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Abstract

In this thesis probability estimates on the smallest singular value of random matrices

with independent entries are extended to a class of sparse random matrices. We

show that one can relax a previously used condition of uniform boundedness of the

variances from below. This allows us to consider matrices with null entries or, more

generally, with entries having small variances. Our results do not assume identical

distribution of the entries of a random matrix, and help to clarify the role of the

variances in the corresponding estimates. We also show that it is enough to require

boundedness from above of the r-th moment of the entries, for some r > 2.
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Introduction

The contents of this thesis pertain the results presented in [29]. Therefore, naturally,
there is much overlap between the text written here and that of [29].

Let N ≥ n be positive integers. In this thesis we study the smallest singular value
of matrices Γ = (ξji), of size N × n, whose entries are real-valued random variables
obeying certain probability laws. In particular we are interested in allowing these
matrices to contain some null entries (or, more generally, to contain some entries with
arbitrarily small variances). In this sense we deal with sparse (or dilute) random
matrices. Sparse random matrices and more generally sparse structures play an
important role in many branches of pure and applied mathematics. We refer to
Chapter 7 of [5] for definitions, relevant discussions, and references (see also the
recent works [18], [47]).

Understanding the behaviour of random matrices is of importance in several
fields, including Asymptotic Geometric Analysis, Approximation Theory, Probabil-
ity and Statistics. The results of classical random matrix theory focused on the
limiting properties of random matrices as the dimension grows to infinity. In that
context, the limiting behaviour of the extreme singular values (see the definitions
in Chapter 1) of random matrices was studied. Such limiting behaviour is now well
understood for the case of matrices whose entries are independent identically dis-
tributed (i.i.d.) random variables. We refer to the following books, surveys, and
recent papers for history, results, and open problems in this direction [4], [5], [15],
[16], [32], [47], [49].

In the asymptotic non-limiting case very little was known till very recently. In
this case one studies the rate of convergence, deviation inequalities, and the general
asymptotic behaviour of singular values as functions of the dimensions of a matrix.
Thus, by ‘non-limiting’ we mean that the dimensions n,N are fixed, while the name
‘asymptotic’ is meant to imply that n,N are large (growing to infinity). The case
when the entries of a random matrix are independent N (0, 1) Gaussian was treated
in [12] and in [45] (see also [17] for related results, and the survey [10]). In the
last decade the attention shifted to other models, like matrices with independent
sub-Gaussian entries (the case of symmetric Bernoulli ±1 appears to be particularly
important), independent entries with some moment conditions, as well as matri-
ces with independent columns or rows satisfying some natural restrictions. Major
achievements were obtained in [1], [2], [26], [38], [39], [40], [46], [48].

In all previous non-limiting asymptotic results for random matrices with inde-
pendent entries, an important assumption was that the variances of all the entries
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are bounded below by one, i.e. in a sense, that all entries are buffered away from zero
and thus cannot be too small. Such a condition is not natural for some applications,
for instance when dealing with models in the theory of wireless communications,
where signals may be lost (or some small noise may appear), or with models in
neural network theory, where the neurons are not of full connectivity with each
other.

The main goal of our research is to show that one can significantly relax the
requirement of boundedness from below of all entries, replacing it by averaging type
conditions. Thus our results clarify the role of the variances in the corresponding
previous results. In the limiting case of symmetric square matrices (universal Wigner
ensemble), many results in this direction were obtained, see survey [13]. Another
advantage of our results is that we require only boundedness (from above) of the r-th
moments for an arbitrary (fixed) r > 2. We would like to emphasize that we don’t
require identical distributions of all entries of a random matrix nor boundedness
of the sub-Gaussian moment of entries (both conditions were crucial for the deep
results of [40]). Moreover, the condition on entries “to be identically distributed” is
clearly inconsistent with our model, as, under such a condition, if one entry is zero
then automatically all entries are zeros.

We describe now our setting and results. Our main results present estimates for
the smallest singular value sn(Γ) of large matrices Γ of the type described. As it
turns out the methods used to establish those estimates depend on the aspect ratio
of the matrices. The aspect ratio of an N × n matrix A is the ratio n/N of number
of columns to number of rows, or, more intuitively, the ratio “width by height”. To
have a suggestive terminology, we will say that such matrix A is

• “tall” if n
N ≤ c0 for a small positive constant c0;

• “almost square” if n
N is close to 1.

Clearly, a matrix is square when its aspect ratio is equal to 1.

We will deal with random matrices under various conditions, which we list now.
These conditions allow our matrices to contain many null (or small) entries, which
means that we don’t have any restrictions on the variance of a particular entry. Our
model is different from the models used in [18], [47], where zeros appeared randomly,
i.e. each entry, which is a random variable itself, was multiplied by another random
variable of type 0/1. Our model is more similar to those considered in [13], where a
condition similar to (iii) was used for square symmetric matrices. Naturally, in order
for our random matrices to have entries of different kinds, we do not require that
the entries are identically distributed. For parameters r > 2, µ ≥ 1, a1 > 0, a2 > 0,
a3 ∈ (0, µ), and a4 ∈ (0, 1], we will consider N×n random matrices Γ = (ξji)j≤N, i≤n
whose entries are independent real-valued centered random variables satisfying the
following conditions:

(i) Moments: E |ξji|r ≤ µr for all j and i.

(ii) Norm: P
(
‖Γ‖ > a1

√
N
)
≤ e−a2N .
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(iii) Columns: E‖(ξji)Nj=1‖22 =
∑N

j=1 E ξ2ji ≥ a23N for each i.

For almost square and for square matrices we also will need the following condition
on rows.

(iv) Rows: |{i | E ξ2ji ≥ 1}| ≥ a4n for each j.

It is important to highlight that the parameters µ, r, a1, a2, a3, a4 should be regarded
as constants which do not depend on the dimensions n, N . Note also that the ratio
µ/a3 is of particular importance (µ is responsible for the maximal Lr-norm of entries,
while a3 is an average-type substitution for the lower bound on L2-norm of entries).

Before we state our main results let us comment on the above conditions. The
first condition is a standard requirement saying that the random variables are not
“too big”. For the limiting case it is known that boundedness of the forth moments
is needed. It turns out that for our estimates it is enough to ask boundedness of
moments of order r = 2 + ε only, which improves all previous results. In particular,
this was one of the questions raised in [50], where the author proved corresponding
estimates for entries with bounded 4 + ε moment, and asked about 2 + ε moment.

The second condition is crucial for many results on random matrices. We recall
that the norm of a matrix is understood to be the operator norm from `n2 to `N2 , also
called the spectral norm, which is equal to the largest singular value. In fact, the
question “What are the models of random matrices satisfying condition (ii)?” (and
more generally, “What is the behaviour of the largest singular value?”) is one of the
central questions in random matrix theory. Such estimates are well known for the
Gaussian and sub-Gaussian cases. We refer to [2], [23] and references therein for
other models and recent developments on this problem. We would like to emphasize
that condition (ii) is needed in order to get probabilities exponentially close to one.
Alternatively, one may substitute this condition by

pN := P
(
‖Γ‖ > a1

√
N
)
< 1,

in which case one should add pN to the estimates of probabilities in our theorems
below.

The main novelty in our model are conditions (iii) and (iv). These two conditions
substitute the standard condition

E |ξji|2 ≥ 1 for all j, i, (1)

which was used in all previous works related to the smallest singular value of a
random matrix (in the non-limiting case). Removing such strong assumption on all
entries we allow the possibility of zeros to appear among the entries of a random
matrix. Our conditions (iii) and (iv) should be compared with (1.1) and (1.16) in
[13].

Of course we want to rule out matrices having a column or a row consisting
of zeros only, for if there is a zero column then immediately sn(Γ) = 0, while if
there is a zero row then the matrix Γ is essentially of size (N − 1) × n. Hence we
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need some general assumptions on the columns and the rows of the matrices under
consideration. Our condition (iii) alone implies that each column vector of the
matrix has relatively big `2-norm. Moreover, condition (iii) together with condition
(i) guarantee that proportionally many rows have `2-norms bounded away from 0. It
turns out that condition (iii) is already enough for “tall” matrices, when N > Cn, as
the first theorem below shows. The cases of “almost square” and square matrices are
more delicate, because N becomes closer to n, and we need to control the behaviour
of rows more carefully. Condition (iv) ensures that each row of the matrix has
proportionally many entries with variance at least one.

Now we state our results. The first theorem deals with “tall” matrices and
extends the corresponding result from [26] (for mean zero random variables with
variances bounded below uniformly and uniformly bounded above this was shown in
[6]). Note that we use only three conditions, (i), (ii), and (iii), while condition (iv)
is not required for this result.

Theorem 1. Let r > 2, µ ≥ 1, a1, a2, a3 > 0 with a3 < µ. Let 1 ≤ n < N be
integers, and write N in the form N = (1 + δ)n. Suppose Γ is an N × n matrix
whose entries are independent centered random variables such that conditions (i),
(ii) and (iii) are satisfied. There exist positive constants c1, c2 and δ0 (depending
only on the parameters r, µ, a1, a2, a3) such that whenever δ ≥ δ0, then

P
(
sn(Γ) ≤ c1

√
N
)
≤ e−c2N .

Remark. Our proof gives that c1 = c1(r, µ, a3) depends on r, µ, and a3 only;
whereas c2 = c2(r, µ, a2, a3) and δ0 = δ0(r, µ, a1, a3).

Our next theorem is about “almost square” matrices. Here both conditions (iii)
and (iv) are needed in order to substitute condition (1). This theorem extends the
corresponding result [26, Theorem 3.1].

Theorem 2. Let r > 2, µ ≥ 1, a1, a2 > 0, a3 ∈ (0, µ), a4 ∈ (0, 1]. Let 1 ≤ n < N be
integers, and write N in the form N = (1+δ)n. Suppose Γ is an N×n matrix whose
entries are independent centered random variables such that conditions (i), (ii), (iii)
and (iv) are satisfied. There exist positive constants c1, c2, c̃1 and c̃2, depending only
on the parameters r, µ, a1, a2, a3, a4, and a positive constant γ = γ(r, µ, a1, a3) < 1,
such that if

a4 > 1− γ and δ ≥ c̃1
ln(2 + c̃2n)

then
P
(
sn(Γ) ≤ c1

√
N
)
≤ e−c2N .
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Remarks. 1. Our proof gives that c1 = c1(r, µ, a1, a3, δ), c2 = c2(r, µ, a2, a3),
c̃1 = c̃1(r, µ, a1, a3) and c̃2 = c̃2(r, µ, a1, a3, a4).
2. Note that for small n, say for n ≤ 2/c̃2, Theorem 2 is trivial for every δ > 0,
either by adjusting the constant c2 (for small N) or by using Theorem 1 (for large
N).

Let us note that in a sense our Theorems 1 and 2 are incomparable with the
corresponding result of [40]. First, we don’t restrict our results only to the sub-
Gaussian case. The requirement of boundedness of the sub-Gaussian moment is
much stronger, implying in particular boundedness of moments of all orders, which
naturally yields stronger estimates. Second, another condition essentially used in
[40] is “entries are identically distributed.” As was mentioned above, such a condition
is inconsistent with our model, since having one zero we immediately get the zero
matrix.

Our third theorem shows that we can also extend to our setting the corresponding
results from [39], where the i.i.d. case was treated, and from [1], which dealt with
the case of independent log-concave columns. Note again that we work under the
assumption of bounded r-th moment (for a fixed r > 2). In fact, in [39] two theorems
about square matrices were proved. The first one is for random matrices whose
entries have bounded fourth moment. Our Theorem 3 extends this result with much
better probability. The second main result of [39] requires the boundedness of sub-
Gaussian moments as well as identical distributions of entries in each column, and,
thus, is incomparable with Theorem 3.

Theorem 3. Let r > 2, µ ≥ 1, a1, a2, a3, a4 > 0 with a3 < µ. Suppose Γ is an n×n
matrix whose entries are independent centered random variables such that conditions
(i), (ii), (iii) and (iv) are satisfied. Then for every ε ≥ 0

P
(
sn(Γ) ≤ εn−1/2

)
≤ C

(
ε+ n1−r/2

)
,

where C depends on the parameters r, µ, a1, a2, a3, a4.

In Chapter 7 we extend Theorem 1 to the case of random matrices with complex-
valued entries. Treating random matrices with real-valued entries in the first place
was a natural choice, for instance, this is the case in most theorems of Probability
Theory, where real random variables are studied at first, arguably with applications
in mind, and later the results are extended to complex random variables.

In the chapter closing this thesis, Chapter 8, we prove that a recent result of Sri-
vastava and Vershynin, which involves projections of random vectors with a product
distribution, is valid without requiring that the components have unit variances.
Our work in this chapter gives a neat example that the idea of removing condi-
tions of boundedness from below of the variances, as we have done in our results of
previous chapters, is useful also in a somewhat different context.
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Chapter 1

Notation and Preliminaries

In this chapter we lay down the notations that will be used throughout. We also
present here some preliminary definitions.

For 1 ≤ p ≤ ∞, we write ‖x‖p to denote the `p-norm of x = (xi)i≥1, that is, the
norm defined by

‖x‖p =
(∑
i≥1
|xi|p

)1/p
for p <∞ and ‖x‖∞ = sup

i≥1
|xi|.

Then, as usual, `np = (Rn, ‖·‖p). The unit ball of `np is denoted Bn
p . The unit sphere

of `n2 is denoted Sn−1, and e1, . . . , en is the canonical basis of `n2 .

We write 〈·, ·〉 for the standard inner product on Rn. By |x| we denote the
standard Euclidean norm (i.e. `2-norm) of the vector x = (xi)i≥1. On the other
hand, when A is a set, we write |A| to denote the cardinality of A.

The support of a vector x = (xi)i≥1 is denoted by supp(x), this is the set of
indices corresponding to nonzero coordinates of x, that is,

supp(x) :=
{
i
∣∣ xi 6= 0

}
.

Given a subspace E of Rn we write PE for the orthogonal projection onto E. In
the particular case when E = Rσ is the coordinate subspace corresponding to a set
of coordinates σ ⊂ {1, . . . , n}, we will write Pσ as a shorthand for PRσ .

Let N ⊂ D ⊂ Rn and ε > 0. Recall that N is called an ε-net of D (in the
Euclidean metric) if

D ⊂
⋃
v∈N

(v + εBn
2 ).

In case D is the unit sphere Sn−1 or the unit ball Bn
2 , a well known volumetric

argument establishes that for each ε > 0 there is an ε-net N of D with cardinality
|N | ≤ (1 + 2/ε)n, see for instance [33, Lemma 2.6].
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1.1 Singular values.

Suppose Γ is an N × n matrix with real entries. The singular values of Γ, denoted
sk(Γ), are the eigenvalues of the n×n matrix

√
Γt Γ, arranged in the decreasing order.

It is immediate that the singular values are all non-negative, and furthermore the
number of nonzero singular values of Γ equals the rank of Γ.

The largest singular value s1(Γ) and the smallest singular value sn(Γ) are called
the extreme singular values of Γ. These are given by the expressions

s1(Γ) = sup
{
|Γx|

∣∣ |x| = 1
}
, sn(Γ) = inf

{
|Γx|

∣∣ |x| = 1
}
.

In particular s1(Γ) = ‖Γ : `n2 → `N2 ‖ is the operator norm of Γ. Observe that
for every vector x ∈ Rn one has

sn(Γ)|x| ≤ |Γx| ≤ s1(Γ)|x|. (1.1)

The estimate on the left-hand side is trivial (but futile) if sn(Γ) = 0. On the other
hand, when sn(Γ) > 0 the matrix Γ is a bijection on its image, and can be regarded
as an embedding from `n2 into `N2 , with (1.1) providing an estimate for the distortion
of the norms under Γ. In this case, ‖Γ−1 : Γ(`n2 )→ `n2‖ = 1/sn(Γ).

To estimate the smallest singular number, we will use the following equivalence,
which clearly holds for every matrix Γ and every λ ≥ 0:

sn(Γ) ≤ λ ⇐⇒ ∃x ∈ Sn−1 s.t. |Γx| ≤ λ. (1.2)

1.2 Compressible and incompressible vectors.

As equivalence (1.2) suggests, to estimate the smallest singular value of a matrix Γ
we estimate the norm |Γx| for vectors x ∈ Sn−1. More precisely, we will estimate
|Γx| individually for vectors in an appropriately chosen ε-net and, for general points
of the sphere, we use approximation (to points of the ε-net) and the union bound.
In the case of “tall” matrices just one single ε-net is enough for this approximation
method to work; but in the case of “almost square” matrices, as well as for square
matrices, we need to split the sphere into two parts according to whether the vector
x is compressible or incompressible, in the sense that we now define.

Let m ≤ n and ρ ∈ (0, 1). A vector x ∈ Rn is called

• m-sparse if |supp(x)| ≤ m, that is, if x has at most m nonzero entries.

• (m, ρ)-compressible if it is within Euclidean distance ρ from the set of all m-
sparse vectors.

• (m, ρ)-incompressible if it is not (m, ρ)-compressible.
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For convenience we will use the shorthands Sparse(m), Comp(m, ρ), Incomp(m, ρ)
to denote the sets of sparse, compressible, and incompressible vectors, respectively.
If the parameters m, ρ are clear form the context, sometimes we may write simply
Sparse, Comp or Incomp.

Remark. The idea to split the Euclidean sphere into two parts goes back to Kashin’s
work [21] on orthogonal decomposition of `2n1 , where the splitting was defined using
the ratio of `2 and `1 norms. This idea was recently used by Schechtman ([41]) in the
same context. The splitting of the sphere essentially as described above appeared
in [26], [27], and was later used in many works (e.g. in [39], [40]).

It is clear from these definitions that, for a vector x, the following holds:

x ∈ Comp(m, ρ) ⇐⇒ ∃σ ⊂ {1, . . . , n} with |σc| ≤ m such that |Pσx| ≤ ρ.

Therefore

x ∈ Incomp(m, ρ) ⇐⇒ ∀σ ⊂ {1, . . . , n} with |σc| ≤ m one has |Pσx| > ρ.
(1.3)

1.3 Two more results.

Here we formulate two results that will be used in the next chapters. The first one
is a general form of the Paley-Zygmund inequality (see e.g. [26, Lemma 3.5]). The
second one is a quantitative version of the Central Limit Theorem (CLT) which in
its original form, under the assumption of finite moments of 3-rd order, is called
Berry-Esséen inequality.

Lemma 1.1 (Paley-Zygmund inequality). Let p ∈ (1,∞), q = p/(p− 1). Let f ≥ 0
be a random variable with E f2p <∞. Then for every 0 ≤ λ ≤

√
E f2 we have

P (f > λ) ≥ (E f2 − λ2)q

(E f2p)q/p
.

Theorem 1.2 (Berry-Esséen CLT). Let 2 < r ≤ 3. Let ζ1, . . . , ζn be independent
centered random variables with finite r-th moments and set σ2 :=

∑n
k=1 E|ζk|2. Then

for all t ∈ R ∣∣∣∣P( 1

σ

n∑
k=1

ζk ≤ t
)
− P

(
g ≤ t

)∣∣∣∣ ≤ C

σr

n∑
k=1

E|ζk|r,

where g ∼ N (0, 1) and C is an absolute constant.

Remarks. 1. The original form of Berry-Esséen inequality requires finite moments
of the third order (i.e. is stated for r = 3), see e.g. [14, p. 544] or [30, p. 300]. The
form presented here, taken from [34] (see Theorem 5.7 there), is a generalization
requiring finite moments of order 2+η, a condition in the spirit of Lyapunov’s CLT.
2. If r ≥ 3, then clearly we have boundedness of 3-rd moment for free, and in this
case we use the standard form of Berry-Esséen inequality (i.e., with r = 3).
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Chapter 2

Sub-Gaussians

This chapter deals with sub-Gaussian random variables and their basic properties.
We also present equivalent conditions for a random variable to be sub-Gaussian,
and we discuss briefly the structure of the class of sub-Gaussian random variables.
All the results contained in this chapter are well-known, a pertinent reference is
provided wherever possible, though some of the knowledge presented here seems to
be ‘folklore’ and I have abandoned disheartedly my efforts to track down original
sources.

Intuitively, a random variable is called sub-Gaussian when it is subordinate to a
Gaussian random variable, in a certain sense. The precise definition will be presented
momentarily. As it turns out, sub-Gaussians are a natural kind of random variables
for which the properties of Gaussians can be extended ([8]); probably one of the
reasons why sub-Gaussians attracted interest in the first place.

To the best of my knowledge, sub-Gaussian random variables were introduced
by Kahane in [19], where they played a role to establish a sufficient condition for the
almost-sure uniform convergence of certain random series of functions. The name
“sub-Gaussian” is the English counterpart of the French “sous-gaussienne” coined by
Kahane in [19]. Subsequent works have studied sub-Gaussian random variables and
processes either per se or in connection with various other subjects. For instance,
sub-Gaussian random variables have been studied in connection with random series
in [9]; in connection with the geometry of Banach Spaces in [35]; with the spectral
properties of random matrices in [26], [40].

2.1 Sub-Gaussian random variables

A real-valued random variable X is said to be sub-Gaussian if it has the property
that there is some b > 0 such that

∀t ∈ R, E etX ≤ eb2t2/2.

In words, this condition says that there is a positive real number b such that the
Laplace transform of X is dominated by the Laplace transform of a N (0, b2) random
variable. When the condition above is satisfied with a particular value of b > 0, we
say that X is b-sub-Gaussian, or sub-Gaussian with parameter b.
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It is an immediate consequence of this definition that sub-Gaussian random
variables are centered, and further their variance has a natural upper bound in
terms of the sub-Gaussian parameter. We state this “for the records” in the next
proposition, whose proof has been borrowed from [43]; although it should be pointed
out that this was known much earlier (see e.g. [8]).

Proposition 2.1. If X is b-sub-Gaussian, then E(X) = 0 and Var(X) ≤ b2.

Proof. By Lebesgue’s Dominated Convergence Theorem, for any t ∈ R,

∞∑
n=0

tn

n!
E(Xn) = E etX ≤ eb2t2/2 =

∞∑
n=0

b2nt2n

2nn!
.

Thus

E(X)t+ E(X2)
t2

2!
≤ b2t2

2
+ o(t2) as t→ 0.

Dividing through by t > 0 and letting t → 0 we get E(X) ≤ 0. Dividing through
by t < 0 and letting t → 0 we get E(X) ≥ 0. Thus E(X) = 0. Now that this is
established, we divide through by t2 and let t→ 0, thus getting Var(X) ≤ b2. �

Next we look at three natural examples of sub-Gaussian random variables.

Example 2.2. The most natural example of a sub-Gaussian random variable is that
of a centered Gaussian. If X has the distributionN (0, σ2), then an easy computation
shows that for any t ∈ R,

E etX = eσ
2t2/2.

Thus X is sub-Gaussian with parameter σ.

Example 2.3. Let X be a random variable with the Rademacher distribution,
meaning that the law of X is PX = 1

2δ−1 + 1
2δ1 [here δx is the point mass at x].

Then for any t ∈ R,

E etX =
1

2
e−t +

1

2
et = cosh t ≤ et2/2,

so X is 1-sub-Gaussian. Random variables with this distribution are also called
symmetric ±1 random variables, or symmetric Bernoulli random variables.

Example 2.4. Suppose X is uniformly distributed over the interval [−a, a] for some
fixed a > 0, meaning the law of X is PX = 1

2a1[−a,a]λ, where λ is Lebesgue measure.
Then for any t 6= 0 in R,

E etX =
1

2a

∫ a

−a
etx dx =

1

2at
[eat − e−at] =

∞∑
n=0

(at)2n

(2n+ 1)!
.

Using the inequality (2n+ 1)! ≥ n!2n, we see that X is a-sub-Gaussian.
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More generally, any centered and bounded random variable is sub-Gaussian, as
we demonstrate now (see e.g. [43, Theorem 9.9]).

Theorem 2.5. If X is a random variable with E(X) = 0 and |X| ≤ 1 a.s., then

E etX ≤ cosh t ∀t ∈ R (2.1)

and so X is 1-sub-Gaussian. Moreover, if equality holds in (2.1) for some t 6= 0,
then X is a Rademacher variable and hence equality holds for all t ∈ R.

Proof. Define f on R by f(t) := et[cosh t− E(etX)]. Thus

f(t) = 1
2e

2t + 1
2 − E(et(1+X)).

For convenience let us set Y := 1 + X, so f(t) = 1
2e

2t + 1
2 − E(etY ). Apply the

Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem to conclude
f ′(t) = e2t − E(Y etY ). Using E(Y ) = 1,

f ′(t) = E
(
Y (e2t − etY )

)
.

Since 0 ≤ Y ≤ 2 a.s., we have

t ≥ 0 =⇒ Y (e2t − etY ) ≥ 0 a.s.

It follows that f ′ ≥ 0 and f is increasing on [0,∞). In particular, for t ≥ 0 we
have f(t) ≥ f(0) = 0, and so (2.1) holds for t ≥ 0. Since −X satisfies the same
hypothesis as X, we have just proved that (2.1) holds for all t ∈ R.

Now suppose that equality holds in (2.1) for some t0 > 0. Then f(t0) = f(0) = 0,
which implies f(t) = 0 for all t ∈ [0, t0]. Thus f ′(t0) = 0, and hence Y (e2t0−et0Y ) = 0
a.s. Therefore

P(X = −1) + P(X = 1) = P(Y = 0) + P(Y = 2) = 1.

Since E(X) = 0, it follows that P(X = −1) = P(X = 1) = 1/2, and so X is
a Rademacher variable. If, on the other hand, equality holds in (2.1) for some
t0 < 0, then applying the same argument to −t0 > 0 and −X we see that −X is a
Rademacher variable, and hence so is X. �

Corollary 2.6. If X is a random variable with E(X) = 0 and |X| ≤ b a.s. for some
b > 0, then X is b-sub-Gaussian.

We establish now that the set of all sub-Gaussian random variables has a linear
structure. The proof that this set is stable under scalar multiples is trivial. For
stability under sums the proof we present comes from [8].

Fact 2.7. If the random variable X is b-sub-Gaussian, then for any α ∈ R, the
random variable αX is |α|b-sub-Gaussian. If X1, X2 are random variables such that
Xi is bi-sub-Gaussian, then X1 +X2 is (b1 + b2)-sub-Gaussian.

11



Proof. Suppose X is b-sub-Gaussian. For α 6= 0, we have

E et(αX) ≤ eb2α2t2/2 = e(|α|b)
2t2/2.

Now suppose that Xi is bi-sub-Gaussian, for i = 1, 2. For any p, q > 1 such that
1
p + 1

q = 1, using Hölder inequality,

E et(X1+X2) ≤
[
E
(
etX1

)p]1/p[E(etX2
)q]1/q

≤ exp
{ t2

2

(
pb21 + qb22

)}
= exp

{ t2
2

(
pb21 +

p

p− 1
b22
)}
.

Minimizing over p > 1 we get

E et(X1+X2) ≤ exp
{ t2

2

(
b1 + b2

)2}
,

and the claim follows. �

Remark. In the context of Fact 2.7, if X1, X2 are required to be independent, then
the parameter b1 + b2 can be improved to

√
b21 + b22 (see e.g. [19]).

As it turns out, the set of sub-Gaussian random variables has a much richer
structure. For a centered random variable X, the sub-Gaussian moment of X,
denoted σ(X), is defined as follows

σ(X) := inf
{
b ≥ 0

∣∣∣ E etX ≤ eb2t2/2, ∀t ∈ R
}
. (2.2)

Clearly X is sub-Gaussian if and only if σ(X) < ∞. Moreover, the functional σ(·)
is a norm on the space of sub-Gaussian random variables (upon identification of
random variables which are equal almost surely), and this normed space is complete
(see e.g. [8]).

Remark. We observe that in case X ∼ N (0, σ2) is a centered Gaussian, then
σ(X) = σ. Thus for Gaussian variables the sub-Gaussian moment coincides with
the standard deviation.

2.2 Characterization of sub-Gaussians

According to the definition, a real-valued random variable is sub-Gaussian when its
Laplace transform is dominated by the Laplace transform of a centered Gaussian.
The following theorem presents equivalent conditions for a random variable to be
sub-Gaussian. The calculations used to prove it are well known, the absence of a
reference should not be taken as a claim of originality but rather as reflecting the
fact that this is folklore knowledge.
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Theorem 2.8. For a centered random variable X, the following statements are
equivalent:

(1) Laplace transform condition: ∃b > 0, ∀t ∈ R, E etX ≤ eb2t2/2;

(2) sub-Gaussian tail estimate: ∃c > 0, ∀λ > 0, P(|X| ≥ λ) ≤ 2e−cλ
2
;

(3) ψ2-condition: ∃a > 0, E eaX2 ≤ 2.

Proof. (1)⇒ (2) Using Markov’s inequality, for any t > 0 we have

P(X ≥ λ) = P(tX ≥ tλ) ≤ E etX

etλ
≤ e−tλ+b2t2/2,

hence, minimizing over t > 0 we get

P(X ≥ λ) ≤ inf
t>0

e−tλ+b
2t2/2 = e−λ

2/2b2 .

Similarly one sees that P(X ≤ −λ) ≤ e−λ
2/2b2 . Then, using the union bound, we

get P(|X| ≥ λ) ≤ 2e−λ
2/2b2 , and the assertion is proved with c = 1/(2b2).

(2)⇒ (3) Assuming the sub-Gaussian tail estimate is satisfied with a constant c,
for any a with 0 < a < c we have

E eaX
2 ≤ 1 +

∫ ∞
0

2ateat
2 · P(|X| > t)dt

≤ 1 +

∫ ∞
0

2at · 2e−(c−a)t2dt = 1 +
2a

c− a
.

Then by taking a small enough (e.g. a = c/3) we get E eaX2 ≤ 2.

(3)⇒ (1) Assume that E eaX2 ≤ 2 for some a > 0. Recalling that X is centered,
we have

E etX = 1 +

∫ 1

0
(1− y)E

[
(tX)2eytX

]
dy ≤ 1 +

t2

2
E
[
X2e|tX|

]
≤ 1 +

t2

2
et

2/2a E
[
X2eaX

2/2
]

≤ 1 +
t2

2a
et

2/2a E eaX
2

≤
(

1 +
t2

a

)
et

2/2a,

From this it is clear that X is sub-Gaussian with parameter β =
√

3
a . �

Remark. If the random variable X has the Gaussian distribution N (0, σ2), then
for each p > 0 one has

E|X|p =

√
2p

π
σp Γ

(p+ 1

2

)
.

For instance, this can be deduced from the following identity, which holds for all
β > 0 and r > −1, ∫ ∞

0
tre
− t2

2β2 dt = 2
r−1
2 βr+1Γ

(r + 1

2

)
.
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In fact, if the random variable X is sub-Gaussian, then its (absolute) moments
are bounded above by an expression involving the sub-Gaussian parameter and the
gamma function, somewhat similar to the right hand side of the above expression
for the moments of a Gaussian.

Fact 2.9. If X is b-sub-Gaussian, then for any p > 0 one has

E|X|p ≤ p 2
p
2 bp Γ

(p
2

)
.

Consequently, for p ≥ 1,

‖X‖Lp =
(
E|X|p

)1/p ≤ Cb√p.
Conversely, if a centered random variable X satisfies

(
E|X|p

)1/p ≤ Cb
√
p for all

p ≥ 1, then X is sub-Gaussian.

2.3 The Orlicz space Lψ2

By ψ2 we denote the Orlicz function ψ2(x) = ex
2 − 1. The purpose of this section

is to construct a special normed space associated to this function, and to give some
insight into the ψ2-condition. This material is borrowed from [36]. We define

Lψ2 =

{
f : Ω→ R measurable

∣∣∣∣ Eψ2

( |f |
t

)
<∞ for some t > 0

}
.

We claim that this is a linear space. For it is clear that the zero function is in Lψ2 .
Given any f ∈ Lψ2 and real number λ 6= 0, let t > 0 be such that Eψ2

(
|f |/t

)
<∞,

and set t′ = |λ|t. We have

Eψ2

( |λf |
t′

)
= Eψ2

( |f |
t

)
<∞,

which proves that λf ∈ Lψ2 . Finally, if f, g ∈ Lψ2 , choose t, s > 0 such that
Eψ2

(
|f |/t

)
< ∞ and Eψ2

(
|g|/s

)
< ∞. Since the function ψ2 is increasing and

convex, we have

ψ2

( |f + g|
t+ s

)
≤ ψ2

( |f |+ |g|
t+ s

)
≤ t

t+ s
ψ2

( |f |
t

)
+

s

t+ s
ψ2

( |g|
s

)
.

Then, taking expectations,

Eψ2

( |f + g|
t+ s

)
≤ t

t+ s
Eψ2

( |f |
t

)
+

s

t+ s
Eψ2

( |g|
s

)
. (2.3)

Since the right hand side is finite, we see that f + g ∈ Lψ2 .
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We define a functional ‖·‖ψ2 : Lψ2 → R by setting

‖f‖ψ2 = inf

{
t > 0

∣∣∣∣ Eψ2

( |f |
t

)
≤ 1

}
. (2.4)

Given f ∈ Lψ2 , choose t > 0 such that Eψ2

(
|f |/t

)
< ∞. Since ψ2 is increasing for

positive values, it follows that Eψ2

(
|f |/s

)
<∞ for all s ≥ t. Then, using Lebesgue’s

Dominated Convergence Theorem,

lim
s→∞

Eψ2

( |f |
s

)
= 0.

Then there is some t0 > 0 such that Eψ2

(
|f |/t0

)
≤ 1. This proves that ‖f‖ψ2 <∞

for f ∈ Lψ2 , showing that ‖·‖ψ2 is well defined. It is clear that ‖·‖ψ2 ≥ 0.

If f = 0 a.e., then clearly ‖f‖ψ2 = 0. Conversely, let f ∈ Lψ2 be such that
‖f‖ψ2 = 0. It follows that Eψ2

(
n|f |

)
≤ 1 for all n ≥ 1. Assuming P(|f | > 0) > 0,

we may find some positive number δ such that the event A := {ω ∈ Ω | |f(ω)| ≥ δ}
has P(A) > 0. Then we have

ψ2

(
nδ
)
P(A) =

∫
A
ψ2

(
nδ
)
dP ≤

∫
A
ψ2

(
n|f |

)
dP ≤ Eψ2

(
n|f |

)
≤ 1,

and letting n→∞ we get a contradiction. Hence f = 0 a.e.

It is clear that if f ∈ Lψ2 and λ ∈ R, then ‖λf‖ψ2 = |λ|·‖f‖ψ2 . This is obvious for
λ = 0, and for λ 6= 0 it follows form properties of the infimum. Thus the functional
‖·‖ψ2 is (positively) homogeneous.

To see that ‖·‖ψ2 satisfies the triangle inequality, let f, g ∈ Lψ2 , and choose
t, s > 0 such that Eψ2

(
|f |/t

)
≤ 1 and Eψ2

(
|g|/s

)
≤ 1. Using inequality (2.3), we

obtain

Eψ2

( |f + g|
t+ s

)
≤ t

t+ s
Eψ2

( |f |
t

)
+

s

t+ s
Eψ2

( |g|
s

)
≤ 1.

Thus ‖f + g‖ψ2 ≤ t + s, and taking infimum one at a time over t and s we get
‖f + g‖ψ2 ≤ ‖f‖ψ2 + ‖g‖ψ2 .

We have thus established that ‖·‖ψ2 is a seminorm on Lψ2 . Upon identifying
functions in Lψ2 which are equal almost everywhere, we obtain a normed space
(Lψ2 , ‖·‖ψ2), called the Orlicz space associated to ψ2. As is done with the Lebesgue
spaces Lp, we regard the elements of Lψ2 as functions, thus avoiding the awkward
treatment of ‘classes of functions’ and ‘representatives’ and so on. However, we
should keep in mind that equality of elements in Lψ2 means equality a.e.

Remark. Orlicz spaces can be defined for more general functions than ψ2, the
reader is referred to [36] to see the requirements on a function ψ : [0,∞) → R that
allow the construction of a space Lψ and a norm ‖·‖ψ with the same properties as

Lψ2 and ‖·‖ψ2 as we did above for ψ2(x) = ex
2 − 1.
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We close this chapter by establishing the link between sub-Gaussian random
variables and the Orlicz space Lψ2 .

Proposition 2.10.

‖f‖ψ2 ≤ 1 if and only if Eψ2

(
|f |
)
≤ 1 if and only if E ef

2 ≤ 2.

Proof. The first equivalence is clear if ‖f‖ψ2 = 0; and in case ‖f‖ψ2 > 0, setting
a := ‖f‖ψ2 we first note that

Eψ2

( |f |
a

)
≤ 1.

If a ≤ 1, then Eψ2

(
|f |
)
≤ 1 by the monotonicity of the function ψ2. Conversely, if

Eψ2

(
|f |
)
≤ 1, then 1 ∈

{
t > 0

∣∣ Eψ2

(
|f |/t

)}
, so upon taking the infimum of this

set we get a ≤ 1.
The second equivalence is obvious. �

Comparing Proposition 2.10 and the ψ2-condition from Theorem 2.8, it is now
evident that a random variable is sub-Gaussian precisely when it is an element of
the space Lψ2 .
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Chapter 3

Small ball probabilities

In this chapter we gather auxiliary results related to random sums, their small ball
probabilities, etc., which are needed later. In fact, we adjust corresponding results
from [26] and [39] to our setting. These results are also of independent interest. We
provide proofs for the sake of completeness.

The following lemma provides a lower bound on the small ball probability of a
random sum. Its proof follows the steps of [26, Lemma 3.6] with the appropriate
modification to deal with centered random variables (rather than symmetric), to
remove the assumption that the variances are bounded from below uniformly, and
to replace the condition of finite 3-rd moments by finite r-th moments (r > 2).

Lemma 3.1. Let 2 < r ≤ 3 and µ ≥ 1. Suppose ξ1, . . . , ξn are independent centered
random variables such that E|ξi|r ≤ µr for every i = 1, . . . , n. Let x = (xi) ∈ `2 be
such that |x| = 1. Then for every λ ≥ 0

P
(∣∣∣ n∑

i=1

ξixi

∣∣∣ > λ

)
≥
(

[E
∑n

i=1 ξ
2
i x

2
i − λ2]+

8µ2

)r/(r−2)
.

Proof. Define f =
∣∣∑n

i=1 ξixi
∣∣. Let ε1, . . . , εn be independent symmetric Bernoulli

±1 random variables, which are also independent of ξ1 . . . , ξn. Using the symmetriza-
tion inequality [24, Lemma 6.3], and applying Khinchine’s inequality, we obtain

E f r ≤ 2r E
∣∣∣ n∑
i=1

εiξixi

∣∣∣r = 2r Eξ Eε
∣∣∣∑
i≥1

εiξixi

∣∣∣r ≤ 2r2r/2 Eξ
(∑
i≥1

ξ2i x
2
i

)r/2
.

Now consider the set

S :=

{
s = (si) ∈ `1

∣∣∣∣ si ≥ 0 for every i and
∑
i≥1

si = 1

}
.

We define a function ϕ : S → R by

ϕ(s) = Eξ
(∑
i≥1

ξ2i si

)r/2
.
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This function is clearly convex, so that

sup
s∈S

ϕ(s) = sup
i≥1

ϕ(ei) = sup
i≥1

Eξ(ξ2i )r/2 ≤ µr.

Thus E f r ≤ 23r/2µr. On the other hand, using the independence of ξ1, . . . , ξn,

E f2 = E
∑
i≥1

ξ2i x
2
i .

Lemma 1.1 with p = r/2, q = r/(r − 2) implies the desired estimate. �

The next proposition, which is a consequence of Theorem 1.2, allows us to es-
timate the small ball probability. The proof goes along the same lines as the proof
of [26, Proposition 3.2] (see also [28, Proposition 3.4]), with slight modifications to
remove the assumption about variances. Recall that for a subset σ ⊂ {1, 2, . . . , n},
Pσ denotes the coordinate projection onto Rσ.

Proposition 3.2. Let 2 < r ≤ 3 and µ ≥ 1. Let (ξi)
n
i=1 be independent centered

random variables with E |ξi|r ≤ µr for all i = 1, 2, . . . , n. There is a universal
constant c > 0 such that

(a) For every a < b and every x = (xi) ∈ Rn satisfying A :=
√

E
∑n

i=1 ξ
2
i x

2
i > 0

one has

P
(
a ≤

n∑
i=1

ξixi < b

)
≤ b− a√

2πA
+ c

(
‖x‖r
A

µ

)r
.

(b) For every t > 0, every x = (xi) ∈ Rn and every σ ⊂ {1, 2, . . . , n} satisfying

Aσ :=
√

E
∑

i∈σ ξ
2
i x

2
i > 0 one has

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ 2t√

2πAσ
+ c

(
‖Pσx‖r
Aσ

µ

)r
.

The next corollary gives an estimate on the small ball probability in the spirit
of [39, Corollary 2.10].

Corollary 3.3. Let 2 < r ≤ 3 and µ ≥ 1. Let ξ1, . . . , ξn be independent centered
random variables with E |ξi|r ≤ µr for every i = 1, . . . , n. Suppose x = (xi) ∈ Rn
and σ ⊂ {1, . . . , n} are such that A ≤ |xi| ≤ B and E ξ2i ≥ 1 for all i ∈ σ. Then for
all t ≥ 0

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ C

|σ|r/2−1

(
t

A
+ µr

(B
A

)r)
,

where C > 0 is an absolute constant.
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Proof. By assumptions on coordinates of x we have

A2
σ := E

∑
i∈σ

ξ2i x
2
i ≥ |σ|A2

and
‖Pσx‖rr =

∑
i∈σ
|xi|r ≤ |σ|Br.

Then, by part (b) of Proposition 3.2

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤
√

2

π

t

A|σ|1/2
+ cµr

Br|σ|
Ar|σ|r/2

≤ C

|σ|r/2−1

(
t

A
+ µr

(B
A

)r)
.

�

We need the following lemma proved in [39, Lemma 3.4].

Lemma 3.4. Let γ, ρ ∈ (0, 1), and let x ∈ Incomp(γn, ρ). Then there exists a set
σ = σx ⊂ {1, . . . , n} of cardinality |σ| ≥ 1

2ρ
2γn and such that for all k ∈ σ

ρ√
2n
≤ |xk| ≤

1
√
γn
.

The next lemma is a version of [39, Lemma 3.7], modified in order to remove the
assumption “variances ≥ 1”.

Lemma 3.5. Let 2 < r ≤ 3 and µ ≥ 1. Let ξ1, . . . , ξn be independent centered
random variables with E |ξi|r ≤ µr for every i. Suppose σ := {i | E ξ2i ≥ 1} has
cardinality |σ| ≥ a4n. Let γ, ρ ∈ (0, 1), and consider a vector x ∈ Incomp(γn, ρ).
Assuming that a4 + 1

2ρ
2γ > 1 we have for every t ≥ 0

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ c(tn

3−r
2 + µrn

2−r
2 ),

where c is a positive constant which depends on γ, ρ, a4, and r.

Proof. Let σx be the set of spread coefficients of x from Lemma 3.4, so that |σx| ≥
1
2ρ

2γn. Set σ := σ ∩ σx. Then

|σ| = |σ|+ |σx| − |σ ∪ σx| ≥ a4n+
1

2
ρ2γn− n =: c0n.

By the construction, for every i ∈ σ we have

ρ√
2n
≤ |xi| ≤

1
√
γn
.
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Applying Corollary 3.3 we obtain

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ C

|σ|r/2−1

(√
2nt

ρ
+ µr

( √2

ρ
√
γ

)r)
≤ C

(c0n)r/2−1

(√
2nt

ρ
+ µr

( √2

ρ
√
γ

)r)
≤ c(tn

3−r
2 + µrn

2−r
2 ).

�
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Chapter 4

Tall random matrices

In this chapter we prove Theorem 1, which establishes an estimate on the smallest
singular value for “tall” random matrices, meaning matrices whose aspect ratio
n/N is bounded above by a small positive constant (independent of n and N). It is
important to notice that Theorem 1 uses only conditions (i), (ii), and (iii), i.e. no
condition on the rows is required here.

The proof depends upon an estimate on the norm |Γx| for a fixed vector x, which
is provided by the following proposition.

Proposition 4.1. Let 1 ≤ n < N be positive integers. Suppose Γ is a matrix of size
N×n whose entries are independent centered random variables satisfying conditions
(i), (ii) and (iii) for some 2 < r ≤ 3, µ ≥ 1 and a1, a2, a3 > 0 with a3 < µ. Then
for every x ∈ Sn−1 we have

P
(
|Γx| ≤ b1

√
N
)
≤ e−b2N ,

where b1, b2 > 0 depend only on µ, a3 and r.

Remark. Our proof gives that

b21 =
a43

25µ2

( a23
25µ2

)r/(r−2)
, b2 =

a23
23µ2

( a23
25µ2

)r/(r−2)
.

In order to keep the flow of our exposition uninterrupted we present right away
the proof of Theorem 1. The proof of Proposition 4.1 will come right after.

Proof of Theorem 1. Passing to r0 = min{3, r} we may assume without lost of
generality that r ≤ 3.

Let t ≥ 0 and Ω0 :=
{
ω
∣∣ ‖Γ‖ ≤ a1

√
N
}

. By (1.2) it is enough to estimate the
probability of the event

E :=
{
ω
∣∣ ∃x ∈ Sn−1 s.t. |Γx| ≤ t

√
N
}
.

To this end we use the inclusion E ⊂ (E ∩ Ω0) ∪ Ωc
0 and the union bound.
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To estimate P(E ∩ Ω0), let 0 < ε ≤ 1, and let N be an ε-net of Sn−1 with
cardinality |N | ≤ (3/ε)n. For any x ∈ Sn−1 we can find y ∈ N such that |x−y| ≤ ε.
If further x satisfies |Γx| ≤ t

√
N , then the corresponding y satisfies

|Γy| ≤ |Γx|+ ‖Γ‖ · |y − x| ≤ t
√
N + εa1

√
N = (t+ εa1)

√
N. (4.1)

Taking ε = min{t/a1, 1}, we see that for each x ∈ Sn−1 satisfying |Γx| ≤ t
√
N there

is a corresponding y ∈ N such that |x− y| ≤ ε and |Γy| ≤ 2t
√
N . Hence, using the

union bound, setting t = b1/2 and using Proposition 4.1, one has

P(E ∩ Ω0) ≤
∑
y∈N

P
(
|Γy| ≤ 2t

√
N
)

≤ |N |e−b2N ≤
(3

ε

)n
e−b2N ,

where b1 and b2 are as in Proposition 4.1. Thus

P(E ∩ Ω0) ≤ exp
(
−b2N

2

)
as long as (3

ε

)n
≤ exp

(b2N
2

)
.

Bearing in mind that N = (1 + δ)n, we can see that the last condition is satisfied if

δ ≥ δ0 := max

{
2

b2
ln
(6a1
b1

)
,

2

b2
ln 3

}
. (4.2)

To finish, we use P(E) ≤ P(E ∩ Ω0) + P(Ωc
0) with the estimate for P(E ∩ Ω0) just

obtained and the estimate P(Ωc
0) ≤ e−a2N coming from condition (ii). �

Proof of Proposition 4.1. Take an arbitrary x = (x1, . . . , xn) ∈ Rn with
|x| = 1. For a > 0 (a parameter whose value will be specified later), define a set of
“good” rows as follows:

J = J(a) =

{
j ∈ {1, . . . , N}

∣∣∣∣ E
n∑
i=1

ξ2jix
2
i ≥ a

}
.

Suppose that the cardinality of set J is |J | = αN for some α ∈ [0, 1]. Note that for
each index j = 1, . . . , N we have

E
n∑
i=1

ξ2jix
2
i ≤ max

1≤i≤n
E ξ2ji ≤ max

1≤i≤n
(E ξrji)2/r ≤ µ2.

Then on one side we have

N∑
j=1

(
E

n∑
i=1

ξ2jix
2
i

)
=
∑
j∈J

(
E

n∑
i=1

ξ2jix
2
i

)
+
∑
j∈Jc

(
E

n∑
i=1

ξ2jix
2
i

)
≤ µ2αN + a(1− α)N,
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while on the other hand, using condition (iii),

N∑
j=1

(
E

n∑
i=1

ξ2jix
2
i

)
=

n∑
i=1

(
E

N∑
j=1

ξ2ji

)
x2i ≥

n∑
i=1

a23Nx
2
i = a23N.

Hence we have µ2αN + a(1− α)N ≥ a23N , so α satisfies

α ≥ a23 − a
µ2 − a

. (4.3)

Note that for each j = 1, . . . , N , the j-th entry of Γx is (Γx)j =
∑n

i=1 ξjixi. Define
fj :=

∣∣∑n
i=1 ξjixi

∣∣, so

|Γx|2 =
N∑
j=1

f2j .

Clearly f1, . . . , fN are independent. For any t, τ > 0 we have

P
(
|Γx|2 ≤ t2N

)
= P

( N∑
j=1

f2j ≤ t2N
)

= P
(
τN − τ

t2

N∑
j=1

f2j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f2j

)

= eτN
N∏
j=1

E exp

(
−
τf2j
t2

)
. (4.4)

From Lemma 3.1 we know that for every j = 1, . . . , N ,

P(fj > λ) ≥
(

[E
∑n

i=1 ξ
2
jix

2
i − λ2]+

8µ2

)r/(r−2)
=: βj(r). (4.5)

Note that for every j ∈ J one has

βj ≥
(

[a− λ2]+
8µ2

)r/(r−2)
. (4.6)

For arbitrary t > 0, η > 0 and λ > 0, set τ := ηt2

λ2
. For each j = 1, . . . , N we have

E exp
(
−
τf2j
t2

)
=

∫ 1

0
P
(

exp
(
−
ηf2j
λ2

)
> s

)
ds

=

∫ e−η

0
P
(

exp
(ηf2j
λ2

)
<

1

s

)
ds+

∫ 1

e−η
P
(

exp
(ηf2j
λ2

)
<

1

s

)
ds

≤ e−η + P(fj < λ)(1− e−η).

Choosing η = ln 2 and applying (4.5), we obtain

E exp
(
−
τf2j
t2

)
≤ e−η + (1− βj(r))(1− e−η) = 1− βj(r)

2
≤ exp

(
−βj(r)

2

)
.
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Since τ < t2

λ2
, inequality (4.4) implies

P
(
|Γx|2 ≤ t2N

)
≤ eτN

N∏
j=1

e−βj(r)/2 ≤ e(t2/λ2)N
∏
j∈J

e−βj(r)/2. (4.7)

Taking a = a23/2 and λ = a3/2 and using (4.6) we observe that for every j ∈ J we

have βj ≥
( a23
32µ2

)r/(r−2)
. Also note this choice of a and (4.3) imply α ≥ a23/(2µ

2).
Now let

t2 :=
a43

25µ2

( a23
25µ2

)r/(r−2)
.

Then continuing from (4.7) we obtain

P
(
|Γx|2 ≤ a43

25µ2

( a23
25µ2

)r/(r−2)
N

)
≤ exp

{
− a23

23µ2

( a23
25µ2

)r/(r−2)
N

}
.

This completes the proof. �
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Chapter 5

Almost square random matrices

In this chapter we prove Theorem 2. We will be using all conditions (i) through
(iv). The two key ingredients for the proof of this theorem are Proposition 4.1 and
Proposition 3.2.

Proof of Theorem 2. Passing to r0 = min{3, r} we may assume without loss of
generality that r ≤ 3.

Consider the event

E :=
{
ω
∣∣ ∃x ∈ Sn−1 s.t. |Γx| ≤ t

√
N
}
.

By equivalence (1.2) we are to estimate P(E) with an appropriate value of t (which
will be specified later).

We split the set E into two sets EC and EI defined as follows:

EC =
{
ω
∣∣ ∃x ∈ Sn−1 ∩ Comp(m, ρ) s.t. |Γx| ≤ t

√
N
}
,

EI =
{
ω
∣∣ ∃x ∈ Sn−1 ∩ Incomp(m, ρ) s.t. |Γx| ≤ t

√
N
}
,

where m ≤ n and ρ ∈ (0, 1) will be specified later.
Define Ω0 :=

{
ω
∣∣ ‖Γ‖ ≤ a1√N}. We will estimate P(E) using the union bound

in the inclusion
E ⊂ (EC ∩ Ω0) ∪ (EI ∩ Ω0) ∪ Ωc

0. (5.1)

Our proof will require that t ≤ 1 (which will be satisfied once we choose t, see
(5.16) below); and furthermore that t and ρ satisfy

2t

a1
≤ ρ ≤ 1

4
. (5.2)

Case 1: Probability of EC ∩ Ω0. We work on the set Comp(m, ρ), where m ≤ n
and ρ ∈ (0, 1) will be specified later.

Given x ∈ Sn−1 ∩ Comp(m, ρ), choose y ∈ Sparse(m) so that |y − x| ≤ ρ. It is
clear that we may choose such a y in Bn

2 (and thus 1 − ρ ≤ |y| ≤ 1). Note that on
Ω0 we have ‖Γ‖ ≤ a1

√
N . Thus if x satisfies |Γx| ≤ t

√
N then

|Γy| ≤ |Γx|+ ‖Γ‖ · |y − x| ≤ t
√
N + a1ρ

√
N = (t+ a1ρ)

√
N.
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Let N be a ρ-net in the set Bn
2 ∩ Sparse(m). We may choose such a net with

cardinality

|N | ≤
(
n

m

)(3

ρ

)m
≤
(en
m

)m(3

ρ

)m
=
(3en

ρm

)m
.

For y ∈ Bn
2 ∩ Sparse(m) chosen above, let v ∈ N be such that |v − y| ≤ ρ. We

observe that, by (5.2),

|v| ≥ |y| − ρ ≥ 1− 2ρ ≥ 1

2
,

and, by another use of (5.2),

|Γv| ≤ |Γy|+ ‖Γ‖ · |v − y|

≤ (t+ a1ρ)
√
N + ρa1

√
N

= (t+ 2a1ρ)
√
N

≤ 5a1ρ

2

√
N

≤ 5a1ρ
√
N |v|.

Hence

P(EC ∩ Ω0) ≤ P
(
∃v ∈ N s.t. |Γv| ≤ 5a1ρ

√
N |v|

)
≤
∑
v∈N

P
(
|Γv| ≤ 5a1ρ

√
N |v|

)
. (5.3)

Using Proposition 4.1, we obtain

P
(
|Γv| ≤ 5a1ρ

√
N |v|

)
≤ e−b2N ,

provided that
5a1ρ ≤ b1. (5.4)

We choose

ρ := min

{
1

4
,
b1

5a1

}
(5.5)

so that both (5.4) and the right hand side of (5.2) are true. Now, from (5.3), we
have

P(EC ∩ Ω0) ≤ |N |e−b2N

≤
(3en

ρm

)m
e−b2N .

Thus, if

m ln
(3en

ρm

)
≤ b2N

2
(5.6)

then
P(EC ∩ Ω0) ≤ e−

b2N
2 . (5.7)

Writing m = γn, we see that inequality (5.6) is satisfied if

γ ln
( 3e

ργ

)
≤ b2

2
,
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so we choose

γ =
b2

4 ln
(

6e
ρb2

) . (5.8)

Case 2: Probability of EI ∩ Ω0. We work on the set Incomp(m, ρ), where ρ is de-
fined in (5.5) and m = γn with γ chosen in (5.8).

For convenience we set a := t1/(r−2)/a1. Since t ≤ 1 and in view of (5.2), we
observe that a ≤ ρ/2. Recall also that that on Ω0 we have ‖Γ‖ ≤ a1

√
N .

Let N be an a-net of the sphere Sn−1 with cardinality |N | ≤ (3/a)n. Let
x ∈ Sn−1 ∩ Incomp(m, ρ) be such that |Γx| ≤ t

√
N . Recall that by (1.3) one has

|Pσx| ≥ ρ
2 for every σ ⊂ {1, . . . , n} with |σc| ≤ m. Then there is v ∈ N such that

|Γv| ≤ 2t
√
N and with the additional property |Pσv| ≥ ρ

2 for each σ ⊂ {1, . . . , n}
with |σc| ≤ m. Indeed, choosing v ∈ N such that |x− v| ≤ a and using the relation
a1a = t1/(r−2) ≤ t (which holds by the choice of a), we have

|Γv| ≤ |Γx|+ ‖Γ‖ · |v − x| ≤ t
√
N + a1

√
Na ≤ 2t

√
N

and
|Pσv| ≥ |Pσx| − |Pσ(v − x)| ≥ ρ− a ≥ ρ

2
,

where we used the condition 2a ≤ 2t/a1 ≤ ρ, required in (5.2).
Denote by A the set of all vectors v ∈ N with the property that for each set

σ ⊂ {1, . . . , n} with |σc| ≤ m we have |Pσv| ≥ ρ
2 . Then

P(EI ∩ Ω0) ≤ P
(
∃v ∈ A s.t. |Γv| ≤ 2t

√
N
)
. (5.9)

Now, for each fixed v = (vi) ∈ A we have

P
(
|Γv|2 ≤ 4t2N

)
= P

(
N − 1

4t2
|Γv|2 ≥ 0

)
≤ E exp

{
N − 1

4t2
|Γv|2

}
= eN E exp

{
− 1

4t2

N∑
j=1

∣∣∣ n∑
i=1

ξjivi

∣∣∣2}

= eN
N∏
j=1

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2}, (5.10)

and our goal is to make this last expression small. To estimate the expectations we
use the distribution formula:

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} =

∫ 1

0
P
(

exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} > s

)
ds

=

∫ ∞
0

ue−u
2/2 P

(∣∣∣ n∑
i=1

ξjivi

∣∣∣ < √2tu

)
du. (5.11)

It is now apparent that we need to estimate the quantities

fj(λ) := P
(∣∣∣ n∑

i=1

ξjivi

∣∣∣ < λ

)
, j ≤ N.
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To this end, note that for each row j ∈ {1, . . . , N} there exists σj ⊂ {1, . . . , n} with
cardinality |σj | ≥ a4n such that E ξ2ji ≥ 1 for all i ∈ σj (this is condition (iv)). Also,
for each fixed v, set

σv := {i | |vi| > a}.

Since v ∈ Sn−1 we have |σv| ≤ 1/a2.
Set σj = σj \ σv, and note that

|σj | ≥ a4n−
1

a2
.

It follows that |σcj | ≤ (1− a4)n+ 1
a2

, so to have |σcj | ≤ m it suffices to require

(1− a4)n+
1

a2
≤ m. (5.12)

Note that (5.12), in particular, implies 1/a2 ≤ a4n ≤ n. Recall that m = γn, where
γ was chosen in (5.8). Then inequality (5.12) is satisfied if a4 > 1− γ (which is the
condition on γ in our Theorem) and

t ≥
(

a1√
(γ + a4 − 1)n

)r−2
. (5.13)

Now, since |σcj | ≤ m, we have |Pσjv| ≥ ρ/2, and hence

A2
j := E

∑
i∈σj

ξ2jiv
2
i ≥

ρ2

4

(where we have used the property E ξ2ji ≥ 1 for i ∈ σj). Consequently, using Propo-
sition 3.2, and keeping in mind |vi| ≤ a for i ∈ σj , we get

fj(λ) ≤ c
(λ
ρ

+
µr

ρr
‖Pσjv‖rr

)
≤ c
(λ
ρ

+
µr

ρr
‖Pσjv‖r−2∞ · |Pσjv|2

)
≤ c
(λ
ρ

+
µrar−2

ρr

)
for some absolute constant c ≥ 1. Then, continuing from (5.11) we have

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} =

∫ ∞
0

ue−u
2/2fj(

√
2tu)du

≤ c
∫ ∞
0

ue−u
2/2
(√2tu

ρ
+
µrar−2

ρr

)
du

=
c
√

2t

ρ

∫ ∞
0

u2e−u
2/2du+

cµrar−2

ρr

∫ ∞
0

ue−u
2/2du

=
c
√
πt

ρ
+

cµrt

ρrar−21

= c3t,
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where

c3 := c
(√π
ρ

+
µr

ρrar−21

)
. (5.14)

Therefore, from (5.10), we get (for each fixed v ∈ A)

P
(
|Γv| ≤ 2t

√
N
)
≤ eN (c3t)

N = (c3et)
N ,

and from this, in (5.9) we get

P(EI ∩ Ω0) ≤ |A|(c3et)N

≤
(3

a

)n
(c3et)

N

=
(3a1
t

)n
(c3et)

N .

Then we can make
P(EI ∩ Ω0) ≤ e−N (5.15)

provided that

t ≤
( 1

c3e2

)( 1

3a1c3e2

)1/δ
. (5.16)

Choose t to satisfy equality in (5.16). Note

t

a1
≤ 1

c3e2a1
≤ ρ

ce2
√
π
, (5.17)

so the left hand side of (5.2) holds. Finally note that (5.13) is satisfied whenever

δ ≥
2
r−2 ln(3a1c3e

2)

ln
(

(γ+a4−1)n
a21(c3e

2)2/(r−2)

) =:
c̃1

ln(c̃2n)
.

To finish, we take probabilities in (5.1) and we use the estimates for P(EC ∩ Ω0)
and P(EI ∩ Ω0) we have found in (5.7) and (5.15), respectively, combined with the
estimate P(Ωc

0) ≤ e−a2N coming from condition (ii). This shows that, with the
chosen t, we have P(E) ≤ e−b2N/2 + e−N + e−a2N , which completes the proof. �

29



Chapter 6

Square random matrices

In this chapter our goal is to prove Theorem 3. We are going to use two lemmas
from [39]. The first one is [39, Lemma 3.5]. Note that the proof given there works
for any random matrix.

Lemma 6.1. Let Γ be any random matrix of size m × n. Let X1, . . . , Xn denote
the columns of Γ and let Hk denote the span of all column vectors except the k-th.
Then for every γ, ρ ∈ (0, 1) and every ε > 0 one has

P
(

inf
x∈F
|Γx| ≤ ερn−1/2

)
≤ 1

γn

n∑
k=1

P
(
dist(Xk, Hk) < ε

)
,

where F = Sn−1 ∩ Incomp(γn, ρ).

The next lemma is similar to [39, Lemma 3.8]. To prove it one would repeat
the proof of that lemma, replacing [39, Lemma 3.7] used there with our Lemma 3.5.
Observe that in applying our Lemma 3.5 we use condition (iv) on the rows of the
matrices.

Lemma 6.2. Let r ∈ (2, 3] and Γ be a random matrix as in Theorem 3. Let
X1, . . . , Xn denote its column vectors, and let Hn = span(X1, . . . , Xn−1) be the
subspace spanned by X1, . . . , Xn−1. Then for every ε ≥ 0 one has

P
(

dist(Xn, Hn) < ε and ‖Γ‖ ≤ a1n1/2
)
≤ c(εn

3−r
2 + µrn

2−r
2 ),

where c depends only on µ and a1.

Now we are ready for the proof of Theorem 3.

Proof of Theorem 3. Without loss of generality we assume ε ≤ a1/2 (otherwise
choose C = 2/a1 and we are done). We also assume that r ≤ 3 (otherwise we pass
to r0 = min{3, r}).

Consider the event

E :=
{
ω
∣∣ ∃x ∈ Sn−1 s.t. |Γx| ≤ tn−1/2

}
.
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By equivalence (1.2) we are to estimate P(E) with an appropriate value of t (which
will be specified later).

As in the proof of Theorem 2, we split the set E into the sets EC and EI defined
as follows:

EC =
{
ω
∣∣ ∃x ∈ Sn−1 ∩ Comp(m, ρ) s.t. |Γx| ≤ tn−1/2

}
,

EI =
{
ω
∣∣ ∃x ∈ Sn−1 ∩ Incomp(m, ρ) s.t. |Γx| ≤ tn−1/2

}
.

Define Ω0 :=
{
ω
∣∣ ‖Γ‖ ≤ a1√n}. We will estimate P(E) using the union bound

in the inclusion
E ⊂ (EC ∩ Ω0) ∪ EI ∪ Ωc

0. (6.1)

Case 1: Probability of EC ∩ Ω0. The proof of this case is almost a line by line rep-
etition of the corresponding proof in Theorem 2 (see Case 1 there). Let m ≤ n and
ρ ∈ (0, 1), to be specified later. Using approximation argument and the union bound
as in the proof of Case 1 in Theorem 2, and choosing

ρ := min

{
1

4
,
b1

5a1

}
, γ :=

b2

4 ln
(

6e
ρb2

) , m = γn, (6.2)

we obtain
P(EC ∩ Ω0) ≤ e−b2n/2, (6.3)

provided that
2t

a1
≤ ρ. (6.4)

Case 2: Probability of EI . We work on the set Incomp(m, ρ), where m = γn and
γ, ρ are as chosen in (6.2).

Using Lemma 6.1 with ε = t/ρ, and also applying Lemma 6.2, we get

P(EI) ≤
1

γn

n∑
k=1

P
(
dist(Xk, Hk) < t/ρ

)
=

1

γn

n∑
k=1

{
P
(
dist(Xk, Hk) < t/ρ & ‖Γ‖ ≤ a1

√
n
)

+ P
(
‖Γ‖ > a1

√
n
)}

≤ 1

γn

n∑
k=1

{
c(εn

3−r
2 + n

2−r
2 ) + e−a2n

}
≤ c

γ
(εn

3−r
2 + n

2−r
2 ) +

1

γ
e−a2n. (6.5)

Also notice that our choice t = ερ and our assumption ε ≤ a1/2 guarantee that
t satisfies (6.4).

To finish the proof, we take probabilities in (6.1), and we use the estimates for
P(EC ∩ Ω0) and for P(EI) obtained in (6.3) and (6.5), respectively, combined with
the estimate P(Ωc

0) ≤ e−a2N coming from condition (ii). This way we obtain

P(E) ≤ e−b2n/2 +
c

γ
(εn

3−r
2 + n

2−r
2 ) +

1

γ
e−a2n + e−a2N ≤ C(εn

3−r
2 + n

2−r
2 )

for a suitable constant C. �
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Chapter 7

Random matrices with complex
entries

In this chapter we consider matrices Γ of size N × n (where N ≥ n) whose entries
are complex-valued random variables subject to certain conditions. We will extend
Theorem 1 to these kinds of matrices.

We will use the notation
√
−1 for the imaginary unit, which is a bit unusual but

will help to avoid confusion as we are using the label i for positive integers.

A complex-valued random variable is a random variable ξ of the form

ξ = Re(ξ) + Im(ξ)
√
−1,

where Re(ξ) and Im(ξ) are independent real-valued random variables. Such a ran-
dom variable ξ is said to be centered if its real and imaginary parts are centered,
that is, E(Re(ξ)) = E(Im(ξ)) = 0.

The conditions are the same as in the case of real-valued entries: For parameters
r > 2, µ ≥ 1, a1 > 0, a2 > 0, a3 ∈ (0, µ), and a4 ∈ (0, 1], we will consider N × n
random matrices Γ = (ξji)j≤N, i≤n whose entries are independent complex-valued
centered random variables satisfying the following conditions:

(i) Moments: E |ξji|r ≤ µr for all j and i.

(ii) Norm: P
(
‖Γ‖ > a1

√
N
)
≤ e−a2N .

(iii) Columns: E‖(ξji)Nj=1‖22 =
∑N

j=1 E|ξji|2 ≥ a23N for each i.

As in the real case, the parameters µ, r, a1, a2, a3, a4 should be regarded as constants
which do not depend on the dimensions n, N .

Remark. Observe that condition (i) implies bounds for the r-th moment of the real
and imaginary parts of the entries. That is, if ξ is a complex-valued random variable
such that E|ξ|r ≤ µr, then E|Re(ξ)|r ≤ µr and E|Im(ξ)|r ≤ µr.
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We will write Sn−1C to denote the unit sphere of Cn, that is, the set of all z =
(z1, . . . , zn) ∈ Cn such that

∑
|zi|2 = 1.

In this chapter we verify the following result.

Theorem 7.1. Let r > 2, µ ≥ 1, a1, a2, a3 > 0 with a3 < µ. Let 1 ≤ n < N be
integers, and write N in the form N = (1 + δ)n. Suppose Γ is an N × n matrix
whose entries are independent centered complex-valued random variables such that
conditions (i), (ii) and (iii) are satisfied. There exist positive constants c1, c2 and
δ0 (depending only on the parameters r, µ, a1, a2, a3) such that whenever δ ≥ δ0,
then

P
(
sn(Γ) ≤ c1

√
N
)
≤ e−c2N .

We start with the analogue of Proposition 4.1 for complex entries.

Proposition 7.2. Let 1 ≤ n < N be positive integers. Suppose Γ is a matrix of
size N ×n whose entries are independent centered complex-valued random variables
satisfying conditions (i), (ii) and (iii) for some 2 < r ≤ 3, µ ≥ 1 and a1, a2, a3 > 0
with a3 < µ. Then for every z ∈ Sn−1C we have

P
(
|Γz| ≤ b1

√
N
)
≤ e−b2N ,

where b1, b2 > 0 depend only on µ, a3 and r.

Remark. In fact, as in the real case, our proof gives that

b21 =
a43

25µ2

( a23
25µ2

)r/(r−2)
, b2 =

a23
23µ2

( a23
25µ2

)r/(r−2)
.

We present now the proof of Theorem 7.1. The proof of Proposition 7.2 will
come right after.

Proof of Theorem 7.1. We may assume without loss of generality that r ≤ 3
(otherwise pass to r0 = min{3, r}).

Let t ≥ 0 and Ω0 :=
{
ω
∣∣ ‖Γ‖ ≤ a1

√
N
}

. By (1.2) it is enough to estimate the
probability of the event

E :=
{
ω
∣∣ ∃z ∈ Sn−1C s.t. |Γz| ≤ t

√
N
}
.

To this end we use the inclusion E ⊂ (E ∩ Ω0) ∪ Ωc
0 and the union bound.

To estimate P(E ∩ Ω0), let 0 < ε ≤ 1, and let N be an ε-net of Sn−1C with
cardinality |N | ≤ (3/ε)2n (this estimate follows from the usual argument in the real
case R2n). For any z ∈ Sn−1C we can find y ∈ N such that |z − y| ≤ ε. If further z

satisfies |Γz| ≤ t
√
N , then the corresponding y satisfies

|Γy| ≤ |Γz|+ ‖Γ‖ · |y − z| ≤ t
√
N + εa1

√
N = (t+ εa1)

√
N. (7.1)
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Taking ε = min{t/a1, 1}, we see that for each z ∈ Sn−1C satisfying |Γz| ≤ t
√
N there

is a corresponding y ∈ N such that |z − y| ≤ ε and |Γy| ≤ 2t
√
N . Hence, using the

union bound and setting t = b1/2 with b1 as in Proposition 7.2, one has

P(E ∩ Ω0) ≤
∑
y∈N

P
(
|Γy| ≤ 2t

√
N
)

≤ |N |e−b2N ≤
(3

ε

)2n
e−b2N ,

where b1 and b2 are as in Proposition 7.2. Thus

P(E ∩ Ω0) ≤ exp
(
−b2N

2

)
as long as (3

ε

)2n
≤ exp

(b2N
2

)
.

Bearing in mind that N = (1 + δ)n, we can see that the last condition is satisfied if

δ ≥ δ0 := max

{
4

b2
ln
(6a1
b1

)
,

4

b2
ln 3

}
. (7.2)

To finish, we use P(E) ≤ P(E ∩ Ω0) + P(Ωc
0) with the estimate for P(E ∩ Ω0) just

obtained and the estimate P(Ωc
0) ≤ e−a2N coming from condition (ii). �

It remains to see the proof of Proposition 7.2. We will use the next lemma, which
is a variant of Lemma 3.1 for the case of complex random variables. Its proof is an
easy modification of the proof of Lemma 3.1.

Lemma 7.3. Let 2 < r ≤ 3 and µ ≥ 1. Suppose ξ1, . . . , ξn are independent centered
complex-valued random variables such that E|ξi|r ≤ µr for every i = 1, . . . , n. Let
z = (zi) ∈ Sn−1C . Then for every λ ≥ 0

P
(∣∣∣ n∑

i=1

ξixi

∣∣∣ > λ

)
≥
(

[E
∑n

i=1|ξi|2|xi|2 − λ2]+
8µ2

)r/(r−2)
.

Proof of Proposition 7.2. Take an arbitrary z = (z1, . . . , zn) ∈ Sn−1C . For
a > 0 (a parameter whose value will be specified later), define a set of “good” rows
as follows:

J = J(a) =

{
j ∈ {1, . . . , N}

∣∣∣∣ E
n∑
i=1

|ξji|2|zi|2 ≥ a
}
.

Suppose that the cardinality of set J is |J | = αN for some α ∈ [0, 1]. Note that for
each index j = 1, . . . , N we have

E
n∑
i=1

|ξji|2|zi|2 ≤ max
1≤i≤n

E|ξji|2 ≤ max
1≤i≤n

(E|ξji|r)2/r ≤ µ2.
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Then on one side we have
N∑
j=1

(
E

n∑
i=1

|ξji|2|zi|2
)

=
∑
j∈J

(
E

n∑
i=1

|ξji|2|zi|2
)

+
∑
j∈Jc

(
E

n∑
i=1

|ξji|2|zi|2
)

≤ µ2αN + a(1− α)N,

while on the other hand, using condition (iii),

N∑
j=1

(
E

n∑
i=1

|ξji|2|zi|2
)

=
n∑
i=1

(
E

N∑
j=1

|ξji|2
)
|zi|2 ≥

n∑
i=1

a23N |zi|2 = a23N.

Hence we have µ2αN + a(1− α)N ≥ a23N , so α satisfies

α ≥ a23 − a
µ2 − a

. (7.3)

Note that for each j = 1, . . . , N , the j-th entry of Γz is (Γz)j =
∑n

i=1 ξjizi. Define
fj :=

∣∣∑n
i=1 ξjizi

∣∣, so

|Γz|2 =
N∑
j=1

f2j .

Clearly f1, . . . , fN are independent. For any t, τ > 0 we have

P
(
|Γz|2 ≤ t2N

)
= P

( N∑
j=1

f2j ≤ t2N
)

= P
(
τN − τ

t2

N∑
j=1

f2j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f2j

)

= eτN
N∏
j=1

E exp

(
−
τf2j
t2

)
. (7.4)

From Lemma 7.3 we know that for every j = 1, . . . , N ,

P(fj > λ) ≥
(

[E
∑n

i=1|ξji|2|zi|2 − λ2]+
8µ2

)r/(r−2)
=: βj(r). (7.5)

Note that for every j ∈ J one has

βj ≥
(

[a− λ2]+
8µ2

)r/(r−2)
. (7.6)

For arbitrary t > 0, η > 0 and λ > 0, set τ := ηt2

λ2
. For each j = 1, . . . , N we have

E exp
(
−
τf2j
t2

)
=

∫ 1

0
P
(

exp
(
−
ηf2j
λ2

)
> s

)
ds

=

∫ e−η

0
P
(

exp
(ηf2j
λ2

)
<

1

s

)
ds+

∫ 1

e−η
P
(

exp
(ηf2j
λ2

)
<

1

s

)
ds

≤ e−η + P(fj < λ)(1− e−η).
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Choosing η = ln 2 and applying (7.5), we obtain

E exp
(
−
τf2j
t2

)
≤ e−η + (1− βj(r))(1− e−η) = 1− βj(r)

2
≤ exp

(
−βj(r)

2

)
.

Since τ < t2

λ2
, inequality (7.4) implies

P
(
|Γx|2 ≤ t2N

)
≤ eτN

N∏
j=1

e−βj(r)/2 ≤ e(t2/λ2)N
∏
j∈J

e−βj(r)/2. (7.7)

Taking a = a23/2 and λ = a3/2 and using (7.6) we observe that for every j ∈ J we

have βj ≥
( a23
32µ2

)r/(r−2)
. Also note this choice of a and (7.3) imply α ≥ a23/(2µ

2).
Now let

t2 :=
a43

25µ2

( a23
25µ2

)r/(r−2)
.

Then continuing from (7.7) we obtain

P
(
|Γz|2 ≤ a43

25µ2

( a23
25µ2

)r/(r−2)
N

)
≤ exp

{
− a23

23µ2

( a23
25µ2

)r/(r−2)
N

}
.

This completes the proof. �
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Chapter 8

A remark about a recent result
of Srivastava and Vershynin

In [42] the following proposition is proved: Let p ≥ 1, and consider a random
vector X = (ξ1, . . . , ξn), where ξi are independent random variables with zero means,
unit variances and with uniformly bounded 2p-moments. Then for every k with
1 ≤ k ≤ n and for every orthogonal projection P : Rn → Rn with rank(P ) = k, one
has

E
∣∣|PX|2 − k∣∣p ≤ ckp/2 (?)

In the estimate (?), the constant c > 0 depends only on p and on the uniform bound
for the 2p-moments. Let us write µ for such bound, so ‖ξ‖L2p ≤ µ.

In this chapter we aim to prove a corresponding estimate without imposing the
condition of unit variances on all the random variables ξ1, . . . , ξn.

Proposition 8.1. Let p ≥ 2, and consider a random vector X = (ξ1, . . . , ξn), where
ξi are independent random variables with zero means and with uniformly bounded
2p-moments, say ‖ξi‖L2p ≤ µ. Then for every k with 1 ≤ k ≤ n and for every
orthogonal projection P : Rn → Rn with rank(P ) = k, one has

E
∣∣ |PX|2 − E|PX|2

∣∣p ≤ (cpµ2
√
k)p,

where c > 0 is an absolute constant.

Proof. Let P = (Pij) denote the n × n matrix of the operator P . For any vector
x = (x1, . . . , xn) ∈ Rn we have

|Px|2 = 〈x, Px〉 =

n∑
i,j=1

xixjPij .

In particular this is the case for the random vector X = (ξ1, . . . , ξn), so

|PX|2 = 〈X,PX〉 =
n∑

i,j=1

ξiξjPij =
n∑
i=1

ξ2i Pii +
n∑
i 6=j

ξiξjPij ,

and clearly the contribution to this sum coming from the diagonal of P is the random
variable

∆ :=
n∑
i=1

ξ2i Pii.
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Write P = D + P0, where D is the n × n diagonal matrix consisting of the
diagonal elements of P , and P0 := P −D. Thus

|PX|2 = 〈X,DX〉+ 〈X,P0X〉 = ∆ + 〈X,P0X〉. (8.1)

To estimate the term 〈X,P0X〉 we use a ‘decoupling inequality’ from [11]. Let X ′ be
an independent copy of X, and write EX and EX′ for the expectations corresponding
to X and X ′, respectively. The inequality [11, Theorem 3.1.1] applied to our setting
gives

E
∣∣〈X,P0X〉

∣∣p ≤ 12p EX′ EX
∣∣〈X,P0X

′〉
∣∣p. (8.2)

For any a ∈ Rn, using the inequality ‖·‖Lp ≤ ‖·‖L2p , and using the standard
argument of symmetrization and Khintchine’s inequality, we obtain(

E
∣∣∣ n∑
i=1

aiξi

∣∣∣p)2 ≤ E
∣∣∣ n∑
i=1

aiξi

∣∣∣2p ≤ (2B2p)
2p E

( n∑
i=1

a2i ξ
2
i

)p
≤
(
2
√

2p
)2p E( n∑

i=1

a2i ξ
2
i

)p
, (8.3)

where Bp denotes the constant (depending only on p) of Khintchine’s inequality. If
|a| = 1, the last expression is estimated as in the proof of our Lemma 3.1 (p. 17)
with p replacing r/2 (see also [29, Lemma 3.1] and [26, Lemma 3.6]). This way,

E
( n∑
i=1

a2i ξ
2
i

)p
≤ sup

i≥1
E|ξi|2p ≤ µ2p.

This immediately implies that for any a ∈ Rn,

E
( n∑
i=1

a2i ξ
2
i

)p
≤ |a|2pµ2p.

Using this estimate in (8.3) we get

E
∣∣∣ n∑
i=1

aiξi

∣∣∣p ≤ (2√2p
)p|a|pµp =

(
2
√

2p µ
)p|a|p. (8.4)

From (8.2) and (8.4), and recalling that X ′ is an independent copy of X, it follows
that

E
∣∣〈X,P0X〉

∣∣p ≤ (24
√

2p µ
)p EX′ |P0X

′|p =
(
24
√

2p µ
)p EX |P0X|p. (8.5)

Using the triangle inequality (and noticing that P 2
ii ≤ Pii, since 0 ≤ Pii ≤ ‖P‖ ≤ 1),

we have

|P0X| = |PX −DX| ≤ |PX|+ |DX|

= |PX|+
( n∑
i=1

ξ2i P
2
ii

)1/2
≤ |PX|+ ∆1/2

≤
√

2
(
|PX|2 + ∆

)1/2
.

38



Taking expectations and using Hölder inequality it follows that

E|P0X|p ≤
√

2
p
(
E
∣∣|PX|2 + ∆

∣∣p)1/2. (8.6)

From (8.1), (8.5) and (8.6) we get

E
∣∣|PX|2 −∆

∣∣p = E
∣∣〈X,P0X〉

∣∣p
≤
(
48
√
p µ
)p(E∣∣|PX|2 + ∆

∣∣p)1/2.
This implies that the random variable Z := |PX|2 −∆ satisfies

‖Z‖2Lp ≤
(
48
√
p µ
)2 ‖Z + 2∆‖Lp ≤

(
48
√
p µ
)2 (‖Z‖Lp + 2‖∆‖Lp

)
.

Solving this quadratic inequality we get

‖Z‖Lp ≤
(
48
√
p µ
)2

+
√

2
(
48
√
p µ
)
‖∆‖1/2Lp

. (8.7)

Next we bound ‖∆‖Lp . Recall that k = rank(P ).

∥∥∆
∥∥
Lp

=

∥∥∥∥ n∑
i=1

[
ξ2i Pii − E(ξ2i )Pii + E(ξ2i )Pii

]∥∥∥∥
Lp

≤
∥∥∥∥ n∑
i=1

[
ξ2i − E(ξ2i )

]
Pii

∥∥∥∥
Lp

+

∥∥∥∥ n∑
i=1

E(ξ2i )Pii

∥∥∥∥
Lp

. (8.8)

Observe that the random variables ζi := ξ2i − E(ξ2i ) appearing in the first term of
(8.8) are centered and satisfy

‖ζi‖Lp ≤ ‖ξ2i ‖Lp + E(ξ2i ) ≤ ‖ξi‖2L2p
+ [E(ξ2pi )]1/p ≤ 2µ2.

Then, using the symmetrization inequality [24, Lemma 6.3], Khintchine’s inequality,
and P 2

ii ≤ Pii, we have∥∥∥∥ n∑
i=1

[
ξ2i − E(ξ2i )

]
Pii

∥∥∥∥p
Lp

=

∥∥∥∥ n∑
i=1

ζiPii

∥∥∥∥p
Lp

≤ (2Bp)
p E
[( n∑

i=1

ζ2i P
2
ii

)p/2]
.

The expression E
(∑

ζ2i Pii

)p/2
is estimated repeating the convexity argument from

the proof of our Lemma 3.1 (p. 17). This way,

E
( n∑
i=1

ζ2i Pii

)p/2
≤ kp/2 sup

i≥1
E|ζ2i |p/2

= kp/2 sup
i≥1

(‖ζi‖p)p ≤ kp/2(2µ2)p,
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and taking into account that Bp ≤
√
p, we obtain∥∥∥∥ n∑

i=1

[
ξ2i − E(ξ2i )

]
Pii

∥∥∥∥
Lp

≤
(
4
√
p µ2

)
k1/2. (8.9)

For the second term of (8.8), we clearly have∥∥∥∥ n∑
i=1

E(ξ2i )Pii

∥∥∥∥
Lp

=

∣∣∣∣ n∑
i=1

E(ξ2i )Pii

∣∣∣∣ ≤ (max
j

E ξ2j
)∣∣∣∣ n∑
i=1

Pii

∣∣∣∣ ≤ µ2 k. (8.10)

From (8.8), (8.9) and (8.10) we obtain∥∥∆
∥∥
Lp
≤
(
4
√
p µ2

)
k1/2 + µ2k ≤

(
5
√
p µ2

)
k.

Substituting this into (8.7) we get

‖Z‖Lp ≤
(
48
√
p µ
)2

+
√

2
(
48
√
p µ
)(√

5p1/4 µ
)
k1/2 ≤ c1pµ2

√
k, (8.11)

where c1 = 48(48 +
√

10).

Finally, recall that Z := |PX|2 −∆, so using the triangle inequality we have∥∥|PX|2 − E|PX|2
∥∥
Lp
≤
∥∥|PX|2 −∆

∥∥
Lp

+
∥∥∆− E|PX|2

∥∥
Lp

=
∥∥Z∥∥

Lp
+
∥∥∆− E|PX|2

∥∥
Lp
. (8.12)

By (8.9) and (8.11) we estimate each term of (8.12), thus obtaining∥∥|PX|2 − E|PX|2
∥∥
Lp
≤ c1pµ2

√
k + (4

√
p µ2)

√
k ≤ cpµ2

√
k.

This finishes the proof with c = c1 + 4. �

Corollary 8.2. Let p ≥ 2, and consider a random vector X = (ξ1, . . . , ξn), where
ξi are independent random variables with zero means and with uniformly bounded
2p-moments, say ‖ξi‖L2p ≤ µ. Let P : Rn → Rn be an orthogonal projection with
rank(P ) = k. Then for every t > 4p2µ4k one has

P
(
|PX|2 > t

)
≤ cpt−p/2,

where c > 0 is the absolute constant appearing in our Proposition 8.1.

Proof. Observe that

E|PX|2 = E〈X,PX〉

= E
n∑

i,j=1

ξiξjPij =
n∑
j=1

E ξ2jPij ≤
(
max
j

E ξ2j
) n∑
i=1

Pii ≤ µ2k.

Thus, by Chebyshev inequality, under the conditions of Proposition 8.1, for any
t > 4p2µ4k (which in particular implies t > 2µ2k, so t > E|PX|2 + t/2) one has

P
(
|PX|2 > t

)
≤ P

(∣∣|PX|2 − E|PX|2
∣∣ > t/2

)
≤ 2p · (cpµ2

√
k)p

tp
≤ cpt−p/2.

�
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