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Abstract

The conventional region-of-interest (ROI) method to evaluate dynamic Positron

Emission Tomography (PET) images can be complex, time consuming, inaccurate

(e.g. partial volume effect), and operator-dependent. To overcome these problems,

an optimization-based factor analysis of dynamic structures (FADS) technique with

prior information is proposed and validated using a computer-based simulation.

The technique is then applied to eight sets of [11C]-Dihydratetrabenazine (DTBZ)

dynamic PET volumes to decompose the datasets into factor volumes (FV’s) that

represent the striatum and the non-striatum tissues of the brain, and associated fac-

tor curves (FC’s), describing the uptake and the clearance rates (activity per unit

time) of the DTBZ radiopharmaceutical for the two tissue types. The extracted

FV’s and FC’s are used for stratifying the healthy subjects from patients with early

Parkinson’s disease. In conclusion, the proposed FADS technique has the poten-

tial to significantly aid in the review process for evaluating dynamic datasets by

clinicians.
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Chapter 1

Introduction

1.1 Thesis Organization

This thesis is divided into six chapters (with several subsections) and a bibliog-

raphy. Chapter 1 outlines the organization of this thesis. This thesis begins by

introducing a brief history of the field of nuclear medicine and some background

that is relevant to this research. Then, the physical and biological properties of ra-

diotracers are introduced, and their clinical applications are discussed. A powerful

imaging modality in nuclear medicine, Positron Emission Tomography (PET), is

discussed and the concept of static and dynamic PET imaging techniques are in-

troduced. Then, nomenclatures used in this thesis (e.g. an image, volume, and

dynamic volume) are defined. The conventional region-of-interest (ROI) method

for analyzing static/dynamic PET images is described and the disadvantages asso-

ciated with the method are discussed. Then, the concept of time activity curves

(TAC’s) and its application to the functional imaging is introduced. To improve the

quality of analysis and to reduce the problems associated with the traditional ROI

approach, factor analysis of dynamic structure (FADS) is proposed as a possible

solution. A brief introduction of FADS and the key concepts, like factor volumes

(FV’s) and factor curves (FC’s), are introduced and the drawbacks of the standard

FADS technique are discussed.

Chapter 2 starts by introducing a mathematically well-known data decomposi-

tion technique - singular value decomposition (SVD) - and its application to FADS

(i.e. noise reduction and estimating the number of factors present in the dynamic

dataset). The SVD technique is extensively used throughout this thesis for the data

preprocessing and for estimating the number of factors in the dynamic dataset. In

Chapter 3, various numerical simulations are carried out to emphasize the impor-

tance of the SVD technique in this work. The concept of nonnegative matrix fac-



2

torization (NMF) is introduced and its relation to FADS is discussed. Then, two

well-known optimization techniques - projected gradient method (PGM) and al-

ternating non-negative least-squares (ANLS) - are introduced and used to describe

the NMF technique in detail. The proposed FADS technique, which minimizes the

drawbacks of the standard FADS technique, is explained by a step-by-step proce-

dure of the NMF technique with priori information. The remainder of Chapter 2

describes different methods used to investigate various factors affecting the SVD

and FADS solutions.

In Chapter 3, simulation studies are preformed to investigate the effects of vari-

ous factors on the SVD and FADS solution (by the proposed FADS technique) us-

ing three sets of three-compartment (tissue-specific) models. These factors include

signal-to-noise ratio (SNR), shape of underlying kinetics, size of voxel-averaging

(VA), and partial volume effect (PVE). The effects of prior information on the

FADS solution (i.e. accuracy and convergence rate) are also examined.

In Chapter 4, the proposed FADS technique is applied to eight [11C]-Dihydrotetra-

benazine (DTBZ) dynamic PET datasets in order to obtain FV’s (i.e. striatum

and non-striatum tissues) and associated FC’s for each subject’s dataset. DTBZ

is a positron emitting radiopharmaceutical and is developed to detect patients with

early Parkinson’s disease (PD) by targeting the dopamine receptors in the mid-

region of the brain (e.g. nigrostriatal region). Based on the extracted FV’s and FC’s

from each subject’s dataset, in-house developed, factor-based metric is computed

to stratify healthy subjects from early PD patients. For the ease of visualizing and

comparing the extracted FV’s against the original time-averaged (TA) volumes, a

MATLABT M-based graphical user interface (GUI) is developed by the author. The

GUI displays the time-averaged slice and the corresponding factor images from the

FV’s with the option of viewing the time frames of the selected slice. The results

of the factor-based metric are in excellent agreement with the diagnostic results by

the physicians for the eight subjects.
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Chapter 5 summarizes the effects of aforementioned factors on the SVD and

FADS solutions. In particular, the effects of prior information and of estimating the

proper factor number (q) are emphasized. The advantages and disadvantages of the

proposed FADS technique against the other techniques are briefly discussed.

In Chapter 6, conclusions of this work are given with possible future directions.

1.2 Introduction to Nuclear Medicine

Nuclear medicine is a branch of medicine that uses radionuclides (or radioactive

atoms) in the diagnosis and treatment of disease. The development of this field

goes back to the early 1900s when Hungarian-Danish chemist Georg Von Hevesey

first suggested the tracer principle - one can rely on the decay process of a radioac-

tive substance as an indicator to trace the movement of the radionuclide in a living

organism [1]. He later validated his tracer principle using rabbits and showed the

movement of a radioactive source (Radium-D) through the digestive tract and into

the bones. He was awarded the Nobel Prize in chemistry for his work in 1943 and

laid the foundation for the field of nuclear medicine. The idea of the tracer principle

is extremely valuable to clinicians and researchers because it provides non-invasive

way to obtain functional information about the underlying physiology of organs or

structures of interest. The tracer principle has been used to identify various types

of disease and some examples include: detection of nonmaligant bone lesions [2];

myocardial perfusion scan for evaluating coronary artery disease and risk of cardiac

events [3]; hepatobiliary scan for the detection of gallbladder disease [4]; thyroid

scan for evaluating hyperthyroidism [5]; and many other examples. The field of

nuclear medicine continues to grow with the development of new technology and

the availability of new radiotracers. The field has made significant impact and con-

tributions toward performing medical diagnosis for the various types of diseases.
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1.3 Radioactivity and Radiotracers

In nuclear physics, an atom (or element) is defined as the smallest structure that

possesses physical and chemical properties. A radionuclide is an unstable atom that

undergoes nuclear decay processes such as alpha decay, beta-minus decay, gamma

decay, positron emission, or electron capture. It is outside of the scope of this work

to define and describe all of the different decay processes but one can find detailed

information about these processes in any of the standard nuclear medicine textbooks

[6, 7]. A detailed discussion of positron emission is followed in the latter part of this

section since positron-emitting radionuclides form the signal for the static/dynamic

positron emission tomography (PET) imaging.

Radioactivity (or activity) is known as the rate at which given sample of ra-

dionuclide disintegrates per unit time. The commonly used International System

of Units (SI) for radioactivity is Becquerel (Bq), named after Henri Becquerel who

discovered mysterious ray: (“emanations” of the uranium) in early 1896, and it

is equivalent to 1dps (disintegration per second). Radioactive decay is a random

process (with statistical fluctuation) and follows Poisson statistics [8]. Macroscop-

ically speaking, the decay process of a sample of radioactive material depends on

the radionuclide’s decay constant λ and is given by,

A(t) = A0e−λ t , (1.1)

where A(t) and A0 are the amount of radioactivity at time t and at time t=0, respec-

tively. By defining, the half-life (t1/2) as the time it takes for the original radioac-

tivity of a sample to decrease by exactly one-half, one can write the relationship

between the half-life and the decay constant as,

λ =
0.693
t1/2

. (1.2)

Equation 1.1 and 1.2 are useful in the later section of this Chapter for determining

the decay correction factor for dynamic images produced by PET imaging.
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Radiation emitted by the radionuclide can be largely divided into photons and

charged particles. A photon is a packet or a quantum of electro-magnetic radia-

tion that is massless and travels at the speed of light. X-rays and gamma rays are

classified as photons with energy greater than 100 electron-Volt (eV) [6]. When

a photon interacts with tissues it produces secondary electrons that deposit energy

into tissues. Since it is the electrons that deposit the energy into the tissue, photons

are referred to as indirectly ionizing radiation. On the other hand, charged parti-

cles (e.g. alpha and beta particles) directly deposit their energy into tissues and the

likelihood of a charged particle interacting with tissues is much higher than that of

photons interacting with tissues for the same amount of kinetic energy.

The positron is a very important radiation particle employed in nuclear medicine

imaging. It is a by-product of proton-rich radionuclides undergoing nuclear decay.

Positrons interact with any tissues by electrostatic ionization and lose most of their

energy by following a tortuous path until their energies reach a thermal value (a

few eV). The positively charged positron will then combine with a nearby electron

to produce two (511 keV) annihilation photons (or gamma-rays) at approximately

180◦ apart. It is important to note that the production site of the annihilation photons

is some distance away from the production location of a positron, generally less than

a few millimeters.

Positron-emitting radionuclides (e.g. 11C, 13N, 18F, 15O) are combined with

various chemical compounds to form different radiopharmaceuticals. Depending

on the physical and chemical properties of the radiopharmaceuticals, it is possible

to target various tissues and organs of interest for imaging. For example, fluo-

rodeoxyglucose ([18F]-FDG) is a glucose analogue attached to a positron-emitting

radionuclide [18F]. Since most tissues regulate glucose uptake in the body, the in-

tensity level of positrons from [18F] can be used to generate a map of glucose up-

take. This type of drug is called a metabolic marker and is useful for detecting

cancerous tumors since many of them have elevated metabolism (hypermetabolic
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tumors) compared to the surrounding normal tissues. As a result, hypermetabolic

tumors display increased intensity in PET images. This imaging technique is there-

fore especially useful for detecting metastatic disease. Another example is [11C]-

dihydratetrabenazine (DTBZ), which is developed and used for detecting patients

with early Parkinson’s disease (PD). It targets dopamine receptors in the mid-region

of the brain (i.e. nigrostriatal region). For a diseased subject, the loss of dopamin-

ergic neurons implies that there are smaller number of binding sites for the DTBZ

tracer than for a non-diseased subject. Therefore, the uptake of the DTBZ tracer

by the dopaminergic neurons for a healthy subject is much higher than that by the

dopaminergic neurons for a diseased subject. The difference in the tracer uptake

levels between the two groups (e.g. diseased vs. non-diseased) can then be used to

distinguish healthy subjects from PD patients. In Chapter 4, eight DTBZ datasets

are analyzed using the proposed FADS technique.

1.4 Static/dynamic PET Imaging Overview

Standard PET imaging produces a set of N trans-axial images representing the 3D

activity concentration distribution (3D ACD) within the field of view of the scanner

(e.g. N=45 for our scanner). In dynamic PET imaging, the 3D ACD is sampled at

M successive time points (i.e. M=16 in our case), resulting in M representations

of the 3D ACD. Most modern PET scanners are capable of acquiring either static

or dynamic datasets. In dynamic PET imaging, the duration of each time point and

the number of time points for sampling the PET volumes are carefully chosen after

considering the physical and chemical properties of the radiopharmaceutical (e.g.

half-life and molecular structure) and biological property of the tissues or organs

of interest (i.e. uptake and clearance rates of the radiopharmaceutical). While both

imaging techniques produce functional images for the tissues or organs of interest

the dynamic imaging technique can provide additional, clinically relevant, informa-

tion about the underlying physiology as compared to any single observation of the
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3D ACD at a single time point. The uptake and clearance rates of the radiopharma-

ceutical by the organs or tissues of interest are used to diagnose any malfunction of

the underlying physiology. For the case of dynamic volumes, the TA PET volume

is used to identify and contour the structures of interest using the region-of-interest

(ROI) method. Then, these masks are applied to the PET volumes at different time

points to obtain the time evolution of the 3D ACD for the structures of interest.

Even though the ROI method is a standard technique to obtain TAC’s from the dy-

namic PET dataset there are several disadvantages associated with the technique.

In the latter sections of this Chapter, the drawbacks of the ROI method and the

possible solutions are discussed.

1.5 Nomenclatures of Images, Volumes, and Dynamic volumes

In a PET study, an image is an intensity distribution map of the radiopharmaceu-

tical in a thin slice of a volume within the field of view of the scanner. A typical

(trans-axial) image consists of 144 × 144 voxels and each isotropic voxel is 4 ×

4 × 4 mm3. Thus, each voxel represents the average 3D activity concentration of

the radiopharmaceutical in a small (64 mm3) volume with units of Bq/ml. The PET

imaging technique used by our scanner produces 45 slices to represent the scanned

volume within the field of view of the scanner. Therefore, identifying organs or tis-

sues under study will often involve working with multiple slices in the PET volume.

By sampling the PET volume at M successive time points dynamic PET volumes

can be produced. The dynamic PET volumes describe the temporal variation of

3D ACD for the imaged volume and may provide additional clinical information

compared to a PET volume imaged at a single time point. The time evolution of

the 3D ACD (or time activity curve) for the tissues or organs of interest provides

(extremely useful) functional information about the underlying physiology. The

downside of these dynamic volumes is the large amount of data produced for anal-

ysis. For example, the data size of dynamic PET dataset with 20 TF’s and 45 slices
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is 20 × 45 images and the image reviewer needs to analyze these 900 images.

1.6 Positron Emission Tomography

It is out of scope for this study to describe the PET imaging technique and sys-

tem in full detail, however; the principle and key ideas of the technique and the

system are presented in this section. Detailed information about the PET imaging

system can be found in any standard nuclear medicine textbook [6, 7]. While var-

ious imaging techniques are available, PET is important imaging modality and is

becoming increasingly popular in the field of nuclear medicine. The PET imag-

ing technique is emission-based and uses positron-emitting radionuclides (i.e. 11C,
13N, 18F, 15O, etc). It is based on the coincidence detection (several nano-seconds)

of two 511-keV annihilation photons, generated when a positron combines with a

nearby electron. A positron is positively charged electron and is produced when a

proton-rich radionuclide undergoes a decay. During this process, a proton in the

nucleus is converted into a neutron, a positron, and a neutrino. Excess energy in the

nucleus is shared as kinetic energy by the positron and the neutrino.

To image different tissues or organs in the body, radionuclides are attached to

various chemical compounds to target specific cells or tissues. For example, [11C]-

Dihydrotetrabenazine (DTBZ) radiopharmaceutical - used in this study - targets

dopaminergic neurons in the substantia nigra of a brain (or striatum tissues). Other

commonly used radionuclide for the PET imaging is 18F and some examples of

radiopharmaceuticals using 18F include [18F]-fluorodeoxyglucose (FDG) for mea-

suring glucose uptake in the body, [18F]-flurothymidine (FLT) for targeting actively

proliferating cells, and [18F]-fluoroazomycin arabinoside (FAZA) for targeting oxy-

gen deprived cells (tumor hypoxia). The physical half-lives for 11C and 18F are 20

minutes and 110 minutes, respectively. The physical half-life of the radiopharma-

ceutical and the biological half-life for the tissues or organs of interest should be

carefully considered when determining the number of time frames (TF) and the
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duration of each TF for generating dynamic PET volumes.

PET images suffer from the low image quality (i.e. low spatial resolution) due

to four well-known physical phenomena: first, a positron with kinetic energy goes

through tortuous path until its energy becomes at thermal level and then combines

with a nearby electron to generate two 511 keV annihilaton photons. Thus, the pro-

duction site of the two photons are a few millimeters away from where the positron

is actually created; second, the PET imaging technique relies on the coincidence de-

tection of the two annihilation photons that are 180◦ apart. However, these paired

photons are not exactly colinear (e.g. 180◦±0.25◦) due to small residual momen-

tum of the positron at the time of the annihilation; third, the detector size (e.g. area

of crystal face) greatly affects the spatial resolution of an image. Higher spatial res-

olution can be achieve by reducing the detector size (e.g. length of detector face) up

to several millimeters. Further reducing the detector size will be meaningless due

to the positron range and the non-colinearity of the annihilation photons; Fourth,

the probability of annihilation photons interacting with two or more neighboring

detectors decreases as the detector size gets small. This increases the spatial reso-

lution in an image by introducing an error (several millimeters) in the localization

of the detector pair responsible for the annihilation event. Another factor that can

degrade the spatial resolution of an image is a type of filter used with a reconstruc-

tion algorithm. If the filter has a high cutoff frequency then it introduces noise in

the image. Aforementioned factors contribute to the inaccuracy in the measured

sinograms that are used for reconstructing static and/or dynamic PET images. This

is the reason for the PET imaging technique to use relatively larger voxel size of 43

mm3, compared to other imaging modalities such as Magnetic Resonance Imaging

(typically 1 mm3) or Computed Tomography (1.443 mm3). By reducing the voxel

size to 1 mm3 from 64 mm3 the SNR of the voxel decreases by a factor of 8 (= 2√64).

The manufacturer determined the optimum size of a voxel for our PET scanner is

43 mm3 and the same voxel size is used for this study.
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The fundamental idea behind the PET imaging technique is the coincidence

detection (within several nano-seconds) of the two 511 keV photons from the same

annihilation event. Unfortunately, there are multiple pathways that the annihilation

photons can undergo before getting detected and this has an effect of reducing the

signal-to-noise (SNR) in an image (or reduction of contrast in an image). Multiple

scenarios can occur after the creation of the annihilation photons: they can reach

the opposite detectors without being scattered (true event); one or both photons can

undergo scattering before getting detected (scattered event); photons from the two

separate annihilation events reach a detector pair (random event); both photons get

absorbed (no event) or only one of them reaches the detector (single event); Thus,

measured count rates consist of true (Tr), scattered (Sc), and random (Rn) count

rates. Various methods to correct for random and scattered count rates can be found

in the following nuclear medicine textbook [9, 10]. The noise equivalent count rate

(NECR) is used to measure the image quality and is proportional to the SNR of the

reconstructed images. It is defined as,

NECR =
Tr2

Tr+Sc+Rn
. (1.3)

The SNR’s of the images increase by reducing the scattered and random count rates

while maintaining the true count rate. The random count rate (R) is proportional

to τC1C2 where τ is the coincidence time window (in nan-seconds) and C1 and C2

are single count rates from a paired detector. The R grows exponentially with the

increased amount of radioactive sample used in the study. Thus, it is critical to

determine the optimum dosage of radionuclide to avoid excessive random count

rate.

PET is a state-of-the-art system with sophisticated electronic components. The

most important and complex components of the PET system is the detector system

and it consists of several rings of small crystals (optically) coupled with photomul-

tiplier tubes. The crystals convert a high energy gamma-ray into numerous lower



11

energy light photons (scintillation process). The crystals are doped with small

amounts of impurities to increase the light output in response to the energy de-

posited (to the crystals) by the incident gamma-rays. The most widely used scintil-

lation crystal for gamma-ray detection is sodium iodide (NaI) doped with thallium

(Tl). However, modern PET systems employ LSO crystals doped with Ce or LYSO

crystals doped with Ce because of the following reasons: shorter scintillation decay

time (reduction in detector dead time); high atomic number and high density (high

stopping power for the detector and high linear attenuation coefficient for 511keV

photons); high yield of light output per keV of photon energy (higher light yield

will improve the energy resolution of the detector); good energy resolution of the

detector. The interaction between gamma-rays and crystals is a complex process but

it can be briefly described as follows. After the crystal absorbs the energy imparted

by the gamma-ray its electrons are temporarily left in an excited state. Shortly after

the excitation, the electrons begin to return to their ground state and some of the

excitation energy is released as light photons. These light photons are then detected

and amplified by photomultiplier tubes to produce electric signals. These signals

are further amplified and sent to pulse height analyzer for discriminating photons

with energy outside of the specified energy window. For instance, scattered photons

will have lower energy then 511 keV. In some cases, more than two photons can be

absorbed by the crystal simultaneously and the corresponding energy will be higher

than 511 keV. However, it is possible for photons from multiple annihilation events

to reach the detector simultaneously and the sum of their energy fall within the

specified energy window. Since there is no way to discriminate such events from

the true events they form as a part of signal and reduces the SNR of the image.

When the paired 511 keV photons reach the two “opposite” detectors within the

coincidence time window (i.e. electronic collimation is used to improve the detector

sensitivity), the system considers that the two photons are from the same annihila-

tion event (see figure 1.1). The event is then said to have occurred somewhere along
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http://en.wikipedia.org/wiki/File:PET-schema.png 

Figure 1.1. This figure illustrates a simplified data acquisition process for the
Positron Emission Tomography system.

an imaginary line called the line of response (LOR) that connects the two “oppo-

site” detectors. Errors in creating the LOR’s (e.g. aforementioned factors in this

section) will decrease the image quality (e.g. lower spatial resolution and lower

image contrast). Since photons travel different thickness of tissues in the body to

reach the detector pair each LOR is applied with the (photon) attenuation correc-

tion. These LOR’s are binned in a special geometric fashion to create sinograms. A

sinogram is function of radius (distance measured from the center of the bore) and

angle (measured clockwise from the axis perpendicular to the coronal plane). Thus,

each pixel point in the sinogram corresponds to the signal intensity (or measured

activity) along a LOR. Modern scanners are capable of producing sinograms in both
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2-dimensional and 3-dimensional modes. Each detector ring produces a sinogram

in the 2D mode whereas non-redundant detector pair generates sinogram in the 3D

mode. Hence, the detector sensitivity is significantly improved at the cost of in-

troducing higher number of scattered and random events in the 3D mode. These

sinograms are then used to construct 3-dimensional PET images using an iterative

reconstruction algorithm [11, 12].

1.7 Region-of-Interest Analysis and Time Activity Curve

The conventional ROI method to evaluate static or dynamic PET images can be

complex, very time consuming, and operator-dependent. In this approach, the oper-

ator first has to identify the organs or tissues of interest (in 3-dimensions) by visual

inspection and then carefully create masks (i.e. ROI’s) for the slices containing the

structures of interest. In the case of dynamic PET imaging, the TA PET volume is

used for identifying structures and creating the masks. These masks are then ap-

plied to the individual PET volumes at different TF’s to obtain a TAC’s (temporal

variation of 3D ACD from a voxel or group of voxels). For dynamic PET images,

it is difficult for clinicians to interpret the subtle changes and/or trends in the 3D

ACD as a function of time due to the vast amount of information generated by the

imaging technique. More importantly, the 3D ACD in a voxel may be a linear com-

bination of activities from multiple physiological structures due to the finite voxel

size of the PET scanner (i.e. isotropic 64 mm3 voxel). This partial volume effect

(PVE) and the subjectiveness of the ROI method make the manual approach less

attractive for quantitative analysis. To overcome these problems, an optimization-

based FADS technique is proposed in the next section. The proposed technique

minimizes the PVE and is semi-automatic, computationally robust, and operator

independent. As a result, the technique can significantly aid the review process and

improve the quality of medical diagnosis.
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1.8 Factor Volumes and Factor Curves

In nuclear medicine, the conventional ROI method, which requires manual identifi-

cation of structures, is often used to understand the kinetics of underlying physiol-

ogy or to identify physiological structures. To simplify the analysis and improve the

quality of the analysis, Barber [13] introduced a principle-component based factor

analysis technique that automatically decomposes the dynamic dataset into q factor

curves (FC’s) and factor images (FI’s) such that the TAC of any voxel in the dataset

can be represented by the linear superposition of q FC’s with appropriate coeffi-

cients. These coefficients are then reshaped to form factor images (or volumes) that

represent the underlying physiology and this technique can minimize the partial

volume effect. His technique has been investigated by several authors [14, 15].

This technique assumes that noise in the dataset follows the Gaussian distribu-

tion and the structure defined by a factor image is homogeneous and the shapes

of normalized TAC’s (by the maximum value of each TAC) are all same within the

structure. The number of factors in the dynamic dataset is denoted by q and must be

determined prior to performing factor analysis. His technique is based on the prin-

ciple component analysis (PCA) of the dynamic image data and application of the

oblique rotation to obtain physiologically meaningful (nonnegative) FC’s and FI’s.

The factor model does not make any assumption about the shapes of the FC’s. Bar-

ber applied his technique to dynamic (gamma-camera) brain studies and extracted

three factors that represent the arterial, venous and tissue components. His method

was inspired by Schmidlin [16] who used principle components analysis to char-

acterize the TAC’s within the regions of the renogram (a dynamic renal study) by

their rise and decay times. Paola et al [17] describes Barber’s method in detail - es-

pecially the apex-searching algorithm where an apex corresponds to a factor curve

- and Houston [18] investigated the effect of apex-finding errors on factor images.

Barber’s algorithm is an iterative method with relatively fast convergence but has a

major drawback - the solution is not mathematically unique [18, 19, 20, 21] and this
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has been a stumbling block for several years. To reduce the ambiguity and increase

the accuracy of the solution, Nijran and Barber [22, 23] incorporated prior informa-

tion to the factor analysis by providing exact temporal and spatial information of

the known physiological structures. Unfortunately, this information is not available

for every dataset and can be only applied to special cases. Later, Buvat et al [24]

reported a newly improved way of incorporating (less-extensive) prior knowledge

into the FADS technique. Detailed discussion of the non-uniqueness problem is

included in the latter part of this section and in Chapter 2.

The idea of data decomposition is not new and various types of decomposi-

tion techniques are available (e.g. principle component analysis and singular value

decomposition) [25, 26, 27]. However, such techniques alone are insufficient for

the FADS analysis (e.g. finding factor curves and images) because they produce

negative values as a part of their solutions. Since radioactivity cannot be negative,

the solutions from these techniques are not in general physically meaningful. To

comply with the factor model (refer to equation 2.4), factor curves and factor co-

efficients have to be non-negative. Unfortunately, non-negativity alone does not

guarantee a unique solution [22, 23, 28] and additional constraints are typically

required to reduce the ambiguities in the solution.

Different iterative methods have been developed for FADS analysis and they can

be largely divided into two groups: apex-seeking (AS) algorithm and optimization-

based least-squares (LS) method. Sitek et al [29] compared the two methods -

that use completely different algorithms - using computer simulations, and 99mTc-

Teboroxime experimental canine and patient studies. He utilized a priori informa-

tion to constrain the solution space (in order to obtain a unique solution) and showed

that the results produced by the two techniques are very similar. The importance

of appropriate constraints cannot be overemphasized as they heavily influence the

quality of the solutions [29, 30]. Nakamura et al [31] and Sitek et al [32] applied

the maximum entropy method [33, 34] to obtain unique solutions for the FADS
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analysis. In their optimization-based techniques, weighted entropy terms consist-

ing of factor curves and factor images, are subtracted from their objective functions.

Maximizing the entropy terms can minimize the ambiguities of the FADS solution.

The main problem of such a technique is the pre-determination of the weighting

factor, which can vary between different datasets and with varying SNR’s, for the

entropy term.

It is important to remember that the unique solution is no guarantee for finding

the true FC’s and FV’s (or true underlying physiological structures). So, it is crucial

for the analyst to compare the factor analysis solutions with the known information

about the dataset and to use common sense before making any decisions based on

the FADS results. Depending on the shapes of TAC’s in the dynamic dataset, the

non-uniqueness effects can be significant or be nearly non-existent [28]. Never-

theless, several authors have successfully applied the FADS techniques (with var-

ious types of constraints) to different kinds of dynamic image data. Schiepers et

al [35] implemented Barber’s technique [13] without any additional constraint and

successfully identified normal and abnormal lobes of the prostate gland from nine

prostate cancer patients. They reported that the extracted FC’s - which can be used

for kinetic modeling - were comparable to the image-derived TAC’s by the con-

ventional ROI-based method. His technique has been successfully applied to other

clinical areas such as renal studies [36, 37, 38], (gated) cardiac studies [39, 40] and

abnormalities in the thyroid uptake studies [41]. In renal and cardiac studies, it is

particularly difficult to perform the traditional ROI analysis because of the PVE’s

(due to voxels containing multiple tissue or kinetic information as a result of the

finite spatial resolution of the scanner) and spillover effects (due to lung, heart or

patient motions) in the datasets. Another possible application of the FADS tech-

nique is reducing noise in dynamic datasets [42].

After the successful application of FADS to human studies, various authors be-

gan to explore the feasibility of the technique in small animal (mouse, rat, and dog)
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studies [43, 44, 45, 46]. Due to their small size and the limited spatial resolution

of the micro-PET scanner (e.g. partial volume and spillover effects are much more

prominent), the standard ROI method is not only harder to implement but also gives

less accurate and reliable information about underlying tracer kinetics. Since small

animal studies often involve the cardiac region where heart muscle (or myocardium)

surrounds the left ventricle (or input arterial function) and is in periodic motion, the

ROI method simply cannot extract accurate arterial input function (for quantitative

analysis) [45, 46]. The manual extraction of blood samples is invasive and can be

difficult to perform due to small amount of available blood in the animal. Instead of

collecting multiple blood samples, Wu et al [43] showed that a single blood sample

constraint could be applied to FADS for more accurate extraction of (left ventricle)

arterial input function. In some cases, FADS works very well while in other cases,

FADS fails to extract correct input functions with only the nonnegative constraint.

This can be due to very large overlap of structures and/or low SNR. It is important

to remember that FADS cannot separate (physiological) structures if they overlap

completely. For FADS to work there must be enough voxels with “pure” functions

or underlying kinetics [47]. The presence of noise in the dataset can play a major

role in the FADS result and the effect of noise is extensively studied in Chapter 3.

More recently, optimization-based factor analysis techniques with uniqueness

constraints (to obtain unique solutions) have become popular [28, 48, 49]. The

advantage of optimization-based methods is that different types of constraints are

readily available and can be easily incorporated into the method. Sitek et al [28]

provides detailed discussion of estimating and embedding the uniqueness term to

the objective function. He achieves the unique solution (i.e. a factor volume that

represents a single physiological structure) by minimizing the overlaps between

structures defined by factor volumes. The downside of such a technique is the

estimation of a penalty parameter (which is a part of the uniqueness term) that

depends on the noise level in the dataset and the type of dataset. He also claims that
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his non-uniqueness correction either works, or does not work. These facts make the

technique less quantitative and less desirable.

In this thesis, the optimization-based FADS technique is proposed in the frame-

work of the nonnegative matrix factorization. The proposed techniques is semi-

automatic proces and uses prior information about the known physiological struc-

tures (i.e. sample TAC’s from the q structures by the standard ROI method) to

warm start the optimization. The sample TAC’s are rough estimate and can contain

mixed tissue information. Our technique does not require any blood sampling or

pre-determination of penalty constants. By providing a good starting point for the

optimization, the technique significantly reduces the number of possible solutions

and the resulting solution is much closer to the true solution in comparison to the

solution without the prior information (see Chapter 3). The technique is computa-

tionally robust and operator-independent. It requires the minimum amount of work

and most importantly, it can be used for the quantitative analysis. The technique is

highly desirable for analyzing a sequence of medical images and has the potential

to greatly improve the quality of medical diagnosis.
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Chapter 2

Methods and Materials

2.1 Method

2.1.1 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a powerful mathematical technique for de-

composing a data matrix into two (left and right) orthogonal bases and singular

values. The data matrix decomposition can be done by various techniques (i.e.

PCA, SVD, LU decomposition, Gaussian elimination, cluster analysis) but SVD,

which is very efficient and has nice mathematical properties (see below), is known

to handle singular (or ill-conditioned) matrices much better than the other tech-

niques [26]. SVD is particularly useful for this study: first, it estimates the number

(q) of factors (or tissue-specific structures) in the dataset (q is a pre-requisite for the

FADS); and second, it is used to reduce the amount of noise present in the dataset.

As discussed in Chapter 3, the accurate estimation of q cannot be over-emphasized

as it is crucial for the successful application of FADS. The SVD technique is more

sensitive in finding the number of (hidden) factors from the noisy dataset than the

PCA technique (see Chapter 3).

Suppose we have an [m2,n22] data matrix X that represents a sequence of dy-

namic medical images such that m2 and n2 describe the total number of voxels and

time frames, respectively. To estimate the number of pure functions (or underlying

kinetics) in the dataset, SVD can be applied to the dynamic dataset,

X =

∣∣∣∣∣∣∣∣∣
X11 · · · X1n2
...

. . .
...

Xm21 · · · Xm2n2

∣∣∣∣∣∣∣∣∣ .

X = u·s·vT , (2.1)
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where u, s and v are [m2,n2], [n2,n2] and [n2,n2] matrices, and T denotes the trans-

pose operator. The columns of u and v denote left and right eigenvectors, respec-

tively. The diagonal matrix s contains information about the contribution (or im-

portance) of the left eigenvectors (columns of u). This can be seen by projecting

the data matrix X onto the right orthogonal bases v as follow,

X·v = u·s, (2.2)

since vT ·v = I where I is identity matrix. Notice that kth column (k = 1, · · · ,n) of

u is multiplied by the kth diagonal singular value of s (e.g. weighting factor for kth

principle image or volume). This means that n2 resulting column vectors in the right

side of equation 2.2 represent n2 principle images or volumes (i.e. uncorrelated

images or volumes). Generally speaking, the eigenvectors corresponding to small

singular values are considered as noise and can be eliminated from the dataset. The

noise contribution can be reduced by simply replacing small singular values in s of

equation 2.2 by zeros and re-projecting both sides of the equation by vT . From the

orthogonality condition of v, the noise reduced data matrix X′ can be written as,

X′ = u·s′·vT , (2.3)

where s′ is the [n2,n2] diagonal matrix after replacing low singular values in s with

zeros. In the later part of this section a direct application of the SVD technique to a

dynamic sequence of medical images is provided. Detailed discussion of the SVD

and its numerical algorithms can be found in the book of “Numerical Recipes in C”

[26].

For future reference, V is used to describe the dynamic image data instead

of X. Both V and V’ represent the same noise-reduced (by the SVD technique)

dataset. The former is 2-dimensional matrix (i.e. [M×M×N
r×r ,T ]) and the latter is

4-dimensional dataset (e.g. [M
r ,

M
r ,N,T ]).
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2.1.2 Factor Model: Least Squares Approach

Factor analysis of dynamic structures (FADS) is extremely useful mathematical

technique for decomposing complex dynamic medical images into factors that rep-

resent the “pure” underlying kinetics (FC’s) and associated physiological structures

(FV’s) [17, 22]. It has the potential to significantly aid the review process (by clin-

icians) and thus improve the quality of medical diagnosis. The key assumption of

the factor model is that the TAC of a given voxel (from the noise-free dataset) can be

represented by a linear combination of q FC’s with appropriate coefficients. These

coefficients are then used to generate factor images or volumes - that represent the

physiological structures. Before the FADS technique can be applied to the dataset,

the appropriate factor number q must be determined from the dataset.

Let the [m,n] data matrix V represents a dynamic sequence of medical images

such that values in each row of V represent TAC. Under the assumption of the factor

model, Vit (3D ACD of ith voxel at tth TF) can be written as [28, 49],

Vit = ∑q
j=1Wi jH jt +Eit , (2.4)

where q is the total number of factors in the dataset and Eit is the noise in ith voxel at

tth TF. W and H are [m,q] factor coefficient and [q,n] factor curve matrices, respec-

tively. Then, each column of W and each row of H represent FV’s and associated

FC’s, respectively. If we assume that the noise in the dataset V follows a Gaussian

distribution then the least-squares method provides the optimum solution by mini-

mizing the least squares error (see equation 2.4). The least-squares objective ( fls)

is given by,

fls(W′,H′) =
1
2∑m

i=1∑
n
t=1(∑

q
j=1W ′

i jH
′
jt −Vit)

2, (2.5)

where W′ and H′ are the least-square solutions. For the solutions to be physically

meaningful, the elements of W′ and H′ matrices are forced to be nonnegative (e.g.
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TAC’s cannot be negative). Two popular methods (iterative [13] and optimization-

based [28]) are commonly used to solve equation 2.5. Depending on the type

of method, different ways of implementing non-negativity constraint is used (i.e.

penalty- [48] or iterative-methods [49]).

As previously mentioned, the main drawback of FADS technique is that its solu-

tion is not mathematically unique, which can be seen from the following equations:

V�WH, (2.6)

WH = (WR−1)(RH), (2.7)

where R is [n,n] rotational matrix. As long as R is chosen such that (WR−1) and

(RH) satisfy the non-negativity constraint, it is also a suitable solution for equation

2.6. Depending on the type of dataset and size of R, it is sometimes quite difficult to

find a rotational matrix (R) that satisfies the non-negativity constraint. For example,

principle component-based factor analysis [13] initially produces factor curves (H)

that are orthogonal to each other. As a result, elements of both W and H include

negative values, and so the solution is not physically meaningful. To obtain non-

negativity in the solution, an oblique rotation (e.g. similar to R and R−1) must be

applied to W and H. It is, however, impossible to find such rotational matrix in

some cases, which led to the development of optimization-based FADS [28, 48].

Equation 2.7 clearly shows the possibility of having more than one solution.

This is an inherent limitation of FADS. Such a problem has been recognized for

years and various investigators have applied different techniques (e.g. blood sam-

pling, maximum entropy method, minimization of overlap between structures de-

fined by factor images) in order to obtain unique solutions. However, such tech-

niques have several disadvantages (i.e. invasive, estimation of parameters that

varies with the type of dataset and dependence on the signal to noise ratio) and

do not provide practical solutions in many situations (see Section 1.5 of Chapter 1).
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On the other hand, the proposed FADS technique - that utilizes prior information

(e.g. sample TAC’s from the dataset) - is much more practical and can significantly

reduce the number of possible solutions. Nevertheless, there is no guarantee that the

proposed method will produce a unique solution that represents the true underlying

physiology and, in fact, this is true for any other known FADS techniques to date.

Nevertheless, the effectiveness of prior information on the FADS solution can be

seen from the computer-based simulation study (using digital phantoms) in Chapter

3 and the clinical study in Chapter 4.

The problem of solving equation 2.6 with the non-negativity constraint is essen-

tially the same as performing non-negative matrix factorization (NMF) - a recent

method developed by Paatero and Tapper [50] and Lee and Seung [51]. The goal of

the NMF is to decompose complex data into parts-based representation for easier

understanding and interpretation of the data. There are several advantages to using

the NMF instead of the principle component-based FADS (or Barber’s technique)

for solving equation 2.6. First, the NMF provides a better fit to the data and second,

it guarantees to satisfy the non-negativity constraint [50]. Various types of NMF

algorithms are available and some of them have greater computational efficiency

than others [52, 53]. Hoyer [54] describes a method to implement a sparseness

constraint to the basic NMF algorithm for improving parts-based feature extraction

of the data. The downside of the technique is that the sparseness coefficient can

vary with different types of datasets and the SNR’s of the dataset. For our study,

the NMF technique proposed by Lin [53] is used with prior information to obtain

FC’s and FV’s that represent the underlying physiology for the organs or tissues of

interest.

2.1.3 Alternating Non-negative Least-Squares (ANLS)

Even though there are many existing methods for performing the NMF [52, 55, 56],

alternating non-negative least-squares (ANLS) method is worth noting. It uses a
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different approach to solve the NMF problem and has very attractive optimization

properties [52, 53] (see below). The minimization of equation 2.5 requires partial

derivatives from the two “block variables” (W and H) and the gradients of fls(W,H)

can be written as [48, 53],

∇W fls(W,H) = (WH−V)HT , (2.8)

∇H fls(W,H) = WT (WH−V). (2.9)

Notice that ∇W fls and ∇H fls have the same dimension as W and H.

The main questions concerning any optimization technique are the number of

local minima, convergence, algorithm efficiencies, stopping conditions, ability to

handle very large datasets. These questions are more prominent for large-scale

problems. For example, the typical matrix size of our clinical [11C]-DTBZ dataset

(144 × 144 voxels with 45 slices and 16 TF’s) is 233280 × 16 after applying the 2

× 2 × 1 in-plane (or transverse) voxel-averaging technique (see Chapter 4). So, it

is very important to use an optimization technique that can address these questions.

In optimization theory, convexity is an extremely useful property for the following

reasons: the local minimum is the global minimum; the convergence is guaranteed;

efficient numerical algorithms exist. Therefore, every effort should be made to

convert the problem (see equation 2.5) into the convex problem. Fortunately, the

minimization problem becomes a convex problem if the two block variables (W

and H) are treated separately [53, 54] and the ANLS method does exactly that.

Unlike many other optimization techniques, where the two block variables are

improved simultaneously, the ANLS method alternatively fixes one block variable

while improving the other (e.g. find the optimum W for a given H and then find

the optimum H for given W at every iteration step). As a result, the ANLS method

requires solving two sub-problems (see equation 2.10 and 2.11) at every iteration

step instead of solving single optimization problem. Since the technique requires

solving two sub-optimization problems at each iteration step with non-negativity
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constraint, an efficient numerical algorithm is highly desirable to speed up its con-

vergence. For this reason, the projected gradient method (PGM) [53, 57] is used for

solving each sub-problem and this method is discussed in the following section.

The goal of the ANLS algorithm is to find W and H that minimize the least

square error given by equation 2.5 under the non-negativity constraint (to obtain

physically meaningful solution). The algorithm can be described as,

1. Initialize W0 and H0 such that W 0
i j ≥ 0 and H0

jt ≥ 0 for all i, j and t.

2. For k = 0,1,2,· · ·

find Wk+1 such that fls(Wk+1,Hk)≤ fls(Wk,Hk), (2.10)

find Hk+1 such that fls(Wk+1,Hk+1)≤ fls(Wk+1,Hk), (2.11)

where k is a discrete time index. Initial starting points for W0 and H0 can include

negative elements but the solution converges faster by restricting the solution space

to be non-negative. The ordering of equation 2.10 and 2.11 is important in our

case because the prior information (or sample TAC’s) is used to produce starting

point for H. By the convexity of the problem, the improved W (or factor coefficient

matrix) in equation 2.10 is then good starting point for improving H in equation

2.11. The algorithm continues to iterate until predefined stopping condition is met.

The PGM is used to solve equation 2.10 and 2.11. It is computationally efficient

and allows the non-negativity constraint to be easily applied to the solution.

In optimization theory, a convex problem guarantees finding the global mini-

mum. Our NMF problem consists of not one, but two convex problems, and so the

NMF solution (by the ANLS method) does not guarantee the global minimum. It

is, however, advantageous to use the ANLS method because prior information pro-

vides a good starting point for H. Since each sub-problem is a convex, the solution

(by equation 2.11) is guaranteed to be a global minimum for given H. If W and

H) are improved simultaneously then it will require good starting points for both
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W and H. Standard ROI method has to be employed to create masks for different

physiological structures associated with each of the sample TAC’s.

While it is not trivial for us to visualize the error function for equation 2.5 (due

to high dimensionality of the problem), it is not difficult to comprehend that the

solution by the ANLS method depends on the initial starting point. For example,

figure 2.1 shows an image of arbitrary error function g(x,y) where x and y are the

two arbitrary axis. From visual inspection, it can clearly be seen that there exists

several local minima.

Figure 2.1. This figure shows an image of arbitrary error function g(x,y) with sev-
eral local minimums. Depending on the starting point, the ANLS method can pro-
duce different solutions (see text for details).

Depending on the starting point, the ANLS method produces different solutions.
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This example clearly shows the importance of the need for a good starting point.

Therefore, prior information is utilized to warm start the optimization in this work.

In practice, the presence of noise in the dataset and high dimensionality of the

problem makes the problem much more complicated by adding a significantly larger

number of local minima to the system. As a result, there is no guarantee that the

solution (provided by the ANLS method even with prior information) is the global

minimum; nevertheless, a warm start is a good option and provides a solution that

is in close proximity to the global minimum. In Chapter 3, the effect of a warm start

on the result of FADS is illustrated using a simulation study.

2.1.4 Projected Gradient Method (PGM)

The key to successful FADS depends on the ability to solve sub-problems (equa-

tion 2.10 and 2.11) efficiently under the non-negativity constraint. Even though

there are many existing methods for solving this type of problem, the projected gra-

dient method (PGM) is particularly useful: first, the method converges very fast;

and second, bounded-constraints are easily applied. Similar to many optimization

algorithms, the PGM is a gradient-based method, and it applies the constraints by

restricting the solution space. It is very simple and effective technique for solving

bounded-constraint optimization problems.

Suppose we want to minimize f (x), subject to li ≤ xi ≤ ui, i = 1, · · · ,n, where li

and ui are lower and upper bounds for the ith elements of x, respectively. Note that

f is a scalar and x is n-dimensional vector. Then, the PGM improves the current

solution xk to xk+1 using the following update rule:

xk+1 = P[xk −αk∇ f (xk)], (2.12)

where k and αk are the iteration step and step size, respectively. The letter P is the

projection operator and is defined as,
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P[xi] =


xi if li < xi < ui,

ui if xi ≥ ui,

li if xi ≤ li.

(2.13)

The projection operator essentially forces the solution point back to the bounded-

region. The only question now is the determination of the step size αk. Bertsekas

[58] proposed a simple yet effective way to estimate the step size in order to suf-

ficiently decrease the function value at each iteration step. The condition used to

check for sufficient decrease of the function value is given by,

f (xk+1)− f ((x)k)≤ σ∇ f (xk)T (xk+1 −xk), (2.14)

where σ is arbitrary constant between 0 and 1. The step size αk in equation 2.12 is

selected from β mk where β is arbitrary constant between 0 and 1, and mk is posi-

tive integer (1,2,3,· · · ). Since β is less than one, the step size αk (in equation 2.12)

decreases with increasing value of mk. The most computationally inefficient part of

the PGM is finding the optimum step size αk, and Lin [53] suggests an efficient way

to compute the optimum step size, which significantly improves the convergence

speed of the standard PGM. The optimum step size is determined by utilizing equa-

tion 2.12 and 2.14, and the improved PGM should execute the following strategy to

obtain the optimum αk:

1. Set αk = αk−1,

2. If the choice of αk satisfies equation 2.14 (see also equation 2.18 and 2.19),

then repeatedly increase αk (αk = αk/β ) until the choice of αk does not sat-

isfy equation 2.14 (see also equation 2.18 and 2.19).

3. Else repeatedly decrease αk (αk = αkβ ) until the choice of αk satisfies equa-

tion 2.14 (see also equation 2.18 and 2.19).



29

Such a selection of αk is guaranteed to converge while improving the conver-

gence speed [53]. The improved PGM continues to improve the current solution

using equation 2.12 and 2.14 until predefined stopping condition (discussed in the

latter part of this section) is met.

While combining the ANLS with the improved PGM provides an efficient and

an effective way to solve the NMF problem, see equation 2.5. Lin [53] proposes

another strategy to further reduce the computational cost. This involves convert-

ing equation 2.14 into a different form using the quadratic expansion in order to

replace computationally expensive term ( f (xk+1)− f (xk) in equation 2.14) with a

computationally inexpensive term. For a quadratic function g(x) and vector a, the

expansion can be written as:

g(x+a) = g(x)+∇g(x)T a+
1
2

aT ∇2g(x)a, (2.15)

where a has the same dimension as x and ∇2 is the Laplacian operator. If we sub-

stitute x and x + a in equation 2.15 with xk and xk+1, and assume that f in equation

2.14 is a quadratic function, then the following relationships can be obtained,

f (xk+1)− f(xk) = ∇f(xk)T(xk+1 −xk)+

1
2
(xk+1 −xk)T∇2f(xk)(xk+1 −xk) (2.16)

(1−σ)∇ f (xk)T(xk+1 −xk)+

1
2
(xk+1 −xk)T∇2f(xk)(xk+1 −xk)≤ 0, (2.17)

where k and T are the discrete time index and the transpose operator, respectively.

Notice that equation 2.14 is now transformed to equation 2.17 and no longer needs

to calculate the function f values. This can be a huge advantage for computationally

expensive objective function (e.g. the product of large matrices).

The NMF problem (see equation 2.6) must solve two sub-problems (equation

2.10 and 2.11) at every iteration step. Since the objective function of each sub-
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problem is quadratic, equation 2.16 can be utilized to find the optimum αk for each

sub-problem. Thus, two versions of equation 2.17 are needed due to the two block

variables (W and H). By substituting equation 2.8 and 2.9 into equation 2.17 (with

xk being replaced by either Wk or Hk), the following relationships are obtained with

some algebra work,

(1−σ)⟨[WkHk −V]HkT
,(Wk+1 −Wk)⟩+

1
2
⟨(Wk+1 −Wk)(HkHkT

),(Wk+1 −Wk)⟩≤0, (2.18)

(1−σ)⟨WkT
[WkHk −V],(Hk+1 −Hk)⟩+

1
2
⟨(Hk+1 −Hk),(WkTWk)(Hk+1 −Hk)⟩≤0, (2.19)

where ⟨A,B⟩ represents the sum of the element-wise product of matrices A and B.

Note that ∇2
W fls(Wk,Hk) = HkHkT

and ∇2
H fls(Wk,Hk) = WkT Wk from equation

2.8 and 2.9. These two equations are the key to the improved PGM, and they are

used to find the optimum step sizes for solving equation 2.10 and 2.11. Note that

equation 2.18 and 2.19 are based on time step k, and should be changed accordingly

with different time step.

The PGM for improving Wk and Hk are then given by,

Wk+1 = P[Wk −αk
W ∇W f (Wk,Hk)], (2.20)

Hk+1 = P[Hk −αk
H∇H f (W.Hk)], (2.21)

Equation 2.18 and 2.19 are used to find the optimum step sizes for Wk and Hk in

equation 2.20 and 2.21. Note that the projection operator P is defined in section

2.1.4 of this chapter, and the lower and upper bounds for both Wk and Hk are 0

and 1, respectively. Note that equation 2.20 and 2.21 are based on time step k, and

should be changed accordingly with different time step.



31

Unlike many other optimization problems, the NMF problem (using the ANLS

and PGM methods) requires three stopping conditions because two sub-problems

have to be solved at every iteration step. The two local stopping conditions are

required for each sub-problem (i.e. optimizing W and H) and one global stopping

condition is required for terminating the optimization process. For the PGM, a

commonly used stopping condition is suggested by Lin and More [59] and is given

by,

∥∇P[ f (xk)]∥≤ε∥∇ f (x0)∥, (2.22)

where ε is the tolerance level and ∥A∥ is the Frobenius norm of matrix A. The

projected gradient ∇P f (x) is defined as,

∇P f (xi) =


∇ f (xi) if li < xi < ui,

min(0,∇ f (xi)) if xi = li,

max(0,∇ f (xi)) if xi = ui.

(2.23)

The global and the local stopping conditions used for the NMF problem are then

given by,

∥∇P[ fls(Wk,Hk)]∥≤δ∥∇ fls(W0,H0)∥, (2.24)

∥∇P
W [ fls(Wk+1,Hk)]∥≤max(10−6,δ )∥∇ fls(W0,H0)∥, (2.25)

∥∇P
H [ fls(Wk+1,Hk+1)]∥≤max(10−6,δ )∥∇ fls(W0,H0)∥, (2.26)

where δ is the global tolerance level. Notice that all stopping conditions are based

on the Frobenius norm of the initial gradients and the two local stopping conditions

are the same. In the following section, the FADS algorithm is discussed in detail

(e.g. using a flowchart) by combining all the optimization techniques described in

this chapter.
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2.1.5 Factor Analysis of Dynamic Structures (FADS)

In this section, the proposed FADS algorithm and the technique to generate FV’s

and FCs are described using a flow chart. Consider a dynamic PET dataset that

consists of N transverse slices and T TF’s such that there are total of N×T images.

Each image consists of M ×M pixels and each pixel represents 3D ACD (i.e. the

average activity of a 3D voxel) within the field of view of the scanner. As discussed

before, the standard ROI method can not only be complex (i.e. identification and

delineation of 3D structure) but also inaccurate in extracting time activity informa-

tion (e.g. partial volume and spillover effects) from the organs or tissues of interest.

The proposed FADS algorithm effectively handles and minimizes these problems.

The algorithm includes dual-stage optimization and two sets of colored variables

are used to indicate inputs to the two optimizations: red colored variables (V, W0,

and H0) are input to the stage 1; cyan colored variables (V0, W1
0, and Hopt) are

input to the stage 2. During the first stage of the optimization, the goal is to find

the optimum factor curve matrix (Hopt) and so the voxel-averaged dataset is used

for added benefit (e.g. reduced data size and improved signal-to-noise ratio). For

the second stage of the optimization, the Hopt from the first stage optimization is

used and the dataset V0 has the same number of voxels as the original dynamic PET

data. Remember that the number of rows in V and columns in W much be the same

(see equation 2.6). This facilitates the comparison between the extracted FV’s and

the time-averaged PET volume.

Figure 2.2 summarizes the procedure of the proposed FADS algorithm using a

flow chart.

(a) Reshaping the 4D [M,M,N,T] dynamic PET dataset is required to perform SVD

for estimating the total number of factors q and apply the SVD-based noise

reduction technique to the dataset. The reshaped data is [M×M×N,T] matrix.

(b) Identify q singular values that are well above the noise levels (i.e. singular
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values corresponding to the signals have distinctively higher values compared

to those for the noise).

(c) Perform SVD-based noise reduction technique to the data matrix. q+1 singu-

lar values corresponding to the noise (in the dataset) are suppressed to zero

and noise reduced data (V0) is computed using equation 2.3. Replace negative

values in V0 by zero.

(d) Reshape data (V0) back to 4D [M,M,N,T] form and call it V′
0. This step is

necessary to identify physiological structures and obtain approximate (sample)

TAC’s that are used to warm start the first stage of the dual-stage optimization.

These TAC’s can contain mixed tissue information. Normalize each TAC by its

maximum value and assign them as the initial factor curve matrix (Hopt). To

avoid stalling of the optimization, TAC’s in the Hopt cannot be identical.

(e) Apply r×r×1 in-place voxel-averaging (VA) V′
0 and call it V′. The VA tech-

nique reduces the data size while improving the SNR of the dataset. The op-

timum size of r depends on various factors (e.g. type and SNR of the dataset,

extent of partial volume and spillover effects, and the shapes of the underlying

kinetics) and these effects are investigated using computer simulation in chapter

3.

(f) Reshape V′ to matrix form [M×M×N
r×r ,T ] and call it V. Reshaping the data is

necessary to comply with the factor model (see equation 2.4). Normalize V by

its maximum value. The normalization here is simply for convenience since the

PGM constrains the solutions for the W and H to be between 0 and 1.

(g) Initialize factor coefficient matrix (W0) using the MATLABT M’s built-in ran-

dom number (between 0 and 1) generator. Note that the row dimension of W0

has to be the same as that of V. For given V, W0, and H0, find the optimum

factor curve matrix (Hopt). Compute the local and global stopping conditions
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using δ value of 10−8 and equation 2.24-2.26. Optimization parameters include

α0
H = α0

W = 1, σ = 0.01, and β = 0.1. Run the ANLS algorithm (defined by

equation 2.10 and 2.11) described in section 2.13 using the PGM (see equation

2.18-2.21) in section 2.14.

(h) Normalize V0 by its maximum value and keep the normalization constant (re-

quired to obtain FADS results in Bq/ml). Initialize factor coefficient matrix

(textcolorcyanW0
1) using the MATLABT M’s built-in random number (between

0 and 1) generator. Note that the row dimension of W0
1 is the same as that

of V0. For given V0, Hopt, and W0
1, find the optimum factor coefficient ma-

trix (Wopt). Compute the global stopping condition using δ value of 10−8 and

equation 2.25. Use the same optimization parameters defined in the previous

step. Run the PGM using equation 2.18 and 2.20 in section 2.14.

(i) Column of Wopt and rows of Hopt then represent FV’s and FC’s, respectively.

For ease of comparison each FV is normalized by its maximum value and the

inverse normalization is applied to the appropriate FC. The normalization con-

stant (in step h) is applied to every row of Hopt so that each FC has unit of

Bq/ml. Reshape Wopt to 4D data [M,M,N,T] so that q FV’s are easily com-

pared against the time-averaged PET volume. If possible, co-register FV’s with

associated MRI or CT dataset.

2.2 Materials

2.2.1 Computer Simulation: digital phantom study

Before the FADS algorithm can be applied to clinical datasets, the algorithm must

be thoroughly tested by phantom or simulation studies to understand its behavior

against various factors such as SNR’s, shapes of underlying kinetics, availability

of prior information, severity of partial volume and spillover effects. In theory,

the proposed FADS method can extract the true underlying TAC’s if the technique
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Figure 2.2. This diagram illustrates the procedure of the proposed FADS algorithm.
See text for details.

is applied to noise-free dataset, consisting of partially overlapping structures, with

the appropriate factor number q and a good starting point for the optimization. In

reality, every dataset is corrupted by some-kind of noise and this can severely affect

the SVD analysis and FADS results. First, the effects of noise (White and Poisson)

and of underlying kinetic shapes, and of VA size on estimating q (by the SVD

technique) are studied. Then, the effects of those factors as well as the effects of

partial volume and prior information on the FADS results are investigated using

computer simulated dynamic datasets.
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To simulate a sequence of dynamic (medical) images, three sets of digital phan-

toms are generated. For simplicity, each phantom consists of three rectangular

structures with varying degrees of overlap to simulate the partial volume effect.

Figure 2.3 shows the three sets of digital phantoms: (case I) no PVE; (case II) small

amount of PVE; (case III) large amount of PVE. Each dynamic image consists of

144 × 144 pixels. The clock-wise numbering (1-3) in each phantom indicates the

compartment number, and it is used to assign an arbitrarily TAC to each compart-

ment.

Figure 2.3. This figure depicts the three sets of digital phantoms used for the simu-
lation study. Each phantom consists of three rectangular structures that are tissue-
specific with varying degrees of PVEs. The clock-wise numbering (1-3) in each
phantom is used to assign a TAC to each compartment.

Each compartment is assumed to be tissue-specific and possess a unique TAC.

To comply with the factor model assumption, each compartment is assumed to have

homogeneous uptake and clearance rates of the tracer so that TAC’s from pixels

within the compartment are the same. Figure 2.4 shows the three TAC’s (e.g. TAC1,

TAC2, and TAC3 describe TAC’s for tissue, arterial input, and some organ) used to

model the dynamic time dependency for the three compartments in each of the

three digital phantoms. Each curve has an arbitrary unit and is sampled at 15 time

points. Thus, each digital phantom produces 15 dynamic images, and they form the

basis for the simulation study. The three sets of dynamic images are referred to as
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noise-free dynamic datasets.

Figure 2.4. This figure shows the three arbitrarily TAC’s used to model the dynamic
time dependency for the three compartments in each phantom. Each curve has an
arbitrarily unit and is sampled at 15 time points.

To make the simulation more realistic, electronic noise (e.g. thermal noise from

electronic components and fluctuation in the number of light photons produced by

a crystal interacting with 511-keV annihilation photon) is introduced to the three

sets of dynamic images (e.g. cases I, II, and III datasets) using White (random sig-

nal with flat power spectrum) and Poisson (fluctuation of a variable that follows

Poisson distribution) noises. To generate White noise in an image, MATLABT M’s

rand function, which produces random number between 0 and 1, is used. Generated

random numbers have the same matrix size as the image being corrupted and are

then scaled by 5% of the maximum intensity value in the image. Poisson noise is

based on the intensity value of an individual voxel in an image [26], and is gen-
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erated for each voxel by the MATLABT Ms built-in imnoise function (with scaled

value of 10−10 and “Poisson” option). Each dataset is first corrupted by Poisson

noise followed by White noise. These datasets are then used throughout the simu-

lation study and are referred to as noisy datasets. The signal-to-noise ratio (SNR)

is computed by taking the ratio of the mean signal value (mean pixel value in a

small region of compartment) to the standard deviation value of noise (small region

outside of the three compartments in an image). For the noisy (case II) dataset the

SNR varies from 1 to 30 between different slices in the dataset.

The first step to successful FADS is the accurate estimation of the factor number

q for the factor model (in equation 2.4). As discussed before, the SVD technique

is used to identify q singular values that are well above the noise level. In some

cases, it can be quite difficult to find the optimum q value if the dataset has low the

SNR. To improve the SNR of the dataset, a VA technique is applied to the dataset

prior to performing SVD. To investigate the effect of VA on the singular values, the

SVD technique (using MATLABT Ms built-in svd function) is applied to the three

sets of noise-free and noisy datasets with and without the application of the VA

technique. Three large singular values (out of 15 singular values) are expected and

obtained without the VA, with 4 × 4 VA and 8 × 8 VA options for both noise-free

and noisy cases. In each case, the three sets of singular values (e.g. without VA,

4 × 4 VA and 8 × 8 VA) are normalized to the maximum value in each set and

compared with each other. The relationship between the number of unique TAC’s

and the number of significant singular values in the noisy dataset are also examined.

If multiple structures share similar TAC’s (e.g. metastatic cites) then they should be

classified as a single factor. The dataset used for this study is generated with case II

digital phantom and 2 unique TAC’s (TAC1 and TAC3): the compartment 2 of the

(case II) phantom is filled with TAC3 (at 10% of its maximum intensity) instead of

TAC2. Noise is added to the dataset according to the aforementioned noise-adding

technique in this section.
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Once the factor number q is determined, the SVD-based noise reduction tech-

nique (equation 2.3) can be used to reduce the amount of noise in the dataset. The

(case II) noisy dataset from the previous study is used, as an example, to show the

effectiveness of the SVD-based noise-reduction technique. The noise-reduced dy-

namic images are compared against the noisy dynamic images. The noise-reduced,

noisy and true TAC’s from the three compartments are normalized and compared

against each other.

From here on, the focus is on various factors that affect our FADS algorithm.

First, the effect of VA and of prior information on the FADS result is investigated

using the three sets (case I, II and III) of noise-free and noisy datasets. To improve

the SNR’s of the datasets, the SVD-based noise reduction technique is applied to

the datasets with 4 × 4 VA technique prior to running FADS. To obtain prior infor-

mation, the conventional ROI method is used to obtain sample TAC’s from the three

compartments in the (noise-reduced) datasets. Those TAC’s are then used to warm

start the first stage of optimization in the algorithm. The extracted factor images

and curves from these datasets are then graphically compared against the known

factor images and curves.

To better understand the affect of prior information, a statistical study is per-

formed using the result of FADS. First, a total of 5000 (case II) noisy datasets are

created using the same noise-adding technique (described earlier in this section).

The FADS technique is applied to each dataset with the same pre-processing steps

(SVD-based noise reduction and 4 × 4 VA technique). The resulting FC’s and the

true TAC’s are then used to compute the accuracy (defined by equation 2.27) and

also used to generate accuracy histograms. For each dataset, two sets of FC’s and

two D values are obtained: one set of FC’s is produced with the prior information;

the other set of FC’s is generated from a random starting point. The same ROI

method (described earlier in this section) is used to obtain prior information for the

datasets. The accuracy (D) of extracted FC’s is defined as,
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D =
∑q

i=1∑n
t=1|(tTAC)it −Hit|

∑q
i=1∑n

t=1(tTAC)it
, (2.27)

where rows of tTAC and H represent the (normalized) true TAC and the extracted

factor curve matrices, respectively. To illustrate the meaning of the D value, we

select an example from the ensemble of the statistical study. The extracted factor

images and curves are compared against the known factor images and curves.

The algorithm is also tested for its ability to accurately classify different struc-

tures with similar TAC’s (e.g. metastatic cites should be identified as a single factor,

see section 3.7). As long as different structures share the same (or relatively similar)

TAC’s, they will be classified as the same factor regardless of their uptake levels (or

intensity). For this study, the (case III) digital phantom with two (instead of three)

TAC’s are used: the compartment 2 of the phantom is filled with TAC3 (at 30%

of its maximum intensity) instead of TAC2. The reason for the selection of this

dataset is because it has the maximum amount of partial volume effect. The same

aforementioned noise adding technique discussed in this section is used.

Until now, the benefit of VA (especially for reducing the amount of noise in the

dataset) is discussed, but the accuracy on the result of FADS might suffer from the

selection of VA size as well. To investigate this, various VA sizes (1 × 1, 4 × 4, 8

× 8, 16 × 16, 48 × 48, and 72 × 72) are applied to the (case II) noisy dataset and

the six sets of factor images and factor curves are generated for comparison. The

accuracy value (D defined by equation 2.27) is also computed for each VA dataset

and compared against each other.

The proper estimation of factor number q is critical step in the FADS algorithm.

To study the effect of improper estimation of q, the FADS analysis is applied to the

noisy (case II) dataset assuming q = 4 with the 4 × 4 VA technique. The sample

TAC’s from the dataset (using prior information) is used to warm start the optimiza-

tion process in the FADS algorithm. Two different starting points are generated for

the extra factor: one is produced with the random number generator; the other is
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similar to sample TAC from the compartment 3. The resulting factor images and

factor curves are compared against the known images and the true TAC’s.

Finally, the least square errors are computed for the first stage of the dual stage

optimization in the FADS algorithm since the most computationally inefficient and

important part of the algorithm is finding the optimum FC’s (see figure 2.2). The

least square errors (defined by equation 2.5) are calculated for both the warm and

the random starting options as a function of the size of VA. For this study, the noisy

(case II) dataset is used with q = 3 and 4 × 4 VA option.

2.2.2 Clinical Study: detection of early Parkinson’s disease

Parkinsons disease (PD) is a medical disorder that is related to the loss of dopamin-

ergic neurons within the substantia nigra (center region of the brain). Figure 2.5

shows various anatomical structures that compose the substantia nigra. The dopamin-

ergic neurons are mainly located in the blue and the dark organs (e.g. Nucleus

caudatus and Putamen). Thus, patients with PD will have a decreased number of

dopaminergic neurons in these organs. To measure the loss of those neurons [11C]-

Dihydrotetrabenzine (DTBZ) radiotracer - that targets dopaminergic neurons - has

been developed and is used to diagnose patients with the early stage of PD [60].

Therefore, PD patients will have reduction of binding site for the radiotracer (i.e.

decreased uptake of the radiotracer in those tissues).

The typical symptoms of PD are movement-related (i.e. trembling, slowed

movement, stiffness and loss of balance) but can accompany cognitive and behav-

ior problems in the later stage of the disease. While there is no known cure for the

disease, accurate and early diagnosis of PD plays an important role for improving

the quality of life of the patients and caregivers. With early detection, the disease

can be effectively managed by various medical treatments and programs that are

designed to alleviate the symptoms of PD and slow down the progression of the

disease.
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http://en.wikipedia.org/wiki/caudate_nucleus 

Figure 2.5. This figure shows various anatomical structures that are part of the
substantia nigra (middle region of the brain). See text for details.

In this clinical study, a total of 60 subjects (20 healthy and 40 diagnosed with

PD) undergo dynamic PET scans with DTBZ radio-tracer. The tracer combines

with the dopaminergic neuron receptors and can be used to measure the change

in the uptake of dopaminergic neurons (in the substantia nigra) to identify early,

untreated PD patients against the healthy subjects. For unbiased analysis, recruited

healthy subjects were carefully selected to match age and sex (see Appendix). All

patients with PD met the standard criteria for clinical diagnosis of PD from the

Movement Disorders Program using the Unified Parkinsons Disease Rating Scale

[61]. At the time of writing this thesis, only ten dynamic PET datasets (4 healthy

and 6 diseased subjects) were available. Unfortunately, two subjects (dtbz5 and

dtbz7) were removed from FADS analysis in this work due to a quality control

failure that only became apparent after the subject’s datasets were acquired. Before

the analysis, clinical datasets were anonymized accordingly.

Each of the ten subjects underwent the dynamic PET scan by administering 185
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± 18.5 MBq of the [11C]-DTBZ by following the dynamic protocol [62, 63, 64].

Dynamic PET volumes were acquired using a Philips Gemini GS PET/CT scan-

ner at the Cross Cancer Institute. Each PET volume consisted of 144 × 144 × 45

isotropic 4mm voxels. To apply attenuation and scatter corrections to the obtained

PET volume, a low-dose CT transmission scan was also acquired. Following the

dynamic protocol, the subject was positioned with head-first-supine scanning op-

tion and imaged for 60 minutes post injection. A simple decay (equation 1.2) and

aforementioned attenuation corrections are applied to the obtained datasets. Then,

these datasets are grouped and summed together according to the following: four

1-min, three 2-min, eight 5-min, and one 10-min windows starting at tracer injec-

tion. Finally, a sequence of 16 (dynamic) PET volumes is generated by applying

reconstruction algorithm to these datasets.

The proposed FADS technique is applied to the eight DTBZ datasets assuming

two factors (q = 2) with 2 × 2 × 1 in-plane VA option and prior information (e.g.

sample TAC’s from the striatum and non-striatum tissues). Each dynamic dataset is

then decomposed into two FV’s, representing the striatum and non-striatum tissues,

and associated FC’s. Since diseased subjects have lower tracer-uptake in the stria-

tum tissues in comparison to healthy subjects due to loss of dopaminergic neurons

in the substantia nigra (or middle region) of the brain. The extracted FV’s and FC’s

are then compared against each other within the group and also between the two

groups. The FV’s are also compared against the time-averaged PET volume. Since

the major difference of the tracer-uptake lies in s few slices (near the center of PET

volume), these slices are used for the comparison. In addition, a factor-based metric

is developed to stratify early, untreated PD patients from the healthy subjects. The

metric is based on the extracted FV’s and FC’s, and is defined as,

Ratio =
A1

A2
, (2.28)
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where A1 is defined as,

A1 = (
∑n

t=1H1t

n
)[∑i>thresholdWi1]mean, (2.29)

and A2 is defined as,

A2 = (
∑n

t=1H2t

n
)[∑i<0.4Wi1]mean, (2.30)

and threshold lies between 0 and 0.9 with increment of 0.1 and [·]mean operator is

the mean of the sum of selected voxels in the FV. Since each FV is normalized to

one, voxel selection is easily made for the calculation of the metric by setting the

threshold value (0-1). The variables A1 and A2 have units of MBq, and depend on

factor 1 and 2, respectively. Based on the analysis of the eight DTBZ datasets, the

optimum threshold value is recommended for our in-house developed metric.
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Chapter 3

Result I (Simulation Study)

3.1 Digital phantoms: three-compartment models

By using three sets of digital phantoms (cases I, II and III in figure 2.3) and of TAC’s

(see figure 2.4), three sets of noise-free and noisy dynamic datasets are simulated.

Each dataset consists of 15 dynamic images, describing the time evolution of 3D

ACD’s for the three compartments. Each image contains 144 × 144 voxels. These

datasets are then used for investigating various influences on the result of FADS.

Figure 3.1 shows sample images produced with the three sets of digital phantoms.

The images in the top and the center rows are time-averaged (over 15 TF’s) slices

for the noise-free and the noisy datasets. The images in the bottom row show slices

at the 5th time frame (TF) for each of the three cases. The numberings (1, 2, and 3)

in the top row images indicate the compartment numbers, and they are used to label

the extracted FC’s for future reference.
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Case I Case II Case III
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Figure 3.1. This figure shows sample of images produced by the three sets of digital
phantoms and of TAC’s (see figure 2.3 and 2.4). Each column represents three
different cases of the dynamic datasets. The images in the top and center rows are
time-averaged (over 15 TF’s) slices for the noise-free and the noisy datasets. The
images in the bottom row show slices at the 5th TF for each of the three cases. The
numberings (1, 2 and 3) in the top row images indicate the compartment numbers,
and they are used to label the extracted FC’s for future reference.
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3.2 Singular Value Decomposition: effects of partial volume, voxel-averaging

and noise

Figure 3.2 depicts normalized singular values for the noise-free (case I) dataset

before and after applying the 4 × 4 and 8 × 8 VA techniques. Three large singular

values correspond to the three principle images that, in general, do not represent the

“pure” underlying structures. However, they can be used to estimate the number of

underlying kinetics in the dataset. Notice that the application of VA has almost no

effect on the resulting singular values in the absence of noise.

Figure 3.2. Shown are the normalized singular values for the noise-free (case I)
dataset before and after the (4 × 4 and 8 × 8) VA techniques. Three large singular
values are observed and they represent the three underlying kinetics in the dataset.
Notice that the application of VA has almost no effect on the resulting singular
values in the absence of noise.

Figure 3.3 and 3.4 depict normalized singular values for the noise-free (case I

and II) datasets before and after applying the 4 × 4 and the 8 × 8 VA techniques. As
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for figure 3.2, the three large singular values (out of 15 values) represent the three

underlying kinetics in each of the datasets. It is evident that the VA technique has a

negligible effect on the resulting singular values in the absence of noise. However,

the PVE on the SVD result can be seen by comparing the normalized singular values

in figure 3.2 with either figure 3.3 or 3.4. Note that the second and the third singu-

lar values decrease, as the overlap between the compartments increases. For exam-

ple, the second and the third normalized singular values for the noise-free (case I)

dataset in figure 3.2 are approximately 0.38 and 0.27, respectively, whereas the sec-

ond and the third normalized singular values for the noise-free (case II) dataset in

figure 3.3 are roughly 0.29 and 0.21, respectively. The second and the third normal-

ized singular values are even lower for the noise-free (case III) dataset in figure 3.4

(approximately 0.12 and 0.18, respectively). The noise-free (case III) dataset with 8

× 8 VA decreases the second and the third normalized singular values even further,

showing that the VA technique reduces the contribution of non-dominant principle

components relative to the dominant principle component. As the amount of over-

lap between the structures increases, there are fewer of “pure” voxels available to

differentiate between the three different types of kinetics in the dataset. Therefore,

the VA technique should be avoided in datasets known to have a large amount of

overlapping structures.
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Figure 3.3. Same as for figure 3.2 except for noise-free (case II) dataset. Notice
that the voxel-averaging has negligible effect on the resulting singular values. In
comparison to figure 3.2, the second and third singular values are slightly lower.
See text for details.

Figure 3.5 to 3.7 illustrate the effect of Poisson and White noise on the resulting

singular values using the noisy (case I, II and III) datasets before and after applying

the 4 × 4 and the 8 × 8 VA techniques. In all three cases, three large singular

values are observed which correspond to the three underlying kinetics in each of

the datasets. While the VA technique can be an effective way to suppress singular

values that correspond to the noise, it can also decrease the singular values that cor-

respond to the underlying kinetics or factors (see figure 3.5 to 3.7). The contribution

of the second and third singular values relative to the first singular value decreases

with the larger VA. Increasing the size of VA has the similar effect as increasing

the PVE. Unfortunately, there is no method to find the optimum size of VA for any

given dataset, and the size must be determined by the trial and error. Finally, the
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identification of the third factor (or third singular value) in figure 3.7 can be very

difficult without the application of 4 × 4 or 8 × 8 VA techniques.

Figure 3.4. Same as for figure 3.2 except for noise-free (case III) dataset. Notice that
the application of VA slightly decreases the resulting singular values. In comparison
to figure 3.2 and 3.3, the second and third singular values are much lower. See text
for details.
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Figure 3.5. Same as figure 3.2 except for noisy (case I) dataset. Notice that the nor-
malized singular values corresponding to the noise are significantly reduced after
the application of VA technique. The SNR of the dataset can be further improved
by applying the larger size of VA.
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Figure 3.6. Same as figure 3.5 except for noisy (case II) dataset. The larger the
size of VA, greater noise suppression is achieved. In comparison to figure 3.5, the
second and the third normalized singular values are lower.
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Figure 3.7. Same as figure 3.5 except for noisy (case III) dataset. In comparison
to figure 3.5 and 3.6, the second and the third normalized singular values are much
lower.

3.3 Singular Value Decomposition: 2 underlying kinetics

Until now, SVD is applied to datasets that consists of three factors (or three kinetics)

and identified three distinctive singular values regardless of the noise level and the

PVE. Figure 3.8 shows the effect of having only two unique TAC’s in the noisy

(case II) dataset. As expected, there are only two large singular values (out of 15

values) that represent the two underlying kinetics of the dataset. Similar as before,

the normalized singular values corresponding to the noise are significantly reduced

by applying the 4 × 4 and the 8 × 8 VA techniques.
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Figure 3.8. The two large singular values represent the two underlying kinetics in
the noisy (case III) dataset. The figure format is the same as figure 3.5. Notice that
the normalized singular values corresponding to the noise are significantly reduced
after the application of the 4 × 4 and 8 × 8 VA techniques. With the larger size of
VA, greater noise suppression can be achieved.

3.4 SVD-based noise reduction

Another important aspect of SVD in this study is its application to noise reduc-

tion. Figure 3.9 shows an example images from the noisy (case II) dynamic dataset.

The first three images in the top row represent the first three TF’s and in the bot-

tom row the images corresponding to the last three TF’s. Figure 3.10 depicts the

fifteen principle images obtained by SVD, and it is clear that the first three prin-

ciple images contain the signal in the dynamic dataset, where as the remaining 12

images are significantly dominated by the noise of the dynamic dataset. By using

the three principle images from the figure 3.10, noise-reduced dynamic images are

produced (see figure 3.11). The SNR’s of the dynamic images are significantly im-
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proved after the application of the SVD-based noise-reduction. Samples of noisy

and noise-reduced TAC’s from the center pixels of the three compartments of the

noisy (case II) dynamic datasets (in figure 3.9) are compared against the true TAC’s

(see figure 3.12). The maximum value of each curve is normalized to one for ease

of comparison. The red, blue and green lines indicate TAC’s for the compartment

1, 2 and 3 (e.g. tTAC1, tTAC2, and tTAC3). The dotted and dash-dotted curves

represent the original (nTAC’s) and noise-reduced TAC’s (nrTAC’s), respectively.

Notice that the noise-reduced TAC’s are much closer to the true TAC’s.
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TF: 1 TF: 2 TF: 3

TF: 4 TF: 5 TF: 6

TF: 7 TF: 8 TF: 9

TF: 10 TF: 11 TF: 12

TF: 13 TF: 14 TF: 15

Figure 3.9. Shown are the dynamic images (a total of 15 TF’s) from the noisy (case
II) dynamic dataset.
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TF: 1 TF: 2 TF: 3

TF: 4 TF: 5 TF: 6

TF: 7 TF: 8 TF: 9

TF: 10 TF: 11 TF: 12

TF: 13 TF: 14 TF: 15

Figure 3.10. Shown are the SVD-based principle images of the dynamic dataset
(see figure 3.9). The figure format is the same as figure 3.9. See text for details.
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TF: 1 TF: 2 TF: 3

TF: 4 TF: 5 TF: 6

TF: 7 TF: 8 TF: 9

TF: 10 TF: 11 TF: 12

TF: 13 TF: 14 TF: 15

Figure 3.11. Shown are the noise-reduced images after applying the SVD-based
noise reduction to the dynamic images shown in figure 3.9. The figure format is
the same as figure 3.9. Notice that images appear less noisy in comparison to the
original dynamic images (see figure 3.9).



59

Figure 3.12. This figure shows samples of TAC’s from the three compartments
of the noisy (case II) dynamic dataset (see figure 3.9). Each curve is normalized
to unity for ease of comparison. The red, blue and green curves indicate TAC’s
for compartment 1, 2 and 3 (e.g. tTAC1, tTAC2 and tTAC3). The dotted and
dash-dotted curves represent the original (nTAC’s) and the noise-reduced TAC’s
(nrTAC’s), respectively.

3.5 Factor Analysis of Dynamic Structures: effects of partial volume, noise

and prior information

As discussed before, the result of the proposed FADS technique is highly dependent

on the starting point of the optimization. Figure 3.13 to 3.15 show extracted factor

images (FI1, FI2 and FI3) from the noise-free (case I, II and III) dynamic datasets

with and without the prior information. In these examples, the 4 × 4 VA technique

is applied to the three datasets prior to running FADS, and the (normalized) sample

TAC’s (identical to the true TAC’s in figure 3.12) from the three compartments

(based on the prior information) are used to warm start the optimization of the
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FADS algorithm. In figure 3.13, the left image represents the TA slice over 15

TF’s. The three images in the top-right side of the figure are produced with the

prior information, and the three images in the bottom-right side of the figure are

generated with a random starting point. The formats of figure 3.14 and 3.15 are

as the same as figure 3.13. The factor imaged produce without prior information

does not represent pure structure and their associated TAC’s are different from the

true TAc’s. On the other hand, the factor images generated with prior information

represent the pure structures and their TAC’s are almost identical to the known

TAC’s.

Figure 3.13. Shown are the extracted factor images for the noise-free (case I) dy-
namic dataset using the proposed FADS technique. The image in the left side shows
the TA slice (over 15 TF’s). The top three images and bottom three images on the
right side of the figure depict the extracted factor images with and without prior
information, respectively. It is clear that the FADS result with the prior information
is much closer to the ground truth. See text for details.
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Figure 3.14. Same as figure 3.13 except for the noise-free (case II) dynamic dataset.

Figure 3.15. Same as figure 3.13 except for the noise-free (case III) dynamic
dataset.

Figure 3.16 to 3.18 depict extracted factor images (FI1, FI2 and FI3) and FC’s

(FC1, FC2 and FC3) from the noisy (case I, II and III) dynamic datasets using the

sample TAC’s (similar to noise reduced TAC’s in figure 3.12). The same 4 × 4 VA

technique and warm starting option are used to produce the factor images and the

associated factor curves. Those images and curves are then compared against the
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true underlying structures and true TAC’s. In figure 3.16, the top and the bottom

images on the left side represent the TA (over 15 TF’s) and the 5th TF images.

The three images in the top row and six curves on the bottom right represent the

extracted factor images and the factor curves (with the true TAC’s). The formats of

figure 3.17 and 3.18 are the same as figure 3.16.

Figure 3.16. Shown are the extracted factor images and FC’s for the noisy (case
I) dynamic dataset using the FADS technique with the prior information. The top
and bottom images in the left side of the figure represent the time-averaged (over
15 TF’s) and the 5th TF images. The top three images in the right side of the figure
represent the extracted factor images. The bottom right figure contains the extracted
FC’s (solid curves) and the true TAC’s (dashed curves). The FC’s and true TAC’s
are normalized for ease of comparison. See text for details.
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Figure 3.17. Same as figure 3.16 except for the noisy (case II) dynamic dataset.

Figure 3.18. Same as figure 3.16 except for the noisy (case III) dynamic dataset.
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3.6 Statistical Study: effect of prior information

To better understand the affect of prior information, a statistical study is performed

on the accuracy D parameter (defined by equation 2.27) using a total of 5000 noisy

(case II) datasets. The FADS technique (with q = 3 and 4 × 4 VA option) is applied

to those datasets with and without prior information. Figure 3.19 shows the his-

tograms of accuracy parameter for both the warm (red color) and the random (blue

color) starting options. To better illustrate the meaning of D, an example with a D

value of 0.1 is selected from the ensemble of the statistical study (see figure 3.19).

Figure 3.20 shows the resulting factor images and curves, and they are compared

against the known factor images and curves. The figure format is the same as figure

3.16.
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Figure 3.19. Shown is the result of statistical study on the accuracy D (defined by
equation 2.27) using a total of 5000 noisy (case II) datasets. The proposed FADS
technique (with q = 3 and 4 × 4 VA option) is applied to those datasets with and
without the prior information. The red and blue colors indicate warm and random
starting options, respectively. The D values for the warm starting case (with prior
information) are much lower than those of the random starting case (without prior
information). See text for details.
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Figure 3.20. Shown is an example of extracted factor images and FC’s, correspond-
ing to D value of 0.1, from the ensemble of the statistical study for the noisy (case
II) dynamic dataset. The figure format is the same as figure 3.16. See text for
details.

3.7 FADS: 2 underlying kinetics

The FADS technique decomposes the dynamic dataset based on the shapes of un-

derlying kinetics (or the different physiological functions). Figure 3.21 illustrates

this point by having only two unique TAC’s in the noisy (case III) dynamic dataset:

compartment 2 is filled with TAC3 at 30% of the maximum intensity to simulate

the two underlying kinetics in the dataset. The figure format is the same as figure

3.16 except that there are only two (instead of three) factors present in the dataset.

As expected, compartment 2 and 3 are classified as a single factor, but the intensity

of compartment 2 is much lower than that of compartment 3. The extracted FC’s

are comparable to the true underlying kinetics.
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Figure 3.21. Shown are the extracted factor images and FC’s for the noisy (case
III) dynamic dataset (with only 2 unique underlying kinetics). The figure format
is as for figure 3.16 except that there are only 2 factors present in the dataset. The
compartment 2 in this phantom is filled with TAC3 (at 30% of its maximum in-
tensity). Notice that the factor 2 image contains both compartments 2 and 3 (with
lower intensity). The extracted FCs are comparable to the true underlying TAC’s.

3.8 FADS: effect of voxel-averaging size

The proposed FADS technique is applied to the noisy (case II) dynamic dataset as

a function of the VA size. The dynamic dataset is assumed to have 3 factors and

the sample TAC’s used to warm start the optimization are very similar to the noise-

reduced TAC’s in figure 3.12. Figure 3.22 shows the accuracy values (defined by

equation 2.28) as a function of the VA size. Notice that the worst result is obtained

without any application of VA technique. The best result is obtained for the 8 × 8

VA size. Figure 3.23 and 3.24 depicts extracted factor images and associated factor

curves for the noisy dataset as a function of VA size, respectively. In figure 3.23,

images in each row represent the FI’s obtained for different VA size. Notice that

the factor images in the top row contain mixed compartments. The FADS results



68

improves with the application of VA, however, the results degrade if the VA size

is too large. For example, the loss of contrast is observed in the factor 1 images

for 48 × 48 and 72 × 72 VA option. In figure 3.24, plots in each row represent

FC’s obtained for various VA size. The blue, green, and red curves indicate FC1,

FC2, and FC3. In each plot, the true TAC (e.g. tTAC1, tTAC2, and tTAC3) is

also displayed in the background. Both FC’s and tTAC’s are normalized (by the

maximum value of each curve) for ease of comparison. Notice that the worst result

is obtained without any VA technique. It is also evident that the difference between

the FC’s and tTAC’s becomes noticeable as the VA size gets too large (e.g. 48 × 48

and 72 × 72).
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Figure 3.22. Shown is the effect of VA on the accuracy (D) values using the FADS
result (with q=3 and prior information) for the noisy (case II) dynamic dataset. Note
that the 8 × 8 VA option produces the best result. See text for details.
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FI 1 (no VA) FI 2 FI 3

FI 1 (4 x 4 VA) FI 2 FI 3

FI 1 (8 x 8 VA) FI 2 FI 3

FI 1 (16 x 16 VA) FI 2 FI 3

FI 1 (48 x 48 VA) FI 2 FI 3

FI 1 (72 x 72 VA) FI 2 FI 3

Figure 3.23. Shown is the effect of VA on the FADS result (i.e. factor images)
for the noisy (case II) dynamic dataset. The images in the top and bottom rows
represent factor images without VA option and 72 × 72 VA option, respectively.
See text for details.
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Figure 3.24. Shown is the effect of VA on the FADS result (e.g. factor curves) for
the noisy (case II) dynamic dataset. The plots in the top and bottom rows represent
factor curves without VA option and 72 × 72 VA option, respectively. See text for
details.
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3.9 FADS: improper estimation of q

Proper estimation of q for the factor model is crucial step for the successful FADS

analysis. In this study, the proposed FADS technique is applied to the noisy (case

II) dynamic dataset assuming q=4. The 4 × 4 VA option and the sample TAC’s

(similar to nrTAC’s in figure 3.12) are used. Figure 3.25 shows the extracted FI’s

(top four images) and the associated FC’s (bottom right plot). The initial starting

point for the extra factor is produced using a random number generator (see bottom

left plot). It is evident that the extra factor represents noise in the dataset. The first

three FC’s resemble the true TAC’s. In figure 3.26, the format is same as figure 3.25

except the sample TAC for the fourth factor (e.g. obtained from the different region

in the compartment 3). Notice that the nrTAC3 and nrTAC4 in the bottom left plot

are very similar. By comparing the extracted factor images and factor curves against

the known images and the true TAC’s it is evident that the factors 3 and 4 are the

same.



72

FI 1 FI 2

FI 3 FI 4

0 5 10 15 20 25
0

0.5

1

TF

A
.U

.

Sample TAC’s

 

 

0 5 10 15 20 25
0

0.5

1

TF

A
.U

.

FC’s vs. tTAC’s

 

 

nrTAC1

nrTAC2

nrTAC3

random

FC1

FC2

FC3

FC4

tTAC1

tTAC2

tTAC3

Figure 3.25. Shown is the effect of VA on the accuracy (D) values using the FADS
result (with prior information) for the noisy (case III) dynamic dataset.
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Figure 3.26. Shown is the effect of VA on the accuracy (D) values using the FADS
result (with prior information) for the noisy (case III) dynamic dataset.
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3.10 Least-Square Error: effect of voxel-averaging size

Finally, the least square error (defined by equation 2.5) is computed as a function

of the VA size using the noisy (case II) dataset with and without prior information.

Since the most time consuming and important part of the algorithm is finding the

optimum factor curve matrix in the first stage of the optimization, the investigation

is focused on the first stage optimization. Table 3.1 summarizes the result. By

increasing the size of VA, the SNR of the dataset is improved, and the least square

error is reduced.

Table 3.1. Shown are the least square errors (defined by equation 2.5) as a function
of the size of VA using the noisy (case II) dynamic dataset. The computed errors
are only from the first-stage of the dual-stage optimization. See text for details.

4×4 VA 8×8 VA 16×16 VA 48×48 VA

Warm start 4.286E-4 1.220E-6 4.928E-7 2.989E-9

Random start 4.440E-4 1.412E-6 7.318E-8 3.238E-9

Figure 3.27 depicts the least-squares errors of the first-stage optimization for

the noisy (case II) dataset (assuming q = 3 with 4 × 4 VA option) as a function of

iteration number for both the random and the warm starting options. The red and the

blue curves represent the random (without prior information) and the warm (with

prior information) starting options, respectively. The least-square error decreases

nearly exponential for both starting options.
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Figure 3.27. Shown are the least-square errors of the first stage optimization for
noisy (case II) dataset as a function of iteration number. The red and the blue
curves represent the random and the warm starting options, respectively.
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Chapter 4

Results II (Clinical Study)

4.1 Parkinson’s Disease (PD)

A total of 60 subjects (20 healthy and 40 diagnosed with PD) will undergo dynamic

PET scans with [11C]-Dihydrotetrabenzine (DTBZ) radio-tracer. At the time of

writing this thesis, only 10 dynamic PET datasets (4 healthy and 6 diseased sub-

jects) were available for analysis. However, two subject datasets (dtbz5 and dtbz7)

were removed from FADS analysis in this work due to a quality control failure that

only became apparent after the subject’s datasets were acquired. Each dataset con-

sists of 720 images (45 slices × 16 TF’s). These datasets are analyzed by the FADS

technique. First, the results of FADS (extracted FV’s and FC’s) from the two dy-

namic datasets in the healthy and diseased groups are shown and explained in detail.

Then, the results from the rest of the DTBZ datasets are discussed and summarized.

Figure 4.1 shows a slice of (DTBZ) dynamic PET brain scan for a healthy subject

and a cartoon of anatomical structures for the corresponding slice in the brain. The

intense uptake of the radiotracer is observed in the tissues of Nucleus caudatus and

Putamen. Dopaminergic neurons are mainly located in these tissues and they are

collectively refereed to as the striatum tissues.
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http://en.wikipedia.org/wiki/caudate_nucleus 

Figure 4.1. This figure depicts a slice of (DTBZ) dynamic PET brain scan for a
healthy subject and a cartoon of anatomical structures for the corresponding slice
in the brain. See text for details.

Figure 4.2 and 4.3 show images of time-averaged (transverse) slices of the brain

(near substantia nigra) for the healthy and diseased subjects, respectively. The time-

averaged (TA) PET volumes are normalized to one, and only six (out of 45) TA

slices are shown from each group. In figure 4.2, two nearly identical (left and right)

intense lobes in the mid-region of the brain are observed. The two intense lobes and

the surrounding tissues around the lobes represent the striatum and non-striatum tis-

sues, respectively. For a healthy subject, the striatum tissues are easily identifiable.

For a diseased subject, it is quite difficult to identify the region corresponding to the

striatum tissues (see Figure 4.3). Current methodology [62, 63] to detect patients

with early PD involves the manual identification of the striatum and non-striatum

tissues. The placement of multiple ROI’s in those regions are highly undesirable

because the analyst has to go through multiple slices to identify a single structure.
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Clearly, such a process can be complex, time-consuming and operator-dependent.

In comparison to figure 4.2, the relative uptake of the non-striatum tissues for the

diseased subject is significantly higher than that for the healthy subject.

Figure 4.4 shows images of slice 21, as a function of TF’s (or scan time in

minutes) for a healthy subject (dtbz6), see figure 4.2. To be consistent with the

other figures, the dynamic PET volume is normalized to one. The uptake of striatum

tissues begins to appear at TF 3, and reaches a maximum intensity value near TF

8. The relative uptake of the non-striatum tissues, in comparison to the striatum

tissues is much lower for almost all TF’s. Figure 4.5 depicts images of slice 27,

as a function of TF’s (or scan time in minutes) for the diseased subject (see figure

4.3). The figure format is the same as figure 4.4. For the diseased case, there is

inconsistent uptake pattern in the dynamic images. The identification of the striatum

tissues from the non-striatum tissues is quite difficult due to the following reasons:

the non-striatum tissues have relatively high uptake; the two lobes in the substantia

nigra have distorted shapes with varying intensities. The non-striatum tissues have

higher uptake of the tracer during the early TF’s (4-8) and lower uptake of the tracer

at the later TF’s (13-16). These facts can make the quantitative analysis of dynamic

[11C]-DTBZ datasets very difficult (especially for diseased datasets).
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Figure 4.2. Shown are the images of time-averaged (transverse) slices near substan-
tia nigra in the center of brain for a healthy subject (dtbz6). The TA PET volume
is normalized to one, and only six (out of 45 TA) slices are shown. Notice that
the presence of two nearly identical (left and right) intense lobes in the mid-region
of the brain. The uptake in the striatum tissues stands out from the non-striatum
tissues.



80

Slice 24

 

 

0

0.2

0.4

0.6

0.8

1
Slice 25

Slice 26 Slice 27

Slice 28 Slice 29

Figure 4.3. Same as figure 4.1 except for a diseased subject (dtbz8). Unlike figure
4.1, it is difficult to identify two nearly identical (left and right) lobes in the mid-
region of the brain. The uptake of the non-striatum tissues is relatively high, in
comparison to that of the striatum tissues.
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Figure 4.4. Shown are images of (transverse) slice 21, as a function of TF’s for a
healthy subject (dtbz6), see figure 4.1. The uptake of the striatum tissues begins to
appear at TF 3, and reaches maximum intensity around TF 8. Notice that the uptake
of the non-striatum tissues in comparison to that of the striatum tissues is relatively
low.
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Figure 4.5. Same as figure 4.3 except for a diseased subject (dtbz8), see figure
4.2. Unlike figure 4.3, the uptake of the striatum tissues (two nearly identical left
and right lobes) is nearly non-existent. The uptake of the non-striatum tissues in
comparison to that of the striatum tissues is relative high. Clear identification of the
striatum tissues is nearly impossible, and there is very low uptake of the tracer in
the images at the later TF’s (13-16).
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4.2 Estimation of q by SVD

Figure 4.6 shows the normalized singular values for a healthy (magenta X’s) and a

diseased (blue O’s) datasets. To improve the SNR’s of the datasets, the 2 × 2 × 1

(in-plane) VA technique is applied to the datasets before performing SVD. For both

datasets, two distinct singular values (q = 2), corresponding to the two different

factors. As discussed before, proper estimation of the factor number (q) is a crucial

step for successful FADS.
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Figure 4.6. Shown are the normalized singular values from datasets for a healthy
(magenta X’s) and a diseased (blue O’s) subjects. Notice that two distinct singular
values (q = 2), corresponding to the two different factors.

4.3 Prior Information

One major difference between the proposed FADS algorithm and other well-known

FADS techniques is the use of prior information. In the proposed FADS algorithm,

well-known information about the dataset is used to warm start the first stage of the
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dual-stage optimization. This has the effect of reducing the number of possible so-

lutions, and the obtained solution is much closer to the global minimum (see section

3.5 and 3.6). According to figure 4.6, the two 11C-DTBZ datasets can be modelled

assuming 2 factor system, and for each dataset, two sample TAC’s are obtained from

the noise-reduced and time-averaged PET volume using prior information (e.g. the

striatum and non-striatum tissues). Figure 4.7 shows normalized sample TAC’s pro-

duced by the standard ROI method from the striatum and the non-striatum tissues

for both a healthy (dashed curves) and a diseased (solid curves) subject. The blue

and the red curves represent the striatum and the non-striatum tissues, respectively.

From our experience the algorithm is rather insensitive to the position and the size

of the ROI’s for the striatum and the non-striatum tissues. For example, the ROI’s

for the striatum and the non-striatum tissues can contain mixed tissue information.

However, the sample TAC’s should not be identical to avoid the stalling of the opti-

mization.
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Figure 4.7. Shown are normalized sample TAC’s produced by the conventional ROI
method (based on prior information) from the striatum and the non-striatum tissues
for both a healthy (dashed curves) and a diseased (solid curves) subject. The blue
and the red curves represent the striatum and the non-striatum tissues, respectively.

4.4 FADS (extracted FV’s and associated FC’s)

The standard ROI method for extracting accurate TAC’s from different physiologi-

cal structures is cumbersome and can be very complex. For instance, time-averaged

PET volume has to be used to identify and delineate different (often 3-dimensional)

physiological structures to create masks and then these masks are applied to each

time frame to obtain time activity curves. During this process it is critical to exclude

voxels that contain mixed tissue information and this step can be quite difficult for

an operator. Due to a finite voxel size (64 mm3) of the PET scanner, the PVE’s

and spillover effects exist and can be significant in the dynamic PET datasets. As

a result, the extraction of “pure” TAC’s from the dataset is often difficult to ob-

tain. Fortunately, the proposed FADS technique automatically handles the partial

volume effect. Figure 4.8 and 4.9 show images of the time-averaged (transverse)
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slices and corresponding FV’s produced by the FADS technique (assuming q = 2

with 2 × 2 × 1 in-plane VA and two sample TAC’s based on the prior information)

for the healthy and diseased subjects, respectively. Since the PD is directly related

to the tracer-uptake in the striatum tissues (region inside the substantia nigra) only

slices that best represent these structures are shown. In figure 4.8, images in the left

column show the time-averaged [20-24] slices, and the images in the center and the

right columns show the associated factor 1 and 2 images, respectively. For ease of

comparison, the time-averaged (TA) PET volume and FV’s are normalized to one.

It is clear that factors 1 and 2 represent the striatum and the non-striatum tissues,

respectively. In factor 1 images, the uptake of the non-striatum tissues is relatively

low in comparison to that of the striatum tissues. The format of figure 4.9 is the

same as figure 4.8 but for a diseased subject, and the striatum tissues are located in

slices [24-28]. In comparison to figure 4.8, the main difference in the uptake pattern

of the factor 1 images is the distortion of the two lobes and relatively high uptake

in the background (or non-striatum) tissues. As a result, manual identification of

the striatum tissues is quite difficult, time-consuming and operator-dependent. In

addition, the accurate placement of an ROI’s around the tissue structure is likely

to be inaccurate. The FC’s associated with the healthy and diseased subjects (see

figure 4.8 and 4.9) are displayed in the (left and right) plots in the third row of fig-

ure 4.10, respectively. The blue and the red curves represent the striatum and the

non-striatum tissues, respectively. The uptake patterns of the non-striatum tissues

between the two groups are comparable. However, for the healthy subject, the area

under FC1 is much larger than that under FC2. For the diseased subject, areas under

FC1 is slightly larger than that under FC2.

Figure 4.11 to 4.16 show images of the time-average (transverse) slices and the

corresponding FV’s produced by the FADS (using q = 2, 2 × 2 × 1 (in-plane) VA

technique and two sample TAC’s based on the prior information) for the healthy and

the diseased subjects. For all of the DTBZ datasets, the FADS technique produces
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two FV’s (corresponding to the striatum and non-striatum tissues) and two associ-

ated FC’s. The format of each figure is the same as figure 4.8, and different slices

from each dataset are chosen to best represent the near substantia nigra region. Fig-

ure 4.11, 4.15, and 4.16 represent factor images for the diseased subjects and their

factor curves are shown in the top-left, bottom-left, and bottom-right plots of figure

4.10. Figure 4.12, 4.13, and 4.14 represent factor images for the healthy subjects

and their factor curves are displayed in the top-right plot and (left and right) plots

in the second row of figure 4.10.

In summary, both healthy and diseased datasets are decomposed into two factor

volumes (corresponding to the straitum and the non-striatum tissues) and associated

factor curves. For healthy subjects, intense uptake of the radiotracer in the striatum

tissues (i.e. two left and right lobes) is consistently observed in the images of fac-

tor 1 volume. For diseased subjects, mild uptake of the radiotracer in the striatum

tissues (e.g. area with intense uptake of the radiotracer varies among different dis-

eased datasets) is consistently observed in the images of factor 1 volume. The main

difference in the images of factor 1 volumes between the two groups is the rela-

tively high background uptake of the radiotracer in the images of factor 1 volume

for the diseased subject. The area under FC1 is much larger than that under FC2

for the healthy subjects whereas the are under FC1 is slightly larger than that under

FC2 for the diseased subjects. Within each group, the extracted FC’s are consistent

and comparable. For diseased subjects, identification of the striatum tissues and the

extraction of TAC’s for the striatum tissues can be quite difficult. In addition, it

is also likely that many of the voxels will consist of mixed tissue information (i.e.

boundary of the striatum and the non-striatum tissues).
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Figure 4.8. Shown are images of the time-averaged (transverse) slices and cor-
responding slices from the FV’s for a healthy subject (dtbz6). Images in the left
column show the time-averaged [20-24] slices, and the images in the center and the
right columns show the associated factor 1 and 2 images, respectively. Associated
FC’s are displayed in figure 4.10. See text for details.
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Figure 4.9. Same as figure 4.8 except for a diseased subject (dtbz8) with [20-24]
slices. Factors 1 and 2 represent the striatum and the non-striatum tissues, respec-
tively. In comparison to figure 4.8, there is clear distortion of the two lobes and
relatively high uptake of the background tissues in the images of the factor 1 vol-
ume. Associated FC’s are displayed in figure 4.10.
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Figure 4.10. Shown are extracted FC’s for the healthy (dtbz2-4 and dtbz6) and the
diseased (dtbz1 and dtbz8-10) subjects. The blue and the red curves represent the
striatum and the non-striatum tissues, respectively. The uptake patterns for the non-
striatum tissues between the two groups are very similar. For the healthy subject,
the areas under FC1 are much larger than that under FC2. For the diseased subject,
the areas under FC1 are slightly larger than the areas under FC2.
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Figure 4.11. Same as figure figure 4.8 except for a diseased subject (dtbz1) with
[21-25] slices. In comparison to figure 4.8, there are clear differences in the uptake
pattern (e.g. distortion of the two lobes and relatively high background uptake) in
the images of the factor 1 volume. Associated FC’s are shown in figure 4.10.
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Figure 4.12. Same as figure 4.8 except for a healthy subject (dtbz2) with [22-26]
slices. In comparison to figure 4.8, similar uptake pattern (e.g. shape of the two
lobes and low background uptake) is observed in the images of the factor 1 volume.
Associated FC’s are shown in figure 4.10.
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Figure 4.13. Same as figure 4.8 except for a healthy subject (dtbz3) with [24-28]
slices. In comparison to figure 4.8, similar uptake pattern (e.g. shape of the two
lobes and low background uptake) is observed in the images of the factor 1 volume.
Associated FC’s are shown in figure 4.10.
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Figure 4.14. Same as figure 4.8 except for a diseased subject (dtbz4) with [23-27]
slices. In comparison to figure 4.8, similar uptake pattern (e.g. shape of the two
lobes and low background uptake) is observed in the images of the factor 1 volume.
Associated FC’s are shown in figure 4.10.
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Figure 4.15. Same as figure 4.8 except for a diseased subject (dtbz9) with [23-27]
slices. In comparison to figure 4.8, there are clear differences in the uptake pattern
(e.g. distortion of the two lobes and the relatively high background uptake) in the
images of the factor 1 volume. Associated FC’s are shown in figure 4.10.
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Figure 4.16. Same as figure 4.8 except for a diseased subject (dtbz10) with [22-26]
slices. In comparison to figure 4.8, there are clear differences in the uptake pattern
(e.g. distortion of the two lobes and the relatively high background uptake) in the
images of the factor 1 volume. Associated FC’s are shown in figure 4.10.
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4.5 Factor-based Metric

A factor-based metric (or ratio A1/A2), defined by equation 2.29 to 2.31, is devel-

oped to stratify subjects with early PD from the healthy subjects. For each DTBZ

dataset, the FADS result (FV’s and FC’s) is used to compute the ratio (A1/A2). Fig-

ure 4.17 shows the ratios for the eight DTBZ datasets, as a function of the threshold

value for voxels in the factor 1 volume. For example, voxels with lower value co-

efficients in the factor 1 volume are deselected by increasing the threshold value.

It is clear from the figure that there exists two distinct groups within the popula-

tion studied. The healthy (X’s) and the diseased (O’s) groups are well separated by

threshold values greater than 0.2. The optimum threshold value might be anywhere

between 0.4 and 0.9.



98

Figure 4.17. Shown is the factor-based metric (A1/A2), defined by equation 2.29
to 2.31, as a function of the threshold value for voxels in the factor 1 volume.
Notice that the healthy (X’s) and the diseased (O’s) subjects are clearly separated
by threshold values greater than 0.2. The optimum threshold value can be anywhere
between 0.4 and 0.9.

The factor-based metric does not make explicit use of factor 2 volumes because

there are no unique features in the images of the factor 2 volumes between the

healthy and diseased groups. Table 4.1 summarizes the FADS results for the eight

DTBZ datasets and shows activity (in MBq), summed over all voxels and averaged

over 16 TF’s for the dynamic dataset (Atot), for factor 1 (Atot1) and factor 2 (Atot2).

Each row in the table represents a DTBZ dataset (dtbz1-4, dtbz6, and dtbz8-10). To

compute the activity for each dataset, the extracted FC’s and FV’s are used from



99

the eight DTBZ datasets. For each dataset, the sum of activity in the second and

third columns is very close to the activity in the first column for all DTBZ datasets.

Notice that taking the simple ratio of Atot1 to Atot2 does not provide reliable metric

to stratify the two groups. The factor-based metric for stratifying subjects with

and without early PD is compared against the medical diagnosis by clinicians (see

the last two columns). The letters D and H represent the diseased and the healthy

subjects, respectively. The diagnostic results in the last two columns suggest that

the factor-based metric is useful for identifying early PD patients from the healthy

subjects.

Table 4.1. The first three columns of this table show the activity (in MBq), summed
over all voxels and averaged over 16 TF’s for the dynamic dataset (Atot), for fac-
tor 1 (Atot1) and factor 2 (Atot2). The extracted FC’s and FV’s are used from the
eight DTBZ datasets to compute the activity. The factor-based metric for stratify-
ing subjects with and without early PD is compared against the medical diagnosis
by clinicians (see the last two columns). The letters D and H indicate the diseased
and the healthy subjects, respectively. The perfect agreement between factor-based
metric and the clinical diagnosis is obtained for the eight DTBZ datasets.

Atot (MBq) Atot1 (MBq) Atot2 (MBq) Metric Diagnosis

dtbz1 21.80 8.62 13.18 D D

dtbz2 20.13 7.29 12.84 H H

dtbz3 15.52 9.05 6.47 H H

dtbz4 17.70 7.21 10.49 H H

dtbz6 11.39 5.27 6.12 H H

dtbz8 21.32 11.12 10.20 D D

dtbz9 21.25 11.29 9.96 D D

dtbz10 23.53 10.79 12.74 D D
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Chapter 5

Discussion

5.1 Simulation Study

The three-compartment model is used to simulate a dynamic PET dataset. Each

dataset consists of three rectangular structures (see figure 3.1) which simulates

varying degrees of PVE’s. Each compartment is homogeneous and tissue-specific,

filled with arbitrarily shaped TAC’s. To make the dataset more realistic, Poisson

and White noise is used to introduce the quantum and electronic noise to the dy-

namic datasets. A total of 6 dynamic datasets (case I, II and III for noise-free and

noisy datasets) are used for the simulation study, and each dataset consists of 144

× 144 × 16 voxels. These simulated datasets are then used to investigate various

factors affecting SVD and FADS results, as well as to validate the proposed FADS

technique.

Before the FADS technique can be applied to a dataset, the factor number q

(i.e. the number of pure underlying kinetics) must be determined. SVD is used to

determine the singular values that are well above the level of noise. Figure 3.2 to

3.4 illustrates the SVD results for the three noise-free dynamic datasets (case I, II,

and III). In each case, the fourth and higher singular values are all zero, indicating

that there are only three principle components (without the presence of noise). The

effects of 4 × 4 and 8 × 8 VA techniques on the SVD results are negligible for the

noise-free datasets. However, the effects of VA techniques are noticeable for the

noisy datasets. Figure 3.5 to 3.8 shows that the VA techniques significantly reduces

the amount of noise in the dataset (e.g. suppression of singular values correspond-

ing to the noise). Greater noise suppression can be achieved by increasing the size

of VA. However, too much VA can have a negative impact on the SVD result be-

cause increasing the size of VA has the same effect as increasing the amount of

overlap between the compartments. The number of voxels with “pure” TAC’s in
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the dataset is decreased, and the accurate estimation of factor number q may be dif-

ficult in the presence of noise. As a result, the relative contribution of non-dominant

principle components gets reduced with the increased amount of structure-overlap.

Thus, the VA technique should be applied to the dynamic dataset to improve the

image quality and reduce the data size; but, the optimum size of VA depends on the

type of dataset and should be determined by trial and error.

If q is not estimated properly then the result of FADS can be meaningless. For

example, underestimating q will produce a meaningless result, but over-estimating

q can produce a meaningful result (e.g. extra factors may represent noise in the

dataset). From our experience, the latter is very unlikely even though it is theo-

retically possible, and the result often does not make any physical sense. Thus, the

operator can easily discard such results and perform the FADS technique again with

a different q value. As discussed before, proper estimation of the factor number is

a crucial step for the successful application of FADS.

With the appropriate q value, the SVD-based noise reduction technique is ap-

plied to the dataset in order to reduce the amount of noise present in the dataset and

to improve the image quality (see figure 3.9 and 3.11). For this dataset, the three

principle images corresponding to the three largest singular values are expected,

and the remaining principle images represent the noise in the dataset (refer to fig-

ure 3.10). It is clear that the noise reduced TAC’s (dash-dotted curves) are much

closer to the true TAC’s (solid curves) in figure 3.12. Therefore, the noise reduction

technique should always be performed to the dataset prior to running the proposed

FADS technique.

The effect and importance of prior information on the FADS results can be

seen in figure 3.13 to 3.18. Prior information is used to obtain sample TAC’s from

the noise-reduced dynamic dataset using the standard ROI method. These sample

TAC’s are then used to warm start the first stage of the two-stage optimization (in

the FADS algorithm) in order to reduce the number of possible solutions and to
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obtain the solution that is in close proximity to the true solution. Note that the

sample TAC’s can contain mixed tissue information and they should not be identical

to avoid stalling of the optimization. Without the prior information, the resulting

factor images and associated factor curves are quite different from the known factor

images and curves (e.g. factor images consist of mixed tissue information and the

curves do not represent the pure underlying kinetics). These results suggest that

there are several local minima present even for the noise-free cases and the number

of local minima will probably increase for the datasets in the presence of noise.

Figure 3.19 illustrates the distribution of possible solutions with and without the

prior information. For the warm start case, the histogram follows the Gaussian

distribution and is skewed to the right. The most likely value of D in this case is

approximately 0.025. For the random starting case, the distribution contains at least

two normal distributions, and the likely D values are 0.17 and 0.2. The observed

D values for the random starting case are much larger than those for the warm

starting case. The D values for the random starting case are widely distributed

(0.025-0.21). As an example, figure 3.20 clearly shows that most solutions with

the random start are far from the known solution. Therefore, the prior information

should be always used to obtain sample TAC’s from the different physiological

structures in the dynamic dataset prior to running the proposed FADS technique.

To avoid stalling of the optimization and faster convergence of the technique, the

obtained sample TAC’s should not be identical.

One major disadvantage of the FADS technique is that the solution is not math-

ematically unique, and various authors have proposed different techniques to solve

this problem but with only limited success. For some datasets, the problem of

non-uniqueness is almost non-existent whereas, for other datasets, the problem be-

comes significant. Unfortunately, FADS techniques proposed by those authors are

less practical: they often depends on the type of dataset; they have relatively slow

convergence; they require pre-estimation of penalty parameters; some of the meth-



103

ods are invasive (e.g. requiring blood samples). In contrast, our proposed technique

- that utilizes the sample TAC’s from the q physiological structures (based on the

known information about the dataset) - is robust (see figure 3.27) and produces the

solution that is in close proximity to the global minimum (see figure 3.19). In addi-

tion, the technique does not require pre-determination of parameters that depend on

the type of datasets. However, the proposed technique does not guarantee finding

the global minimum for the optimization problem, as is true also for other FADS

techniques. Nevertheless, the solution produced by the proposed FADS technique

produces good results when compared with the standard ROI method. The tech-

nique has further been verified and validated using the simulated phantom study in

Chapter 3.

The application of VA technique reduces the dataset size while improving the

SNR of the dataset (see Table 3.1). However, it can also have a negative impact on

the FADS result if the size of VA is too large. With the larger size of VA, there are

reduced number of voxels with “pure” TAC’s in the dataset. This has the same effect

as increasing the amount of compartment-overlap. When two or more structures are

in complete or near-perfect overlap, the proposed FADS technique fails to produce

accurate FV’s and FC’s. Figure 3.22, 3.23, and 3.24 shows the effect of large VA

on the FADS result. This example clearly illustrates the potential shortcoming of

the VA technique, and the optimum size of VA should be determined by the trial

and error.

A critical first step to successful FADS analysis is the proper estimation of fac-

tor number q. If its value is chosen inaccurately the FADS technique will probably

produce meaningless result. For example, if q-1 value is used for the factor model

instead of q then the result is meaningless (see equation 2.4). If q+1 value is used

for the factor model instead of q then multiple scenarios can occur: first, the extra

factor represents noise in the dataset (see figure 3.25); second, the extra factor is ba-

sically the same as one of the other factors (see figure 3.26). From our experience,
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improper estimation of q usually produce results that are not physically meaningful

(e.g. extracted FC’s oscillate). Generally speaking, it is pretty obvious for an oper-

ator to discard these results and the operator can perform the FADS analysis again

with different q value.

The main computing efficiency of our FADS algorithm arises from the utiliza-

tion of equation 2.18 and 2.19 to estimate the step sizes for solving the sub-problems

(equation 2.10 and 2.11). By converting equation 2.14 into equation 2.17, the com-

putational cost is significantly reduced by avoiding the large matrix multiplication.

Without this step the algorithm will take much longer to converge and obtain a

solution, rendering the technique less attractive.

5.2 Clinical Study

The proposed FADS algorithm is applied to the eight sets of 11C-DTBZ datasets (4

healthy subjects and 4 diagnosed with early PD). Each dataset is decomposed into

FV’s and associated FC’s assuming a two factor system. One factor represents the

striatum tissues, and the other factor represents the non-striatum tissues. Prior to

running the FADS algorithm, two sample TAC’s are obtained by the conventional

ROI method (based on the prior information) in order to warm start the first stage of

the dual-stage optimization in the FADS algorithm. The transverse VA technique (2

× 2 × 1) is used to improve the SNR of the dataset and to reduce the dataset size.

For healthy subjects, the tracer uptake patterns of the striatum tissues in the factor

1 volumes are consistent and comparable between the different datasets. The tracer

uptake in the striatum tissues (or two nearly identical lobes) are intense and easily

identified from the images of the time-averaged (TA) slices (see figure 4.8, 4.12

to 4.14). In addition, the relative uptakes of the background (or the non-striatum)

tissues in the factor 1 volumes are low. For diseased subjects, the tracer uptake

patterns of the striatum tissues in the factor 1 volumes are irregular. Manual iden-

tification of the striatum tissues from the images of the TA slices is quite difficult
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(see figure 4.9, 4.11, 4.15, and 4.16). The relative uptakes of the background (or

the non-striatum) tissues in the factor 1 volumes are much higher than those in the

factor 1 volumes for the healthy subjects.

There are no distinctive features in the tracer uptake of the non-striatum tis-

sues in factor 2 volumes for either healthy or diseased subjects; however, a clear

difference in the shape of the FC’s between the two groups is observed (see fig-

ure 4.10). For healthy subjects, the area under the factor 1 curve (e.g. associated

with the striatum tissues) is much larger than the area under the factor 2 curve (i.e.

associated with the non-striatum tissues). For diseased subjects, areas under the

factor 1 curves are slightly larger than those under the factor 2 curves. The factor

1 curves within the healthy group are very similar, and the factor 2 curves within

the diseased group are also comparable to each other. For factor 1 curves, there are

dissimilarities between the two groups. For factor 2 curves, there are similarities

between the two groups.

Based on the similarities and dissimilarities in FV’s and FC’s from the eight

DTBZ datasets, a factor based metric (A1/A2, defined by equation 2.29-2.31) is de-

veloped to automatically stratify early PD patients from the healthy subjects. The

proposed metric clearly separates the healthy subjects from the diseased subjects

(see figure 4.17). The optimum threshold for the metric can be identified by ana-

lyzing a larger number of the DTBZ datasets.

Table 4.1 depicts comparison between the proposed technique and the medical

diagnosis performed by clinicians to stratify the early PD patients from the healthy

subjects. Even though both methods produce the same diagnostic results, the pro-

posed technique is computationally very efficient (e.g. a single dataset in this study

usually takes less than 5 minutes), is semi-automatic, and is operator-independent.

The technique does require sample TAC’s from q physiological structures (based

on the prior information) in the dataset using the standard ROI method. However,

the optimization in our technique is insensitive to the starting point and the sample
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TAC’s are allowed to contain mixed tissue information. The proposed technique has

the potential to significantly aid the physicians with the review process (by provid-

ing accurate FV’s and FC’s that represent the striatum and the non-striatum tissues)

and thereby can improve the quality of medical diagnosis. Most importantly, our

technique allows for researchers and clinicians to perform quantitative analysis on

the dynamic studies.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, the optimization-based factor analysis of dynamic structure (FADS)

technique that utilizes the prior information is developed to decompose dynamic

PET dataset into parts-based factor volumes (FV’s) and associated factor curves

(FC’s). The technique can greatly simplify the complex datasets and has the poten-

tial to significantly aid the review process (performed by physicians). The extracted

FV’s represent the underlying physiology, and associated FC’s describe kinetic in-

formation of those FV’s. The optimization technique is based on the projected gra-

dient method (PGM) and alternating non-negative least squares (ANLS) method.

By combining the two techniques, the solution space is reduced and the convergence

speed is improved. Due to the nature of the problem there exist many possible solu-

tions. To minimize the number of possible solutions and obtain a solution close to

the global minimum, the first stage of dual-stage optimization is warm started based

on the prior information of the dataset. From the simulation study (see Chapter 3),

the effect of prior information on the FADS result is investigated (i.e. accuracy of

the extracted FC’s and FV’s). Another important factor for the successful FADS is

proper estimation of factor number (q) by SVD. After the proper estimation of the

factor number, it is straightforward to obtain q sample TAC’s by the traditional ROI

method from the q physiological structures in the dynamic dataset. The SVD tech-

nique is also used to reduce the amount of noise present in the dataset. In addition,

a simple (in-plane) VA technique is used to further improve the SNR of the dataset

and increase the convergence speed of the FADS algorithm. The VA technique

is very useful for the FADS technique if the optimum size of VA is applied to the

dataset. However, it can produce inaccurate FC’s and FV’s if the size of VA is made

too large. In essence, this has the same effect as increasing the amount of structure-
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overlap. The optimum size of VA depends on the type of dataset and should be

determined by trial and error. With the optimum q value and VA size, the proposed

FADS technique with prior information can extract valuable and clinically-relevant

information about the underlying physiology (see Chapter 4).

After the validation of the FADS technique using the computer generated phan-

toms, the technique is applied to the eight DTBZ datasets (4 healthy and 4 diag-

nosed with early PD). The technique decomposed each dynamic dataset into the

two FV’s (representing the striatum and the non-striatum tissues) and associated

FC’s. Similarities in the images of the factor 1 volumes between the healthy sub-

jects (e.g. nearly identical two intense lobes in the center of brain and low non-

striatum tissue uptake) are observed. For diseased subjects, inconsistent uptake

patterns of the striatum tissues are observed, and relatively high non-striatum tissue

uptake in the images of the factor 1 volumes is observed. Similarities and differ-

ences in the extracted FC’s between the two groups are also observed: for healthy

subjects, the area under the factor 1 curve is significantly larger than that under

the factor 2 curve; for diseased subjects, the area under the factor 1 curve is slightly

larger than that under the factor 2 curve. Based on the extracted FV’s and FC’s from

each dataset, in-house factor-based metric is developed to stratify early PD patients

from the healthy subjects. The metric clearly separates the eight subjects into the

two groups, and the classification results are in perfect agreement with the clinical

diagnosis. The method is computationally robust and operator-independent, and

it requires the minimum amount of work. This technique makes the quantitative

analysis of the DTBZ datasets possible and has the potential to significantly aid the

review process of dynamic datasets performed by physicians.

6.2 Future Directions

In this thesis, the FADS algorithm is applied to dynamic PET 11C-DTBZ datasets,

but the technique can be applied to other sequences of dynamic medical images (i.e.
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dynamic microPET images and dynamic contrast enhanced MRI images). The pro-

posed technique can be also applied to dynamic PET images / volumes generated

with different radio-tracers (e.g. [18F]-Fludeoxyglucose, [18F]-Fluorothymidine

and Fluoroazomycin arabinoside). Another 50 DTBZ datasets are also planned

to be acquired and will be analyzed with this technique.

In this study, a simple SVD-based noise reduction technique that does not ac-

count for the noise characteristics of the dataset - is used. More sophisticated noise

model could be employed to reduce the noise in the dataset and then apply the FADS

technique to possibly obtain more accurate FV’s and associated FC’s, representing

the underlying physiology.

Finally, the extracted FV’s can be fused with Computed Tomography (CT) or

Magnetic Resonance Imaging (MRI) images for ease of visualizing the underlying

physiology and accurate localization of physiological function for the tissues or

organs of interest.
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APPENDIX 

Neuroanatomical Correlates of Dopamine Responsive and Non-responsible 

Galt and Balance Impairment in the Parkinson’s Disease 

This appendix contains the following documents: 

1. INFORMATION SHEET – CONTROL SUBJECTS 

2. INFORMATION SHEET – PARKINSON’S PATIENTS 

3. CONSENT FORM 

4. ETHICS APPROVAL FORM – DELEGATED REVIEW 

5. Re-Approval Form 
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