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Abstract

This thesis addresses the problem of super-resolution of environment mat-

ting of transparent objects. In contrast to traditional methods of environment

matting of transparent objects, which often require a large number of input

images or complex camera setups, recent approaches using convolutional neu-

ral networks are more practical. In particular, after training, they can gen-

erate the environment mattes using a single image. However, they still do

not have super-resolution capabilities. This thesis first proposes an encoder-

decoder network with restoration units for super-resolution environment mat-

ting, called Enhanced Transparent Object Matting Network (ETOM-Net).

Then, we introduce a refinement phase to improve the details of the output

further. Meanwhile, to facilitate future research, we create a high-resolution

synthetic dataset called ETOM-Synthetic with 60,000 samples. The ETOM-

Net effectively recovers lost features in the low-resolution input images and

produces visually plausible high-resolution environment mattes and the corre-

sponding reconstructed images, demonstrating our method’s effectiveness.
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Glossary

Average Endpoint Error (AEE)

The mean Euclidean distance between two optical flows.

Batch Normalization (BN)

A technique that normalizes each small batch of inputs to a single layer.

Enhanced Transparent Object Matting Network (ETOM-Net)

The method we proposed.

Mean Square Error (MSE)

The average squared difference between the estimated values and the
actual value.

Multi Image Super Resolution (MISR)

Super resolution using multiple input images.

Rectified Linear Unit (ReLU)

A linear function that will output the input directly if it is positive,
otherwise, it will output zero.

Residual Channel-wise Attention Block (RCAB)

A set of layers using channel-wise attention mechanism and residual
learning.

Residual Block (RB)

A stack of layers that the output of a layer is taken and added to another
layer more profound in the block.

Residual In Residual Block (RIRB)

A stack of residual blocks.

Restoration Unit (RU)

A set of layers used in our method to restore lost details.

Single Image Super Resolution (SISR)

Super resolution using a single input image.
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Chapter 1

Introduction

Image matting has been used in many real-life applications, such as in

image and video editing or in showing the weather map superimposed with

the meteorologist commonly seen in our daily TV news. The matting pro-

cess estimates an alpha matte that separates the foreground object from the

background, so that the object can be placed on a new background, which is

how the film industry creates special effects. The image matting model [2] is

defined as follows:

C = αF + (1− α)B, (1.1)

where C denotes the composited pixel value, F and B denote, respectively, the

foreground pixel value and the background pixel value. α denotes the opacity,

indicating the degree of blending between the foreground and the background.

As Eq. 1.1 shows, it is only able to handle non-transparent objects because

it does not take optical properties into account, such as refraction and reflec-

tion of transparent objects.

To address this limitation, Zongker et al.[30] introduce the environment

matting to capture how light in the environment is refracted and reflected by

foreground objects. The new model has the following form:

C = F + (1− α)B + Φ, (1.2)

where Φ represents the contribution of light from the environment that is re-

flected or refracted by the surface of the foreground object.
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Figure 1.1: High resolution environment matte estimation and image compo-
sition.

After the work of Zongker et al.[30], many approaches [6], [19], [20], [25],

[29] have been proposed to improve their method, but the proposed methods

are still limited by the large number of input images or complex image cap-

ture settings. Inspired by the performance of convolutional neural networks

in high-level computer vision tasks, Chen et al. [4] propose a CNN-based ap-

proach, called Transparent Object Matting Network (TOM-Net), which learns

the environment matte from a single input image and is effective and efficient

compared to earlier works.

Considering that the input images used are usually of low quality, combin-

ing super-resolution capabilities with environment matting would be a good

combination. The process of reconstructing a high-resolution image from a

single low-resolution image is called Single Image Super Resolution (SISR).

While there are a large number of off-the-shelf methods available, simply us-

ing an SISR method to super resolve an environment matte will not produce

plausible results. In particular, for refractive flows, super-resolution cannot

be performed with existing methods. Thus, in this thesis, we focus on super-
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resolution of environment matting of transparent objects from a single image.

Following [4], we define the environment matte in our work as a triple,

which consists of a pixelwise segmentation mask, a refractive flow field and

an attenuation map. The segmentation mask is used to locate the bound-

ary of the foreground transparent object, the attenuation map denotes how

much the light is attenuated by the object, and the refractive flow field rep-

resents the pixel offset between the image of the object and its corresponding

background image. To estimate a high-resolution environment matte, we pro-

pose a CNN-based method called ETOM-Net. As shown in Fig. 1.1, given

a low-resolution image containing a transparent object as input, ETOM-Net

estimates the corresponding high-resolution environment matte, which is then

used to synthesize the transparent objects onto a new background, resulting

in a high-resolution output image. The contributions of this thesis can be

summarized as follows:

1. We propose an encoder-decoder network in the main phase with three

restoration units for super-resolution environment matting. The net-

work effectively recovers lost features in low-resolution input images

and produces visually plausible high-resolution environment matte and

synthesized images.

2. In addition to the main phase, we incorporate a refinement phase with

residual learning to improve the quality of the high-resolution environ-

ment matte and the reconstructed image.

3. The authors of [4] created a synthetic dataset because there was no

readily available dataset for learning transparent environment matting.

Although we use this dataset in our work, we also create a higher

resolution synthetic dataset for our work and for future use by other

researchers.
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Chapter 2

Related Work

In this chapter, we introduce representative works on single image super-

resolution, environment matting, and recently proposed deep learning-based

methods.

2.1 Single Image Super-Resolution

Super-resolution is the process of generating a high resolution image from

a low resolution or degraded image. Super-resolution can be divided into two

categories depending on how many images are used as input: SISR and Multi

Image Super Resolution (MISR). SISR is challenging but is more practical in

real-world applications, which is the focus of many recent researchers [1], [7],

[11], [18], [22], [29].

SISR can be categorized into four types: interpolation-based methods,

reconstruction-based methods, example-based methods and learning-based meth-

ods.

• Interpolation-based methods (e.g., bicubic interpolation) are fast and

straightforward, but they cannot generate high accuracy results with

sharp edges.

• Reconstruction-based approaches (e.g., [10], [18], [22], [23]) utilize prior

to achieve relatively good results. However, these methods are not

very efficient and their performance will degrade due to inaccurate prior

knowledge.
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• Example-based methods (e.g., [1], [3], [9], [11], [12], [26], [27]) use a small

training database with LR and HR image pairs to predict high-frequency

details. The limitation of these methods is that the quality of the results

depends heavily on the training images.

• Learning-based approaches (e.g., [7], [14], [16], [24]) use deep learning

techniques to learn the statistical relationship between LR and HR image

pairs from a large training dataset. Deep learning neural networks that

have many layers each with different width can theoretically approximate

arbitrary functions. Thus they can solve the very complex mapping

problem of the mapping between LR and HR. Also, the quality of the

results is highly dependent on the amount of training data. The more

the data, the better is the performance. From the experimental results

published in recent years, deep learning has an excellent learning ability,

and methods based on it have achieved state-of-the-art results.

Dong et al. first introduce a neural network model into SISR, called super-

resolution convolutional neural network (SRCNN) [7]. The authors preprocess

the input image using bicubic interpolation to scale it to the desired resolution.

After the preprocessing, they use a three-layer CNN to learn an end-to-end

mapping F between the low-resolution and the high-resolution images.

The proposed network SRCNN consists of three steps: The first step is a

patch extraction and representation operation. It extracts patches by con-

volving the input low-resolution image with a set of filters and adding a bias

to each filter, and the output patches are represented as vectors of high-

dimensional feature maps. The second step is a nonlinear mapping operation

that maps each high-dimensional feature map from the first step to another

high-dimensional feature map that is conceptually a representative of the high-

resolution patch that will be used in the next step. The last step is a recon-

struction operation, which uses high-resolution representations to generate a

super-resolved image. The proposed network is defined as follows:

F (Y) = W3 ∗max (0,W2 ∗max (0,W1 ∗Y +B1) +B2) +B3, (2.1)
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where Y denotes the low-resolution input image, Wi and Bi represent the fil-

ters and biases in each step, respectively. They use the Mean Squared Error

(MSE) loss as the loss function and minimize it with stochastic gradient de-

scent.

As a milestone, it has a lightweight structure that achieves not only speed

for practical use but also better performance than the state-of-the-art conven-

tional methods. Moreover, the authors hypothesize that higher performance

could be obtained by adding more hidden layers/filters to the network and by

using different training strategies, leading the way for subsequent research.

Fast super-resolution convolutional neural networks (FSRCNN) [8] is an

improvement of SRCNN, as the high computational cost of SRCNN still hin-

ders its real-time performance requirements in practical applications. Instead

of scaling up the low-resolution input at the beginning as SRCNN does, it pro-

cesses the low-resolution image directly and applies a deconvolution layer at the

end to scale the results to the correct size. In SRCNN, the nonlinear mapping

step follows the feature extraction step, and then the high-dimensional low-

resolution features are directly mapped to the high-resolution feature space.

However, the computational complexity of the nonlinear mapping step is quite

high because the dimensionality of low-resolution features is usually very large.

To solve this problem, they add a shrinking layer after the feature extraction

layer to reduce the dimensionality of the low-resolution feature. The filters

in this layer behave like linear combinations in low-resolution features. This

strategy greatly reduces the number of parameters in their model. An expand-

ing layer is added after the nonlinear mapping process as an inverse process

of the shrinking layer to expand the high-resolution feature dimension and

improve the final restoration quality. Compared to SRCNN, FSRCNN runs

more than 40 times faster, but still maintains good performance.

Later, residual neural network (ResNet) [13] proposed by He et al. incor-

porates a residual learning framework to improve the training of very deep

networks, since deeper neural networks are more difficult to train. Unlike

normal convolutional layers that learn the underlying mapping directly, the

authors let these layers adapt to a residual mapping. The residual learning
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can be formulated as:

y = F(x) + x, (2.2)

where F(x) = H(x) − x, x and y denote the input and the output, respec-

tively, and H(x) denotes the desired underlying mapping.

The authors assume that it is easier to optimize the residual mapping than

the original one. For example, if the optimum is an identity mapping, then it

is easier to learn a zero residual than to fit the identity mapping with nonlin-

ear layers. A residual learning with two layers is shown in Fig. 2.1. In this

case, F(x) = W2σ(W1x) in which σ denotes Rectified Linear Unit (ReLU) and

Wi denotes the weight of each layer. A shortcut connection and element-wise

addition are used to perform F(x) + x.

Figure 2.1: Residual learning.

In the experiments, a general network with 34 parameter layers inspired by

VGG nets is used as the baseline model, and on top of this general network,

the authors insert shortcut connections to turn the general network into its

corresponding residual version. Compared to the baseline, the residual version

model has much lower training errors and is easier to optimize. Moreover, by

increasing the depth of the network substantially, higher accuracy can be ob-

tained.

Since the introduction of ResNet, researchers have explored the possibil-

ity of using residual learning in SISR. In very deep super-resolution (VDSR)

[14], Kim et al. present a very deep convolutional network for highly accurate

SISR. The proposed network takes as input the interpolated low-resolution
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image (scale up to the desired resolution) and predicts lost details (residual

information). d layers are used in this network, all of which are of the same

type: 64 filters of size 3 × 3 × 64, except for the first and last layer. The

first layer operates on the input image and the last layer is used for image

reconstruction which consists of a single filter of size 3 × 3 × 64. Since the

size of the feature map decreases each time a convolution operation is applied,

the authors pad zeroes before each convolution to keep the size of all feature

maps, including the output image, the same. Once the residual information

is predicted, it is added back to the input low-resolution image with global

residual learning to generate the high-resolution output image. The authors

also demonstrate that very deep networks can achieve high performance in

super-resolution, with performance increasing rapidly as depth grows. Using

a network with a depth of 20 and trained at a very high learning rate, their

proposed method VDSR outperforms existing methods by a large margin and

has a very fast convergence rate.

Proposed by the same group, the deeply-recursive convolutional network

(DRCN) [15] first applies a deeply recursive neural network to SISR. The au-

thors first introduce a base model, which consists of three parts: an embedding

network, an inference network and a reconstruction network. The embedding

network at the beginning accepts a low-resolution input image and represents

it as a set of feature maps. The inference network in the middle consists of a

single recursive layer that handles the task of super-resolution. The recursive

layer has D recursions, each of which applies the same convolution followed by

a ReLU to widen the receptive field. The reconstruction network at the end

converts the multi-channel high-resolution feature maps into a high-resolution

final image. Although the base model is powerful, it is difficult to train due

to vanishing and exploding gradients. The authors then propose an improved

model that addresses these issues by using recursive supervision and skip-

connections. They demonstrate that DRCN outperforms existing methods by

a significant amount on benchmark images.

Inspired by DRCN, the deep recursive residual network (DRRN) [24] ex-

tends VDSR by introducing recursive blocks with residual units. The recursive
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block is formulated as:

Hu = F
(
Hu−1,W

)
+H0, (2.3)

where u = 1, 2, · · ·, U , U is the number of residual units in each recursive

block, H0 is the output of the first convolutional layer in the recursive block,

Hu−1 and Hu are the input and output of the u-th residual unit, F denotes

the residual function, and W is a shared weight set within the recursive block.

The structure of the recursive block is shown as Fig. 2.2, it starts with one

convolutional layer and then stacks U residual units. The final network is

created by stacking B recursive blocks and one convolutional layer, as shown

in Fig. 2.3, which reconstructs the residual between the input low-resolution

and output high-resolution images. This residual is then added element-wise

to the global identity mapping of the input low-resolution image.

Figure 2.2: Structure of the recursive block with U = 3.

In contrast to VDSR, which uses only global residual learning, DRRN combines

local and global residual learning, and VDSR can be considered a particular

case of DRRN when residual units are not used.

Figure 2.3: Network structure of DRRN with B = 6.

Ledig et al. present super-resolution residual network (SRResNet) [16] with

16 blocks deep ResNet as part of the super-resolution generative adversarial
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network (SRGAN), which is the first time that the Generative Adversarial

Network (GAN) is applied to image super-resolution. SRGAN consists of two

networks: a generator network and a discriminator network. The genera-

tor network trains a generating function G that estimates the corresponding

high-resolution counterpart given a low-resolution input image, which can be

formulated as:

θ̂G = arg min
θG

1

N

N∑
n=1

lSR
(
GθG

(
ILRn
)
, IHRn

)
, (2.4)

where θG are the parameters of the generator network GθG , n = 1, · · ·, N , N is

the number of training images, and lSR is a perceptual loss function. The dis-

criminator network is trained to distinguish between super-resolution images

and real images, which allows us to train the generative model G with the aim

of fooling the discriminator. The adversarial min-max problem is defined as

follows:

min
θG

max
θD

EIHR∼ptrain (IHR)

[
logDθD

(
IHR

)]
+

EILR∼pG(ILR)

[
log
(
1−DθD

(
GθG

(
ILR
))]

.
(2.5)

The authors design the perceptual loss as a combination of content loss and

adversarial loss, which are pixel-level MSE loss and discriminator probability

on all training samples, respectively. SRResNet creates new state-of-the-art

results on benchmark datasets, and by training with adversarial loss, SRGAN

produces more photo-realistic results in terms of mean-opinion-score (MOS)

testing.

Soon after, Lim et al. remove the Batch Normalization (BN) from the resid-

ual blocks of SRResNet and propose enhanced deep super-resolution network

(EDSR) [17], which can stack more residual blocks under the same condi-

tion with residual scaling techniques. The authors also extend their single-

scale model EDSR to multiple scales by proposing a multi-scale deep super-

resolution system (MDSR) with scale-dependent modules and a shared master

network. Both their proposed single-scale and multi-scale models achieve the
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highest rankings in standard benchmark datasets and the DIV2K dataset.

The residual channel attention network (RCAN) [28] uses a residual struc-

ture to form a very deep network, and since the low-resolution inputs and fea-

tures containing rich low-frequency information are treated equally on differ-

ent channels, hindering the representational power of the network, the authors

employ a channel attention mechanism that adaptively rescale the features

on the channels, allowing the network to focus on more informative features.

The channel attention mechanism is shown in Fig. 2.4. It has a global average

pooling layer, two convolutional layers with a ReLU in between, and a sigmoid

function. After the sigmoid function, the final channel statistics is obtained,

which is then used to rescale the input x by element-wise production. RCAN

proves to be effective in super-resolution of bicubic (BI) and blur-downscale

(BD) degradation models, and it also shows good results in object recognition.

Figure 2.4: Channel attention mechanism, ⊗ denotes element-wise product.

Later on, Cheng et al. combine an encoder-decoder network with a residual-

in-residual structure, which includes several residual channel-wise attention

blocks inspired by RCAN, named the encoder-decoder residual network (EDRN)

[5]. In EDRN, it adopts a coarse-to-fine structure, which can gradually recover

the lost information and reduce the noise impact. They also use batch nor-

malization in real SISR, which has been shown to be inefficient for SISR with

synthetic datasets. The results show that applying BN to downsampling or

upsampling convolutional layers yields a performance improvement without

a significant increase in execution time. EDRN can effectively restore high-

resolution images from real-world low-resolution images and is one of the best

methods of NTIRE 2019 Real SR Challenge.
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2.2 Environment Matting

Environment matting first introduced by Zongker et al. [30] captures not

only a foreground object and how the light is attenuated passing through it but

also how the object refracts and reflects light from the scene. The foreground

object can then be composited into a new environment with physically correct

reflection and refraction effects from the environment as defined in Eq. 1.2.

They use three monitors to display a series of magenta and green stripes and

a digital camera to capture the scene so they obtain the environment matte

by identifying background areas corresponding to each foreground pixel.

Chuang et al. [6] further extend the original environment matting in two

distinct directions. The first is to utilize more backdrops to capture complex

and subtle object refraction and reflection. The second is to obtain a simpli-

fied matte using only one image by simplifying the matting equation under the

assumption that the object is colorless and has no roughness or translucency,

which allows them to achieve a real-time environment matting of objects in

motion.

Both methods assume that some region in the background maps to a fore-

ground pixel in the image. However, Wexler et al. [25] believe that a proba-

bilistic model-based approach, which assumes that each background pixel has

a probability of contributing to the colour of some foreground pixel and does

not require complex calibration setup, is a better choice. Their method re-

quires at least two input images: one containing the transparent object and

the other containing only the background to compute the receptive field of

pixel p (a set of pixels that contribute to a particular output pixel p). The

authors demonstrate that their proposed method works well given sufficiently

rich backgrounds or enough images, but has the limitation that diffuse scat-

tering affects the estimation of the probability density.

Peers et al. [19] use a series of wavelet patterns to obtain the environ-

ment matte of a scene while capturing the effect of diffuse reflections, which

is not possible in previous methods. As a result, their method can handle any

kind of material properties. Large areas of highly specular materials may still
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be captured, but this is problematic due to the slow convergence rate. Their

method also exploits the idea of linearly combining basis images, requiring only

minimal post-processing, whereas previous methods for environment matting

require per-pixel optimization procedures.

Inspired by the fact that a time-domain signal has a unique decomposition

in the frequency domain, Zhu and Yang [29] transfer the environment mat-

ting problem from the time domain to the frequency domain and introduce a

frequency-based environment matting method. Instead of analyzing the im-

age in the time domain as in previous methods, their method uses Fourier

analysis to analyze the data in the frequency domain, which simplifies the ex-

perimental setup because matching two signals by phase requires very precise

time synchronization, which is not needed when identifying frequencies. Their

method can obtain a more physically correct result and is robust to noise, at

the expense of requiring many images.

Later, Qian et al. [20] incorporate compressive sensing theory, which pro-

vides a framework for reconstructing sparse signals with much fewer measure-

ments than the signal dimension, to the frequency-based environment mat-

ting. Compared to existing methods for environment matting, their method

achieves higher performance on both synthetic and real data, but requires a

much smaller number of images.

Transparent object matting network (TOM-Net) [4] is a CNN-based en-

vironment matting approach proposed by Chen et al. They design a deep

learning framework to learn the mapping between a single input image and

the corresponding environment matte, including an object segmentation mask,

an attenuation map and a refractive flow field by assuming that the foreground

object is transparent, has no colour, and has only one mapping at each point.

They can then composite a new image using the output matte and a new

backdrop. They also created a large-scale synthetic dataset and a real dataset

for training and testing. Their approach is effective and efficient, requiring

no cumbersome capture procedures and lengthy processing times, and it still

yields visually pleasing results. Although Chen et al. have explored the poten-

tial of CNN-based environment matting, their method TOM-Net does not have
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the super-resolution capability that is practical in real-life situations where the

input images are usually of low quality. Such a limitation motivates this thesis

research.
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Chapter 3

Formulation

In this chapter, we formulate the super-resolution and the environment

matting that we use in our work.

3.1 Super-Resolution

Low-resolution images can be seen as a degradation of high-resolution im-

ages as shown in Fig. 3.1. In general, HR images and LR images are linked

by this model:

ILR = (IHR ⊗ k) ↓s +n, (3.1)

where ⊗k represents the convolution operation with blur kernel k, ↓s denotes

the downsampling operation of the scale factor s, and n denotes the additive

noise. Since our main focus is on synthetic data, we assume that bicubic down-

sampling and Gaussian blur are used in our work to generate low-resolution

images from the ground truth.

Figure 3.1: Degradation model.
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3.2 Environment Matting

Following the work of [6] and [4], we first assume that the foreground object

is colourless and transparent because too many optical properties would make

the model too complex to obtain good results from it.

For refraction, Wexler et al.[25] assume that each background pixel has a

probability to contribute to some foreground pixel, and Zongker et al.[30] as-

sume that each foreground pixel is a linear combination of pixel values of a

region in the background. In our work, we assume that there is no reflection of

the foreground object, and in the single background setting, each foreground

pixel comes from a single pixel in the background.

With these assumptions, similar to [4] , the transparent environment mat-

ting problem can be modelled as follows:

O = (1− Imask)Iref + ImaskIrho · S(Iref ,G(Iflow)). (3.2)

In this model, O denotes the composited image, Imask, Irho, Iref denotes the

pixelwise mask of the foreground object, the attenuation map of the foreground

object, and the background image, respectively. The mask Imask ∈ {0, 1} has

two values, and Imask(i, j) = 0 denotes that the pixel at (i, j) is a background

pixel and vice versa. The amount of attenuation map Irho ∈ [0, 1] indicates

how much the object attenuates the light.

S() is a function that re-samples the image using the background image

values and pixel locations from a flow-field grid, and the computation is done

by bilinear interpolation. The grid specifies the normalized sampled pixel

positions, with most values in the range of [−1, 1], and it is generated by

the function G() using a two-channel refractive flow Iflow that represents an

offset (Vx, Vy) between the composited image and its corresponding background

image.

The function G() is a flow-field grid generator that first generates a two-

dimensional base grid that has values from the left to the right and the top to

the bottom from 0 to width and height, respectively. It then scales this base
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grid to [−1, 1] and adds the input refractive flow element-wise to this scaled

base grid to form a flow-field grid as the input to S().

From Eq. 3.2, the environment matting problem can now be solved by

estimating an environment matte which includes a pixelwise mask Imask, an

attenuation map Irho, and a refractive flow field Iflow from a single input image,

as shown in Fig. 1.1. Note that Irho and Iflow only apply to the region where

Imask = 1, and outside of this region, we use the corresponding pixels in the

background as the composited pixels. So the quality of Imask has a significant

influence on the reconstructed image.
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Chapter 4

Proposed Method

In this chapter, we propose a new deep learning method called Enhanced

Transparent Object Matting Network (ETOM-Net), which consists of two

parts. The first part, called the main phase, adopts an encoder-decoder struc-

ture with multiple scales that takes a low-resolution image of a transparent

object as input and extracts a high-resolution environment matte with a pix-

elwise mask, a refraction flow, and an attenuation map as output. The second

part is called the refinement phase using residual learning, which takes the

same low-resolution image and the main phase’s output as input to predict a

sharper and more accurate environment matte.

4.1 Architecture

The main phase of our proposed method ETOM-Net is shown in Fig. 4.1.

Similar to [4] and [21], it contains an encoder-decoder structure with a shared

encoding process and three independent decoding processes corresponding to

the three output environment mattes.

In this structure, we use six encoders and eighteen decoders. Every three

decoders form a combination that shares the same input, which allows the

three decoding processes to learn features from each other, and so the three

output environments mattes are more correlated.

Each encoder contains two convolutional layers with steps equal to 1 and

2, two batch normalization layers and two ReLU activation layers, forming

a factor of 64 for downsampling. Each decoder has one convolutional layer,
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Figure 4.1: ETOM-Net main phase.

one batch normalization layer, one ReLU activation layer and one upsam-

pling layer that recovers the resolution downsampled by the encoder. Skip

connections are also used to connect feature maps of the same size during the

encoding and decoding processes. The encoding process can be represented as:

OE,i = Ei(OE,i−1), (4.1)

and the output of each decoder can be formulated as:

OD,i,j = Di,j(
2∑
j=0

OD,i−1,j +OE), (4.2)

where OE,i denotes the output of the i-th encoder, OD,i,j denotes the output

of the decoder (i, j), i.e., the j-th decoding process of scale i. Ei denotes the

i-th encoder, Di,j denotes the decoder (i, j). OE denotes the output of the

encoding process of the same feature dimension as OD,i−1,j.

We add three Restoration Unit (RU)s after the encoding process and before

the decoding processes, which allows the main phase of the network to focus

on more informative parts of the LR input and also to enhance the discrimi-

native power of the network. Fig. 4.2 shows the structure of the restoration

unit. Each RU consists of four Residual In Residual Block (RIRB), which is

inspired by the work of [5], and a convolutional layer, with each RIRB stacked
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Figure 4.2: Structure of RU. ⊕ denotes the element-wise addition, ⊗ denotes
the element-wise product, and Pooling denotes global average pooling.

with ten Residual Block (RB) and one convolutional layer. The output of the

RU can be formulated as:

ORU = Conv(RIRB3(· · ·(RIRB0(IRU)))) + IRU , (4.3)

where ORU denotes the output of RU, and IRU denotes the input of RU. Conv

and RIRBi denote a convolutional layer and the i-th RIRB block, respectively.

And the output of RIRBi can be obtained by:

ORIRB,i = Conv(RB9(· · ·(RB0(IRIRB,i)))) + IRIRB,i, (4.4)

where ORIRB,i denotes the output of the i-th RIRB, IRIRB,i denotes the input

of the i-th RIRB and RBi denotes the i-th RB block.

Within each RB, we utilize two convolutional layers, with a ReLU activa-

tion layer between them and a Residual Channel-wise Attention Block (RCAB)

[28] at the end. The RCAB has a global average pooling at the beginning and

a Tanh activation layer at the end. For residual learning, the inputs of RU,

RIRB and RB are added to their outputs, the input of RCAB is multiplied to

its output as well. The formulation of RBi can be represented as:
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ORB,i = RCAB(Conv(ReLU(Conv(IRB,i)))) + IRB,i, (4.5)

and the output of RCAB can be formulated as:

ORCAB = Tanh(Conv(ReLU(Conv(Pooling(IRCAB))))) ∗ IRCAB, (4.6)

where ORB,i denotes the output of the i-th RB, IRB,i denotes the input of

the i-th RB, ORCAB denotes the output of RCAB, IRCAB denotes the input

of RCAB. ReLU , Pooling and Tanh denote the Rectified Linear Unit, the

average pooling and the hyperbolic tangent function, respectively.

Inspired by [4], we train the main phase of ETOM-Net with four different

loss scales. This multi-scale loss starts with a feature map size of 64*64*64

and ends with a size of 8*512*512 (the same size as the output mattes), named

scale 0 to scale 3. In addition, we apply different weights to different loss scales

to make the network more focused on large-scale features. The scale of the

super-resolution in our proposed method ETOM-Net is set to ×2, and can be

extended to ×3 and ×4 by training the model using different scales.

Along with the main phase, we add a refinement phase using residual learn-

ing to produce more detail to the output mattes of the main phase. As shown

in Fig. 4.3, the refinement phase takes the low-resolution input, and three

output environment mattes from the main phase as input, and then the input

tensor is passed through several downsampling blocks, five RB and several

upsampling blocks to form the output mattes. Each RB consists of two con-

volutional layers, two batch normalization layers and a ReLU activation layer,

the input of RB is then subjected to an average pooling operation and added

to the output of RB as the final output. The output of the refinement phase

can be represented as:

Orefine = Conv(Up(RB4(· · ·(RB0(Down(Imask + Iflow + Irho + Ilr)))))),
(4.7)

and the output of RBi can be formulated as:

ORB,i = BN(Conv(ReLU(BN(Conv(IRB,i))))) + IRB,i, (4.8)
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Figure 4.3: ETOM-Net refinement phase.

where Orefine denotes the output of the refinement phase, Up denotes the

upsampling process, Down denotes the downsampling process, and BN de-

notes a batch normalization operation. Imask, Iflow, Irho, and Ilr denote the

inputs of the refinement phase, including a pixelwise mask, a refractive flow,

an attenuation map, and a low-resolution input, respectively.

4.2 Loss Function

In this section, we explain the two loss functions used in the main phase

and in the refinement phase.

4.2.1 Main Phase

The loss function Lmain of the main phase is divided into four parts similar

to [4]: a pixelwise mask loss Lmask, a refractive flow field loss Lflow, an atten-

uation loss Lrho and a reconstruction loss Lrec. The loss function of the main

phase can then be denoted as

Lmain = λ1Lmask + λ2Lflow + λ3Lrho + λ4Lrec, (4.9)

where λ1, λ2, λ3, λ4 are the weights of each component of the loss.

Segmentation mask loss We define pixelwise mask segmentation as a

typical classification problem. The output mask has two channels, representing

the probabilities of the foreground and the background, respectively. Simply
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put, a pixel is part of the transparent object if the value of its first channel is

more significant and vice versa. In this case, we compute the mask loss Lmask
using the cross-entropy loss

Lmask = Mean

[
− log

(
exp(Pij[Cij])∑1
k=0 exp(Pij[k])

)]
= Mean

[(
−Pij[Cij] + log

(∑1
k=0 exp(Pij[k])

))]
,

(4.10)

where Pij = (Pfore, Pback) denotes the probability of the pixel at (i, j) belongs

to the foreground and the background, respectively, and Cij ∈ {0, 1} denotes

the ground truth of the pixel at (i, j) (Cij = 0 means the pixel at (i, j) is a

foreground pixel). Mean denotes the average of all pixels.

Refractive flow field loss The output refractive flow of the main phase

has two channels, representing the horizontal and vertical displacements, re-

spectively. The output value is in the range of [−1, 1] because of the Tanh

activation function. We multiply them by different ratios at different scales,

so the output flow has the same range as the width. For this one, we use the

Average Endpoint Error (AEE) loss, which is defined as the mean of the Eu-

clidean distance (Frobenius norm) between the estimated flow and the ground

truth flow

Lflow = Mean
[∥∥∥F − F̃∥∥∥

F

]
= Mean

[√(
F x
ij − F̃ x

ij

)2
+
(
F y
ij − F̃

y
ij

)2]
,

(4.11)

where (F x
ij, F

y
ij) denotes the output refractive flow at (i, j), and (F̃ x

ij, F̃
y
ij) de-

notes the ground truth refractive flow at (i, j).

Attenuation map loss The value of the output attenuation map is in

the range [0, 1], showing how much light can pass through the object. We use

the Mean Square Error (MSE) loss
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Lrho = Mean

[(
Aij − Ãij

)2]
, (4.12)

where Aij is the output attenuation map at (i, j), and Ãij is the ground truth

attenuation map at (i, j).

Reconstruction loss To evaluate the quality of composited images, we re-

construct the image using the output environment mattes and the correspond-

ing high-resolution ground-truth background and compare it to the ground

truth high-resolution input image. As with the attenuation map loss, we use

the MSE loss

Lrec = Mean

[(
Vij − Ṽij

)2]
, (4.13)

where Vij is the pixel value of (i, j) in the reconstructed image, and Ṽij is the

pixel value of (i, j) in the ground truth image.

4.2.2 Refinement phase

Similar to the main phase, the loss function Lrefine of the refinement phase

has two parts: a pixelwise mask segmentation loss Lmask and a refractive flow

field loss Lflow. The loss function of the refinement phase can then be denoted

as

Lrefine = λ1Lmask + λ2Lflow, (4.14)

where λ1, λ2 are the weights of each component of the loss, and the Lmask and

the Lflow are the same as in the main phase.

4.3 Comparison

Here, we compare the similarities and differences between TOM-Net[4] and

our proposed method ETOM-Net. Fig. 4.4 illustrates a brief comparison

which does not include implementation differences within each block.
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In the main phase, similar to TOM-Net, we use an encoder-decoder struc-

ture with three independent decoding processes to generate three environment

mattes. In addition, both methods use skip connections to connect feature

maps of the same size and multi-scale losses with four different scales.

Unlike TOM-Net, our approach takes low-resolution images as input and

predicts high-resolution environment mattes by adding three RUs between the

encoding and decoding processes. Each RU consists of four RIRBs, which are

stacks of residual blocks using channel-wise attention mechanism and residual

learning, as shown in Fig. 4.2.

In the refinement phase, both methods use residual learning to refine the

mattes predicted by the main phase. However, our refinement phase takes

upsampled low-resolution image and the output mattes of the main phase as

input and predicts only refined segmentation mask and refractive flow field

with the same attenuation map as the input.

As we mentioned before, the quality of the mask does have a significant

impact on the reconstructed image. Thus, compared to the refinement loss

in the TOM-Net, we add a mask loss to improve the quality of the output

mask further as its edges are not smooth enough after being super-resolved in

the main phase. Moreover, we remove the attenuation map loss because the

output attenuation map of the main phase is good enough that the refinement

phase cannot improve it in any way, and training with it will slow down the

convergence of the mask and refractive flow. As with TOM-Net, we do not

include reconstruction loss in the loss function during the refinement phase

because it does not help to preserve the sharp edges of the refractive flow

field.
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Figure 4.4: A brief comparison between TOM-Net and ETOM-Net.
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Chapter 5

Experimental Results

In this chapter, we first present the dataset used for training and eval-

uation and the details of implementing our method. Then, we present the

experimental results and some analysis of our method.

5.1 Dataset

Chen et al.[4] created a large-scale synthetic dataset because there was no

off-the-shelf dataset for transparent object matting. This dataset consists of

background images, input images, ground truth segmentation masks, attenu-

ation and refractive flows, with a total of 178,000 samples for training. They

also created a validation dataset with 900 samples for testing.

In our work, we also use this dataset, and since we are mainly concerned

with super-resolution environment matting, and TOM-Net has demonstrated

good generality of multi-scale encoder-decoder structures from basic to com-

plex shapes, we use only part of their dataset (glass and glass with water) to

reduce the training and testing time. Therefore, we used a dataset with 60,000

training samples and 400 validation samples, which saved us much time, and

we could use them for the ablation study of several variants of the proposed

method.

To facilitate future research, we created a high-resolution dataset with each

image of size 1024 × 1024 pixels called ETOM-Synthetic. The background

images were randomly sampled from the high-resolution training data of the

DIV2K dataset, and then we crop them to 1024 x 1024 as needed.
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For transparent objects, we used Blender to generate 3D models. Since we

needed random shapes and many models, we used Blender’s internal scripting

capabilities and a script we wrote to automate this. As a result, 10,000 high-

quality 3D models with different shapes were generated. A research-oriented

rendering system called Mitsuba 2 was used to render the 3D models onto the

background. We rendered them with random rotation and scaling and placed

them in a random position in the background. Each background was paired

with several different 3D models, and for the super-resolution environment

matting, we also rendered corresponding low-resolution images as input.

To generate the ground truth environment matte, we used Mitsuba 2 as

well. Similar to rendering 3D models to background images, we replaced the

background with a light emitter to generate the attenuation map and turned

the 3D model into a light emitter with no background to generate the seg-

mentation mask. For the refractive flow, inspired by [4], we first generated a

set of high-resolution gray code patterns with ten horizontal and ten vertical

directions for a total of 20 images, and then we rendered the 3d models in

front of them in sequence to generate the corresponding refractive flows. In

the end, a high-resolution dataset with 60,000 samples was generated.

5.2 Implementation Details

For training settings, we used a batch size of eight in the main phase and

four in the refinement phase, with learning rates starting at 0.0005 and 0.0002

for the main and refinement phases, respectively. We also decayed the learning

rate by half every five epochs. For the optimizer, we used the Adam algorithm

(β1 = 0.9, β2 = 0.999, ε = 1e-08) and applied L2 penalty to prevent overfitting.

For the loss function Eq. 4.9 in the main phase, we set the segmentation

mask weight λ1 = 1, the refractive flow weight λ2 = 0.1, the attenuation

weight λ3 = 10, and the reconstructed image weight λ4 = 10. For the refine-

ment phase loss in Eq. 4.14, we set the segmentation mask weight λ1 = 10,

and the refractive flow weight λ2 = 0.1. Since we used four different loss scales

in the main phase of training, we weighted them by 1/8, 1/4, 1/2 and 1 from
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Table 5.1: Quantitative results comparison. We use mean square error (MSE)
to evaluate the reconstructed image and attenuation, intersection over union
(IoU) to evaluate the segmentation mask, and endpoint error (EPE) to evalu-
ate the refractive flow field. For MSE and EPE, the lower, the better, but for
IoU, the higher, the better.

Rec↓ Attenuation↓ Flow↓ Mask↑
Baseline 0.696 1.426 2.569 0.102

TOM-Net 0.220 0.252 1.500 0.964

SR+TOM-Net 0.278 0.340 1.658 0.884

ETOM-Net: main 0.201 0.203 1.579 0.958

ETOM-Net: refine 0.192 0.203 1.516 0.968

scale 0 to scale 3, respectively, to make the network focus on the larger scale.

During the training process, the input images in the dataset are downsam-

pled by a factor of two and used as the input to the ETOM-Net main phase,

and subsequently, its output is concatenated with the input of the main phase

and sent to the refinement phase. The refinement phase outputs the refined

segmentation mask and refraction flow field but does not do anything to the

attenuation map. Once the training is complete, we can use the trained models

main phase and refine phase to predict a high-resolution environment matte

using a single low-resolution input image in a single pass.

Using the Adam optimizer, the training process took four days for the

main phase and five days for the refinement phase on an Nvidia 2080Ti GPU.

The best model for each phase is selected based on the validation results

of each epoch using early stopping. The code for ETOM-Net and render-

ing can be found on GitHub: https://github.com/1asso/ETOM-Net and

https://github.com/1asso/Rendering.

5.3 Results

In the experiments, we compare the refinement phase of the ETOM-Net

against the main phase, the TOM-Net (use bicubic upsampled images as in-

put), and a super-resolution method with the TOM-Net, as shown in Fig.

5.1. Here, we use the EDRN[5] to achieve super-resolution because it employs
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Figure 5.1: The models we used in this experiment. Note that the HR refrac-
tive flows are converted to HSV (meaning Hue, Saturation, Value) images, in
order to look more intuitive. Therefore, an empty refractive flow (0, 0, 100%)
looks white.
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an encoder-decoder residual network and a channel-wise attention mechanism,

which is similar to the structure of our ETOM-Net. A single input image is fed

to the EDRN to produce a super-resolved output image, and then the output

is used as the input to the TOM-Net to predict the high-resolution environ-

ment matte. We introduce a baseline model to produce the worst results by

using the corresponding background image as the output reconstructed image,

two one-filled tensors as the output attenuation and segmentation mask to

simulate null attenuation and mask, and use a zero-fill tensor as the output

refractive flow field to simulate a null flow without offsets.

Quantitative results of ETOM-Net are shown in Table 5.1. We can see that

all methods are much better than the baseline model, which indicates that they

can estimate the environment matte successfully. Compared to the original

TOM-Net, SR + TOM-Net produces poorer results in all metrics because the

super-resolution approach introduced many unrealistic synthetic details, which

affect the performance of TOM-Net. TOM-Net itself can already predict visu-

ally good results by taking bicubic upsampled images as input. However, the

main phase of our ETOM-Net has beaten TOM-Net in terms of reconstructed

images and attenuation. In particular, the main phase produces much better

results than TOM-Net in terms of attenuation, which demonstrates the effec-

tiveness of using the RU with an encoder-decoder network. The ETOM-Net

refinement phase further improves the output refractive flow and segmentation

mask of the main phase, giving better results for both metrics than the main

phase. It also produces the best overall results among all tested methods,

showing the effectiveness of the refinement phase.

Fig. 5.2 presents some qualitative results of our ETOM-Net compared to

TOM-Net and SR + TOM-Net. Our method produces smoother borders in

terms of the output segmentation mask, and the stems of the wine glasses look

more natural than that of the other methods. The ETOM-Net output attenu-

ation has more detail, especially in the feet and stems, and the reconstructed

images have more detail and more realistic refraction. See Fig. A.2, A.3, A.4

and A.5 for more results.
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Figure 5.2: Qualitative results comparison. The first three columns are the
results from SR+TOM-Net, TOM-Net and ETOM-Net, respectively. The last
column are the background and ground truth. The input image for each model
is a degraded ground truth image.
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5.4 Ablation Study

In order to understand the effectiveness of each component in our ETOM-

Net, we created several variants of ETOM-Net and analyzed them quanti-

tatively. Here, we focus on the RU, the object mask loss (Lmask) and the

attenuation loss (Lrho) in the refinement phase. We remove the RU and half

of the RU to create model main - RU and model main - RU (part), respectively,

and remove Lmask in the refinement phase to create model refine - (Lmask), and

include Lrho to create model refine + (Lrho). We also add a baseline model by

using the same tactics as in the previous section.

Similar to that in the experimental results, we use the IoU for evaluating

object masks, EPE for refractive flow, and MSE for attenuation and recon-

structed image, respectively. The quantitative results are presented in Table

5.2.

First of all, all variants, including the main and the refine phases of the

ETOM-Net, unquestionably exceed the baseline by a large margin in all eval-

uation metrics. Removing the RU from the main phase degrades the overall

performance, and removing half of the RU gives better results than removing

all of them, which indicates that the number of RIRB inside the RU does have

an impact on performance.

For the refinement phase, removing Lmask or adding Lrho to the loss func-

tion leads to a decrease in performance, and although the presence of Lrho
further improves the attenuation metric, the other three metrics decrease as

a result. In general, the main phase with the refinement phase produces the

best results. Fig. 5.4 and Fig. A.1 shows the effectiveness of the refinement

phase.

We also evaluate how the number of RIRBs within each RU affects the

results and training. As shown in Fig. 5.3, figure (a) shows the relationship

between the mean square error of the output reconstructed image and the

number of RIRBs, and figure (b) shows the effect of the number of RIRBs on

the GPU memory footprint (megabytes). From Fig. 5.3 (b), we can see that

the GPU cost is positively correlated with the number of RIRBs. We used a
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Figure 5.3: Analysis of the effect of the number of RIRBs in each RU on the
results

Table 5.2: Ablation study results

Variants Rec↓ Attenuation↓ Flow↓ Mask↑
Baseline 0.696 1.426 2.569 0.102

main - RU (part) 0.215 0.209 1.583 0.957

main - RU 0.221 0.225 1.602 0.954

main 0.201 0.203 1.579 0.958

refine - (Lmask) 0.204 0.206 1.553 0.957

refine + (Lrho) 0.211 0.202 1.605 0.957

main + refine 0.192 0.203 1.516 0.968

batch size of eight in our tests, and for eight and sixteen RIRBs, we had to

halve the batch size to four in order to enable the model to be trained, and in

the absence of gradient clipping, the training process was volatile because of

the presence of gradient explosion. From Fig. 5.3 (a), the results are getting

better from no RIRBs to eight RIRBs, especially from two to four, achieving

a leap in performance. For sixteen RIRBs, the performance drops, probably

because of the overly complex network. By weighing the performance gain

against the GPU footprint of training, we choose four as the number of RIRBs

within each RU in our model.
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Figure 5.4: Qualitative comparison between the output of the main phase and
the refinement phase.
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Chapter 6

Conclusion

In this thesis, we combine SISR and environment matting to propose an

efficient CNN-based method for super-resolution of environment matting of

transparent objects called ETOM-Net.

The proposed network uses an encoder-decoder architecture with skip con-

nections and multi-scale losses that takes a single low-resolution image as in-

put and then estimates the corresponding high-resolution environment mattes,

including a refractive flow field, a pixelwise segmentation mask, and an atten-

uation map.

Three restoration units are added between the encoding and the decod-

ing processes to allow the network to focus on more informative parts of the

low-resolution input and restore more details to the high-resolution output en-

vironment mattes. Furthermore, a refinement network using residual learning

is introduced to improve the details of the output segmentation mask and the

output refractive flow of the main phase further.

ETOM-Net produces visually plausible results and outperforms the base-

line model by a large extent. Compared to the TOM-Net and SR+TOM-Net

models, the main phase of our method already outperforms them in terms

of the reconstructed image and the attenuation map. With the refinement

phase, ETOM-Net produces the best overall results among all models, which

demonstrates the effectiveness of our proposed method. In addition to the

ETOM-Net, we create a high-resolution synthetic dataset for super-resolution

environment matting called ETOM-Synthetic.
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Although the proposed method ETOM-Net is very effective, it is limited by

the fixed-scale super-resolution and can only be applied to transparent objects

with a single mapping (one mapping at each point), which we will explore in

future work.
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Appendix A

More Results

Figure A.1: Qualitative results comparison in ablation study.
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Figure A.2: Qualitative results comparison (a).
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Figure A.3: Qualitative results comparison (b).
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Figure A.4: Qualitative results comparison (c).
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Figure A.5: Qualitative results comparison (d).
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