to examine if early manifestations of ASD are similar across different IL 

populations. 

 

Methods 

Search strategy 

A systematic review was completed following the Preferred Reporting Items for Systematic 

Reviews and Meta Analyses (PRISMA; Moher et al., 2009) checklist. Searches were performed 

on July 4th, 2022, in six databases: CINAHL, EMBASE-OVID, ERIC, JSTOR, PubMed, and 

Web of Science. Search terms and strategies were refined following discussion between two 

reviewers (KR and LS) using the terms “Autism Observation Scale for Infants,” “AOSI,” and 

"autism", “autism spectrum disorder,” and “autistic disorder.” No published search filters were 

used. Because the AOSI was first published in 2005, date limits restricted the identification of 

articles from 2005 and onwards. Although no language limits were used to allow for capture of 

any non-English publications (as the AOSI has been translated into other languages, such as 

Hebrew; Ben-Sasson & Carter, 2012), no non-English studies were identified. Primary database 

searches identified 453 articles. Grey literature databases (opengrey.eu, worldcat.org, greylit.org) 

were surveyed using identical search terms used in primary database searches to identify relevant 

unpublished data and identified 27 articles. The same search terms were employed in the primary 

and grey literature searches. One article (Zwaigenbaum et al., 2005) was manually imported for 

primary screening as study authors knew it was the first paper published on the AOSI but was 

not captured in either the primary or grey literature search. IL groups were not pre-specified for 

the search to be as inclusive as possible and not potentially exclude articles from IL populations 

unknown to study authors. In total, 481 articles were imported into Covidence (covidence.org) 

for review. Following de-duplication, 354 articles were identified for further screening. The 

https://doi.org/10.1007/s10803-007-0440-y
https://core.ac.uk/download/pdf/77298219.pdf
https://pubmed.ncbi.nlm.nih.gov/32661519
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1007/s10803-011-1436-1
https://doi.org/10.1016/j.ijdevneu.2004.05.001
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complete search strategy as run and PRISMA checklist can be found in Appendix 1. Though no 

PROSPERO protocol for this review was registered, the PROSPERO database was searched to 

ensure no other similar review had been registered or conducted prior to this study. As of July 

4th, 2022, while one protocol was identified that used the AOSI (CRD42020158688), the AOSI 

was used as an outcome measure in a systematic review of ASD-related interventions in the first 

2 years of life and thusly does not conflict with this review focusing on AOSI classification 

properties. 

 

Screening for Inclusion and Exclusion Criteria 

To be included in this review, a paper (1) used the AOSI in a population of IL infants 

characterized by a specific factor known to be associated with increased likelihood of ASD 

diagnosis (e.g., infant siblings of a child with ASD, infants with FSX, TSC, or DS) and a sample 

of control infants (low likelihood [LL] or IL infants not diagnosed with ASD), (2) either reported 

at least one AOSI cut point and its corresponding sensitivity and specificity or compared AOSI 

Total Scores between two or more groups, and (3) included original data. A paper was excluded 

from analysis if it (1) did not use the AOSI, (2) did not include AOSI Total Scores, number of 

AOSI Risk Markers, or sensitivity and specificity data, (3) lacked a comparison group (IL-not 

diagnosed/IL-N; LL controls), or (4) was a review article, commentary, conference abstract, or 

conference presentation. Titles and abstracts of 354 articles were screened using the reported 

inclusion and exclusion criteria in Covidence by two independent reviewers (KR and LS) to 

identify the studies meriting full-text review. Both reviewers assessed the 33 articles meriting 

full-text review and had 97% agreement for studies meeting inclusion criteria. The one 

disagreement was resolved by consensus following discussion between reviewers. In total, 17 

articles were selected for full-text extraction, with nine included in meta-analyses. Reasons for 

exclusion at the full-text review level are described in Figure 2.01.  
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Figure 2.01 | Systematic Review Search Strategy  

 

Assessment of Study Quality and Risk of Bias 

Authors of the Cochrane Handbook for Systematic Reviews of Interventions recommend 

focusing on assessing risk of bias over methodological quality (Stang 2018). For this reason, 

study quality, methodology, and potential sources of bias were assessed using a composite form 

generated using items from the National Institute of Health’s Quality Assessment Tool for 

Observational Cohort and Cross-Sectional Studies (Nhlbi 2022), the Joanna Briggs Institute’s 

Checklist for Systematic Reviews and Research Syntheses (Moola et al., 2017), the Critical 

Appraisal Skills Programme Checklist for Cohort Studies (CASP 2018), and the Scottish 

Intercollegiate Guidelines Network’s Methodology Checklist 3 for Cohort Studies (British 

Thoracic Society 2016). KR and LS generated the table assessing for potential sources of bias in 

https://doi.org/10.1007/s10654-018-0443-3
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://jbi-global-wiki.refined.site/space/MANUAL/4687372/Chapter+7%3A+Systematic+reviews+of+etiology+and+risk
https://casp-uk.net/casp-tools-checklists/
https://www.sign.ac.uk/what-we-do/methodology/checklists/
https://www.sign.ac.uk/what-we-do/methodology/checklists/
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the included studies. Both KR and LS independently scored each of the 17 studies by each 

category in the risk of bias table before comparing scores. Any disagreements were resolved via 

consensus. One intent behind this review and meta-analysis was to highlight potential sources of 

bias that may warrant further investigation or consideration as it relates to study quality and 

validity, as well as to facilitate a discussion of the generalizability of results.  

 

Data Extraction 

Two primary reviewers (KR, LS) developed a standardized data extraction form. Extracted 

demographic information included sample size, the IL population being examined, sex ratio, 

ethnicity, parental age, and socioeconomic status (SES). AOSI-relevant information and 

potential biasing factors extracted from the studies included inclusion/exclusion criteria; 

chronological age at assessment; statistical method; covariates; ASD classification/diagnostic 

assessment; AOSI cut points, sensitivity, and specificity; group comparisons; data required to 

calculate effect sizes (IL/LL sample sizes, AOSI Total Score and standard deviation data); and 

study limitations. The data extraction form was iteratively developed to allow for flexibility and 

comprehensiveness (Colquhoun et al., 2014). Reviewers KR and LS each extracted data from a 

portion of the 17 included studies and cross-checked the other’s work for validation purposes.  

 

Statistical Analysis 

Meta-analyses on AOSI Total Score were completed in Stata using the metan command (Sterne 

2009). Eight separate meta-analyses were conducted: (1) studies with LL controls versus IL 

infants diagnosed with ASD (IL-ASD) between 6-10 months, (2) studies with LL controls versus 

IL IL-ASD between 12-14 months, (3) studies with IL infants not diagnosed with ASD versus 

IL-ASD between 6-10 months, with differences between the comparison group explored using 

the subgrouping command, (4) studies with IL infants not diagnosed with ASD versus IL-ASD 

between 12-14 months, with differences between the comparison group explored using the 

subgrouping command, (5) studies with IL infants not diagnosed with ASD but who were 

classified as having a developmental delay versus IL-ASD between 6-10 months, (6) studies with 

IL infants not diagnosed with ASD but who were classified as having a developmental delay 

versus IL-ASD between 12-14 months, (7) studies with IL infants with typical development 

https://doi.org/10.1016/j.jclinepi.2014.03.013
https://www.stata.com/bookstore/meta-analysis-in-stata/
https://www.stata.com/bookstore/meta-analysis-in-stata/
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(e.g., IL infants without any developmental concerns) versus IL-ASD between 6-10 months, and 

(8) studies with IL infants with typical development versus IL-ASD between 12-14 months.  

 

Cohen’s d effect sizes (calculated using the following formula: d = M1 – M2/σspooled where σspooled 

=√[(σ1
2 + σ2

2)/2]) and standard errors were computed for each study (for which data were 

available) and used in the meta-analyses, with d = 0.2 – 0.49 = small effect, d = 0.5 – 0.79 = 

medium effect, and d ≥ 0.8 = large effect (Cohen 1988). Heterogeneity was examined using 

confidence intervals (CI), the I2 statistic, and forest plots. The I2 statistic, which ranges from 0 to 

100%, is a measure of the variability in effect estimates resulting from heterogeneity between 

studies rather than chance (e.g., sampling error) (Higgins et al., 2019). Statistical heterogeneity 

can be considered unimportant between 0-40%, moderate between 30-60%, substantial between 

50-90%, and considerable between 75-100% (Higgins et al., 2019). Preliminary analyses 

suggested our meta-analyses had I2 statistics > 50%, thus random effects modelling was used. 

Funnel plot, trim and fill analyses, and Egger’s tests for small study effects were completed 

using the metafunnel, metatrim, and metabias commands in Stata (Sterne 2009) to investigate 

publication bias and heterogeneity through visual and statistical examination of the data (Egger 

et al., 1997).  

 

Overall, 9 of the 17 articles were included in the meta-analyses (Capal et al., 2017, Hahn et al., 

2020, Gammer et al., 2015, Estes et al., 2015, McDonald et al., 2017, Bussu et al., 2018, 

Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021, Hahn et al., 2017). The remaining 8 

articles were not included as they were earlier studies from the same research groups or were 

conducted using the same study population (i.e., overlapping participants between studies). For 

studies conducted on the same infant cohort or published from the same research group, studies 

with the highest sample sizes were chosen for inclusion in meta-analyses. In addition, no study 

was included in the same meta-analysis more than once to prevent unduly weighting or biasing 

analyses. 

 

 

 

 

https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Cohen%2C+J.+%281988%29.+Statistical+power+analyses+for+the+behavioral+sciences.+2nd+Edition.+L.+Earlbaum+Associated.+&btnG=
https://training.cochrane.org/handbook/archive/v6/chapter-10#section-10-10-2
https://training.cochrane.org/handbook/archive/v6/chapter-10#section-10-10-2
https://www.stata.com/bookstore/meta-analysis-in-stata/
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1016/j.pediatrneurol.2017.06.010
https://pubmed.ncbi.nlm.nih.gov/32661519
https://pubmed.ncbi.nlm.nih.gov/32661519
https://doi.org/10.1016/j.infbeh.2014.12.017
https://doi.org/10.1186/s11689-015-9117-6
https://doi.org/10.1002/aur.1846
https://doi.org/10.1007/s10803-018-3509-x
https://doi.org/10.1111/cdev.13485
https://doi.org/10.1111/jcpp.13417
https://doi.org/10.1016/j.ridd.2017.10.004
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Ethics Statement  

Ethics approval was not required for this study as it is a systematic review conducted on publicly 

accessible de-identified information. No informed consent was required as this article is a review 

and no individual participants have identifying information. 

 

Results 

This systematic review examining the utility of the AOSI to identify early signs of ASD across 

different IL populations included 17 peer-reviewed articles. The results are organized as follows: 

a descriptive overview of the included articles with location, sample size, age, and participant 

demographics; an overview of the IL group status; an overview of study design and 

methodology; description of how and at what age(s) the AOSI was used; statistical analyses 

employed; AOSI cut points and their associated psychometric data, and risk of bias assessment. 

 

Study and Participant Demographics 

Overview of Included Articles. Although no language limits were used in the search, all articles 

meeting inclusion criteria were published in English. The earliest article meeting criteria was 

published in 2005 and the most recent in 2021. The articles originated from three countries: 

Canada (n=4), the United Kingdom (n=6), and the United States (n=7). Fifteen were longitudinal 

cohort studies (participants assessed at multiple time points) and two were cross-sectional. Total 

sample sizes ranged from N=36 (Hahn et al., 2017) to N=681 (Zwaigenbaum et al., 2020). IL 

subsamples ranged from n=15 (FXS; Roberts et al., 2016) to n=501 (infant Siblings; 

Zwaigenbaum et al., 2020). Several studies were either conducted by the same research group 

(the British Autism Study of Infant Siblings [BASIS; Gammer et al., 2015, Bussu et al., 2018, 

Gilga et al., 2015, Bedford et al., 2016, Bedford et al., 2017, Bedford et al., 2019]; the Canadian 

Infant Sibling Study [CISS-1; Zwaigenbaum et al., 2005, Zwaigenbaum et al., 2020, 

Zwaigenbaum et al., 2021, Sacrey et al., 2018]) or using overlapping participants (see [Hahn et 

al., 2020, Hahn et al., 2017, Roberts et al., 2016] or [McDonald et al., 2017, Jeste et al., 2014]). 

 

Participant Demographics. Of the 17 included studies, four assessed infants at multiple times 

between ages 3 and 24 months (Zwaigenbaum et al., 2005, Estes et al., 2015, Roberts et al., 

2016, Gilga et al., 2015), eleven assessed infants at multiple times between 6 and 36 months 

https://doi.org/10.1016/j.ridd.2017.10.004
https://doi.org/10.1111/cdev.13485
https://doi.org/10.1007/s10803-016-2903-5
https://doi.org/10.1111/cdev.13485
https://doi.org/10.1016/j.infbeh.2014.12.017
https://doi.org/10.1007/s10803-018-3509-x
http://dx.doi.org/10.1016/j.cub.2015.05.011
https://doi.org/10.1186/s13229-016-0081-0
https://doi.org/10.1186/s13229-017-0167-3
https://doi.org/10.1186/s11689-019-9274-0
https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://doi.org/10.1111/cdev.13485
https://doi.org/10.1111/jcpp.13417
https://doi.org/10.1002/aur.1920
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357991/
https://pubmed.ncbi.nlm.nih.gov/32661519
https://pubmed.ncbi.nlm.nih.gov/32661519
https://doi.org/10.1016/j.ridd.2017.10.004
https://doi.org/10.1007/s10803-016-2903-5
https://doi.org/10.1002/aur.1846
https://doi.org/10.1212/WNL.0000000000000568
https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://doi.org/10.1186/s11689-015-9117-6
https://doi.org/10.1007/s10803-016-2903-5
https://doi.org/10.1007/s10803-016-2903-5
http://dx.doi.org/10.1016/j.cub.2015.05.011
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(Capal et al., 2017, Gammer et al., 2015, McDonald et al., 2017, Bussu et al., 2018, 

Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021, Bedford et al., 2016, Bedford et al., 2017, 

Bedford et al., 2019, Sacrey et al., 2018, Jeste et al., 2014) and two assessed infants at one time 

point, between 7 and 18 months (Hahn et al., 2020, Hahn et al., 2017). Detailed participant 

demographic data (including both ethnicity and SES) were only reported by three studies 

(McDonald et al., 2017, Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021) which consisted 

of study populations of middle-to-higher SES families of largely Caucasian ancestry. Three 

studies (Hahn et al., 2020, Estes et al., 2015, Hahn et al., 2017) only report ethnicity data, and 

likewise feature largely Caucasian study populations (with two-thirds of participants or more 

being Caucasian). Two studies, Hahn et al., 2017 and Sacrey et al., 2018, use SES or family 

demographic data in their analyses but do not directly report the results or descriptive statistics in 

their paper. The remaining nine studies reported no participant demographic data outside of the 

biological sex of the participant. Descriptive characteristics of included studies can be seen in 

Table 2.01.  

 

https://doi.org/10.1016/j.pediatrneurol.2017.06.010
https://doi.org/10.1016/j.infbeh.2014.12.017
https://doi.org/10.1002/aur.1846
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Table 2.01 | Included Study Characteristics  

Article  

(by publication year) 
Country IL group 

Sample size 

(IL)  

Sample size 

(LL) 
Sex Ratio 

Participant or 

Family Ethnicity 
Participant / Family SES 

2005 Zwaigenbaum Canada Infant siblings n=65  n=23 ns ns ns 

2014 Jeste United States Infants with TSC n=40 ns ns ns ns 

2015 Estes United States Infant siblings n=210  n=98 Sibs: 129 male, 81 female 

LL: 55 male, 43 female  

86.4% Caucasian 

overall. 𝛿* 

ns 

2015 Gammer United 

Kingdom 

Infant siblings n=53 n=50 Sibs: 21 male, 32 female 

LL: 21 males, 29 females 

ns ns 

2015 Gilga United 

Kingdom 

Infant siblings n= 82 n=27 Sibs: 45 male, 37 female 

LL: 14 male, 13 female 

ns ns 

2016 Bedford United 

Kingdom 

Infant siblings  n=54 

 

n=48 Sibs:21 male, 33 female 

LL: 21 male, 29 female  

ns ns 

2016 Roberts United States Infants with FXS, 

Infant siblings  

FXS: n=15  

Sibs: n=23  

n=17 FXS: 15 males 

Sibs: ns 

LL: ns 

ns ns 

2017 Capal United States Infants with TSC n=79 n/a TSC: 43 males, 36 female ns ns 

2017 Hahn United States Infants with FXS, 

Infant siblings  

FXS: n=18 

Sibs: n=21  

n=22 FXS: 14 male, 4 female 

Sibs: 17 male, 4 female 

LL: 18 male, 4 female 

73.9% Caucasian 

overall. 𝛿* 

Overall, 51.7% of mothers had a 

college degree or higher overall. 𝛿* No 

group difference observed between 

family income, race, or maternal 

education between IL/LL groups. 

Mean family income = $57,851.50 

USD. * 

2017 Bedford United 

Kingdom 

Infant siblings  n=42  n=37 Sibs: 15 males, 27 female  

LL: 15 males, 22 female 

ns Family income was used in analyses, 

but data was not directly reported.  

2017 McDonald United States Infants with TSC n=23  n=21 TSC: 16 male, 7 female 

LL: 9 male, 12 female 

73.8% Caucasian 

overall. 𝛿* 

Overall, 78.1% of mothers had a 4-

year college/some graduate school or 

an advanced or professional degree. *  

2018 Bussu United 

Kingdom 

Infant siblings n=161  n=71 Sibs: 85 male, 76 female  

LL: 31 males, 40 females  

ns ns 

2018 Sacrey Canada Infant siblings n=188  n/a Sibs: 111 male, 77 female  ns Family demographics (participant’s 

birth order, number of children in the 

family, father’s and mother’s age at 
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participant’s birth, and family SES) 

were used in analyses but not reported.  

2019 Bedford United 

Kingdom 

Infant siblings n=54α 

 

n=50α Sibs: 21 male, 33 female 

LL: 21 male, 29 female 

ns ns 

2020 Hahn United States Infants with DS n=18  n=18  DS: 14 male, 4 female 

LL: 14 male, 4 female 

66.6% Caucasian 

overall. * 

ns 

2020 Zwaigenbaum Canada Infant siblings n=501α n=180α Sibs: 281 male, 220 

female * 

LL: 97 male, 83 female * 

Overall, 84.8% of 

fathers and 82.3% 

of mothers were 

Caucasian. * 

51.36% of participants families had a 

Hollingshead Four-Factor Index 

between 51 and 66. 

2021 Zwaigenbaum Canada Infant Siblings n=500 n=177 Sibs: 280 male, 220 

female 

LL: 94 male, 83 female 

Overall, 84.8% of 

fathers and 85.0% 

of mothers were 

Caucasian. * 

52.07% of participants families had a 

Hollingshead Four-Factor Index 

between 51 and 66. 

        

DS = Down Syndrome, FXS = Fragile X Syndrome, IL = infants at increased likelihood of being diagnosed with ASD, LL = infants at low likelihood of being diagnosed with 

ASD, SES = Socioeconomic status, Sibs = Infant siblings of children with ASD, TSC = Tuberous Sclerosis Complex, USD = US Dollar 

ns = not specified 
α = sample sizes varied depending on analysis  

* = calculated from data provided in the paper 

𝛿 = No delineation between parent and child ethnicity – ethnicity was presented without context as to if it was the parents or child/study participant 
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Increased Likelihood Group Status 

Four IL groups were assessed: (1) younger siblings of children formally diagnosed with ASD 

(hereafter infant siblings), (2) infants with FXS, (3) infants with TSC, and (4) infants with DS. 

All four populations have elevated rates of ASD diagnoses relative to the general population, 

with the prevalence rate of ASD in infant siblings, FXS infants, TSC infants, and DS infants 

reported to be as high as 20%, 50%, 40%, and 42%, respectively (Abbeduto et al., 2014, Hahn et 

al., 2020, Szatmari et al., 2016, Numis et al., 2011, Ozonoff et al., 2011). Infant siblings 

comprised part or all of the IL sample in 13 of the 17 studies (Zwaigenbaum et al., 2005, 

Gammer et al., 2015, Estes et al., 2015, Bussu et al., 2018, Zwaigenbaum et al., 2020, 

Zwaigenbaum et al., 2021, Hahn et al., 2017, Roberts et al., 2016, Gilga et al., 2015, Gilga et al., 

2015, Bedford et al., 2017, Bedford et al., 2019, Sacrey et al., 2018). Descriptions of how ASD 

diagnoses were confirmed in the probands (older siblings diagnosed with ASD), study 

inclusion/exclusion criteria, and reliability assessment can be found in Appendix 1. Three studies 

included infants with TSC (Capal et al., 2017, McDonald et al., 2017, Jeste et al., 2014), two 

included infants with FXS (Hahn et al., 2017, Roberts et al., 2016), and one included infants with 

DS (Hahn et al., 2020).  

 

Study Design and Methodology 

An overview of study design, including study objectives, inclusion criteria, and exclusion criteria 

is provided in Table 2.02. 
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https://pubmed.ncbi.nlm.nih.gov/32661519
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Table 2.02 | Included Study Methodologies   

Article Study objective Inclusion criteria Exclusion criteria ASD diagnostic / outcome assessment 

2005 Zwaigenbaum 

α 

Characterization of behavioural 

manifestations of ASD in the first year 

of life of IL infant siblings of children 

with ASD. 

IL-Sibs: Have an older sibling formally 

diagnosed with ASD confirmed by the 

ADOS and a clinical interview using 

DSM-IV criteria.  

LL: Term gestation, birth weight 

>2500g.  

IL-Sibs: ns 

LL: No 1st or 2nd degree relative with 

ASD. 

24-month ADOS classification for ASD.  

2014 Jeste β Defining early clinical, behavioral, and 

biological markers of ASD in IL infants 

with TSC.  

IL-TSC: Recruited through TSC 

specialty clinics, newborn nurseries, 

pediatrician’s offices, or the TSC 

alliance in the United States.  

LL: Recruited through IRB-approved 

infant databases in the greater Los 

Angeles and Boston area.  

IL-TSC: ns 

LL: Prematurity (<37 weeks gestational 

age), birth trauma, developmental 

concerns, or immediate family history of 

ASD or intellectual disability. 

Diagnoses were based on the 

convergence of ADOS scores (at 18-, 

24- and 36-months) and clinical 

judgement of a board-certified pediatric 

neurologist.  

2015 Estes Compare IL-sibs diagnosed with ASD to 

those who are not with respect to (1) 

longitudinal trajectories of cognitive 

development and adaptive functioning 

from 6-24 months and cross-sectional 

differences at 6, 12, and 24 months, and 

(2) behavioural features at 6 and 12 

months.  

IL-Sibs: Have an older sibling that met 

criteria for ASD on the SCQ and ADI-R, 

confirmed by medical records.  

LL: Typically developing older sibling 

who did not meet for ASD on the SCQ 

or Family Interview for Genetic Studies 

(FIGS) and had no first-degree relative 

with ASD or intellectual disability. 

All participants: (1) Genetic 

conditions/syndromes, (2) 

medical/neurological conditions 

affecting growth, development, or 

cognition (e.g. seizure disorders) or 

significant sensory impairments 

(vision/hearing loss), (3) birth weight 

<2,000g, gestational age <36 weeks, 

significant perinatal adversity and/or 

exposure in utero to neurotoxins, (4) 

contraindications for MRI, (5) 

predominant home language other than 

English, (6) adopted children or half-

siblings, (7) 1st degree relative with 

psychosis, schizophrenia, or bipolar 

disorder, and (8) twins. 

24-month clinical best estimate 

diagnosis using DSM-IV-TR criteria 

assessing for ASD or PDDNOS. Two 

clinicians assigned diagnoses: one who 

conducted the diagnostic assessment, 

and the other (a clinical psychologist or 

psychiatrist) was naïve to previous 

examinations and IL status but reviewed 

testing results to provide an independent 

DSM diagnosis confirmation.  

2015 Gammer  δ To investigate if (1) AOSI scores differ 

between IL-Sibs and LL controls at 

7/14-months, (2) if AOSI scores differ 

between IL-Sibs who diagnosed with 

ASD and those who are not, and (3) 

investigate any associations between 

~7/14-month AOSI scores and later 

24/36-month ADOS-G scores.  

IL-Sibs: have an older full/half sibling 

with a community clinical ASD 

diagnosis confirmed using the DAWBA 

and SCQ by expert clinicians. 

LL: No 1st degree relative with ASD, 

have at least one older full/half sibling 

who does not meet criteria SCQ criteria 

for ASD.  

IL-sibs: Significant conditions (e.g., 

FXS, TSC).  

LL: Full term birth (gestational age 37-

42 weeks). 

36-month diagnostic assessment 

conducted by four clinical researchers 

using ICD-10 criteria (childhood autism, 

PDD) based on 24- and 36-month 

ADOS and ADI-R.  

2015 Gilga δ Investigate whether perceptual and 

social interaction atypicalities in IL-Sibs 

reflect co-expressed but biologically 

independent pathologies (measured by 

IL-Sibs: Have at least one older sibling 

with a community clinical diagnosis of 

ASD confirmed by an expert clinician 

using the DAWBA and SCQ. 

IL-Sibs: Significant medical conditions 

in probands or extended family 

members. 

LL: ns 

24-month ADOS scores were used as 

the primary outcome measure for ASD 

symptomology.  
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eye tracking of spontaneous orienting to 

letter targets presented among 

distractors) as suggested by a 

'fractionable' phenotype model of 

autism. 

LL: Have at least one older sibling, full-

term birth, normal birth weight, and lack 

of ASD diagnoses in any 1st degree 

family members (confirmed by a parent 

interview of family medical history). 

2016 Bedford δ To assess whether sex differences are 

apparent in early autism markers 

(attention disengagement speed, gaze-

following behaviour, the AOSI) or in the 

relationships between these early 

markers and later autistic traits. 

ns All participants: Medical or 

developmental conditions.  

36-month consensus diagnostic 

assessment using ICD-10 criteria (ASD-

sibs, childhood autism, atypical autism, 

PDD) using all available study data 

(AOSI, ADOS, SCQ, attention 

disengagement speed, gaze-following 

behaviour) made by experienced 

researchers.  

2016 Roberts δ Contrast the profile of ASD symptoms 

in 12-month IL-Sibs, IL-FXS, and LL 

controls to identify (1) risk factors for 

ASD in infants with FXS, (2) the 

concordance rate of risk factors in IL-

FXS vs IL-Sibs, and (3) to document 

potentially etiologically distinct ASD 

risk profiles across IL-FXS and IL-Sib 

groups.  

 

IL-FXS: Have a confirmed genetic 

report of FXS.  

IL-Sibs: Have an older full sibling with 

a confirmed community clinical ASD 

diagnosis. 

LL: Absence of known or suspected 

delays, no history or indicator of ASD. 

All participants: Neurological 

conditions or gestation <37 weeks.  

LL: Infants with developmental 

composite scores >1 SD away from the 

mean.  

24-month ADOS-2 toddler module 

scores for 39/55 participants (10/15 IL-

FXS, 16/23 IL-Sibs, and 13/17 LL 

controls).  

2017 Capal To determine early predictors of autism 

risk in infants with TSC to identify 

children in most need of accessing 

autism-specific interventions.  

IL-TSC: Between the 3 and 12 months 

old at study enrollment, met clinical or 

genetic criteria for TSC diagnosis. 

IL-TSC: Gestational age <36 weeks at 

birth with significant perinatal 

complications (respiratory support, 

confirmed infection, intraventricular 

hemorrhage, cardiac compromise), had 

taken an investigational drug as part of 

another research study within 30 days 

prior to enrollment, were taking an 

mTOR inhibitor (rapamycin, sirolimus, 

or everolimus) at study enrollment, had 

a Subependymal Giant Cell 

Astrocytoma requiring medical or 

surgical treatment, had a history of 

epilepsy surgery, or had any 

contraindications to completion of study 

procedures such as MRI. 

24-month classification of ASD based 

on ADOS-2 classification.  

2017 Hahn  To identify common and unique aspects 

of early social communication by 

investigating descriptive patterns, 

differences, and the relationship with 

ASD risk and early social 

communication complexity across, 

IL-FXS: Confirmed diagnosis of FXS 

by genetic report.  

IL-Sibs: Documentation of ASD 

diagnosis for an older full sibling.  

LL: ns  

ns No ASD outcome assessment was 

conducted; study was cross-sectional 

and assessed study participants between 

7.5 and 14.5 months. ASD 

symptomology was measured using the 

AOSI.  
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within, and between IL-FXS, IL-Sibs, 

and LL controls.  

 

 

2017 Bedford δ To test whether infant neurocognitive 

markers (indexing eye-gaze processing 

and attention control) and 7/14-month 

AOSI scores can distinguish between 

IL-Sib 7-year ASD diagnostic status.  

IL-Sibs: Have an older full/half sibling 

with a community clinical diagnosis of 

ASD confirmed using the DAWBA and 

SCQ by expert clinicians. 

LL: Have an older full/half sibling that 

does not meet criteria for ASD on the 

SCQ (does not meet instrument cut-off 

of ≥ 15). 

ns 36-month ASD assessment: ns 

7-year ASD assessment: Non-blinded 

diagnostic assessment using DSM-5 

criteria for ASD based on all previous 

study information (ADOS-2, ADI-R, 

WASI-II, VABS-II) conducted by four 

experienced researchers.  

2017 McDonald β To investigate whether (1) delays in 

social communication as measured by 

the AOSI may be observed within the 

first year of life for IL-TSC infants, and 

(2) if such delays are related to later 

ASD diagnostic status. 

 

 

For all participants: Availability of 

AOSI and cognitive functioning data at 

9 and/or 12 months, clinical outcome 

data at 18, 24, and/or 36 months. 

IL-TSC: Be diagnosed or present with 

TSC (based on clinical presentation).  

LL: ns 

IL-TSC: ns  

LL: prematurity (<37 weeks gestational 

age), birth trauma, developmental 

concerns, or close family history of ASD 

or intellectual disability. 

Clinical best estimate diagnosis based on 

ADOS scores. ASD outcome assessment 

was made at either 18-, 24-, or 36-

months depending on availability of 

ADOS data (if a child had multiple 

clinical ASD outcome visits, the most 

recent ADOS score was used in ASD 

determination). 

2018 Bussu δ To (1) investigate longitudinal 

differences from 8-36 months between 

IL-Sibs with different developmental 

outcomes (typical, atypical, ASD) and 

LL controls, and (2) predict ASD or 

atypical development at 36-months an 

individual level for IL-Sibs using 

supervised machine learning classifier 

analysis based on 8- and 14-month study 

data.  

IL-Sibs: Have an older biological 

sibling with ASD. 

LL: Have an older full sibling with 

typical development.  

All participants: Lack of 36-month 

ADOS and/or 36-month clinical 

outcome evaluation. 

36-month clinical consensus best 

estimate diagnosis considering 24 

(ADOS, MSEL, VABS) and 36-month 

study data (ADOS, ADI-R, MSEL, 

VABS) using ICD-10 or DSM-5 criteria 

(dependent on study phase). 

Categorization of ASD using ICD-10 

(atypical autism, PDD-unspecified, 

PDD-other) and DSM-5 criteria was 

considered similar following a review of 

ASD diagnoses by the clinical research 

lead.  

2018 Sacrey α To examine the agreement between 

parent and clinician ratings (on the APSI 

and AOSI respectively) regarding early 

symptoms of ASD in a sample of IL-

Sibs.  

 

IL-Sibs: Have an older sibling formally 

diagnosed with ASD that was confirmed 

by clinical assessment or a review of 

diagnostic records using DSM-IV-TR 

criteria, have undergone a 36-month 

diagnostic assessment for ASD, have 

APSI and AOSI outcome data at 12 

and/or 18-months.  

All participants: Born prior to 36 

weeks gestation, birth weight <2500g, 

identifiable neurological or genetic 

conditions, or severe sensory or motor 

impairments. 

36-month blind, independent best 

judgement diagnostic assessment using 

DSM-IV-TR criteria that considered 

ADOS, ADI-R, MSEL, and VABS data. 

Diagnoses were assigned by an expert 

clinician (developmental pediatrician, 

child psychiatrist, or clinical 

psychologist) with 10+ years of 

diagnostic experience.  

2019 Bedford δ To test the hypothesis that (1) infant 

regulatory function is negatively 

associated with traits of ASD, ADHD, 

but not callous unemotional traits, and 

IL-Sibs: Have an older full/half sibling 

with a community clinical diagnosis of 

ASD, confirmed using the DAWBA and 

SCQ by expert clinicians.  

ns 7-year ASD assessment: Diagnostic 

assessment using DSM-5 criteria was 

based on ADOS-2, ADI-R, SCQ, 

VABS-II, and WASI-II study data. 
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(2) that regulatory function moderates 

the association between known infant 

markers (activity level for ADHD, early 

autism-like behaviours measured on the 

AOSI) with later traits of ADHD and 

ASD.  

LL: Have an older full/half sibling that 

does not meet criteria for ASD on the 

SCQ (does not meet instrument cut-off 

of ≥ 15). 

 

Diagnoses were assigned by four 

experienced researchers following a 

review on ASD symptomatology.  

 

2020 Hahn γ To describe ASD-associated behaviours 

in IL-DS infants 7-18 months old 

relative to LL controls 9-14 months old. 

IL-DS: Recruited from three pilot 

studies examining infant phenotype in 

neurogenetic syndromes who recruited 

participants by flyers shared with parent 

groups, DS clinics, and/or other research 

studies.  

LL: Recruited from another study on the 

emergence of ASD in FXS. LL controls 

were matched to IL-DS based on sex at 

an individual level, and age at a group 

level.  

IL-DS: ns  

LL: No ASD or other developmental 

disability (how this determination was 

made was not specified).  

No ASD outcome assessment was 

conducted; study was a case-control 

cross-sectional study that assessed IL-

DS 7-18 months old and LL controls 9-

14 months old. ASD symptomology was 

instead measured using the AOSI.  

2020 Zwaigenbaum 

α 

To characterize behavioural signs of 

ASD in IL younger siblings of children 

with ASD and examine classification 

features of the AOSI. 

IL-Sibs: Have an older sibling formally 

diagnosed with ASD confirmed by 

clinical assessment or a review of 

records using DSM-IV-TR criteria.  

LL: No 1st or 2nd degree relative with 

ASD.  

All participants: Born <36 weeks 

gestation, birth weight <2500g, 

identifiable neurological or genetic 

conditions, severe sensory or motor 

impairments.  

36-month blind, independent diagnostic 

assessment using DSM-IV-TR criteria 

was based on ADOS, ADI-R data and a 

review of other developmental 

assessments (MSEL, VABS).  

2021 Zwaigenbaum  

α 

To (1) identify distinct trajectories of 

ASD symptoms indexed by AOSI data 

from 6-18 months assessments, (2) 

examine the relationship between AOSI-

informed trajectory group membership 

and 3-year clinical outcomes, and (3) to 

compare clinical features among IL-Sibs 

diagnosed with ASD across each 

trajectory with respect to sex ratio, 

language, cognitive and adaptive skills, 

and ASD symptom severity.  

IL-Sibs: Have an older sibling 

diagnosed with ASD confirmed by 

clinical assessment or a review of 

diagnostic records using DSM-IV-TR 

criteria. 

LL: No 1st or 2nd degree relative with 

ASD.  

All participants: Born <36 weeks 

gestation, birth weight <2500g, 

identifiable neurological or genetic 

conditions, severe sensory or motor 

impairments. 

36-month independent, clinical best 

estimate diagnostic assessment using 

DSM-IV-TR criteria was based on all 

available study data (ADOS, ADI-R, 

MSEL, VABS) were conducted by an 

expert clinician blinded to prior study 

assessments. IL-Sibs and LL controls 

not meeting diagnostic criteria for ASD 

were further stratified into a ‘delays or 

differences’ category if they scored >1.5 

SD below the mean on ≥1 MSEL 

subscales and/or if they scored >3 on the 

ADOS calibrated severity score. 

     

ADI-R = Autism Diagnostic Interview-Revised, ADHD = Attention Deficit Hyperactivity Disorder, ADOS = Autism Diagnostic Observation Schedule, APSI = Autism Parent 

Screen for Infants, ASD = Autism Spectrum Disorders, CCS = communication complexity scale, DAWBA = Developmental and Wellbeing Assessment, DS = Down Syndrome, 

DSM = Diagnostic and Statistical Manual of Mental Disorders, FXS = Fragile X Syndrome, ICD-10 = International Classification of Diseases, 10th revision, IL = Infants at 

increased likelihood for ASD, IL-FXS = Infants diagnosed with Fragile X Syndrome, IL-TSC = Infants diagnosed with Tuberous Sclerosis Complex, IL-DS = Infants diagnosed 

with Down Syndrome, IRB = Institutional Review Board, ns = not specified, MRI = magnetic resonance imaging, PDDNOS = Pervasive Developmental Disorder Not Otherwise 

Specified, Proband = an IL-Sibs older sibling who is either diagnosed with or meets criteria for ASD, SCQ = Social Communication Questionnaire, SD = Standard deviation, TSC 

= tuberous sclerosis complex, VABS = Vineland Adaptive Behaviour Scale, WASI-II = Wechsler Abbreviated Scale of Intelligence-Second Edition 

α = Conducted on Canadian Infant Sibling Study [CISS-1] participants  
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β = Conducted using some of the same study participants  

γ = Conducted using some of the same study participants  

δ = Conducted on British Autism Study in Infant Siblings [BASIS] participants  
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ASD outcome assessment. The assessment of ASD varied across the 17 included studies. Of the 

five studies (Capal et al., 2017, Zwaigenbaum et al., 2005, Estes et al., 2015, Roberts et al., 2016, 

Gilga et al., 2015) using 24-month ADOS scores as an outcome measure of ASD symptoms, 

only (Estes et al., 2015) conducted 24-month clinical best estimate diagnostic assessments using 

24-month ADOS, ADI-R scores, and DSM-IV-TR criteria (ASD or pervasive developmental 

disorder [PDD] not otherwise specified). Eight studies (Gammer et al., 2015, McDonald et al., 

2017, Bussu et al., 2018, Bussu et al., 2018, Zwaigenbaum et al., 2021, Bedford et al., 2016, 

Sacrey et al., 2018, Jeste et al., 2014) conducted 36-month ASD diagnostic assessments, though 

their assessment modalities varied. Bussu et al., 2018, Zwaigenbaum et al., 2020, Zwaigenbaum 

et al., 2021, and Sacrey et al., 2018 conducted independent or clinical consensus best estimate 

ASD diagnostic assessments based on ADOS, ADI-R, and cognitive, language, or developmental 

scales (MSEL, VABS) using ICD-10 (atypical autism, PDD-unspecified, PDD-other; Bussu et 

al., 2018) or DSM diagnostic criteria (Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021, 

Sacrey et al., 2018). Gammer et al., 2015 conducted assessments based on ADOS and ADI-R 

data using ICD-10 diagnostic criteria (childhood autism, PDD), Bedford et al., 2016 based on 

ADOS and Social Communication Questionnaire (SCQ) data using ICD-10 criteria for autism 

(childhood autism, PDD), and McDonald et al., 2017 made clinical best estimate diagnoses 

based on ADOS data with no mention of using DSM or ICD-10 criterion. Jeste et al., 2014 

assigned ASD diagnoses based on convergence of ADOS scores (taken at 18-, 24-, and 36-month 

assessments) and clinical judgement with no mention of ICD-10 or DSM criterion. Two studies 

(Bedford et al., 2017, Bedford et al., 2019) focused on ASD outcomes in early-to-mid childhood 

and conducted seven-year ASD diagnostic assessments using ADOS, ADI-R, and cognitive, 

language, or developmental scales (VABS-II, WASI-II). Finally, the remaining two studies 

(Hahn et al., 2017, Hahn et al., 2017) were cross-sectional in nature and did not assess for ASD 

outcomes (ASD diagnoses were not applicable based on their study objectives). 

 

Age at AOSI Administration. Three studies administered the AOSI at 12- or 14-month time 

points (Capal et al., 2017, Roberts et al., 2016, Bedford et al., 2016). Two studies, Hahn et al., 

2020 and Hahn et al., 2017, administered the AOSI over a wide range of ages (7-18 months) 

instead of at a specified time point. The remaining 12 studies administered the AOSI over 

multiple time points between 6 and 18 months.  
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Calculating AOSI Total Scores or AOSI Risk Markers. The AOSI can be scored using two 

different metrics: the AOSI Total Score constituting a summed score of items 1 to 18 on the 

scale, and AOSI Risk Markers constituting a tally of AOSI items 1 to 18 that score at least a 1 or 

higher (Bryson et al., 2008, Zwaigenbaum et al., 2005). It is important to note that these metrics 

are not the same thing. While 15 of 17 studies in this review calculate AOSI Total Scores for IL 

or LL study participants (barring Hahn et al., 2020 and Zwaigenbaum et al., 2005), only 2 of 17 

studies report calculated AOSI Risk Marker scores (Hahn et al., 2020, Roberts et al., 2016).  

 

AOSI Metrics Used in Sensitivity and Specificity Estimates. Overall, only six studies report 

whether or not they employed or calculated AOSI Total Score (Capal et al., 2017, Zwaigenbaum 

et al., 2020, Hahn et al., 2017) or AOSI Risk Marker cut points (Hahn et al., 2020, Zwaigenbaum 

et al., 2005, Roberts et al., 2016). Of these six studies, only four (Capal et al., 2017, 

Zwaigenbaum et al., 2005, Zwaigenbaum et al., 2020, Roberts et al., 2016) directly report their 

corresponding psychometric estimates (sensitivity/specificity) or the data needed to calculate 

them. Two studies (Zwaigenbaum et al., 2005, Roberts et al., 2016) used AOSI Risk Markers for 

their psychometric estimates, and two (Capal et al., 2017, Zwaigenbaum et al., 2020) used AOSI 

Total Scores.  

 

How AOSI Total Scores or AOSI Risk Markers have been used in these four studies varied as no 

consistent cut point for either metric was employed. Two studies (Zwaigenbaum et al., 2005, 

Roberts et al., 2016) used a cut-point of ≥7 or >7 AOSI Risk Markers respectively to predict 24-

month ASD classification, whereas Capal et al., 2017 and Zwaigenbaum et al., 2020 computed 

multiple AOSI Total Score cut points to predict 24-month or 36-month ASD classification or 

diagnosis respectively. That is, Capal et al., 2017 provided a range of possible Total Score cut 

points based on 12-month assessment data while Zwaigenbaum et al., 2020 computed a range of 

possible Total Score cut points for each time point they administered the AOSI (6, 9, 12, 15, and 

18 months).  

 

Though not reporting AOSI cut points and their corresponding psychometric estimates, 

Zwaigenbaum et al., 2021 imported AOSI Total Score data from participants assessed at 6, 9, 12, 
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15, and 18 months into STATA to generate semi-parametric group-based trajectory models that 

reflect sub-populations of participants. After selecting for a 3-group quadratic model, 

Zwaigenbaum et al., 2021 compared participant membership in these groups (Group 1 = ‘Low 

and stable,’ Group 2 = ‘Intermediate and stable,’ and Group 3 = ‘Inclining’) in their trajectory 

model against later 36-month ASD diagnostic outcomes (IL siblings diagnosed with ASD, IL 

siblings not diagnosed with ASD, LL controls). While not reporting AOSI cut points and their 

corresponding psychometric estimates, the sensitivity and specificity of these trajectory models 

relative to 36-month ASD outcomes was documented. Table 2.03 provides more details. 

 

  

https://doi.org/10.1111/jcpp.13417


25 
 

Table 2.03 | AOSI Analyses and Psychometric Estimates  

Article How was the AOSI used/applied? 
Total Score or 

Risk Marker? 
IL Group Timepoint Cut Point Sensitivity Specificity 

2005 Zwaigenbaum 

* 

AOSI data taken from 6 and 12-month assessments was compared 

against IL/LL study participants based on 24-month ADOS classification 

using One-way ANOVA analysis with follow-up multiple comparisons. 

12-month AOSI scores were used to predict 24-month ADOS 

classification.  

Risk Markers IL-Sibs 12 months ≥7 0.84 0.98 

2016 Roberts 12-month AOSI scores were explored across IL/LL groups using one-

way Kruskal Wallis analysis with Dunn post hoc pairwise comparisons. 

Fischer’s exact test was used to investigate (1) group differences in the 

proportion of IL/LL infants who flagged positive on the AOSI relative to 

those who did not, and (2) item-level group differences. 12-month AOSI 

scores were used to predict 24-month ADOS classification.  

Risk Markers IL-FXS 12 months >7 0.57 1.00 

IL-Sibs 12 months >7 1.00 0.57 

2017 Capal 12-month AOSI scores were used as a predictor variable in logistical 

regression models against 24-month ADOS-2 and ADI-R outcome data 

(IL-TSC participants classified with/without ASD). 12-month AOSI 

Total Score cut points were examined with respect to later 24-month 

ADOS classification.  

Total Score IL-TSC 12 months 8 0.67 0.70 

9 0.67 0.73 

10 0.58 0.77 

11 0.51 0.82 

12 0.48 0.82 

13 0.39 0.89 

14 0.36 0.91 

2020 Zwaigenbaum 

* 

AOSI data taken from 6, 9, 12, 15, and 18-month assessments were 

compared using linear mixed modelling. ROC curve analysis assessed 

longitudinal associations between AOSI Total Score data at each 

timepoint with later 36-month clinical outcomes. Optimal Total Score cut 

points were calculated using Youden indices. AOSI scoring data was 

compared across IL-Sibs with/without ASD, with Fischer’s exact test 

calculated to compare the percentage of IL-Sibs correctly identified at 

24- and 36-month assessments.  

Total Score IL-Sibs 6 months 7 0.57 0.51 

  9 months 8 0.60 0.53 

  12 months 7 0.52 0.74 

  15 months 10 0.41 0.90 

  18 months 6 0.73 0.65 

2021 Zwaigenbaum  

* 

Trajectory modeling based AOSI Total Scores data was derived using 

Stata group-based modelling approach on data taken at 6, 9, 12, 15, and 

18-month assessments. The relationship between AOSI trajectory group 

membership in the finalized trajectory model and 36-month clinical 

outcomes was examined to assess accuracy of group membership relative 

to ASD diagnosis. Clinical features of participants diagnosed with ASD 

at 36 months were compared by trajectory group using one-way 

ANOVAs. 

Longitudinal 

Total Score data 

from 6-18 months 

IL-Sibs n/a Group 1 0.28 0.94 

n/a Group 2 0.68 0.59 

        

ADI-R = Autism Diagnostic Interview-Revised, ADOS = Autism Diagnostic Observation Schedule, ANOVA = Analysis of Variance, AOSI = Autism Observation Scale for 

Infants, IL = infants at increased likelihood for ASD diagnosis, IL-FXS = IL infants with Fragile X Syndrome, IL-TSC = IL infants with Tuberous Sclerosis Complex, IL-Sibs = IL 

infant siblings, LL = infants at low likelihood for ASD diagnosis, ROC = receiver operating characteristic.  

* = Conducted on Canadian Infant Sibling Study [CISS-1] participants   
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For additional methodological considerations including article study design, AOSI reliability 

data (inter-rater, item-level agreement between coders, etc.), how infant sibling studies defined 

the older sibling (proband) as having ASD, and what inclusion/exclusion criteria were employed, 

see Appendix 1. 

 

Main Findings  

AOSI Sensitivity and Specificity Estimates for Infant Siblings. The cut points and AOSI 

metrics used varied across studies which makes it difficult to compare sensitivity, as described in 

Table 2.03. Of the four studies which assessed infant siblings, two studies used AOSI Risk 

Marker cut points of ≥7 or >7 (Zwaigenbaum et al., 2005, Roberts et al., 2016) had sensitivity 

estimates of 0.84 and 1.00 respectively. Zwaigenbaum et al., 2020, who assessed different AOSI 

Total Score cut points across a range of time points, had sensitivity values ranging between 0.41 

and 0.73. For Zwaigenbaum et al., 2021 who used trajectory-based grouping based on AOSI 

Total Scores, sensitivity estimates for the inclining trajectory and inclining + intermediate 

trajectory groups were 0.28 and 0.68 respectively.  

 

Though specificity estimates were largely higher than sensitivity estimates for infant siblings, 

variation was still noted. Two studies that used AOSI Risk Marker cut points of ≥7 or >7 

(Zwaigenbaum et al., 2005, Roberts et al., 2016) reported specificity estimates of 0.98 and 0.57 

respectively. Zwaigenbaum et al., 2020 who assessed different AOSI Total Score cut points 

across a range of time points reported specificity estimates ranging between 0.51 and 0.90. For 

Zwaigenbaum et al., 2021 who used trajectory-based grouping based on AOSI Total Scores, 

specificity estimates for the inclining trajectory and inclining + intermediate trajectory groups 

were 0.94 and 0.59 respectively.  

 

AOSI Sensitivity and Specificity Estimates for FXS and TSC Infants. In addition to there 

being fewer psychometric estimates available for FXS and TSC infants, cut points and metric 

used varied relative to infant siblings as described in Table 2.03. Using the AOSI Risk Marker 

cut point of >7, Roberts et al., 2016’s data led to a single calculated sensitivity estimate of 0.57 

for FXS infants. For Capal et al., 2017 who report a range of 12-month AOSI Total Score cut 

points in TSC infants, sensitivity estimates ranged between 0.36 and 0.67.  

https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://doi.org/10.1007/s10803-016-2903-5
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https://doi.org/10.1111/jcpp.13417
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Specificity estimates for infants with FXS and TSC resembled those for infant siblings. Using 

the AOSI Risk Marker cut point of >7, Roberts et al., 2016’s data led to a single calculated 

specificity estimate of 1.00 for FXS infants. For Capal et al., 2017, specificity estimates for a 

variety of 12-month AOSI Total Score cut points ranged between 0.70 and 0.91.  

 

AOSI Total Score Comparison. As shown in Figure 2.2 (scatterplot), a consistent pattern of 

AOSI Total Scores emerges at 12 months of age, with IL-ASD groups (TSC, FXS, DS, and 

Infant Siblings with ASD) consistently showing higher scores compared to LL and IL non-ASD 

comparison groups. 

 

 
Figure 2.02 | Scatterplot of Age (in Months) by AOSI Total Score. Note that while different IL-ASD groups are 

denoted by the filled symbols, LL and IL non-ASD groups are denoted by the open symbols. DS = infants with 

Down Syndrome, FXS = infants with Fragile X Syndrome, IL = infants at increased likelihood for ASD, LL = 

Low likelihood controls, Sibs-N = IL-siblings not diagnosed with ASD, Sibs-D = developmentally delayed IL-

siblings, Sibs-C = combined grouping of Sibs-D and Sibs-N for studies which report it, Sibs-ASD = IL-siblings 

diagnosed with ASD, TSC = infants with tuberous sclerosis complex, TSC-N = LL controls in TSC studies not 

diagnosed with ASD, TSC-C = combined grouping of all TSC participants (ASD not separated out), TSC-ASD = 

IL-TSC infants diagnosed with ASD 

https://doi.org/10.1007/s10803-016-2903-5
https://doi.org/10.1016/j.pediatrneurol.2017.06.010
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Meta-Analyses 

LL Controls and IL-ASD 

Between 6 and 10 Months. A total of five comparisons of AOSI Total Scores were included in 

this meta-analysis. There was a significant effect of AOSI Total Score, suggesting that the IL-

ASD group had higher AOSI Total Scores compared to the LL control group (Cohen’s d = 1.01, 

95% CI = 0.49 - 1.52, z = 3.82, p < 0.001, Figure 2.03a). High heterogeneity was seen among the 

included studies (I2 heterogeneity statistic = 81.2%); thus, a random effects model was adopted 

to pool the relevant data and explore subgrouping analyses to determine any differential effects 

of the IL-ASD subgroup on AOSI Total Score. As shown in Figure 2.03a, all three IL-ASD 

groups (Sib-ASD, FXS, and TSC-ASD) produced significant effects (all p’s < 0.01), resulting in 

higher AOSI Total Scores compared to LL controls. Funnel plot analyses on Cohen’s d for AOSI 

Total Score demonstrated symmetry, but we still assessed for the presence of bias (Figure 2.03a). 

Trimming the set of data systematically removes each ‘outlier’ one at a time and recalculates the 

resulting Cohen’s d. The resultant value was changed following the trim and fill analyses, 

suggesting 2 missing studies. Evaluation of the Egger test provided little evidence of small study 

effects impacting Cohen’s d (bias coefficient = 5.43, standard error = 2.36; t = 2.30, p = 0.15).  

  

Between 12 and 14 Months. A total of four comparisons of AOSI Total Scores were included in 

this meta-analysis. There was a significant effect of AOSI Total Score, suggesting that the IL-

ASD+ group had higher AOSI Total Scores compared to the LL control group (Cohen’s d 

= 1.15, 95% CI = 0.90 - 1.40, z = 8.96, p < 0.001, Figure 2.03b). Though low heterogeneity was 

seen among the included studies (I2 heterogeneity statistic = 14.8%); we still adopted a random 

effects model to pool relevant data and explore subgrouping analyses to determine any 

differential effects of the IL-ASD subgroup on AOSI Total Score. As shown in Figure 2.03b, all 

three IL-ASD+ groups (Sib-ASD, DS, and TSC-ASD) produced significant effects (all p’s < 

0.03), resulting in higher AOSI Total Scores compared to LL controls. Though funnel plot 

analyses on Cohen’s d for AOSI Total Score demonstrated symmetry, we still assessed for the 

presence of bias (Figure 2.03b). The Cohen’s d value was unchanged following the trim and fill 

analyses, suggesting no bias. Evaluation of the Egger test provided little evidence of small study 

effects impacting Cohen’s d (bias coefficient = -0.01, standard error = 1.37; t = 0.00, p = 0.99).  
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Figure 2.03a, b | Meta Analyses Comparing LL Controls to IL-ASD Samples (left) with the Trim and Fill Plot 

(right). A = for ages 6-10 months, B = for ages 12-14 months. 

 

IL Non-ASD Combined Controls and IL-ASD  

Between 6 and 10 Months. A total of four comparisons of AOSI Total Scores were included in 

this meta-analysis. There was a significant effect of AOSI Total Score, suggesting that the IL-

ASD group had higher AOSI Total Scores compared to the IL control group (Cohen’s d = 0.89, 

95% CI = 0.03 - 1.75, z = 2.02, p = 0.004, Figure 2.04a). High heterogeneity was seen among the 

included studies (I2 heterogeneity statistic = 90.1%); thus, a random effects model was adopted 

to pool the relevant data and explore subgrouping analyses to determine any differential effects 

of the IL-ASD subgroup on AOSI Total Score. As shown in Figure 2.04a, two of the three IL-

ASD groups produced significant effects resulting in higher AOSI Total Scores compared to IL 

controls for FXS (p = 0.05) and TSC-ASD (p < 0.001). Funnel plot analyses on Cohen’s d for 
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AOSI Total Score demonstrated symmetry, but we assessed for the presence of bias regardless 

(Figure 2.04a). The Cohen’s d value was changed following trim and fill analyses, suggesting 

two missing studies. Evaluation of the Egger test provided little evidence of small study effects 

impacting Cohen’s d (bias coefficient = 5.43, standard error = 2.36; t = 2.30, p = 0.15).  

  

Between 12 and 14 Months. A total of four comparisons of AOSI Total Scores were included in 

the meta-analysis. There was a significant effect of AOSI Total Score, suggesting that the IL-

ASD group had higher AOSI Total Scores compared to the IL control group (Cohen’s d = 0.79, 

95% CI = 0.42 - 1.17, z = 4.15, p < 0.001, Figure 2.04b). Moderate heterogeneity was seen 

among the included studies (I2 heterogeneity statistic = 59.9%); thus, a random effects model 

was adopted to pool relevant data and explore subgrouping analyses to determine any differential 

effects of the IL-ASD subgroup on AOSI Total Score. As shown in Figure 2.04b, both IL-ASD 

groups (Sib-ASD and TSC-ASD) produced significant effects (all p’s < 0.01), resulting in higher 

AOSI Total Scores compared to IL controls. Funnel plot analyses on Cohen’s d for AOSI Total 

Score demonstrated symmetry, but we assessed for the presence of bias regardless (Figure 

2.04b). The Cohen’s d value was unchanged following the trim analyses, but the fill analysis 

suggested there was 1 missing study. Evaluation of the Egger test provided little evidence of 

small study effects impacting Cohen’s d (bias coefficient = 1.91, standard error = 1.26; t = 1.52, 

p = 0.27).  
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Figure 2.04a, b | Meta Analyses Comparing IL Non-ASD Combined Controls to IL-ASD Samples (left) with the 

Trim and Fill Plot (right). A = for ages 6-10 months, B = for ages 12-14 months. 

 

IL-DD/IL-Typical and IL-ASD  

Meta-analyses were also performed on studies that broke the IL-N ASD group into those who 

met criteria for developmental delay (IL-DD) and those who showed typical development (IL-

Typical). These data are presented in Appendix 1.  

 

Checklist of Bias and Quality of Study Methodology 

Table 2.04 provides a visual overview of the methodological strengths and weaknesses of the 17 

studies included in this review. Overall, there was no consistent approach with respect to 

classification or diagnosis of ASD (both for age and measures used), inclusion or exclusion 

criteria for participants, choice of comparison groups (or lack thereof), whether AOSI item-level, 

Risk Marker, or Total Score data are reported, and participant demographics (age, SES, ethnicity, 
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parental age, etc.). A consideration of each of these factors is important when making 

methodological decisions.  
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Table 2.04 | Bias and Quality Checklist for Included Studies  

                  

Objective / purpose                  

Question ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ 

Hypothesis - - - - ✓ - - - - - ✓ ✓ - ✓ - - - 

Study Design                  

Cross-sectional  - - - -  - - - ✓ - - - - - ✓ - - 

Longitudinal  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ 

Exclusion Criteria                  

Birth weight - - ✓ - ✓ - - - - - - - ✓ - - ✓ ✓ 

Term birth - ✓ ✓ - ✓Θ - ✓ ✓ - ✓Θ ✓ - ✓ - - ✓ ✓ 

Genetic causes - - - ✓ - - ✓ - - - - - ✓ - - ✓ ✓ 

Other conditions  - ✓ ✓ ✓ - - ✓ ✓ - - ✓ - ✓ - - ✓ ✓ 

Recruitment                  

Same cohort ✓ ✓ - ✓ ✓* ✓* ✓ ✓ ✓ - - - ✓ ✓ - ✓ ✓ 

Sample calculation - - - - - - - - - - - - - - - - - 

Control group                  

LL controls  ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ 

IL controls  ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ 

Experimental group                  

Infant siblings ✓ - ✓ ✓ ✓ ✓ ✓ - - ✓ - ✓ ✓ ✓ - ✓ ✓ 

Infants with FXS  - - - - - - ✓ - ✓ - - - - - - - - 

Infants with TSC  - ✓ - - - - - ✓ - - ✓ - - - - - - 

Infants with DS - - - - - - - - - - - - - - ✓ - - 

Demographics                  

Sex - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

SES - - - ✓ - - - - - ✓# - - ✓# - - ✓ ✓ 

Ethnicity  - - ✓ - - - - - ✓ - ✓ - - - ✓ ✓ ✓ 

Parental age  - - - - - - - - - - - - ✓# - - - - 

Outcome Assessment                  

2 years ✓ - ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓  ✓Δ - - - 

3 years  - ✓ - ✓ - ✓ - - - ✓ ✓ ✓ ✓ ✓Δ - ✓ ✓ 

7 years - - - - - - - - - ✓ - - - ✓ - - - 

Gold-standard? - - - ✓ - - - ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ 

Blinded?  - - ✓α - - - - ✓α - ✓ - ✓ ✓ - - ✓ ✓ 

Diagnostic Criteria                  

DSM - - ✓ - - - - - - ✓ - ✓ ✓ ✓ - ✓ ✓ 
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ICD - - - ✓ - ✓ - - - - - ✓ - - - - - 

Age of AOSI 

Administration 
                 

< 12 months  - ✓ ✓ ✓ ✓  - - - ✓ ✓ ✓ - ✓ - ✓ ✓ 

≥ 12 months  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ 

Range <12 >  - - - - - - - - ✓ - - - - - ✓ - - 

AOSI 

Administrations 
                 

One - - - - - ✓ ✓ ✓ ✓ - - - - ✓ ✓ - - 

Two + ✓ ✓ ✓ ✓ ✓ - - - - ✓ ✓ ✓ ✓ - - ✓ ✓ 

Statistical analyses                  

Covariates - - ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - - - 

Post-hoc ✓ - ✓ ✓ - - ✓ - ✓ - ✓ ✓ - - - ✓ ✓ 

Included in meta-

analysis? 
-  ✓ ✓ - -  ✓ ✓ - ✓ ✓ - - ✓ ✓ ✓ 

AOSI content used                  

Item-level data - - - ✓ - - ✓ ✓ - - ✓ - ✓ - - ✓ - 

Total Score data  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Psychometric 

properties 
                 

Sensitivity ✓ - - - - - ✓ ✓ - - - - - - - ✓ ✓ 

Specificity ✓ - - - - - ✓ ✓ - - - - - - - ✓ ✓ 

Cut-off score ✓ - - - - - ✓ ✓ - - - - ✓ - - ✓ ✓ 

IRR assessment? ✓ - - - - ✓ ✓ - ✓ ✓ - - - ✓ - - - 

                  

AOSI = Autism Observation Scale for Infants, DS = Down Syndrome, DSM = Diagnostic and Statistical Manual of Mental Disorders, FXS = Fragile X Syndrome, ICD = 

International Classification of Diseases, IRR = inter-rater reliability, SES = socioeconomic status, TSC = Tuberous Sclerosis Complex. Note: checkmarks for each item are not 

weighted and instead simply denote the presence or absence of the item. 
α = Not all clinicians responsible for assigning a diagnosis were blinded group status  

* = Control sample came from volunteer databases, but it is not clear whether they were recruited from the same cohort as IL participants 

Θ = Term birth was described only for control participants 

# = Family income was calculated and used in statistical calculations but not described or reported (i.e., no direct reporting of SES for IL vs LL groups) 

Δ = While participants were assessed these ages, the assessment procedure was not detailed or described outside of being mentioned. 
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Discussion 

This systematic review and meta-analysis focused on previous studies assessing classification 

properties and group differences on the AOSI across different IL infant populations. Four IL 

populations were identified in this review: infants with FXS, TSC, DS, and infant siblings of 

children with ASD. The review had three main findings. First, although five studies reported 

individual classification properties, sensitivity and specificity estimates were not comparable due 

to the different metrics, methodologies, and cut point scores used. Second, stable group 

differences emerged between LL and IL non-ASD control groups and IL-ASD groups by 12 

months of age. Third, meta-analyses identified a large effect size for comparisons between LL 

control and IL-ASD samples, and a moderate effect size for comparisons of IL non-ASD and IL 

samples with signs or diagnoses of ASD. While the AOSI was used as a measure of ASD 

symptomology in these different populations, it is currently unclear whether ASD diagnosis in 

FXS, TSC, DS, and infant siblings all reflect the same underlying and neurobiological 

impairments seen in non-syndromic or idiopathic ASD (Abbeduto et al., 2014). Gaining a better 

understanding of how the AOSI performs across different populations of infants who are at 

increased likelihood for ASD is vital to our understanding and characterization of the emergence 

of ASD during early childhood. 

 

Classifying and Diagnosing ASD in IL Samples  

ASD outcomes were assigned based on either 24-month ADOS classification or 36-month 

blinded diagnostic assessments. When assessing for ASD, the age of the child and the 

comprehensiveness of the assessment are important. Infant behaviour can be affected by 

situational factors, such as their state of alertness (Jones et al., 2014), time of day, and biological 

state (e.g., hunger or sleepiness; McNally et al., 2015). Gold-standard ASD diagnostic 

assessments (defined as use of validated observational and interview measures such as the 

ADOS and ADI-R in conjunction with expert clinical judgement; Kaufman 2022) utilize a broad 

scope of clinical information before assigning a diagnosis. Use of a single observational measure 

to determine ASD outcome is therefore a poor proxy and likely suffers from decreased 

sensitivity, specificity, and diagnostic stability (Jones et al., 2014). Furthermore, in IL infant 

siblings, although diagnostic stability of early ASD diagnosis at 18- and 24-months is high at 

93% and 82% respectively, early classification suffers from low sensitivity (Ozonoff et al., 
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2015). At 18- and 24-month assessments, 63% and 41% of children who are later diagnosed with 

ASD at 36-months are missed (Ozonoff et al., 2015). Since 24-month clinical best estimate ASD 

diagnosis can miss such a substantial percentage of children later diagnosed at 36-months, 24-

month classification of ASD based on ADOS scores alone are likely even less informative. 

 

As reviewed here, ASD classification using 24-month ADOS scores are also plagued with 

inconsistency. Studies using a single observational measure like the ADOS to classify ASD need 

to provide details about what scoring algorithms were used. Of the four studies in this review 

using 24-month ADOS scores as their main ASD outcome determinant (Capal et al., 2017, 

Zwaigenbaum et al., 2005, Roberts et al., 2016, Gilga et al., 2015), only Roberts et al., 2016 

states what ADOS severity score thresholds was employed. The ADOS calibrated severity score 

is a metric with values ranging between 1 and 10, with higher scores representing increasing 

severity of ASD-related symptoms (Duda et al., 2014). The ADOS-2’s scoring algorithm 

indicates that a severity score of 7 equates to the broader autism spectrum, and 8 or higher 

associated with autism (Lord et al., 2012). Reporting what ADOS severity score threshold is 

used is crucial as it may influence the characteristics of ASD being classified in study 

participants. For instance, while Roberts et al., 2016 employed a relatively inclusive severity 

score threshold of >4 flagging participants with at least mild-to-moderate ASD symptomology 

(Lord et al., 2012), other studies have either used more stringent severity score cut thresholds of 

>8 (Sedgewick et al., 2019). In this review, while Capal et al., 2017 and Zwaigenbaum et al., 

2005 classified infants with ASD based on 24-month ADOS scores, they did not detail what 

scoring thresholds were used. Given that we do not know if Capal et al., 2017, Zwaigenbaum et 

al., 2005, Roberts et al., 2016, or Gilga et al., 2015 all used the same ADOS scoring threshold, it 

is plausible their study results are influenced by labelling participants with ASD of differing 

severity levels. Studies relying on the ADOS alone to classify ASD should specify what scoring 

thresholds are used to allow comparison of similarly characterized outcome groups.  

 

Validation of the AOSI in Different IL Samples 

When extending the use of an established scale to a new context, caution must be practiced; it 

cannot be assumed that a scale validated in one population can be equally applied in a different 

population without initial validation (Streiner et al., 2014). Each time a scale is used in a new 
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context, it is necessary to establish psychometric properties and validity of the inferences drawn 

from them (Streiner et al., 2014). In addition, in pursuit of optimal reliability and validity, scales 

often need to be revised – changes may be subtle or substantial (Streiner et al., 2014). For 

example, FXS infants with ASD have significantly higher motor impairments relative to infant 

siblings with ASD (Roberts et al., 2016). Whether such variance in item-level scoring is present 

across the different IL populations is not clear. Possible alterations to the AOSI may be 

warranted to capture population differences that may be indicative of later ASD diagnoses. We 

suggest that item-level data should be reported to assist this effort.  

 

Sensitivity, the ability of a test to correctly identify an individual as having a particular 

condition, and specificity, the capability of a test to correctly identify individuals as not having 

that condition, are inversely proportional (Parikh et al. 2008). The AOSI cut point should 

optimize both sensitivity and specificity (Akobeng 2007). Although the best tests are both highly 

sensitive and specific, this is not always feasible in practice (Akobeng 2007) as trade-offs may 

exist between valuing high sensitivity over specificity (or vice versa, Trevethan 2017). In 

situations where it is vital that a diagnosis is not missed (e.g., diseases with high mortality), high 

sensitivity is sought. In contrast, if the consequences of false positives are serious (e.g., 

psychological implications of a false HIV diagnosis), high specificity is sought (Akobeng 2007).  

 

AOSI sensitivity and specificity estimates for infant siblings varied across the papers reviewed 

here. Although Zwaigenbaum et al., 2005 and Roberts et al., 2016 used a similar cut point (≥7 

and >7 AOSI Risk Markers respectively), their estimates of specificity differed. This likely 

stemmed from study differences in inclusion/exclusion criteria, participant demographics, and 

use of 24-month classification assessment (which may be less sensitive to children with milder 

ASD presentation). The issue of psychometric properties is further muddied by the AOSI metric 

used. Rather than AOSI Risk Markers, sensitivity and specificity estimates from Zwaigenbaum 

et al., 2020 were calculated using the AOSI Total Score, which may account for differences in 

sensitivity and specificity. The original Zwaigenbaum et al., 2005 article introducing the AOSI 

published preliminary psychometric estimates based on a cut point of ≥7 AOSI Risk Markers, not 

the AOSI Total Score. The two metrics are not comparable. AOSI Risk Markers denote the total 

number of AOSI items that scored ‘1’ or higher and range from 0-16 (Zwaigenbaum et al., 
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2005). This differs from the AOSI Total Score, the summed score of all AOSI items and ranges 

from 0-38 (Bryson et al., 2008). While there are many studies exploring group differences using 

the AOSI in IL infant sibling populations, few studies directly report the scale's psychometric 

properties, or the data required to calculate them. This leads to challenges with evaluating what 

the optimal cut points are for the scale based on currently available evidence. Given that clinical 

measures should have cut points yielding sensitivity and specificity values exceeding 0.70 

(Zwaigenbaum et al., 2015) and ideally between 0.80 and 0.90 if ascribing to Bayes Theorem 

(Medow & Lucey, 2011), determination of what cut point sensitivity and specificity thresholds 

are acceptable or even achievable given the cost of false positives and negatives should be 

considered when the AOSI is used in different IL infant contexts. 

 

Considerations for Future Data Collection and Analyses 

First, when assessing the utility of a scale in a novel context, it is paramount to control for 

demographic factors that can confound results. For example, low SES is linked to poor outcomes 

in many areas of early development (Bradley & Corwyn, 2002, Chen et al., 2019, Lawson et al., 

2018, Freitas et al., 2013) and can be affected by other related cofactors, such as ethnicity 

(Bradley & Corwyn, 2002). Papers included in this review may be biased due to a failure to 

control for the potential impacts of factors such as family SES and ethnicity. Finally, while ASD 

has been known to be related to advancing paternal age (Puelo et al., 2012), none of the studies 

in this review included it as a possible covariate. Future studies should include family 

demographics in their analysis to promote generalizability of findings.  

 

Second, reliability and validity need to be reassessed in novel contexts. The presentation of ASD 

in FXS, TSC, DS, and infant siblings may manifest differently (Abbeduto et al., 2014). Thus, 

assessment of reliability and validity of ASD symptom assessment tools is warranted in novel IL 

populations. Reporting item-level data may aid in the identification of emergent patterns across 

IL populations (e.g., FXS infants with ASD have increased motor impairments relative to ASD 

infant siblings; Roberts et al., 2016). 

 

Third, more stringent and explicitly stated inclusion and exclusion criteria are needed. 

Differences in exclusion criteria, for example, gestational age, birthweight, and the other 
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neurological conditions, impact comparability and generalizability of results. Inclusion and 

exclusion criteria should be selected based on the study question. For example, preterm infants 

are at 3-4 times increased likelihood for ASD diagnosis relative to the general population (7% vs 

0.76% respectively; (Agrawal et al., 2018, Chen et al., 2006) and thus, should be considered a 

separate IL group. Premature infants also experience cognitive impairment that have a 

developmental interaction with SES (Tong et al., 2006, Torche & Echevarría, 2011). 

 

Fourth, AOSI cut points (for the Total Score or number of Risk Markers) need to be reported. A 

paucity of literature addresses the AOSI’s prediction of ASD in FXS, TSC, and DS populations. 

When using the AOSI, it is imperative to describe explicitly how the measure was used, 

including cut points (both the actual cut point used and the metric [AOSI Total Score or Risk 

Markers]). Failure to do so can draw into question the validity of study results and undermine the 

generalizability of findings to other contexts.  

 

Fifth, non-ASD or IL control groups are needed. Lack of appropriate control group(s) negates the 

possibility of investigating whether patterns of results are group or syndrome-specific (i.e., 

associated with IL status or ASD diagnosis) or reflect typical child development. Are the 

reported results which attempt to characterize ASD features specific to a particular IL population 

(e.g., infant siblings, FXS, TSC, DS) or is it possible that the reported findings are not specific to 

ASD or IL populations and instead are a feature of typical development? Future studies should 

include non-clinical comparison groups when using the AOSI with IL infant populations.  

 

Sixth, it is important to consider age at outcome assessment. It is imperative when investigating 

early features of a condition like ASD that results are accurately attributed to the condition of 

interest. Diagnostic assessments at 24-months are less sensitive (Ozonoff et al., 2015). This is 

likely due to different groups of children being identified at 24- and 36-months (i.e., children 

diagnosed with ASD at 24-months generally have more severe symptom presentation than 

children diagnosed at 36-months; Zwaigenbaum et al., 2020). Since the goal of these studies is 

early detection, using 24-month outcome assessments (although likely to only capture a specific 

group of ASD children) is still pertinent.  
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Seventh, the age at which the AOSI is administered should be determined by the research 

question. AOSI Total Scores were not able to distinguish between IL and LL infants when 

administered at 6 and 9 months across the included studies. Given that meta-analyses report clear 

evidence of group differences emerging by 12-months of age and older among IL-ASD and LL 

or IL non-ASD infant populations, reliance of AOSI scores before 12-months for classification 

purposes is not recommended. If studies aimed to investigate the emergence of ASD symptoms 

across the developmental timespan from infancy to age at diagnosis, earlier AOSI 

administrations (at 6 and/or 9 months) could be warranted.  

 

Limitations  

This is the first systematic review and meta-analysis evaluating the use and classification 

properties of the AOSI across IL infant populations. This review has several limitations. Though 

we conducted a thorough search for studies using the AOSI in IL infants in six databases, it is 

possible that we still may have missed some AOSI papers. In addition, although most studies 

identified using the AOSI were on IL infant siblings, few studies have applied the measure to 

FXS, TSC, DS, and other IL populations. It is important to note, however, that several of the 

studies included in this review were the first to use the AOSI in their non-infant sibling IL 

cohort.  

 

Conclusion 

This review summarized the results of research that assessed group differences and psychometric 

performance of the AOSI in populations of infants at IL for a diagnosis of ASD. Overall, group 

differences on the AOSI were consistently found by 12 months of age between IL-ASD and LL 

or IL non-ASD groups. However, individual classification properties were less promising, likely 

due to methodological differences. As such, it is critical to investigate further the psychometric 

properties (i.e., sensitivity and specificity) of the AOSI across different IL populations in which 

phenotypic differences may exist. Ensuring study design and methodology are robust and 

transparent to not only protect against biasing factors, but also allow for comparison with similar 

or follow-up studies is important. Understanding the differences in methodology can inform 

future studies as researchers continue to investigate the early presentation of signs of ASD across 
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diverse IL populations. Overall, the AOSI shows promise as an early detection tool for different 

infant groups at IL for ASD. 
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Chapter 3: Study Two 

 

Background 

Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental condition characterized by 

differences in social-communication and the presence of restricted interests, repetitive 

behaviours, and/or atypical responses to sensory input (APA, 2013). The Centre for Disease 

Control and Prevention’s (CDC) estimate for the community prevalence rate of ASD in the 

United States is 1 in every 44 children by age 8 (Maenner et al., 2021). Though sex differences 

in ASD diagnostics have been observed (males being four times as likely than females to be 

diagnosed; Baio et al., 2018), sex difference in older youth and adults may reflect camouflaging 

of ASD symptoms or phenotypic differences in females that may lead to delayed or missed 

diagnoses (Tubío-Fungueiriño et al., 2021). Some populations are at increased likelihood (IL) of 

being diagnosed with ASD due to environmental and/or genetic exposures such as increasing 

paternal age, premature birth, Fragile X Syndrome, Down syndrome, and Tuberous Sclerosis 

Complex (Hultman et al., 2011, Capal et al., 2017, Agrawal et al., 2018, Abbeduto et al., 2014). 

Relative to a general community population, ASD prevalence in these different IL contexts is 

considerably elevated (Numis et al., 2011, Ozonoff et al., 2011, Abbeduto et al., 2014, Szatmari 

et al., 2016, Hahn et al., 2020). 

 

One defining feature of ASD is its complexity; the condition is characterized by extreme 

phenotypic and etiological heterogeneity (Mottron & Bzdok 2020). Individuals on the spectrum 

can vary tremendously in how their symptoms manifest and present (Wozniak et al., 2016), and 

in the supports they require to enhance personal independence, productivity, participation in 

society, and increased community integration and/or improved quality of life (Thompson et al., 

2002). Often however, access to supports require a formal diagnosis. The vital importance of 

early detection and diagnosis (Gardner et al., 2013, Fuller and Kaiser, 2019, Towle et al., 2020) 

is further highlighted by the benefits of early intervention (Fuller and Kaiser, 2019, Towle et al., 

2020, Dawson et al., 2010, Bonis, 2015, Pickles et al., 2016, Noyes-Grosser et al., 2018). Current 

meta-analytical estimates for the mean age of ASD diagnosis across 40 countries (considering 

data from 56 studies encompassing 120,540 ASD individuals) is 5 years old (99% CI = 4.18-

5.90; van’t Hof et al., 2020). Given that (1) early ASD diagnosis and intervention is associated 

with improved social, communication, brain function, as well as decreased costs of specialized 
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therapies and education services (Bonnis et al., 2016) and (2) ASD diagnosis is very stable from 

early to mid-childhood (Brian et al., 2016), tools that aid in early identification of ASD have 

potential utility to facilitate access to early intervention services. This is particularly relevant to 

IL children given documentation of the emergence of ASD symptoms at 6 to 18 months old 

(Tanner & Dounavi et al., 2021). Some evidence supports the utility of ASD-specific screens at 

18 and 24 months, however screening prior to 24 months old may be associated with higher 

false-positive rates compared to screening after 24 months (Zwaigenbaum et al., 2015). 

Unfortunately, limited data supports screening tools  (e.g., the Screening Tool for Autism in 

Two-Year-Olds [STAT], Systematic Observation of Red Flags [SORF], or Infant-Toddler 

Checklist [ITC]) that can identify with a high degree of accuracy children <18-month-old who 

are later diagnosed with ASD (Stone et al, 2008, Wetherby et al., 2008, Dow et al., 2020). With 

growing access to increasingly powerful computational technology, investigation into the 

development of new tools or the refinement of existing instruments is becoming increasingly 

viable.  

 

Since the late 1960s, performance and functionality of digital devices has doubled roughly every 

2 years (Shalf, 2022). This observation, dubbed Moore’s Law, is built on how exponential 

growth in integrated-circuits and transistor component density has allowed for new innovations, 

applications, and technological possibilities at decreasing prices (Khan et al., 2018). Since 1965, 

Moore’s Law has become one of the most durable technological forecasts ever made and has 

since become an emblem of the information age (Denning & Lewis, 2017). Though the 

technological underpinnings of Moore’s law may end in the coming decades as electronic 

manufacturing approach the limit of atomic scaling (Shalf 2020), Moore’s law has coincided 

with an unprecedented reduction in cost of electronic storage (Keyes 2006) and growing 

availability of increasingly powerful computational devices (Bini, 2018). Access to progressively 

more powerful computers has facilitated the use of increasingly sophisticated data analysis 

modalities that, historically, have been intractable or infeasible given technological limitations or 

lack of computational power (Cohen, 2021). For modern researchers and scientists, the ready 

access to powerful technology has led to widespread use and adoption of applying machine 

learning algorithms to complex problems and datasets.  
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Given that provision of accurate and accessible diagnoses is a fundamental challenge of global 

healthcare, artificial intelligence and machine learning tools show promise in revolutionizing 

healthcare by facilitating provision of precise and personalized diagnoses (Richens et al., 2020). 

Machine learning is a branch of artificial intelligence and computer science that focuses on using 

data and computer algorithms to imitate the way humans think and learn to gradually improve 

their accuracy and performance (IBM, 2020). Machine learning algorithms are commonly 

divided into four main categories: supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning algorithms (Sarker et al., 2021). In most healthcare settings, 

focus is placed on supervised learning algorithms which are built and trained using labelled 

(input-output) patient or research data (Burkov 2019, Doupe et al., 2019, Mahesh, 2020). 

Amongst the different types of supervised learning algorithms, the most common types 

employed are classification and regression algorithms (Garg & Mago, 2020). Though any 

classification-type machine learning algorithm implicitly or explicitly generates a decision 

boundary in data, how the decision boundary is calculated delineates the different learning 

algorithm types (Burkov 2019). There are numerous advantages to using machine learning in 

health research. For instance, machine learning can be flexible and scalable, allowing for 

deployment in many different areas including risk stratification, diagnosis, classification, and 

survival predictions (Ngiam & Kor, 2019). Machine learning enables analysis of increasingly 

diverse types of data that can be incorporated into models used to help predict disease risk, 

diagnosis, and even treatment modalities (Ngiam & Kor, 2019). Some notable disadvantages of 

machine learning include the requirement for data pre-processing, model training, and the need 

for model refinement with respect to the clinical problem being assessed (Ngiam & Kor, 2019). 

 

Current diagnostic learning algorithms continue to struggle to achieve the high accuracy required 

for differential diagnosis (Richens et al., 2020). Though machine learning is becoming 

increasingly common in clinical and research sciences (often via machine learning toolkits such 

as Hadoop, TensorFlow, Spark, R; Hyde et al., 2019) the field of ASD research has yet to fully 

leverage the technology to the same degree as embraced in other fields (Hyde et al., 2019). One 

major drawback to traditional ASD diagnostics is that administration and interpretation of 

standardized ASD diagnostic tools can be costly and time-intensive (Eman et al., 2020). Given 

that one of the primary goals for machine learning in ASD research is to minimize diagnostic 
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time with improved accuracy (Eman et al., 2020), progress in this area has huge potential to 

expedite early screening and detection efforts which, in turn, can facilitate increased access to 

early intervention services for ASD individuals and their families.   

 

A major benefit of machine learning in data analysis is that it can be used to rapidly evaluate 

different combinations of factors to determine which provides the best accuracy and predictive 

power when assessing for a given outcome. Today, the volume, velocity, and variety of data that 

can be generated has substantially increased due to the availability and affordability of requisite 

infrastructure and technology needed to create it (Hyde et al., 2019). This increase is coupled 

with a rise in the amount of data with high dimensionality (i.e., data where the number of 

features or variables approach or exceed the number of observations in the dataset; Buhlmann et 

al., 2014).  

 

Taken together, the benefits of highly accurate machine learning classifier models in clinical and 

research settings are tantalizing. Though existing classifier models struggle to achieve high 

accuracy (Richens et al., 2020), in the context of ASD diagnostics, the potential is huge. A 

highly accurate learning algorithm trained to distinguish early signs of ASD from neurotypical 

individuals has a huge potential to facilitate increased access to early intervention services 

which, in turn, can have a profound impact on the quality of life of individuals and families with 

ASD.  

 

This study aims to build on previous research into early screening and detection of ASD. The 

primary objectives of this study are (1) to conduct a cross-domain supervised learning classifier 

analysis using 12-month Autism Observation Schedule for Infants (AOSI), Mullen Scales of 

Early Learning (MSEL), and demographic data (biological sex), and (2) to assess classifier 

performance at predicting 36-month ASD diagnostic outcomes in a cohort of Canadian infant 

siblings at increased likelihood for ASD.   

 

Methods 

Participants  

The Canadian Infant Sibling Study (CISS-1) is a longitudinal study with 937 participants, 699 of 

which are infant siblings at increased likelihood for ASD (IL-siblings). Starting in the early-to-

http://dx.doi.org/10.1109/ICITISEE48480.2019.9003807
https://doi.org/10.1007/s40489-019-00158-x
https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.1146/annurev-statistics-022513-115545
https://doi.org/10.1038/s41467-020-17419-7
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mid 2000s, participants were recruited from one of five ASD diagnostic and treatment centers in 

Canada: The Glenrose Rehabilitation Hospital (Edmonton), McMaster Children's Hospital 

(Hamilton), the Hospital for Sick Children (Toronto), Holland Bloorview Kids Rehabilitation 

Hospital (Toronto), and the IWK Health Centre (Halifax).  

 

Confirmation of IL-Sibling Status  

To verify participant status as IL-siblings, diagnosis of ASD in the older sibling was confirmed 

through clinical assessment or a review of diagnostic records using the Diagnostic and Statistical 

Manual of Mental Disorders (DSM) fourth edition, text-revised (DSM-IV-TR) criteria. All IL-

sibling participants were characterized by the lack of identifiable neurological or genetic 

conditions, nor any severe sensory or motor impairments. All participants were born at 36-42 

weeks gestation and had a birth weight greater than 2500g.  

 

Ethics 

This study was approved by the research ethics boards at each institution, and all participating 

families gave written informed consent upon enrollment. No personally identifying information 

was used, considered, or incorporated into any of the statistical models generated in this paper. 

As such, all statistics and data reported in this study stem from de-identified, anonymized IL-

sibling data.  

 

Canadian Infant Sibling Study (CISS-1) Participant Data 

As with all longitudinal studies, participant attrition and missing data present methodological 

problems that become increasingly prevalent as time goes on (Gustavson et al., 2012). Of the 699 

IL-siblings enrolled in CISS-1, 482 have 36-month diagnostic outcome data (i.e., underwent a 

comprehensive 36-month diagnostic assessment for ASD). Of these 482 participants, 465 had 

12-month AOSI data and are the principal participants of this paper. Participants included in this 

study were restricted to IL-siblings only as a means of investigating the ability to correctly 

classify ASD in a sample of infant siblings at increased likelihood for a diagnosis of ASD – not 

in a general community context. Data on low likelihood (LL) control participants was therefore 

excluded from analysis. 

 

https://doi.org/10.1186/1471-2458-12-918
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Participants were assessed at 6-, 9-, 12-, 15-, 18-, 24-, and 36-months of age. Adaptive 

behaviour, intellectual and language abilities, temperament, and ASD symptomatology were 

assessed at different timepoints using the Autism Diagnostic Observation Schedule (ADOS), 

Autism Diagnostic Interview-Revised (ADI-R), Mullen Scales of Early Learning (MSEL), and 

the Vineland Adaptive Behavior Scales (VABS; Mullen 1995, Sparrow et al., 1989, Lord et al., 

1989, Lord et al., 1994). Early behavioural markers of ASD were investigated when participants 

were 6-, 9-, 12-, 15-, and 18-months old using the AOSI. Clinicians or trained research staff 

administered and collected ADOS, ADI-R, AOSI, MSEL, and VABS data at their respective 

timepoint per the CISS-1 study protocol.   

 

IL-Siblings Diagnostic Procedure 

At 36-months old, each participant underwent an independent diagnostic evaluation conducted 

by an expert clinician blind to previous study assessments. Clinicians assigned ASD diagnosis 

using DSM-IV-TR criteria, based on the best clinical judgment of the clinician (developmental 

pediatrician, child psychiatrist, or clinical psychologist with 10 or more years of diagnostic 

experience) using information from ADI-R, ADOS, and concurrent developmental information 

from the MSEL and VABS. 

 

Measures 

The Autism Observation Scale for Infants (AOSI) is a brief, 19-item observational measure 

designed to characterize early behavioural signs of ASD between 6 and 18 months in a familial 

cohort of infant siblings at IL for ASD (i.e., infant siblings of children who already have a 

diagnosis of ASD; Bryson et al., 2008). The AOSI assesses multiple overlapping constructs that 

characterize prodromal ASD (e.g., social communication, emotional regulation, atypical sensory-

motor behaviours, repetitive behaviours, etc.) within an interactive, play-based context where 

behaviour can be systematically elicited by trained examiners (Bryson et al., 2008). AOSI Items 

1-19 are scored on an integer scale from 0 to 2-3, with 0 = typical behaviour, 1 = inconsistent, 

partial, or questionable behaviour, 2 = atypical behaviour, and 3 = a total lack or absence of 

behaviour (Bryson et al., 2008). Using this data, two different AOSI scoring metrics can be 

calculated: (1) the AOSI Total Score by summing Items 1 to 18 on the scale (ranging in value 

from 0-38), and (2) the number of AOSI Risk Markers constituting Items 1 to 19 that score one 

or higher (ranging in value from 0-16; Bryson et al., 2008, Zwaigenbaum et al., 2005). 

http://www.v-psyche.com/doc/special-cases/Mullen%20Scales%20of%20Early%20Learning.docx
https://doi.org/10.1093/jpepsy/10.2.215
https://link.springer.com/article/10.1007/BF02211841
https://link.springer.com/article/10.1007/BF02211841
https://www.scienceopen.com/document?vid=edc97714-f39b-4ac8-803a-4ea7707fbd00
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1016/j.ijdevneu.2004.05.001
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The Mullen Scales of Early Learning (MSEL) is a developmental measure consisting of five 

scales, four of which (Visual Reception [VR], Receptive Language [RL], Expressive Language 

[EL], and Fine Motor [EL]) assess nonverbal cognitive and language abilities, whereas the fifth 

measures Gross Motor development (from 0 to 29 months only; Mullen 1995). An Early 

Learning Composite [ELC] is calculated from scores on all but the Gross Motor domain for 

children aged 0-69 months (Mullen 1995). The Mullen has exhibited excellent inter-rater and 

test-retest reliability (Mullen 1995).   

  

The Hollingshead Four-Factor Index is a measure of socioeconomic status (SES) in which 

individual raw scores are collapsed into four distinct classes according to standardized cut-off 

criteria (Hollingshead, 1975). A composite family socioeconomic status score can be calculated 

ranging between <20 and 66, with higher values indicating higher family SES (Hollingshead, 

1975). 

 

Why Build Predictive Models Using 12-month Data?  

As reported in Chapter 2, group differences on the AOSI emerge at 12-months of age between 

IL-siblings diagnosed with ASD at 36-months (IL-ASD), IL-siblings not diagnosed at 36-months 

(IL-N), and LL controls. This study aims to build on that work by developing and assessing the 

performance of predictive classifiers built using 12-month IL-sibling clinical data. 

 

Variable Selection: Assessment of 12-month MSEL and VABS data completeness was sought 

as potential moderating variables in later statistical or machine learning model generation as 

previous studies have used similar predictor variables during learning classifier analysis (Bussu 

et al., 2018). Of the 465 IL-sibling participants from CISS-1 with 36-month diagnostic outcomes 

and 12-month AOSI administrations, 409 and 262 participants had recorded 12-month MSEL 

and VABS data reflecting a missing data rate of 12.04% and 43.66% respectively. Though there 

is no established cut off criterion pertaining to acceptable percentages of missing data required 

for statistical inferences (Dong & Peng, 2013) since less than 15% of the 12-month MSEL data 

was missing, it was deemed eligible for missing data imputation – assuming data missingness 

was completely at random. As such a large proportion of participants were missing 12-month 

http://www.v-psyche.com/doc/special-cases/Mullen%20Scales%20of%20Early%20Learning.docx
http://www.v-psyche.com/doc/special-cases/Mullen%20Scales%20of%20Early%20Learning.docx
http://www.v-psyche.com/doc/special-cases/Mullen%20Scales%20of%20Early%20Learning.docx
https://scholar.google.ca/scholar?q=hollingshead+four+factor+index&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.ca/scholar?q=hollingshead+four+factor+index&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.ca/scholar?q=hollingshead+four+factor+index&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://doi.org/10.1007/s10803-018-3509-x
https://doi.org/10.1007/s10803-018-3509-x
https://doi.org/10.1186%2F2193-1801-2-222
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VABS data, the VABS was eliminated from consideration in predictive modelling as including it 

would require severely reducing the total sample of participants. Therefore, all predictive 

classifier models in this study are built using combinations of participant demographic (i.e., 

biological sex), 12-month AOSI (item level, Total Score), and MSEL standard score (ELC, VR, 

FM, RL, EL) data.  

 

Data Preprocessing   

Data was first cleaned and preprocessed to allow for assessment of (1) the proportion and 

randomness of missing data of the 465 IL-siblings relative to 12-month clinical data, (2) 

determination of what variables/features to use in statistical modelling, (3) feasibility of using 

missing data imputation techniques such as expectation maximization (EM; which take into 

account conditions under which missing data occurred; Dong & Peng, 2013) to address missing 

data, and (4) the impact of imputation techniques on 12-month dataset statistics for IL-ASD and 

IL-N participants.  

 

Dataset Partitioning into Training and Testing Sets  

Cleaned/EM-imputed IL-sibling data was imported into R/RStudio using the read_sav function 

from the haven R package (Wickam et al., 2022). Cleaned data was then randomly partitioned 

into training and testing datasets that contained 80 and 20% of the total data using the 

createDataPartition function from the R package caret (Khun et al., 2022) before being exported 

as a comma delimited .csv file using the write.table R function (R v4.2.1, 2022). Partitioned data 

was imported back into a R/RStudio environment using the read_csv function from the readr 

package (Wickam et al., 2022) any time statistical modelling or testing was performed. The 

R/RStudio code used to partition study data is described in the public GitHub repository. 

 

Generation of an Independent Validation Dataset 

Enrollment and participant follow-up in CISS-1 is concluded and a new CISS-1 conducted by the 

same principal investigators is currently underway (CISS-2) in the same Canadian ASD 

diagnostic and treatment centers. Since CISS-2 is still actively recruiting participants, fewer IL-

sibling data is available. As of October 2022, data on 133 IL-siblings with 12-month AOSI and 

36-month diagnostic outcomes was available for use in this study. Identical data preprocessing 

and cleaning steps relative to the CISS-1 IL-sibling data was employed as described in this 

https://doi.org/10.1186%2F2193-1801-2-222
https://cran.r-project.org/web/packages/haven/haven.pdf
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/web/packages/readr/index.html
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
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methods section. The rationale surrounding use of this dataset in this study, as well as data 

preprocessing results are described in detail in the Appendix 2. 

 

Assessing Distribution/Normality of 12-Month AOSI and MSEL Data  

Given how the AOSI is scored (scores across the range of 0 to 2-3 represent increasing degrees 

of impairment; Bryson et al., 2008), it was deemed unlikely that item-level AOSI or Total Score 

data would be normally distributed. Within an IL sample, a relatively small proportion are 

expected to have ASD features based on the known ASD recurrence rates. Accordingly, scores 

are expected to be non-normal. Given that parametric statistical techniques require normally 

distributed data, thus Kolmogorov-Smirnov and Shapiro-Wilk tests of normality were conducted 

in SPSS Version 28.0.1.1 (14) (IBM 2022) using the Explore command, with data factored by 

36-month diagnostic outcome (IL-ASD / IL-N) prior to any follow-up statistical analyses.  

 

Assessing for Group Differences in 12-Month AOSI and MSEL Data   

Group differences between CISS-1 IL-ASD / IL-N siblings (and between training and testing 

datasets partitions to assess for robustness of the randomization code) with respect to 12-month 

AOSI and MSEL data were explored using nonparametric Mann-Whitney U tests with post hoc 

Benjamini & Hochberg 1995 corrections. In this method, p-values are ordered smallest to largest 

(Benjamini & Hochberg 1995). The α level for each test is then set at (k*α)/m, with k 

corresponding to the p-value’s rank (lowest p = 1), and m corresponding to the number of 

comparisons (Benjamini & Hochberg 1995). This method decreases the chance of false 

positives; comparisons stop once one of the tests are rejected (this method uses ‘q*’ rather than 

‘p’ to denote the critical alpha level; Benjamini & Hochberg 1995). 

 

Assessing AOSI Item-Level Data  

AOSI Item-Level Correlations: Exploratory bivariate one-tailed Pearson correlations of 12-

month item-level AOSI data (items 1-19) were conducted on cleaned CISS-1 IL-sibling 

participant data to determine if any AOSI Item was significantly correlated with one another – 

potentially indicative of AOSI items measuring a similar feature or construct characteristic of 

ASD. Correlations were conducted in SPSS Version 28.0.1.1 (14) using the Analyze → 

Correlate → Bivariate → One-tailed command.  

 

https://doi.org/10.1007/s10803-007-0440-y
https://www.ibm.com/products/spss-statistics?utm_content=SRCWW&p1=Search&p4=43700050715561161&p5=e&gclid=CjwKCAjwqJSaBhBUEiwAg5W9p9icf1e6OCWo453bVd8pLkzgP3sArVbHPFZiEzcxv0JTbeb5jb-jCRoCRzgQAvD_BwE&gclsrc=aw.ds
https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
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Reducing AOSI Data Dimensionality  

Use of highly dimensional data during machine learning can increase not just computational 

complexity, but also the risk of overfitting (Ayesha et al., 2020). Overfitting refers to when 

models or algorithm have poor performance when applied to new, unseen data (Ying 2019). To 

mitigate against this, dimensionality reduction methods are often employed via methods like 

feature extraction (transformation of high dimensional data into lower dimensionality through 

techniques like principal component analysis), and/or feature selection (selection of features that 

are most relevant for a given problem; Ayesha et al., 2020). A benefit when using dimensionality 

reduction techniques is the reduction in number of input variables (i.e., data dimensions) which 

can reduce computational time and enable more efficient use of available computing resources 

(Ayesha et al., 2020). In this study, factor analysis (informed by principal axis parallel analysis) 

was used as a means of reducing item-level AOSI data dimensionality.   

 

Principal Axis Parallel Analysis and Follow-Up Factor Analysis of Item-Level AOSI Data 

Factor analysis of 12-month item-level AOSI data was conducted to determine (1) if different 

AOSI items factored together, and (2) to identify possible predictor variable combinations of 

AOSI items for use during predictive classifier generation as a dimensionality reduction 

technique. Principal axis parallel analysis employing a Monte Carlo simulation was conducted to 

identify the number of statistically significant eigenvalues in item-level AOSI data for extraction 

during follow-up factor analysis. Principal axis analysis was conducted using 5000 parallel 

datasets based on permutations of cleaned/expectation maximization-imputed item-level AOSI 

data (items 1-19) in SPSS Version 28.0.1.1 (14) utilizing O'Connor, 2000's parallel analysis code 

rawpar. In this method, eigenvalues calculated for each AOSI item are compared against their 

simulated eigenvalues based on random permutations of the original dataset containing 465 

participants in a Monte Carlo simulation (O'Connor, 2000). Factors or components are retained if 

the observed eigenvalues calculated from the raw data are greater than 95th percentile simulated 

eigenvalues derived from the random permutations of the original dataset (O'Connor, 2000). This 

approach was chosen as the K1 rule (which retains all factors with Eigenvalues greater than one) 

can potentially over- or under-estimate the true number of factors or components that should be 

extracted from a dataset (O'Connor, 2000). 

 

https://doi.org/10.1016/j.inffus.2020.01.005
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022/pdf
https://doi.org/10.1016/j.inffus.2020.01.005
https://doi.org/10.1016/j.inffus.2020.01.005
https://doi.org/10.3758/BF03200807
https://doi.org/10.3758/BF03200807
https://doi.org/10.3758/BF03200807
https://doi.org/10.3758/BF03200807
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Factor Analysis Items for Group Differences in IL-ASD/IL-N Participants 

Factor analysis of 12-month item-level AOSI data was run in IBM SPSS Version 28.0.1.1 (14) 

using the Analyze → Dimension Reduction → Factor Analysis commands with maximum 

likelihood, a fixed number of factors being extracted (informed by principal axis parallel 

analysis), and direct oblimin data rotation.  

 

Assessing for Group Differences Between IL-ASD/IL-N Participants on Factor Analysis 

AOSI Items 

Independent Mann-Whitney U tests were conducted to explore if factor analysis-identified AOSI 

items differed significantly between CISS-1 IL-ASD/IL-N participants. To control for multiple 

comparisons, Benjamini & Hochberg (1995) corrections were employed. 

 

Benchmark ROC Curve Performance of 12-month AOSI Total Score 

Predictive performance of the 12-month AOSI Total Score with respect to 36-month ASD 

diagnostic status was assessed using receiver operator characteristic (ROC) curves in the CISS-1 

IL-sibling data. This analysis effectively serves as a benchmark against which all classifiers 

generated in this study can be compared. After generating the ROC curve, area under the curve 

(AUC) was calculated which represents an accuracy index where higher AUC values indicate 

better predictive ability (0.50 = chance, 0.70-0.90 = moderate, ≥ 0.90 = high accuracy; Akobeng 

2007). Youden indexes (the maximum vertical distance between the ROC curve and the 

chance/diagonal line [Youden’s Index (J) = (sensitivity + specificity) -1]) were calculated to 

determine optimal cutoff for 12-month AOSI Total Scores (Akobeng 2007). In this method, the 

highest J value represents the optimal cut score (Akobeng 2007). 

 

Statistical Modelling  

R/RStudio 

All predictive classifier models in this study were built using R version 4.2.1 (2022-06-23 ucrt; R 

v4.2.1, 2022) run in conjunction with RStudio Desktop 2022.07.1 Build 554 (Rstudio, 2022) on a 

computer running a 64-bit Windows 10 operating system. All models were generated using 10-

fold cross-validation – a data resampling method that is used to not only assess model 

generalizability, but to prevent overfitting (Berrar, 2019).  

 

https://www.jstor.org/stable/2346101
https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/#download
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
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For all statistical models generated in this study, training, testing, and independent validation 

datasets were imported into R/Rstudio’s working environment as comma-delimited files using 

the read_csv function from the readr package (Wickam et al., 2022). All statistical models were 

generated on the training dataset utilizing various combinations of participant (biological sex), 

AOSI (item-level, Total Score), and MSEL standard score (ELC, VR, FM, RL, EL) data. 

Specific AOSI variable combinations were generated following factor analysis and post hoc 

assessment in CISS-1 IL-sibling data. Factor analysis identified AOSI Items 6, 8, 14, 16, 18. The 

factor analysis AOSI items that survived Benjamini & Hochberg 1995 corrections were Items 8, 

14, and 18. After predictive classifier generation, accuracy and performance was assessed across 

the training, testing, and independent validation datasets by comparing the predicted vs real 36-

month diagnostic outcomes.  

 

For classifiers built using logistic and regularized logistic regression, model performance at 

correctly predicting 36-month IL-ASD diagnosis in the training, testing, and independent 

validation sets is reported using the (1) default logistic regression decision threshold of 0.500 and 

(2) a decision threshold optimized for maximal combined sensitivity/specificity (a modification 

to Youden’s indexes where instead of calculating J = sensitivity + specificity -1 [Akobeng 2007], 

maximal combined sensitivity + specificity is sought). Both thresholds were reported because by 

changing the logistic regression decision threshold between 0 and 1, model performance can be 

heavily affected. The benefit of model optimization is trading off a small amount of specificity 

for a potentially large amount of sensitivity (or vice versa depending on context). Moreover, 

depending on the model being generated, the optimum decision threshold may be on either side 

of the default 0.500 boundary. By reporting model performance using both the default and 

optimized threshold, a better assessment of the model’s performance metric could be ascertained.  

 

Multivariate Logistic Regression Modelling 

Logistic regression is a common probabilistic statistical model used in machine learning on 

classification problems (Sarker 2021). This technique employs use of a logistic function to 

estimate classification probabilities that a given event will or will not occur (output probability 

ranges between 0 and 1) based on input variables (Ray 2020, Sarker 2021). Logistic regression is 

https://cran.r-project.org/web/packages/readr/index.html
https://www.jstor.org/stable/2346101
https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1109/COMITCon.2019.8862451
https://doi.org/10.1007/s42979-021-00592-x
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simple to implement, computationally efficient, and is easy to employ regularization on (Ray 

2020).  

 

Various 10-fold cross-validated multivariate logistic regression models with (Models L1-L15) 

and without biological sex (Models L16-L30) were generated in R/Rstudio using the caret 

package’s train function (Khun et al., 2022) with method = “glm”, metric = “ROC”, family = 

“binomial,” and a customized trControl function to generate more detailed model performance 

metrics. All logistic regression models were built on the training dataset. The R code used to 

generate, assess, and extract logistic regression model performance is described in the public 

GitHub repository.  

 

For logistic regression models built with/without biological sex, three models from each 

grouping characterized by the highest AUC when applied to the testing dataset were assessed for 

predictor variable importance. Selection of models with the highest AUC was based on testing 

set performance only due to differences between CISS-1 and CISS-2 methodology; CISS-1 uses 

DSM-IV-TR ASD criteria to diagnoses ASD while CISS-2 uses the fifth edition of the DSM 

(DSM-5). Of the AOSI and MSEL data used to generate the models, variables which were 

significant (as determined by R’s summary function; R v4.2.1, 2022) were retained. Non-

significant predictor variables were systematically removed to assess if model performance 

increased (defined as decreased Akaike information criterion (AIC) and increasing AUC relative 

to the last best-performing model). If predictor variable removal had no impact on AIC and AUC 

relative to the last best-performing model, the variable was removed in accordance with the 

principle of Occam’s Razor (the simplest hypothesis is usually the best one) and maximum 

model parsimony. Following non-significant variable pruning, truncated logistic regression 

model performance on the training, testing, and independent validation set was assessed.  

 

Regularized Logistic Regression Modelling  

In machine learning, regularization refers to the process of facilitating increased model 

generalization  to new data (Zhu et al., 2018, Tian & Zhang, 2022). Many different types of 

regularization algorithms have been developed and vary in use depending on the machine 

learning algorithm being employed (Zhu et al., 2018). In the context of logistic regression, while 

https://doi.org/10.1109/COMITCon.2019.8862451
https://doi.org/10.1109/COMITCon.2019.8862451
https://cran.r-project.org/web/packages/caret/index.html
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
https://cran.r-project.org/bin/windows/base/
http://dx.doi.org/%2010.3390/bdcc2010005
https://doi.org/10.1016/j.inffus.2021.11.005
http://dx.doi.org/%2010.3390/bdcc2010005
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there is a tendency to overfit higher-dimensionality data (Sarker 2021), techniques like L1 and L2 

regularization are relatively easy to apply (Ray 2020, Sarker 2021). L1
 regularization applies a 

penalty term to the model during generation encouraging parameters to be small while L2 

regularization encourages the sum of parameter squares to be small (Ng, 2004). 

 

Various regularized, 10-fold cross-validated multivariate logistic regression models with 

(Models R1-R15) and without biological sex (Models R16-R30) were generated using various 

combinations of predictor variables (biological sex, AOSI and MSEL data) in R/Rstudio using 

the caret package’s train function (Khun et al. 2022) with method = “regLogistic”, metric = 

“ROC”, tuneLength = 10, and a customized trControl function to generate more detailed model 

performance metrics. To function properly, the regLogistic method employed in caret required 

the R package LiblineaR to be installed (Helleputte et al., 2021). The benefit of this approach to 

model generation is when the code to generate models is executed, model performance across the 

different model tuning parameters (cost, loss function [L1/L2 regularization], and epsilon 

[tolerance]) are evaluated across a range of different values (defined by tuneLength) before the 

final model is selected based on the combination of tuning parameters yielding the highest ROC 

performance (defined by metric = “ROC”). All regularized logistic regression models were built 

on the training dataset. The R code used to generate, assess, and extract regularized logistic 

regression model performance is described in the public GitHub repository. 

 

Support Vector Machines (SVM) Modelling 

SVMs are commonly used in machine learning for classification and regression problems (Sarker 

2021). SVMs map input data into a higher dimensional space where an optimal separating 

surface (i.e. the hyperplane) is generated that maximally separates data (Bhavsar et al., 2012). 

Two parallel hyperplanes constructed on either side and form the support vectors (Bhavsar et al., 

2012). SVM analysis is predicated on finding the hyperplane orientated such that the margin 

(i.e., distance) between the support vectors is maximized (Bhavsar et al., 2012). In the case 

where there is no linear divide between data, SVMs can employ kernel functions that map data 

into a higher-dimensional space where non-linear decision boundaries can be generated (Bhavsar 

et al., 2012). The choice of SVM kernel varies depending on the problem: linear kernels allow 

for linear separation of data, polynomial allow for separation of more complex, non-linearly 

about:blank
https://doi.org/10.1109/COMITCon.2019.8862451
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1145/1015330.1015435
https://cran.r-project.org/web/packages/LiblineaR/index.html
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=


56 
 

separable data up to the order of polynomial hyperplanes, and radial basis functions allow 

separation of circular data (Bhavsar et al., 2012).  

 

Using the caret package, multiple 10-fold cross-validated SVM models with and without 

biological sex were generated using various combinations of predictor variables (biological sex, 

AOSI and MSEL data). Three types of SVMs were generated in R: SVMs with linear kernels 

(method = “svmLinear” that are characterized by the tuning parameters cost and class weights), 

SVMs with a polynomial kernel (method = “svmPoly” that are characterized by the tuning 

parameters polynomial degree, scale, and cost), and SVMs using a radial basis function kernel 

(method = “svmRadial” that are characterized by the tuning parameters sigma and cost). All 

models were generated using the train function (Khun et al., 2022) with method = “svmLinear, 

svmPoly, or svmRadial,” metric = “ROC”, tuneLength = 10 (except for svmPoly; tuneLength 

was set at 6 due to the exorbitant computational processing requirement required to fit the model 

with tuneLength = 10), and a customized trControl function to generate more detailed model 

performance metrics. To function properly, SVM modelling in caret required the R package 

kernlab to be installed (Karatzoglou et al., 2022). The R code used to generate, assess, and 

extract SVM model performance is described in the public GitHub repository. 

 

Assessing Model Performance  

Performance of all predictive classifiers generated in this study was determined by their ability to 

predict IL-ASD at 36-months when applied to training, testing and validation datasets using R's 

predict function (R v4.2.1, 2022). More specifically, model ROC performance metrics (ROC 

curves; AUC) was assessed using the roc and auc functions from the pROC R package (Robin et 

al., 2021). Model performance metrics (including, but not limited to, accuracy, sensitivity, 

specificity, positive predictive value, and negative predictive value) were extracted from a 

confusion matrix generated for each model using the confusionMatrix function from the R 

package caret (Khun et al., 2022). The R code used to find the optimal logistic regression 

decision threshold to maximize combined sensitivity and specificity is described in the public 

GitHub repository. The entire data preprocessing, partitioning, and model testing process is 

depicted visually in Figure 3.01. 

 

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=A+review+on+support+vector+machine+for+data+classification&btnG=
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/kernlab/index.html
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
https://github.com/KBReid/KReid-2022-MSc-Thesis-Machine-Learning-Code-and-Models
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Figure 3.01: Procedural Diagram of Study Methods | A procedural flow diagram depicting an overview of the 

study’s methods is reported above. AOSI = Autism Observation Scale for Infants, CISS-1 = Canadian Infant 

Sibling Study, CISS-2 = the new Canadian Infant Sibling Study, MSEL = Mullen Scales of Early Learning, SVM 

= Support Vector Machines 

 

Results 

Participant Demographics of CISS-1 IL-Siblings/Families  

Family demographic data for 465 IL-siblings/families were compared by 36-month diagnostic 

status (IL-ASD / IL-N). Demographic data assessed included IL-sibling biological sex, birth 

order, number of children in the family, study site assessments venue, parent age at IL-sibling 

birth, highest level of parental education, parental occupation, parental relationship, and family 

SES in SPSS using chi-squared analyses. Overall, 67.52% of Fathers and 65.59% of Mothers 

were Caucasian, with 67.31% of participant’s families characterized by a Hollingshead Four-

Factor Index between 36 and 66. A detailed breakdown of demographic data for IL-ASD and IL-

N infants from the old CISS-1 study are detailed in Appendix 2 Table A2.1.  
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Data Preprocessing  

IL-ASD vs IL-N Infants: Of the 465 CISS-1 IL-siblings with 12-month AOSI data and 36-

month diagnostic outcomes, 125 (26.9%) were diagnosed with ASD at 36-months (IL-ASD), and 

340 (73.1%) were not (IL-N). 

 

Assessing Randomness of Missing AOSI and MSEL Data: Missing data imputation 

techniques such as EM requires that missing data which is being replaced is randomly distributed 

(Scheffer, 2002). To test the hypothesis that 12-month AOSI and MSEL data was missing 

completely at random, Little's Missing Completely at Random (MCAR) test was conducted. In 

effect, if data is missing completely at random, the mechanism behind data missingness is not 

dependent on variables under consideration; data is collected randomly and does not depend on 

any other variable in the dataset (Scheffer, 2002). Little’s MCAR test was conducted on data 

split according to 36-month diagnostic outcome as IL-ASD / IL-N groups are not homogenous; 

IL-ASD infants score higher on the AOSI and have greater range of impairments on the MSEL 

relative to IL-N infants.  

  

For the 125 IL-ASD infants Little's MCAR test was non-significant for item-level AOSI (χ2 = 

33.470, DF = 31, p = 0.348) and MSEL standard score data (χ2 = 2.778, DF = 4, p = 0.596) 

indicating data was missing completely at random. Though minimal AOSI data were missing 

(between 0 and 1.6% across all AOSI items), moderate amounts of MSEL data were missing 

(between 11.2 and 12.0% of ELC, VR, FM, RP, or EL standard scores). 

  

For the 340 IL-N infants Little's MCAR tests was non-significant for item-level AOSI (χ2 = 

22.440, DF = 58, p = 1.000) and MSEL standard score data (χ2 = 4.643, DF = 9, p = 0.864) 

indicating data was missing completely at random. Though minimal AOSI data were missing 

(between 0 and 2.6% across all AOSI items), moderate amounts of MSEL standard score data 

were missing (between 11.5 and 12.4% of ELC, VR, FM, RL, or EL standard scores). 

 

Missing Data Imputation via Expectation Maximization  

Since missing 12-month AOSI and MSEL data were randomly distributed for both IL-ASD and 

IL-N populations, missing data were eligible for data imputation. Prior to imputation, it is 

important to note that all AOSI items (1 – 19) have the option of being coded an '8’ signifying 

https://mro.massey.ac.nz/bitstream/handle/10179/4355/Dealing_with_Missing_Data.pdf?sequence=1&isAllowed=y
https://mro.massey.ac.nz/bitstream/handle/10179/4355/Dealing_with_Missing_Data.pdf?sequence=1&isAllowed=y
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the item in question was ‘not applicable’ (e.g. item 1 assesses visual tracking; a score of 8 would 

be appropriate if the child has vision problems) or ‘or unable to code’ (i.e. the child did not 

engage or react in a manner during assessment that facilitated coding on that item; Bryson et al., 

2008). When calculating the AOSI Total Score, any items scoring an ‘8’ are treated as ‘0.’ 

Accordingly, all IL-ASD/N participants that scored an ‘8’ for any AOSI item were replaced with 

'0's prior to EM missing data imputation to not unduly bias the imputation process. Missing data 

was imputed using EM in SPSS GradPack Version 28 for IL-ASD and IL-N populations using 

Analyze → Missing Value Analysis → Estimation → EM.  

 

Assessing for Differences in Raw vs Cleaned/Imputed Dataset Statistics 

Relative to the original AOSI and MSEL dataset of 465 participants, EM imputation had 

minimal impact on dataset AOSI and MSEL statistics for IL-ASD / IL-N participants.  

 

For 12-month IL-ASD participants, EM on item-level AOSI data had either no impact 

(signifying no missing items being replaced) or minimal impact on mean, standard deviation, and 

standard error (max absolute difference in means, standard deviation, and standard error between 

the raw and EM-imputed data was 0.008, 0.010, and 0.428 respectively). For 12-month IL-ASD 

MSEL standard score data, EM had minimal impact on mean, standard deviation, and standard 

error (max absolute difference in mean, standard deviation, and standard error between the raw 

and EM-imputed data was 0.159, 0.969, and 1.490 respectively).  

  

For 12-month IL-N participants, EM on item-level AOSI data had either no impact (signifying 

no missing items being replaced) or minimal difference in mean, standard deviation, and 

standard error (max absolute difference in means, standard deviation, and standard error between 

the raw and EM-imputed data was 0.005, 0.004, and <0.001 respectively). For IL-N MSEL 

standard score data, EM had minimal impact on mean, standard deviation, and standard error 

(max absolute difference in mean, standard deviation, and standard error between the raw and 

EM-imputed data was 0.038, 1.048, and 0.057 respectively).  

 

Dataset Partitioning and Characteristics of the Training and Testing Set  

Of the 465 IL-siblings from CISS-1 with 12-month AOSI data and 36-month diagnostic 

outcomes, 80% were randomly partitioned into the training dataset. In total, the training dataset 

https://doi.org/10.1007/s10803-007-0440-y
https://doi.org/10.1007/s10803-007-0440-y
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contains data on 373 IL-siblings, is 58.7% male (219 male, 154 female), and has 27.8% (n=104) 

of participants diagnosed with ASD. The remaining 20% of CISS-1 IL-ASD / IL-N participant 

data was used to generate the testing set that classifier performance was assessed against. The 

testing dataset contains data on 92 IL-siblings (43 male, 49 female) and has 22.8% (n=21) of 

participants diagnosed with ASD. 

 

Independent Validation Set Characteristics  

In total, 90 of 133 IL-siblings from CISS-2 were retained following data preprocessing and 

represent an independent validation set that classifier performance could be assessed against. Of 

the 90 IL-siblings that were retained, 25.5% (n=23) were diagnosed with ASD at 36-months, and 

74.5% (n=67) were not. Details pertaining to randomness and missingness of data, eligibility and 

impact of EM imputation, and distribution of cleaned data is described in Appendix 2.  

 

Distribution/Normality of 12-Month AOSI and MSEL Data   

For 12-month IL-ASD/N CISS-1 participants: For the 465 IL-siblings from CISS-1, AOSI item-

level and Total Score data was right-skewed for both IL-ASD and IL-N groups (ps < 0.001 for 

all AOSI data on both Kolmogorov-Smirnov and Shapiro-Wilk tests of normality). MSEL data 

was similarly non-normal for all subscales (ps < 0.01) on both the Kolmogorov-Smirnov and 

Shapiro-Wilk tests of normality barring the ELC scores for IL-ASD participants (p = 0.227). 

Normality test results for IL-ASD / IL-N data are described in Appendix 2 Table A2.2. 

 

For 12-month AOSI and MSEL scores in the training and testing datasets: In the training and 

testing set, AOSI item-level and Total Score data was right-skewed for both IL-ASD and IL-N 

groups (ps < 0.001 for all AOSI data on both Kolmogorov-Smirnov and Shapiro-Wilk tests of 

normality). All MSEL data (barring the ELC score in the testing set) were non-normal (p < 0.01) 

on the Kolmogorov-Smirnov test of normality. Similarly, all MSEL data (barring VR and FM 

scores in the testing set) were non-normal (p < 0.04) on the Shapiro-Wilk test of normality.  

Normality test results for IL-ASD / IL-N data are described in Appendix 2 Table A2.3. 

 

Group Differences in 12-Month AOSI and MSEL Data 

For 12-month IL-ASD/N CISS-1 participants: Nonparametric Mann-Whitney U-tests yielded 

significant differences between IL-ASD / IL-N participants for eleven AOSI items (ps < 0.05; 
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items 3, 4, 7-14, 17, 18, Total Score), with only nine (items 3, 4, 7-10, 14, 18, and the Total 

Score) surviving the follow up post hoc Benjamini & Hochberg 1995 corrected significance level 

of q* = 0.029. All MSEL subscales (ELC, VR, FM, RL, EL) were significantly different between 

IL-ASD/N participants and survived Benjamini & Hochberg 1995 corrections. Results are 

described in Table 3.01.  

 

For 12-month AOSI and MSEL scores in the training and testing datasets: Nonparametric Mann-

Whitney U-tests yielded no significant differences between the training and testing set with 

respect to 12-month AOSI or MSEL data (all ps > 0.1). Results are described in Table 3.02. 

 

 

  

https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
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Table 3.01 | IL-ASD vs IL-N Characteristics 

Measures 
IL-ASD  IL-N  

U Z-score p-value 
Mean SD Mean Rank Mean SD Mean Rank 

Participant Characteristics 

n 125   340      

Gender 87M:38F   175M:165F   χ2 = 12.213  <0.001 

Autism Observation Scale for Infants 

Age at assessment 12.398 0.587 237.728 12.400 0.582 231.262 20659.00 -0.460 0.645 

Item 1  0.160 0.410 233.348 0.179 0.480 232.872 21206.50 -0.056 0.955 

Item 2 0.184 0.559 234.660 0.168 0.536 232.390 21032.50 -0.315 0.753 

Item 3 αβ 0.720 0.809 277.040 0.332 0.589 216.809 15475.00 -5.158 <0.001 

Item 4 αβ 0.448 0.665 250.932 0.315 0.588 226.407 19008.50 -2.213 0.027 

Item 5 0.320 0.736 245.040 0.168 0.465 228.574 19745.00 -1.875 0.061 

Item 6 0.360 0.689 245.840 0.238 0.569 228.279 19645.00 -1.840 0.066 

Item 7 αβ 1.184 0.928 264.344 0.882 0.868 221.476 17332.00 -3.235 0.001 

Item 8 αβ 0.752 0.973 263.420 0.394 0.797 221.816 17447.50 -3.972 <0.001 

Item 9 αβ 0.744 0.822 258.952 0.521 0.726 223.459 18006.00 -2.841 0.004 

Item 10 αβ 0.120 0.326 247.900 0.032 0.177 227.522 19387.50 -3.643 <0.001 

Item 11 α 0.384 0.669 248.256 0.244 0.506 227.391 19343.00 -2.007 0.045 

Item 14 αβ 0.496 0.591 258.060 0.324 0.499 223.787 18117.50 -2.942 0.003 

Item 15  0.288 0.579 243.132 0.182 0.409 229.275 19983.50 -1.456 0.145 

Item 16 0.120 0.326 232.900 0.121 0.326 233.037 21237.50 -0.017 0.986 

Item 17 α 0.720 0.964 250.200 0.518 0.877 226.676 19100.00 -2.139 0.033 

Item 18 αβ 0.368 0.778 256.280 0.094 0.424 224.441 18340.00 -4.718 <0.001 

Total Score αβ 7.368 4.780 289.124 4.712 3.575 212.366 14234.50 -5.482 <0.001 

Mullen Scale of Early Learning 

Age at assessment 12.357 0.491 227.452 12.396 0.526 235.040 20556.50 -0.540 0.589 

ELC αβ 98.022 14.370 189.076 104.256 14.197 249.149 15759.50 -4.276 <0.001 

Visual Reception αβ 102.024 13.491 186.720 107.591 13.179 250.015 15465.00 -4.531 <0.001 

Fine Motor αβ 108.340 14.161 205.860 112.788 13.894 242.978 17857.60 -2.658 <0.001 

Receptive Language αβ 90.405 13.774 191.036 94.402 12.543 248.428 16004.50 -4.120 <0.001 

Expressive Language αβ 91.238 15.699 194.928 96.963 16.635 246.997 16491.00 -3.723 <0.001 

          

ASD = Autism spectrum disorders, ELC = Early Learning Composite, IL-ASD = Infant siblings diagnosed with autism at 36-months, IL-N = Infant siblings not 

diagnosed with autism at 36-months, SD = Standard deviation, SS = standard scores 
α = significantly different based on 2-tailed Mann-Whitney U score 
β = survived Benjamini & Hochberg 1995 corrected significance levels for multiple comparisons (q* = 0.029) 
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Table 3.02 |Training and Test set 12-month clinical characteristics using Mann-Whitney non-parametric analysis 

Measures 
Training Set (80%) Test Set (20%) 

U Z-score p-value 
Mean SD Mean Rank Mean SD Mean Rank 

Participant Characteristics 

n 373   92      

Gender 219:154   43:49   χ2 = 4.302  0.038 

ASD diagnosis  104   21   χ2 = 0.960  0.327 

Autism Observation Scale for Infants 

Age at assessment 12.397 0.577 232.247 12.408 0.610 236.054 16877.0 -0.244 0.808 

Item 1  0.161 0.447 230.436 0.228 0.516 243.397 16201.5 -1.377 0.169 

Item 2 0.182 0.557 234.213 0.130 0.474 228.082 16705.5 -0.765 0.444 

Item 3  0.410 0.656 228.843 0.543 0.747 249.853 15607.5 -1.617 0.106 

Item 4 0.362 0.618 235.076 0.304 0.588 224.582 16383.5 -0.851 0.395 

Item 5 0.217 0.571 233.787 0.174 0.483 229.810 16864.5 -0.407 0.684 

Item 6 0.292 0.625 236.294 0.185 0.512 219.647 15929.5 -1.567 0.117 

Item 7  0.981 0.899 235.394 0.891 0.870 223.293 16265.0 -0.821 0.412 

Item 8  0.483 0.857 232.099 0.522 0.883 236.652 16822.0 -0.391 0.696 

Item 9  0.590 0.759 234.780 0.543 0.762 225.783 16494.0 -0.647 0.518 

Item 10  0.059 0.236 233.713 0.043 0.205 230.109 16892.0 -0.579 0.563 

Item 11  0.265 0.525 231.255 0.348 0.670 240.076 16507.0 -0.762 0.446 

Item 14  0.367 0.530 232.340 0.380 0.531 235.674 16912.0 -0.257 0.797 

Item 15  0.209 0.457 233.034 0.217 0.488 232.864 17145.5 -0.016 0.987 

Item 16 0.123 0.329 233.673 0.109 0.313 230.272 16907.0 -0.386 0.700 

Item 17  0.584 0.911 234.442 0.522 0.883 227.152 16620.0 -0.595 0.552 

Item 18  0.172 0.561 233.446 0.152 0.533 231.190 16991.5 -0.300 0.764 

Total Score  5.458 4.151 233.720 5.293 3.924 230.082 16889.5 -0.233 0.815 

Mullen Scale of Early Learning 

Age at assessment 12.387 0.513 233.824 12.380 0.531 229.658 16850.5 -0.267 0.790 

ELC  102.301 14.538 232.638 103.712 14.341 234.467 17023.0 -0.117 0.907 

Visual Reception  106.033 13.483 232.682 106.342 13.525 234.288 17039.5 -0.103 0.918 

Fine Motor  111.449 14.288 232.930 112.175 13.316 233.283 17132.0 -0.023 0.982 

Receptive Language  92.802 12.877 228.878 95.460 13.311 249.712 15620.5 -1.344 0.179 

Expressive Language  95.062 16.748 230.480 96.890 15.822 243.217 16218.0 -0.818 0.413 

          

ASD = Autism spectrum disorders, ELC = Early Learning Composite, IL-ASD = Infant siblings diagnosed with autism at 36-months, IL-N = Infant siblings not 

diagnosed with autism at 36-months, SD = Standard deviation, SS = standard scores 
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Assessing AOSI Item-Level Data and Dimensionality Reduction  

AOSI Item-Level Correlations: Though most correlations between AOSI items were negligible 

(r = 0.00-0.10) or weak (r = 0.10 to 0.39), several moderate (r = 0.40 - 0.69; Patrick 2018) 

correlations were identified between AOSI items. Results are described in Appendix 2 Table 

A2.4.  

 

Principal Axis and Factor Analysis of Item-Level AOSI Data: Since several weak or 

moderate correlations were found amongst item-level AOSI data, it was plausible that several 

AOSI items may be measuring the same feature or construct of ASD. Follow-up principal axis 

analysis of CISS-1 item-level AOSI data in SPSS identified five statistically significant 

eigenvalues which exceeded their simulated 95th-percentile eigenvalues based on a Monte Carlo 

simulation, indicating that factor analysis should extract for five factors. Parallel analysis results 

are described in Appendix 2 Table A2.5.  

 

Follow-up factor analysis in SPSS (extracting for a fixed number of five factors/components) 

produced the pattern matrix described in Appendix 2 Table A2.6. Though many negligible or 

minor factor loading scores were identified (factor loading scores between 0 and |0.25|), between 

two and four AOSI items with moderate factor loading scores (>|0.25|) were loaded onto the five 

factors/components being extracted from the data. For the purposes of dimensionality reduction 

during classifier generation, a stringent factor loading cut-off was employed that excluded any 

AOSI items with factor loading score less than |0.6| to ensure only items that were strongly 

loaded to each factor were retained. This criterion resulted in only one AOSI item loading onto 

each of the five extracted factors/components: AOSI item 6: Imitation of Action, Item 8: Eye 

Contact, Item 14: Social Interest and Shared Affect, Item 16: Motor Control and Behaviour, and 

Item 18: Atypical Sensory Behaviours.  

 

Assessing Factor Analysis Items for Group Differences in IL-ASD/N Participants: To 

explore if the AOSI items (6, 8, 14, 16, and 18) identified via factor analysis differed 

significantly between IL-ASD / IL-N participants in the CISS-1 dataset, independent Mann-

Whitney U tests were conducted with Benjamini & Hochberg 1995 corrections. Three AOSI 

about:blank
https://www.jstor.org/stable/2346101
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items survived the corrected significance level of q* = 0.03: item 8: Eye Contact, Item 14: Social 

Interest and Affect, and Item 18: Atypical Sensory Behaviours. 

 

ROC Curve Performance of 12-Month AOSI Total Score 

ROC curve analyses of the entire cleaned CISS-1 IL-sibling dataset (n=465) were conducted to 

(1) assess the predictive utility of 12-month AOSI Total Score by itself at predicting 36-month 

ASD diagnostic status, and (2) provide a benchmark performance metric that learning classifier 

models can be compared against.  The AUC for 12-month AOSI Total Score was 0.66 (99% CI 

0.61, 0.72). The optimal Total Score cut point (as informed by Youden index calculations) was 7. 

These results are nearly identical to Zwaigenbaum et al., 2020 who conducted similar analyses in 

a slightly larger sample of the same CISS-1 IL-siblings than those used in this study (n=501 vs 

n=465). This sample discrepancy stemmed from Zwaigenbaum et al., 2020 not limiting IL-

sibling data used during ROC curve analysis to only IL-siblings with 12-month data, as was done 

here. Results are detailed in Table 3.03. 

 

Table 3.03 | ROC Characteristics for 12-month AOSI Total Score predicting  

IL-ASD at 36-months 

Cutoff Sens Spec PPV NPV Youden (J) 

0 1.000 0.000 1.000 0.000 0.000 

1 0.984 0.076 0.826 0.929 0.060 

2 0.936 0.191 0.643 0.890 0.127 

3 0.832 0.326 0.484 0.841 0.158 

4 0.712 0.429 0.379 0.802 0.141 

5 0.664 0.553 0.306 0.817 0.217 

6 0.568 0.650 0.243 0.804 0.218 

7α 0.528 0.741 0.208 0.810 0.269 

8 0.464 0.797 0.176 0.802 0.261 

9 0.368 0.850 0.137 0.785 0.218 

10 0.312 0.900 0.113 0.781 0.212 

11 0.256 0.929 0.092 0.773 0.185 

12 0.208 0.947 0.075 0.765 0.155 

13 0.176 0.959 0.063 0.760 0.135 

14 0.128 0.968 0.046 0.751 0.096 

15 0.080 0.985 0.029 0.744 0.065 

16 0.056 0.991 0.020 0.741 0.047 

17 0.016 0.997 0.006 0.734 0.013 

18 0.016 1.000 0.006 0.734 0.016 

19 0.008 1.000 0.003 0.733 0.008 

20 0.000 1.000 0.000 0.731 0.000 

      

J = Youden Index, NPV = negative predictive value, PPV = Positive predictive value,  

Sens = Sensitivity, Spec = Specificity. 

Area under the ROC Curve = 0.665 (99% Confidence Interval = 0.608, 0.722) 
α = Optimal AOSI Total Score cutoff (via Youden’s J)   

https://doi.org/10.1111/cdev.13485
https://doi.org/10.1111/cdev.13485
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Statistical Analyses   

Multivariate Logistic Regression Using the Default Decision Threshold  

For logistic regression models employing the default decision threshold of 0.500, model 

performance varied across the three datasets. For models built without biological sex (L1-L15), 

average AUC in the training, testing, and independent validation datasets was 0.685, 0.682, and 

0.638 respectively. Inclusion of biological sex (Models L16-L30) in regression modelling 

increased average AUC to 0.702, 0.704, and 0.686 when models were applied to training, testing, 

and independent validation datasets respectively. With respect to logistic regression model 

performance on testing and independent validation data, AUC values were largely consistent 

with each other. The average absolute difference in AUC values for models L1-L30 between the 

testing and independent validation set was 0.051 (minimum AUC difference = 0.001, maximum 

= 0.159). 

 

Though all logistic regression models were characterized by poor sensitivity, all were defined by 

high specificity. For models built without biological sex (Models L1-L15), average sensitivity 

was 0.242, 0.159, and 0.223 while average specificity was 0.951, 0.936, and 0.889 when applied 

to training, testing, and independent validation datasets. For models built with biological sex 

(Models L16-L30), average sensitivity was 0.244, 0.168, and 0.194 while average specificity was 

0.953, 0.938, and 0.873 when applied to training, testing, and independent validation datasets. 

All logistic regression performance results using the default decision threshold of 0.500 are 

described in Table 3.04. 

 

Multivariate Logistic Regression Using an Optimized Decision Thresholds  

When logistic regression decision thresholds were optimized for maximum combined sensitivity 

and specificity, model sensitivity increased substantially while specificity was commensurately 

reduced. For models built with biological sex (Models L1-L15) using optimized decision 

thresholds, average sensitivity was 0.562, 0.838, and 0.612 while average specificity was 0.755, 

0.522, and 0.662 when applied to training, testing, and independent validation datasets. For 

models built with biological sex (Models L16-L30) using optimized decision thresholds, average 

sensitivity was 0.557, 0.806, and 0.826 while average specificity was 0.770, 0.588, and 0.549 

when applied to training, testing, and independent validation datasets. Since only the classifier’s 
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decision threshold (ranging in value between 0 and 1) was changed, AUC for these models 

remained unchanged. All results are described in detail in Table 3.05. 

 

Truncated Multivariate Logistic Regression Model Performance 

Three logistic regression models built with (Models L10, L11, and L14) and without biological 

sex (Models L25, L26, and L30) that were characterized by the highest AUC when applied to the 

testing dataset were systematically assessed for predictor variable importance on testing data. 

Across all six models, removal of non-significant variables led to an average increase in AUC of 

0.015 and an average decrease of 4.920 in AIC. Variable importance assessment results for these 

truncated models are described in Table 3.06.  
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Table 3.04 | Multivariate Logistical Regression Model Performance  

Model # Variable Combination Dataset Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

Predictor Variable Combinations          

1 IL Training 0.500 0.775 (0.729, 0.816) 0.725 0.356 0.937 0.685 0.790 

  Testing 0.500 0.717 (0.614, 0.806) 0.657 0.143 0.887 0.273 0.778 

  Independent 0.500 0.722 (0.618, 0.811) 0.685 0.304 0.866 0.438 0.784 

2 IL + TS Training 0.500 0.775 (0.729, 0.816) 0.725 0.356 0.937 0.685 0.790 

  Testing 0.500 0.717 (0.614, 0.806) 0.657 0.143 0.887 0.273 0.778 

  Independent 0.500 0.722 (0.618, 0.811) 0.685 0.304 0.866 0.438 0.784 

3 IL + MSEL Training 0.500 0.788 (0.743, 0.829) 0.736 0.356 0.955 0.755 0.793 

  Testing 0.500 0.750 (0.649, 0.834) 0.681 0.286 0.887 0.429 0.808 

  Independent 0.500 0.744 (0.642, 0.831) 0.701 0.435 0.851 0.500 0.814 

4 IL + TS + MSEL Training 0.500 0.788 (0.743, 0.829) 0.736 0.356 0.955 0.755 0.793 

  Testing 0.500 0.750 (0.649, 0.834) 0.681 0.286 0.887 0.429 0.808 

  Independent 0.500 0.744 (0.642, 0.831) 0.701 0.435 0.851 0.500 0.814 

5 TS + MSEL Training 0.500 0.743 (0.695, 0.786) 0.677 0.192 0.955 0.625 0.754 

  Testing 0.500 0.783 (0.684, 0.862) 0.681 0.190 0.958 0.571 0.800 

  Independent 0.500 0.733 (0.630, 0.821) 0.681 0.174 0.925 0.444 0.765 

6 MSEL Training 0.500 0.713 (0.664, 0.759) 0.635 0.029 0.978 0.333 0.723 

  Testing 0.500 0.772 (0.672, 0.853) 0.690 0.000 1.000 0.000 0.772 

  Independent 0.500 0.767 (0.666, 0.849) 0.624 0.130 0.985 0.750 0.767 

7 TS Training 0.500 0.745 (0.698, 0.789) 0.666 0.221 0.948 0.622 0.759 

  Testing 0.500 0.761 (0.661, 0.844) 0.661 0.143 0.944 0.429 0.788 

  Independent 0.500 0.722 (0.618, 0.811) 0.659 0.174 0.910 0.400 0.763 

8 FA Training 0.500 0.740 (0.692, 0.784) 0.659 0.192 0.952 0.606 0.753 

  Testing 0.500 0.761 (0.661, 0.844) 0.650 0.143 0.944 0.429 0.788 

  Independent 0.500 0.700 (0.594, 0.792) 0.496 0.087 0.910 0.250 0.744 

9 FA + TS Training 0.500 0.753 (0.706, 0.796) 0.677 0.240 0.952 0.658 0.764 

  Testing 0.500 0.761 (0.661, 0.844) 0.690 0.190 0.930 0.444 0.795 

  Independent 0.500 0.711 (0.606, 0.802) 0.674 0.174 0.896 0.364 0.759 

10 FA + MSEL Training 0.500 0.740 (0.692, 0.784) 0.680 0.212 0.944 0.595 0.756 

  Testing 0.500 0.772 (0.672, 0.853) 0.728 0.143 0.958 0.500 0.791 

  Independent 0.500 0.700 (0.594, 0.792) 0.569 0.174 0.881 0.333 0.756 

11 FA + TS + MSEL Training 0.500 0.751 (0.704, 0.794) 0.690 0.240 0.948 0.641 0.763 

  Testing 0.500 0.761 (0.661, 0.844) 0.723 0.143 0.944 0.429 0.788 

  Independent 0.500 0.689 (0.583, 0.782) 0.687 0.261 0.836 0.353 0.767 

12 TRA Training 0.500 0.743 (0.695, 0.786) 0.639 0.192 0.955 0.625 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.641 0.143 0.944 0.429 0.788 

  Independent 0.500 0.700 (0.594, 0.792) 0.507 0.130 0.896 0.300 0.750 

13 TRA + TS Training 0.500 0.748 (0.701, 0.791) 0.670 0.212 0.955 0.647 0.758 

  Testing 0.500 0.772 (0.672, 0.853) 0.669 0.143 0.958 0.500 0.791 

  Independent 0.500 0.711 (0.606, 0.802) 0.653 0.174 0.896 0.364 0.759 
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14 TRA + MSEL Training 0.500 0.737 (0.689, 0.781) 0.673 0.212 0.941 0.579 0.755 

  Testing 0.500 0.772 (0.672, 0.853) 0.724 0.143 0.958 0.500 0.791 

  Independent 0.500 0.711 (0.606, 0.802) 0.580 0.217 0.881 0.385 0.766 

15 TRA + TS + MSEL Training 0.500 0.759 (0.712, 0.801) 0.682 0.260 0.952 0.675 0.769 

  Testing 0.500 0.772 (0.672, 0.853) 0.705 0.143 0.958 0.500 0.791 

  Independent 0.500 0.700 (0.594, 0.792) 0.673 0.174 0.881 0.333 0.756 

Predictor Variable Combinations + Gender          

16 Gender + IL  Training 0.500 0.783 (0.737, 0.824) 0.740 0.365 0.944 0.717 0.794 

  Testing 0.500 0.717 (0.614, 0.806) 0.683 0.143 0.887 0.273 0.778 

  Independent 0.500 0.711 (0.606, 0.802) 0.728 0.304 0.851 0.412 0.781 

17 Gender + IL + TS Training 0.500 0.783 (0.737, 0.824) 0.740 0.365 0.944 0.717 0.794 

  Testing 0.500 0.717 (0.614, 0.806) 0.683 0.143 0.887 0.273 0.778 

  Independent 0.500 0.711 (0.606, 0.802) 0.728 0.304 0.851 0.412 0.781 

18 Gender + IL + MSEL Training 0.500 0.780 (0.735, 0.821) 0.752 0.346 0.948 0.720 0.789 

  Testing 0.500 0.750 (0.649, 0.834) 0.702 0.286 0.887 0.429 0.808 

  Independent 0.500 0.700 (0.594, 0.792) 0.730 0.304 0.836 0.389 0.778 

19 Gender + IL + TS + MSEL Training 0.500 0.780 (0.735, 0.821) 0.752 0.346 0.948 0.720 0.789 

  Testing 0.500 0.750 (0.649, 0.834) 0.702 0.286 0.887 0.429 0.808 

  Independent 0.500 0.700 (0.594, 0.792) 0.730 0.304 0.836 0.389 0.778 

20 Gender + TS + MSEL Training 0.500 0.743 (0.685, 0.786) 0.689 0.212 0.948 0.611 0.757 

  Testing 0.500 0.793 (0.696, 0.871) 0.707 0.238 0.958 0.625 0.810 

  Independent 0.500 0.722 (0.618, 0.811) 0.727 0.174 0.910 0.400 0.763 

21 Gender + MSEL* Training 0.500 0.718 (0.670, 0.764) 0.649 0.058 0.974 0.462 0.728 

  Testing 0.500 0.772 (0.672, 0.853) 0.714 0.000 1.000 0.000 0.772 

  Independent 0.500 0.756 (0.654, 0.840) 0.644 0.174 0.955 0.571 0.771 

22 Gender + TS Training 0.500 0.753 (0.706, 0.796) 0.681 0.231 0.955 0.667 0.763 

  Testing 0.500 0.804 (0.709, 0.880) 0.696 0.238 0.972 0.714 0.812 

  Independent 0.500 0.733 (0.630, 0.821) 0.713 0.174 0.925 0.444 0.765 

23 Gender + FA Training 0.500 0.748 (0.701, 0.761) 0.680 0.192 0.963 0.667 0.755 

  Testing 0.500 0.761 (0.661, 0.844) 0.672 0.095 0.958 0.400 0.782 

  Independent 0.500 0.689 (0.583, 0.782) 0.610 0.087 0.896 0.222 0.741 

24 Gender + FA + TS* Training 0.500 0.761 (0.715, 0.804) 0.691 0.260 0.955 0.692 0.769 

  Testing 0.500 0.783 (0.684, 0.862) 0.701 0.238 0.944 0.556 0.807 

  Independent 0.500 0.644 (0.537, 0.743) 0.706 0.087 0.836 0.154 0.727 

25 Gender + FA + MSEL Training 0.500 0.737 (0.689, 0.781) 0.701 0.202 0.944 0.583 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.730 0.095 0.958 0.400 0.782 

  Independent 0.500 0.689 (0.583, 0.782) 0.611 0.174 0.866 0.308 0.753 

26 Gender + FA + TS + MSEL Training 0.500 0.764 (0.718, 0.806) 0.701 0.260 0.959 0.711 0.770 

  Testing 0.500 0.772 (0.672, 0.853) 0.739 0.190 0.944 0.500 0.798 

  Independent 0.500 0.678 (0.571, 0.772) 0.713 0.217 0.836 0.313 0.757 

27 Gender + TRA Training 0.500 0.743 (0.695, 0.786) 0.671 0.163 0.967 0.654 0.749 

  Testing 0.500 0.761 (0.661, 0.844) 0.675 0.095 0.958 0.400 0.782 

  Independent 0.500 0.700 (0.594, 0.792) 0.613 0.087 0.910 0.250 0.744 



70 
 

28 Gender + TRA + TS Training 0.500 0.748 (0.701, 0.791) 0.687 0.231 0.948 0.632 0.761 

  Testing 0.500 0.783 (0.684, 0.862) 0.696 0.238 0.944 0.556 0.807 

  Independent 0.500 0.689 (0.583, 0.782) 0.710 0.130 0.881 0.273 0.747 

29 Gender + TRA + MSEL Training 0.500 0.740 (0.692, 0.784) 0.694 0.202 0.948 0.600 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.723 0.095 0.958 0.400 0.782 

  Independent 0.500 0.689 (0.583, 0.782) 0.617 0.174 0.866 0.308 0.753 

30 Gender + TRA + TS + MSEL Training 0.500 0.745 (0.698, 0.789) 0.700 0.231 0.944 0.615 0.760 

  Testing 0.500 0.750 (0.649, 0.834) 0.734 0.143 0.930 0.375 0.786 

  Independent 0.500 0.678 (0.571, 0.772) 0.709 0.217 0.836 0.313 0.757 

           

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), Threshold = logistic regression decision threshold, TRA = Factor analysis AOSI 

items that survived Benjamini & Hochberg 1995 corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training 

dataset (contains n=373 participants; 80% of old ASIB data), TS = AOSI Total Score 
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Table 3.05 | Multivariate Logistical Regression Model Performance Optimized for Maximal Combined Sensitivity and Specificity  

Model # Variable Combination Dataset Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

Predictor Variable Combinations without sex          

1 IL Training 0.352 0.777 (0.732, 0.819) 0.725 0.548 0.866 0.613 0.832 

  Testing 0.162 0.489 (0.383, 0.596) 0.657 0.952 0.352 0.303 0.962 

  Independent 0.225 0.622 (0.514, 0.722) 0.685 0.783 0.567 0.383 0.884 

2 IL + TS Training 0.352 0.777 (0.732, 0.819) 0.725 0.548 0.866 0.613 0.832 

  Testing 0.162 0.489 (0.383, 0.596) 0.657 0.952 0.352 0.303 0.962 

  Independent 0.225 0.622 (0.514, 0.722) 0.685 0.783 0.567 0.383 0.884 

3 IL + MSEL Training 0.291 0.735 (0.687, 0.779) 0.736 0.606 0.784 0.521 0.837 

  Testing 0.177 0.609 (0.501, 0.709) 0.681 0.905 0.521 0.358 0.949 

  Independent 0.340 0.722 (0.618, 0.811) 0.701 0.652 0.746 0.469 0.862 

4 IL + TS + MSEL Training 0.291 0.735 (0.687, 0.779) 0.736 0.606 0.784 0.521 0.837 

  Testing 0.177 0.609 (0.501, 0.709) 0.681 0.905 0.521 0.358 0.949 

  Independent 0.340 0.722 (0.618, 0.811) 0.701 0.652 0.746 0.469 0.862 

5 TS + MSEL Training 0.299 0.705 (0.656, 0.751) 0.677 0.538 0.770 0.475 0.812 

  Testing 0.180 0.478 (0.373, 0.585) 0.681 1.000 0.324 0.304 1.000 

  Independent 0.444 0.767 (0.666, 0.849) 0.681 0.391 0.896 0.563 0.811 

6 MSEL Training 0.260 0.622 (0.571, 0.671) 0.635 0.702 0.591 0.399 0.837 

  Testing 0.292 0.717 (0.614, 0.806) 0.690 0.714 0.718 0.429 0.895 

  Independent 0.339 0.678 (0.751, 0.772) 0.624 0.522 0.731 0.400 0.817 

7 TS Training 0.331 0.718 (0.670, 0.764) 0.666 0.481 0.810 0.495 0.801 

  Testing 0.236 0.620 (0.512, 0.719) 0.661 0.667 0.606 0.333 0.860 

  Independent 0.297 0.644 (0.537, 0.743) 0.659 0.565 0.672 0.371 0.818 

8 FA Training 0.239 0.665 (0.614, 0.713) 0.659 0.538 0.714 0.421 0.800 

  Testing 0.234 0.609 (0.501, 0.709) 0.650 0.714 0.577 0.333 0.872 

  Independent 0.752 0.767 (0.666, 0.849) 0.496 0.087 1.000 1.000 0.761 

9 FA + TS Training 0.320 0.718 (0.670, 0.764) 0.677 0.500 0.803 0.495 0.806 

  Testing 0.198 0.543 (0.436, 0.648) 0.690 0.905 0.437 0.322 0.939 

  Independent 0.204 0.567 (0.458, 0.671) 0.674 0.913 0.448 0.362 0.938 

10 FA + MSEL Training 0.220 0.598 (0.546, 0.648) 0.680 0.712 0.554 0.381 0.832 

  Testing 0.257 0.696 (0.591, 0.787) 0.728 0.762 0.676 0.410 0.906 

  Independent 0.308 0.622 (0.514, 0.722) 0.569 0.478 0.672 0.333 0.789 

11 FA + TS + MSEL Training 0.376 0.745 (0.698, 0.789) 0.690 0.433 0.866 0.556 0.798 

  Testing 0.191 0.565 (0.458, 0.668) 0.723 1.000 0.437 0.344 1.000 

  Independent 0.236 0.611 (0.503, 0.712) 0.687 0.826 0.537 0.380 0.900 

12 TRA Training 0.278 0.689 (0.639, 0.736) 0.639 0.462 0.777 0.444 0.789 

  Testing 0.225 0.598 (0.490, 0.699) 0.641 0.667 0.577 0.318 0.854 

  Independent 0.552 0.722 (0.618, 0.811) 0.507 0.130 0.925 0.375 0.756 

13 TRA + TS Training 0.309 0.713 (0.664, 0.759) 0.670 0.500 0.796 0.486 0.805 

  Testing 0.236 0.641 (0.535, 0.739) 0.669 0.714 0.620 0.357 0.880 

  Independent 0.188 0.500 (0.393, 0.607) 0.653 0.913 0.358 0.328 0.923 
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14 TRA + MSEL Training 0.221 0.611 (0.560, 0.661) 0.673 0.731 0.565 0.394 0.844 

  Testing 0.271 0.739 (0.637, 0.825) 0.724 0.714 0.746 0.455 0.898 

  Independent 0.273 0.578 (0.469, 0.681) 0.580 0.609 0.567 0.326 0.809 

15 TRA + TS + MSEL Training 0.304 0.713 (0.664, 0.759) 0.682 0.529 0.784 0.487 0.812 

  Testing 0.184 0.511 (0.404, 0.617) 0.705 1.000 0.366 0.318 1.000 

  Independent 0.221 0.589 (0.480, 0.692) 0.673 0.870 0.493 0.370 0.917 

Predictor Variable Combinations With Sex          

16 Gender + IL  Training 0.393 0.788 (0.743, 0.829) 0.740 0.500 0.900 0.658 0.823 

  Testing 0.166 0.543 (0.436, 0.648) 0.683 0.952 0.423 0.328 0.968 

  Independent 0.181 0.633 (0.525, 0.732) 0.728 0.913 0.537 0.404 0.947 

17 Gender + IL + TS Training 0.393 0.788 (0.743, 0.829) 0.740 0.500 0.900 0.658 0.823 

  Testing 0.166 0.543 (0.436, 0.648) 0.683 0.952 0.423 0.328 0.968 

  Independent 0.181 0.633 (0.525, 0.732) 0.728 0.913 0.537 0.404 0.947 

18 Gender + IL + MSEL Training 0.338 0.761 (0.715, 0.804) 0.752 0.577 0.833 0.571 0.836 

  Testing 0.194 0.630 (0.523, 0.729) 0.702 0.857 0.563 0.367 0.930 

  Independent 0.255 0.689 (0.583, 0.782) 0.730 0.783 0.657 0.439 0.898 

19 Gender + IL + TS + MSEL Training 0.338 0.761 (0.715, 0.804) 0.752 0.577 0.833 0.571 0.836 

  Testing 0.177 0.598 (0.490, 0.699) 0.702 0.857 0.521 0.346 0.925 

  Independent 0.255 0.689 (0.583, 0.782) 0.730 0.783 0.657 0.439 0.898 

20 Gender + TS + MSEL Training 0.298 0.689 (0.639, 0.736) 0.689 0.567 0.736 0.454 0.815 

  Testing 0.226 0.598 (0.490, 0.699) 0.707 0.810 0.535 0.340 0.905 

  Independent 0.212 0.622 (0.514, 0.722) 0.727 0.957 0.507 0.400 0.971 

21 Gender + MSEL* Training 0.219 0.525 (0.473, 0.577) 0.649 0.856 0.398 0.355 0.877 

  Testing 0.325 0.783 (0.684, 0.862) 0.714 0.571 0.845 0.522 0.870 

  Independent 0.371 0.722 (0.618, 0.811) 0.644 0.478 0.806 0.458 0.818 

22 Gender + TS Training 0.330 0.710 (0.662, 0.756) 0.681 0.462 0.807 0.480 0.795 

  Testing 0.175 0.533 (0.426, 0.637) 0.696 0.952 0.408 0.323 0.967 

  Independent 0.224 0.622 (0.514, 0.722) 0.713 0.826 0.552 0.388 0.902 

23 Gender + FA Training 0.248 0.657 (0.606, 0.705) 0.680 0.615 0.673 0.421 0.819 

  Testing 0.300 0.761 (0.661, 0.844) 0.672 0.476 0.845 0.476 0.845 

  Independent 0.210 0.544 (0.436, 0.650) 0.610 0.870 0.433 0.345 0.906 

24 Gender + FA + TS* Training 0.357 0.743 (0.695, 0.786) 0.691 0.433 0.862 0.549 0.797 

  Testing 0.183 0.554 (0.447, 0.658) 0.701 0.905 0.451 0.328 0.941 

  Independent 0.242 0.678 (0.571, 0.772) 0.706 0.783 0.642 0.429 0.896 

25 Gender + FA + MSEL Training 0.246 0.657 (0.606, 0.705) 0.701 0.731 0.628 0.432 0.858 

  Testing 0.227 0.707 (0.602, 0.799) 0.730 0.857 0.662 0.429 0.940 

  Independent 0.182 0.478 (0.371, 0.586) 0.611 0.913 0.328 0.318 0.917 

26 Gender + FA + TS + MSEL Training 0.387 0.748 (0.701, 0.791) 0.701 0.433 0.870 0.563 0.799 

  Testing 0.226 0.641 (0.535, 0.739) 0.739 0.857 0.577 0.375 0.932 

  Independent 0.231 0.633 (0.525, 0.732) 0.713 0.826 0.567 0.396 0.905 

27 Gender + TRA Training 0.243 0.654 (0.603, 0.702) 0.671 0.548 0.695 0.410 0.799 

  Testing 0.330 0.761 (0.661, 0.844) 0.675 0.429 0.859 0.474 0.836 

  Independent 0.216 0.544 (0.436, 0.650) 0.613 0.826 0.448 0.339 0.882 
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28 Gender + TRA + TS Training 0.373 0.759 (0.712, 0.801) 0.687 0.423 0.888 0.595 0.799 

  Testing 0.184 0.554 (0.447, 0.658) 0.696 0.952 0.437 0.333 0.969 

  Independent 0.232 0.656 (0.548, 0.753) 0.710 0.826 0.597 0.413 0.909 

29 Gender + TRA + MSEL Training 0.258 0.665 (0.614, 0.713) 0.694 0.673 0.662 0.435 0.840 

  Testing 0.235 0.696 (0.591, 0.787) 0.723 0.857 0.648 0.419 0.939 

  Independent 0.270 0.589 (0.480, 0.692) 0.617 0.696 0.552 0.348 0.841 

30 Gender + TRA + TS + MSEL Training 0.393 0.788 (0.743, 0.829) 0.740 0.500 0.900 0.658 0.823 

  Testing 0.166 0.543 (0.436, 0.648) 0.683 0.952 0.423 0.328 0.968 

  Independent 0.180 0.567 (0.458, 0.671) 0.709 1.000 0.418 0.371 1.000 

           

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), Threshold = logistic regression decision threshold, TRA = Factor analysis AOSI 

items that survived Benjamini & Hochberg 1995 corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training 

dataset (contains n=373 participants; 80% of old ASIB data), TS = AOSI Total Score 
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Table 3.06 | Assessment of 6 Logistic Regression Model (3 with Sex, 3 without) that had the highest AUC values on the testing dataset  

Logistic Regression Variable Combination Acc 95% CI AUC Sens Spec PPV NPV 
Res. 

Dev 
AIC 

Models without biological sex           

Model 10          

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.728 0.143 0.958 0.500 0.791 407.29 429.29 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.736 0.143 0.944 0.429 0.788 407.55 427.55 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.732 0.143 0.944 0.429 0.788 407.75 425.75 
AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.724 0.143 0.958 0.500 0.791 407.86 425.86 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.736 0.143 0.944 0.429 0.788 407.89 425.89 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.711 0.143 0.944 0.429 0.788 409.38 425.38 
AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.733 0.143 0.944 0.429 0.788 408.15 424.15 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.747 0.143 0.958 0.500 0.791 408.14 424.15 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.739 0.143 0.944 0.429 0.788 408.232 422.23 

Model 11          

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.723 0.143 0.944 0.429 0.788 397.00 421.00 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.717 0.143 0.972 0.600 0.793 397.96 419.96 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.724 0.143 0.944 0.429 0.788 397.00 419.00 
AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.707 0.190 0.958 0.571 0.800 398.51 418.51 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.703 0.143 0.958 0.500 0.791 398.45 418.45 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.722 0.143 0.944 0.429 0.788 397.05 417.05 
AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.750 0.649, 0.844 0.715 0.143 0.930 0.375 0.786 397.92 417.92 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.722 0.143 0.958 0.500 0.791 397.15 417.15 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.729 0.143 0.944 0.429 0.788 397.19 417.19 

AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.741 0.143 0.958 0.500 0.791 397.30 415.30 

Model 14          

AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.724 0.143 0.958 0.500 0.791 407.86 425.86 

AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.722 0.143 0.944 0.429 0.944 408.09 424.09 

AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.823 0.725 0.143 0.958 0.500 0.791 408.21 424.21 
AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.705 0.143 0.944 0.429 0.788 409.72 423.72 

AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.823 0.720 0.143 0.958 0.500 0.791 408.40 422.40 

AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.823 0.736 0.143 0.958 0.500 0.791 408.43 422.43 
AQ8 + AQ14 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.823 0.730 0.143 0.958 0.500 0.791 408.49 420.49 

Models with biological sex          

Model 25          

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.730 0.095 0.958 0.400 0.782 402.76 426.76 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.823 0.730 0.143 0.958 0.500 0.791 403.15 425.15 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.728 0.095 0.944 0.400 0.782 403.33 423.33 
Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.723 0.095 0.958 0.400 0.782 403.44 423.44 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.730 0.143 0.958 0.500 0.791 403.68 423.68 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.750 0.649, 0.834 0.709 0.095 0.944 0.333 0.779 405.12 423.12 
Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.738 0.143 0.958 0.500 0.791 403.90 421.90 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.756 0.143 0.958 0.500 0.791 404.28 420.28 
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Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.753 0.143 0.958 0.500 0.791 404.30 418.30 

Model 26          

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672,0.853 0.739 0.190 0.944 0.500 0.798 392.64 418.64 
Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.745 0.190 0.958 0.571 0.800 393.36 417.36 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.745 0.190 0.958 0.571 0.800 393.41 415.41 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.793 0.696, 0.871 0.723 0.238 0.958 0.625 0.809 394.83 414.83 
Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.730 0.190 0.930 0.444 0.795 394.89 414.89 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.744 0.190 0.958 0.571 0.800 393.48 413.48 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.730 0.190 0.944 0.500 0.798 394.33 414.33 
Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.741 0.190 0.958 0.571 0.800 393.54 413.54 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.744 0.190 0.958 0.571 0.800 393.67 413.67 

Sex + AQ6 + AQ8 + AQ14 + AQ16 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.783 0.684, 0.862 0.745 0.190 0.958 0.571 0.800 393.45 413.45 

Model 30          

Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.750 0.649, 0.834 0.734 0.143 0.930 0.375 0.786 394.82 416.82 
Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.660, 0.844 0.730 0.190 0.930 0.444 0.795 394.89 414.89 

Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.722 0.190 0.944 0.500 0.798 395.91 415.91 

Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.660, 0.844 0.732 0.190 0.930 0.444 0.795 394.91 414.91 
Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.750 0.649, 0.834 0.721 0.190 0.915 0.400 0.793 395.80 415.80 

Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.732 0.190 0.944 0.500 0.798 394.93 414.93 

Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.772 0.672, 0.853 0.738 0.190 0.944 0.500 0.798 395.07 415.07 
Sex + AQ8 + AQ14 + AQ18 + AQTS + ELC + VR + FM + RL + EL 0.761 0.661, 0.844 0.745 0.143 0.943 0.429 0.788 395.24 413.24 

          

Acc = accuracy, AUC = Area Under the Curve, NPV = Negative Predictive Value, PPV = Positive Predictive Value, Res. Dev = Residual deviance, AQ = AOSI 

Question # (e.g., AQ3 = the third question on the AOSI). Variables were pruned if removal resulted in ↓AIC values and ↑AUC values. If removal did not result in 

this change for both AIC and AUC, it was not removed from the model. Variables with a strikethrough and in grey text indicate removal from the model.   

     = the predictor variable was significant (p < 0.05) in the original logistic regression model prior to pruning attempts  
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For the truncated regression models using the default decision threshold of 0.500, variable 

removal on average resulted in increased model performance with respect to AUC, sensitivity, 

and specificity. The average increase in AUC, sensitivity, and specificity of the truncated models 

was 0.000, -0.038, and -0.089 (for models applied to training data), 0.030, 0.030, and 0.008 (for 

models applied to testing data), and 0.019, 0.019, and 0.022 (for models applied to independent 

validation data).  

 

For the truncated regression models calculated using optimized decision threshold, variable 

removal on average resulted in increased model performance with respect to AUC, sensitivity, 

and specificity. The average increase in AUC, sensitivity, and specificity of the truncated models 

was 0.000, 0.112, and -0.194 (for models applied to training data), 0.013, -0.024, and 0.009 (for 

models applied to testing data), and 0.015, -0.007, and -0.027 (for models applied to independent 

validation data). Truncated model performance metrics for the six models with the highest AUC 

built with/without biological sex (models L10, L11, L14, L25, L26, and L30) pre and post non-

significant variable removal are described in Table 3.07. 

 

  



77 
 

Table 3.07 | Performance of Pruned Logistic Regression Models Pre- and Post-Optimization  

Model # Variable Combination without biological sex Data Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

10  FA + MSEL Training 0.500 0.740 (0.692, 0.784) 0.680 0.212 0.944 0.595 0.756 

  Training 0.220 0.598 (0.546, 0.648) 0.680 0.712 0.554 0.381 0.832 

  Testing 0.500 0.772 (0.672, 0.853) 0.728 0.143 0.958 0.500 0.791 

  Testing 0.257 0.696 (0.591, 0.787) 0.728 0.762 0.676 0.410 0.906 

  Independent 0.500 0.700 (0.594, 0.792) 0.569 0.174 0.881 0.333 0.756 

  Independent 0.308 0.622 (0.514, 0.722) 0.569 0.478 0.672 0.333 0.789 

10 FA + MSEL - Pruned/Truncated Training 0.500 0.700 (0.594, 0.792) 0.678 0.174 0.881 0.333 0.756 

  Training 0.226 0.444 (0.340, 0.553) 0.678 0.739 0.343 0.279 0.793 

  Testing 0.500 0.772 (0.672, 0.853) 0.747 0.143 0.958 0.500 0.791 

  Testing 0.229 0.674 (0.568, 0.768) 0.747 0.857 0.620 0.400 0.936 

  Independent 0.500 0.700 (0.594, 0.792) 0.596 0.174 0.881 0.333 0.756 

  Independent 0.265 0.600 (0.491, 0.702) 0.596 0.652 0.582 0.349 0.830 

11 FA + TS + MSEL Training 0.500 0.751 (0.704, 0.794) 0.690 0.240 0.948 0.641 0.763 

  Training 0.376 0.745 (0.698, 0.789) 0.690 0.433 0.866 0.556 0.798 

  Testing 0.500 0.761 (0.661, 0.844) 0.723 0.143 0.944 0.429 0.788 

  Testing 0.191 0.565 (0.458, 0.668) 0.723 1.000 0.437 0.344 1.000 

  Independent 0.500 0.689 (0.583, 0.782) 0.687 0.261 0.836 0.353 0.767 

  Independent 0.236 0.611 (0.503, 0.712) 0.687 0.826 0.537 0.380 0.900 

11 FA + TS + MSEL - Pruned/Truncated Training 0.500 0.678 (0.571, 0.772) 0.691 0.217 0.836 0.313 0.757 

  Training 0.350 0.678 (0.571, 0.772) 0.691 0.435 0.761 0.385 0.797 

  Testing 0.500 0.772 (0.672, 0.853) 0.741 0.143 0.958 0.500 0.791 

  Testing 0.190 0.565 (0.458, 0.668) 0.741 1.000 0.437 0.344 1.000 

  Independent 0.500 0.678 (0.571, 0.772) 0.701 0.217 0.836 0.313 0.757 

  Independent 0.289 0.578 (0.469, 0.681) 0.701 0.478 0.612 0.297 0.774 

14 TRA + MSEL Training 0.500 0.737 (0.689, 0.781) 0.673 0.212 0.941 0.579 0.755 

  Training 0.221 0.611 (0.560, 0.661) 0.673 0.731 0.565 0.394 0.844 

  Testing 0.500 0.772 (0.672, 0.853) 0.724 0.143 0.958 0.500 0.791 

  Testing 0.271 0.739 (0.637, 0.825) 0.724 0.714 0.746 0.455 0.898 

  Independent 0.500 0.711 (0.606, 0.802) 0.580 0.217 0.881 0.385 0.766 

  Independent 0.273 0.578 (0.469, 0.681) 0.580 0.609 0.567 0.326 0.809 

14 TRA + MSEL - Pruned/Truncated Training 0.500 0.700 (0.594, 0.792) 0.673 0.174 0.881 0.333 0.756 

  Training 0.221 0.467 (0.575, 0.673) 0.673 0.826 0.343 0.302 0.852 

  Testing 0.500 0.772 (0.672, 0.853) 0.736 0.143 0.958 0.500 0.791 

  Testing 0.269 0.728 (0.626, 0.816) 0.736 0.714 0.732 0.441 0.897 

  Independent 0.500 0.700 (0.594, 0.792) 0.604 0.174 0.881 0.333 0.756 

  Independent 0.259 0.600 (0.491, 0.702) 0.604 0.652 0.582 0.349 0.830 

           

Model # Variable Combinations with biological sex Data Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

25 Gender + FA + MSEL Training 0.500 0.737 (0.689, 0.781) 0.701 0.202 0.944 0.583 0.754 

  Training 0.246 0.657 (0.606, 0.705) 0.701 0.731 0.628 0.432 0.858 

  Testing 0.500 0.761 (0.661, 0.844) 0.730 0.095 0.958 0.400 0.782 
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  Testing 0.227 0.707 (0.602, 0.799) 0.730 0.857 0.662 0.429 0.940 

  Independent 0.500 0.689 (0.583, 0.782) 0.611 0.174 0.866 0.308 0.753 

  Independent 0.182 0.478 (0.371, 0.586) 0.611 0.913 0.328 0.318 0.917 

25 Gender + FA + MSEL - Pruned/Truncated Training 0.500 0.689 (0.583, 0.782) 0.698 0.130 0.881 0.273 0.747 

  Training 0.255 0.600 (0.491, 0.702) 0.698 0.652 0.582 0.349 0.830 

  Testing 0.500 0.772 (0.672, 0.853) 0.757 0.143 0.958 0.500 0.791 

  Testing 0.242 0.739 (0.637, 0.825) 0.757 0.857 0.704 0.462 0.943 

  Independent 0.500 0.689 (0.583, 0.782) 0.648 0.130 0.881 0.273 0.747 

  Independent 0.199 0.522 (0.414, 0.629) 0.648 0.957 0.373 0.344 0.962 

26 Gender + FA + TS + MSEL Training 0.500 0.764 (0.718, 0.806) 0.701 0.260 0.959 0.711 0.770 

  Training 0.387 0.748 (0.701, 0.791) 0.701 0.433 0.870 0.563 0.799 

  Testing 0.500 0.772 (0.672, 0.853) 0.739 0.190 0.944 0.500 0.798 

  Testing 0.226 0.641 (0.535, 0.739) 0.739 0.857 0.577 0.375 0.932 

  Independent 0.500 0.678 (0.571, 0.772) 0.713 0.217 0.836 0.313 0.757 

  Independent 0.231 0.633 (0.525, 0.732) 0.713 0.826 0.567 0.396 0.905 

26 Gender + FA + TS + MSEL - Pruned/Truncated Training 0.500 0.678 (0.571, 0.772) 0.702 0.217 0.836 0.313 0.757 

  Training 0.255 0.611 (0.503, 0.712) 0.702 0.739 0.567 0.370 0.864 

  Testing 0.500 0.783 (0.684, 0.862) 0.745 0.190 0.958 0.571 0.800 

  Testing 0.242 0.663 (0.557, 0.758) 0.745 0.714 0.648 0.375 0.885 

  Independent 0.500 0.678 (0.571, 0.772) 0.709 0.217 0.836 0.313 0.757 

  Independent 0.199 0.522 (0.414, 0.629) 0.709 0.957 0.373 0.344 0.962 

30 Gender + TRA + TS + MSEL Training 0.500 0.783 (0.737, 0.824) 0.740 0.365 0.944 0.717 0.794 

  Training 0.393 0.788 (0.743, 0.829) 0.740 0.500 0.900 0.658 0.823 

  Testing 0.500 0.717 (0.614, 0.806) 0.683 0.143 0.887 0.273 0.778 

  Testing 0.166 0.543 (0.436, 0.648) 0.683 0.952 0.423 0.328 0.968 

  Independent 0.500 0.678 (0.571, 0.772) 0.709 0.217 0.836 0.313 0.757 

  Independent 0.180 0.567 (0.458, 0.671) 0.709 1.000 0.418 0.371 1.000 

30 Gender + TRA + TS + MSEL - Pruned/Truncated Training 0.500 0.678 (0.571, 0.772) 0.700 0.217 0.836 0.313 0.757 

  Training 0.255 0.633 (0.525, 0.732) 0.700 0.783 0.582 0.391 0.886 

  Testing 0.500 0.761 (0.661, 0.844) 0.745 0.143 0.944 0.429 0.788 

  Testing 0.242 0.641 (0.535, 0.739) 0.745 0.714 0.620 0.357 0.880 

  Independent 0.500 0.678 (0.571, 0.772) 0.724 0.217 0.836 0.313 0.757 

  Independent 0.199 0.556 (0.447, 0.660) 0.724 0.957 0.418 0.361 0.966 

           

AUC = area under the curve, CI = confidence interval, Data = the data the model in question was being applied to – the randomly partitioned training set or test 

set, EL = Mullen expressive language standard score, ELC = Mullen Early Learning Composite standard score, FM = Mullen Fine Motor standard score, NPV = 

negative predictive value, PPV = positive predictive value, RL = Mullen Receptive Language standard score, Sens = sensitivity, Spec = specificity, Threshold = 

logistic regression decision threshold, VR = Mullen Visual Reception standard score 
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Regularized Multivariate Logistic Regression Using the Default Decision Threshold  

For regularized logistic regression models employing the default decision threshold of 0.500 

built without biological sex, average AUC in the training, testing, and independent validation 

datasets was 0.656, 0.653, and 0.625 respectively. Inclusion of biological sex in regularized 

regression modelling resulted in a minor increase of average AUC to 0.683, 0.687, and 0.667 

when applied to training, testing, and independent validation datasets respectively. With respect 

to regularized regression model performance on testing and independent validation data, AUC 

values were largely consistent with each other. The average absolute difference in AUC values 

for all regularized classifiers (models R1-R30) between the testing and independent validation 

set was 0.054 (min difference in AUC = 0.002, max difference = 0.162). 

 

Though regularized logistic regression classifiers were characterized by poor sensitivity, all were 

defined by high specificity. For models built without biological sex (Models R1-R15), average 

sensitivity was 0.151, 0.076, and 0.122 while average specificity was 0.971, 0.962, and 0.933 

when applied to training, testing, and independent validation datasets. For models built with 

biological sex (Models R16-R30), average sensitivity was 0.206, 0.130, and 0.133 while average 

specificity was 0.961, 0.950, and 0.905 when applied to training, testing, and independent 

validation datasets. All regularized logistic regression performance results using the default 

decision threshold of 0.500 are described in Table 3.08. 

 

Regularized Multivariate Logistic Regression Using an Optimized Decision Threshold   

When logistic regression decision thresholds were optimized for maximum combined sensitivity 

and specificity, model sensitivity increased substantially while specificity was reduced. For 

models built with biological sex (Models R1-R15) using optimized decision thresholds, average 

sensitivity was 0.576, 0.819, and 0.620 while average specificity was 0.721, 0.513, and 0.620 

when applied to training, testing, and independent validation datasets. For models built with 

biological sex (Models R16-R30) using optimized decision threshold, average sensitivity was 

0.547, 0.806, and 0.853 while average specificity was 0.753, 0.550, and 0.565 when applied to 

training, testing, and independent validation datasets. Since only the classifier’s decision 

threshold was changed, AUC for these models remained unchanged. All results are described in 

detail in Table 3.09. 
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Table 3.08 | Regularized Logistic Regression Model Performance 

Model # Variable Combination Dataset Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

Predictor Variable Combinations Without 

Sex 
         

1 IL Training 0.500 0.775 (0.729, 0.816) 0.716 0.327 0.948 0.708 0.785 

  Testing 0.500 0.739 (0.637, 0.825) 0.639 0.190 0.901 0.364 0.790 

  Independent 0.500 0.733 (0.630, 0.821) 0.713 0.304 0.881 0.467 0.787 

2 IL + TS Training 0.500 0.748 (0.701, 0.791) 0.701 0.163 0.974 0.708 0.751 

  Testing 0.500 0.761 (0.661, 0.844) 0.657 0.095 0.958 0.400 0.782 

  Independent 0.500 0.767 (0.666, 0.849) 0.728 0.174 0.970 0.667 0.774 

3 IL + MSEL Training 0.500 0.775 (0.729, 0.816) 0.705 0.337 0.944 0.700 0.786 

  Testing 0.500 0.739 (0.637, 0.825) 0.641 0.048 0.944 0.200 0.770 

  Independent 0.500 0.700 (0.594, 0.792) 0.674 0.304 0.836 0.389 0.778 

4 IL + TS + MSEL Training 0.500 0.751 (0.704, 0.794) 0.686 0.231 0.952 0.649 0.762 

  Testing 0.500 0.750 (0.649, 0.834) 0.608 0.048 0.958 0.250 0.773 

  Independent 0.500 0.689 (0.583, 0.782) 0.596 0.174 0.866 0.308 0.753 

5 TS + MSEL Training 0.500 0.729 (0.681, 0.774) 0.670 0.038 0.996 0.800 0.728 

  Testing 0.500 0.761 (0.661, 0.844) 0.722 0.000 0.986 0.000 0.769 

  Independent 0.500 0.744 (0.642, 0.831) 0.708 0.043 0.985 0.500 0.750 

6 MSEL Training 0.500 0.721 (0.673, 0.766) 0.583 0.000 1.000 0.000 0.721 

  Testing 0.500 0.772 (0.672, 0.853) 0.662 0.000 1.000 0.000 0.772 

  Independent 0.500 0.744 (0.642, 0.831) 0.672 0.000 1.000 0.000 0.744 

7 TS Training 0.500 0.735 (0.687, 0.779) 0.666 0.067 0.993 0.778 0.734 

  Testing 0.500 0.761 (0.661, 0.844) 0.661 0.000 0.986 0.000 0.769 

  Independent 0.500 0.756 (0.654, 0.840) 0.659 0.087 0.985 0.667 0.759 

8 FA Training 0.500 0.745 (0.698, 0.789) 0.654 0.192 0.959 0.645 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.655 0.143 0.944 0.429 0.788 

  Independent 0.500 0.700 (0.594, 0.792) 0.493 0.087 0.910 0.250 0.744 

9 FA + TS Training 0.500 0.721 (0.673, 0.766) 0.543 0.000 1.000 0.000 0.721 

  Testing 0.500 0.772 (0.672, 0.853) 0.532 0.000 1.000 0.000 0.772 

  Independent 0.500 0.744 (0.642, 0.831) 0.579 0.000 1.000 0.000 0.744 

10 FA + MSEL Training 0.500 0.751 (0.704, 0.794) 0.671 0.154 0.981 0.762 0.750 

  Testing 0.500 0.772 (0.672, 0.853) 0.716 0.095 0.972 0.500 0.784 

  Independent 0.500 0.733 (0.630, 0.821) 0.625 0.130 0.940 0.429 0.759 

11 FA + TS + MSEL Training 0.500 0.732 (0.684, 0.776) 0.614 0.173 0.948 0.563 0.748 

  Testing 0.500 0.750 (0.649, 0.834) 0.628 0.095 0.944 0.333 0.779 

  Independent 0.500 0.711 (0.606, 0.802) 0.546 0.130 0.910 0.333 0.753 

12 TRA Training 0.500 0.743 (0.695, 0.786) 0.628 0.192 0.955 0.625 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.615 0.143 0.944 0.429 0.788 

  Independent 0.500 0.700 (0.594, 0.792) 0.502 0.130 0.896 0.300 0.750 

13 TRA + TS Training 0.500 0.724 (0.675, 0.769) 0.657 0.010 1.000 1.000 0.723 

  Testing 0.500 0.772 (0.672, 0.853) 0.623 0.000 1.000 NaN 0.772 

  Independent 0.500 0.744 (0.642, 0.831) 0.646 0.000 1.000 NaN 0.744 
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14 TRA + MSEL Training 0.500 0.743 (0.695, 0.786) 0.673 0.183 0.959 0.633 0.752 

  Testing 0.500 0.761 (0.661, 0.844) 0.714 0.143 0.944 0.429 0.788 

  Independent 0.500 0.711 (0.606, 0.802) 0.583 0.130 0.910 0.333 0.753 

15 TRA + TS + MSEL Training 0.500 0.745 (0.698, 0.789) 0.671 0.202 0.955 0.636 0.756 

  Testing 0.500 0.772 (0.672, 0.853) 0.716 0.143 0.958 0.500 0.791 

  Independent 0.500 0.711 (0.606, 0.802) 0.653 0.130 0.910 0.333 0.753 

Predictor Variable Combinations With Sex          

16 Gender + IL  Training 0.500 0.783 (0.737, 0.824) 0.735 0.337 0.955 0.745 0.788 

  Testing 0.500 0.728 (0.637, 0.825) 0.664 0.143 0.901 0.300 0.780 

  Independent 0.500 0.689 (0.583, 0.782) 0.741 0.217 0.851 0.333 0.760 

17 Gender + IL + TS Training 0.500 0.783 (0.718, 0.806) 0.735 0.365 0.944 0.717 0.794 

  Testing 0.500 0.750 (0.672, 0.853) 0.666 0.143 0.930 0.375 0.786 

  Independent 0.500 0.689 (0.583, 0.782) 0.742 0.217 0.851 0.333 0.760 

18 Gender + IL + MSEL Training 0.500 0.769 (0.726, 0.814) 0.717 0.288 0.955 0.714 0.776 

  Testing 0.500 0.739 (0.626, 0.816) 0.661 0.190 0.901 0.364 0.790 

  Independent 0.500 0.733 (0.630, 0.821) 0.680 0.348 0.866 0.471 0.795 

19 Gender + IL + TS + MSEL Training 0.500 0.756 (0.732, 0.819) 0.709 0.288 0.937 0.638 0.773 

  Testing 0.500 0.750 (0.637, 0.825) 0.632 0.095 0.944 0.333 0.779 

  Independent 0.500 0.733 (0.618, 0.811) 0.623 0.217 0.910 0.455 0.772 

20 Gender + TS + MSEL Training 0.500 0.724 (0.689, 0.781) 0.683 0.010 1.000 1.000 0.723 

  Testing 0.500 0.772 (0.649, 0.834) 0.745 0.000 1.000 0.000 0.772 

  Independent 0.500 0.744 (0.666, 0.849) 0.737 0.000 1.000 0.000 0.744 

21 Gender + MSEL* Training 0.500 0.721 (0.673, 0.766) 0.598 0.000 1.000 0.000 0.721 

  Testing 0.500 0.772 (0.672, 0.853) 0.676 0.000 1.000 0.000 0.772 

  Independent 0.500 0.744 (0.642, 0.831) 0.685 0.000 1.000 0.000 0.744 

22 Gender + TS Training 0.500 0.759 (0.706, 0.796) 0.678 0.260 0.952 0.675 0.769 

  Testing 0.500 0.793 (0.696, 0.871) 0.703 0.238 0.958 0.625 0.810 

  Independent 0.500 0.711 (0.618, 0.811) 0.713 0.174 0.896 0.364 0.759 

23 Gender + FA Training 0.500 0.745 (0.695, 0.786) 0.680 0.192 0.959 0.645 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.692 0.095 0.958 0.400 0.782 

  Independent 0.500 0.678 (0.594, 0.792) 0.624 0.087 0.881 0.200 0.738 

24 Gender + FA + TS* Training 0.500 0.756 (0.698, 0.789) 0.686 0.192 0.974 0.741 0.757 

  Testing 0.500 0.793 (0.696, 0.871) 0.699 0.190 0.972 0.667 0.802 

  Independent 0.500 0.733 (0.571, 0.772) 0.701 0.087 0.955 0.400 0.753 

25 Gender + FA + MSEL Training 0.500 0.745 (0.701, 0.791) 0.692 0.183 0.963 0.655 0.753 

  Testing 0.500 0.761 (0.672, 0.853) 0.706 0.095 0.958 0.400 0.782 

  Independent 0.500 0.678 (0.618, 0.811) 0.644 0.087 0.881 0.200 0.738 

26 Gender + FA + TS + MSEL Training 0.500 0.737 (0.704, 0.794) 0.627 0.125 0.974 0.650 0.742 

  Testing 0.500 0.750 (0.684, 0.862) 0.664 0.048 0.958 0.250 0.773 

  Independent 0.500 0.700 (0.594, 0.792) 0.507 0.087 0.910 0.250 0.744 

27 Gender + TRA Training 0.500 0.735 (0.695, 0.786) 0.655 0.212 0.937 0.564 0.754 

  Testing 0.500 0.761 (0.661, 0.844) 0.658 0.238 0.915 0.455 0.802 

  Independent 0.500 0.689 (0.594, 0.792) 0.602 0.087 0.896 0.222 0.741 
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28 Gender + TRA + TS Training 0.500 0.748 (0.698, 0.789) 0.690 0.221 0.952 0.639 0.760 

  Testing 0.500 0.783 (0.684, 0.862) 0.690 0.190 0.958 0.571 0.800 

  Independent 0.500 0.689 (0.583, 0.782) 0.701 0.130 0.881 0.273 0.747 

29 Gender + TRA + MSEL Training 0.500 0.748 (0.695, 0.786) 0.677 0.192 0.963 0.667 0.755 

  Testing 0.500 0.772 (0.661, 0.844) 0.734 0.143 0.958 0.500 0.791 

  Independent 0.500 0.700 (0.594, 0.792) 0.642 0.130 0.896 0.300 0.750 

30 Gender + TRA + TS + MSEL Training 0.500 0.751 (0.709, 0.799) 0.676 0.221 0.955 0.657 0.760 

  Testing 0.500 0.761 (0.672, 0.853) 0.708 0.143 0.944 0.429 0.788 

  Independent 0.500 0.711 (0.594, 0.792) 0.668 0.130 0.910 0.333 0.753 

           

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), Threshold = logistic regression decision threshold, TRA = Factor analysis AOSI 

items that survived Benjamini & Hochberg 1995 corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training 

dataset (contains n=373 participants; 80% of old ASIB data), TS = AOSI Total Score 
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Table 3.09 | Regularized logistic regression model performance optimized for maximal combined sensitivity + specificity 

Model # Variable Combination Dataset Threshold Accuracy 95% CI AUC Sens Spec PPV NPV 

Predictor Variable Combinations          

1 IL Training 0.365 0.775 (0.729, 0.816) 0.716 0.519 0.874 0.614 0.825 

  Testing 0.184 0.522 (0.415, 0.627) 0.637 0.810 0.437 0.298 0.886 

  Independent 0.275 0.656 (0.548, 0.753) 0.713 0.783 0.612 0.409 0.891 

2 IL + TS Training 0.362 0.775 (0.729, 0.816) 0.713 0.519 0.874 0.614 0.825 

  Testing 0.189 0.522 (0.415, 0.627) 0.645 0.857 0.423 0.305 0.909 

  Independent 0.269 0.656 (0.548, 0.753) 0.710 0.783 0.612 0.409 0.891 

3 IL + MSEL Training 0.377 0.775 (0.729, 0.816) 0.717 0.481 0.888 0.625 0.816 

  Testing 0.183 0.500 (0.394, 0.606) 0.662 1.000 0.352 0.313 1.000 

  Independent 0.261 0.678 (0.571, 0.772) 0.695 0.696 0.672 0.421 0.865 

4 IL + TS + MSEL Training 0.262 0.710 (0.662, 0.756) 0.714 0.635 0.740 0.485 0.840 

  Testing 0.184 0.478 (0.373, 0.585) 0.647 1.000 0.324 0.304 1.000 

  Independent 0.249 0.689 (0.583, 0.782) 0.689 0.739 0.672 0.436 0.882 

5 TS + MSEL Training 0.328 0.724 (0.675, 0.769) 0.670 0.452 0.829 0.505 0.796 

  Testing 0.232 0.609 (0.501, 0.709) 0.703 0.857 0.535 0.353 0.927 

  Independent 0.341 0.733 (0.630, 0.821) 0.683 0.478 0.821 0.478 0.821 

6 MSEL Training 0.273 0.643 (0.592, 0.692) 0.624 0.654 0.639 0.412 0.827 

  Testing 0.283 0.728 (0.626, 0.816) 0.682 0.619 0.761 0.433 0.871 

  Independent 0.288 0.756 (0.654, 0.840) 0.732 0.609 0.806 0.519 0.857 

7 TS Training 0.334 0.718 (0.670, 0.764) 0.666 0.481 0.810 0.495 0.801 

  Testing 0.245 0.620 (0.512, 0.719) 0.661 0.667 0.606 0.333 0.860 

  Independent 0.303 0.644 (0.537, 0.743) 0.659 0.565 0.672 0.371 0.818 

8 FA Training 0.240 0.665 (0.614, 0.713) 0.658 0.538 0.714 0.421 0.800 

  Testing 0.230 0.598 (0.490, 0.699) 0.648 0.714 0.563 0.326 0.870 

  Independent 0.720 0.756 (0.654, 0.840) 0.496 0.087 0.985 0.667 0.759 

9 FA + TS Training 0.309 0.705 (0.656, 0.751) 0.670 0.529 0.773 0.474 0.809 

  Testing 0.237 0.630 (0.523, 0.729) 0.671 0.762 0.592 0.356 0.894 

  Independent 0.248 0.567 (0.458, 0.671) 0.634 0.739 0.507 0.340 0.850 

10 FA + MSEL Training 0.218 0.550 (0.498, 0.601) 0.653 0.760 0.468 0.356 0.834 

  Testing 0.221 0.565 (0.458, 0.668) 0.689 0.905 0.465 0.333 0.943 

  Independent 0.225 0.533 (0.425, 0.639) 0.620 0.783 0.448 0.327 0.857 

11 FA + TS + MSEL Training 0.247 0.654 (0.603, 0.702) 0.670 0.596 0.677 0.416 0.813 

  Testing 0.210 0.565 (0.458, 0.668) 0.712 0.905 0.465 0.333 0.943 

  Independent 0.213 0.533 (0.425, 0.639) 0.638 0.826 0.433 0.333 0.879 

12 TRA Training 0.263 0.689 (0.639, 0.736) 0.639 0.462 0.777 0.444 0.789 

  Testing 0.232 0.598 (0.490, 0.699) 0.641 0.667 0.577 0.318 0.854 

  Independent 0.521 0.722 (0.618, 0.811) 0.507 0.130 0.925 0.375 0.756 

13 TRA + TS Training 0.316 0.713 (0.664, 0.759) 0.669 0.500 0.796 0.486 0.805 

  Testing 0.236 0.630 (0.523, 0.729) 0.675 0.762 0.592 0.356 0.894 

  Independent 0.206 0.500 (0.393, 0.607) 0.648 0.913 0.358 0.328 0.923 
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14 TRA + MSEL Training 0.236 0.574 (0.522, 0.624) 0.650 0.731 0.513 0.367 0.831 

  Testing 0.238 0.598 (0.490, 0.699) 0.699 0.905 0.507 0.352 0.947 

  Independent 0.243 0.611 (0.503, 0.712) 0.622 0.696 0.582 0.364 0.848 

15 TRA + TS + MSEL Training 0.202 0.542 (0.489, 0.593) 0.666 0.788 0.446 0.355 0.845 

  Testing 0.209 0.576 (0.469, 0.679) 0.688 0.857 0.493 0.333 0.921 

  Independent 0.319 0.711 (0.606, 0.802) 0.626 0.478 0.791 0.440 0.815 

Predictor Variable Combinations + Gender          

16 Gender + IL  Training 0.357 0.756 (0.709, 0.799) 0.735 0.519 0.848 0.568 0.820 

  Testing 0.194 0.511 (0.404, 0.617) 0.662 0.905 0.394 0.306 0.933 

  Independent 0.195 0.600 (0.491, 0.702) 0.741 0.913 0.493 0.382 0.943 

17 Gender + IL + TS Training 0.282 0.702 (0.653, 0.748) 0.734 0.644 0.725 0.475 0.841 

  Testing 0.208 0.565 (0.458, 0.668) 0.691 0.857 0.479 0.327 0.919 

  Independent 0.217 0.633 (0.525, 0.732) 0.739 1.000 0.507 0.411 1.000 

18 Gender + IL + MSEL Training 0.345 0.759 (0.712, 0.801) 0.722 0.519 0.851 0.574 0.821 

  Testing 0.172 0.500 (0.394, 0.606) 0.649 1.000 0.352 0.313 1.000 

  Independent 0.276 0.711 (0.606, 0.802) 0.711 0.696 0.716 0.457 0.873 

19 Gender + IL + TS + MSEL Training 0.277 0.724 (0.675, 0.769) 0.732 0.615 0.766 0.504 0.837 

  Testing 0.182 0.522 (0.415, 0.627) 0.666 0.952 0.394 0.317 0.966 

  Independent 0.226 0.689 (0.583, 0.782) 0.755 0.870 0.627 0.444 0.933 

20 Gender + TS + MSEL Training 0.327 0.718 (0.670, 0.764) 0.683 0.462 0.818 0.495 0.797 

  Testing 0.259 0.652 (0.546, 0.749) 0.719 0.714 0.634 0.366 0.882 

  Independent 0.240 0.611 (0.503, 0.712) 0.711 0.913 0.507 0.389 0.944 

21 Gender + MSEL* Training 0.209 0.499 (0.447, 0.551) 0.628 0.913 0.338 0.348 0.910 

  Testing 0.315 0.761 (0.661, 0.844) 0.695 0.524 0.831 0.478 0.855 

  Independent 0.312 0.733 (0.630, 0.821) 0.722 0.522 0.806 0.480 0.831 

22 Gender + TS Training 0.366 0.727 (0.678, 0.771) 0.680 0.433 0.840 0.511 0.793 

  Testing 0.214 0.554 (0.447, 0.658) 0.700 0.857 0.465 0.321 0.917 

  Independent 0.271 0.667 (0.559, 0.763) 0.718 0.826 0.612 0.422 0.911 

23 Gender + FA Training 0.291 0.697 (0.648, 0.743) 0.671 0.490 0.777 0.459 0.798 

  Testing 0.305 0.750 (0.649, 0.834) 0.679 0.476 0.831 0.455 0.843 

  Independent 0.277 0.589 (0.480, 0.692) 0.639 0.826 0.507 0.365 0.895 

24 Gender + FA + TS* Training 0.369 0.756 (0.709, 0.799) 0.689 0.442 0.877 0.582 0.803 

  Testing 0.171 0.511 (0.404, 0.617) 0.699 0.952 0.380 0.313 0.964 

  Independent 0.261 0.678 (0.571, 0.772) 0.700 0.826 0.627 0.432 0.913 

25 Gender + FA + MSEL Training 0.222 0.571 (0.519, 0.622) 0.659 0.750 0.502 0.368 0.839 

  Testing 0.229 0.641 (0.535, 0.739) 0.710 0.905 0.563 0.380 0.952 

  Independent 0.229 0.622 (0.514, 0.722) 0.629 0.739 0.582 0.378 0.867 

26 Gender + FA + TS + MSEL Training 0.339 0.740 (0.692, 0.784) 0.686 0.413 0.866 0.544 0.793 

  Testing 0.218 0.630 (0.523, 0.729) 0.732 0.857 0.563 0.367 0.930 

  Independent 0.207 0.611 (0.503, 0.712) 0.703 0.913 0.507 0.389 0.944 

27 Gender + TRA Training 0.298 0.678 (0.628, 0.725) 0.664 0.471 0.758 0.430 0.788 

  Testing 0.298 0.750 (0.649, 0.834) 0.692 0.524 0.817 0.458 0.853 

  Independent 0.279 0.578 (0.469, 0.681) 0.629 0.783 0.507 0.353 0.872 
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28 Gender + TRA + TS Training 0.367 0.745 (0.698, 0.789) 0.690 0.452 0.859 0.553 0.802 

  Testing 0.171 0.489 (0.383, 0.596) 0.696 0.952 0.352 0.303 0.962 

  Independent 0.265 0.678 (0.571, 0.772) 0.694 0.826 0.627 0.432 0.913 

29 Gender + TRA + MSEL Training 0.248 0.630 (0.579, 0.679) 0.687 0.673 0.613 0.402 0.829 

  Testing 0.250 0.674 (0.568, 0.768) 0.704 0.762 0.648 0.390 0.902 

  Independent 0.182 0.556 (0.447, 0.660) 0.643 0.913 0.433 0.356 0.935 

30 Gender + TRA + TS + MSEL Training 0.358 0.735 (0.687, 0.779) 0.681 0.413 0.859 0.531 0.791 

  Testing 0.215 0.620 (0.512, 0.719) 0.720 0.857 0.549 0.360 0.929 

  Independent 0.189 0.556 (0.447, 0.660) 0.700 0.957 0.418 0.361 0.966 

           

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), Threshold = logistic regression decision threshold, TRA = Factor analysis AOSI 

items that survived Benjamini & Hochberg 1995 corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training 

dataset (contains n=373 participants; 80% of old ASIB data), TS = AOSI Total Score 
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Support Vector Machines Using Linear Kernels 

For SVMs generated using linear kernels built without biological sex (Lin1-Lin15), average 

AUC in the training, testing, and independent validation datasets was 0.657, 0.640, and 0.589 

respectively. Inclusion of biological sex in linear SVM modelling (Lin16-Lin30) resulted in a 

minor increase of average AUC to 0.668, 0.650, and 0.617 when applied to training, testing, and 

independent validation datasets respectively. Linear SVM AUC performance on testing and 

independent validation data were largely consistent. The average absolute difference in AUC 

values for all regularized classifiers (Lin1-Lin30) between the testing and independent validation 

set was 0.057 (min difference in AUC = 0.001, max difference = 0.198). 

 

Linear SVM classifiers were all characterized by poor sensitivity and high specificity. For 

models built without biological sex (Models Lin1-Lin15), average sensitivity was 0.177, 0.127, 

and 0.104 while average specificity was 0.958, 0.947, and 0.916 when applied to training, 

testing, and independent validation datasets. For models built with biological sex (Models Lin16-

Lin30), average sensitivity was 0.177, 0.127, and 0.104 while average specificity was 0.958, 

0.947, and 0.916 when applied to training, testing, and independent validation datasets. All linear 

SVM classifiers performance results are described in Table 3.10. 

 

Support Vector Machines Using Polynomial Kernels  

For SVMs generated using polynomial kernels without biological sex as a predictor variable 

(Poly1-Poly15), average AUC in the training, testing, and independent validation datasets was 

0.651, 0.613, and 0.599 respectively. Inclusion of biological sex in polynomial SVM modelling 

resulted in a minor increase of average AUC to 0.672, 0.677, and 0.632 when applied to training, 

testing, and independent validation datasets respectively. Polynomial SVM performance on 

testing and independent validation data was largely consistent. Average absolute difference in 

AUC values for all polynomial SVMs (Poly1-Poly30) between the testing and independent 

validation set was 0.047 (min difference in AUC = 0.006, max difference = 0.168). 

 

Polynomial SVM classifiers were all characterized by poor sensitivity and high specificity. For 

models built without biological sex (Poly1-Poly15), average sensitivity was 0.174, 0.105, and 

0.107 while average specificity was 0.967, 0.954, and 0.926 when applied to training, testing, 

and independent validation datasets. For models built with biological sex (Models Poly16-
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Poly30), average sensitivity was 0.178, 0.114, and 0.113 while average specificity was 0.964, 

0.952, and 0.917 when applied to training, testing, and independent validation datasets. All 

polynomial SVM classifiers performance results are described in Table 3.11. 

 

Support Vector Machines Using Radial Basis Function Kernels  

For SVMs generated using radial basis function kernels without biological sex (Rad1-Rad15), 

average AUC in the training, testing, and independent validation datasets was 0.787, 0.621, and 

0.567 respectively. Inclusion of biological sex in RBF-SVM modelling resulted in a minor 

increase to AUC of 0.789, 0.641, and 0.571 when applied to training, testing, and independent 

validation datasets respectively. With respect to RBF-SVM performance on testing and 

independent validation data, the average absolute difference in AUC values for all RBF-SVM 

classifiers (Rad1-Rad30) between the testing and independent validation set was 0.085 (min 

difference in AUC = 0.001, max difference = 0.235). 

 

RBF-SVM classifiers were all characterized by poor sensitivity and high specificity. For models 

built without biological sex (Rad1-Rad15), average sensitivity was 0.219, 0.102, and 0.081 while 

average specificity was 0.989 0.971, and 0.941 when applied to training, testing, and 

independent validation datasets. For models built with biological sex (Models Rad16-Rad30), 

average sensitivity was 0.226, 0.111, and 0.096 while average specificity was 0.987, 0.968, and 

0.937 when applied to training, testing, and independent validation datasets. All RBF-SVM 

classifier performance results are described in Table 3.12. 
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Table 3.10 | Support Vector Machine with linear kernels model performance 

Model # Variable Combination Dataset Accuracy 95% CI AUC Sens Spec PPV NPV 

 Predictor Variable Combinations         

1 IL Training 0.751 (0.704, 0.794) 0.718 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.662 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.591 0.130 0.896 0.300 0.750 

2 IL + TS Training 0.751 (0.704, 0.794) 0.693 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.730 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.532 0.130 0.896 0.300 0.750 

3 IL + MSEL Training 0.751 (0.704, 0.794) 0.718 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.669 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.683 0.130 0.896 0.300 0.750 

4 IL + TS + MSEL Training 0.751 (0.704, 0.794) 0.722 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.670 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.668 0.130 0.896 0.300 0.750 

5 TS + MSEL Training 0.721 (0.673, 0.766) 0.660 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.628 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.596 0.000 1.000 NaN 0.744 

6 MSEL Training 0.721 (0.673, 0.766) 0.579 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.678 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.534 0.000 1.000 NaN 0.744 

7 TS Training 0.721 (0.673, 0.766) 0.666 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.661 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.659 0.000 1.000 NaN 0.744 

8 FA Training 0.743 (0.695, 0.786) 0.600 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.568 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.483 0.130 0.896 0.300 0.750 

9 FA + TS Training 0.743 (0.695, 0.786) 0.647 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.623 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.709 0.130 0.896 0.300 0.750 

10 FA + MSEL Training 0.743 (0.695, 0.786) 0.590 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.526 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.496 0.130 0.896 0.300 0.750 

11 FA + TS + MSEL Training 0.743 (0.695, 0.786) 0.627 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.568 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.555 0.130 0.896 0.300 0.750 

12 TRA Training 0.743 (0.695, 0.786) 0.635 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.624 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.504 0.130 0.896 0.300 0.750 

13 TRA + TS Training 0.743 (0.695, 0.786) 0.664 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.618 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.633 0.130 0.896 0.300 0.750 
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14 TRA + MSEL Training 0.743 (0.695, 0.786) 0.659 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.685 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.546 0.130 0.896 0.300 0.750 

15 TRA + TS + MSEL Training 0.743 (0.695, 0.786) 0.670 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.693 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.645 0.130 0.896 0.300 0.750 

Predictor Variable Combinations + Gender          

16 Gender + IL  Training 0.751 (0.704, 0.794) 0.731 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.671 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.649 0.130 0.896 0.300 0.750 

17 Gender + IL + TS Training 0.751 (0.704, 0.794) 0.721 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.671 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.662 0.130 0.896 0.300 0.750 

18 Gender + IL + MSEL Training 0.751 (0.704, 0.794) 0.733 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.685 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.676 0.130 0.896 0.300 0.750 

19 Gender + IL + TS + MSEL Training 0.751 (0.704, 0.794) 0.731 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.676 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.676 0.130 0.896 0.300 0.750 

20 Gender + TS + MSEL Training 0.721 (0.673, 0.766) 0.685 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.695 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.643 0.000 1.000 NaN 0.744 

21 Gender + MSEL Training 0.721 (0.673, 0.766) 0.606 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.611 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.494 0.000 1.000 NaN 0.744 

22 Gender + TS Training 0.721 (0.673, 0.766) 0.662 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.652 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.646 0.000 1.000 NaN 0.744 

23 Gender + FA Training 0.743 (0.695, 0.786) 0.664 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.702 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.602 0.130 0.896 0.300 0.750 

24 Gender + FA + TS Training 0.743 (0.695, 0.786) 0.640 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.682 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.627 0.130 0.896 0.300 0.750 

25 Gender + FA + MSEL Training 0.743 (0.695, 0.786) 0.584 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.529 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.482 0.130 0.896 0.300 0.750 

26 Gender + FA + TS + MSEL Training 0.743 (0.695, 0.786) 0.698 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.730 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.650 0.130 0.896 0.300 0.750 

27 Gender + TRA Training 0.743 (0.695, 0.786) 0.616 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.626 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.632 0.130 0.896 0.300 0.750 
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28 Gender + TRA + TS Training 0.743 (0.695, 0.786) 0.677 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.674 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.725 0.130 0.896 0.300 0.750 

29 Gender + TRA + MSEL Training 0.743 (0.695, 0.786) 0.589 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.433 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.476 0.130 0.896 0.300 0.750 

30 Gender + TRA + TS + MSEL Training 0.743 (0.695, 0.786) 0.689 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.717 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.618 0.130 0.896 0.300 0.750 

          

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), TRA = Factor analysis AOSI items that survived Benjamini & Hochberg 1995 

corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training dataset (contains n=373 participants; 80% of old 

ASIB data), TS = AOSI Total Score 
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Table 3.11 | Performance of Support Vector Machines with Polynomial Kernel  

Model # Variable Combination Dataset Accuracy 95% CI AUC Sens Spec PPV NPV 

 Predictor Variable Combinations         

1 IL Training 0.769 (0.723, 0.811) 0.754 0.221 0.981 0.821 0.765 

  Testing 0.761 (0.661, 0.844) 0.613 0.048 0.972 0.333 0.775 

  Independent 0.733 (0.630, 0.821) 0.625 0.130 0.940 0.429 0.759 

2 IL + TS Training 0.751 (0.704, 0.794) 0.722 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.643 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.616 0.130 0.896 0.300 0.750 

3 IL + MSEL Training 0.772 (0.726, 0.814) 0.713 0.221 0.985 0.852 0.766 

  Testing 0.750 (0.649, 0.834) 0.673 0.048 0.958 0.250 0.773 

  Independent 0.733 (0.630, 0.821) 0.682 0.087 0.955 0.400 0.753 

4 IL + TS + MSEL Training 0.769 (0.723, 0.811) 0.713 0.212 0.985 0.846 0.764 

  Testing 0.750 (0.649, 0.834) 0.671 0.048 0.958 0.250 0.773 

  Independent 0.733 (0.630, 0.821) 0.679 0.087 0.955 0.400 0.753 

5 TS + MSEL Training 0.721 (0.673, 0.766) 0.646 0.000 1.000 0.000 0.721 

  Testing 0.772 (0.672, 0.853) 0.612 0.000 1.000 0.000 0.772 

  Independent 0.744 (0.642, 0.831) 0.579 0.000 1.000 0.000 0.744 

6 MSEL Training 0.721 (0.673, 0.766) 0.514 0.000 1.000 0.000 0.721 

  Testing 0.772 (0.672, 0.853) 0.502 0.000 1.000 0.000 0.772 

  Independent 0.744 (0.642, 0.831) 0.511 0.000 1.000 0.000 0.744 

7 TS Training 0.737 (0.689, 0.781) 0.698 0.135 0.970 0.636 0.744 

  Testing 0.761 (0.661, 0.844) 0.632 0.095 0.958 0.400 0.782 

  Independent 0.767 (0.666, 0.849) 0.638 0.130 0.985 0.750 0.767 

8 FA Training 0.743 (0.695, 0.786) 0.548 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.531 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.520 0.130 0.896 0.300 0.750 

9 FA + TS Training 0.743 (0.695, 0.786) 0.647 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.654 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.637 0.130 0.896 0.300 0.750 

10 FA + MSEL Training 0.743 (0.695, 0.786) 0.589 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.530 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.506 0.130 0.896 0.300 0.750 

11 FA + TS + MSEL Training 0.743 (0.695, 0.786) 0.668 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.665 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.596 0.130 0.896 0.300 0.750 

12 TRA Training 0.743 (0.695, 0.786) 0.594 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.498 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.484 0.130 0.896 0.300 0.750 

13 TRA + TS Training 0.743 (0.695, 0.786) 0.656 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.636 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.692 0.130 0.896 0.300 0.750 
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14 TRA + MSEL Training 0.743 (0.695, 0.786) 0.661 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.683 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.621 0.130 0.896 0.300 0.750 

15 TRA + TS + MSEL Training 0.743 (0.695, 0.786) 0.640 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.647 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.600 0.130 0.896 0.300 0.750 

Predictor Variable Combinations + Gender          

16 Gender + IL  Training 0.751 (0.704, 0.794) 0.715 0.279 0.933 0.617 0.770 

  Testing 0.750 (0.649, 0.834) 0.666 0.190 0.915 0.400 0.793 

  Independent 0.700 (0.594, 0.792) 0.672 0.130 0.896 0.300 0.750 

17 Gender + IL + TS Training 0.767 (0.720, 0.809) 0.710 0.279 0.955 0.707 0.774 

  Testing 0.750 (0.649, 0.834) 0.674 0.143 0.930 0.375 0.786 

  Independent 0.700 (0.594, 0.792) 0.699 0.130 0.896 0.300 0.750 

18 Gender + IL + MSEL Training 0.764 (0.718, 0.806) 0.723 0.231 0.970 0.750 0.765 

  Testing 0.761 (0.661, 0.844) 0.688 0.095 0.958 0.400 0.782 

  Independent 0.722 (0.618, 0.811) 0.703 0.130 0.925 0.375 0.756 

19 Gender + IL + TS + MSEL Training 0.764 (0.718, 0.806) 0.724 0.231 0.970 0.750 0.765 

  Testing 0.761 (0.661, 0.844) 0.698 0.095 0.958 0.400 0.782 

  Independent 0.722 (0.618, 0.811) 0.708 0.130 0.925 0.375 0.756 

20 Gender + TS + MSEL Training 0.721 (0.673, 0.766) 0.686 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.756 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.653 0.000 1.000 NaN 0.744 

21 Gender + MSEL Training 0.721 (0.673, 0.766) 0.549 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.525 0.000 1.000 NaN 0.772 

  Independent 0.733 (0.630, 0.821) 0.555 0.043 0.970 0.333 0.747 

22 Gender + TS Training 0.740 (0.692, 0.784) 0.665 0.115 0.981 0.706 0.742 

  Testing 0.761 (0.661, 0.844) 0.693 0.048 0.972 0.333 0.775 

  Independent 0.756 (0.654, 0.840) 0.630 0.087 0.985 0.667 0.759 

23 Gender + FA Training 0.743 (0.695, 0.786) 0.645 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.630 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.547 0.130 0.896 0.300 0.750 

24 Gender + FA + TS Training 0.743 (0.695, 0.786) 0.660 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.641 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.690 0.130 0.896 0.300 0.750 

25 Gender + FA + MSEL Training 0.743 (0.695, 0.786) 0.653 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.682 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.584 0.130 0.896 0.300 0.750 

26 Gender + FA + TS + MSEL Training 0.743 (0.695, 0.786) 0.695 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.765 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.635 0.130 0.896 0.300 0.750 

27 Gender + TRA Training 0.743 (0.695, 0.786) 0.637 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.642 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.498 0.130 0.896 0.300 0.750 
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28 Gender + TRA + TS Training 0.743 (0.695, 0.786) 0.673 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.686 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.715 0.130 0.896 0.300 0.750 

29 Gender + TRA + MSEL Training 0.743 (0.695, 0.786) 0.664 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.728 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.559 0.130 0.896 0.300 0.750 

30 Gender + TRA + TS + MSEL Training 0.743 (0.695, 0.786) 0.682 0.192 0.955 0.625 0.754 

  Testing 0.761 (0.661, 0.844) 0.685 0.143 0.944 0.429 0.788 

  Independent 0.700 (0.594, 0.792) 0.635 0.130 0.896 0.300 0.750 

          

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), TRA = Factor analysis AOSI items that survived Benjamini & Hochberg 1995 

corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training dataset (contains n=373 participants; 80% of old 

ASIB data), TS = AOSI Total Score 
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Table 3.12 | Performance of Support Vector Machines with Radial Basis Function Kernel 

Model # Variable Combination Dataset Accuracy 95% CI AUC Sens Spec PPV NPV 

 Predictor Variable Combinations         

1 IL Training 0.831 (0.789, 0.868) 0.887 0.423 0.989 0.936 0.816 

  Testing 0.783 (0.684, 0.862) 0.633 0.238 0.944 0.556 0.807 

  Independent 0.733 (0.630, 0.821) 0.632 0.130 0.940 0.429 0.759 

2 IL + TS Training 0.831 (0.789, 0.868) 0.887 0.413 0.993 0.956 0.814 

  Testing 0.772 (0.672, 0.853) 0.632 0.190 0.944 0.500 0.798 

  Independent 0.733 (0.630, 0.821) 0.616 0.130 0.940 0.429 0.759 

3 IL + MSEL Training 0.818 (0.775, 0.856) 0.887 0.375 0.989 0.929 0.804 

  Testing 0.750 (0.649, 0.834) 0.630 0.000 0.972 0.000 0.767 

  Independent 0.744 (0.642, 0.831) 0.660 0.174 0.940 0.500 0.768 

4 IL + TS + MSEL Training 0.818 (0.775, 0.856) 0.880 0.375 0.989 0.929 0.804 

  Testing 0.750 (0.649, 0.834) 0.632 0.048 0.958 0.250 0.773 

  Independent 0.744 (0.642, 0.831) 0.658 0.174 0.940 0.500 0.768 

5 TS + MSEL Training 0.745 (0.698, 0.789) 0.811 0.115 0.989 0.800 0.743 

  Testing 0.783 (0.684, 0.862) 0.608 0.095 0.986 0.667 0.787 

  Independent 0.744 (0.642, 0.831) 0.596 0.000 1.000 NaN 0.744 

6 MSEL Training 0.721 (0.673, 0.766) 0.825 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.693 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.564 0.000 1.000 NaN 0.744 

7 TS Training 0.737 (0.689, 0.781) 0.599 0.163 0.959 0.607 0.748 

  Testing 0.783 (0.684, 0.862) 0.542 0.143 0.972 0.600 0.793 

  Independent 0.722 (0.618, 0.811) 0.601 0.087 0.940 0.333 0.750 

8 FA Training 0.756 (0.709, 0.790) 0.655 0.154 0.989 0.842 0.751 

  Testing 0.761 (0.661, 0.844) 0.618 0.048 0.972 0.333 0.775 

  Independent 0.711 (0.606, 0.802) 0.537 0.087 0.925 0.286 0.747 

9 FA + TS Training 0.791 (0.746, 0.831) 0.730 0.250 1.000 1.000 0.775 

  Testing 0.761 (0.661, 0.844) 0.557 0.048 0.972 0.333 0.775 

  Independent 0.656 (0.548, 0.753) 0.559 0.000 0.881 0.000 0.720 

10 FA + MSEL Training 0.761 (0.715, 0.804) 0.862 0.144 1.000 1.000 0.751 

  Testing 0.772 (0.672, 0.853) 0.618 0.048 0.986 0.500 0.778 

  Independent 0.722 (0.618, 0.811) 0.551 0.000 0.970 0.000 0.739 

11 FA + TS + MSEL Training 0.756 (0.709, 0.799) 0.848 0.135 0.996 0.933 0.749 

  Testing 0.793 (0.696, 0.871) 0.596 0.143 0.986 0.750 0.795 

  Independent 0.711 (0.606, 0.802) 0.457 0.000 0.955 0.000 0.736 

12 TRA Training 0.745 (0.698, 0.789) 0.630 0.144 0.978 0.714 0.747 

  Testing 0.772 (0.672, 0.853) 0.660 0.143 0.958 0.500 0.791 

  Independent 0.722 (0.618, 0.811) 0.520 0.130 0.925 0.375 0.756 

13 TRA + TS Training 0.777 (0.732, 0.819) 0.675 0.231 0.989 0.889 0.769 

  Testing 0.783 (0.684, 0.862) 0.543 0.143 0.972 0.600 0.793 

  Independent 0.700 (0.594, 0.792) 0.556 0.130 0.896 0.300 0.750 
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14 TRA + MSEL Training 0.756 (0.709, 0.799) 0.815 0.163 0.985 0.810 0.753 

  Testing 0.772 (0.672, 0.853) 0.709 0.095 0.972 0.500 0.784 

  Independent 0.722 (0.618, 0.811) 0.507 0.087 0.940 0.333 0.750 

15 TRA + TS + MSEL Training 0.764 (0.718, 0.806) 0.806 0.192 0.985 0.833 0.759 

  Testing 0.783 (0.684, 0.862) 0.638 0.143 0.972 0.600 0.793 

  Independent 0.711 (0.606, 0.802) 0.491 0.087 0.925 0.286 0.747 

Predictor Variable Combinations + Gender          

16 Gender + IL  Training 0.831 (0.789, 0.868) 0.886 0.423 0.989 0.936 0.816 

  Testing 0.772 (0.672, 0.853) 0.655 0.190 0.944 0.500 0.798 

  Independent 0.722 (0.618, 0.811) 0.678 0.174 0.910 0.400 0.763 

17 Gender + IL + TS Training 0.831 (0.789, 0.868) 0.886 0.423 0.989 0.936 0.816 

  Testing 0.772 (0.672, 0.853) 0.651 0.190 0.944 0.500 0.798 

  Independent 0.733 (0.63, 0.821) 0.673 0.174 0.925 0.444 0.765 

18 Gender + IL + MSEL Training 0.818 (0.775, 0.856) 0.890 0.375 0.989 0.929 0.804 

  Testing 0.761 (0.661, 0.844) 0.655 0.095 0.958 0.400 0.782 

  Independent 0.733 (0.63, 0.821) 0.685 0.174 0.925 0.444 0.765 

19 Gender + IL + TS + MSEL Training 0.818 (0.775, 0.856) 0.881 0.375 0.989 0.929 0.804 

  Testing 0.761 (0.661, 0.844) 0.647 0.095 0.958 0.400 0.782 

  Independent 0.733 (0.63, 0.821) 0.687 0.174 0.925 0.444 0.765 

20 Gender + TS + MSEL Training 0.751 (0.704, 0.794) 0.801 0.154 0.981 0.762 0.750 

  Testing 0.772 (0.672, 0.853) 0.631 0.095 0.972 0.500 0.784 

  Independent 0.733 (0.63, 0.821) 0.594 0.043 0.970 0.333 0.747 

21 Gender + MSEL Training 0.721 (0.673, 0.766) 0.838 0.000 1.000 NaN 0.721 

  Testing 0.772 (0.672, 0.853) 0.737 0.000 1.000 NaN 0.772 

  Independent 0.744 (0.642, 0.831) 0.555 0.000 1.000 NaN 0.744 

22 Gender + TS Training 0.753 (0.706, 0.796) 0.641 0.221 0.959 0.676 0.761 

  Testing 0.793 (0.696, 0.871) 0.682 0.190 0.972 0.667 0.802 

  Independent 0.733 (0.63, 0.821) 0.447 0.130 0.940 0.429 0.759 

23 Gender + FA Training 0.753 (0.706, 0.796) 0.647 0.144 0.989 0.833 0.749 

  Testing 0.761 (0.661, 0.844) 0.633 0.048 0.972 0.333 0.775 

  Independent 0.711 (0.606, 0.802) 0.541 0.087 0.925 0.286 0.747 

24 Gender + FA + TS Training 0.820 (0.778, 0.858) 0.766 0.385 0.989 0.930 0.806 

  Testing 0.761 (0.661, 0.844) 0.650 0.095 0.958 0.400 0.782 

  Independent 0.700 (0.594, 0.792) 0.503 0.087 0.910 0.250 0.744 

25 Gender + FA + MSEL Training 0.756 (0.709, 0.799) 0.840 0.144 0.993 0.882 0.750 

  Testing 0.761 (0.661, 0.844) 0.651 0.048 0.972 0.333 0.775 

  Independent 0.700 (0.594, 0.792) 0.561 0.000 0.940 0.000 0.733 

26 Gender + FA + TS + MSEL Training 0.764 (0.718, 0.806) 0.830 0.163 0.996 0.944 0.755 

  Testing 0.783 (0.684, 0.862) 0.601 0.143 0.972 0.600 0.793 

  Independent 0.711 (0.606, 0.802) 0.534 0.043 0.940 0.200 0.741 

27 Gender + TRA Training 0.748 (0.701, 0.791) 0.597 0.144 0.981 0.750 0.748 

  Testing 0.772 (0.672, 0.853) 0.519 0.143 0.958 0.500 0.791 

  Independent 0.722 (0.618, 0.811) 0.619 0.130 0.925 0.375 0.756 
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28 Gender + TRA + TS Training 0.753 (0.706, 0.796) 0.688 0.135 0.993 0.875 0.748 

  Testing 0.783 (0.684, 0.862) 0.620 0.048 1.000 1.000 0.780 

  Independent 0.722 (0.618, 0.811) 0.508 0.043 0.955 0.250 0.744 

29 Gender + TRA + MSEL Training 0.751 (0.704, 0.794) 0.824 0.135 0.989 0.824 0.747 

  Testing 0.783 (0.684, 0.862) 0.668 0.143 0.972 0.600 0.793 

  Independent 0.722 (0.618, 0.811) 0.481 0.087 0.940 0.333 0.750 

30 Gender + TRA + TS + MSEL Training 0.759 (0.712, 0.801) 0.826 0.173 0.985 0.818 0.755 

  Testing 0.783 (0.684, 0.862) 0.617 0.143 0.972 0.600 0.793 

  Independent 0.711 (0.606, 0.802) 0.497 0.087 0.925 0.286 0.747 

          

AUC = Area Under the Curve, FA = AOSI items identified by factor analysis (6, 8, 14, 16, 18), IL = AOSI items 1-18, Independent = new ASIB independent 

validation dataset (contains n=90 participants), MSEL = Mullen Scales of Early Learning subscales (Early Learning Composite, Visual Reception, Fine Motor, 

Receptive Language, Expressive Language), NPV = Negative Predictive Value, PPV = Positive Predictive Value, Sens = Sensitivity, Spec = Specificity,  Testing 

= old ASIB testing dataset (contains n=92 participants; 20% of old ASIB data), TRA = Factor analysis AOSI items that survived Benjamini & Hochberg 1995 

corrected multiple comparisons when compared using IL-ASD and IL-N groups, Training = old ASIB training dataset (contains n=373 participants; 80% of old 

ASIB data), TS = AOSI Total Score 
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Discussion 

This study focused on the generation and assessment of supervised logistic regression and 

support vector machine classifiers built using 12-month IL-sibling data and their ability at 

correctly predicting 36-month ASD diagnosis. Supervised learning classifiers were successfully 

generated using different combinations of 12-month AOSI and MSEL data, with their 

performance assessed across training, testing, and independent validation IL-sibling datasets. 

Overall, this study has three main findings: (1) AUC for all models ranged from low (0.500-

0.700) to moderate (0.700-0.766), with several models (using combinations of AOSI and MSEL 

predictor variables) exceeding the benchmark performance of the 12-month AOSI Total Score 

with a cut off of 7 (AUC = 0.665) alone, (2) all classifiers (barring regression models optimized 

for maximal combined sensitivity and specificity) were characterized by low sensitivity and 

extremely high specificity, and (3) classifier performance across testing and independent 

validation sets was largely comparable for all models.  

 

Though modest, the best-performing classifiers had an increase in AUC of between 0.070 and 

0.100 when built using combinations of AOSI item-level, Total Score, and MSEL standard score 

data relative to the benchmark 12-month AOSI Total Score cut point of 7. While no single 

classifier had standout performance, the consistently moderate predictive performance of models 

built using 12-month data at predicting ASD diagnosis at 36-months – especially in relation to 

the predictive ability of the 12-month AOSI Total Score alone – suggests that additional 

refinement or selection of variables used during predictive modelling may, in future, yield 

promising results. Further investigation into what features on the AOSI, MSEL, and other 

developmental or ASD-specific measures during early childhood development are the most 

important at predicting later ASD diagnostic status needs to be elucidated. Such work has the 

potential to not just contribute to our understanding and characterization of the emergence of 

ASD during early childhood, but also to build or refine better early ASD screening or detection 

tools for children at or around their first year of life.  

 

Though most classifiers were characterized by low accuracy (AUC = 0.500-0.700; Akobeng 

2007), the best performing classifiers were characterized by moderate accuracy with AUC 

between 0.700 and 0.800 on the testing set. The classifier with the highest performance in the 

https://doi.org/10.1111/j.1651-2227.2006.00178.x
https://doi.org/10.1111/j.1651-2227.2006.00178.x
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testing dataset using logistic regression, regularized logistic regression, and SVMs with linear, 

polynomial, and radial kernels were models L26, R20, Lin2/26, Poly26, and Rad21. These 

classifiers had testing set AUCs between 0.730 (Lin2/26) and 0.765 (Poly26). Although the 

debate continues as to whether the 4:1 male to female ASD sex ratio accurately represents the 

real distribution of ASD in males and females or is instead potentially reflective of aspects like 

social camouflaging in females (Dean et al., 2016, Tubío-Fungueiriño et al., 2021) under-

detection due to clinician bias (Zwaigenbaum et al., 2012), or represent genuine differences in 

clinical presentation (Sacrey et al., 2017). Whichever the reason, in this study inclusion of 

biological sex as a predictor variable across statistical classifier types resulted a modest increase 

in classifier AUC when applied across training, testing, and independent validation datasets for 

all learning algorithms that were tested.  

 

All models in this study (barring optimized regression models) were characterized by poor 

sensitivity and extremely high specificity. Although the best clinical or diagnostic tests are both 

highly sensitive and specific, in practice this is not always feasible (Akobeng 2007). Trade-offs 

exist between valuing high sensitivity over specificity (or vice versa; Trevethan 2017). Tests 

with high sensitivity are useful in ‘ruling out’ participants if they test negative, while high 

specificity is useful for ‘ruling in’ participants if they test positive (Akobeng 2007). Although 

none of the algorithms reported are both highly sensitive and specific, they still have potential 

utility. In the case of ASD diagnostics, a test that is only highly specific (i.e., correctly identifies 

individuals who do not have ASD) still can provide valuable information to families who already 

have a child diagnosed with ASD. From a caregiving perspective, neurodevelopmental disorders 

like ASD can exert tremendous social, economic, and health burdens on families – though many 

caregivers simply look at it as trying to give the best possible quality of life to their loved one 

(Dudley & Emery, 2014). An ASD diagnosis carries with it a lifetime of direct and indirect costs 

related to medical and healthcare expenses, therapeutics, (special) education, productivity loss 

for family or caregivers, accommodations, respite care, and out-of-pocket expenses (Rogge & 

Janssen, 2019). Based on cost estimate studies of expenditures or productivity loss, it is 

estimated that the lifetime cost of an ASD diagnosis was approximately US $3.6 million dollars 

in 2019 (Cakir et al., 2020). For families having their first child (or for infant sibling families 

who already have a child diagnosed with ASD), reassurance in the form of a negative result on a 

https://doi.org/10.1177/1362361316671845
https://doi.org/10.1007/s10803-020-04695-x
https://doi.org/10.1007/s10803-012-1515-y
https://doi.org/10.1007/s10803-017-3062-z
https://doi.org/10.1111/j.1651-2227.2006.00180.x
https://doi.org/10.3389/fpubh.2017.00307
https://doi.org/10.1111/j.1651-2227.2006.00180.x
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2379633
https://doi.org/10.1007/s10803-019-04014-z
https://doi.org/10.1007/s10803-019-04014-z
https://doi.org/10.1016/j.rasd.2019.101502
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highly specific screening tool that their child likely does not have ASD based on the available 

information may be profoundly reassuring. As such, tests characterized by poor sensitivity and 

high specificity still may have the potential to provide meaningful information to families – 

though perhaps not in a clinical or diagnostic capacity.  

 

Across all classifiers generated in this study, model performance in the testing set was, by-and-

large, corroborated in the independent validation set. However, classifier performance on the 

independent validation data was somewhat reduced for several models relative to the testing 

dataset across all algorithms tested. This result may stem from differences in ASD diagnostic 

determination between IL-sibling participants in the testing and independent validation datasets. 

In this study, the training and testing sets were generated from CISS-1 IL-sibling participants 

that were assessed for ASD at 36-months using DSM-IV-TR criteria. In contrast, while using a 

nearly identical study protocol, CISS-2 assesses participants for ASD at 36-months using DSM-5 

criteria (Sacrey et al., 2021). Since its release, several studies have since been published 

indicating that the DSM-5 is less sensitive to individuals who previously meet criteria on the 

DSM-IV or DSM-IV-TR – especially individuals with pervasive developmental disorder not 

otherwise specified (PDD-NOS) or Asperger’s syndrome (Bennett & Goodall 2016, Yaylaci & 

Miral, 2016, Mazurek et al., 2017). It is entirely plausible the change in DSM diagnostic criteria 

for ASD between CISS-1 and CISS-2 participants (and the corresponding change in sensitivity 

of the DSM-5 to individuals previously classified as PDD-NOS and Asperger’s syndrome – 

though Asperger’s is rarely diagnosed at 3 years old) may account in part for the reduction in 

classifier performance from the testing to independent validation sets. 

 

The best performing supervised learning classifiers generated in this study all had higher 

performance than the predictive AUC benchmark and corresponding 99% CI set by the 12-

month AOSI Total Score using a cut point of 7 alone. Interestingly, the highest performing 

classifiers in this study (Model L26, R20, Lin2/Lin26 [tied AUC], Poly26, Rad21) all 

incorporated additional predictor variables in addition to (or in lieu of; see Rad21) the AOSI 

Total Score during model generation. In addition, outside of linear SVM model Lin2 that was 

generated using item-level and AOSI Total Score predictor variables, the best performing models 

were generated using biological sex, MSEL standard score data, and/or factor-analysis-identified 

https://doi.org/10.1186/s13229-021-00468-0
https://doi.org/10.1007/s40489-016-0070-4
https://doi.org/10.1007/s10803-016-2937-8
https://doi.org/10.1007/s10803-016-2937-8
https://doi.org/10.1007/s10803-017-3200-7
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AOSI items. These results suggest that when aiming to develop early predictive models or 

screening tools for ASD in individuals at or around 12-months old, the AOSI Total Score alone 

is likely not sufficient in fully capturing all features and dimensions that are characteristic of 

early ASD emergence. This is further corroborated by performance of logistic regression models 

that underwent variable importance analysis – for all six of the logistic regression models 

assessed (L10, L11, L14, L25, L26, L30) removal of AOSI and MSEL variables from the model 

resulted in increased model performance (measured by increasing AUC and decreasing AIC). 

Whether this tendency for removing AOSI and/or MSEL variables from consideration holds true 

for SVM modelling is unclear. As such, future research in early detection would likely benefit 

from not just investigating variable or feature importance on the AOSI, MSEL at 12-months, but 

other ASD or developmental tool while simultaneously assessing the impact dimensionality 

reduction techniques like principal component analysis have on supervised classifiers 

performance.  

 

Since most classification algorithms exhibit degraded performance when built using irrelevant or 

redundant features (Morán-Fernández et al., 2022), assessing variable or feature importance as a 

means of reducing data dimensionality (via techniques like feature extraction or selection) can be 

critical to development of high performance early ASD predictive classifiers. In this study, this 

was especially prominent during variable importance assessment of logistic regression predictor 

variables. It is, however, important to note that these results are all drawn from IL-sibling 

participants; no LL control participants were included in this study. Future studies should 

consider whether the importance of features under consideration are truly specific to IL group 

status (and/or to later ASD diagnostic status) or are instead aspects of early neurotypical 

childhood development that is being erroneously associated with ASD status when predictive 

modelling is conducted only in IL samples. Inclusion of additional variables in predictive 

modelling that measure different constructs of early ASD emergence (or refinement of existing 

AOSI and MSEL predictor variables) are necessary for future early ASD screening or detection 

efforts. For instance, 12-month-old infants later diagnosed with ASD are more likely to exhibit 

more symptoms (e.g. abnormal social communication, unusual eye contact, failure to orient to 

names, lack of gestures, language delays, visual abnormalities, etc.) relative to infants who do 

not meet diagnostic criteria (Gieserman & Carter, 2017). Further exploration of these differences 

https://doi.org/10.1016/j.neucom.2021.05.107
https://doi.org/10.1007/s10803-017-3044-1
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(between IL-ASD and IL-N, as well as between IL and LL populations) and which are the most 

predictive is necessary. It should be noted that context is likewise important; the results 

presented here are all anchored in a Canadian IL-sibling context. Given that previous research 

have shown that differences in IL ASD populations such as infants with Fragile X Syndrome 

have significantly higher atypical motor impairments relative to infant siblings on the AOSI 

(Roberts et al., 2016), future efforts in develop ASD screening tools may need to consider IL 

context and the differences in early symptom profiles that may exist between them. However, 

care should also be taken to ensure that the data being used to generate and refine predictive 

machine learning models does not inadvertently run the risk of exacerbating existing disparities 

in the care or diagnosis of ASD between rural and urban regions (Haritos 2017). By considering 

data in predictive modeling which requires in-person assessment by trained staff or personnel to 

obtain (such as the AOSI, MSEL, VABS, ADOS etc.) risks potentially disenfranchising people 

to whom accessible predictive ASD screening models may be best poised to support. The 

inability to obtain the data required by predictive models to function (by virtue of a lack of 

trained personnel or the inability to go to urban centers where such assessments are more likely 

to take place) is something that must be considered when choosing what variables or features 

predictive models are going to be built on. Consideration of widely available parent-report or 

questionnaire data should therefore be explored for use as alternate or replacement features in 

future machine learning studies. 

 

Though more work needs to be done to generate high performance predictive classifiers for 

infants <18 months old, the potential impact of such technology is tremendous. There is a broad 

consensus that early interventions for ASD are associated with improved functional outcomes 

(Gardner et al., 2013, (Bonnis et al., 2016, Landa 2017, McDonald et al., 2018, Noyes-Gosser, 

2018, Fuller and Kaiser, 2019). If high performance predictive classifiers can be developed that 

reliably screen for ASD status or risk of later diagnosis, more resources could be directed to 

developmental surveillance of screen-positive individuals. This has potentially compounding 

benefits; increased access to early developmental monitoring and, in the case of early ASD 

diagnosis, early intervention resources would benefit not just individuals with ASD, but their 

families as well. It is important to note that while a diagnosis of ASD can open doors to early 

intervention and support services, access to broader supports to ASD individuals and their 

https://doi.org/10.1007/s10803-016-2903-5
https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu149250986729511
https://www.sciencedirect.com/science/article/pii/S1750946713000159
https://www.tandfonline.com/doi/abs/10.3109/01612840.2015.1116030
https://doi.org/10.1080/09540261.2018.1432574
https://onlinelibrary.wiley.com/doi/abs/10.1002/hsr2.82
https://doi.org/10.1097/IYC.0000000000000121
https://doi.org/10.1097/IYC.0000000000000121
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families in Canada vary province-to-province with access to supports or funding often restricted 

based on intelligence quotient eligibility or intellectual disability (Dudley et al., 2014). The 

importance of supports is also reflected in current DSM diagnostic criteria. The DSM-5 assigns 

severity levels for ASD predicated on the anticipated level of supports needed based upon the 

symptom domains of social communication and restricted and repetitive behaviour (APA, 2013, 

Mehling et al., 2016, Eman et al., 2020). Severity levels range from Level 1 (individuals require 

some support) to Level 3 (individuals require substantial support; APA, 2013, Eman et al., 

2020). This focus on supports is especially salient given the considerable social and economic 

burden of ASD (Dudley et al., 2014, Lavelle et al., 2014, Cakir et al., 2020). In Canada, there is 

currently unequal or incomplete access to supports for individuals with ASD and/or their 

families/caregivers; all suffer from varying levels of inadequacy (Dudley et al., 2014). In 

addition, there is an unsustainable overreliance on family or caregivers to provide supports as 

community services are fragmented or unavailable (Dudley et al., 2014). With such a tremendous 

social and economic burden associated with caregiving for individuals on the spectrum (Dudley 

et al., 2014), change is imperative. 

 

Given that the annual costs that families spend to support individuals with ASD are enormous 

(often well beyond what the annual income for families), provision of supportive care 

necessitates access to external resources and supports (Dudley et al., 2014). Enhanced early ASD 

screening and detection, while not the answer to all the issues faced by individuals and families 

with ASD, can certainly help. Though multiple studies have shown early intervention efforts are 

efficacious, research is just starting to explore the relationship between the age of intervention 

and developmental outcomes for children with ASD (Towle et al., 2020). Even if ‘the earlier, the 

better’ is not as clear cut as currently viewed with respect to early ASD intervention modalities, 

from a family or caregiver perspective the earlier an individual can be identified with ASD, the 

earlier their family or caregivers can learn where to go and what to do when navigating the 

healthcare and human services systems to access services that can best support their child (Towle 

et al., 2020). This is an important consideration as families or caregivers of children with ASD 

often experience challenges when navigating multiple systems in search of or access to support 

services (Crossman et al., 2020). Just as early identification and interventions are important for 

individuals with ASD, supporting parent or caregiver education is also vital.   
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Though many studies have started investigating the utility of developing predictive classifiers 

using various types of machine learning algorithms, the ethical considerations of this technology 

are rarely discussed – in recent systematic and non-systematic reviews of machine learning in 

ASD research, ethics or ethical implications of the technology were never discussed (Pagnozzi et 

al., 2018, Hyde et al., 2019, Moon et al., 2019, Kollias et al., 2021, Siddiqui et al., 2021). There 

is an increasing trend of leveraging machine learning for use in high-stakes predictive 

applications in healthcare and the criminal justice system, as well as the tendency for many of 

these algorithms to be “black boxes” (i.e., models that are too complicated for humans to fully 

comprehend, or are proprietary and not transparent; Rudin 2019). Part of the problem with black 

box models is that if they are flawed, there is no way of investigating or detecting it (due to the 

lack of transparency); it becomes difficult or impossible to troubleshoot or correct (Rudin 2019). 

In healthcare, there is a tendency towards blind acceptance of black box models (Rudin 2019). 

While this can open the door for companies to develop and sell models for use in clinical 

applications, adopting automated systems require trust on the database they were built, 

processed, and refined on (Rudin 2019). In computer sciences, a common saying is ‘garbage in, 

garbage out.’ It is well known that in the field of machine learning, biased training data can lead 

to biased models which can have unintended or deleterious consequences and outcomes that 

threaten model validity (Sanders & Axe, 2017, DeBrusk, 2018, Aleyani, 2021, Geiger et al., 

2021). Biases in training data (especially with respect to human-labelled data) can reflect 

historical cognitive biases in thinking and behaviour that manifest in collected data (Aleyani, 

2021). For example, consider a machine learning algorithm designed to assess how hireable a 

new applicant is for a job in the financial sector that has been trained on a company’s historical 

hiring history. If the algorithm disproportionately suggests hiring men over women (educational 

experience, past credentials, and everything else all being equal) it could be a manifestation of 

the historical gender bias against women in financial positions (Esser & Swalve, 2022); these 

factors are reflected as biased training data from the company upon which the algorithm was 

trained. This issue can further be exacerbated if the learning algorithm in question was a black 

box and lacked transparency. There is a fundamental conflict of responsibility when using black 

box models in high stakes decision making; companies can profit from developing and selling 

these models (especially to hospitals in a healthcare setting) while simultaneously not being 
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responsible for the quality and consequences of the individual predictions being made (Rudin 

2019). This issue becomes very important in healthcare settings where the consequences of ill-

performing or biased predictive algorithms can be especially deleterious on patients and their 

families/caregivers.  

 

Though early screening technology for ASD is not yet performing at a level acceptable for 

clinical or healthcare implementation, use of artificial intelligence or machine learning-based 

tools should be relegated to only that: screening or early detection. Such technology should never 

be used in place of in-person diagnostic assessments. If machine learning-based technology 

expands in scope in clinical or healthcare settings, careful consideration is merited regarding the 

end goal of implementing the technology. In the advent of high-performance early screening 

tools, steps should be taken to ensure that access to supports, resources, or follow-up assessments 

is not solely contingent on screening results. If a decision is made by an algorithm that is not 

transparent or uninterpretable (i.e., a black box) and an individual does not screen positive, they 

or their families may have no idea by what metric the decision was based. Given the propensity 

for cognitive biases in thinking and behaviour to manifest in data we use to train machine 

learning algorithms (Aleyani, 2021), such a scenario is rife with potential to inadvertently 

exacerbate and/or perpetuate inequities in society. This is unacceptable at the best of times; it is 

doubly so given the population, individuals with ASD and their families or caregivers who are a 

traditionally marginalized population that often experience discrimination in various areas of life 

(Como et al., 2019, Saldago, 2020, Niles & Monaco, 2019, Cascio et al. 2020, Botha et al., 

2022). Given the significant burden on caregivers (Cadman et al., 2012, Dudley et al., 2014, 

Lavelle et al., 2014, Marsack-Topolewski & Church, 2019, Ortiz-Rubio et al., 2021), when 

access to follow up or resources are contingent upon an algorithmic decision, people have the 

right to know the metrics upon which they are being evaluated. If access to supports or resources 

is contingent upon an algorithmic decision, transparency is critical as failure to access them can 

have a negative impact on the quality of life for individuals with ASD and/or their families and 

caregivers.  

 

The vehicle to promote transparency may be an ethical guideline or framework for artificial 

intelligence and machine learning. Multiple organizations and institutions have developed  
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guidelines or frameworks including (but not limited to) Asilomar AI Principles (Future of Life 

Institute, 2017), The Montreal Declaration (Dilhac 2018), IEEE’s Ethically Aligned Design 

(IEEE.org, 2017), Recommendations of the Council on Artificial Intelligence (Yeung, 2019). 

However, no single unified standard has been codified and widely adopted. In a field where a 

governing ethical framework is still being established and formalized, moving forwards without 

due consideration to the implications of artificial intelligence or machine learning technology is 

rife with the potential to potentially perpetuate or exacerbate pre-existing inequalities in society. 

 

There are several perceived strengths of this study. First, all classifiers were built, trained, and 

assessed on the same training, testing, and independent validation datasets. Accordingly, 

variance in model performance results stem from the different machine learning techniques 

employed and not the data source. Second, findings are similar to Bussu et al., 2018 who 

investigated the utility of using AOSI data to generate predictive ASD classifiers. Bussu et al., 

2018  generated classifiers for participants and their best-performing models at 8- and 14-months 

old had AUC of 0.69 and 0.71 respectively. The best performing results in this study, while 

slightly higher in performance and generated at 12-months, are similar in magnitude; AUC for 

the best performing models range between 0.73 and 0.76. Third, this study’s comprehensive 

report of model performance across all datasets (training, testing, independent validation 

datasets) is a strong mechanism where model overfitting can be identified and addressed. In this 

study, the majority of SVMs generated using radial kernels had much stronger performance (as 

measured by AUC) on the training set data relative to the testing or independent validation 

datasets pointing towards issues with overfitting. Though the root causes of model overfitting 

(i.e., poor model generalization to new, unseen data) are often complicated (Ying 2019), if model 

performance in training data was not reported, overfitting in radial SVM classifiers in this study 

might have been missed. Finally, this study greatly benefitted from model performance being 

assessed in two datasets: a testing dataset sourced from CISS-1, and a new, independent 

validation dataset sourced from CISS-2 – both of which had nearly identical number of 

participants (n=92 and n=90 respectively). This access to new IL-sibling participant data 

collected using a nearly identical study protocol (barring different 36-month ASD outcome 

criteria) allows for strong assessment of model generalizability in new IL-sibling contexts.  
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This study also has some notable limitations. First, both CISS-1 and CISS-2 participants 

predominantly are Caucasian with middle-to-upper class SES. These data are not representative 

of the IL-sibling community at large. Historically there has been an underrepresentation of 

minorities and overrepresentation of Caucasian participants in health research (Redwood & Gill, 

2013) and especially in ASD research (West et al., 2016, Robertson et al., 2017). In the future, 

researchers should strive towards having socially, economically, and ethnically diverse 

participant pools to increase generalizability and applicability of research findings. 

Generalization of this study’s findings to external contexts should be done with caution. Second, 

while study results are similar to Bussu et al., 2018, results are not directly comparable. The 

classifiers used by Bussu et al., 2018 were generated via k-fold cross-validation ten times using 

least squares SVM from the toolbox LS-LSVMlab in MATLAB 9.1. Though not mentioned 

directly what kernel functions (linear, polynomial, radial) were employed, contact with the paper 

authors confirmed use of radial basis function kernel (G. Bussu, personal communication, 

November 3rd, 2022). In this study, least squares SVM were not generated. Not only was a 

different coding platform used to generate the models (MATLAB vs R), but limitations in the R 

package caret used to generate the models in this study precluded them from being assessed. 

Though least squares SVMs can be generated in R using the caret and kernlab packages, class 

probabilities (i.e., the probability that predictions made for each participant belong to one class 

[IL-ASD] or the other [IL-N]) are not implemented for them and thusly rendering ROC and 

AUC assessment moot. Third, overfitting (indicated by disproportionate performance in the 

training set vs testing and independent validation sets) appeared to be an issue for several of the 

predictive classifiers that were generated – especially for radial SVMs with and without 

biological sex as a predictor. Further work in the future should be conducted in refining model 

parameters to correct for this issue. Fourth, ASD diagnostic determination was not the same for 

all participants; CISS-1 (used to generate training and testing datasets) employed DSM-IV-TR 

criteria during 36-month ASD diagnostic assessments while CISS-2 uses DSM-5 criteria. This 

difference in ASD classification may be the main driver behind some of the disparate classifier 

performance results in testing vs independent validation data. Finally, the data presented in this 

paper is from IL-siblings. While IL-siblings are a great population to study as a means of 

investigating early emergence and manifestation of ASD due to the increased prevalence rate in 

these populations (upwards of 20%; Ozonoff et al., 2011, Szatmari et al., 2016), results drawn 
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from these populations are not wholly representative of ASD in general. Other IL populations 

such as infants with FXS are at IL of being diagnosed with ASD can present differently on early 

ASD screening tools such as the AOSI. For instance, infants with FXS who are diagnosed with 

ASD are characterized by significantly higher motor impairments relative to infant siblings 

diagnosed with ASD on the AOSI (Roberts et al., 2016). 

 

Conclusion 

In this study, predictive classifiers using various supervised learning algorithms were 

successfully generated in R using 12-month AOSI and MSEL data. Though the best performing 

models were characterized by moderate AUC values, poor sensitivity, and extremely high 

specificity, they all had enhanced predictive performance relative to use of the 12-month AOSI 

Total Score alone. Overall, the best performing models in this study had performance below the 

recommended levels for screening (Zwaigenbaum et al., 2015). Further exploration into feature 

extraction or refinement of 12-month clinical data characteristic of ASD emergence in infant 

siblings 12-months old is necessary. Though there is an increasing trend towards use of machine 

learning in predictive healthcare applications (Rudin 2019), early machine learning-based ASD 

detection algorithms in IL-sibling populations are not yet performing at a level acceptable level 

for clinical or healthcare implementation. Moreover, there is unfortunately a severe dearth in 

ASD machine learning literature pertaining to the impact of machine learning in clinical or 

healthcare settings. In future, as early screening technology progresses, considerations about the 

implications and use of this technology need to be addressed to prevent exacerbation or 

perpetuation of inequalities in a population that has traditionally been marginalized or the object 

of discrimination (Como et al., 2019, Saldago, 2020, Niles & Monaco, 2019, Cascio et al. 2020, 

Botha et al., 2022).  
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Appendix 1: Supplemental Content to Study One 

 

Systematic Review Database Searches as Run 

 

CINAHL Plus / ERIC Search via OVID – July 2022 

Search as run: ("autism observation scale for infants" OR "AOSI") AND ("autism" OR "autism 

spectrum disorders" OR "autistic disorder")  

Databases being searched: CINAHL Plus with Full Text, ERIC 

 ("autism" OR "autism spectrum disorders" OR 

“autistic") 

TX All Text 

AND ("autism observation scale for infants" OR "AOSI") TX All Text 

Limit: From January 2005 – July 2022 

Results:  

83 results found July 4th, 2022 (75 for CINAHL, 8 for ERIC). Search limited to publications 

between January 2005 and July 2022.  

 

JSTOR Search – July 2022 

Search as run: 

1st Keyword  “autism” All fields 

2nd Keyword OR “autism spectrum disorders” All fields 

3rd Keyword OR “autistic disorder” All fields 

4th Keyword AND “autism observation scale for infants” All fields 

5th Keyword OR “AOSI” All fields 

Access type: All content 

Item type: n/a 

Language: All languages  

Publication date: From 2005/01/01 to 2022/07/04 

Journal or book title: n/a 

ISBN: n/a 

Journal filter: n/a  

Date From: 2005-01-01 To: 2022-07-04 

Results: 

74 results found July 4th, 2022. Search limited to publications between January 2005 and July 

2022.  

 

PubMed Search – July 2022 

Search as run: 

((autism) OR (autism spectrum disorders) OR (autistic disorder)) AND ((autism observation 

scale for infants) OR (AOSI)) 

Filter: From 2005/1/1 to 2022/7/4 

Results:  

214 results found July 4th, 2022. Search limited to publications between January 2005 and July 

2022.  
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Web of Science – July 2022 

Search as run:  

 Topic ("autism" OR "autism spectrum disorder" OR 

"autistic disorder") 

All fields 

AND TOPIC ("Autism Observation Scale for Infants" OR 

"AOSI") 

All fields 

Index date From: 2005-01-01 To: 2022-07-04 

Results 

38 results found July 4th, 2022. Search limited to publications between January 2005 and July 

2022.  

 

EMBASE/OVID – July 2022  

Search as run:  

# Searches Results 

1 Exp autism/ 84582  

2 “autism spectrum disorder”.mp 29729 

3 “autistic disorder” 2618 

4 1 or 2 or 3 87479 

5 “autism observation scale for infants”.mp 36 

6 “AOSI”.mp 60 

7 5 or 6 75 

8 4 and 7 44 

9 Limit 8 to yr=”2005 -Current” 44 

Results:  

44 results found July 4th, 2022. Search limited to publications between January 2005 and July 

2022.  
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Table A1.01 | Systematic Review PRISMA 2009 Checklist  

Section/topic  # Checklist item  Reported on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  Pg. 5, 7 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 

participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of 

key findings; systematic review registration number.  

Pg. ii 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  Pg. 6-7 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 

outcomes, and study design (PICOS).  
Pg. 7 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration 

information including registration number.  
Pg. 8 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, 

publication status) used as criteria for eligibility, giving rationale.  
Pg. 8 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional 

studies) in the search and date last searched.  
Pg. 7-8 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.  Appendix 1 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included 

in the meta-analysis).  
Pg. 8, 11 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for 

obtaining and confirming data from investigators.  
Pg. 10 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 

simplifications made.  
Pg. 10 

Risk of bias in individual studies  12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at 

the study or outcome level), and how this information is to be used in any data synthesis.  
Pg. 9-10 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  Pg. 10-11 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) 

for each meta-analysis.  
Pg. 11 

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting 

within studies).  

Pg. 11 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which 

were pre-specified.  
Pg. 10-11 
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Section/topic  # Checklist item  Reported on page #  

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each 

stage, ideally with a flow diagram.  
Pg. 7, Figure 2.01 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide 

the citations.  
Pg. 12-13, 16, Table 
2.01, 2.02 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  Pg. 31, Table 2.04 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention 

group (b) effect estimates and confidence intervals, ideally with a forest plot.  
Pg. 15-19, Table 3  

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  Pg. 26-31, Figure 2.03, 
2.04, Pg., 126-128, 
Appendix 1 Figure 
A1.01, Figure A1.02 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  Pg. 31, Table 2.04 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  Pg. 31, Appendix 1, 
Figure A1.01, Figure 
A1.02 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key 

groups (e.g., healthcare providers, users, and policy makers).  
Pg. 35-40 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified 

research, reporting bias).  
Pg. 40 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  Pg. 40-41 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data), role of funders for the 

systematic review.  
Pg. vi 

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 
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Confirmation of ASD in Proband of Infant Siblings 

IL Infant sibling status varied across the 13 studies that had IL infant sibling study participants: 

Zwaigenbaum et al., 2005, Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021, and Sacrey et 

al., 2018 required confirmation of the older sibling’s ASD diagnosis via clinical assessment or 

review of diagnostic records using DSM criteria, Estes et al., 2015 required older siblings to 

meet criteria on the Social Communication Questionnaire (SCQ) and ADI-R, Gammer et al., 

2015, Gilga et al., 2015, Bedford et al., 2017, and Bedford et al., 2019 confirmed the community 

clinical diagnosis of ASD using the Development and Well Being Assessment (DAWBA) and 

SCQ, and Hahn et al., 2017 via documentation of an ASD diagnosis (though what this entails 

was not specified). Though Bussu et al., 2018, Roberts et al., 2016, and Bedford et al., 2016 

included IL infant siblings participants, they did not specify how the older sibling’s diagnosis of 

ASD was confirmed by study authors.  

 

Systematic Review Inclusion criteria  

Explicit inclusion criteria for participants were detailed for all seventeen studies but varied 

according to the goals and objectives of each study. For instance, of the 13 studies that included 

infant sibling participants, designation as an infant sibling was the most stringent for 

Zwaigenbaum et al., 2005, Zwaigenbaum et al., 2020, Zwaigenbaum et al., 2021, and Sacrey et 

al., 2018 due to their required confirmation of the older sibling's ASD diagnosis through either 

clinical assessment or review of diagnostic records using DSM-IV-TR criteria. All other studies 

with infant sibling participants either required the older sibling to meet criteria for ASD on some 

ASD measure (SCQ, ADI-R, DAWBA) or made no mention of how the older sibling received an 

ASD diagnosis. For the two studies with FXS infants (Hahn et al., 2017, Roberts et al., 2016), 

infant status with FXS required confirmed by genetic report. For the three studies with TSC 

infants, infant TSC status was based on clinical presentation or genetic workups (McDonald et 

al., 2017), meeting clinical or genetic criteria for TSC (Capal et al., 2017), or via being recruited 

from TSC specialty clinics, newborn nurseries, pediatrician offices, or met genetic criteria for 

TSC diagnosis (Jeste et al., 2014). For the one study of infants with DS, while no confirmatory 

testing was done by study authors, infants were recruited from three other pilot studies 

examining the infant neurogenetic syndromes who themselves recruited participants based on 

flyers with local parent groups, DS clinics, and ongoing research studies in the United States 
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(Hahn et al., 2020). Overall, none of the studies that recruited infants with FXS, TSC, or DS 

described how infant IL status was confirmed relative to any DSM or ICD criterion.  

 

Inclusion criteria for LL controls varied considerably across the 15 studies which employed 

them. LL inclusion criteria ranged from explicitly detailed and descriptive to increasingly sparse 

and lacking detail. Gilga et al., 2015 had the most robust inclusion criteria for LL controls; they 

required (A) control infants to have an older sibling who was born full-term with a normal birth 

weight, and (B) control infants to lack ASD diagnoses in any first-degree family members 

confirmed by either parent interview or family medical history. Similarly, Estes et al., 2015 

required LL control infants to (A) have an older sibling who did not meet criteria SCQ or Family 

Interview for Genetic Studies (FIGS) criteria for ASD, and (B) a lack of first-degree relatives 

with ASD or intellectual disability. Roberts et al., 2016 was less descriptive and simply required 

an absence of suspected delays and no familial history or indicator of ASD in LL controls. 

Gammer et al., 2015 required LL controls to (A) not have first degree relatives with ASD, and 

(B) have an older sibling (full or half) that did not meet criteria for ASD on the SCQ (aka did not 

meet the cut-off of ≥ 15 on the SCQ). Bedford et al., 2017 and Bedford et al., 2019 both had 

similar inclusion criteria, but only required LL controls to have an older sibling that did not meet 

criteria for ASD on the SCQ (did not score ≥ 15). Zwaigenbaum et al., 2005, Zwaigenbaum et 

al., 2020, and Zwaigenbaum et al., 2021 all required LL controls to lack a first- or second-degree 

relative with an ASD diagnosis. Bussu et al., 2018 had the least restrictive LL control inclusion 

criteria and only required control infants to have an older full sibling with typical development. 

While Jeste et al., 2014 and Hahn et al., 2020 both recruited LL control infants from either IRB-

approved infant databases or from other studies respectively. Three studies (McDonald et al., 

2017, Hahn et al., 2017, Bedford et al., 2016) did not specify how LL controls were recruited or 

the criterion used to do so. Only two studies (Capal et al., 2017, Sacrey et al., 2018) did not 

employ LL control groups .  

 

Systematic Review Exclusion criteria 

Explicit exclusion criteria for IL participants were detailed for only 11 studies and varied 

according to their respective goals and objectives. Estes et al., 2015 excluded participants if they 

had genetic conditions or syndromes, sensory impairments (e.g., vision or hearing loss), had a 
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birth weight <2,000g, gestational age of <36 weeks at birth, or suffered significant perinatal 

adversity and/or were exposed in utero to neurotoxins, had any MRI contraindications, had a 

predominant household language that was not English, were adopted or half-siblings, had a first 

degree relative with psychosis, schizophrenia, or bipolar disorder, or were twins. Likewise, 

Capal et al., 2017 excluded IL infants if they were born preterm (<36 weeks), suffered significant 

perinatal complications, were administered investigational drugs as part of other research studies, 

were taking an mTOR inhibitor at the time of enrollment, had Subependymal giant Cell 

Astrocytoma necessitating medical/surgical treatment, had a history of epilepsy, or had any MRI 

contraindications. The remaining 9 studies employed exclusion criteria of varying detail and 

robustness. Zwaigenbaum et al., 2020, Sacrey et al., 2018, and Zwaigenbaum et al., 2021 all 

broadly excluded IL participants if they were not born full-term, had a birth weight <2,500g, 

and/or had significant neurologic, genetic, or sensory-motor conditions. While similar, 

Zwaigenbaum et al., 2005 only excluded participants if they did not have term gestation or had a 

birth weight <2,500g. Roberts et al., 2016 and Gammer et al., 2015 excluded IL participants if 

they were not born full-term and had significant neurological or developmental conditions. Gilga 

et al., 2015 and Bedford et al., 2016 both excluded IL participants if they had significant medical 

or developmental conditions. Bussu et al., 2018 excluded participants who lacked 36-month 

clinical ASD outcome evaluation. The remaining 6 studies (Hahn et al., 2020, McDonald et al., 

2017, Hahn et al., 2017, Bedford et al., 2017, Bedford et al., 2019, Jeste et al., 2014) did not 

detail exclusion criteria for IL participants. 

 

Exclusion criteria for LL controls were explicitly detailed for only 10 studies and varied 

considerably. Jeste et al., 2014 and McDonald et al., 2017 both excluded LL controls if they 

were born preterm (<37 weeks of gestation), suffered birth trauma, had developmental concerns, 

or had any family history of ASD or intellectual disability. Roberts et al., 2016 excluded LL 

controls if they were not born full-term, had significant neurological or developmental 

conditions, and/or if they had developmental composite scores >1 standard deviation away from 

the mean. The exclusion criteria for LL controls was identical to that of IL participants for 

Zwaigenbaum et al., 2005, Gammer et al., 2015, Estes et al., 2015, Bussu et al., 2018, 

Zwaigenbaum et al., 2020, Bedford et al., 2016, and Zwaigenbaum et al., 2021 as described in 

the paragraph above. Five studies did not report LL control exclusion criteria (Hahn et al., 2020, 
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Hahn et al., 2017, Hahn et al., 2017, Bedford et al., 2017, Bedford et al., 2019) while two (Capal 

et al., 2017, Sacrey et al., 2018) did not employ LL control comparison groups in their study 

design.   

 

Study Design and Interrater Reliability 

Though 15 studies were longitudinal and 2 cross-sectional, each administered the AOSI at a 

single or multiple timepoints (ranging between 6, 9, 12, 15, or 18 months) and either (A) 

compared AOSI scores against a later ASD classification at 24-months or diagnostic assessment 

at 36-months, (B) compared AOSI scores across IL/LL study groups, (C) compared AOSI scores 

against scores on other early measures of autism symptoms, or (D) used AOSI scores in various 

statistical models (logistical regression, trajectory analysis, mixed modelling, multilevel 

modelling, autoregression, and machine learning). AOSI Total Scores, Risk Markers, or item-

level data were analyzed by group membership (infant siblings, FXS, TSC, DS) against 24-

month, 36-month, or 7-year ASD outcomes. 

 

Though AOSI reliability data has been previously reported Bryson et al., 2008, AOSI reliability 

assessments were conducted by 6 of studies included in this review (Zwaigenbaum et al., 2005, 

Hahn et al., 2017, Roberts et al., 2016, Bedford et al., 2016, Bedford et al., 2017, Bedford et al., 

2019). Zwaigenbaum et al., 2005 reports three main reliability estimates: (1) absolute agreement 

between raters of >90% for each AOSI item, (2) interrater agreement of the AOSI total score of 

0.71, 0.90, and 0.92 for 6-, 12-, and 18-month AOSI administrations, and (3) a test-retest 

reliability at 12-month AOSI administrations of 0.63. Roberts et al., 2016 and Hahn et al., 2017 

both double-coded 20% of AOSI assessments and report an item-level inter-rater reliability of 

0.89. While Bedford et al., 2016, Bedford et al., 2017, and Bedford et al., 2019 all report double-

coding the majority of AOSI assessments and report an intraclass correlation coefficient of 0.95, 

these studies all focus on the same sample of IL and LL infants and should be considered as one 

reliability estimate, not three. 

 

IL-Developmentally Delayed (IL-DD) vs IL-ASD Meta Analyses  

Between 6 and 10 Months. A total of three comparisons of AOSI Total Scores were included in 

this meta-analysis. There was no effect of AOSI Total Score, suggesting that the IL-ASD group 
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did not differ from the IL-DD control group (Cohen’s d= 0.16, 95% CI = -0.09 - 0.41, z = 1.25, 

p = 0.21, Figure A1.1a).  

  

Between 12 and 14 months.  A total of two comparisons of AOSI Total Scores were included in 

the meta-analysis. There was no effect of AOSI Total Score, suggesting that the IL-ASD group 

did not differ from IL-DD for AOSI Total Scores (Cohen’s d = 0.21, 95% CI = -0.05 - 0.47, z = 

1.61, p = 0.11, Figure A1.1b).  

 
Figure A1.01a, b | Meta-Analysis comparing IL-DD to IL-ASD Samples (left) with the Trim and Fill Plot (right). 

A = for ages 6-10 months, B = for ages 12-14 months. 

 

 

IL-Infants with Typical Development vs IL-ASD  

Between 6 and 10 Months. A total of three comparisons of AOSI Total Scores were included in 

this meta-analysis. There was an effect of AOSI Total Score, suggesting that the IL-ASD group 

differ from the IL-typical control group (Cohen’s d= 0.29, 95% CI = 0.10 - 0.49, z = 2.91, 

p = 0.004, Figure A1.2a). 
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Between 12 and 14 months. A total of two comparisons of AOSI Total Scores were included in 

the meta-analysis. There was an effect of AOSI Total Score, suggesting that the IL-ASD group 

differed from IL-typical for AOSI Total Scores (Cohen’s d = 0.74, 95% CI = 0.51 - 0.97, z = 

6.35, p < 0.001, Figure A1.2b). 

 

 
Figure A1.02a, b | Meta-Analysis comparing IL-typical to IL-ASD Samples (left) with the Trim and Fill Plot 

(right). A = for ages 6-10 months, B = for ages 12-14 months. 
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Appendix 2: Supplemental Content to Study Two 

 

Use of an Additional, Independent Testing Set of IL-Siblings  

While 465 IL-sibling data from CISS-1 was used to generate the training and test datasets used 

for statistical modelling, participant data on 133 new IL-siblings from CISS-2 were available to 

be used as an additional independent testing set for model performance. This was desirable, as 

participants in this new study were assessed using a nearly identical study similar protocol across 

the same autism ASD diagnostic and treatment centers in Canada (Sacrey et al., 2021). 

Participants in CISS-2 were assessed using many of the same autism and developmental 

measures. Germane to this study, participants in CISS-2 were assessed using the AOSI and 

MSEL at 12-months and underwent a 36-month diagnostic assessment for ASD.  

 

Confirmation of IL-Sibling Status  

To confirm their status as IL-siblings, diagnosis of ASD in the older siblings was confirmed 

through clinical assessment or a review of diagnostic records using DSM-5 criteria. The IL 

infants from the independent validation set no identifiable neurological or genetic conditions, nor 

any severe sensory or motor impairments. All IL-sibling participants were born at 36-42 weeks 

gestation and had a birth weight greater than 2500g.  

 

New IL-Sibling Data 36-Month Diagnostic Procedure 

At 36 months old, each participant underwent an independent diagnostic evaluation conducted 

by an expert clinician blind to results from previous study visits. Unlike the CISS-1 which used 

the DSM-IV-TR, clinicians in CISS-2 assigned ASD diagnosis using DSM-5 criteria based on 

best judgment of the clinician (developmental pediatrician, child psychiatrist, or clinical 

psychologist, all with years of diagnostic experience) while considering information from the 

ADI-R and ADOS and concurrent developmental information from the MSEL and VABS. 

 

Handling Missing Data 

Prior to use as an independent test set, data completeness of the AOSI and MSEL at 12-months 

was sought. For the 133 IL-siblings in CISS-2, 36-month diagnostic outcomes were 

characterized by the lowest missing data rate of 1.5%. Missingness of AOSI data (age of 

administration, items 1-18) ranged between 3.8 and 6.0% for all participants. In contrast, 

missingness of MSEL data was more considerable, with between 7.5 and 33.1% of MSEL 

https://doi.org/10.1186/s13229-021-00468-0
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standard score data missing. MSEL data missingness was not uniform across all MSEL 

subscales; RL and ELC scores had missing data rates of only 7.5 and 8.3% respectively. VR, 

FM, and EL standard scores in contrast had missing data rates of 30.8, 30.1, and 33.1% 

respectively.  

 

Since an unacceptably high number of participants were missing 12-month MSEL VR, FM, and 

EL data, new participant data was trimmed based on if CISS-2 participants (1) lacked 36-month 

diagnostic outcomes, (2) were missing data on 12-month AOSI and MSEL assessments, or (3) 

were missing data for three or more MSEL subscales. Using this criterion, data from 43 

participants was removed resulting in a final pool of 90 IL-siblings. Of these 90 participants, 

missingness of AOSI data (age of administration, items 1-18) now ranged between 0 and 3.3% 

for all participants. Missingness of MSEL data was considerably reduced, with between 0 and 

3.3% of MSEL standard score data missing from the trimmed participant data.  

 

Randomness of Missing Data for CISS-2 Trimmed Participants  

Of the 90 IL-siblings with 12-month AOSI/MSEL data and 36-month diagnostic outcomes, 23 

were classified with ASD (IL-ASD) and 67 were not (IL-N). To test the hypothesis that data 

were missing completely at random for AOSI and MSEL variables, Little's MCAR test was 

conducted. Data were split according to 36-month diagnostic outcomes for data imputation 

purposes as these two groups are not homogenous; IL-ASD infants score higher on the AOSI and 

have greater range of impairments on the MSEL relative to IL-N infants.  

 

For the 23 IL-ASD infants, Little's MCAR test were non-significant for AOSI item-level (χ2 = 

18.259, DF = 16, p = 0.309) and MSEL standard score data (χ2 = 11.171, DF = 8, p = 0.192) 

indicating that data in the trimmed dataset was missing completely at random. While no item-

level AOSI data was missing for IL-ASD participants, minor amounts of MSEL data were 

missing (between 0 and 8.7% for MSEL ELC, VR, FM, RL, and EL subscales).  

 

For the 67 IL-N infants, Little's MCAR test were similarly non-significant for AOSI item-level 

(χ2 = 7.083, DF = 21, p = 0.998) and MSEL standard score data (χ2 = 4.549, DF = 9, p = 0.872) 

indicating that data in the trimmed dataset was missing completely at random. Minimal amounts 
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of item-level AOSI (between 0 and 1.5% across all AOSI items) and MSEL data were missing 

(between 0 and 1.5% of MSEL ELC, VR, FM, RL, and EL subscales).  

 

Since IL-ASD and IL-N AOSI and MSEL missing data were randomly distributed, missing data 

were eligible for data imputation. Like the IL-sibling data used to generate the training and test 

sets, all AOSI items scoring '8' for IL-ASD and IL-N participants were replaced with '0's prior to 

expectation maximization imputation. Missing data was imputed via EM in SPSS GradPack 

Version 28 for IL-ASD and IL-N participants separately. 

 

Assessing for Differences in Raw vs Cleaned/Imputed Dataset Statistics 

Overall, EM data imputation had minimal impact on data statistics for AOSI and MSEL data of 

IL-ASD and IL-N participants from the CISS-2.  

  

For IL-ASD AOSI data, EM had either no impact (signifying no missing items being replaced) 

or resulted in minimal differences in mean, standard deviation, and standard error between the 

raw data and cleaned/EM-imputed AOSI data (max absolute difference in means, standard 

deviation, and standard error between the raw and EM-imputed data was 0.019, 0.003, and 0.001 

respectively). For IL-ASD MSEL data, EM had minimal impact on mean, standard deviation, 

and standard error between raw data and cleaned/EM-imputed MSEL data (max absolute 

difference in mean, standard deviation, and standard error between the raw and EM-imputed data 

was 1.042, 0.325, and 0.068 respectively).  

  

For IL-N AOSI data, EM data had either no impact (signifying no missing items being replaced) 

or resulted in minimal difference in mean, standard deviation, and standard error between the 

raw data and cleaned/EM-imputed AOSI data (max absolute difference in means, standard 

deviation, and standard error between the raw and EM-imputed data was 0.053, 0.007, and 0.007 

respectively). For IL-N MSEL data, EM had minimal impact on mean, standard deviation, and 

standard error between raw data and cleaned/EM-imputed MSEL data (max absolute difference 

in mean, standard deviation, and standard error between the raw and EM-imputed data was 

0.191, 0.083, and 0.010 respectively).  
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Assessing for Distribution of IL-ASD/IL-N 12-Month AOSI and MSEL Data 

To ascertain data distribution prior to any follow-up statistics, Kolmogorov-Smirnov and 

Shapiro-Wilk tests of normality were conducted in SPSS using the Explore command with data 

factored by 36-month diagnostic outcome (IL-ASD / IL-N). AOSI age of assessment was non-

normal for IL-N infants (ps < 0.05 on both the Kolmogorov-Smirnov and Shapiro-Wilks test of 

normality), and normal for IL-ASD infants on the Kolmogorov-Smirnov test (p = 0.060) but not 

the Shapiro-Wilk test of normality (p = <0.001). Item-level AOSI data (Items 1-18) was 

noticeably right-skewed for IL-ASD and IL-N groups (ps < 0.001 across all AOSI items for both 

Kolmogorov-Smirnov and Shapiro-Wilk tests of normality barring Item 10 for IL-ASD; 

Kolmogorov-Smirnov statistics were unable to be calculated due to all IL-ASD participants 

scoring ‘0’). The AOSI Total Score was normally distributed for IL-ASD infants (p = 0.204) but 

non-normal for IL-N infants (ps < 0.001). MSEL data was considered non-normal (ps < 0.04) for 

age of administration, ELC, FM, and RL subscales on the Kolmogorov-Smirnov test of 

normality for both IL-ASD and IL-N infants, and non-normal for IL-ASD infants on the VR (p = 

0.012) but not IL-N (p = 0.052). MSEL age of administration and FM scores were considered 

non-normal for both IL-ASD and IL-N participants (ps <0.02) on the Shapiro-Wilk test of 

normality, with ELC and RL scores considered non-normal for IL-N infants (ps < 0.03) and VR 

for IL-ASD infants (p = 0.009) only. All other MSEL subscales were considered normally 

distributed according to both Kolmogorov-Smirnov and Shapiro-Wilk tests of normality (ps > 

0.05). Results are described in Appendix 2 Table A2.7. 

 

Assessing for Group Differences in 12-month AOSI and MSEL Data in the Independent 

Validation Set 

Due to the non-normal distribution of all AOSI and some MSEL data in the independent testing 

set, Mann-Whitney U tests were conducted to assess group differences between IL-ASD and IL-

N 12-month AOSI and MSEL scoring using Benjamini & Hochberg 1995 corrections. Of the 

five AOSI items with Mann-Whitney p-values < 0.05 (AOSI Item 1, 3, 4, 17, and Total Score), 

only one was retained following Benjamini & Hochberg 1995 corrected significance levels of q* 

= 0.006 (AOSI Item 3). Of the four MSEL subscales with Mann-Whitney p-values < 0.05 (ELC, 

VR, FM, and EL), two survived the Benjamini & Hochberg 1995 corrected significance level of 

q* = 0.006 (ELC and EL). Results are described in Appendix 2 Table A2.8.  

 

https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
https://www.jstor.org/stable/2346101
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Table A2.01 | Participant Demographics of IL-ASD/N Infant Siblings  

Characteristic 
IL-ASD  

(n) 

IL-N  

(n) 
χ2 p-value 

Sex     

Boys 87 175   

Girls 38 165   

Total n 125 340 12.123 <0.001 

IL-Sib birth order     

2 73 174   

3 34 129   

4 11 25   

5 4 6   

6 0 2   

7 2 0   

8 0 2   

9 0 2   

12 1 0   

Missing 0 0   

Total n 125 340 15.395 0.052 

Total Number of Children in Family      

2 67 159   

3 29 132   

4 9 32   

5 6 10   

6 1 2   

9 2 5   

12 1 0   

Missing 0 0   

Total n 125 340 6.542 0.365 

Site Assessed     

Toronto (Site 1) 71 189   

Hamilton (Site 2) 14 47   

Nova Scotia (Site 3) 18 51   

Edmonton (Site 4) 22 53   

Missing  0 0   

Total n 125 340 0.755 0.860 

Father’s Age at IL-sib’s Birth     

20-24 0 1   

25-29 4 20   

30-34 28 83   

35-39 35 108   

40-44 23 56   

45-49 8 10   

50-54 3 4   

55-59 1 1   

Missing 23 57   

Total n 102 283 38.834 a 0.129 a 

Father’s Ethnicity      

Aboriginal 1 4   

African 4 4   

Asian 3 8   

Caucasian 88 226   

East Indian 4 15   

Mixed 2 5   

Southeast Asian 3 6   

Missing 20 72   

Total n 102 262 4.273 0.748 
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Father’s Highest Level of Education      

Some junior high school  1 1   

Some high school 4 5   

High school diploma 15 52   

Some college or specialized training  18 45   

College or university graduate  56 123   

Graduate training 20 655   

Missing  11 49   

Total n  114 291 4.526 0.476 

Father’s Current Occupation      

Farm workers, service works, or not employed 2 5   

Unskilled workers 7 16   

Machine operators or semi-skilled workers 16 23   

Smaller business owners, skilled manual workers 13 48   

Clerical, sales work, small farm, business owner 6 16   

Technicians, semi-professionals, small business owners 18 51   

Managers, minor professionals, farm owners 26 67   

Administrators, lesser professionals, etc. 18 44   

Major professionals  13 50   

Missing 6 20   

Total n 119 320 6.520 0.589 

Mother’s Age at Childbirth     

20-24 2 5    

25-29 9 34   

30-34 41 116   

35-39 40 95   

40-44 12 30   

45-49 0 2   

Missing 21 58   

Total n 104 282 17.448a 0.829a 

Mother’s Ethnicity     

Aboriginal 0 1   

African 5 5   

Asian 5 8   

Caucasian 85 220   

Indonesian 4 15   

Lebanese 0 1   

Middle Eastern 0 1   

Mixed 0 1   

Southeast Asian 1 5   

Missing 20 73   

Total n 105 267   

Mother’s Education     

Some junior high school  0 0   

Some high school 2 6   

High school diploma 17 30   

Some college or specialized training  14 32   

College or university graduate  60 152   

Graduate training 16 63   

Missing  16 57   

Total n  109 283 4.099 0.393 

Current Occupation  12   

Farm workers, service works, or not employed 28 54   

Unskilled workers 5 12   

Machine operators or semi-skilled workers 5 8   

Smaller business owners, skilled manual workers 5 12   

Clerical, sales workers, small farm, business owner 13 31   

Technicians, semi-professionals, small business owners 14 45   
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Managers, minor professionals, farm owners 17 48   

Administrators, lesser professionals, etc. 12 39   

Major professionals  7 34   

Missing 19 57   

Total n 106 283 5.895 0.659 

Parent relationship     

Parents are together; only father is working 48 118   

Parents are together; only mother is working 3 4   

Parents are together; both are working 63 166   

Single mother (never married or divorced) 2 2   

Single mother (mother not working; father pays support)  0 3   

Missing 9 47   

Total n 116 293 2.940 0.568 

Family Socioeconomic Status     

<20 1 6   

21 to ≤ 35 24 45   

36 to ≤ 50 34 106   

51 to ≤ 66 53 129   

Missing 13 55   

Total n 112 285 33.980 0.420 

Father’s Age at IL-Sib’s Birth Mean (SD)  Mean (SD)  T  

Father 37.775 (5.697) 36.448 (5.117) 2.112 0.035 

Missing  23 57   

Total n 102 283   

Father’s Age at IL-Sib’s Birth Mean (SD) Mean (SD)  T  

Mother 34.673 (4.223) 34.145 (4.435) 1.050 0.294 

Missing 21 58   

Total n 104 282   

     
a = these values were calculated based on year-by-year ages (e.g., 25, 26, 27, etc.) and not pooled groupings (e.g., 

25-29, 30-34).  

T = T-statistic  

SD = standard deviation  
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Table A2.02 | 12-Month AOSI and MSEL Data Normality Tests Factored by IL-ASD / IL-N Grouping 

Measure Outcome 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic Df p-value Statistic Df p-value 

Autism Observation Scale for Infants 

Age at assessment 
IL-ASD 0.198 125 <0.001 0.806 125 <0.001 

IL-N 0.172 340 <0.001 0.793 340 <0.001 

Item 1 
IL-ASD 0.508 125 <0.001 0.430 125 <0.001 

IL-N 0.508 340 <0.001 0.415 340 <0.001 

Item 2 
IL-ASD 0.525 125 <0.001 0.350 125 <0.001 

IL-N 0.529 340 <0.001 0.329 340 <0.001 

Item 3 
IL-ASD 0.309 125 <0.001 0.771 125 <0.001 

IL-N 0.443 340 <0.001 0.594 340 <0.001 

Item 4 
IL-ASD 0.390 125 <0.001 0.677 125 <0.001 

IL-N 0.448 340 <0.001 0.578 340 <0.001 

Item 5 
IL-ASD 0.468 125 <0.001 0.493 125 <0.001 

IL-N 0.505 340 <0.001 0.405 340 <0.001 

Item 6 
IL-ASD 0.459 125 <0.001 0.555 125 <0.001 

IL-N 0.495 340 <0.001 0.461 340 <0.001 

Item 7 
IL-ASD 0.219 125 <0.001 0.867 125 <0.001 

IL-N 0.234 340 <0.001 0.821 340 <0.001 

Item 8 
IL-ASD 0.404 125 <0.001 0.614 125 <0.001 

IL-N 0.493 340 <0.001 0.486 340 <0.001 

Item 9 
IL-ASD 0.273 125 <0.001 0.786 125 <0.001 

IL-N 0.360 340 <0.001 0.705 340 <0.001 

Item 10 
IL-ASD 0.523 125 <0.001 0.379 125 <0.001 

IL-N 0.540 340 <0.001 0.168 340 <0.001 

Item 11 
IL-ASD 0.421 125 <0.001 0.616 125 <0.001 

IL-N 0.471 340 <0.001 0.521 340 <0.001 

Item 14 
IL-ASD 0.352 125 <0.001 0.710 125 <0.001 

IL-N 0.433 340 <0.001 0.611 340 <0.001 

Item 15 
IL-ASD 0.466 125 <0.001 0.541 125 <0.001 

IL-N 0.499 340 <0.001 0.472 340 <0.001 

Item 16 
IL-ASD 0.523 125 <0.001 0.379 125 <0.001 

IL-N 0.524 340 <0.001 0.380 340 <0.001 

Item 17 
IL-ASD 0.412 125 <0.001 0.607 125 <0.001 

IL-N 0.464 340 <0.001 0.546 340 <0.001 

Item 18 
IL-ASD 0.498 125 <0.001 0.471 125 <0.001 

IL-N 0.541 340 <0.001 0.215 340 <0.001 

Total Score 
IL-ASD 0.122 125 <0.001 0.946 125 <0.001 

IL-N 0.132 340 <0.001 0.925 340 <0.001 

Mullen Scales of Early Learning 

Age at assessment 
IL-ASD 0.217 125 <0.001 0.798 125 <0.001 

IL-N 0.200 340 <0.001 0.778 340 <0.001 

ELC 
IL-ASD 0.090 125 0.015 0.986 125 0.227 

IL-N 0.087 340 <0.001 0.991 340 0.038 

VR 
IL-ASD 0.171 125 <0.001 0.961 125 0.001 

IL-N 0.149 340 <0.001 0.968 340 <0.001 

FM 
IL-ASD 0.204 125 <0.001 0.930 125 <0.001 

IL-N 0.128 340 <0.001 0.970 340 <0.001 

RL 
IL-ASD 0.179 125 <0.001 0.959 125 0.001 

IL-N 0.155 340 <0.001 0.956 340 <0.001 

EL 
IL-ASD 0.122 125 <0.001 0.971 125 0.009 

IL-N 0.112 340 <0.001 0.975 340 <0.001 

        

Df = Degrees freedom, EL = Expressive Language, ELC = Early Learning Composite, FM = Fine Motor, RL = 

Receptive Language, VR = Visual Reception 
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Table A2.03 | 12-Month AOSI and MSEL Data Normality Tests Factored 80/20 Data Partitions 

Measure Partition 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic Df p-value Statistic Df p-value 

Autism Observation Scale for Infants 

Age at assessment Training 0.170 373 0.000 0.807 373 <0.001 

 Testing  0.219 92 0.000 0.761 92 <0.001 

Item 1 Training 0.512 373 0.000 0.399 373 <0.001 

 Testing  0.486 92 0.000 0.490 92 <0.001 

Item 2 Training 0.526 373 0.000 0.345 373 <0.001 

 Testing  0.532 92 0.000 0.290 92 <0.001 

Item 3 Training 0.418 373 0.000 0.637 373 <0.001 

 Testing  0.364 92 0.000 0.714 92 <0.001 

Item 4 Training 0.429 373 0.000 0.617 373 <0.001 

 Testing  0.448 92 0.000 0.565 92 <0.001 

Item 5 Training 0.493 373 0.000 0.432 373 <0.001 

 Testing  0.499 92 0.000 0.406 92 <0.001 

Item 6 Training 0.479 373 0.000 0.508 373 <0.001 

 Testing  0.510 92 0.000 0.401 92 <0.001 

Item 7 Training 0.232 373 0.000 0.840 373 <0.001 

 Testing  0.238 92 0.000 0.826 92 <0.001 

Item 8 Training 0.472 373 0.000 0.531 373 <0.001 

 Testing  0.462 92 0.000 0.547 92 <0.001 

Item 9 Training 0.334 373 0.000 0.737 373 <0.001 

 Testing  0.349 92 0.000 0.703 92 <0.001 

Item 10 Training 0.540 373 0.000 0.249 373 <0.001 

 Testing  0.540 92 0.000 0.206 92 <0.001 

Item 11 Training 0.463 373 0.000 0.543 373 <0.001 

 Testing  0.437 92 0.000 0.574 92 <0.001 

Item 14 Training 0.412 373 0.000 0.642 373 <0.001 

 Testing  0.404 92 0.000 0.651 92 <0.001 

Item 155 Training 0.489 373 0.000 0.494 373 <0.001 

 Testing  0.487 92 0.000 0.491 92 <0.001 

Item 16 Training 0.523 373 0.000 0.384 373 <0.001 

 Testing  0.527 92 0.000 0.359 92 <0.001 

Item 17 Training 0.447 373 0.000 0.570 373 <0.001 

 Testing  0.462 92 0.000 0.547 92 <0.001 

Item 18 Training 0.534 373 0.000 0.313 373 <0.001 

 Testing  0.536 92 0.000 0.292 92 <0.001 

Total Score Training 0.128 373 0.000 0.922 373 <0.001 

 Testing  0.173 92 0.000 0.919 92 <0.001 

Mullen Scales of Early Learning 

Age at assessment Training 0.201 373 0.000 0.789 373 <0.001 

 Testing  0.233 92 0.000 0.762 92 <0.001 

ELC Training 0.072 373 0.000 0.988 373 0.004 

 Testing  0.079 92 .200* 0.971 92 0.038 

VR Training 0.144 373 0.000 0.969 373 <0.001 

 Testing  0.109 92 0.009 0.973 92 0.054 

FM Training 0.155 373 0.000 0.958 373 <0.001 

 Testing  0.124 92 0.001 0.975 92 0.068 

RL Training 0.136 373 0.000 0.965 373 <0.001 

 Testing  0.149 92 0.000 0.958 92 0.005 

EL Training 0.098 373 0.000 0.976 373 <0.001 

 Testing  0.125 92 0.001 0.968 92 0.022 

        
a = Lilliefors Significance Correction 

* = The lower bound of the true significance level 
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Df = Degree’s freedom, EL = Expressive Language, ELC = Early Learning Composite, FM = Fine Motor, RL = 

Receptive Language, VR = Visual Reception 
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Table A2.04 | Item-level AOSI Pearson correlations   

 AQ1 AQ2 AQ3 AQ4 AQ5 AQ6 AQ7 AQ8 AQ9 AQ10 AQ11 AQ14 AQ15 AQ16 AQ17 AQ18 TS 

AQ1 -                 

AQ2 -.060 -                

AQ3 -.009 .024 -               

AQ4 .089α .006 .140β -              

AQ5 .035 .052 .078α -.025 -             

AQ6 .116β .015 .105α  .156β .197β -            

AQ7 .031 .089α .094α  .059 .211β .242β -           

AQ8 .002 .105α .335β  .188β .110β .051 .147β -          

AQ9 .043 .034 .189β  .159β .224β .112β .286β .408β -         

AQ10 .010 .009 .023 -.002 .044 .030 .062 .166β .098α -        

AQ11 .127β -.082α .170β  .114β .242β .233β .159β .143β .311β .028 -       

AQ14 .009 .086α .222β  .124β .338β .231β .343β .442β .553β .184β .413β -      

AQ15 .141β .001 .084α  .058 .089α .080α .040 .032 .080α -.030 .112β .112β -     

AQ16 .046 -.032 .084α  .101α .087α .118β .052 .112β -.004 .111β .133β .066 .074 -    

AQ17 .081α -.017 .077α  .096α .045 .094α .069 .137β .099α .115β .176β .115β .010 .073 -   

AQ18 .071 .018 .069  .004 .096α .134β .134β .170β .096α .197β .140β .140β .114β .079α .169β -  

TS .219β .184β .435β  .352β .414β .434β .516β .588β .606β .224β .509β .675β .257β .240β .411β .377β - 

                  

AQ = AOSI question #, TS = Total Score 

α Correlation is significant at the 0.05 level (1-tailed) 

β correlation is significant at the 0.01 level (1-tailed) 
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Table A2.05 | Principal Parallel Axis Analysis Results of Item-Level AOSI Data 

Root Raw Data Eigenvalues Means 
95% Percentile 

eigenvalues 

1 2.311α 0.375 0.481 

2 0.650α 0.294 0.356 

3 0.496α 0.238 0.287 

4 0.323α 0.190 0.232 

5 0.215α 0.147 0.185 

6 0.139 0.109 0.143 

7 0.088 0.072 0.103 

8 0.039 0.036 0.065 

9 0.005 0.002 0.029 

10 -0.082 -0.031 -0.004 

11 -0.093 -0.064 -0.038 

12 -0.138 -0.097 -0.071 

13 -0.195 -0.131 -0.104 

14 -0.224 -0.166 -0.137 

15 -0.241 -0.205 -0.174 

16 -0.312 -0.252 -0.214 

    
α = greater than the 95% percentile eigenvalues calculated from n=5000  

parallel permutations of raw item-level AOSI data   

 

  



141 
 

Table A2.06 | Factor Analysis results for item-level AOSI data 

AOSI Item 
Factor 

1 2 3 4 5 

14 Social interest and affect 0.897 -0.028 0.077 0.112 -0.047 

2 Disengagement of attention 0.371 0.034 -0.021 -0.002 0.021 

16 Motor behaviour  -0.131 -1.003 0.091 0.022 0.027 

1 Visual tracking  0.014 -0.364 -0.070 0.042 0.001 

8 Eye contact 0.036 -0.030 0.812 -0.232 -0.142 

3 Orients to name -0.014 0.017 0.432 0.041 0.036 

9 Reciprocal social smiling  0.160 0.039 0.376 0.184 0.023 

4 Differential response to emotion  0.005 0.023 0.361 0.099 -0.009 

6 Imitation -0.046 -0.002 -0.040 0.621 -0.057 

11 Reactivity 0.173 -0.034 0.045 0.444 -0.016 

7 Social babbling  0.116 0.004 0.113 0.254 -0.051 

15 Transitions 0.013 -0.009 -0.007 0.238 -0.047 

5 Anticipatory response 0.029 -0.043 0.068 0.220 0.037 

18 Atypical sensory behaviours  -0.088 0.133 -0.048 0.154 -0.738 

10 Coordination of eye gaze and action 0.089 -0.154 0.048 -0.108 -0.287 

17 Atypical motor behaviours  0.013 -0.047 0.075 0.067 -0.195 

       

Note: Items 12 and 13 have been removed from the AOSI and are thusly not included or reported in any factor 

analysis results. Extraction Method: Maximum Likelihood. Rotation Method: Oblimin with Kaiser Normalization. a 

Cells highlighted in grey represent factor loading values >|0.250|.  
a = Rotation converged in 10 iterations. 
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Table A2.07 | 12-Month AOSI and MSEL Normality Data in CISS-2 IL-Siblings  

Measure Outcome 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic Df p-value Statistic Df p-value 

Autism Observation Scale for Infants 

Age at assessment IL-ASD 0.177 23 0.060 0.766 23 <0.001 

 IL-N 0.135 67 0.004 0.946 67 0.005 

Item 1 IL-ASD 0.423 23 <0.001 0.621 23 <0.001 

 IL-N 0.520 67 <0.001 0.353 67 <0.001 

Item 2 IL-ASD 0.539 23 <0.001 0.215 23 <0.001 

 IL-N 0.530 67 <0.001 0.321 67 <0.001 

Item 3 IL-ASD 0.218 23 0.006 0.814 23 <0.001 

 IL-N 0.410 67 <0.001 0.649 67 <0.001 

Item 4 IL-ASD 0.479 23 <0.001 0.512 23 <0.001 

 IL-N 0.530 67 <0.001 0.291 67 <0.001 

Item 5 IL-ASD 0.462 23 <0.001 0.541 23 <0.001 

 IL-N 0.452 67 <0.001 0.559 67 <0.001 

Item 6 IL-ASD 0.474 23 <0.001 0.522 23 <0.001 

 IL-N 0.459 67 <0.001 0.554 67 <0.001 

Item 7 IL-ASD 0.249 23 <0.001 0.868 23 0.006 

 IL-N 0.271 67 <0.001 0.848 67 <0.001 

Item 8 IL-ASD 0.479 23 <0.001 0.512 23 <0.001 

 IL-N 0.486 67 <0.001 0.500 67 <0.001 

Item 9 IL-ASD 0.252 23 <0.001 0.787 23 <0.001 

 IL-N 0.330 67 <0.001 0.729 67 <0.001 

Item 10 IL-ASD n/aβ n/aβ n/aβ n/aβ n/aβ n/aβ 

 IL-N 0.539 67 <0.001 0.163 67 <0.001 

Item 11 IL-ASD 0.396 23 <0.001 0.669 23 <0.001 

 IL-N 0.480 67 <0.001 0.464 67 <0.001 

Item 14 IL-ASD 0.309 23 <0.001 0.733 23 <0.001 

 IL-N 0.337 67 <0.001 0.684 67 <0.001 

Item 155 IL-ASD 0.489 23 <0.001 0.477 23 <0.001 

 IL-N 0.506 67 <0.001 0.446 67 <0.001 

Item 16 IL-ASD 0.508 23 <0.001 0.412 23 <0.001 

 IL-N 0.533 67 <0.001 0.322 67 <0.001 

Item 17 IL-ASD 0.347 23 <0.001 0.639 23 <0.001 

 IL-N 0.463 67 <0.001 0.546 67 <0.001 

Item 18 IL-ASD 0.517 23 <0.001 0.402 23 <0.001 

 IL-N 0.528 67 <0.001 0.352 67 <0.001 

Total Score IL-ASD 0.166 23 0.101 0.943 23 0.204 

 IL-N 0.133 67 0.005 0.916 67 <0.001 

Mullen Scales of Early Learning 

Age at assessment IL-ASD 0.192 23 0.027 0.773 23 <0.001 

 IL-N 0.131 67 0.006 0.956 67 0.018 

ELC IL-ASD 0.198 23 0.020 0.920 23 0.066 

 IL-N 0.162 67 <0.001 0.950 67 0.009 

VR IL-ASD 0.206 23 0.012 0.884 23 0.012 

 IL-N 0.108 67 0.052 0.968 67 0.085 

FM IL-ASD 0.187 23 0.036 0.874 23 0.008 

 IL-N 0.188 67 <0.001 0.923 67 <0.001 

RL IL-ASD 0.203 23 0.014 0.923 23 0.076 

 IL-N 0.159 67 <0.001 0.960 67 0.030 

EL IL-ASD 0.131 23 0.200* 0.958 23 0.416 

 IL-N 0.090 67 0.200* 0.979 67 0.315 

        

Df = Degree’s freedom, EL = Expressive Language, ELC = Early Learning Composite, FM = Fine Motor, RL = 

Receptive Language, VR = Visual Reception 
α = Lilliefors Significance Correction  
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n/aβ = statistic was not able to be calculated; all IL-ASD participants scored a ‘0.’  

* = The lower bound of the true significance level 
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Table A2.08 | CISS-2 IL-ASD vs IL-N Characteristics 

Measures 
IL-ASD  IL-N  

U Z-score p-value 
Mean SD Mean Rank Mean SD Mean Rank 

Participant Characteristics 

n 23   67      

Gender 16M:7F   31M:36F   χ2 = 3.724  0.054 

Autism Observation Scale for Infants 

Age at assessment 12.347 0.493 41.435 12.363 0.327 46.896 677.000 -0.866 0.387 

Item 1 α 0.478 0.790 52.348 0.149 0.469 43.149 613.000 -2.313 0.021 

Item 2 0.043 0.209 43.848 0.164 0.539 46.067 732.500 -0.757 0.449 

Item 3 αβ 1.043 0.767 60.391 0.418 0.655 40.388 428.000 -3.562 <0.001β 

Item 4 α 0.217 0.422 50.174 0.090 0.336 43.896 663.000 -1.826 0.068 

Item 5 0.391 0.839 45.326 0.328 0.660 45.560 766.500 -0.050 0.960 

Item 6 0.391 0.783 45.304 0.358 0.690 45.567 766.000 -0.056 0.955 

Item 7  1.522 0.790 51.935 1.254 1.005 43.291 622.500 -1.442 0.149 

Item 8  0.435 0.843 45.783 0.418 0.819 45.403 764.000 -0.085 0.932 

Item 9  0.826 0.937 50.196 0.582 0.762 43.888 662.500 -1.109 0.268 

Item 10  0.000 0.000 44.500 0.030 0.171 45.843 747.500 -0.833 0.405 

Item 11 0.478 0.730 51.522 0.224 0.546 43.433 632.000 -1.769 0.077 

Item 14 0.565 0.590 46.935 0.507 0.533 45.007 737.500 -0.349 0.727 

Item 15  0.261 0.619 46.304 0.164 0.373 45.224 752.000 -0.265 0.791 

Item 16 0.174 0.491 47.000 0.090 0.288 44.985 736.000 -0.614 0.539 

Item 17 α 0.957 1.022 53.261 0.493 0.859 42.836 592.000 -2.054 0.040 

Item 18  0.261 0.689 46.370 0.209 0.616 45.201 750.500 -0.340 0.734 

Total Score α 8.043 4.940 56.152 5.478 3.735 41.843 525.500 -2.276 0.023 

Mullen Scale of Early Learning 

Age at assessment 12.369 0.490 43.783 12.348 0.335 46.090 731.000 -0.366 0.715 

ELC αβ 93.803 10.640 31.370 103.299 11.810 50.351 445.500 -3.051 0.002β 

Visual Reception α 99.087 14.774 35.130 106.269 15.262 49.060 532.000 -2.224 0.026 

Fine Motor α 88.458 13.952 36.130 96.881 11.483 48.716 555.000 -2.032 0.042 

Receptive Language  92.174 16.713 38.804 98.247 15.661 47.799 616.500 -1.443 0.149 

Expressive Language αβ 92.331 13.286 32.391 102.037 12.328 50.000 469.000 -2.791 0.005β 

          

ELC = Early Learning Composite, IL-ASD = Infant siblings diagnosed with autism at 36-months, IL-N = Infant siblings not diagnosed with autism at 36-months, 

SD = Standard deviation, SS = standard scores 
α = significantly different based on 2-tailed Mann-Whitney U score 
β = survived Benjamini & Hochberg 1995 corrected significance levels for multiple comparisons (q* = 0.00625) 

 


