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Abstract

Employing disturbance observers is an effective way of enhancing the stability and

performance of the control systems subject to disturbances. Disturbance observers

have been extensively used for control of mechatronic systems since their introduc-

tion in the 1980s.

This thesis studies the design of nonlinear disturbance observers for robotic manipu-

lators and their applications in the control of telerobotic systems. A novel framework

is introduced, based on linear matrix inequalities, for the design of nonlinear dis-

turbance observers for serial robotic manipulators. This design method removes the

restrictions encountered in previous design methods.

In spite of the many applications of the disturbance observers in mechatronic sys-

tems, there are few studies that address the design of such observers for telerobotic

systems. Moreover, these studies cannot guarantee the stability of telerobotic sys-

tems with time delay. This thesis presents a rigorous theoretical basis for the dis-

turbance observer based control of telerobotic systems with variable time delays.
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Chapter 1

Introduction

1.1 Intorduction

A profound concept in the systems and control literature is that of observers. An
observer is a device used to reconstruct the states of a dynamical system from input-
output measurements. Observers can be employed in numerous applications such
as feedback control, system health monitoring, and fault detection [1].

In the late 1980s, a new type of observer referred to as “disturbance observer”, was
introduced for control of mechatronic systems [2, 3]. Unlike state observers that are
used to reconstruct the unknown states of a system, disturbance observers are used
to estimate the unknown inputs of a system [1]. Disturbance observers are used to
estimate and suppress unknown disturbances acting on control systems and thus
enhance their stability and performance. A disturbance observer may also be used
to reduce the number of costly sensors needed in a control system [1]. Since their
advent, disturbance observers have been employed successfully in applications such
as control of direct drive motors [4], active car steering [5], control of DC servomotors
[6], and current control of induction motors [7].

The disturbance observer concept has inspired a wide variety of applications in
the robotics context as well as other fields of mechatronics. Disturbance observers
are used to estimate unknown forces/torques in robotic manipulators. A typical
disturbance observer that is used in a robotic system is shown in Figure 1.1. As it
can be seen, the disturbance observer uses the known forces/torques applied to the
robot and the measured output variables to estimate the unknown forces/torques
that are exerted to the robot.

A considerable part of the existing literature on disturbance observer design for
robotic applications uses linearized models or linear system techniques [8, 9, 10, 11].
Robotic manipulators, however, are nonlinear and coupled systems. There exists no
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Figure 1.1: Block diagram of a typical disturbance observer used in a robotic system.

rigorous proof regarding the stability and performance of nonlinear robotic systems
that use such linear disturbance observers [12, 13]. On the other hand, the proposed
nonlinear disturbance observers in the literature assume certain restrictions on the
configuration of the robotic manipulators. This serves as the motivation to seek a
general framework for the design of disturbance observers for robotic manipulators.

A natural extension of the applications of the robotic disturbance observers is to use
them in telerobotic systems [14]. Ability to reject disturbances is of great impor-
tance in distant environments where the remote robot is subject to unknown forces
and disturbances and the human operator cannot easily access the remote robot.
Teleoperation tasks, however, often involve time delays in the communication chan-
nel between the local robot and the remote robot [15]. The communication channel
time delay can severely affect the stability and performance of the telerobotic sys-
tem. Therefore, it is desirable to benefit from disturbance observers in telerobotic
systems while the stability of the system is guaranteed in the presence of communi-
cation time delays.

1.2 Contributions of the Thesis

This thesis studies the design of nonlinear disturbance observers for robotic manipu-
lators and their application in the control of telerobotic systems. The contributions
of this thesis are twofold:

1. Nonlinear disturbance observer design for robotic manipulators: This thesis
presents a general systematic approach, based on linear matrix inequalities
(LMIs), to solve the disturbance observer design problem for serial robotic
manipulators without the restrictions that have existed in the previous de-
sign methods. The proposed design method unifies the linear and nonlinear
disturbance observers in a general framework.
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2. Disturbance observer based control of bilateral teleoperation systems with vari-
able time delay: This thesis presents a rigorous theoretical basis for the dis-
turbance observer based control of teleoperation systems with variable time
delays.

1.3 Organization of the Thesis

The rest of the thesis is organized in the following way:

• Chapter 2. Background: In this chapter, the applications of disturbance ob-
servers in robotic systems, and a brief literature review of disturbance observer
design methods for such systems is presented first. Next, telerobotic (teleop-
eration) systems, their application, and an overview of the control of these
systems is introduced. Lastly, the importance of disturbance observers in the
control of telerobotic systems is described.

• Chapter 3. Nonlinear Disturbance Observer Design for Single Robotic Manip-
ulators: This chapter starts by providing background information about the
adynamic equations of robotic manipulators, their inherent properties, and
the previous linear and nonlinear disturbance observers that have been pro-
posed for robotic manipulators in the literature. Next, this chapter presents
a general systematic approach, based on linear matrix inequalities (LMIs), to
solve the disturbance observer design problem for serial robotic manipulators
without restrictions on the number of degrees-of-freedom (DOFs), the types
of joints, or the manipulator configuration. This chapter concludes with sim-
ulation studies to show the effectiveness of the proposed disturbance observer
design method.

• Chapter 4. Disturbance Observer Based Control of Bilateral Teleoperation Sys-
tems with Variable Time Delays: In this chapter, a theoretical basis for distur-
bance observer based control of bilateral teleoperation systems with variable
time delays is introduced. It is shown that bilateral teleoperation systems can
be stabilized in the presence of disturbances and variable communication time
delays when the disturbance observers, which are introduced in Chapter 3, are
used in telerobotic systems with a slight modification. Simulation studies are
performed to further demonstrate the efficiency of the proposed disturbance
observer based teleoperation control scheme.

• Chapter 5. Experiments: The experimental setup and the developed software
are presented in this chapter. We demonstrate the effectiveness of the proposed
design methods developed throughout the thesis by performing experiments
on popular and cost-effective PHANToM Omni R© robotic arms.

• Chapter 6. Conclusions and Future Directions: Concluding remarks are pre-
sented and potential future research is discussed in this chapter.





Chapter 2

Background

2.1 Introduction

In this chapter, the applications of disturbance observers in robotic systems are
introduced first. Next, a literature review of current disturbance observer design
methods for such systems is presented. Thereafter, telerobotic (teleoperation) sys-
tems, their history and applications, and an overview of the control of these systems
are introduced. Lastly, the importance and applications of disturbance observers in
the control of telerobotic systems are described.

2.2 Disturbance Observers in Robotic Systems

This section briefly introduces applications of disturbance observers in robotic sys-
tems. The disturbance observer design methods that have been proposed in the
literature are also presented in this section.

2.2.1 Applications of disturbance observers in robotic systems

The vast number of applications of disturbance observers in robotic systems can be
categorized into two major groups, namely disturbance rejection and force sensing:

1. Disturbance rejection: Robotic manipulators are subject to different types of
disturbances such as joint frictions and unknown payloads that adversely affect
their performance such as positioning accuracy and repeatability. Employing
disturbance observers is an effective way of suppressing these disturbances and
improving the tracking performance. The idea behind disturbance observer
based control of robotic manipulators is to lump all the internal and exter-
nal disturbances acting on the manipulator into a single disturbance term,
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Figure 2.1: A disturbance observer used for disturbance rejection in a robotic control
system.

estimate it, and then introduce feedforward compensation to cancel its ef-
fect. Figure 1 depicts a feedback structure including a disturbance observer
(DOB) to control the position of a single robotic manipulator. If the distur-
bance is exactly estimated by the observer, disturbance will be cancelled out
in the closed-loop system and it seems as if we are dealing with a robot with
no disturbances, for which we can easily design a controller. Because of the
feedforward nature of the compensation, disturbance observers can provide
fast, excellent tracking performance and smooth control actions without the
use of large feedback gains [16]. For instance, a disturbance observer might
be used in independent joint control where joint couplings, load variations
and dynamic uncertainties are collectively treated as the lumped disturbance
term [17, 18, 19, 20]. Efficient suppression of these disturbances decouples the
dynamics of the joints and allows for simple controllers to be designed indepen-
dently for each degree of freedom (DOF). Another application of disturbance
observers is in improving the manipulator tracking performance through fric-
tion estimation and compensation [21, 22]. An important aspect of disturbance
observer based friction compensation schemes is that they are not based on
any particular friction model [21].

2. Force sensing: In many robotics applications, the robot end-effector comes
in contact with a compliant surface. In order to guarantee good system per-
formance, a sensor is needed to measure these contact forces [23, 24]. Em-
ploying disturbance observers in these applications can eliminate the need for
expensive force/torque sensors. Accordingly, disturbance observers have been
employed successfully for sensorless force control [25, 26, 27]. It has been
argued in [26] that noise-corrupted measurements and compliant mechanical
structure of force sensors may destabilize the robot-environment interaction
and thus using disturbance observers instead of force sensors is justified. This
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justification is valid for micro/nano manipulation tasks, e.g., microinjection to
introduce foreign materials into biological cells [28], where there is a lack of
small enough force sensors with good precision and signal to noise ratio [29].

Lastly, industrial robots employ fault detection systems in order to determine
if a fault such as a collision (i.e., an abrupt increase in reaction forces) has oc-
curred in the system. Disturbance observers have been used for fault detection
in a number of robotic applications [30, 31, 32].

2.2.2 Disturbance observer design methods

A considerable part of the existing literature on disturbance observer design for
robotic applications uses linearized models or linear system techniques [8, 9, 10, 11].
However, robotic manipulators are nonlinear and coupled systems. There exists no
rigorous proof regarding the stability and performance of nonlinear robotic systems
that use such linear disturbance observers [12, 13]. In order to overcome the linear
disturbance observer limitations for the nonlinear and coupled dynamics of robotic
manipulators, Chen et al. proposed a nonlinear disturbance observer for nonlinear
manipulators and designed it such that no acceleration measurement was needed
[12]. However, the observer design problem was only solved for a 2-link planar serial
manipulator with revolute joints. Later, Nikoobin et al. solved the design prob-
lem for n-link planar serial manipulators with revolute joints [13]. Despite these
limitations in terms of the manipulator configuration, their design could not guar-
antee exponential disturbance tracking and merely ensured asymptotic disturbance
tracking. However, in practice, a guaranteed minimum rate of decay of disturbance
tracking error is highly desirable. Also, both [12, 13] used exact dynamic models of
a particular class of manipulators to design their disturbance observers. Although
these disturbance observers show promising results in disturbance estimation, their
design is limited to planar, serial manipulators with revolute joints. However, in-
dustrial robots including 6-DOF articulated robotic arms such as EPSON C3 and
PUMA 560 are non-planar. Moreover, some of the industrial arms such as SCARA
manipulators have prismatic joints in addition to revolute joints.

Recently, a nonlinear disturbance observer based tracking control has been pro-
posed for Euler-Lagrange systems in [33]. However, this method needs the exact
Lagrangian of the mechanical system, while the exact values of parameters of a
mechanical system are usually uncertain. Moreover, this method does not address
the practical issues involved with the design of disturbance observers such as the
tradeoff between the sensitivity to measurement noise and the rate of convergence
of the disturbance tracking error. This serves as the motivation to look for a gen-
eral disturbance observer design method for robotic systems that imposes minimum
restrictions on the manipulator configuration and that does not require its exact
dynamics.
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2.3 An Introduction to Telerobotic Systems

Although there is slight difference between the meaning of teleoperation and teler-
obotics, many authors use these terms interchangeably (see, for example, [34, 35]).
We will adopt the same convention, i.e., we will use telerobotic system and teleoper-
ation system interchangeably.

In this section, we will first present the basic concepts of teleoperation. Next, we
will have a brief overview of the history and applications of teleoperation. Then, we
will introduce the problem of control of telerobotic systems.

2.3.1 Basics of teleoperation

Teleoperation involves indirect performance of a task in a remote environment and is
used to extend a human operator’s sensing and manipulation capability to a remote
location [36]. The prefix tele, meaning distance, implies an existing barrier between
the human operator and the task to be performed [37]. This barrier can be imposed
by hazardous environments, large distances, or scaling to very small or very large
environments.

Teleoperation systems have found applications in many fields such as handling haz-
ardous materials [38], undersea and space explorations [39, 40], mobile robotics [41],
and remote delivery of health care [42] including telesurgery [43]. For instance, the
da Vinci Surgical System [44] developed by Intuitive Surgical, Inc. (Sunnyvale, CA),
allows the surgical robot to be controlled by a surgeon from a console (user inter-
face) and has been used in prostatectomy [45], cardiac valve repair [46], gynecologic
surgical procedure [47], and many other procedures.

A teleoperation system consists of a master (local) robot (user interface), a com-
munication channel, and a slave (remote) robot. A typical teleoperation system is
depicted in Figure 2.3.1. As it can be seen, the human operator interacts with the
master device, which might be a joystick, a mouse or a robotic arm located at the
local side of the teleoperation system. Through this interaction, the operator applies
his/her desired commands to the slave robot, which interacts with the remote envi-
ronment. The slave robot then performs the human operator’s desired commands
at the remote side of the teleoperation system. Different types of information such
as force, position, and visual/auditory data are exchanged between the remote and
the local sides via a communication channel. If force feedback (haptic feedback)
from the slave side to the master side is present, then the system is called a bilat-
eral teleoperation system to distinguish it from a unilateral teleoperation system,
in which no force is reflected to the user (i.e., there exists no haptic feedback). A
bilateral teleoperation system is said to be transparent if the slave robot accurately
follows the position of the master robot and the master robot faithfully displays the
slave-environment contact force to the human operator. Haptic feedback has been
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Figure 2.2: Diagram of a teleoperation system.

shown to enhance the human operator’s performance in performing teleoperation
tasks without time delay in terms of task success rate, completion time and econ-
omy of exerting forces [48, 49]. In [50], a study has been done to determine the
effect of the presence of haptic feedback in teleoperation systems with time delay.
It has been observed that haptic feedback helps reduce slave-environment contact
forces at the cost of higher completion times.

2.3.2 A historical overview of teleoperation systems

In this section, we will present an overview of the history of teleoperation systems.
For a complete review, the reader is referred to [15, 36, 37, 51].

Teleoperation has a rich and fascinating history. Raymond C. Goertz and his team
developed the first mechanical master-slave teleoperator in 1945 [36]. This teleop-
erator was employed to handle hazardous materials. In 1954, Goertz improved his
design by replacing mechanical tapes and linkages with electrical servomechanisms
and adding closed-circuit television to the system [36].

In the 1960s, telemanipulators (teleoperators) were used to perform scientific under-
sea operations [36]. By 1980, teleoperation systems had become popular in offshore
gas and oil industries and were used to perform undersea operations such as the
monitoring the pipelines and well-head completion operations [36].

In the early 1960s, experiments were done to study the effect of time delay in
space teleoperation [36]. Ferrell was a pioneer in these studies. In 1965, Ferrell
found a quantitative relationship between the time delay and the time required by
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the human operator to accomplish a certain task using a unilateral teleoperation
system [15]. Later, Ferrell studied the effect of time delay on teleoperation when
force reflection was present. He found that delays in the order of a tenth of a second
could destabilize the system [52]. In 1967, Ferrell and Sheridan used supervisory
control schemes to overcome the problem of time delay in teleoperation systems [15].
In supervisory control, high level commands such as ‘move from point A to point
B’or ‘open/close the gripper ’is issued by the human operator at the local site and
the remote robot which has a degree of autonomy executes these commands in the
remote site [15, 53]. A breakthrough in space teleoperation was landing of Surveyor
1, the first lunar telemanipulator developed by NASA, on the surface of the moon in
1966 [36]. In 1970, Lunokhod 1, the first remotely-controlled lunar roving vehicle,
landed on the moon [36].

In 1982, the M2 telerobotic system, which was the first telerobotic system that
facilitated force feedback with separate master and slave electronics, was built at
Oak Ridge National Laboratory [37]. Later, NASA used the M2 system to perform
space truss assembly operation.

In 1990, Bejczy and Kim developed predictive display to tackle the problem of time
delay in teleoperation systems [15, 54]. In a predictive display, the human operator
can see the response of the remote system before it actually happens.

ROTEX, Robot Technology Experiment, was another breakthrough in the area of
space teleoperation [37, 55]. ROTEX flew on board the Space Shuttle Columbia
with Spacelab Mission-D2 in 1993. The system, developed by the German Aerospace
Center (DLR), was used in different operational modes such as off-line programmed
mode and on-line teleoperated mode to perform several prototype tasks such as
assembling a truss structure and catching a floating object.

Using the Internet as the communication channel of teleoperation systems emerged
in the mid 1990s [15]. Variable time-delay and loss of data packets are two major
problems in the teleoperation over the Internet and have kept this field an active
research area.

With the increasing power of computers in the 1980s and 1990s, teleoperation sys-
tems have found applications in medicine. An important development in medical
teleoperation occurred in 2001. In this year, the first transatlantic telesurgery,
Lindbergh Operation, was done successfully [37, 56]. In this minimally invasive
telesurgery, the gallbladder of a patient in Strasbourg, France, was removed by a
surgeon in New York, U.S., using a ZEUS telerobotic surgical system. Table 2.1
summarizes the most significant events in the history of teleoperation.



2.3. AN INTRODUCTION TO TELEROBOTIC SYSTEMS 11

Table 2.1: Selected historical developments of teleoperation systems
1945 Goertz developed the first mechanical master-slave teleoperator.
1954 Goertz used electrical servomechanisms and closed circuit television

in his teleoperator.
1965 Ferrell conducted first experiments to study the effect of time delay

on the performance of teleoperation systems.
1966 NASA Surveyor 1 landed on the surface of the moon.
1967 Ferrell and Sheridan proposed first supervisory control schemes to

overcome the problems caused by time delay in force reflecting tele-
operation systems.

1970 Lunokhod 1, the first remotely controlled lunar roving vehicle
landed on the moon.

1982 M2 telerobotic system was built at Oak Ridge National Laboratory.
1990 Bejczy and Kim used predictive displays to tackle the problem of

time delay in teleoperation systems.
1993 DLR ROTEX was used successfully on board the Space Shuttle

Columbia.
2001 Lindbergh Operation, the first transatlantic telesurgery, was done

successfully between Strasbourg and New York.

2.3.3 Control of bilateral teleoperation systems

Teleoperation systems have long been a subject of interest within the control com-
munity. There exist several reasons for such interest [35]:

• Teleoperation systems are multiple-input/multiple-output (MIMO) nonlinear
systems.

• Communication time-delay may exist between the master and the slave robots
of a teleoperation system.

• Teleoperation systems physically interact with the human operator and the re-
mote environment, which in general possess unknown, time-varying and non-
linear dynamics.

• The type of information exchanged in the communication channel between the
local and the remote sites, affects the control as well as the system stability
and performance.

From a control theoretic perspective, every teleoperation system should be able to
achieve two main objectives [15, 34, 35]:

• Stability: The teleoperation system should be stable irrespective of the human
operator, the communication channel, and the remote environment.

• Telepresence (transparency): The human operator should be able to feel as
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Table 2.2: Communication time delay of several space teleoperation tasks
Task Round-trip delay (second)

Tasks in low earth orbit 0.4
Tasks on the moon 3

Tasks in earth orbitting space shuttles 6

if he/she is directly interacting with the remote environment while using the
teleoperator to remotely act on the environment.

Literature review

Here, we will have a brief literature review of the control schemes that have been
used in teleoperation systems with communication channel time delay. We will
also present the disturbance observer based control schemes that have so far been
proposed for teleoperation systems.

Communication channel time delay is inevitable in long-distance teleoperation. For
instance, this delay is imposed by limits on the speed of radio transmission, and
computer processing at sending and receiving stations and satellite relay stations in
space teleoperation [53]. Table 2.2 shows the round-trip time delay for several such
tasks [53]. As it can be seen, the communication time delay for teleoperation tasks
done in earth orbitting space shuttles are larger than tasks done on the moon. This
is because of multiple up-down links between the shuttle and the earth stations and
signal buffering delays of the stations [53]. As another example, consider the case
when the communication is done via an IP network. The communication delay in
this case is caused by distance between the nodes (i.e., the computers in the network
through which data flow), number of nodes traversed by the packet data, the speed
and communication policy of each node, and the network load [57].

The problem of delay-induced instability in bilateral teleoperation systems was ob-
served as early as 1966 by Ferrell [58] and solutions ranged from reducing the band-
width of the communication channel to the supervisory control [15]. Yet, it was
not before 1989 when Anderson and Spong developed a systematic solution to the
delay-induced instability problem [52]. Inspired by the equations of lossless trans-
mission lines, they used scattering theory to render a teleoperation system with a
constant time delay in its communication channel passive and, therefore, stable.
This scattering approach, however, implies a tradeoff between the stability and the
performance of the teleoperation system [59].

The wave variable framework, which is a reformulation of the scattering transforma-
tion in [52], was another milestone in teleoperation control design [37, 60]. Readers
are referred to [15] and [61] for a complete survey on the wave variable framework.
In short, the wave variable framework has inspired many researchers to improve
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Figure 2.3: Round-trip communication time delay between a PC in Edmonton and
the IP address 128.100.72.45.

the performance of time-delayed teleoperation systems while maintaining stability.
Amongst these, we can refer to wave integral transmission [61], wave filtering [62],
and wave prediction [63]. A widely-known problem of the classic wave-based tele-
operation is the position drift between the master and the slave robots [59, 61].
In order to tackle this problem, solutions such as transmitting the master/slave
position (in addition to velocities) [64], using symmetric PD-like controllers, and
impedance matching [65] have been proposed.

One of the most critical problems involved in teleoperation over networks is the
variable time delay– note that the passivity and wave formalisms are restricted
to constant (albeit unknown) time delays. Variable time delays can cause severe
instability and performance degradation in teleoperation systems. As an illustra-
tive example of such variable time delay, consider Figure 2.3.3 that depicts the
round-trip time delay for sending and receiving 50 consecutive packets of 32 bytes
of data between a computer in Edmonton, AB and the IP address 128.100.72.45
(info.utcc.utoronto.ca). As it can be seen, the round-trip time delay varies between
51 milliseconds and 111 milliseconds.

Certain solutions have been proposed in the literature to tackle variable time-delays.
In [66], communication management modules (CMM) were added to the bilateral
teleoperation architecture to reconstruct the scattering variable while ensuring the
passivity of the communication block. In [67], a time forward observer was used to
ensure the passivity of a teleoperation system with variable time delay when there
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were no model mismatches and the slave robot did not interact with hard surfaces
in the remote environment. In [68], an energy balance monitoring mechanism was
introduced that could ensure the system passivity. These solutions, however, are
unable to ensure the boundedness of the position tracking error [59]. Recently, a
theoretically rigorous approach by Nuno et al. has addressed the stability of variable
time-delay teleoperation systems [59]. They proposed a general Lyapunov-like func-
tion candidate that can be employed to analyze the stability of teleoperation systems
in the presence of constant and variable time-delays, and different control schemes,
i.e, controllers with or without the scattering transformation, and controllers with
or without position tracking capability.

Disturbance observers in telerobotic systems

A shortcoming of [59] and other prior art is that they do not consider the effect of
disturbances on the teleoperation systems despite the fact that the master and the
slave manipulators are subject to effects such as joint frictions and end-effector pay-
loads, which can adversely affect the performance and stability of the teleoperation
system. Employing disturbance observers is an effective way of suppressing such
disturbances [3, 12, 16].

Disturbance observers have been used in telerobotic systems as well as the robotic
systems. A disturbance observer based controller has been designed for bilateral
teleoperation systems in [14]. In this work each joint of the master and the slave
robots is treated as an independent single-input/single-output system and, thus,
multiple disturbance observer based controllers need to be used for the multiple
linear time-invariant (LTI) systems. This is in contrast to the fact that the dynamics
of robotic systems are nonlinear and involve couplings among the manipulator’s
various degrees of freedom. In [69], disturbance observers were used as sensors for
closed-loop force control of haptic interfaces. In [70], a disturbance observer was
used to improve the performance of the master hand of a microsurgical telerobot
system. In [71], a disturbance observer was used at the slave side of a unilateral
teleoperation system in order to improve the position tracking between the master
and the slave robot.

Disturbance observers have also been used in order to improve the telerobotic sys-
tem performance under communication time delay [72, 73, 74]. In long-distance
teleoperation, the position/force signals of the local and remote robots experience
delays in the communication channel. The time-delayed position/force signals have
been added to the output of the disturbance observer in order to provide the lo-
cal and remote robots with estimations of undelayed position/force signals, in an
effort to improve the teleoperation system performance [72]. In [75], a disturbance
observer has been used to estimate the slave-environment contact forces and reflect
the contact forces back to the human operator under variable communication time
delay.
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Although disturbance observers have been used to improve the performance of tele-
operation systems in the presence of disturbances [72, 73, 74, 75] no rigorous analysis
and design has been presented yet to guarantee the stability of the overall system
in the presence of both variable time delays and disturbances. This serves as the
motivation to seek a theoretical framework for disturbance observer based control
of nonlinear bilateral teleoperation systems under variable time delays.





Chapter 3

Nonlinear Disturbance Observer
Design for Single Robotic
Manipulators

3.1 Introduction

In this chapter1, we propose a general systematic approach, based on linear ma-
trix inequalities (LMIs), to solve the disturbance observer design problem for se-
rial robotic manipulators without restrictions on the number of degrees-of-freedom
(DOFs), the types of joints, or the manipulator configuration. The proposed design
method does not need the exact dynamic model of the serial robotic manipulator
and unifies the previously proposed linear and nonlinear disturbance observers in a
general framework.

The organization of this chapter is as follows. We first introduce the notation and
several auxiliary theorems such as the Rayleigh Inequality and Schur Complement
Inequality. Next, we introduce the dynamic equations and inherent dynamic prop-
erties of serial robotic manipulators. Then, we present the nonlinear disturbance
observer (NLDO) structure and its modified version, which does not need joint ac-
celeration measurements. Thereafter, we solve the design problem for nonlinear
disturbance observers and provide sufficient conditions for global asymptotic and
exponential disturbance tracking when the disturbances are slow-varying. When
the disturbances are fast-varying, sufficient conditions for global uniform ultimate
boundedness of the disturbance tracking error are provided. We will also formulate
the observer design problem as a linear matrix inequality (LMI). Subsequently, the
practical issues regarding the design of disturbance observers are discussed in this

1A version of this chapter has been submitted for publication in the Proceedings of the 2011
IEEE Conference on Decision and Control [76].
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chapter. Lastly, simulation studies are presented for a 4-DOF SCARA manipulator
to show the effectiveness of the proposed disturbance observer design method.

3.2 Mathematical Preliminaries

Notation. Let us adopt the following notation system:

• We denote the the set of real numbers by R . We denote the set of n-tuples of
real numbers x = [x1, . . . , xn]T and the set of n×m matrices with real entries
by R n and R n×m, respectively.

• We represent the maximum and the minimum eigenvalues of a square matrix
by λmax(.) and λmin(.), respectively.

• Throughout this chapter and the rest of this thesis, unless otherwise stated,
by a vector norm we mean the vector 2-norm and by a matrix norm we mean
the induced matrix 2-norm:

x ∈ R n ⇒ |x| =
√

xTx

X ∈ R n×n ⇒ |X| =
√
λmax(XTX)

• By A ≥ B, where A and B are square matrices, we mean that A − B is a
positive semi-definite matrix.

The following auxiliary theorems will be used to prove the main theorems in this
chapter:
Rayleigh Inequality. [77] Consider a nonsingular symmetric matrix B ∈ R n×n.
Under these conditions and for any x ∈ R n, we have

λmin(B)|x|2 ≤ xTBx ≤ λmax(B)|x|2.

�
Schur Complement Inequality. [78] Assume that C is a positive definite matrix.
We have

A−BC−1BT ≥ 0⇔
[

A B
BT C

]
≥ 0.

�

Now we define the concept of global uniform ultimate boundedness that will be used
later in this chapter. For the sake of saving space, we will skip the global ultimate
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Figure 3.1: Global uniform ultimate boundedness concept.

boundedness theorems. The reader is referred to nonlinear control literature (see,
for example, Theorem 5.1 and Corollary 5.1 in [79]).
Global Uniform Ultimate Boundedness. [79] Consider the dynamic system
ẋ = f(t,x), where x ∈ R n and t represent the state vector of the system and time,
respectively. The solutions of this system are said to be globally uniformaly ultimately
bounded if for all initial conditions x(t0) there exist positive constants ε and T such
that

|x(t)| ≤ ε, ∀t ≥ T.

The concept of global uniform ultimate boundedness in shown in Figure 3.1. As it
can be observed, all the system trajectories will eventually converge to a ball with
radius ε. The positive constant ε is sometimes called the ultimate bound.

3.3 Dynamics of Serial Robotic Manipulators

The following equation gives the dynamics of an n-DOF rigid serial manipulator
[80]:

M(q)q̈ + N(q, q̇) + F(q̇) = τττ + τττ ext (3.1)

where
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Figure 3.2: Schematic diagram of a typical n-DOF serial manipulator.

N(q, q̇) = C(q, q̇)q̇ + G(q) (3.2)

and q ∈ R n is the vector of joint positions, M(q) ∈ R n×n is the inertia matrix,
F(q̇) is the vector of joint friction torques, C(q, q̇)q̇ ∈ R n is the vector of Coriolis
and centrifugal forces, G(q) ∈ R n is the gravity vector, τττ ∈ R n is the vector
of the control torques applied to the joints, and τττ ext ∈ R n is the vector of the
external disturbances exerted to the joints. Figure 3.2 shows a typical n-DOF
serial manipulator where the parameters mi and li, i = 1, . . . , n are the mass and
the length of the ith link of the robot, respectively.

In this chapter, we assume that the manipulator velocity vector lies in a bounded
set, i.e.,

q̇ ∈ Dq̇ = {q̇ ∈ R n : |q̇| ≤ |q̇|max}. (3.3)

Note that the above assumption requires the input torque τττ + τττ ext to be bounded
[13]. We also denote the set in which the robot joint variables vary (i.e., the robot
workspace) by Dq. We assume that Dq is a bounded set. This assumption ensures
that the manipulator’s prismatic joints do not extend to infinity, which is true in all
physical manipulators.

Serial robotic manipulators have several inherent dynamic properties, which will be
used when designing the disturbance observer later in this chapter. These properties
are listed below.
Property 3.1. The inertia matrix M(q) is symmetric and positive definite and its
norm is bounded [80]:
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M(q) = MT (q) > 0 (3.4)
∀q ∈ Dq, ν1(q) ≤ |M(q)| ≤ ν2(q) (3.5)

where ν1(q) and ν2(q) are scalar functions of the joint position vector q. Defining
ν1 = inf

q∈Dq
{ν1(q)} and ν2 = sup

q∈Dq

{σ2(q)}, we get

ν1 ≤ |M(q)| ≤ ν2, ∀q ∈ Dq. (3.6)

Property 3.2. The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric [80]:

[Ṁ(q)− 2C(q, q̇)]T = −[Ṁ(q)− 2C(q, q̇)]
⇒ Ṁ(q) = C(q, q̇) + CT (q, q̇). (3.7)

Property 3.3. The Coriolis/centrifugal matrix C(q, q̇) has an upper bounded in-
duced 2-norm [81]:

∀q ∈ Dq, |C(q, q̇)| ≤ Cb(q)|q̇|2 (3.8)

where Cb(q) is a scalar function of the joint position vector q.

Defining δ = sup
q∈Dq

{Cb(q)} and using (3.3), from (3.8) we get

|C(q, q̇)| ≤ δ|q̇|2max. (3.9)

Also note that (3.7) and (3.9) imply

|Ṁ(q)| ≤ 2δ|q̇|2max. (3.10)

Remark. If all joints of the manipulator are revolute, the scalar function Cb(q) in
(3.8) will become a constant and C(q, q̇) is said to be uniformly bounded. In this
case, an upper bound of Cb(q) is given as [81]:

δ = 3
2 sup

q∈Dq

{
n∑
i=1
|∂M(q)
∂qi

|}. (3.11)

The above equation can be used efficiently to determine an upper bound of |Ṁ(q)|
for articulated robots.

♦
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Property 3.4. The time derivative of the Coriolis/centrifugal matrix C(q, q̇) is
bounded if the velocity and the acceleration of the robot are bounded [82].

3.3.1 Effect of disturbances on robot dynamics

Assume that M̂(q), N̂(q, q̇), Ĉ(q, q̇) and Ĝ(q) are the estimates of the actual
C(q, q̇) and G(q), and that ∆M, ∆C, ∆G and ∆N = ∆Cq̇ + ∆G are the corre-
sponding additive uncertainties present in the model of the robot:

M(q) = M̂(q) + ∆M (3.12)
C(q, q̇) = Ĉ(q, q̇) + ∆C (3.13)

G(q) = Ĝ(q) + ∆G (3.14)
N(q, q̇) = N̂(q, q̇) + ∆N. (3.15)

Let us define the lumped disturbance vector τττd as

τττd = τττ ext −∆Mq̈ −∆N− F(q̇). (3.16)

By this definition, we lump the effect of all dynamic uncertainties, joint frictions
and external disturbances into a single disturbance vector τττd. From (3.1), we get

M̂(q)q̈ + N̂(q, q̇) = τττ + τττd. (3.17)

Inspired by the inherent dynamic characteristics of serial robotic manipulators, we
choose our inertia matrix estimate M̂(q) to satisfy the following properties:

• M̂(q) is symmetric, positive definite and uniformly bounded. That is, we
have:

M̂(q) = M̂T (q) > 0 (3.18)
∀q ∈ Dq, σ1I ≤ M̂(q) ≤ σ2I (3.19)

q̇T [ ˙̂M(q)− 2Ĉ(q, q̇)]q̇ = 0 (3.20)

where σ1 and σ2 are two positive real constants. Also, I is the identity matrix.

• The 2-norm of ˙̂M(q) is bounded. That is to say
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∀q ∈ Dq, | ˙̂M(q)| ≤ ζ (3.21)

where ζ is a positive real constant.

Remark. M̂(q) can be any arbitrary matrix satisfying (3.18), (3.19) and (3.21).
For instance, M̂(q), can be a constant, positive definite and symmetric matrix. As
another example, the estimated Denavit-Hartenberg (D-H) parameters2 of a robot
may be used to find the estimate of its inertia matrix. This is also true about the
Coriolis matrix estimate Ĉ(q, q̇) and the gravity vector estimate Ĝ(q), i.e., when
M̂(q) is chosen to be a constant matrix, Ĉ(q, q̇) is chosen to be zero (due to (3.20)),
and when the D-H parameters are used to estimate the inertia matrix of the robot,
the same D-H parameters will be used to estimate Ĉ(q, q̇) and Ĝ(q).

♦

3.4 Nonlinear Disturbance Observer Structure

In this section, we will first introduce a basic diturbance observer for robotic ma-
nipulators that needs joint acceleration measurements. Then, we will modify the
disturbance observer in a way that acceleration measurement is no longer needed.
We emphasize that disturbance observers are fundamentally different from state
observers. While the state observers are used to estimate the unknown states of
the robot such as the joint velocity (see, for example, the successful time delay and
Nicosia state observers in [84, 85]), the disturbance observers are used to estimate
the unknown inputs, such as unknown contact forces, exerted to the robot. Finally,
while our simulations and experiments have to make choice on the robot control
method, this chapter especially addresses the problem of the design of disturbance
observers and not the design of controllers for robotic manipulators. Indeed, the
proposed disturbance observers can be used in conjunction with any control scheme
or state observer that has been proposed for robotic manipulators.

3.4.1 Basic disturbance observer structure

Assuming joint acceleration measurements are available, the following nonlinear
disturbance observer has been proposed for the robot (3.17) by [12]:

˙̂τττd = −Lτ̂ττd + L{M̂(q)q̈ + N̂(q, q̇)− τττ} (3.22)
2Denavit-Hartenberg convention is a commonly used convention for selecting frames of reference

in robotics applications (see [80, 83] for a detailed discussion).
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where L is the observer gain matrix. Defining ∆τττd = τττd − τ̂ττd as the disturbance
tracking error and using (3.17), we have

˙̂τττd = L∆τττd (3.23)

or, equivalently,

∆τ̇ττd = τ̇ττd − L∆τττd. (3.24)

3.4.2 Modified disturbance observer structure

The disadvantage of the disturbance observer (3.22) is the need for acceleration
measurement. Accurate accelerometers are not available in many robotic systems.
Unless robust differentiation techniques are employed [86], differentiating the noise-
corrupted velocity signals is not a suitable option for deriving acceleration signals.
It is possible to modify the disturbance observer, as in [12], in a way that no accel-
eration measurement is needed. For this purpose, let us define the auxiliary variable

z = τ̂ττd − p(q, q̇) (3.25)

where the vector p(q, q̇) can be determined from the modified observer gain matrix
L(q, q̇):

d

dt
p(q, q̇) = L(q, q̇)M̂(q)q̈. (3.26)

With (3.17), (3.22) and (3.26), taking the time derivative of (3.25) results in

ż = ˙̂τττd − ṗ(q, q̇) = ˙̂τττd − L(q, q̇)M̂(q)q̈⇒
ż = −L(q, q̇) [z + p(q, q̇)]︸ ︷︷ ︸

τ̂ττd

+

L(q, q̇){M̂(q)q̈ + N̂(q, q̇)− τττ − M̂(q)q̈}
⇒ ż = −L(q, q̇)z +
L(q, q̇){N̂(q, q̇)− τττ − p(q, q̇)}. (3.27)

Therefore, the modified disturbance observer, which does not need acceleration mea-
surement due to cancellation of the term M̂(q)q̈, takes the following form:
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ż = −L(q, q̇)z + L(q, q̇){N̂(q, q̇)− τττ − p(q, q̇)}
τ̂ττd = z + p(q, q̇)

d

dt
p(q, q̇) = L(q, q̇)M̂(q)q̈. (3.28)

From (3.28), the error dynamics becomes

∆τ̇ττd = τ̇ττd − ˙̂τττd = τ̇ττd − ż− d

dt
p(q, q̇)

= τ̇ττd + L(q, q̇) [τ̂ττd − p(q, q̇)]︸ ︷︷ ︸
z

−L(q, q̇){−M̂(q)q̈ + τττd︸ ︷︷ ︸
N̂(q,q̇)−τττ

−p(q, q̇)} − L(q, q̇)M̂(q)q̈ = τ̇ττd − L(q, q̇)(τττd − τ̂ττd).

Therefore, we get

∆τ̇ττd = τ̇ττd − L(q, q̇)∆τττd. (3.29)

Note that the modified disturbance observer, which does not need acceleration mea-
surement, has a similar error dynamics to the basic disturbance observer error dy-
namics (3.24).

In order to complete the disturbance observer design, we should determine the vector
p(q, q̇) and the matrix L(q, q̇). This is the topic of the next section.

3.5 Nonlinear Disturbance Observer Design

In this section, we will present the main results of the chapter, namely a system-
atic method for the disturbance observer design and the formulation of disturbance
observer design problem in the form of a linear matrix inequality (LMI).

3.5.1 Disturbance observer design method

Given the disturbance observer (3.28), we should determine p(q, q̇) and L(q, q̇) to
complete the disturbance observer design. We propose the following disturbance
observer gain matrix:
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L(q) = X−1M̂−1(q) (3.30)

where X is a constant invertible n× n matrix to be determined. Note that we have
chosen the estimate of the robot inertia matrix to be symmetric and positive definite
and thus invertible. According to (3.26), we have

p(q̇) = X−1q̇. (3.31)

In this way, our nonlinear disturbance observer is given by (3.28) with the distur-
bance observer gain matrix L(q) in (3.30) and the disturbance observer auxiliary
vector p(q̇) in (3.31).

First, we will assume that the rate of change of the lumped disturbance is negligible
in comparsion with the disturbance estimation error dynamics, i.e., τ̇ττd ≈ 0. This
assumption is not overly restrictive and is commonly encountered in the robotics
literature (see, for example, [12]). Next, we will consider the case when the robotic
manipulator is experiencing fast-varying disturbances. The following theorem states
the sufficient conditions for asymptotic and exponential disturbance tracking when
the robotic manipulator is subject to slow-varying disturbances.
Theorem 3.1. Consider the serial robotic manipulator subject to disturbances de-
scribed by (3.17). The disturbance observer is given in (3.28) with the disturbance
observer gain matrix L(q) defined in (3.30) and the disturbance observer auxiliary
vector p(q̇) defined in (3.31). The disturbance tracking error ∆τττd converges expo-
nentially to zero for ∀∆τττd(0) ∈ R n if the following conditions hold:

1. The matrix X is invertible,

2. There exists a positive definite and symmetric matrix Γ such that

X + XT −XT ˙̂M(q)X ≥ Γ. (3.32)

3. τ̇ττd ≈ 0, i.e., the rate of change of the lumped disturbance acting on the manip-
ulator is negligible in comparison with the estimation error dynamics (3.29).

Under the above conditions, the minimum rate of exponential convergence is λmin(Γ)
2σ2|X|2 ,

where σ2 is defined in (3.19). If Γ = 0 in (3.32), the disturbance tracking error will
converge asymptotically to zero.

�

Proof. Consider the following candidate Lyapunov function:
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W (∆τττd,q) = ∆τττTdXTM̂(q)X∆τττd
= (X∆τττd)TM̂(q)(X∆τττd). (3.33)

Since M̂(q) is symmetric and positive definite and the matrix X is invertible, the
matrix XTM̂(q)X is also positive definite. Thus, the scalar function W is positive
definite. Also, W is radially unbounded. Taking the time-derivative of W and using
(3.29), (3.30) and (3.31) when τ̇ττd ≈ 0, yields

Ẇ (∆τττd,q) = ∆τ̇ττTdXTM̂(q)X∆τττd +

∆τττTdXTM̂(q)X∆τ̇ττd + ∆τττTdXT ˙̂M(q)X∆τττd =
−∆τττTd M̂−T (q)X−TXTM̂(q)X∆τττd
−∆τττTdXTM̂(q)XX−1M̂−1(q)∆τττd
+∆τττTdXT ˙̂M(q)X∆τττd ⇒

Ẇ (∆τττd,q) = −∆τττTd [X + XT −XT ˙̂M(q)X]∆τττd.
(3.34)

According to Condition 2 and (3.34), Ẇ is negative definite for all ∆τττd ∈ R n. There-
fore, the disturbance tracking error asymptotically converges to zero: lim

t→∞
∆τττd = 0

for ∀∆τττd ∈ R n.

Again consider the candidate Lyapunov function in (3.33). Condition 2 and (3.34)
yield

Ẇ ≤ −∆τττTdΓ∆τττd, ∀∆τττd ∈ R n. (3.35)

Therefore, the disturbance observer tracking error converges exponentially to zero
for ∀∆τττd ∈ R n when Γ 6= 0.

On the other hand, using Rayleigh Inequality, we get

λmin(XTM̂(q)X)|∆τττd|2 ≤W ≤
λmax(XTM̂(q)X)|∆τττd|2, ∀∆τττd ∈ R n.

(3.36)

Since XTM̂(q)X is a symmetric matrix, we have
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λmax(XTM̂(q)X) = |XTM̂(q)X| ≤
|XT |.|M̂(q)|.|X| = |M̂(q)|.|X|2. (3.37)

So, W ≤ |M̂(q)|.|X|2.|∆τττd|2. According to (3.19), we have

W ≤ σ2|X|2.|∆τττd|2. (3.38)

The above inequality results in |∆τττd|2 ≥ W
σ2|X|2 . On the other hand, the Rayleigh

Inequality along with (3.35) results in

Ẇ ≤ −λmin(Γ)|∆τττd|2. (3.39)

Also note that λmin(Γ) > 0 because Γ is positive definite. Therefore, from (3.38)
and (3.39) we have

Ẇ ≤ −λmin(Γ)
σ2|X|2

W ⇒W (t) ≤W (t0) exp[−λmin(Γ)
σ2|X|2

t]. (3.40)

Also note that (3.19), (3.33) and Rayleigh Inequality yield

W ≥ σ1∆τττTdXTX∆τττd
≥ σ1λmin(XTX)|∆τττd|2. (3.41)

From (3.40) and (3.41), we get

|∆τττd|2 ≤
W (t0)

σ1λmin(XTX) exp[−λmin(Γ)
σ2|X|2

t]. (3.42)

Thus, the minimum convergence rate of the disturbance tracking error is λmin(Γ)
2σ2|X|2 .

Having addressed the case of slow-varying disturbances, we now consider the case
where the robot is experiencing fast-varying disturbances. The following theorem
addresses the case where the robotic manipulator is subject to fast-varying distur-
bances.
Theorem 3.2. Consider the robotic manipulator subject to disturbances described
by (3.17). The disturbance observer is given in (3.28) with the disturbance observer
gain matrix L(q) defined in (3.30) and the disturbance observer auxiliary vector p(q̇)
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defined in (3.31). The disturbance tracking error τττd is globally uniformly ultimately
bounded if:

• The first two conditions of the Theorem 3.1 hold,

• The rate of change of the lumped disturbance is bounded, i.e., ∃κ > 0 such that
|τ̇ττd(t)| ≤ κ for ∀t > 0.

Under the above conditions and for ∀∆τττd(0) ∈ R n, the tracking error converges
with an exponential rate, equal to (1−θ)λmin(Γ)

2σ2|X|2 , to the ball with radius 2κσ2|X|2
θλmin(Γ) where

0 < θ < 1.

�

Proof. Again, consider the Lyapunov Candidate function in (3.33). According to
(3.38) and (3.41), we have

σ1λmin(XTX)|∆τττd|2 ≤W ≤ σ2|X|2|∆τττd|2. (3.43)

Note that W is a positive definite and radially unbounded function. Taking the
time derivative of the Lyapunov function and using (3.29), we get

Ẇ (∆τττd,q) = −∆τττTd [X + XT −XT ˙̂M(q)X]∆τττd
+τ̇ττTdXTM̂(q)X∆τττd + ∆τττTdXTM̂(q)Xτ̇ττd. (3.44)

On the other hand, according to Schwarz Inequality (see, for example, [77]) and
(3.19) and since |τ̇ττd(t)| ≤ κ we have

τ̇ττTdXTM̂(q)X∆τττd ≤ κσ2|X|2|∆τττd|. (3.45)

Using the inequality (3.32) and (3.44), we get

Ẇ ≤ −λmin(ΓΓΓ)|∆τττd|2 + 2κσ2|X|2|∆τττd|
= −(1− θ)λmin(ΓΓΓ)|∆τττd|2 − θλmin(ΓΓΓ)|∆τττd|2

+2κσ2|X|2|∆τττd| (3.46)

where θ ∈ (0, 1). Therefore, we have
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Ẇ ≤ −(1− θ)λmin(ΓΓΓ)|∆τττd|2, ∀|∆τττd| ≥
2κσ2|X|2

θλmin(Γ) . (3.47)

According to (3.43), (3.47) and the uniform ultimate boundedness theorems (see,
for example, Theorem 5.1 and Corollary 5.1 in [79]), we conclude that the tracking
error is globally uniformly ultimately bounded. Similar to (3.40), we have

Ẇ ≤ −(1− θ)λmin(Γ)
σ2|X|2

W ⇒

W (t) ≤W (t0) exp[−(1− θ)λmin(Γ)
σ2|X|2

t]

∀|∆τττd| ≥
2κσ2|X|2

θλmin(Γ) . (3.48)

From (3.43) and (3.48), we get

|∆τττd|2 ≤
W (t0)

σ1λmin(XTX) exp[−(1− θ)λmin(Γ)
σ2|X|2

t]

∀|∆τττd| ≥
2κσ2|X|2

θλmin(Γ) . (3.49)

Therefore, we will have

|∆τττd(t)| ≤
√

W (t0)
σ1λmin(XTX) exp[−(1− θ)λmin(Γ)

2σ2|X|2
t]

+ 2κσ2|X|2

θλmin(Γ) , ∀t ≥ 0. (3.50)

Therefore, the tracking error converges with an exponential rate, equal to (1−θ)λmin(Γ)
2σ2|X|2

to the ball with radius 2κσ2|X|2
θλmin(Γ) where 0 < θ < 1 for ∀∆τττd(0) ∈ R n.

Remark. Conventional linear disturbance observers and nonlinear disturbance ob-
servers proposed by [12, 13] are special cases of our disturbance observer in (3.28),
disturbance observer gain matrix (3.30), and disturbance observer auxiliary vector
(3.31) in the following ways:



3.5. NONLINEAR DISTURBANCE OBSERVER DESIGN 31

• In the conventional linear disturbance observers [3], the robot inertia ma-
trix estimate M̂(q) is represented by a constant diagonal matrix of the form
diag{mi} where mi > 0, i = 1, . . . , n are positive real constants. Also, the
vector N̂(q, q̇) is chosen to be zero and the matrix X is taken to be a constant
diagonal matrix diag{xi} with xi > 0.

• In [12, 13], a nonlinear disturbance observer was designed for a serial planar
robot with 2 and n revolute joints, respectively. In both of these, it was
assumed that the exact dynamic model of the robotic manipulator is available,
i.e., they took M̂(q) = M(q) and N̂(q, q̇) = N(q, q̇). Also, the vector p(q, q̇)
was considered to be

p(q̇) = c


q̇1

q̇1 + q̇2
...

q̇1 + q̇2 + · · ·+ q̇n

 . (3.51)

This is clearly a special case of our proposed vector p(q̇) in (3.31), when X−1

is chosen to be

X−1 = c


1 0 . . . 0

1 1 . . . ...
...

... . . . 0
1 1 . . . 1

 . (3.52)

♦

3.5.2 LMI formulation of the design method

According to Theorems 3.1 and 3.2, the disturbance observer design problem re-
duces to finding a constant invertible matrix X such that the inequality (3.32) is
satisfied. The following theorem shows how (3.32) can be formulated as a linear
matrix inequality.
Theorem 3.3. Define the matrix Y = X−1 and assume that an upper bound of
| ˙̂M(q)| is ζ. The inequality (3.32) holds if the following LMI is satisfied:

[
Y + YT − ζI YT

Y Γ−1

]
≥ 0. (3.53)

Proof. Multiply (3.32) by Y and YT from right and left, respectively to get
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Y + YT −YTΓY ≥ ˙̂M(q). (3.54)

Since | ˙̂M(q)| ≤ ζ, we have ζI ≥ ˙̂M(q) where I is the identity matrix. Therefore,
(3.54) holds if

Y + YT −YTΓY ≥ ζI. (3.55)

The above inequality is equivalent to Y + YT − ζI − YTΓY ≥ 0. Note that Γ
is a positive definite matrix. According to the Schur Complement Inequality, this
inequality holds if and only if the LMI (3.53) holds.

Note that LMI software packages have the ability to solve (3.53) simultaneously for
Y and Γ when Γ is not known.

3.6 Practical Considerations in the Design of
Disturbance Observers

In this section, we will address practical issues in the design of disturbance observers.
Also, we will present an analytical solution to the observer design problem.

3.6.1 Rate of convergence of the disturbance observer and the
sensitivity to measurement noise

As we saw in Theorems 3.1 and 3.2, the rate of convergence of the tracking error
is proportional to 1

|Y−1|2 , where X−1 = Y. Also, the radius of the ball that the
tracking errors converge to, in the case of fast-varying disturbances, is proportional
to |Y−1|2 (see Theorem 3.2). Since a smaller |Y−1| implies a larger disturbance
observer gain |L| due to (3.30), we need to have a large observer gain in order to
increase the rate of convergence and the accuracy of the disturbance observer. On
the other hand, large disturbance observer gains will increase the sensitivity of the
observer to measurement noise by amplifying this noise. From this perspective, it is
desirable to choose the disturbance observer gain |L| to be small. Thus, there exists
a trade-off between the rate of convergence and the accuracy of the estimations and
the noise amplification. According to (3.30), we have

|L| ≤ |Y|.|M̂−1(q)|. (3.56)

Since the disturbance observer gain directly depends on the matrix Y, we cannot
choose this matrix to be very large. Assume that we want to limit the matrix Y
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to νI to reduce the noise amplification. Then, we need to solve the following set of
LMIs:

[
Y + YT − ζI YT

Y Γ−1

]
≥ 0

Y ≤ νI. (3.57)

LMI software packages such as MATLAB LMI Control Toolbox have the ability to
solve a set of LMIs, such as the one in (3.57), simultaneously [78].

3.6.2 Analytical solution to the disturbance observer design
problem

When the matrix Y is chosen to be yI 3, where I is the identity matrix, the LMI
used for observer design in (3.53) will have an explicit analytical solution. Assume
that we want the minimum convergence rate of the disturbance tracking error to be
equal to β. Also assume that Γ = γI. According to Theorem 3.1, we have

γ = 2βσ2
y2 . (3.58)

And, the LMI (3.53) turns into

[
(2y − ζ)I yI

yI y2

2βσ2
I

]
≥ 0. (3.59)

According to Schur Complement Inequality, the above LMI is equivalent to

(2y − ζ)I− (yI)T ( y2

2βσ2
I)−1(yI) ≥ 0

⇔ (2y − ζ − 2βσ2) ≥ 0⇔ y ≥ 1
2ζ + βσ2. (3.60)

The above inequality clearly depicts the trade-off existing between the minimum
convergence rate and the noise amplification. Note that ζ and σ2 are constants and

3Note that the matrix Y is a diagonal matrix with equal elements on its diagonal. The units of
these diagonal elements are not necessarily the same. In fact, if the ith joint of the robot is revolute
(prismatic) the unit of the ith element will be rad

sec
( m

sec
)).
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depend on the robot dynamic parameters and the maximum joint velocities of the
robot. Faster convergence rates and better accuracy require larger values of β. This,
in turn, means larger values of y and thus results in more sensitivity to noise. Since
we want to reduce the sensitivity to noise in disturbance rejection applications and
at the same time guarantee the minimum convergence rate of tracking error to be
equal to β, we can choose Y to be

Yoptimal = 1
2(ζ + 2βσ2)I. (3.61)

Then, based on (3.30) and X−1 = Y, L is found.

3.7 Simulation Study

SCARA (Selective Compliance Assembly Robot Arm) is an industrial 4-DOF robotic
arm, which is widely used in the assembly of electronic circuits and devices. The first
two joints of the arm, which are used to generate motion in a horizontal plane, are
revolute and have parallel axes of rotation. The third joint of the arm is a prismatic
joint, which controls the vertical motion (z-axis) of the end-effector. Finally, the last
joint is revolute and is used to orient the gripper about the z-axis. Do not confuse
this with the auxiliary vector of the disturbance observer given in (3.28). Figure
3.3 depicts a schematic digram of this manipulator. The dynamics of the SCARA
manipulator is [87]:

M(q) =


p1 + p2c2 p3 + 0.5p2c2 0 −p5
p3 + 0.5p2c2 p3 0 −p5

0 0 p4 0
−p5 −p5 0 p5



C(q, q̇) =


−p2s2q̇2 −0.5p2s2q̇2 0 0
0.5p2s2q̇1 0 0 0

0 0 0 0
0 0 0 0



G(q) =


0
0
−p4g

0

 . (3.62)

The SCARA arm parameters are defined as
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Figure 3.3: SCARA robotic arm

p1 =
4∑
i=1

Ii +m1x
2
1 +m2(x2

2 + a2
1) +

(m3 +m4)(a2
1 + a2

2)
p2 = 2a1[x2m2 + a2(m3 +m4)]

p3 =
4∑
i=2

Ii +m2x
2
2 + a2

2(m3 +m4)

p4 = m3 +m4

p5 = I4 (3.63)

where Ii is the moment of inertia around the centriod, mi is the mass, xi is the mass
center, and ai is the length for link i. The Jacobian of the SCARA manipulator,
with respect to the robot base frame, is [88]:

J(q) =


−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
1 1 0 1

 . (3.64)
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In the above, s2 = sin(q2), c2 = cos(q2), s12 = sin(q1 + q2), c12 = cos(q1 + q2)

Two types of disturbances are exerted to the robot, namely friction and external
payload. We adopt computed-torque scheme for position control [80]:

τττ = M(q){q̈ref + Kv(q̇ref − q̇) + Kp(qref − q)}
+C(q, q̇)q̇ + G(q) (3.65)

where qref is the vector of desired joint positions as a function of time. The external
end-effector payload is chosen to be a weight exerted to the robot end-effector in
the z direction. This weight is equal to 10N from t = 0sec to t = 7sec and is then
reduced to 5N at t = 7sec. The friction torques acting on the joints of the robots
are generated based on the model in [89, 90]. For the i − th joint of the robot,
i = 1, 2, 3, 4, we have the friction modeled as

τifriction
= Fcisgn(q̇i)[1− exp(−q̇

2
i

v2
si

)]

+Fsisgn(q̇i) exp(−q̇
2
i

v2
si

) + Fviq̇i (3.66)

where Fci, Fsi, Fvi are the Coulomb, static, and viscous friction coefficients, respec-
tively. The parameter vsi is the Stribeck parameter. Table 3.1 gives the simulation
parameters.

The total disturbance vector acting on the joints of the robot can be computed by

τττd = τττ friction + JTFpayload. (3.67)

Square-wave commands are supplied as the reference trajectory for all joints of
the robot. In the first case, no disturbance observer is used with the computed
torque controller. In the second case, a disturbance observer is used to estimate
and suppress the joint frictions and the external payload together with computed
torque law. The block diagram of the control system is similar to Figure 2.1. The
designed observer has a structure given by (3.28), (3.30) and (3.31). We consider the
matrix Y = X−1 = yI to design our disturbance observer. Based on the parameters
provided in Table 3.1 we have

|M(q)| ≤ 15. (3.68)
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Table 3.1: Simulation parameters for disturbance observer based control of SCARA
manipulator

Parameter Value Parameter Value
m1 15 kg m2 12 kg
m3 3 kg m4 3 kg
I1 0.02087m1 kg.m2 I2 0.08m2 kg.m2

I3 0.05 kg.m2 I4 0.02m4 kg.m2

a1 0.5 m a2 0.4 m
x1 0.25 m x2 0.2 m
Fc1 0.49 N.m Fc2 0.31 N.m
Fc3 0.1 N Fc4 0.1 N.m
Fs1 3.5 N.m Fs2 2.8 N.m
Fs3 0.7 N Fs4 0.7 N.m
Fv1 0.15 kg.m

s Fv2 0.12 kg.m
s

Fv3 0.03 kg
s Fv4 0.03 kg.m

s

vs1 0.19 rad
s vs2 0.15 rad

s

vs3 0.03 m
s vs4 0.03 rad

s

Kv 6I Kp 16I
Y = X−1 95.8I g 9.8 N

kg

Eigenvalues of the matrix Ṁ(q) are 0, 0, 1
2(−1 +

√
2)p2q̇2 sin(q2) and 1

2(−1 −√
2)p2q̇2 sin(q2), respectively. We have

|Ṁ(q)| ≤ 1
2(1 +

√
2)p2q̇2max = 5.8q̇2max. (3.69)

Assuming the maximum velocity of the second joint to be q̇2max = 2 radsec and the
minimum convergence rate to be β = 6 and according to (3.61), we will have

Yoptimal = 1
2(5.8q̇2max + 2βσ2)⇒ Yoptimal = 95.8I. (3.70)

Figure 3.4 illustrates the time profiles of the positions of the joints of the robot.
As it can be observed, the computed-torque control law fails to track the position
commands accurately when no disturbance observer is used. On the other hand,
when the disturbance observer is used, the robot performs the position commands
accurately. Figure 3.5 depicts the actual and estimated disturbances. Despite the
fast time-varying disturbances, the estimated disturbance is able to track these
disturbances and tends towards the actual disturbances in the steady state.
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Figure 3.4: Position of the joints of the SCARA robot

Figure 3.5: Disturbance tracking of the SCARA robot NLDO





Chapter 4

Nonlinear Disturbance Observer
Based Control of Bilateral
Teleoperation Systems with
Variable Time Delay

4.1 Introduction

In this chapter, we will provide an extension to [59] by slight modification of the
nonlinear disturbance observers proposed in the previous chapter and incorporating
them into the framework of variable time delay teleoperation. By taking the Lya-
punov approach in [59, 82], we will develop a disturbance observer based control
scheme that is able to guarantee asymptotic disturbance tracking, position track-
ing of the master and the slave robots in free motion, and overall stability of the
teleoperation system in the presence of variable time delays and disturbances.

This chapter is organized in the following way. We first introduce the notation and
several lemmas that will be used throughout the chapter. Next, dynamics of tele-
operation systems is presented. Thereafter, the disturbance observer based control
laws for variable time delay teleoperation and the main theorem of this chapter
are given. Lastly, simulations are performed for a nonlinear 2-DOF teleoperation
system subject to disturbances and variable time delays to show the effectiveness of
the proposed approach.
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4.2 Mathematical Preliminaries

This section contains the concepts and lemmas used throughout the chapter. The
lemmas presented in this section will serve as our main tools for analyzing the
stability of teleoperation systems subject to disturbances and variable time delays.

Notation. We will use the following notation throughout this chapter:

• We denote the space of signals with bounded energy and the L2 norm of vector
signals by L2 and ||.||2 , respectively, thus

f(.) ∈ L2 ⇐⇒ ||f ||22 =
∫ ∞

0
|f(σ)|2 dσ <∞.

• We denote the space of bounded signals and the L∞ norm of vector signals by
L∞ and ||.||∞, respectively, thus

f(.) ∈ L∞ ⇐⇒ ||f ||∞ = sup
t≥0
|f(t)| <∞, ∀t ≥ 0.

• We denote the the set of real numbers, positive real numbers, and positive real
numbers and zero by R , R +, and R +

0 , respectively.

Mathematical Lemmas. Here, we present lemmas needed throughout the chap-
ter. First, we will present two different versions of the Barbalat’s Lemma.
Lemma 4.1. (Barbalat’s Lemma) [91] Consider the vector signal f(.) : R +

0 → R n.

• Version 1: If ḟ(.) ∈ L∞ and f(.) ∈ L∞ ∩ L2, then lim
t→∞

f(t) = 0.

• Version 2: If ḟ(.) is uniformly continuous, k is a scalar constant, and lim
t→∞

f(t) =
k, then lim

t→∞
ḟ(t) = 0.

�

The following lemma will be helpful in checking the uniform continuity of a signal.
Lemma 4.2. (Uniform Continuity of a Signal) [77] f(.) is uniformly continuous if
ḟ(.) ∈ L∞.

�

The following lemmas are quite useful in our later analysis of the stability of tele-
operation systems subject to variable time delays.
Lemma 4.3. (Schwarz Inequality) [77] For any two vector signals f(.), g(.) : R +

0 →
R n, we have
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∫ t

0
fT(σ)g(σ) dσ ≤ (

∫ t

0
|f(σ)|2 dσ)

1
2 (

∫ t

0
|g(σ)|2 dσ)

1
2 . (4.1)

�
Lemma 4.4. (Bound on Delayed-Signals) [82] Consider the vector signals f(.), g(.) :
R +

0 → R n and assume that 0 ≤ T (t) ≤ Tmax <∞. For ∀α > 0, we have

−
∫ t

0
fT (σ)

∫ 0

−T (σ)
g(σ + θ) dθ dσ ≤ α

2 ||f ||
2
2 + T 2

max

2α ||g||
2
2. (4.2)

�
Lemma 4.5. [82] Consider the vector signal x(.) : R +

0 → R n and assume that
0 ≤ T (t) ≤ Tmax <∞. We have

x(t− T (t))− x = −
∫ 0

−T (t)
ẋ(t+ θ) dθ (4.3)

x− x(t− T (t)) =
∫ T (t)

0
ẋ(t− θ) dθ ≤ T

1
2
max||ẋ||2. (4.4)

�

4.3 Dynamics of a Teleoperation System

In this section, we will present the dynamic equations of a teleoperation system
consisting of a master and a slave manipulator in the presence of disturbances.
Similar to Chapter 3, we will lump the effect of all dynamic uncertainties, joint
frictions and external disturbances of the master and the slave into single disturbance
terms.

4.3.1 Dynamics of the master and the slave manipulators

Similar to (3.17), we have the following dynamics for a teleoperation system con-
sisting of a master and a slave manipulator:

M̂m(qm)q̈m + Ĉm(qm, q̇m)q̇m + Ĝm(qm) = τττ cm − τττh + τττdm (4.5)
M̂s(qs)q̈s + Ĉs(qs, q̇s)q̇s + Ĝs(qs) = −τττ cs + τττ e + τττds (4.6)
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where τττh and τττ e are the torques exerted by the human operator and the remote en-
vironment, τττ cm and τττ cs are the control troques applied to the master and the slave,
and τττdm and τττds are the disturbances, lumping the effect of all dynamic uncertain-
ties, joint frictions and external disturbances, exerted to the master and the slave,
respectively. We have

τττdi = τττ ext,i −∆Miq̈i −∆Ciq̇i −∆Gi − Fi(q̇i), i = m, s (4.7)

where the external disturbances, τττ ext,i, i = m, s, the robot model uncertainties,
∆Mi, ∆Ci, ∆Gi, i = m, s, and the joint friction vectors, Fi(q̇i), i = m, s are
defined as in (3.12)–(3.17). Also, M̂i(qi), i = m, s are the symmetric and positive
definite estimates of the inertia matrices of the master and the slave, and satisfy

µmI ≤ M̂m(qm) ≤ µMI (4.8)
µsI ≤ M̂s(qs) ≤ µSI. (4.9)

Similarly, Ĉi(qi, q̇i), i = m, s and Ĝi(qi) represent the centrifugal/Coriolis matrix
and the gravity vector estimates, respectively.

We will apply the following control torques to the master and the slave robots:

τττ cm = Ĝm(qm)− τ̂ττdm + τττm (4.10)
τττ cs = −Ĝs(qs) + τ̂ττds + τττ s (4.11)

where τ̂ττdm and τ̂ττds are the estimates of the master and the slave disturbances pro-
vided by the disturbance observers that will be introduced later in this chapter.
Also, τττm and τττ s are the synchronizing torques applied to the master and the slave,
respectively [59]. We have

τττm = km[qs(t− Ts(t))− qm]− bmq̇m (4.12)
τττ s = ks[qs − qm(t− Tm(t))] + bsq̇s (4.13)

where qm(t − Tm(t)) and qs(t − Ts(t)) are the delayed positions of the joints of
the master and the slave that have been transmitted through the communication
channel. The parameters ki, bi, i = m, s are positive real constants to be determined.
Note that the synchronizing torques τττm and τττ s consist of two terms, namely, a term
proportional to the position error modelling a spring and a velocity term modelling
a damper. This is shown schematically in Figure 4.1. As it will be seen later,
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Figure 4.1: Physical interpretation of the synchronizing torques.

the synchronizing torques make the master and the slave robots follow each other’s
positions.

Remark. There are two other synchronizing control torques, namely, a PD-like
and a scattering-based controller for teleoperation systems with variable time delays
[59, 82]. However, the rate of change of time delays should be known in these two
schemes. Also, the absolute value of the rate of change of time delays in these
two schemes should be less than unity, which is not the case in packet switched
communication networks, such as the Internet [59]. Moreover, as shown by [59], these
two schemes result in an inferior performance in comparison with the proportional-
damping scheme. Therefore, we will only address the proportional-damping scheme
and use it in the disturbance observer based control of teleoperation system of (4.5)–
(4.6) with variable time delays.

♦

Applying the control torques (4.10)–(4.11) to the teleoperation system (4.5)–(4.6)
yields

M̂m(qm)q̈m + Ĉm(qm, q̇m)q̇m = τττm − τττh + ∆τττdm (4.14)
M̂s(qs)q̈s + Ĉs(qs, q̇s)q̇s = −τττ s + τττ e + ∆τττds (4.15)

where ∆τττdi = τττdi − τ̂ττdi, i = m, s is the disturbance tracking error. Determining
the disturbance estimates τ̂ττdm and τ̂ττds is the subject of the next section. Figure
4.2 represents a schematic diagram of the teleoperation system with disturbance
observers incorporated into it.

To conclude this section, we will present a lemma for teleoperation systems in free
motion, i.e., when τττh = τττ e = 0.
Lemma 4.6. (Teleoperator’s Zero-convergence Lemmas) [82] Consider the teleop-
eration system subject to disturbances as described by (4.14)–(4.15), in free motion
(i.e., when τττh = τττ e = 0). We have
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Figure 4.2: Disturbance observer based control of a teleoperation system with vari-
able time delays.

• Velocity Zero-convergence. Assume that q̇i ∈ L2 ∩ L∞ and τττ i ∈ L∞, and
∆τττdi ∈ L∞ for i = m, s. Then lim

t→∞
|q̇i| = 0.

• Acceleration Zero-convergence. In addition to the previous assumptions,
assume that τ̇ττ i ∈ L∞, and∆τ̇ττdi ∈ L∞ for i = m, s. Then, q̈i is uniformly
continuous and lim

t→∞
|q̈i| = 0.

�

4.4 Disturbance Observer Based Control Laws

In this section, we will present our disturbance observer based control laws. The
previous work by [59] can only address the case when the teleoperation system is
subject to variable time delays. We will extend past work on variable time delay
teleoperation by considering the disturbances acting on the master and the slave
robots. Our stability and performance goals are:

• Ensuring boundedness of the master and the slave position trajectories, in
both free and constrained motions, independent of the variable time delays
present in the communication channel and in the presence of disturbances,

• Synchronizing the positions of the master and the slave manipulators when
the teleoperation system is in free motion.
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The disturbance observer based control laws are given in (4.10)–(4.11) with the
synchronizing torques given in (4.12)–(4.13). First, we will propose the disturbance
observers to be used in the disturbance observer based control laws (4.10)–(4.11).
Next, we will introduce candidate Lyapunov functions for different parts of the
teleoperation system. Finally, we will present one main result in the form of a
theorem.

Disturbance observers

Inspired by the nonlinear disturbance observer in (3.28), we propose the following
disturbance observer to be employed at the master side of the teleoperation system:

żm = −αmM̂−1
m (qm)zm + αmM̂−1

m (qm)[Ĉm(qm, q̇m)q̇m + Ĝm(qm) + τττh − τττ cm
−αmq̇m] + q̇m

τ̂ττdm = zm + αmq̇m (4.16)

where αm is a positive real constant. Note that the disturbance observer gain in
this case is Lm(qm) = αmM̂−1

m (qm) (see (3.30)). Also, we have pm(q̇m) = αmq̇m
(see (3.31)).

Remark. The last term q̇m in (4.16) does not exist in the nonlinear disturbance
observer in (3.28). This new term will help to achieve desired stability and per-
formance goals in the proposed disturbance observer based control of teleoperation
systems with variable time delays.

♦

Here, we assume that the rate of change of the lumped disturbance is neglibgible
in comparsion with the disturbance estimation error dynamics, i.e., τ̇ττdm ≈ 0. This
assumption is not overly restrictive and is commonly encountered in the robotics
literature (see, for example, [12, 13]). The error dynamics of the disturbance observer
under this assumption and according to (4.5), (4.10), (4.14), and (4.16) will be:

∆τ̇ττdm = − ˙̂τττdm = −żm − αmq̈m = αmM̂−1
m (qm) (τ̂ττdm − αmq̇m)︸ ︷︷ ︸

zm

−αmM̂−1
m (qm)[Ĉm(qm, q̇m)q̇m + Ĝm(qm) + τττh − τττ cm︸ ︷︷ ︸

−M̂m(qm)q̈m+τττdm

−αmq̇m]− q̇m − αmq̈m.

Therefore, we have
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∆τ̇ττdm = −q̇m − αmM̂−1
m (qm)∆τττdm. (4.17)

Similar to the disturbance observer at the master side, we employ the following
disturbance observer at the slave side of the teleoperation sytem:

żs = −αsM̂−1
s (qs)zs + αsM̂−1

s (qs)[Ĉs(qs, q̇s)q̇s + Ĝs(qs)− τττ e + τττ cs − αsq̇s]
+q̇s

τ̂ττds = zs + αsq̇s (4.18)

where αs is a positive real constant. Again, under the assumption of slow-varying
disturbances, the error dynamics of the disturbance observer will be

∆τ̇ττds = −q̇s − αsM̂−1
s (qs)∆τττds. (4.19)

4.4.1 Candidate Lyapunov functions

Every teleoperation system consists of five subsystems, namely, the human operator,
the master, the communication channel and the controllers, the slave, and the remote
environment. We will assume that the human operator and the remote environment
are passive systems. This is a common assumption that is frequently encountered
in the teleoperation literature and is the basis of the passivity-based control of tele-
operation systems with time delay [15, 37]. This assumption enables us to analyze
the (absolute) stability and performance of teleoperation systems independent of
the dynamic models of the human operator and the remote environment [37]. The
assumption of a passive environment is reasonable as many environments consist of
passive objects. There is ample research that shows that the human arm displays
passive dynamics while it maintains stable contact with any strictly passive object
(see, for example, [92, 93]) despite active control by the central nervous system [94].
Let us introduce candidate Lyapunov functions that will be used in the analysis of
stability of teleoperation systems with variable time delays and disturbances.

• Human operator: We assume that the human operator defines a passive ve-
locity to torque/force mapping, i.e.,

∃ νm > 0 such that
∫ t

0
q̇Tmτττh dσ ≥ −νm ,∀t ≥ 0. (4.20)
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We define the following candidate Lyapunov function for the human operator:

Vhuman =
∫ t

0
q̇Tmτττh dσ + νm. (4.21)

Taking the time-derivative of (4.21) yields

V̇human = q̇Tmτττh. (4.22)

• Master manipulator: We define the following candidate Lyapunov function for
the master manipulator and its associated disturbance observer:

Vmaster = 1
2 q̇TmM̂m(qm)q̇m + 1

2∆τττTdm∆τττdm. (4.23)

The first and the second terms of this Lyapunov function can be considered
as the kinetic energy of the master and the energy of its disturbance observer,
respectively. Taking the time-derivative of (4.23) and according to (3.20),
(4.14), and (4.17), we get

V̇master = q̇Tm [−Ĉm(qm, q̇m)q̇m + τττm − τττh + ∆τττdm]︸ ︷︷ ︸
M̂m(qm)q̈m

+1
2 q̇Tm

˙̂Mm(qm)q̇m

+∆τττTdm [−q̇m − αmM̂−1
m (qm)∆τττdm]︸ ︷︷ ︸

∆τ̇ττdm

= q̇Tm(τττm − τττh)− αm∆τττTdmM̂−1
m (qm)

∆τττdm + 1
2 q̇Tm[ ˙̂Mm(qm)− 2Ĉm(qm, q̇m)]q̇m︸ ︷︷ ︸

0

.

Therefore, we have

V̇master = q̇Tm(τττm − τττh)− αm∆τττTdmM̂−1
m (qm)∆τττdm. (4.24)

• Communication channel: We make the following assumptions about the vari-
able time delay in the communication channel [59, 82]:
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– There exist a known upper bound on the variable time delay:

0 ≤ Ti(t) ≤ Tmax i <∞, ∀t ≥ 0 and i = m, s. (4.25)

– The rate of change of the variable time delay is bounded:

|Ṫi(t)| ≤ ζT i <∞, ∀t ≥ 0 and i = m, s. (4.26)

Remark. The assumptions (4.25)–(4.26) are frequently encountered in network-
based control (see, for example, [95]). Also, note that we do not need to know
ζT i, i = m, s, i.e., an upper bound of the rate of change of the communication
time delays to design the controllers.

♦

Let us define the following candidate Lyapunov function for the communication
channel:

Vcomm. = 1
2 |qm − qs|2. (4.27)

Taking the time-derivative of (4.27), we get

V̇comm. = (qm − qs)T (q̇m − q̇s). (4.28)

• Slave manipulator: We define the following candidate Lyapunov function for
the slave manipulator:

Vslave = 1
2 q̇Ts M̂s(qs)q̇s + 1

2∆τττTds∆τττds. (4.29)

Similar to the calculations for the master, we get

V̇slave = q̇Ts (−τττ s + τττ e)− αs∆τττTdsM̂−1
s (qs)∆τττds. (4.30)

• Remote environment: We assume that the remote environment defines a pas-
sive velocity to torque/force mapping, i.e.,
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∃ νs > 0 such that −
∫ t

0
q̇Ts τττ e dσ ≥ −νs ,∀t ≥ 0. (4.31)

We define the following candidate Lyapunov function for the remote environ-
ment:

Venvironment = −
∫ t

0
q̇Ts τττ e dσ + νs. (4.32)

Taking the time-derivative of (4.32), we get

V̇environment = −q̇Ts τττ e. (4.33)

4.4.2 Main theorem

Now, we are ready to state the main result of this chapter in the form of the following
theorem.
Theorem 4.1. Consider the teleoperation system described by (4.5) and (4.6). This
teleoperation system is subject to variable time delays satisfying (4.25) and (4.26).
The master and the slave disturbance observers are given in (4.16) and (4.18). The
disturbance observer based control laws are given in (4.10) and (4.11) with the syn-
chronization torques τττm and τττ s given in (4.12) and (4.13). Assume that the distur-
bance observer gains and the controller gains satisfy αi > 0, ki > 0, bi > 0, for i =
m, s. Also, assume that the controller gains are set such that the following inequality
is satisfied:

4bmbs > (T 2
max m + T 2

max s)kmks. (4.34)

Then:

• The velocities and position error are bounded, i.e., {q̇i,qm − qs} ∈ L∞ and
q̇i ∈ L2. Moreover, {qm − qs(t − Ts(t)),qs − qm(t − Tm(t))} ∈ L∞ and
lim
t→∞

∆τττdi(t) = 0.

• In the case of free motion, i.e., when τττh = τττ e = 0, velocities asymptoti-
cally converge to zero and position tracking is achieved, i.e., lim

t→∞
|qm−qs(t−

Ts(t))| = lim
t→∞
|qs − qm(t− Tm(t))| = 0.
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Proof. Let us define the following candidate Lyapunov function for the teleoperation
system:

Vteleop. = Vhuman + Vmaster + kmVcomm. + km
ks
Vslave + km

ks
Venvironment (4.35)

where Vhuman, Vmaster, Vcomm., Vslave, and Venvironment are defined in (4.21), (4.23),
(4.27), (4.29), and (4.32), respectively. This candidate Lyapunov function is positive
definite and radially unbounded, i.e., Vteleop. > 0 and Vteleop. →∞, if {q̇i,∆τττdi,qm−
qs} → ∞. Taking the time derivative of (4.35), we get

V̇teleop. = V̇human + V̇master + kmV̇comm. + km
ks
V̇slave + km

ks
V̇environment. (4.36)

Using (4.22), (4.24), (4.28), (4.30), and (4.33) in (4.36), we get

V̇teleop. = −bm|q̇m|2 −
kmbs
ks
|q̇s|2 + kmq̇Tm[qs(t− Ts(t))− qs]

+kmq̇Ts [qm(t− Tm(t))− qm]− αm∆τττTdmM̂−1
m (qm)∆τττdm

−kmαs
ks

∆τττTdsM̂−1
s (qs)∆τττds. (4.37)

Employing (4.3) in (4.37), we get

V̇teleop. = −bm|q̇m|2 −
kmbs
ks
|q̇s|2 − kmq̇Tm

∫ 0

−Ts(t)
q̇s(t+ θ) dθ

−kmq̇Ts
∫ 0

−Tm(t)
q̇m(t+ θ) dθ − αm∆τττTdmM̂−1

m (qm)∆τττdm

−kmαs
ks

∆τττTdsM̂−1
s (qs)∆τττds. (4.38)

Using (4.8) and (4.9) in (4.38), we get

V̇teleop. ≤ −bm|q̇m|2 −
kmbs
ks
|q̇s|2 −

αm
µM
|∆τττdm|2 −

kmαs
ksµS

|∆τττds|2

−kmq̇Tm
∫ 0

−Ts(t)
q̇s(t+ θ) dθ − kmq̇Ts

∫ 0

−Tm(t)
q̇m(t+ θ) dθ. (4.39)
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Let us integrate (4.39) from 0 to ∞ to get

Vteleop.(∞)− Vteleop.(0) ≤ −bm
∫ ∞

0
|q̇m|2 dσ −

kmbs
ks

∫ ∞
0
|q̇s|2 dσ

−αm
µM

∫ ∞
0
|∆τττdm|2 dσ −

kmαs
ksµS

∫ ∞
0
|∆τττds|2 dσ

−km
∫ ∞

0
q̇Tm

∫ 0

−Ts(t)
q̇s(t+ θ) dθ dσ − km

∫ ∞
0

q̇Ts
∫ 0

−Tm(t)
q̇m(t+ θ) dθ dσ.

(4.40)

Now, we use (4.2) to get

Vteleop.(∞)− Vteleop.(0) ≤ −bm||q̇m||22 −
kmbs
ks
||q̇s||22 −

αm
µM
||∆τττdm||22 −

kmαs
ksµS

||∆τττds||22 + km
2 {αm||q̇m||

2
2 + T 2

max s

αm
||q̇s||22}+ km

2 {αs||q̇s||
2
2 + T 2

max m

αs
||q̇m||22}.

(4.41)

Further simplification yields

Vteleop.(∞)− Vteleop.(0) ≤ −{bm −
km
2 (αm + T 2

max m

αs
)}︸ ︷︷ ︸

κm

||q̇m||22 −

{kmbs
ks
− km

2 (αs + T 2
max s

αm
)}︸ ︷︷ ︸

κs

||q̇s||22 −
αm
µM
||∆τττdm||22 −

kmαs
ksµS

||∆τττds||22.

(4.42)

If (4.34) holds, it can be easily observed that κm, κs > 0, for ∀αm, αs > 0. Since
Vteleop. is positive definite and from (4.42), we have

Vteleop.(0) ≥ κm||q̇m||22 + κs||q̇s||22 + αm
µM
||∆τττdm||22 + kmαs

ksµS
||∆τττds||22. (4.43)

Therefore, the signals q̇i(.),∆τττdi(.), i = m, s belong to L2. Now, we integrate (4.39)
from 0 to t to get
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Vteleop.(t)− Vteleop.(0) ≤ −κm||q̇m||22 − κs||q̇s||22 −
αm
µM
||∆τττdm||22

−kmαs
ksµS

||∆τττds||22 + ψ(t) (4.44)

where ψ(t) = bm
∫∞
t |q̇m|2 dσ + kmbs

ks

∫∞
t |q̇s|2 dσ + αm

µM

∫∞
t |∆τττdm|2 dσ +

kmαs
ksµS

∫∞
t |∆τττds|2 dσ < ∞. Also, we have Vteleop.(t) ≤ Vteleop.(0) + ψ(t) < ∞. Since

Vteleop. is positive definite and radially unbounded, {q̇i(.),∆τττdi(.),qm − qs} ∈ L∞.
Let us rewrite qm − qs(t− Ts(t)) as

qm − qs(t− Ts(t)) = qm − qs︸ ︷︷ ︸
∈L∞

+ qs − qs(t− Ts(t))︸ ︷︷ ︸
≤T

1
2

max s||q̇s||2 according to (4.4)

. (4.45)

Hence, qm−qs(t−Ts(t)) ∈ L∞. Similarly, we can prove that qs−qm(t−Tm(t)) ∈ L∞.

Now consider the derivative of the disturbance tracking errors in (4.17) and (4.19).
Since {q̇i,∆τττdi} ∈ L∞, we have ∆τ̇ττdi ∈ L∞. According to the first version of the
Barbalat’s Lemma, we have lim

t→∞
∆τττdi = 0. This concludes the first part of our

proof.

Now, consider the teleoperation system in free motion, i.e., τττh = τττ e = 0. We have
proved that q̇i ∈ L2 ∩ L∞, and {∆τττdi,∆τ̇ττdi} ∈ L∞. Since {qm − qs(t− Ts(t)),qs −
qm(t − Tm(t))} ∈ L∞, {q̇m − Ṫs(t)q̇s(t − Ts(t)), q̇s − Ṫm(t)q̇m(t − Tm(t))} ∈ L∞
and according to (4.10) and (4.11), we conclude that {τττ i, τ̇ττ i} ∈ L∞. According to
the Zero-convergence Lemma, we conclude that the velocities and the accelerations
asymptotically converge to zero. According to (4.14)–(4.15) and in free motion, we
have

q̈m = −M̂−1
m (qm){Ĉm(qm, q̇m)q̇m + km[qs(t− Ts(t))− qm]− bmq̇m

+∆τττdm} (4.46)
q̈s = −M̂−1

s (qs){Ĉs(qs, q̇s)q̇s − ks[qs − qm(t− Tm(t))]− bsq̇s
+∆τττds}. (4.47)

Since the velocities, the accelerations, and the disturbance tracking errors asymptot-
ically converge to zero, position tracking is achieved, i.e., lim

t→∞
|qm−qs(t−Ts(t))| =

lim
t→∞
|qs − qm(t− Tm(t))| = 0.
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Figure 4.3: Schematic diagram of the teleoperation system used in simulation study.

Remark. The inequality (4.34) indicates a tradeoff between the damping gains,
the proportional gains and the maximum time delays, i.e., the larger the propor-
tional gains or the maximum communication time delays, the larger the damping
gains to guarantee the stability of the teleoperation system. On the other hand,
larger damping gains imply more sluggish responses and thus inferior performance
of the teleoperation system. Therefore, given the proportional gains and maximum
communication time delays, it is desirable to choose the minimum possible values of
damping coefficients based on (4.34) to have better performance, i.e., less sluggish
responses.

♦

4.5 Simulation Study

In this section, computer simulations will illustrate the effectiveness of the proposed
control scheme. Both the master and the slave robots are considered to be planar
two-link manipulators with revolute joints. The schematic diagram of the teleoper-
ation system is shown in Figure 4.3.

The dynamics of the manipulators are [83]

M(q) =
[
l22m2 + 2l1l2m2c2 + l21(m1 +m2) l22m2 + l1l2m2c2

l22m2 + l1l2m2c2 l22m2

]
(4.48)
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V(q, q̇) = C(q, q̇)q̇ =
[
−m2l1l2s2q̇

2
2 − 2m2l1l2s2q̇1q̇2

m2l1l2s2q̇
2
1

]

G(q) =
[
m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12

]
. (4.49)

Also, the forward kinematics, h(q), and the Jacobian matrix, J(q), are 1

h(q) =
[
l1c1 + l2c12
l1s1 + l2s12

]
(4.50)

J(q) =
[

l1s2 0
l1c2 + l2 l2

]
(4.51)

where l1 and l2 are the lengths of the links and m1 and m2 are the point masses
of the links. Also, we have s1 = sin(q1), s2 = sin(q2), c1 = cos(q1), c2 = cos(q2),
s12 = sin(q1 + q2) and c12 = cos(q1 + q2).

We take the dynamic parameter values of the master and the slave robots to be

m1m = 2.3kg, m2m = 2.3kg, l1m = 0.5m, l2m = 0.5m
m1s = 2.3kg, m2s = 2.3kg, l1s = 0.5m, l2s = 0.5m. (4.52)

In this simulation study, we consider the teleoperation system in free motion, i.e.,
no forces/torques are applied to the manipulators by the human operator or the
remote environment. We will consider two types of disturbances acting on the
manipulators, namely, joint frictions and end-effector payloads. We do not consider
dynamic uncertainties in this simulation study. Therefore, the total disturbance
vector acting on the joints of each of the manipulators can be computed by

1Given the joint positions q and the joint velocities q̇ of a manipulator, the following equations
can be used to find the position x and the velocity ẋ of the manipulator’s end-effector:

x = h(q)
ẋ = J(q)q̇
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τττd = τττ friction + JTFpayload (4.53)

where τττ friction and Fpayload represent the friction torque and the end-effector payload
force vectors, respectively.

The friction torques acting on the joints of the robots are generated based on the
model in [90]. For the i − th joint of the robot, i = 1, 2, we have the frictions
modeled as

τifriction
= Fcisgn(q̇i)[1− exp(−q̇

2
i

v2
si

)]

+Fsisgn(q̇i) exp(−q̇
2
i

v2
si

) + Fviq̇i (4.54)

where Fci, Fsi, Fvi are the Coulomb, static, and viscous friction coefficients, respec-
tively. The parameter vsi is the Stribeck parameter. In the simulations, the friction
coefficients and the Stribeck parameter for the master and the slave are chosen as
follows [96]:

Fci = 0.49, Fsi = 3.5, Fvi = 0.15, vsi = 0.189
i = 1, 2. (4.55)

The end-effector payloads (see Figure (4.3)) are chosen to be masses equal to 4kg
connected to the end-effectors of the robots. Therefore, we have

Fpayload =
[

0
Mextg

]
. (4.56)

The one-way variable time delay in the communication channel is modelled by a
random signal with shifted gamma distribution. This distribution has been used to
model the internet-based teleoperation time delays [97, 98]. The probability density
function of shifted gamma is [97]:

f(x) =
(x−γβ )α−1. exp(−x−γ

β )
β.Γ(α) . (4.57)
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Figure 4.4: Communication channel time delay.

We have chosen α = β = 2.5 × 10−3 and γ = 5 × 10−3 in the simulation. For the
sake of simplicity, we consider the same variable time delay in both directions, i.e.,
Tm(t) = Ts(t). Figure 4.4 shows the time history of the variable time delay. As it
can be observed, the time delay varies between 50ms and 68ms.

In this simulation study, the parameters of the synchronizing torques, given in (4.12)
and (4.13), are considered to be ki = 2 and bi = 0.8, i = m, s. Note that these gains
satisfy the inequality (4.34) of Theorem 4.1. The disturbance observers are given
by (4.16) and (4.18) with αi = 20, i = m, s. The teleoperation control torques are
given by (4.10) and (4.11).

We choose different values for initial joint positions of the master and the slave while
assuming that both robots are initially at rest. We take the initial joint position
vectors to be
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Figure 4.5: Position tracking response of the teleoperation system without distur-
bance observers.

q0m = [30◦, 135◦]T

q0s = [0, 90◦]T .

Figure 4.5 shows the position tracking response of the teleoperation system when
no disturbance observer is used, i.e., when the control law proposed by [59] is used.
Because of the friction torques and the external payloads exerted to the master and
the slave, the control law without using disturbance observers fails to achieve good
position tracking when the teleoperation system is in free motion.

Now, we employ disturbance observers at the master and the slave sides of the
teleoperation system. Figures 4.6 and 4.7 show the disturbance tracking response
of the disturbance observers at the master and the slave sides, respectively. As it
was also indicated by Theorem 4.1, the disturbance observers are able to acheive
perfect disturbance tracking. Figure 4.8 shows the position tracking response of the
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Figure 4.6: Disturbance tracking at the master side.

teleoperation system when disturbance observers are employed at the master and
the slave sides of the teleoperation system. The position tracking error goes to zero
according to Theorem 4.1.
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Figure 4.7: Disturbance tracking at the slave side.
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Figure 4.8: Position tracking response of the teleoperation system with disturbance
observers.





Chapter 5

Experiments

5.1 Introduction

In this chapter1, we present the experimental setup, the developed software and the
experiments. We demonstrate the effectiveness of the proposed design methods de-
veloped throughout the thesis by performing experiments using PHANToM Omni R©

haptic device.

This chapter is organized in the following way. First, we will introduce the PHAN-
ToM Omni robot (haptic device) and its dynamics. Next, we will introduce the
PHANSIM Toolkit which has been developed to control the PHANToM haptic de-
vices from MATLAB/Simulink. Thereafter, we will perform experiments to show
the efficiency of the disturbance observer design method and disturbance observer
based control of bilateral teleoperation systems with variable time delays that are
proposed in Chapters 2 and 3, respectively.

5.2 Introduction to PHANToM Omni Haptic Device

5.2.1 Overview of the PHANToM haptic devices

The word haptic, from the Greek origin haptikus, means of/related to the sense
of touch. Haptic technology enables the users to touch and manipulate remote or
virtual objects in remote or virtual environments. This technology has found appli-
cations in a wide variety of areas such as video games, medical training, scientific
visualization, computer animation, remote vehicle and robot control, and medical

1A version of the second section of this chapter has been published in the Proceedings of the
23rd Canadian Congress of Applied Mechanics [99].
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Figure 5.1: (a) PHANToM Omni haptic device, c©Copyright SensAble Technologies,
Inc., (b) PHANToM Omni schematic diagram.

rehabilitation. The SensAbleTM PHANToM R© haptic devices (SenSable Technolo-
gies, MA, USA, www.sensable.com) are among the most popular commercial haptic
devices that provide the users with an opportunity for research and education in
haptic technology and its applications. The PHANToM R© product line includes a
large variety of haptic devices, from the Premium models with high-precision, large
workspaces and high forces to the Omni model that is one of the most cost-effective
haptic devices available in the market. These haptic devices have been used in var-
ious applications that provide the user with the sense of touch such as computer
games [100], surgical simulators [101], virtual rehabilitation excercise systems [102]
and teleoperation systems [103].

5.2.2 PHANToM Omni dynamics

The PHANToM Omni haptic device is a small robot arm that has three actuated
revolute joints which provide the user with force feedback information. The active
joints of the Omni robot are actuated by computer-controlled electric DC motors.
In addition to the actuated joints, the PHANToM robot has 3 wrist joints that are
passive. We will use the first three joints of the device, i.e., the actuated joints,
in our experiments. Figure 5.1 depicts a PHANToM Omni haptic device and its
schmeatic diagram.

The following equation gives the dynamics of an n-DOF, n is equal to 3 in the case
of the Omni robot, rigid manipulator [80]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τττ (5.1)

where q,q̇ and q̈ are the n×1 vectors of joint positions, velocities and accelerations,
respectively. Here, M(q) is the n×n inertia matrix, C(q, q̇) is the n×n Coriolis/-
centrifugal matrix, G(q) is the n×1 vector of gravitational forces, and τττ is the n×1
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vector of input control torques. The inertia matrix of the Omni robot is [104]:

M(q) =

 M11 M12 0
M21 M22 M23

0 M32 M33

 (5.2)

where,

M11 = αD1 + αD2 cos(2q2) + αD3 cos(2q3) + αD4 sin(2q3) +
αD5 cos(q2) sin(q3) + αD6 cos(q2) cos(q3)
M12 = M21 = αD7 sin(q2)
M22 = αD8

M23 = M32 = −0.5αD5 sin(q2 − q3) + 0.5αD6 cos(q2 − q3)
M33 = αD9. (5.3)

We define the vector V(q, q̇) as the sum of the Coriolis, centrifugal and gravity
forces. We have [104]:

V(q, q̇) = [V1, V2, V3]T = C(q, q̇)q̇ + G(q) (5.4)

where,

V1 = −2αD2q̇1q̇2 sin(2q2)− 2αD3q̇1q̇3 sin(2q3) + 2αD4q̇1q̇3 cos(2q3)− αD5q̇1q̇2 sin(q2) sin(q3)
+αD5q̇1q̇3 cos(q2) cos(q3)− αD6q̇1q̇2 sin(q2) cos(q3)− αD6q̇1q̇3 cos(q2) sin(q3) + αD7q̇

2
2 cos(q2)

V2 = 2αD2q̇
2
1 cos(q2) sin(q2) + 0.5αD5q̇

2
1 sin(q2) sin(q3) + 0.5αD5q̇

2
3 cos(q2 − q3)

0.5αD6q̇
2
1 sin(q2) cos(q3) + 0.5αD6q̇

2
3 sin(q2 − q3) + αD10 cos(q2) + αD13(q2 −

π

2
)

V3 = 2αD3q̇
2
1 cos(q3) sin(q3)− αD4q̇

2
1 cos(2q3)− 0.5αD5q̇

2
1 cos(q2) cos(q3)− 0.5αD5q̇

2
2 cos(q2 − q3)

+0.5αD6q̇
2
1 cos(q2) sin(q3)− 0.5αD6q̇

2
2 sin(q2 − q3) + αD11 sin(q3) + αD12 cos(q3). (5.5)

5.3 Software Development

The OpenHaptics R© Software Development Kit, provided by the SensAble Technolo-
gies, Inc. (www.sensable.com), enables the users to develop C/C++ programs to
work with the PHANToM haptic devices. However, it does not provide easy ac-
cess to the device inputs and outputs, easy integration with external hardware such
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as cameras, and advanced mathematical functions such as matrix operations and
filtering tasks. On the other hand, MATLAB/Simulink software package, which sup-
ports external hardware integration and a large variety of mathematical functions,
has been used to develop versatile real-time interface for motion control of differ-
ent robots such as KUKA and PUMA 560 manipulators [105, 106]. Quanser Inc.
has developed a commercial software package, QUARC R©, which integrates with the
MATLAB/Simulink and provides real-time access to many different hardware plat-
forms including the PHANToM Omni. However, it is a relatively costly software
package. A noncommercial interface has also been developed for the PHANToM
Omni [107]. However, it requires dismantling the haptic device and using an addi-
tional hardware system, i.e. dSPACE system, in order to use this interface. This
serves as the motivation to develop an academic/non-commercial Simulink toolkit
for the PHANToM haptic devices.

The PHANSIM Toolkit uses C/C++ S-functions along with the OpenHaptics toolkit
to make an interface that provides the users with access to the PHANToM torque/-
force inputs, the Cartesian pose (position and orientation) of the gimbal and the
joint angles of the device in the Simulink environment. The toolkit supports the
operation of a single haptic device as well as the teleoperation of a master-slave
system consisting of two haptic devices. This toolkit enables the users to implement
and test their designed controllers on the PHANToM devices in a fast and easy way.
The toolkit can be downloaded from the webpage: http://www.ece.ualberta.ca/
\textasciitildealireza3/Research.html.

In this section, we will introduce the PHANSIM Toolkit and its capabilites. We will
explain how this toolkit works. Also, we will provide an overview on the Simulink
blocks which are provided in the PHANSIM Toolkit library. Finally, we show the
usefulness of the toolkit by an illustrative experiment, namely a circle drawing task
using an Omni robot.

5.3.1 Overview of the PHANSIM Toolkit

The PHANSIM Toolkit builds up a Simulink interface/block on top of the OpenHap-
tics Toolkit. The OpenHaptics HDAPI (Haptic Device Application Programming
Interface) functions included in the OpenHaptics Toolkit enable the programmers
to access and manipulate the low-level signals of the haptic devie (e.g., joint torque
commands and joint position readings) using C/C++. One important component of
the HDAPI is the scheduler component which enables the developer to communicate
with the underlying servo-loop thread without using platform specific synchroniza-
tion and thread related system calls. In order to create an interface for the haptic
device, which enables the users to set the input force/torque of the haptic device
and to read the device states in the Simulink environment, we have used C/C++
S-functions to access the OpenHaptics HDAPI functions from Simulink. Figure 5.2
depicts how the Simulink communicates with the physical device by using the toolkit
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S-functions and the OpenHaptics HDAPI functions.

Figure 5.2: PHANSIM Toolkit hierarchy.

In order to work with a haptic device using the OpenHaptics Toolkit, the HDAPI
functions should be called according to the following pattern (the readers are referred
to the OpenHaptics Toolkit guide , provided with the software, for a thorough
explanation):

1. The device should be initialized.

2. The force outputs should be activated and the device scheduler function should
be defined and started.

3. The force outputs should be disabled and the scheduler should be cleaned up.

The PHANSIM Toolkit S-functions use the above pattern to invoke the HDAPI
functions and manipulate the haptic device. Figure 5.3 depicts the flow chart of
the PHANSIM interface. As it can be observed, when the user starts the Simulink
model, the haptic device will be initialized, device force outputs will be activated
and the device scheduler function will be started. The scheduler function is called
every 1 millisecond and applies the force or torque inputs, which are provided by
the Simulink S-functions, to the device and reads the states (e.g., joint angles and
gimbal position) of the device, which are reported to the Simulink S-functions. The
Simulink should be able to update the inputs provided for the haptic device with
a rate faster than or equal to 1 kHz if a smooth motion is required. The rate at
which the inputs of the device are updated in the Simulink can be set through
the Configuration Parameters dialog box of the Simulink model. In fact, one can
consider the scheduler function as a sample-and-hold device which reads the inputs
and reports the outputs at a rate of 1 kHz. When the user terminates running the
Simulink model, the haptic device scheduler will be stopped and the device force
outputs will be disabled. In short, the PHANSIM Simulink interface initialzes the
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device, provides input for the scheduler function, reads the device output and stops
the device at the end by using the HDAPI functions.

Figure 5.3: Flow chart of the PHANSIM interface.

The PHANSIM library consists of the following blocks:

• PHANToM Block: This block can be used when only one haptic device is used.
Force or torque inputs may be applied to the device. The user can determine
the domain of the inputs (joint-level vs. Cartesian-level) in the block dialog
box. Gimbal coordinates and angles and the angles of the first three actuated
joints (q1, q2 and q3) can be read from the device. If more than one haptic
device is connected to the PC, the user can choose the desired device by typing
its name in the block dialog box. The device name is the name by which the
SenSable’s PHANTOM Test program recognizes the haptic device. Figure 5.4
shows the PHANTOM Block.

• PHANTOM Teleoperation Block: This block can be used when two haptic
devices are used simultaneously. Again, force or torque inputs may be applied
to the devices; the user can determine the type of inputs in the block dialog
box. Gimbal coordinates and angles and the angles of the first three actuated
joints of the robots can be read. The user can identify each device by typing
its name in the block dialog box. Figure 5.5 shows this block.

• PHANTOM Clock Generator Block: Since Simulink’s simulation time is not
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Figure 5.4: PHANSIM Library: PHANTOM Block.

Figure 5.5: PHANSIM Library: PHANTOM Teleoperation Block.

representative of the actual time elapsed during an experiment, a block is
needed to synchronize the simulation with the actual time. The PHANTOM
Clock Generator Block generates a real-time clock signal by reading the CPU
time. This block can be used to generate real-time signals. For instance, if
we want to record the time passed during a teleoperation task, we should use
this block’s output to record the time. Figure 5.6 shows this block.

5.3.2 Illustrative experiment: Circle drawing task

This section illustrates the effectiveness of the toolkit by an experiment, namely,
a circle drawing task. In the experiment, a PHANToM Omni haptic device is
connected to a PC through the IEEE 1394 port. The following software programs
were installed on the PC:

• Microsoft Windows R© XP (service pack 2),

• MATLAB R© R2009a (32-bit version),



5.4. EXPERIMENTS 70

Figure 5.6: PHANSIM Library: PHANTOM Clock Generator Block.

• OpenHaptics R© 3.0 academic edition.

A PHANToM Omni haptic device is used to draw a circle with a radius of 30 mm
on a horizontal plane. Proportional-derivative (PD) control laws are used as control
schemes at each joint with proportional and derivative gains equal to 0.25 and 0.7,
respectively. Through the PHANTOM Block, a force input (i.e., PD controller
output) was applied to the device, and the Cartesian coordiantes of the device
gimbal were read. The reference trajectory was:

x(t) = 30 sin(π2 t), y(t) = 0, z(t) = 30 cos(π2 t). (5.6)

Figure 5.7 shows the block diagram used to run the experiment in the Simulink
environment. The Simulink PID controller block from Simulink Extras/Additional
Linear library was used to implement the PD control law. Note that the output of
the PHANToM Clock Generator Block is used to synchronize the sine wave sources
with the actual time which is read from the PC’s CPU. Figure 5.8 depicts the
gimbal’s x and z coordinates time-histories and the final trajectory of the device
gimbal.

5.4 Experiments

In this section, we will perform two experiments in order to demonstrate the effec-
tiveness of the methods developed throughout the thesis. In the first experiment,
we will design a disturbance observer for a single Omni robot. In the second ex-
periment, we will design a disturbance observer based control law for a bilateral
teleoperation system that consists of two Omni robots.
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Figure 5.7: Simulink block diagram of the control system in the first experiment.

Figure 5.8: Illustrative experiment: Circle drawing task.
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5.4.1 Experiment 1: Disturbance observer design for a non-planar
2-DOF robot

In this section, we will design a disturbance observer for a single non-planar 2-DOF
robot and use it with a computed-torque controller to show the effectiveness of the
disturbance observer design method proposed in Chapter 3.

Experimental setup

We will use the first and the third actuated joints of the Omni robot in this exper-
iment while the second actuated joint is locked at 0◦. Note that this mechanism is
not confined to a constant 2-D plane and moves in three-dimensional space. There-
fore, the nonlinear disturbance observer proposed by [12] cannot be employed here.
Figure 5.9 shows the PHANToM Omni setup that was used in our experiments. The
disturbance observer is used to estimate and compensate for the joint frictions and
an external unknown payload. The payload is a metal cube that is attached to the
gimbal of the robot. The Omni is connected to a PC through an IEEE 1394 port.
The Omni end-effector position and orientation data are collected at a rate of 1000
Hz. We define ci = cos(qi), si = sin(qi), c2.i = cos(2qi), and s2.i = sin(2qi). The
inertia matrix of the Omni, assuming q2 = 0, can be found from (5.2) and (5.3). We
have

Figure 5.9: Setup used for Experiment 1.

M(q) =
[
α1 + α2c2.3 + α3s2.3 + α4c3 + α5s3 0

0 α6

]
. (5.7)



5.4. EXPERIMENTS 73

Also, defining the vector

V(q, q̇) = [V1, V2]T = C(q, q̇)q̇ + G(q) (5.8)

as the sum of the Coriolis, centrifugal and gravity forces, we have

V1 = −2α2q̇1q̇3 sin(2q3) + 2α3q̇1q̇3 cos(2q3)
+α4q̇1q̇3 cos(q3)− α5q̇1q̇3 sin(q3)

V2 = 2α2q̇
2
1 cos(q3) sin(q3)− α3q̇

2
1 cos(2q3)−

1
2α4q̇

2
1 cos(q3) + 1

2α5q̇
2
1 sin(q3)

+α7 sin(q3) + α8 cos(q3). (5.9)

The Jacobian of the Omni, considering q2 = 0, is:

J(q) =
[
l1 + l2s3 0

0 l1s3

]
(5.10)

where l1 = l2 = 135 mm are the lengths of the first and the second links of the
robot. Therefore, the disturbance due to the external payload that is being exerted
to the first and the third joints of the robot is:

τττpayload = JTF = JT
[

0
mg

]
=

[
0

mgl1s3

]
. (5.11)

Experimental identification of the 2-DOF model parameters

We need to experimentally identify the dynamics of the Omni robot to use it in the
computed-torque control law and the disturbance observer in the first experiment
of this section. We identified the Omni parameters without any external payloads
using the method proposed in [104] and [108]. Based on this method, we should
linearly parametrize the dynamic equation of the Omni robot. An important prop-
erty of the dynamical model of the robot given in (5.1) is that this model is linearly
parametrizable [80]. That is, we have
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Y(q̈, q̇,q)ααα︸ ︷︷ ︸
M(q)q̈+C(q,q̇)q̇+G(q)

= τττ (5.12)

where Y is called the dynamic regressor matrix of the robot. The matrix Y is a
matrix of known functions of q̈, q̇, and q. The vector ααα = [α1, . . . , α8]T represents
the vector of the unknown parameters of the robot that are to be identified. The
parameters αi, i = 1, . . . , 8 are functions of the inertial and kinematic parameters
of the robot such as the mass and the length of the linkages (see [109] for a detailed
derivation). The significance of the approach in [104] and [108] is that we do not need
to know the inertial and kinematic parameters of the robot in order to determine
the parameters αi. Note that Y ∈ R2×8 and ααα ∈ R8×1 in the case of the 2-DOF
mechanism given by equations (5.7)–(5.9). We have

YT =



q̈1 0
q̈1c2.3 − 2q̇1q̇3s2.3 2q̇2

1c3s3
q̈1s2.3 + 2q̇1q̇3c2.3 −q̇2

1c2.3
q̈1s3 + q̇1q̇3c3 −1

2 q̇
2
1c3

q̈1c3 − q̇1q̇3s3
1
2 q̇

2
1s3

0 q̈3
0 s3
0 c3


. (5.13)

As it can be seen from (5.12), we need to know the joint velocities and accelerations
in order to compute the regressor matrix Y. However, acceleration measurements
are not available and therefore we will have to use precise numerical differentiation
techniques in order to obtain the joint accelerations from the noise-corrupted joint
velocities. Another alternative, which is shown in Figure 5.11, is to pass the dynamic
model (5.12) through a first-order stable low-pass filter of the form L(s) = ωL

s+ωL
to

avoid acceleration measurements [108]. The cut-off frequency of the filter, i.e., ωL,
should be chosen to be between the robot motion frequencies and noise frequencies.
Passing the dynamic model (5.12) through L(s), we get

YL(q̇,q)ααα = τττL (5.14)

where YL is the filtered regressor matrix and τττL is the filtered torque (see [108] for
a detailed derivation).

As it is shown in Figure 5.11, we perform the Omni identification in two steps. In
the first step, data is collected when the robot is excited by the joint torques and
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Figure 5.10: Passing the dynamic of the Omni robot through a first-order stable
low-pass filter.

is moving in free space. In the second step, the parameters of the Omni robot are
identified by solving a linear optimization problem.

Figure 5.11: Two-step identification of the Omni parameters.

Having acquired the experimental data from the first step, we use the recursive least
squares algorithm to find the dynamic parameters of the Omni robot in the second
step. In the least square estimation, we would like to find an estimation of the
Omni dynamic parameters such that the the sum of the squares of the difference
between the actual filtered torques and the computed filtered torques is minimized
[110]. Assume that the filtered torque and the filtered regressor matrix are τττL(tk)
and YL(tk) at time instant tk, respectively. The recursive least squares algorithm
will have the following form [110]:

α̂αα(tk) = α̂αα(tk−1) + K(tk)[τττL(tk)−YL(tk)α̂αα(tk−1)] (5.15)

where α̂αα(tk) is the estimated dynamic parameter vector of the Omni robot at time
instant tk. Also, we have

K(tk) = P(tk−1)YT
L(tk)[I + YT

L(tk)P(tk−1)YL(tk)]−1 (5.16)

where I is the identity matrix. Also, the covariance matrix P(tk) is defined as
follows:
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Table 5.1: Phantom Omni identified parameters
Parameter Value Parameter Value

α1 6.11× 10−3 ± 0.9× 10−3 α2 −2.89× 10−3 ± 0.43× 10−3

α3 −4.24× 10−3 ± 1.01× 10−3 α4 3.01× 10−3 ± 0.52× 10−3

α5 2.05× 10−3 ± 0.15× 10−3 α6 1.92× 10−3 ± 0.23× 10−3

α7 1.60× 10−1 ± 0.05× 10−1 α8 −8.32× 10−3 ± 2.78× 10−3

P(tk) = [I−K(tk)YL(tk−1)]P(tk−1). (5.17)

The cut-off frequency of the low-pass filter L(s) was chosen to be between robot
motion frequencies and noise frequencies, namely equal to 8 Hz. A sum of 8 sinu-
soids, 4 sinusoids for each of the joints 1 and 3, with frequencies ranging from 0.2
Hz to 1 Hz were applied to the Omni. Note that the sum of n sinusoids is persistent
excitation of an order no less than 2n− 2 [110]. Table 5.1 gives the Omni identified
model parameters.

Trajectory following experiment

Based on the identified robot model, equation (5.7), and assuming q̇3max = 1rad
sec ,

we have

||M̂(q)|| ≤ 0.0132 (5.18)

and

|| ˙̂M(q)|| ≤ 0.0138. (5.19)

Assuming a minimum convergence rate of β = 1 and according to (3.61), we will
have

X−1
optimal = 1

2(0.0138 + 2× 0.0132× β)⇒ X−1
optimal = 0.02I. (5.20)

The matrix X−1
optimal is used to design the disturbance observer given by equations

(3.28), (3.30), and (3.31). Square-wave commands are supplied as the reference tra-
jectory for the first and the third joints of the robot in the presence of the computed-
torque control scheme (3.65). The block diagram of the disturbance observer based
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Figure 5.12: Experiment 1: Position-tracking profile of the joints of the Omni robot.

control scheme is shown in Figure 2.1. Figures 5.12 and 5.13 illustrate the time his-
tories of joint positions and disturbances, respectively. Note that we did not know
the actual values of the disturbances acting on the the first joint, namely friction
and dynamic uncertainties. The upper diagram in Figure 5.13 only demonstrates
the output of the disturbance observer, i.e., the estimated disturbance acting on the
first joint. As it can be seen, the position tracking in the presence of the disturbance
observer has been improved significantly. According to (5.11), the external force ex-
erted to the third joint of the robot is equal to 0.21× 9.8× 0.135× sin(10) = 0.05 N
when q3 = 10◦. The disturbance observer estimates this external force to be equal
to 0.058 N. Note that our identification of the dynamic model of the robot was not
perfect and we have dynamic uncertainties in the model of our robot. According
to Theorem 3.2, the tracking error is guaranteed to be bounded and to converge
to its ultimate bound region with an exponential rate. This justifies the residual
difference in the tracking error of the disturbance observer. Also, the actual rate of
convergence of the tracking error can be computed from Figure 5.13 in the following
way (Note that it takes approximately 0.5 second for the disturbance estimate to
change from 0 N.m to 0.058 N.m and reach its steady state value.):

rate of convergence ≈ − 1
0.5 ln(0.058) = 5.7 ≥ β = 1. (5.21)
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Figure 5.13: Experiment 1: Disturbances of the joints of the Phantom robot.

5.4.2 Experiment 2: Disturbance observer based control of
bilateral teleoperation systems with variable time delay

In this section, two experiments are carried out using a pair of Omni robots in order
to demonstrate the effectiveness of the disturbance observer based control scheme
proposed in Chapter 4 for bilateral teleoperation systems with variable time delay.

Experimental setup

Figure 5.14: Setup used for Experiment 2.

Two PHANToM haptic devices are connected to a computer in a daisy chain con-
figuration, i.e., the first robot’s Firewire cable is plugged to the second robot, and
the second robot’s Firewire cable is plugged to the IEEE 1394 port of the computer.
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Again, the Omnis’ end-effector position and orientation data are collected at a fre-
quency of 1000 Hz. In the first experiment, the human operator moves the first joint
of the master robot while the slave robot is connected to a spring. In the second
experiment, the slave robot moves in free space. Figure 5.14 depicts the experimen-
tal setup. For the sake of simplicity we consider the communication channel time
delay to be the same in both directions, i.e., Tm(t) = Ts(t) = T (t), and is shown in
Figure 5.15.

Figure 5.15: Communication channel time delay used in Experiment 2.

Experiment 2 (part. 1): Slave connected to a spring

In the first experiment, the human operator moves the first joint of the master
robot. The slave robot, which follows the motion of the master robot, is connected
by a rubber band to a stiff wall. The rubber band’s exerted torque to the slave
robot can be approximated by a linear spring with stiffness k = 0.67N.m

rad . The
second and the third joints of the robots are locked at 0 rad. The parameters of
the synchronizing torques, given in (4.12) and (4.13), are considered to be ki = 0.1
and bi = 0.022, i = m, s. Note that these gains satisfy the inequality (4.34) of
Theorem 4.1. The teleoperation control torques are given by (4.10) and (4.11) with
Ĝi(qi) = 0. Here, we consider the human operator and the remote environment
torques as disturbances.

Figure 5.16 depicts the position tracking response of the teleoperation system when
no disturbance observer is used, i.e., when the control law proposed by [59] is used.



5.4. EXPERIMENTS 80

Because of the rubber band’s interaction with the slave robot, the control law with-
out using disturbance observers fails to achieve good position tracking. As it can be
observed from Figure 5.16, there exists a relatively large offset between the steady
state position of the master and the slave.

Figure 5.16: Experiment 2 (part. 1)– position tracking response of the teleoperation
system without disturbance observers.

Now, we employ the disturbance observers given by (4.16) and (4.18) with αi = 0.01,
M̂i(qi) = 0.25I, Ĉi(qi, q̇i) = 0, and Ĝi(qi) = 0, where I is the identity matrix. Note
that we have not used the exact dynamic models of the robots in implementing the
disturbance observers. However, we can ignore the effect of dynamic uncertainties in
the model of the robots since the master and the slave robots do not move very fast
in these experiments (see equation (4.7)). Figure 5.17 depicts the position tracking
response of the teleoperation system when disturbance observers are employed in
the teleoperation system. As it can be observed from the figure, the slave robot
closely follows the master robot.

Figure 5.18 depicts the disturbance tracking response of the disturbance observer
employed at the slave side. As it can be observed, the estimated disturbance at
the slave side provides a good approximation of the rubber band exerted torque.
The difference, however, can be caused by several factors such as the unaccounted
friction torques acting on the slave robot, the dynamic uncertainties in the model
of the robot, and the nonlinear behaviour of the rubber band. Figure 5.19 depicts
the disturbance estimates provided by both of the disturbance observers.
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Figure 5.17: Experiment 2 (part. 1) – position tracking response of the teleoperation
system with disturbance observers.

Experiment 2 (part. 2): Slave moving in free space

In the second experiment, the human operator moves the master robot and the
slave robot, which is moving in free space, should follow the motions of the master
robot. The parameters of the synchronizing torques and the disturbance observer
are chosen to be identical to the previous experiment. The teleoperation control
torques are given by (4.10) and (4.11) with Ĝi(qi) = 0. Here, we consider the
gravity forces that are acting on the second and the third joints of the robots as
disturbances. Also, we consider the human operator’s hand force as a disturbance.
Again, we can ignore the effect of dynamic uncertainties in the model of the robots
since the master and the slave robots do not move very fast in these experiments
(see equation (4.7)).

Figure 5.20 depicts the position tracking response of the teleoperation system when
no disturbance observers are employed in the teleoperation system. The gravity
forces acting on the second and the third joints of the robot cause poor tracking
response of the teleoperation system.

Figure 5.21 depicts the position tracking response of the teleoperation system when
disturbance observers are employed in the teleoperation system. As it can be ob-
served from the figure, the slave robot closely follows the master robot.
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Figure 5.18: Experiment 2 (part. 1)– disturbance tracking at the slave side.

Figure 5.19: Experiment 2 (part. 1)– disturbance tracking at the master and the
slave sides.
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Figure 5.20: Experiment 2 (part. 2)– position tracking response of the teleoperation
system without disturbance observers.

Figure 5.21: Experiment 2 (part. 2)– position tracking response of the teleoperation
system with disturbance observers.





Chapter 6

Conclusions and Future
Directions

6.1 Conclusions

This thesis addresses (i) the design of nonlinear disturbance observers for robotic
systems and (ii) disturbance observer based control of telerobotic systems with vari-
able time delays. The major contributions of the thesis are summarized as follows:

• A general systematic disturbance observer design method for serial robotic
manipulators is proposed. The previously proposed linear and nonlinear dis-
turbance observers can be unified in this general framework. Moreover, the
proposed design method removes the previous restrictions on the number of
degrees-of-freedom, the types of joints, and the manipulator configuration in
the design of nonlinear disturbance observers. The observer design problem is
formulated as a linear matrix inequality (LMI). The proposed design method
guarantees convergence of the observer tracking error to the origin with an
exponential rate in the case of slow-varying disturbances. In the case of fast-
varying disturbances, the tracking error is shown to be globally uniformly ulti-
mately bounded. The trade-off between the rate of convergence of the tracking
error and the sensitivity to measurement noise has been discussed. In addition
to the LMI formulation of the design problem, an analytical solution has been
proposed.

• Teleoperation systems are subject to different types of disturbances. Such
disturbances, when unaccounted for, may cause poor performance and even
instability of the teleoperation system. This thesis presents a novel nonlinear
bilateral control scheme for telerobotic systems using the concept of distur-
bance observer based control. Lumping the effects of dynamic uncertainties
and external disturbances into a single disturbance term enables us to design
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a disturbance observer in order to suppress these disturbances and alleviate
their adverse effects on the teleoperation system. The proposed disturbance
observer based control law guarantees stability of the teleoperation system in
the presence of disturbances and variable communication time delays. Simula-
tions and experiments are presented to verify the effectiveness of the proposed
approaches.

6.2 Directions for Future Research

Several potential future research topics are proposed in the following.

1. There is a tradeoff between the performance of the disturbance observer, i.e.,
the rate of convergence of the disturbance tracking error and the accuracy
of the disturbance estimation, and the sensitivity to measurement noise. A
possible extension is to design an optimal disturbance observer for robotic
manipulators to address such a tradeoff.

2. We assumed that velocity measurements of the joints of a manipulator are
available for disturbance estimation. A natural extension of the proposed
method is to provide the disturbance observer with the output of a velocity
observer, e.g., Nicosia observer [85], when only joint position measurements
are available.

3. An important class of manipulators that have not been addressed in this thesis
are parallel robotic manipulators. Disturbance observer design problem for
parallel robotic manipulators may be addressed as the topic for possible further
research.

4. The proposed disturbance observer design method may be employed in sen-
sorless force control of haptic interfaces.

5. The proposed disturbance observer design and the disturbance observer based
control of telerobotic systems are carried out in continuous time domain. A
natural extension of this work is to carry out the design in discrete time do-
main. It is also of great importance to address the problem of data packet
loss in packet switched communications and consider its effect on the stability
of the telerobotic system in the presence of disturbances and variable time
delays.

6. The proposed nonlinear disturbance observer based control of telerobotic sys-
tems with variable time delays can be extended to the case of 4-channel control
architecture in which the interaction forces are exchanged between the local
and the remote sides of the teleoperation system in addition to the position
information.
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