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Abstract

This thesis concerns the classification of the modular invariant matrices associated
to the affine algebra Cfgl) at level k. We provide a foundation for this classification
and give a conjecture for the full solution based on the analogous proof for the
affine algebra As. Furthermore, we describe all of the modular invariants M that
are permutation matrices and prove that there is a 1-1 correspondence between the
modular invariants of C,; and those of Ci,. Together with a similar duality of
the othogonal algebras so(n)g. this implies that the Cs; classification is actually

four classifications in one. and is therefore of particular interest among the affine

algebras.



Preface

Conformal field theories are of fundamental interest in mathematics and mathe-
matical physics. In mathematical physics, CFTs are intimately related to string
theory, which attempts to provide a unified description of the fundamental forces of
our universe. In mathematics, the study of CFTs has influenced abstract algebra,
low-dimensional topology, algebraic geometry, and subfactor theory, among others.

The classification of modular invariants is equivalent to the classification of ra-
tional conformal field theories (RCFTs), and is therefore of great importance to
the physical theory. In this thesis, we are particularly interested in those modular
invariants that come from WZW models of RCFTs, as these models have an un-
derlying affine algebra structure. The work in this thesis lays a foundation for the
classification of all modular invariant matrices M for the affine Kac-Moody algebra

él) at level k£ (often abbreviated C; ).

We base this classification on its Af(_,l) (equivalently, slgl)) counterpart, and specif-
ically on the work done in {10]. In that proof, only the modular invariant axioms
((1.6a) - (1.6c)) were used. Based on these axioms, the simple current and Galois
permutations of the integral highest weights of the affine algebra provide symmetries
and selection rules for the matrix M.

The next step in the proof of [10] was to classify all of the automorphism in-
variants, which are defined to be the modular invariant matrices M such that there
exists a permutation o of the set of level k& highest weights for which M, = 6, ,(»)
for all A, u. In the third step, the Galois parity condition was used to greatly re-
duce the possibilities for M. Finally, all of the exceptional levels were dealt with
individually. Our efforts will closely follow this pattern.

All of the preceding terms will be explained in detail in the introductory chapter
of this thesis. The second chapter contains the classification of all modular invariants
associated to a highest weight A = (A, A2) for which A; = X;. Conjecturally,
this proof completes about one half of the previously unknown component of the



Ca classification. The third chapter concerns the duality between the modular
invariants M of C, x and the modular invariants M of Ck . We find that M and M
are in a 1-1 correspondence. This rank-level duality is not unique to the C family of
affine algebras. For instance, there is also a duality between the orthogonal algebra
sog) at level k£ and sofcl) at level n. It is well known that sos (otherwise known as
B,) is isomorphic to C2, and this implies that the Cs ; classification is actually four
classifications in one, namely itself, Cx o, Bn s and Dy 5.

In our fourth and final chapter, we determine all of the automorphism invariants
for Csx. The only non-trivial automorphism invariant for C; ; corresponds to the
simple current 7, and occurs when k is odd. We conjecture that for all odd k, this
simple current automorphism invariant is the only nontrivial modular invariant. Our
conjecture is given in §1.6.5.

At present, the modular invariant classifications of only two algebras, namely
A; and A,, have been determined at arbitrary level. In §1.6.4 we review all of the

known affine algebra modular invariant classifications.
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Chapter 1

Introduction

1.1 RCFT and String Theory

The focus of this thesis is the classification of Cél) modular invariants. This par-

ticular classification is probably of most interest to mathematical physicists, since
modular invariants can arise from conformal field theories (CFTs) on the torus
and they play a role in the classification of vertex operator algebras. A CFT is a
conformally invariant. two-dimensional quantum field theory (QFT). As implied by
its name. fields are the fundamental objects of a QFT, and can be thought of as
operator-valued functions of space-time. A CFT is basically a QFT that is symmet-
ric with respect to conformal (i.e. angle preserving) transformations.

(T)wo-dimensional conformal field theories are perfect examples of sys-
tems in which the symmetries are so powerful as to allow an exact solu-
tion to the problem. This feature, as well as the great variety of math-
ematical concepts needed in their solution and definition, have made
conformal field theories one of the most active domains of research in
mathematical physics [5].

One physical motivation for studying CFT is string theory, where the fundamental
object is a string. It is convenient to use strings for descriptive purposes. The
two dimensions of a CFT come from the image or path traced by each string, and
the (Riemann) surface resulting from the collection of such paths is known as the
world-sheet. The physical state of each string is represented by fields that reside on
the world-sheet. String dynamics are simple to describe: two strings can fuse into
one, or one string can split into two.

In quantum theories, the fundamental numerical quantities are amplitudes, and
each Riemann surface is assigned an amplitude (i.e. a complex number). The
vacuum-to-vacuum amplitude is assigned to a surface without boundary, and in
this way the path of each string is quantified. For example, the sphere (genus 0)
corresponds to the appearance and dissolution of a single string, while the torus



(genus 1) is used to describe the appearance, splitting, joining, and subsequent
dissolution of one string. The initial and end states are both empty, hence the term
vacuum.

An algebraic formulation of an RCFT! is called a vertez operator algebra (VOA).
More precisely, any RCFT has two VOAs, each of which has finitely many irreducible
modules. which are known as its primaries. A VOA is an infinite dimensional graded
vector space with bilinear products that obey an infinite number of constraints. It is
also a representation of the Virasoro algebra V', which is a one-dimensional extension
of the Witt algebra W, satisfying:

[Lm Ln] = (m = n)Lonan + %(ms —m)én—m and

[Lm ] =0,

where {L, | n € Z} with ¢ = 0 forms a basis for W. The grading on the VOA is
given by the eigenspaces of the operator Lg, and the central term c acts in V like a
scalar multiple of the identity.

It is common to take the two VOAs of an RCFT to be isomorphic. The grading
on the vector space induces a grading on the irreducible modules A. Define

H:={reC|ImTt>0} (1.1)

to be the upper half plane. Then if we make the usual substitution g = €***" for
T € H. we get the normalised character of A:

xa(T) = g7¢/* Try glo. (1.2)

Strictly speaking, these are the specialised characters x.4(7) = x.(0.7.0), and are
linearly dependent. In order to have the definitions in (1.3) make sense. we need to
replace x4 with the corresponding 1-point function. This situation does not arise
for the affine algebras, and their full characters are given in (1.36).

If A is an irreducible module for one of the VOAs of an RCFT, then the characters
of A have the very special property that under certain transformations of H, x4 can
be written as a sum of characters of the other irreducible modules. This means that
we can define matrices § and T by:

xa(-1) = 5 Sim xa(r (13a)
xa(r+1) =) Tap x8(7) (1.3b)
B

where B ranges over all irreducible modules, and € HL The matrices S and

T define a representation of the modular group of the torus (see §1.2), and this

representation is known as the modular data of the RCFT (as defined in §1.3).
'Rational Conformal Field Theory




We now briefly discuss a specific type of conformal field theory that has an
underlying affine algebra structure. Wess-Zumino-Witten (WZW) models of RCFTs
correspond to affine Kac-Moody algebras whose level k is a positive integer. The
primary fields of a WZW model can be identified with the highest weights A\ € Pi
(see §1.6). Among other things, this implies that there exist only a finite number of
primary fields. The characters of WZW models can be identified with those of the
integrable representations of 51). WZW models are very important examples of
conformal field theories, as they are thought to be the building blocks of all RCFTs.

Let H be the space of physical states of a given RCFT. Then we can decompose
H into VOA modules (8]:

H=61pMip A®B

for irreducible A and B, where the multiplicities are nonnegative integers. The
definition of the torus partition function in terms of the characters of VOA modules
(as in (1.2)) is:

Z(r) = ¢ /Mg Try glogh. (1.4)

Based on the definition of H, (1.4) becomes

Z(r) =Y Map xa(r) x8(r). (1.5)
AB

Equation (1.5) is of central importance as it explains how the two VOAs of a con-
formal field theory should fit together. Whenever we mention the torus (or genus-1)
partition function. we will be referring to (1.5).

Recall that string behaviours trace out surfaces called world sheets. If one string
splits and subsequently rejoins, then the world sheet is a torus. This ‘1-loop’ con-
tribution to the vacuum-to-vacuum amplitude will look like [ Z([r])d[r] where [7]
is a conformal equivalence class of tori. In the next section, we find a parameteri-
sation of these equivalence classes. In particular, the tori parameterised by T and
at are conformally equivalent for all @« € PSLo(Z). Therefore, Z(7) = Z(ar) for
all & € PSL2(Z). so that Z is invariant under the modular group (see section §1.2).
Equivalently, the matrix M that defines the partition function is considered to be
modular invariant. We discuss modular invariance in greater detail in §1.3.

1.2 The Modular Group

Using standard notation, SL2(Z) := {a € M2(Z) | det(a) = 1}, and a;; is the
element of the matrix a that occupies the ith row and jth column. The nonnegative
integers will be represented by Z>.

Before discussing modular data in the next section, it is necessary to define the
modular group of the torus, PSL2(Z) := SLy(Z)/{£I}. The term ‘modular group’

3



has a specific meaning. It indicates that, up to conformal equivalence, every torus
is parameterised by an element (or modulus) of H/PSL2(Z) (for H as in (1.1)). We
will show that this is indeed the case.

We say that two surfaces T} and T» are conformally equivalent if there exists
a bijective map f : T} — T such that f and f~! are conformal (i.e. preserve
angles between curves). A corollary to Abel's Theorem [4] states that any closed
genus-1 surface is conformally equivalent to a torus of the form C/L, where L is a
2-dimensional lattice over Z. We can write L = Z + Z1 and restrict 7 to H without
consequence (if Im(7) =0, i.e. 7 € R, then we get a degenerate torus).

The group PSL,(Z) acts on the upper-half plane H by fractional linear transfor-
mations:

a b at +b a b
(C d).r»——>m_+d, for (C d)GPSL«_;(Z),TelHL

Suppose that 7 € H and a € PSLy(Z). First note that ar € H, since Im(at) =
(Im(7))/((a21Re(7) + a@22)? + (a21Im(7))?) > 0. The two matrices that generate

SLy(Z) are S = ((1’ ‘01) and T = ((1) i) so it suffices to check that C/L is

conformally invariant under S and T'. To make the action of SLy(Z) on H easier to
analyse, write T = re*?. Then
i6

S: ‘rv—r—le- and

r
T: 77— 7+ 1.

The image of the torus C/L under T is clearly unchanged, and the image of the
lattice under S is simply a scaling (r — 1/r) plus a rotation (e — —e * is a
rotation by (—6) degrees), both of which are conformal operations. Thus. C/(Z +
Zar) is conformally equivalent to C/(Z + Z7) for all r € H and a € PSLy(Z). This
means that in order to exhaust all redundancy, we must restrict 7 to H/PSL4(Z);
each such 7 corresponds to a unique conformal equivalence class of tori. Therefore,
PSL,(Z) is the modular group of the torus.

Everything that we have just done applies equally well to SLy(Z) as it does to
PSL2(Z). Clearly, SL2(Z) can also be described as the modular group of the torus.
Throughout this chapter we will refer to both PSL2(Z) and SL2(Z) as the modular
group, but will distinguish between them when necessary. The reason that we are
sometimes more interested in SLy(Z) is that the VOA characters in (1.2) define a
projective representation of PSL2(Z) and a true representation of SLo(Z).

1.3 Modular Data

Modular data consists of a finite set ® of labels, and two matrices S and T indexed
by ®. One of the labels (or primaries) is a special element known as the vacuum,

4



and is denoted by 0. The matrices must satisfy the following four axioms (where S
denotes the complex conjugate of S):

e S is unitary and symmetric, T is diagonal and has finite order; (1.6a)

0 Sgq > 0Va € &; (1.6b)

e S% = (ST)3; (1.6¢)

oNG =) %’"’—S“i €Z> (Verlinde’s formula). (1.6d)
ded 0d

The term modular data comes from the fact that S and T give a representation
of the modular group SL;(Z). In order to see that this is the case, define the fusion
matrices N, for each a € ¢ by:

SaaSpaS
(Na)yo = NGy = Y =222= (L.7)
ded 0d
where b and c range over all of ®. Note that (1.6a) implies that S§ = I where I is
the identity matrix. This gives the useful relationship:

Z Sacgcb = ‘Sa,b- (18)
ced

Consider the product of a fusion matrix with the bth column of S. Thisisa |®| x 1
matrix with dth entry:

(NaSpedd = Y (Na)deSes
cEP

_ Saesdegce
= Ty Seues,
cedecd Qe

— Zsabgzz Cbsbc+ 2 SaeSde Zs—'ecscb

ced ecd,e£b Oc ced
SabSdb

= + 0 (by unitarity of S)
Sob

SQb
= —(S .
505( 1.6)d

This is equivalent to saying that the bth column of S is an eigenvector for each
N,. with eigenvalue S;p/Sqs- We claim that all of these eigenvalues are distinct. If
Sav/Sob = Sac/Sqc for all a € ® then:

SacSOb

Spa = Sap = by hypothesis
SOc
= Jb,c = Z SL:bbgac by (1-8)
acd <
Sos = Sob
= — ScaSegc=—=—>0
50«:; 4TI Soe

= Jb,c =1



and so b = c. This guarantees that the eigenvalues are linearly independent, and so
the columns of § must exhaust all the common eigenvectors of the fusion matrices
N,.

If we take the complex conjugate of (V). (whose entries are non-negative
integers by (1.6d)) we get:

S2dSbaSed

(Nado.e = (Nado.e = 3 ==

ded
and so each Sy, is also an eigenvector for the N;'s. Therefore S and S both si-
multaneously diagonalise the fusion matrices. The simultaneous eigenspaces are all
1-dimensional, so each column of S must also be a column of S, and vice versa, up
to scalar multiplication. This means that there exists a permutation C of &, and
complex numbers a;, such that

Sab = ap Sa,co-
The matrix S is unitary, so |ay| =1 forallbe ®. Ifa =0,
Sos = Sos = ap So.ce:

and so (1.6b) implies that a;, > 0, meaning a; = 1. Therefore, since S is symmetric,

Sab = Sa,cb = Scas- (1.9)

This calculation also tells us that N¢, = N;r , the transpose of N,.
We can represent the conjugation C as a permutation matrix C where (C)gp :=
dcap- Then (1.9) becomes S = SC. We immediately see that C is an involution:

Sab = Sap = Saco = Sa,c2b- (1.10)

Combining (1.10) with the definition of C and the unitary condition § = S~!, we
get S~! = § = SC, which implies that I = S2C. Thus,

I=C%=8*=(ST)S. (1.11)

The modular data that we are most interested in is that of the affine algebra Cél)
at level k. In this case, the conjugation C is trivial, and so we have §2 = I.
Finally. we get our representation when we identify

0 -1 11
(1 0 ) — S, and (0 1) — T
Then the matrices on the left generate SL,(Z) and obey (1.6¢) and (1.11), and

we have a representation of the modular group. That is to say, a presentation of
SL,(Z) is (S, T| §%2 = (ST)3, §* = I). In this case our modular group is SL3(Z)

6



and not PSLy(Z), since in the latter the matrix S must obey S? = I. Note that

((1) _01) 7 =-%}and ((1) i) .7 = 7+1, so our identification makes sense in terms

of the character definitions of S and T (as in (1.3) and (1.36)).
Modular data occurs in numerous areas of mathematics [8], but we will restrict
our attention to that of affine Lie algebras and RCFT, and in particular to that of
él) at level k£ (see §1.6 for the definition of affine algebras). Whenever we have
modular data, we can consider the set of matrices M that are indexed by ¢ and

satisfy:

e MS =SM and MT = TM; (1.12a)
© Moy € Z> Va,b € &; (1.12b)
o A/IOO = 1. (112C)

Any such M is called a modular invariant. Modular invariants are central to the
CFT classification because they appear in the partition functions Z(r) (as defined
in (1.5)). In the following sections, we will derive many properties of these matrices
that are of interest in the classification of modular invariants of affine algebras, and
state several conjectures concerning the C; i classification. But first, let us make a
pair of elementary observations.

The commutativity of the matrices S and M can be written as SM'S = M, since
S is unitary and symmetric. In §1.4 we show that S,o > Sgo for all a € . This
gives:

1 = Mg = Z SoaMasSeo > S5y 2 M.
a,bed a,bed

Each M, is a nonnegative integer, and S3, > 0, so

has only finitely many solutions. Hence there are finitely many modular invariants
for a given set of modular data.

Another immediate consequence of the modular invariant axioms is the selection
rule

My # 0= Ty = Tip, (1.13)
which stems from the fact that T is diagonal.

1.4 Simple Currents

Like the conjugation symmetry in (1.9), simple current symmetry provides a useful
tool for studying the elements of a modular data S matrix. Recall from §1.3 that
the eigenvalues of the fusion matrix N, (as defined in (1.7)) all have the form

7



Sab/Sos- The Perron-Frobenius eigenvalue of a matrix is the unique, strictly positive
eigenvalue 7 such that |y| < 7 for all other eigenvalues v [12]. By (1.6b) and the
fact that the simultaneous eigenspaces all have dimension equal to one, the Perron-
Frobenius eigenvalue of N, is %;g. This means that I%:gl is maximal, and so (using
(1.6b))

SaO > l;ga_bl
Soo ~ Sob
Together with the unitarity of S. this implies that min,c¢Sa0 = Soo-

Simple currents are those primaries a € ® for which S, = Sgo (the term simple
current comes from RCFT). To each simple current j € $, we can associate a phase
¢7 : ® = C and a permutation J of &, where j = J0 (‘0’ is the vacuum). By a
minor abuse of notation we also refer to the permutation J as the simple current.
We prove the following simple current symmetry:

, 1.e. S0aSob > |Sas!Soo- (1.14)

S7ab = ¢7(b)Sab- (1.15)

Proof. First. note that (1.14) implies that Sp; > |S;5|. By the unitarity of S we
have Sgp = |S;p|. This means that (1.15) holds for a =0, i.e.

Sib = Sz0b = ©7(b)Sos- (1.16)

Consider the product of the fusion matrices N; and N¢; (where C is the conjugation
defined in (1.9)):

(N;NCj)ab = D (Nj)aa (Ncj)av
ded

_ S;eSaeSde ScjnSanSon b
— SjeDaeSde 2Cjh2dh bk (1.6d)
% (; Soe ) (;E-;’ Son ) Y

= Z (z <p_7(e)Sac§ed) (Z msdh?hb) by (1.16)
hed

ded ecd

<D Gad Sup = bap
e

Therefore both N; and its inverse N¢; = NJT are nonnegative integer matrices.
This implies that N; is orthogonal with exactly one nonzero entry in each row and
column, each of which is equal to 1. In other words, N; is a permutation matrix.
This permutation defines J:

(Nj)ab = 0b,74a-



We immediately have Nfa“ = (Nj)a,7a = 07a.74 =1, and so

S;aS.aS
_ arTa _ jdOad> Ja.d
1= NJe = § 20w Tad

ded Sod
= Y 5254 =Y ¢7(d)SeaSs0a by (1.8)
ded ded
= Saa =97(d)S 704
= Szaa=(97(d) " Saa = ¢7(d)Saq since |p7(b)| = 1.

a

The simple current 7 is a permutation of a finite set, and so it must have finite
order. If J has order n, then by (1.15) it is clear that ¢ 7 is an nth root of unity.
We can express ¢ as:

¢7(a) = exp[2riQ;(a)] (1.17)

where nQ 7(a) is an integer. In later chapters we will use the fact that the affine
algebra Cél) at level k£ has a nontrivial simple current with Q 7(\) = A;/2.

We can use simple currents to study the properties of modular invariants. In
fact. we can define modular invariants using simple currents. For a simple current
J of order n, define the matrix M[J] by

MITlw = Y 65008 5(@7(a) + 1)
=1

where §(z) is 1 if z € Z and is 0 otherwise. and r; is an integer obeying TjjToo =
exp(wirj(n — 1)/n]. Then M will be a modular invariant if and only if Tj]-Too is an
nth root of unity [8]. For Cy; we have r; = 4 and

é +4 if A1 is even
M{JT]x, ={ T T B T (1.18)

0 otherwise

Let J and J’ be simple currents. Then, since M 7 70 € Z>, we have:

Mzo.70 = Z S70,e Mc.a Sa g0

c.ded

=13 v7(c) Soc M 97(d) S by (1.15)
c.deP

< Z SocMqSqp = My = 1.
c,d

Therefore M 70,770 # 0 = M9 70 = 1. This relationship has two important
consequences. The first is the selection rule

Mzo, 70 # 0 = (Mg # 0 = p7(a) = p7:(b))- (1.19)
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This follows from

l > vl e (d) SOcMcdng‘ < Y les(c) p7(d)] SocMeaSao < D SocMeaSao,
c,ded c.ded c,d€P

so that M4 # 0 implies

> les(e) 0 7(d)| SocMeaSao = Y, SocMeaSao.
cded c,ded

We must have |¢7(c) ¢ 7/(d)} = 1. and since both ¢ 7(c) and ¢4/ (d) have moduli
equal to 1. ¢ 7(c) = ¢ (d). The second consequence is the symmetry

Mzo70# 0= Mza 7= M Va,bed. (1.20)
Equation (1.20) is justified as follows:

Mzagb=Y_ SsucMaSazn

¢, ded
=Y 07(0) 97:(d) SacMeaSas
c,ded
= Y ¢7(0)¢7(0) SacMesSas by (1.19)
c.ded
= (SMS)a = Mys.

So far we have been looking at two simple currents J and J', but we are only
really interested in one, since C, x has only one J. and it is an involution. We can
show that for any modular invariant associated to C,(-I) at level k, ¢7(a) = p7(b)
whenever My, # 0 (see §3.3). This implies that the most important selection rule is

Mzo70#0 & (Mo # 0= 97(a) = p7(b)), (1.21)

as it allows us to conclude that M 7y 70 = 1 for all C, x modular invariants M. We
can then combine this with the fact that M 7o 70 # 0 implies that M ., 7,5 = My,
foralla. b€ ® to get Myg.0 = My, 70 = Mg0,70 = Mg = 1.
To see that the only if statement of (1.21) is true, use the proof of (1.20) with
= J. Now suppose that M, # 0 = ¢ 7(a) = ¢ 7(b). Then

Mzo70=3_ S70cMeaSaz0

c,ded
= Z w7(c) o7(d) SocMeaSao
c.ded
Z 07(c) 97(c) SocMcaSao by hypothesis
c,ded
= My = 1.

Therefore we have (1.21). Clearly, the simple current symmetry plays a very impor-
tant role in the classification of modular invariants.
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1.5 Fusion Rings

Like the theory of modular data, the theory of fusion rings investigates the conse-
quences of imposing positivity and integrality constraints upon the structure con-
stants NS, (as defined in (1.23) below). The fusion ring of an RCFT (possibly
associated to an affine algebra) comes from modular data via (1.6d).

More algebraically, a fusion ring is a commutative ring R = F(®, N) paired with
a finite basis ® over Q, both of which contain the identity element 1, such that:

e The structure constants NS, > 0 Va.b,c€ & (1.22a)
¢ There exists a ring endomorphism z — z* stabilising ® (1.22b)
o NL =60, (1.22c)

The structure constants determine how the elements of the preferred basis {x} of R
interact:

XaXb = Z Ngb Xes (1.23)
cEP

and the ring identity 1 corresponds to the vacuum 0 in modular data.

Whenever we have modular data. we must also have a fusion ring, but the
converse does not hold. Modular data can be thought of as a refinement of fusion
rings. with the set ® playing an identical role in both theories. Conspicuously
absent, then, are the § and T matrices. While a definition of the latter requires
the additional constraint that S and T provide a representation for SLy(Z), the
former is more straightforward: Choose a basis for the common eigenvectors of the
fusion matrices N, (they are linearly independent and so there will be exactly |®]
of them). Normalise this basis and, reordering if necessary, let the first vector be
the Perron-Frobenius eigenvector (see §1.4). Then these basis vectors will be the
columns of S. This S is unitary, and Verlinde's formula will hoid [8].

The ring R is commutative, so (1.22c) implies that the map z — z* is an
involution. This leads to a two-sided definition of conjugation (the analog of (1.9)).
Define matrices C; = SS* and C, = S'S, with (Ci)as = 8ba- =: 8b.c,a defining the
permutation C; corresponding to the matrix C;. Clearly, both C; and (the similarly
defined) C, are order two permutations. Hence,

Sap = SC,a,b = Sa,C,b-

The dual of a fusion ring is R = F($, N), where R is the set of all maps & — C
and has basis & consisting of functions a — —_;.53 The dual structure constants N&,
are defined as in Verlinde’s formula (1.6d) with S replaced by the transpose ST. A

fusion ring is self-dual if there is a bijection ¢ : ® — ® such that N5, = N 1a b The
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following result solidifies the link between fusion rings and modular data [8].

e The matrix S for which Sgq; > 0 Va € $ and the fusion coefficients
defined by Verlinde’s formula are in Z> is unique up to possible
rearrangement of columns.

e R is self-dual <= 3 bijections ¢,.' : & — & such that Sab = Shua-

There is an equivalence between a certain class of fusion rings and modular data
(without T'): a fusion ring with integral fusion coefficients N;, self-dual in the strong
sense that « = ./, is completely equivalent to a unitary and symmetric matrix S for
which S, > 0 Va € & [8].

1.6 Affine Kac-Moody algebras

Affine algebras play a central role in our classification. The standard construction
of these infinite dimensional Lie algebras and their resulting representations are de-
scribed below. As much of what happens is analogous to the finite-dimensional case,
we first review the structure and representations of finite-dimensional Lie algebras.

1.6.1 Structure and representations of X,

Consider a finite-dimensional simple Lie algebra X,. In other words, X is a complex
vector space with an anti-symmetric, anti-associative bilinear product [ . ] and no
non-trivial ideals. A representation p of X, on a vector space M is a Lie algebra
homomorphism from X, to gl(M), where gi(M) is the Lie algebra of linear maps
from M to M with Lie bracket [f.g] = f.g — g.f (for f,g € gi(M)). Equivalently,
M is an X; module with action z.v = p(z).v =: zv for any z € X, and v € M.
Since X, is a Lie algebra, this action must obey

[zylv = z(yv) —y(zv) Vz,yeX,, veM

and the product zv must be bilinear.
The adjoint representation of X, is especially useful. It is defined as follows:

ad : X, = End(X;) (1.24)
ad(z) :y — [z,y] Vy€ X,. (1.25)

We use the adjoint representation to define a symmetric and bilinear form on X,.
The Killing form is the trace of the representation:

(zly) = Tr(ad(z) ad(y)) for z,y € X,. (1.26)
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The Cartan subalgebra (CSA) of a Lie algebra is a maximal abelian subalgebra
h such that adz is diagonalisable for all z in §. All such subalgebras are isomorphic;
choose one to denote by . The CSA of X, is r-dimensional.

The adjoint representation allows us to decompose X, as follows [13]:

Xr=bo) Czq

where for each r € b, [z, z,] = a(z)z, for some a(z) € C. In other words, the Cz,
are simultaneous eigenspaces for ad(h). The elements a are maps from § to C, so
that a € h*. We call these a’s the roots of the CSA. Let A be the complete set of
roots for X,. This root system will always contain a linearly independent subset II
such that any a € A can be written as a linear combination of the elements of Il
with integral coefficients that are all either positive or negative. The elements of II
are called simple roots and partition A into AL UA_.

More generally, we can decompose any finite-dimensional X, module V into
V = oV} where the )\ € h* are called weights and the

Via={veV |zv= XAz for z € h} (1.27)

are called weight spaces. Any weight can be written as an integral combination of
the fundamental weights w' for 1 < i < r. We identify the weight A\ = A\ w! + Aw? +
... + Arw” with the r-tuple (A}, Aa, ..., A;). Note that if V' is the adjoint module, then
A is not only a weight, but also a root of X,. For each £ € b, the character of the
X, module V is given by [15]:

chy-(z) = Y_(dim V)e* 1), (1.28)
A

We can create a basis for f by defining the simple coroots of X, to be the @ € b
such that the Killing form identifies each &; with 2¢;/(ai|a;) € h* for the simple

root ;. This means that the simple roots act on the simple coroots as:
(@) = plailas) o 5 (1.29)

(ailai)
where we identify h* with b using the Killing form (1.26). The set {&;}:1<i<- forms a
basis for the CSA. Moreover, the simple coroots are orthogonal to the fundamental
weights.

The Weyl group W of X, is the finite group generated by the reflections
_,(Bla)

(ala)*

sa(B) =8 (1.30)

where 8 € h* can be written as a linear combination of the simple roots II with
real coefficients. One of the (many) important properties of W is that each element
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w € W can be written as a product of simple reflections, that is, as a product of
some s,,'s where q; € II. If the number of these reflections is even, we define det(w)
to be +1, otherwise det(w) = —1.

The entire collection of finite-dimensional representations of X, is well known.
Any irreducible finite-dimensional module V of X, has a highest weight A = (A,..., A;)
with A; € Z> for all i. Conversely, to any such A there is an irreducible finite-
dimensional module V. Any finite-dimensional module of X, can be expressed
uniquely as a direct sum of finitely many of these irreducible ones. The Weyl char-
acter formula for any simple Lie algebra is [15]:

Lwew det(w)el@O+2) 13
H06A+(1 - e_a’i)

where Z € b, A, is the set of positive roots, p := %20>0 a is the Weyl vector, and A
is the highest weight of the X, module V. The so-called denominator identity is the
equality chg(2) = 1 put into (1.31) for the trivial 1-dimensional module V; (where
0 is the vacuum).

chy(5) =e™?*

(1.31)

1.6.2 Definition of _\’,ﬁ”

We are now ready to define . '(.1). By the loop algebra £ of X, we mean the set of
all sums ¥ t! ® a7, ¢ € Z such that a; € X, and all but finitely many a, = 0. These
sums resemble polynomials in a variable ¢, and are known as Laurent polynomials.
The loop algebra is a Lie algebra with bracket {t! ® a;, t* ® ax] = t** ® [ar, ax], and
its 2-dimensional extension X" is an affine (non-twisted) Lie algebra:

XV = LeCK & Cd,

where d is the derivation tgt- and K is the central element. For z,y € X, and
a.a,b. b € C, the Lie bracket on X,(-l) is given by [14] as:

t"®z0eKDbd, t"QyD a1 K & bid] =
(" R [T,y + bnt" @y — bymt™ @ ) & MIm —n(z|y) K.

As is typically the case, the central extension is taken to increase the number of
available representations, making projective representations of the loop algebra £
into highest weight representations of Xﬁl). The derivation is needed to make the
weights of . ) appear as distinct linear functionals of the affine CSA, as will be
discussed shortly. In this way, the derivation makes the affine Lie algebra behave
more like its finite-dimensional counterpart.

For a Kac-Moody algebra, the marks (a;) and the comarks (&;) are the smallest

nonnegative integers determined by

Y aiaj(@) =0=)_aai(a;) forj=0,..,r (1.32)
i=0 =0
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The central element K of 51) is defined in terms of the comarks and the simple
coroots [15]:

K= Z ;6. (1.33)
=0
Define . r
d:= Zaiai and 6:=6—apag = Za{ai. (1.34)

i=0 i=1

We will use (1.33) and (1.34) to connect the structure of Xﬁl) with that of X,. Note
that 6 is a linear combination of the roots of X,, while § is not. Now we can write the
affine roots and coroots in terms of II: If II = {a;, ..., a,} is the set of simple roots
for X,, then the simple roots for Xﬁl) are {ag,ay,...;a,}, where ag = agl(d -0)
{14]. Similarly, the affine simple coroots are {Go = K — a¢b, &, ..., &, }.

The CSA of the affine algebra Xﬁl) has dimension two greater than that of X,.
The extra dimensions are the combined contribution of the central extension and
the derivation. From now on we will use h to denote the affine CSA.

The affine Weyl group W is generated by the fundamental reflections sq of
the dual space h*. As in the finite-dimensional case, these reflections are defined
by (1.30). The essential difference is that the Killing form is positive-definite on
Rw! + .. + Rw" for X,, but is indefinite on Ruw® + Rw! + ... + Rw" for X!V, W
is finite, while W is not. We can write W as the semi-direct product of W with
Z" where r is the rank of J ﬁl). As suggested by (1.31), Weyl groups appear in the
definition of affine modular data.

The algebra . ! is infinite dimensional and its characters for integrable highest
weights A are defined analogously to those of X,. For the character chy-(4) of the
integrable highest weight module V(A) defined as in (1.31), the normalised affine
characters relative to the coordinatisation given in [14] look like:

xA(Z, 7,u) := e ™Achy(y), (1.35)

where 7 € H. 7 is in the CSA of X,, u € C, and my := (A + p)2/2(k + k) — (p)?/2h
(h is 3_7_, @i)- The coordinatisation replaces z € § with (Z,7,u) using

¢

T =2ni (Z ziT; — TAg + u&) .
=1

where (Ag[d) = 1, Ag is orthogonal to the root lattice, and the z;'s form an or-

thonormal basis for .

1.6.3 Representations of X"

The analogues of the highest weight representations of X, are the integrable high-
est weight representations V). The highest weights for Xﬁl) all look like A =
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(Ao-Ar;---- Ar). The term integrable comes from the fact that the highest weight
representations of X, can be integrated up to a projective representation of the loop
group £ and hence to a true representation of its central extension XM, We can
write any integrable highest weight module V as V = @ ,cq Vi where Q@ = Q(A)
is the set of weights. For each such V' there exists a dominant weight A such that
V = V(A). This means that each weight in V' can be written as A — ¢ where either
¢ =0 or c is a nonnegative integral combination of the simple roots of xM [15]. For
a weight 4 = A — ¢, and element v in V), and z € b, the action of £ on V), is given
by (1.27).

A problem arises unless we include a derivation in our definition of x{M [15].
For an integrable highest weight module V(A) with A # 0, each A — nd is a distinct
weight for all n € Z>. The simple coroots generate b, and by (1.32) and (1.34),
d(&;) = 0 for all i. This means that (A — §)(z) = A(z) Yz € bh. In other words,
the weights cannot be distinguished by their action on the CSA. In order to prevent
this. we add the derivation d to the CSA and require that §(d) # 0.

1) is one-dimensional, and is spanned by K (as given in (1.33)).
Define the level of a highest weight A to be the nonnegative integer

The centre of .

-
k= AK) = aA(a).
1=0
By (1.32). we have §(K) = 0. By [14] the normalised characters of A and A + ¢d
are equal, and so we will consider A := A mod C) instead of A, which amounts to

identifying two . () modules whose characters are the same. Relabelling so that

Ai = A(é@;), we have
r
k=Y i,

i=0
which has only finitely many solutions (Ag....,A;) € Z’;’l for each positive k, since
each a; > 0. This implies that for each level k, there exist only finitely many A’s such
that V() has level k. In other words, the integrable highest weight representations
of X! can be partitioned into finite families parametrised by the level k.

Define P_ﬁ(XSl)) to be the finite set of level k£ highest-weights for a given A, i.e.

r
PE(XIV) = {A=dow' + ..+ A" 1 X €23, D My =k}
=0
The fundamental weights w* for X' are defined in the same way as those of X,
except that now their action on the derivation d must be specified. For i =0,...,7:

w'(@) = &; j=0,..,r and
(W'.d) = 0.
In the next subsection we see that P¥ is the set of primaries for the modular data

of X{V.

16



1.6.4 Modular Data for X"

In this section we outline the modular data for affine, non-twisted Kac-Moody al-
gebras ,(-l). As our main interest is in the affine algebra Cél) at level k, we state
its modular data explicitly in the next subsection.

The modular group SL2(Z) acts on h by [14]:

a b\ . . I ar+b _ c(22)
(c d)("r’u)—<c1'+d’c‘r+d’u 2(Cf+d)).

Using the affine characters defined in (1.35), we have, for any level & weight A:

1 @9y _ )
X,\(;, —;-,u - ?) = g’; SAu xA(Z,7,u) (1.36a)
HCry
XaE7+Lu)= ) Ty xulZ ). (1.36b)
[l

Notice that this is similar to the definition of the $ and T modular data for RCFT
given in (1.3). The difference is that Z and 7 do not have a well-defined meaning
for arbitrary RCFTs.

The modular data for any affine Kac-Moody algebra . ) g given in [14] as
follows:

@ = PE(X{M);

0 = kAg; (the vacuum)
-d
Sau = —l—T z det(w) exp [—27&'1’ (w(d + p)lp +p)] (1.37)
k™/2\/|R} wew .
2 .
T\, = exp [—ﬂ'i(—p’.l)—] exp I:TN(A +Zl/\ +p)] Oxu (1.38)

where K = k + A, A is the dual Coxeter number (= S ie0@i), (|) is the Killing form
(1.26). p = Y.7_,w' is the Weyl vector, and W is the finite Weyl group of X,. In
the S matrix definition, d is the number of positive roots and |R| is the determinant

of the coroot lattice. Two of the important formulas which arise from affine algebra
modular data are:

S _ o (B +p)
S0 = chyi(—~2mi p ) (1.39)
where A and i are weights for X, and chj is a finite-dimensional character, and the
Kac-Walton formula [14], [16]:

Ng, = 3 det(w)T (A7), (1.40)

weWw

where W is the affine Weyl group of )

17



To put our work in context, we list the known affine algebra classifications. They
are:
e A, ; by Cappelli-Itzykson-Zuber
¢ A, ; by Gannon
e A, by Degiovanni
e All affine algebras at level 1 by Gannon
e A, and A, 3 by Gannon
e B.». B;3, D;> and D, 3 by Gannon
e A & A, at level (k;, k2) by Gannon

1.6.5 Modular Data for él) at level &

The modular data for Cfgl) at level k is much easier to describe than that of an
arbitrary ﬁ”. The comarks of Cs 4 are all equal to one, so the set of level k& highest
weights is

PE={A=(\.2) : M €Zs. A+ X <k} (1.41)
The vacuum is 0 = (k;0.0). and k =k +7+ 1 =k +3. For any ) and u in P%, the
S and T matrices are given by [7]:

S = -y F e o (200280 a
<ij<g2

—51ri] exp [m’(/\ + p|A + p)]

and

TA,\ = exp [ (1-43)

6 K
where A[¢] ;=3 — £+ 372, A\

In our classification of the C;; modular invariants we use two important con-
straints on the modular invariant matrix M, namely the parity condition (see (1.54)
below). and the norm or T condition. Both are powerful tools for reducing the
possibilities for M. The norm condition comes directly from the definition of the T
matrix given in (1.38). We combine this with the selection rule (1.13) to get

My #0 = (A +p)? = p? (mod 2x). (1.44)
For Co ., we let @ := A] + A2 + 2 and b := A2 + 1. Then (1.44) becomes
a® +b% =5 (mod 4x) (1.45)

whenever M,y # 0. An immediate consequence of (1.43) is that one of ¢ and b must
be odd, while the other is even. Further implications will be discussed in the next
chapter. Based on our Theorem in Chapter 2, we state the following conjecture for
all Cs x modular invariants M.
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Conjecture 1. For all odd k, My) # 0 = A =0, and for all even k, Myy, # 0 =
A =0 or JO, ezcept for k =3, 7, 8, 12.

Through computational methods we know this to be true for k£ < 25,000. Using
(1.5), we list the known Cj x modular invariants:

Dl Yk

k/2
Z IXa + x7al? +2 Z X (k—222, Aa) 12 k even
Ajeven A2=0
automorphism invariant k odd
Ixoo + x211% + [xo3 + X201 + 2[x11[? k=3
Ix00 + Xos + Xx22 + X611 + |Xx02 + Xo7 + X23 + Xe0l® + 2|x31 + x33/° k=

Ix00 + xo8l* + [x22 + X241® + Ixa1 + xa0/* + |x06 + x02/* + Ix13 + xa1/*+

Ixsol® + xso(xo1 + Xx07)* + (Xo1 + X07)Xs0 + Ixs2l® + xs2(x2s + x21)"+

(x25 + x21)XG2 + |x04]? k=38
IX00 + Xo0.12 + X23 + X27 + 2Xa4 + X60 + Xe6 + Xs1 + Xs3|? k=12

In Chapter 2 we find that under our hypothesis that A; = Ao, the only non-vacuum
weights A for which Mg # 0 occur when ¥ = 7 and £ = 12. These modular
invariants correspond to x22, X44. and Xes-

1.7 Galois Symmetry

We now investigate the action of certain Galois automorphisms on the elements of
the matrix S of any collection of modular data. The resulting Galois symmetry is a
generalisation of the conjugation symmetry (1.9) - we can think of the elements of
a Galois group as generalisations of complex conjugation.

Let M be the extension of Q generated by all of the matrix elements S;;, where a
and b are in the set of primaries . Then by {3], M is normal with respect to Q, and
the Galois group Gal(M/Q) is abelian. This means, among other things, that M is
contained in a cyclotomic field of the form Q(£,) where &, = exp(2ni/n) is a root
of unity. The Galois group Gal(Q(£,)/Q) can be identified with the multiplicative
group (Z/nZ)* of positive integers mod n that are coprime to n. In particular, any
element a € (&,) can be written as a polynomial p(z) with rational coefficients
evaluated at z = £,. The automorphism o associated to £ € (Z/nZ)"* obeys o(§,) =
&5, hence o(a) = o(p(£a)) = p(&L)-

By way of proving that Gal(M/Q) is normal, [3] obtains the following Galois
symmetry for any ¢ € Gal(M/Q):

0(Sab) = €5(@)Scsap = €5(b)Sa 00, (1.46)
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where ¢, : ® — {*1}, and @ — oa is a permutation of . Equation (1.46) has
important consequences in the modular invariant classification. In particular, it is
used below to derive the parity condition (1.54).

In (1.36) the affine algebra definition of the S matrix is given as:

id

T /2 \/ﬁ ug;,

where d is the number of positive roots, r is the rank, and |R| is the determinant of
the coroot lattice (see §1.6). By [3], each element of S can be written as a polynomial
over Q evaluated at a root of unity. In particular, Sy, € Q(¢L) for L = 4k|R|. We
now have all the tools we need to derive the parity rule for affine algebras.

Sy =

det(w)exp [_27". (w(X +p)lu + p)}

[

1.7.1 Parity Condition

Let o be a Galois automorphism, M a modular invariant and S a modular data
matrix associated to the affine algebra Xﬁl). Then by (1.12a) of modular invariants,
MS = SM. By (1.6a) we can write this as M = SMS, and the automorphism ¢
can be applied to the matrix M. The entries of M are in Z C Q, so they are fixed
by o. We have:

M =8MS = o(My,) =0((SMS),,)

= "’”'\# =0 ( Z S,\,,Mu-yg-m)

vyED
= Y €(A) Sorr Muny Sy0u €(s)  (Gal(M/Q) is abelian)

vyED
= €s(Neo (8)Mor.op- (1.47)

From (1.47) we get both
My, #0=¢€:()) = €,(u) Vo (1.48)

and
Mo ou = My, (1.49)

In particular. if we consider only the first column of M, then we must have
My # 0 = 6,(A) = €,(0). (1.50)

This is the basis for our Galois parity condition.

By (1.6b) we know that the quotients Sxo/Sgo are always positive. Applying our
automorphism o yields

Sxo ) €5 (A)So(n)0 (Sa(x),o )
o[ 20) = ERM09N0 _ o a)e, (0) (2ZR2 )
(Soo €5(0)Ss(0).0 «(Nez(0) S+(0),0
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and so sign{o(Sx0/S00)} = €-(A)€s(0). The parity condition (1.50) implies that for
any nonzero entry in the first row (or column) of M we must have

sign{o(Sx0/Sw0)} = 1. (1.51)

We can use the Weyl denominator formula (see (1.39) and §1.6.1) to write

Sx _ l-I sin(7(A + p) - a/K) '

Soo sin(mp - a/k) (1.52)

a>0

Suppose that o acts on the n'® roots of unity by o(&,) = £. whenever £ and n
are coprime. Then

2

—iT __ ,iT —ilr _ ,ilr Lt
o(sin(z)) = (e e )=e & = (~1)'F sin(tz),

and so (1.31) becomes

, sin(mé(\ +p) -a/K)\ ,
sxgn{!;[o sin(wép - a/k) } =1 (1.53)

Let e/(A) := [l,50sign{sin(7€(X + p) - @/x)}. Then by (1.53), our Galois parity
condition is

Mo # 0 = €¢(A) = €(0). (1.54)

In [7]. €¢(A) is explicitly calculated for each of the classical algebras. For C,; and
A = (M. A2) € P%. we find that whenever ¢ is coprime to L = 4k|R)|,

€(A) = sign{sin (Zr%) sin (%{b) [cos (#) — cos (Ef—a)] } (1.55)

where @ := A1 + A2 +2 and b := A3 + 1. We will use this form when stating the
parity in Chapter 2. For C; the determinant of the coroot lattice is a power of
two, so we require that £ be coprime to 2x.

We have now developed a sufficient framework for proving our classification
theorem.
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Chapter 2

Main Results

Theorem 1. If Myo # 0 then Ay = A2 implies that A = 0, except when k = 7 or 12.
If k equals 7, then A = (2,2), while if k = 12 then A = (4,4) or (6,6).

This theorem tells us that whenever we have a modular invariant matrix M
associated to the modular data of the affine algebra C, i such that Mg #0 = A} =
A2. then the only nonzero entry in the first row (or, equivalently, column) of M is
My = 1. By [10], Lemma 2. any such modular invariant must be a permutation
matrix. In Chapter 3 we show that this further implies that either M), =4, , (and
so M = I) or My, = 6, ,(») where o is a permutation of the set ¢ and is associated
to the simple current J of Co .

2.1 Overview

We first review the terminology for C> . The level of our affine algebra is k, but
the quantity that most often arises is x = k + 3. We find it convenient to write
a = A;+A2+2 and b := A2+1 whenever we have a highest weight A = (A1, \2) € Pi,
as defined in (1.41), and we will freely identify (a, b) with A. Using the (a, b) notation,
the vacuum 0 is represented by (2.1), and the constraints imposed by Pi translate
to 0 < b < a < k. Recall from (1.55) that the C. parity for a,b € Z>o, with
O0<b<a<k, is:

€¢(a. b) = sign {sin (E:ﬁ) sin (E:—b) [cos (%lb) — cos (Zﬁ)] } . (2.1)

The parity condition (1.54) states that e;(a,b) = €,(2,1) whenever £ is coprime to
2x. Also recall from (1.45) that the norm condition is

a? + 5% = 5 (mod 4x),
which indicates that one of a and b is odd, while the other is even. Under the

hypothesis of our theorem, which is equivalent to a = 2b, it is clear that b is odd.
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The conclusion that A = 0 corresponds to (a,b) = (2,1), and from this point
on we will only refer to the independent b parameter, with the assumption that the
reader will keep in mind that a = 2b. For brevity we will write ¢,(b) instead of
€e{a.b).

Note that €,(b) has an ‘/-period’ of 2k, and that €,(b) = €4(1). By the latter
we know that €,(b) = €,(1) if and only if €4(1) = €/(1). Hence the Galois parity
condition becomes

€/(l) = €n(1l) V€ coprime to 2x. (2.2)

In the next section we will prove that €,(1) = +1 iff £ is in a certain interval Z. This
result makes (2.2) a powerful tool in narrowing down the possibilities for b.

The idea behind the subsequent proof is to pick an ¢y in Z that is coprime to
2k. so that the Galois parity condition implies that ¢ob € Z. Then by restricting the
increment (i.e. the amount by which ¢;b differs from ¢;,,b) to small intervals, we
arrive at a contradiction to the parity condition. In this manner we eliminate most
of the possibilities. Those few that are not eliminated are investigated numerically
using a computer, as detailed in §2.7.

Suppose that we have the prime factorization x = []p? for distinct primes p
with @, > 0. We need the following result:

ple, p#5 = b= %1 (mod p?). (2.3)

Proof. Suppose that p | x with multiplicity a, > 0. We write the norm condition in
terms of b to get:
5b6° = 5 (mod 4k). (2.4)

In other words, there exists an integer m such that 56> = 5 + 4mxk. This can be
rewritten as 5(b® — 1) = 4mk, so that as long as p # 5, p% | (b+1)(b—1). By noting
that (b+1) = (b— 1) + 2. we see that the only prime p that can divide both factors
is p = 2. Thus it is clear that if p is neither two nor five, b = £1 (mod p®?). The
statement is also true when p is two, given the following argument. We know that
b is always odd, so both (b — 1) and (b + 1) are always even, and only one of them
is divisible by four. The factor that is divisible by four must also be divisible by
292, since the norm condition actually implies that 4p® | (b + 1)(b — 1), effectively
adding to the multiplicity of p when p = 2. |

In our main proof we employ the following strategy. Let ¢ be the maximal
prime power divisor of x, so that p* < ¢% for all p°» dividing k. Then we look at
all pairs of x-divisors (p®»,r% ). This is a proof by contradiction, with the hypothesis
being that b is not congruent to the same value (+1) modulo each of p?,r%, and
g*. Our conclusion is that this is impossible, so either b = +1 (mod ¢%), b =
+1 (mod p%) and b = +1 (mod %), or b is congruent to —1 modulo each of these
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prime divisors. There is only one g% for each x, and this method eventually implies
that either 5 = 1 (mod p??) or b = —1 (mod p?) Vp dividing . Since 0 < b < /2,
the former possibility means that b = 1, while the latter has no solution.

In order to procure the necessary contradictions, we need to find specific {’s for
which €4(1) is in Z, while €z (1) is not. The main issue here is that we must have ¢
coprime to 2k. Given that we need to choose {’s of sufficient generality, this is not
guaranteed. The question is, when is ¢; not coprime to 2x?

In §2.3 we use ¢; = 2xi/(p®®ror¢°)+¥€y, where €y is coprime to 2x. Note that ¢; is
always odd, so p = 2 is not a problem. Neither p nor r nor q divides 2x/(p®?r?r¢%)
since p, r and ¢ appear in x exactly p®#, r% and ¢% times, respectively. Thus it is
possible that one of p,  and g divides ¢;. Suppose that p | ¢; for some i. Then ¢;,, =
€i+2x/(p®?1% q%) is not divisible by p. Similarly, each of ¢y, ...,¢;_1,4; o, ..., bit(p-1)
is not divisible by p. There is also divisibility by » and ¢ to worry about, but if we
redefine ¢; when one of p, ¢ and r is equal to 3 or 5, then the three smallest primes
we have to worry about are 7, 11 and 13. This means that if out of every eight
consecutive ¢;'s there is a minimum of four candidates for which €, (1) # €,5(1),
then we are guaranteed that at least one of those ¢;'s will be coprime to 2x. The
only possible exception to this statement occurs when one of the primes is equal to
7 and both ¢;b and Zgb are used. However, this situation does not surface in our
proof.

This reasoning is the basis for the proof in §2.3.

2.2 Preliminary results

Before beginning our general proof, we need to know the vacuum parity €,(2,1) for
any ¢ coprime to 2k, and the number of prime divisors that < and b can have in
common. We find satisfying solutions to both problems.

Define the interval

K 2K 4k Ik
I = (ET)U(?,?> = LUuZL.

Then we have:
e(l)y=-1 iff £e€T. (2.5)

To see this result we need only look closely at the Galois parity:

ee(1) = sign {sin (?;") sin (%) [cos (E) +cos (?g)] } ) (2.6)

This parity is very simply determined, as in Table 2.1.
The next result of interest is that whenever b and x share a prime divisor, that
divisor must be equal to 5. This is straightforward, and follows directly from (2.4).

24



4 sin(2né/k) | sin(wl/k) | cos(mwl/K) — cos(2wl/K) | €(1)
(0, %) + + + +
(g's -3_':) - + + -
(%.x) - + - +
(';7 %c) + - - +
(%) |+ - + -
(3£, 2x) - — + +

Table 2.1: Vacuum parity €,(1)

We will use the following result in the proof of Lemma 1. If € is coprime to 2x
and x is even, then

Kk 2k ik 5K\ . 2néb 47éb
e <§'. -3—) ] (T, —3—) iff cos (T) < cos (T) . (27)

To see this, first note that when x is even, £ is coprime to 2x if and only if £ + &
is coprime to 2x. This means that we can apply the parity condition to both ¢,(b)
and €. .(b). Let J be the union of intervals given in (2.7). Then I C Jand ¢ € J iff
(€ + k) € J. Furthermore. if £ € J then by (2.5), €,(1) = —€z4.x(1). Now the parity
condition implies that €;(b) = —e¢4«(b), and we can use the definition for the sign
€¢ given in (2.1) to show that (2.7) is true.

We now address the possibility that 5 does indeed divide both b and x.

Lemma 1. If both b and k are divisible by 5, then k = 15 and b= 5.

Proof. For clarity, the following proof is divided into four sections.
(1) First note that 25 { x. Otherwise, 25 | 4x and 25 | b%, so the norm condition
(2.4) would imply that 25 | 5.

(i7) Suppose that ~ is even. Then since our hypothesis guarantees that x > 10, we
have

Eedmc®E
2 5 3’

which by (2.5) implies that €,(1) = -1 for £ := ‘%" + 1. Recall that b is odd and is
divisible by 5. This means that

2méb _ 6mb + 27b 2_:2 (mod 2x)

K 5 K

and ¢ 3b b b
7_r__=i+zr_ = 1r+7r—(mod2n).
K 5 K K

Therefore

1= () (2) o (2) o (2]

is the Galois parity for £ = 3x/5 + 1 and the parity condition insists that €,(b) =
€(1) = —1. However, by (2.7) with £ = 1, we see that 2b + b = 3b < k, and so
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cos(27b/K) + cos(nb/k) > 0. We know that 0 < b < 2b < «, and so both sin(27b/x)
and sin(7b/k) are positive. Thus €,(b) = +1. This is a contradiction to (2.2) and so
we may conclude that « is odd.

(7it) Suppose that 9 | x and consider 5 := 2x/3 — 1. If 9 | x then this 3 must
be coprime to 2x. Since x > 6, we have £y > x/2, and so €,,(1) = —1. Now let
¢; = 2x1/5 + €. Under our hypothesis b is divisible by 5 and so

2nl;b  4mib + 2négb _ 2méyd

= (mod 27) and
K 5 K "
. 21
mlib _ -‘/t'lb + méab = mtob (mod 2r),
K 9 K K

which together imply that €, (b) = €, (b).
Now consider ¢; and ¢3. By (2.5), both have Galois vacuum parity equal to one:

2k 28 2K
b= RS
=5tz o1l>3

16x 4K

=1 1<z and

6 2k 28x 3x
e:— —— T e— —
=gty ol=E o>

At most one of £; and {3 can fail to be coprime to 2x, since divisibility by 5 is the
only issue (recall that £y is coprime to 2x). If 5 | £, then ¢3 = £; + 4x/5 is not
divisible by 5. and vice-versa. Thus we have €, (b) = €4, (b) = €4, (1) = —1, while
€¢,(1) = +1 for 7 = 1,3. This contradicts the parity condition (2.2) and so we must
conclude that 914 x.

(iv) Now suppose that there exists a prime p > 5 such that p | x. Let

_2k(p£1)
- 4

Q- il.

where we use (p+1) if p = 3(mod 4) and (p — 1) if p = 1(mod 4), so that (p £1)/4

is an integer. Note that because x is odd, 2x/p is not divisible by 4. We use the

plus or minus one at the end to ensure that one of our ¢3’s will be coprime to «.
Suppose that p = 3(mod 4). Then

_2s(p+1) _K K
= 1 i1—2+2p:t1

0 °

and so p > 5 and k > 15 together imply that x/2p + 1 < x/10 + 1 < x/6, making
€0 < 2k/3. Therefore by (2.5), €4,(1) = —1 when p = 3(mod 4).

Let ¢; = 2xi/5+¢y. Then, as in (ii1), €7,(b) = €4,(b). Also as in the above proof.
we consider £; and ¢3:

9x K 4K
ll—'l—6+$:t1<?

17 K 3x
b=Tgt3*l>7
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At least one of these will be coprime to 2k, and so for j € {1,3},

=1 =€, (1) =€, (1) # elj(b) = +1,

which implies that p # 3(mod 4).

Now consider the possibility that p = 1(mod 4). Then
2 (p-1)
p

K
1= =
4 ! 2

[
= — -—=x1
0 %
and so p < x/2 implies that 3x/2 < {3 < k/2. Thus by (2.5), €4,(1) = +1 when
p = 1(mod 4). This ¢; needs to be augmented a bit to get a contradiction when
= I(mod 4). Let ¢* = ¢y + x/p+ 1. Then £* is odd, and will be coprime to x as
long as it is not divisible by p.

Let ¢; = 2ki/5 + €*. Then, as above, €, (b) = €, (b). Again, we consider ¢; and

l3:
9k K 4K
T + -
(= 10+2 +1 1<3
17x K kTS
33—W+2—+1:ﬁ1>—2—

By (2.5). €¢,(1) and €4, (1) are both equal to one, and we get the same contradiction
that we did when p = 3(mod 4). Therefore, p # 1(mod 4).

Hence if p | & then p < 5. Our prime p is not equal to two by (iz), and each of
three and five divide x exactly once, by (iit) and (iv), respectively. Thus we are left
with k = 15 and b = 35. O

We conclude this section by combining the two previous results: if p| band p | &
then p = 5. and if p = 5 then x = 15 and b = 5. Therefore,

ged(b, 2k) =1 or (k,b) = (15,5). (2-8)

2.3 General Proof

For the general proof let us assume that x has at least three distinct prime divisors
(otherwise refer to §2.5 and §2.6). Let ¢%¢ be the maximal prime divisor of x, i.e.
the prime power such that p? < ¢% for all p | k. We will first prove that for all but
finitely many «’s, C ¢ ({5 23" (the number C is defined below). The next step is
to deal with C € (0, &) U (23* 2x), as detailed in 2.3.2 and 2.3.3.

Define ¢; and the increment X as follows:

_ 2x1

© porrargia
X = _2"_b__.’
plrrirg®

+ € (2.9)
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where

£l if x = 1(mod 4)
0 = £ if x = 2(mod 4) (2.10)
0= 523 if k = 3(mod 4) ’
x+2

2 if 5 = 0(mod 4)

is guaranteed to be coprime to 2k (as long as 3¢ k), and isin Z; for x > 12. If x is
divisible by 3 then we redefine ¢; as in §2.4.1. By (2.11) below, « is always at least
108.

The X defined above is referred to as the increment because it is the amount
by which £;b changes as i goes to i + 1, and let C be the number between 0 and
2k such that X = C (mod 2x). Later in this section we get a contradiction for
C € (£, %) when either €ob € I, or £ob € I,. This restriction of £ob is sufficient
since ¢y is guaranteed to be coprime to 2x, and so the parity condition (2.2) will be
violated if €y3b is not in Z.

Our goal is to find ¢'s for which ¢; is in Z, while ¢;b is not, so it is imperative
that we be able to determine exactly when the former is true. It turns out that we
can restrict ourselves to choosing ¢; € I, and so we want ¢; as defined above to be
less than %" (€; is clearly greater than ). For £, = 5 + 2 (our biggest £p), this is
satisfied when:

2k > i1 +
3 = poerorg%
& 281 < (% - 2) prrirqt
pPrargde porror qaq
12 Kk
Here, x has at least three divisors. and so (p%*r% ¢%)/k < 1. Thus we know that for
1< %p“f’r“"q“q — 1. we have ¢; in Z;. In the subsequent proof we need ¢; through
¢)1 in 7 and so we require x to satisfy the following condition:

+2

(14

SiL

p°Pr®rq® > 144 for all x divisors p??.r% < ¢%. (2.11)
The remaining possibilities for x will be covered in §2.7.

23.1 Ce(g5.%2

As mentioned in 2.1. we are guaranteed that four out of any consecutive eight ¢;
values cannot all fail to be coprime to three of the divisors of 2« as long as none of
those divisors is 3 or 5. We use this assumption here, and deal with divisibility by
3 and 5 in sections (2.4.1), (2.4.2) and (2.4.3).

Suppose that C € (T7. (—"%l'i) for m = 1, ...,22. Table 2.2 contains information
about the locations of the ¢;b’s, where i = 1, ..., 8 and ¢; is defined as in (2.9). Given
the position of £3b and the restricted range of C, many of the £;b’s are forced out of
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be b b e I
m (1) (#) (4) (17)
1 - ++++ ++ ++ -++++ + + ++
2 ++ -+ + +++ -+ ++ ++
3 ++ -+ + ++ ++ +++ -+ ++ ++
4 +—++ -+ + + ++ ++ -+ -+ + + ++
5 +-—++—-=+ +++ -+ ++ -+ -+ +++ -+
6 +++-—+ +—-+++ +++ -+
T + -+ + + ++ +—-++—+ ++ -+ -+
8 -++—-++ ++{-}-++—-+or {+} ++ -+ + + + ++
9 —+++-=+ + 4+ ++ +4++ ==+
10 -+ —+++ ++ ++
11 + 4+ -+ =+ -+ =+ =+ -+ + = +{++} + + ++
-+ -+ -4+ -+ - = ++ or {—+ —+}
+ = +{=+-+} + + ++ -4+ - ++ -+ —+
or {++} -t mthmd—mt b=t =+t
+ 4+ ++ -+ +++
+4++ - =+ -+ ++—--+ ++ ++
++ -+ + + + ++ -+ +-—4++ ++-—-++ -+
+ -+ + -+ +4+ -+ -+ ++—-++ + + ++
+—+++ +++ -+ +++ -+ + + ++
++ -+ -+ +++ -+ + -+ + -+ +++ -+
++ -+ —++ + 4+ ++ +—-++ -+ + + ++
+++ + + ++ ++ -+ +
++ ++ ++ -+ + +++-—+
-+ +++ + 4+ ++ - ++++ + 4+ ++

Table 2.2: Vacuum parity indicators for the general case C € (3F,
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Z. Those that are necessarily not in T are denoted by a ‘+’. For example, if £y € I;
and m = 2 then C € (%, §) and so ;b and ¢3b are not in Z and £3b € (x, 1“‘) If
¢3b ¢ I» then neither is 5 and we are finished (as described in column (i%)), so
assume £3b € Tp = (%, 3%). This implies that £;b € (3%,3%) ¢ 7, and that &b ¢ T.
The same reasoning is applied to each of the remaining cases.

The chart is divided into two sections, with the first corresponding to the as-
sumption that €;b € Z the first time such a choice must be made. Once it has been
established that there are three ¢;b’s that are not in Z, then we assume that each
subsequent ¢;b is in T until this is not possible. However, this is not necessarily
enough to ensure that all the possible outcomes are displayed, and so in some cases
parentheses are employed to indicate further possibilities. Specifically, when m = 8
and £3b € I,, we have similar outcomes regardless of whether ¢3b is in Z or not,
although these are technically two different cases and are displayed as such.

232 Ce(0.3)

This particular interval is quite troublesome due to the fact that one of its endpoints
is 0. Our solution is to find a better lower bound for C, and then use this information
to prove that C cannot be less than x/12. The following proof applies to all x for
which (2.11) holds.

Let b = ng% =+ 1 for some non-negative integer n, where this description is
consistent with our original assumption (i.e. if we started by letting b = 1 (mod ¢%¢)
then we would use ‘+1° here). Note that the assumption also implies that b is
congruent to —(=%1) modulo at least one of r® and p°r, so that n is not divisible by
at least one of p% and r% . Suppose that n =t (mod p®r%). Then, since n is not
divisible by p® 7%, we have 0 < t < p®rrf and

2ts 2K
poeror * perTor gt *

To get an improved lower bound for C we note that

K 1 1
C(W:t<2—4;—<l (2.12)

which is a contradiction. Therefore C > x/(12p®r%). We do a similar calculation
to find that C < x/48 implies that

1 porror
t+ E < 96
and so we must have p®’r% > 82 since ¢t > 1 and ¢% > 7 (otherwise x is already an
exceptional).
For each L = 2,3.4,... , take C € (3r#13: 5£3)- Because {ob must be in Z, we
have £;b = iC + €opb not in T as long as iC is between £ and -235 By (2.12) we need
to increase L only until x/(25%! - 3) < k/(12p%rd), i.e. until 2L—1 > poeror,

(2.13)
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Lemma 2. Ifi= 2L then &,..,liq €T, while €;b,..,¢;14b ¢ ZI.

Proof. Let i = 2L. Then iC € (£.%), and so £b is not in T by (2.5). Similarly,
(i + 4)C is greater than /6 and less than x/3 + x/(2L~2 - 3), which is less than or
equal to 2x/3 for L > 2. Then (i+1)C, (i+2)C and (i +3) are stuck in the between
the two, and so none of £;b, €, 1b, ;. 2b, €;.3band €;,4 is in .

In order to ensure that ¢;, €., €;10, €;+3 and ¢;.4 are in Z, we need to know
that 2L + 4 < (p®r®rg¢%)/12 — 1. This is equivalent to

rpor (T 5 5 )
prr (12 2) > 35, (2.14)

since for each L. 2£-1 < p2rro (otherwise we stop). First note that (2.14) is satisfied
whenever g% > 25 and C < /48, since by (2.13), we have p®rr% > 82, which is
sufficient. We can solve £/48 < C < x/12 by testing the intervals explicitly. If
g% < 23 then s is an exceptional, and all of the exceptional values are dealt with
in §2.7. Therefore we can conclude that

ap pGr Gpplr nGq
O prrerg®
25+ 4 < ) +4 < 12

-1
as required. a
Thus we have five consecutive ¢;’s for which €, and ¢, do not agree. Since one

of these is guaranteed to be coprime to 2x. this is a contradiction and C cannot be
less than x/12.

2.3.3 C e (E.25)

Here again we have a difficult interval, one whose right endpoint is congruent to 0
modulo 2k. Our strategy will be much the same as in the previous section. In this
situation we need a better upper bound for C.

As above, let n =t (mod p®r® ). Then

[
C>2 - W (2.15)
@y _ar 1 1
= 1> port E - o (2.16)

This is a contradiction to the fact that ¢ is an integer that is less than p%ror.
Therefore C < (28 — x/(12p% r°)).

Let C € (25 — 5£3.25 — 5r55) for L = 2,3.4,.... Then if i = 2%, iC € (2x -
3.2k — §). For b € I, this means that £;b = iC + b € (§.5). while lob € T
implies that ;b € (x. ‘-‘35). In either case, £;b is not in Z. Similarly, £;.1b, £;402b, £; . 3b
and ¢;,4b are not in Z. The only term that is close to coming back into T is £; . 4b
when £pb € I,:



Fortunately, L > 2, and so k — 575~ > %. Thus none of £:b, ..., €;+4b is in T.
The proof that ¢; through ¢; .4 are all in Z, is identical to that of the previous
section. Therefore C cannot be an element of the interval (23x/12, 2x).

2.4 Proofs for « divisible by three or five

We look at the possibility that « is divisible by 3 or 5 separately. Our strategy will
be to apply the general proof found in §2.3 to all of the other prime divisors of «,
and use this information to choose specific £'s for which ¢ is in Z while ¢b is not.
Note that the proofs found in §2.3.2 and 2.3.3 do not rely on a coprime argument,
and so their results will still hold here.

2.4.1 « divisible by 3

If x is a multiple of 3, then we must redefine ¢; to preclude the possibility that 3
divides ¢;. This. together with a similar restriction for ¢; when x is divisible by 5,
allows us to conclude that at least one of the ¢;’s listed in Table 2.2 will be coprime
to 2x.
If. for example. p = 3. then our ¢; is

0 = 2n1

t: 303—lrarqaq
where € = 4x/3 +3 if a3 = 1. and ¢y = 4x/3 + 1 if a3 > 1. The a3z > 0 version of
(2.11) is

+ o, (2.17)

gas—lpargse 5 144, (2.18)
Note that (2.18) will always be satisfied if a; > 3. When a3 < 3 we encounter
exceptions to (2.18). If a3 = 1 these exceptions are particularly numerous, and so
we opt to deal with the exceptional a3 values algebraically rather than numerically.
The general proof applied to x/3%3 implies that we have two possibilities for b: either
b=1 (mod £/3%3). or b= —1 (mod x/3%3). In the former case (Case I) we assume
for contradiction that b = —1 (mod 3%2), while for the latter (Case II) we assume
that b =1 (mod 3%%). Otherwise b = 1 (our goal) and b = x — 1 (an impossibility),
respectively.

Let us first suppose that a3 = 1, and define ¢ := 2x/3 — 3. Then this £ is in Z;
and is coprime to 2k (a3 = 1 implies that 3 does not divide 2x/3). We know that
b < x/2 and so in Case I, b = x/3 + 1. This means that b+ 1 is divisible by 3, and
b odd implies that b + 1 is even. Therefore,

b+1) 2%
b =2k 3 3 3b
5-43£—n—3(m0d2n)
[
=5-3¢1



as b (mod 393) [2 b 17
20r3 -1 26/3 -1 mr/3% + 1 4k/3 — b ¢ T since b < x/2
2 1 25/3 -1 mi/3%3 -1 26/3 —b¢ I forb>k/6
1 55/9 -3 k/9-1 28/9-3¢1T
3 1 5£/9-1| mx/27T -1, k0dd | 55x/9 —b & T for b > /18
1 56/9 -2 | mK/2T—1,Kkeven | 5x/9 —2b ¢ I for b > x/36
1 k/2+8 k/27 -1 43x/54—-1¢ZT

Table 2.3: £ and b values for 1 < a3 < 4

In Case II, b = x/3 — 1 and b — 1 is divisible by 6, so that

(b=1) 2 _
T+ 5 3

+ 3 (mod 2x)

b =2k

“I?.‘

and ¢b ¢ Z. Thus both cases produce contradictions to the parity condition (2.2).
and we may conclude that a3 = 1 implies b = 1.

Ifaz > 1, let € := 2x/3 — 1, which is coprime to 2x and is in Z;. This £ works
when b is congruent to —1 (mod 3), and if b = 1 (mod 3) and b > /6. There
are a few exceptions to the latter situation. The results of all of these cases are
summarised in Table 2.3.

For a3 = 2. note that the only b that can be less than x/6 is b= x/9—1. This b
is only possible when x is even. since b must be odd. Thus we can let £ := 5x/9 — 3.
If a3 = 3 and & is odd, then  must be even. This means that the only b value that
is not covered in the first two rows of the a3 = 3 section of Table 2.3 is b = x/27 - 1.
For this b note that:

62_"2 2K
“EowEtt
K2 2k
=>375-—§3-+1§1(m0d4x) by (2.4)
IS 2
=>n(3—6—3—3>50(m0d4n)

and so x must be congruent to 2 mod 4. This ensure that ¢ := x/2 + 8 is coprime
to 2x.

Thus a3 < 3 implies that there exist £ values for which ¢ is in Z, while ¢b is not.

This contradicts the parity condition (2.2), and so we conclude that a3 = 3 implies
that b= 1.

2.4.2 «k divisible by 5

In this section, as in the last, we redefine ¢; so that it is not divisible by a specific
prime. In this case our prime is 5, and the norm condition (2.4) implies that b =
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x(mod 4) Z b 73

1 (k+1)/2 | 2/5+1 | 175/10 + 1/2
(k+1)/2 | 26/5-1| 76/10 - 1/2
2 (k+4)/2 | /5+1 | 195/10 + 2

(k+4)/2 | k/5-1 | 9x/10 -2
(k+4)/2 | 25/5+1 | 135/10 +2
(k+4)/2 | 25/5-1 | 3x/10 -2

3 («k+3)/2 | 26/5+1 | k/10+3/2
(k+3)/2 | 25/5 -1 | 11x/10 — 3/2
0 (k+2)/2 | k/5+1 | 7/10+1

(n +2 /21 285/5+1 | 95/10 +1
/21 2x5/5-1|19x5/10 - 1

)

(xk+2)/2 | k/5-1 | 17x/10 -1
)
+2)

Table 2.4: £ and b values for a5 =1

+1 (mod 5% ~1). The general proof (§2.3) applies for all the other prime divisors of
x. but we need a special ¢; when one of p. r or q is 5. This is achieved by decreasing
as by one. For example, if p = 5 then

2Kt

585~ 1 rar qaq

where £, is unchanged from (2.10). Then in order to have ¢;,...,¢%s in Z, we need
595~ 1lrargds > 144. This is guaranteed if a; > 3. but if a5 < 2 it is possible that
there are x's for which this condition will not hold. In fact, there are x’s of fairly
large magnitude which become exceptionals in this case. To remedy the situation
we compute the possible & values for a5 < 2 directly.

Let us suppose that « is divisible by 5 and that a5 = 1. Then (2.4) implies that

= 1 (mod £/5). so that we can write b = mx/5 + 1. By our hypothesis, b < /2,
and so m must be one of {0.1,2}. If m =0 then b = +1. If x is odd then m =1
implies b is even and so the only case to consider is m = 2, i.e.

b—-—ﬂ:
5 1.

If x is even, then both m = 1 and m = 2 are possibilities.

For each value of x (mod 4), an appropriate ¢ is chosen that will always be
coprime to 2x. In every case. (see Table 2.4) £ is in Z but ¢b is not. Therefore
as = 1 implies that b = 1.

If as > 1 then when we apply the general proof to the prime power divisors of
x/5% our conclusion is that b = +£1 (mod x/5%). If b = 1 (mod x/5%) then we
assume for contradiction that b = —1 (mod 5%5~1). Since a5 = 2, we have

mxK
b=TF . .
=+l mez (2.20)
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As always, b < x/2, and so m € {0,...,12}. If x is even, let £ := 3x/5 — 1 which is
coprime to 2« and in Z,. Then

and so we need b > /15 if €b is to be out of Z. By (2.20), £b is necessarily not in 7
unless b = x/25 - 1.
If x is odd. we use £ := 3x/5 + 2 which is also in 7, and is coprime to 2x. Then

tb=3x - (b;” LS
4K K
=35 + E+2b (mod 2k)
which is not in Z when b > £/20. As above, the only exception to thisis b = x/25—1.
We now assume that b = —1 (mod x/5°) and that b = 1 (mod 5%~!). If x is

even let ¢ := 3x/5 + 1, so that £ is coprime to 2x and in Z,. Then

eb=3n-(b—_i)+37'°+b
5 )

_ 2k =K i

=3 —ig+b(mod2n)

so that b > x/15 will guarantee that ¢b ¢ T.
If x is odd, let €:=3x/5—-2¢€ I;,. Then

t=3c- 02D 38 o
3 3
2K K

for which b must be bigger than x/20 to force ¢b out of Z.
In each of the four cases described above, the only b values for which we do not
get a contradiction are b = x/25 = 1. Note that for these b’s we have:

2 K° 26
b—54i-57+1
2 2k
b2='°_ i
>80 =5k T +5
2
=>'-5‘-4_-2—5'5+555(mod4n) by (2.4)

£, 2
:n(s—sig) =0 (mod 4x)
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and so x must be congruent to 2 mod 4. If b = x/25 + 1, this implies that b =
3 (mod 4), while if b = /25 — 1, we have b = 1 (mod 4). For the former b, let
€:=xk/2+2€I;. Then

b=k 5 -3 2b
_ 3k 2
and so b is not in Z. For the latter case, £ := /2 +8 € I;:
b-1) =«

bh=k- — +8b
K ) +2+8

_K 8k
=§+-2—5—8(m0d2n)

_ s

~ 50

and. since &b is clearly bigger than 2x/3, we are finished.

When a; > 2, we use the general proof in §2.3 to find that either b = —1 (mod 5%5~1)
and b= ~1 (mod p°) forallp |k, p # 5, or b =1 (mod 5%~!) and b = 1 (mod p°®®)
for all p. In the former case, note that x/5% and 5%5~! are coprime, and so b+ 1 is
divisible by (x/5%5)-595~! = k/5. Similarly, the latter implies that b = 1 (mod x/5).
Therefore, the a; > 2 case reduces to the as = 1 case, and, as we have dealt with
the as = 2 case explicitly, C & (x/12.23x/12).

2.4.3 « divisible by 15

We now modify the a3 > 0 proof to include the possibility that 5 divides k. As
before, the general proof applied to all other prime power divisors of x yields b =
+1 (mod x/3%35%). We know from (2.3) and (2.4) that b = 1 (mod 3%) and
b= %1 (mod 5%!). If b (mod x/3%35%5~!) and b (mod 393) are the same, then

b= %1 (mod x/3%),

and we can use the standard as > 0 proof with a new {y: ¢ := 4x/3 + 3 if a3 = 1,
while g := 4x/3 + 1 if a3 > 1. If b is congruent to the same value (mod x/3935%3)
as it is (mod 5%5~!) then

b = +1 (mod x/3%5)

and we have to augment the existing a3 > 0 proof (we call this Case A). The final
situation to consider is that b = +1 (mod 3%35%~!) (Case B). Note that the two
cases are identical when a5 = 1.

Let us consider Case A first. Note that the value of as does not affect any of
the conditions on b. As detailed in the a3 > 0 section, we may restrict ourselves to
1 < a3 < 3. Table 2.5 details the different possibilities for b and the £ values which
are chosen to contradict the parity condition.
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az | b (mod 323) ¢ b ¢b (mod 2k)
1 ¥l 2k/3 -3 mi/l15£1 4k/3 —3b ¢ T unless m =4
25/3 -9 4k/15£1 14x/15F9¢ T
2 or 3 -1 26/3 =1 | mr/3%5+1 4k/3-bgT
20r3 1 26/3~-1 | mr/385-1| 2x/3-b¢& T whenb > /6
2 (x even) 5£/9 - 3 mK/45 — 1 5x/9 —3b ¢ T when b < x/6
(x odd) 5x/9 — 6 mr/45 — 1 5k/9 —3b ¢ T when b < /6
3 1 145/27 —3 | mr/135 -1 | 14x/27 - 3b ¢ T when b < x/6
Table 2.5: ¢ and b values for azas > 0 : Case A
as b (mod 323) ¢l b £b (mod 2k)
1 Fl 2c/3 -3 me/75+1 | 4x/3 —3b¢ T unless 17<m <20
25/3 -9 me/75 1 4/3 —9b ¢ T when 17<m <20
2or3 -1 2k/3 -1 | mr/3%5% +1 4x/3-b¢ T
20r3 1 2k/3 -1 mK/3%35° — 1 2k/3-b¢& 7 when b > k/6
2 (x even) 5%/9 -3 mK/225 — 1 5x/9 —3b ¢ T whenm > 4
55/9 -9 me/225 — 1 5£/9 -9 ¢TI whenm > 1
58/9 - 27 K[/225 - 1 289K/666 +27 ¢ T
(x odd) 5£/9 -6 mr/225 - 1 5£/9 — 6b ¢ T when m > 2
55/9 - 18 mK/225 — 1 5x/9 — 12b ¢ T when m < 2
3 1 14x/27 -3 | mn/675 -1 14x/27 - 3b ¢ T when m > 3
14x/27 -9 | mK/675 -1 14k/27 - 9b ¢ T when m > 1
14x/27 — 27 | mr/675 — 1 323k/675 +27 ¢ T

Table 2.6: £ and b values for azas > 0 : Case B

In each case ¢ is coprime to 2x for the given value of a3. We also want ¢ to be
in I. so we require ~ to be at least 162 (so that ¢ = 14x/27 — 3 > x/2).
In Case B our method is similar: find a specific ¢ for each value of a3 so that £ € T

while €b is not. Now we have b = +1 (mod 3%25%~!) while b = F1 (mod x/3%35%).
When as is greater than 2, x no longer needs to be dealt with in this manner (we can
apply the general proof to the ¢; given in (2.19) to find that b = +1 (mod x/3935)
and so Case A applies). Thus we restrict to a3 < 3 and as = 2. The results are

shown in Table 2.6. Note that we require x > 1458 in order to have € = 14x/27 — 27
in Il-

2.5 k=p%

The proofs in this section are very straightforward, especially when « is not a power
of 5. As the previous proofs do not apply when x has only one prime divisor, we
deal with this possibility directly.

First suppose that p # 5. Then we know that b = +1 (mod p®¢). This is exactly
the situation described near the end of §2.1. Therefore, x = p% and p # 5 together
imply that 6 = 1.
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Now we deal with the case where p = 5. Ifas; = 1, then k = 5,andso b =1
since b is odd and less than x/2. Now assume that a5 > 1, so that 562 = 5 + 4t - 595
for some t € Z>q. This implies that b =1 + 4t - 597! je.

b> =1 (mod 5%71). (2.21)

We have two possibilities, the first of which is that b = 1 (mod 5%~!). This
means that b =m¢g + 1 for some m € Z>o. Now,
2% K K
b< = =2m- —
< 3 m5 +1< 3
5 5
> m< - —--—-<
2 K

N

and so m must be one of {0.1.2}. If m = 1 then b = 595~! +1 is even, contradicting
(2.4).

Thus either m =2, and so b=2-5%"! + 1, or b= 1 (assume the former). Now
define ¢ := (k +1)/2. This ¢ is in Z, and is coprime to 2x. Since 5 is the only prime
divisor of x and 5¢ (x + 1), 5 does not divide (x + 1)/2 = £. We have

s 1 2K k2 7k 1
eb—(§+§)(?+1) —5-+E+§,and

2
-

g = (g - 1)k +K& = & (mod 2x), so that
17x
b= 'm- + = (mod 2x).

This €b is between 3x/2 and 2k, and so £b e T by (2.5). This is a contradiction, and
therefore b = 1.

The second possibility is that 6 = —1 (mod 5%¢~!). Then b = mk/5 — 1 and
m € {1.2}. As in the proof above we must have m = 2, i.e. b = 2x/5 — 1. For ¢ as

before, we get:
s 1 25 x
b = (§+§) (?—1> _E_: (mod 2x).

Note that ¢b will not be in the interval T as long as 7x/10 — 1/2 is greater than
2x/3. This condition is equivalent to x > 15, and is satisfied when a; > 1. Thus

b cannot be congruent to negative 1 modulo 5%~!. Our conclusion is that x = p°»
implies that b = 1.

2.6 Kk = prq%

When « is the product of two prime powers, we define ¢; as follows:

2K1
prrgte
_ 2xb
P

{; := + ¢y, and
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where £y is unchanged from (2.10). Then ¢; is guaranteed to be in Z as long as
i < (p®rq®)/12—1. We will reference the general proof, so we need x = p?rq% > 144.
If k is less than or equal to 144, then it is an exceptional, and is dealt with in the
final section of this chapter.

Close examination of the general proofs reveals that all of the results are trans-
latable to the two prime case. The exceptionals from §2.3.2 and §2.3.3 will change,
but we may appropriate the entire set of results from §2.3. To see this, simply let
rér =1,

If one of p and q is equal to 3 or 5, we apply the appropriate proofs from §2.4.
The redefined ¢;’s are produced by setting %" =1 in (2.17) and (2.19), respectively.
Our conclusion from §2.3 remains that b = +1 (mod x/3), and so we must invoke
§2.4.2.

The two-prime analogues of §2.3.2 and §2.3.3 are simpler than their predecessors.
If b= %1 (mod ¢%) and n =t (mod p??) then0 <t < 1 and

C< LI 2tk 25 K
12 ptr  ptqi 12
t 1 1
p%  plrqSe 24
p¥ _ 1
22t — F —
24 ¥ qoe

Thus ¢t > 1 implies that p® /24 F 1,¢% > 1, and so either p® > 24 or p > 22. In
either case, g% > 25 and so p% and ¢% are big enough to ensure that the general
proof found in §2.3.2, in particular (2.14), will apply without further exceptionals.
A similar argument produces the same result when we assume that C > 23x/12.

2.7 Exceptional Levels

Here. as in the other sections of this chapter, we refer to those x’s to which our
proof does not apply as the exceptional levels of Cs «.

Under the hypothesis of our theorem, the exceptional x’s come from three
sources, namely (2.5), §2.4.3, and (2.14). The first two sets arise in the proof
of the general case of the theorem for the increment C between x/12 and 23x/12.
Those «’s that do not meet the minimum requirements of the proof have been tested
using a computer program. The algorithm is simply to test the parity and norm
conditions for all possible £ and b values for each x. The results were as expected,
as those x’s which passed both conditions agreed with the known list of levels for
which the modular invariants are non-trivial.

The third source of exceptionals was tested in the same manner. However,
this source produces s values of much greater magnitude than the previous ones.

39



Although these errant levels were successfully tested, one would hope that a better
argument could be found that limits the number and size of the outlying «’s.
The exceptionals that were tested are:

6 < k < 1498 by (2.5) and §2.4.3
ex={20.3.5.7-11-13-17-19-23} by (2.14)

where i € {1,2,3,4}, j € {1,2} and the parentheses indicate that any combination
of prime or prime power factors may be chosen.
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Chapter 3

Rank-Level Duality

In this chapter, we prove that the modular invariants for C;, ; are exactly those of
Ck r.- We do this by showing that the relationships between the S and T matrices
of the two algebras preserve the parity and norm conditions. This rank-level duality
is not restricted to the C family of affine Lie algebras. In fact, there exist similar
dualities for all of the classical algebras. A duality exists in a slightly weaker form
between A, and A; ., and between sofcl) at level n and so&l) at level k. Together
with the fact that sos x is isomorphic to Cs k. this implies that the Cs i classification
of modular invariants is also the classification for Ci 2, Bns and D, s, where B,
and D, are the orthogonal algebras soqn.1 and soqn, respectively. As we prove the
rank-level duality of C,x, we will illustrate each step by explicitly working out the
relevant quantities for Cs . and Ci o.

3.1 Young diagrams

We must first establish a map between the primaries of C,; and those of Cg,.
Let A = (Ay,....Ar) be a primary of C;, . This means that the \; are non-negative
integers with A +...+ A, < k. The Young diagram of A is defined to be the collection
of boxes whose j*! row has length ¢; := 3_i=;j Mi; so that the size of the rows decreases
as j increases. Note that for A associated with C, x, the Young diagram for A will
have at most r rows (some of the A;’s could be zero), with k being the maximum
length of each row.

The transpose of a Young diagram (where the first row becomes the first column
and so on) for C;; will have at most k& rows, with r being the maximum length
of each row. This suggests that a possible map between the primaries of C, s and
those of C , is the transposition of the Young diagrams. Let A’ denote a primary
of Ci . Then, since transposition is an order two map, (At)¢ will be equal to A as
long as it is interpreted as a primary for C, . The Young diagram for ) associated
to C;x is unique, and so its transpose is also unique. The snare that arises is that
if one is given a Young diagram without being told what r and k are, then there is
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no way to determine these quantities. If the diagram has a rows, the first of which
has length b. then all we know is that r > a and k > b. However, the arrangement
of boxes does uniquely determine the first a components of the primary in question,
and the next (r — a) of them must then be equal to zero. By ignoring these extra
zeros, or, equivalently, by remembering r and k, we can consider transposition to
be an invertible map. It is clearly onto, as the transpose of every Young diagram
exists. Therefore A — A! is a bijective map.

We will now explicitly calculate A! in terms of A. Write At = (A, ..., A¢). Let ry
be the number of rows in the Young diagram of A, so that

k
Z M=r <r (3.1)
=l

In the Young diagram for A, there are exactly \; columns of length i. Thus, in the
Young diagram for A\’ there are exactly A; rows of length i. Since we are interested
in the individual ;\j’s, we need to know which of the A;’s are nonzero. Let R :=
{r1.72,....7¢} be the descending set of subscripts of the nonzero components of A.
Then we can describe the Young diagram of A’: the first A,, rows will have a length
of r; boxes, the next A,, rows will have length r2, and the final A,, rows will have
r, boxes. In other words,

k k

S k== Y k=r
i=Ap +1 i=Ar) +Ary

k k

Y k==Y hk=r
i=k—Ar, +1 1=k

The equations above allow us to conclude that
j -
=Y A=A, =1 -, (3-2)
i=1

where 7 is between 1 and t and r;4; := 0. All of the other \i’s are equal to zero.
This is consistent with our initial assignment of r; in (3.1):

S5 =35

=1

51

t
=1

“,

=(ri—re)+(ra—r3)+ ..+ (re—1 —71e) +1¢

=T1.



b-1

b-1 L

Figure 3.1: The Young diagrams of A and \* for C 4.

Thus given any A € Pi' we can represent A’ using the set R and equation (3.2).

For A € Pf associated to Caj, A = (A1, A2) where Ay + A2 < k and A, X2 € Z5.
It is convenient to write a := A} + A2 + 2 and b := Ay + 1. Then by definition,
¢y = A +X2 =a-2and ¢ = A3 = b— 1. The resulting Young diagram and
its transpose are shown in Figure 3.1. We can ascertain the corresponding nonzero
elements of A! just by looking at the picture: Mo—1 = Aq—2 = 1. This agrees perfectly
with (3.2).

3.2 Jacobi’s Theorem

Given an invertible [L| x [L| matrix 2, define (), to be the submatrix obtained
from Q by considering only those €;; indexed by i € I and j € J, where I, J C L.
Then if [/ = L\ I and J = L\ J, we have Jacobi’s theorem [12]:

det[((271)T)rs] = (-1)Z1 T . (det Q)" - det[(92) 5], (3.3)

where 3, and }_; are the sums of the elements of the sets I and J, respectively.
We are particularly interested in the following choice of 2:

Q= g-sin(zzﬂ), where 1 < ¢, j<k=r+k+1. (3.4)

[ [

In order to apply (3.3) we need to know det(£2) and (2~!)T. To this end, we interpret
Q as an S matrix for some Cj .

3.2.1 Q as an S matrix

If we are looking at C)x, for some level ki, then for A, u € Pf,‘, we have (as in

(1.42)):
[T (Al
Sxa = k1+2'sm(" ki +2 )

where A[1] = A; +1 and g[1] = u; +1. In order for this to agree with the entries of Q
given in (3.4), we must have k) := x—2. Then \,u € Pf requires 0 < Ay, pu; < k-2,
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which implies that 1 < A} +1<&x—-1and 1 < p; +1 < k — 1. Therefore,

Q= _2. -sin (m)
K K J1<ij<a—1

= (Sxau)aueP. -

In other words, 2 is an S matrix. All S matrices are symmetric and unitary, so that
S = S"!, and by (3.4) Q is symmetric. We have:

QO l=81=8=0 (3.5)
= det(Q) = +1 (3.6)

Thus by (3.5) and (3.6) we know that (2~ 1)T = Q and det(Q) = £1.

3.2.2 S,, in terms of

For C,, primaries A and g, the matrix S can be written as follows [7]:

9 r/2 \ . -
Sw.=1= -i7 7" . det | sin wi\ﬂﬁu—] (3.7)
g K K 1<ij<r

where A[¢f] = r+ 1 — €+ ]_,A. Note that A[¢] decreases as £ increases, so that

each A[{] is between 1 and r + k = x — 1. An analogous definition and consequences
hold for u(f].

Let I := {Ali]}1<i<r and J := {u[j]}1<j<r- Then ()1 is an r by r matrix and

det[(Q);4] = (\/g) - det (sin ("%)) icljed
i€l j

ril—r}

=(-1)"7" S (3.8)

Note that r(1 —r) is always even, so that det{(2);;] = £S,,. Whenr =2 weget a
slight improvement. since now the sign is fixed.

3.2.3 S, in terms of Q

We would like to find the analog of (3.8) for S, ut- In order to apply (3.3), we need
to write 5',\:”: in terms of (2);s for the sets I and J used in the previous section,
na.mely I:= {/\[’i]}lSiSr and J := {l‘[j]}ls.fsr'

The Ci , analog of (3.7) is

k/2 Ty s
5';\,, = (g) - %=k det (sin (WM (3.9)
'c r 1<ij<k

where A[f] = k+1-¢+ Zf:z Ai- Recall from §3.1 that R := {r,...,r;} is the
complete set of subscripts of the nonzero components of A. This combined with
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(3.2) gives us

Jj-1 J
o<t A = Ad=k+1-t+r;, (3.10)
=1 i=1
while .
7]
r1 <€<ry = A =r+1-0+Y A, (3.11)

i=1
We are interested in which integers are missing from I since those are the numbers
that will be in I. The following will prove very useful:

J J

L€ (rjsnrs] = NEr+1-rj+) Ar+1-rimi+ ) Ar)
i+1 i=1
Jj-t j-1

L€ (rj.rjimy] = M eEr+1—-rj, +Z)\r‘,r+ l1-r7; +Z’\'i)

1+l =1
This means that as £ goes from r; to r; + 1, A[¢] skips over A, values, namely

i-1
rel-ri+ ) A, +z (3.12)
i=1
where z € [0, Ar, —1]. We would like to equate each of the values described in (3.12)
with a A[¢'] for some ¢ between 1 and k.
For ¢ as in (3.10), :\[l] takes on exactly A, consecutive values, each of which
looks like
i-1
k+l+7m=Y A —(1+2) (3.13)
=1
for some z € [0, A, — 1]. There is a definite relationship between these values and
those in (3.12). Fixing z and denoting the corresponding value given in (3.12) by

11 and that of (3.13) by y2, we have
yity=r+k+l==x

This translates to [ = {x — X[E]}Igsk, rather than I = {:\[l]}lslsk- In a similar
manner, we find that J = {x — [f]}1<e<-
In terms of A! associated to C 2 we see that

2 ife<b-1
N=¢1 ifb-1<€<a-2 (3.14)
0 ifé>a-2.

As £ goes from (b—1) to b, A\'[{] decreases from (k+4—b) = (k+1—-b) to (x—1-b),
which implies that A*[f] # x — b for any ¢ between 1 and k. Similarly, A\'[f] # k —a.
Note that A[1] = a and A[2] = b, so that we have I = {a,b} and I = {x —a,x — b}.
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Let J be a simple current for Cr,. By [7], J has order 2 and acts on X € P{
by reversing the order of the Ai's (where X; is written as an (r + 1)-tuple, i.e. we
include the 0 node). This means that J({[€]}1<e<k) = {~ — ii[fli<e<k}- Then by
(1.13) and (1.17), we have:

k(1—k)

(_1) _—2—5.74\',.7;1‘
= exp[27i Q7 (TX)] exp[2mi Q7 (1')] Satpe (3.15)

where Q7(\) = $5_,7A;/2. Note that Q7(JX) = Q7(J0) — Qz(X") and
Q7(J0) = kr/2. From the definitions of I, J and Q we get

det[(Q)7]

(_1)21 +¥s = (=1)¥Qs(N+Q7 (k) (3.16)

Our final observation is that for any primary A, the Young diagram of A contains
exactly 2Q boxes. This means that Q(A) = Q(\!).

For Cak. the simple current action on A = (k — (A} + Aa); A1, A2) is J(A) =
(A2: A k=(A1+A2)) =(b—lia—(b+1),k—(a+1)). Then J(A\)[l] =2+ (a—(b+
1))+ (k—=(a+1)) =(x—0b)and J(A)[2] =1+ (k- (a+ 1)) = (k — a), as expected.

3.2.4 Conclusion

We now combine all of our results to show that Sy, = S). ut- By Jacobi’s theorem
(3.3). and by (3.8) and (3.15), we have

r{l—r}

(=1)"7 Sau = (—1)Zr 7 Zu(x1) - exp[2mi(Qr (1) — Q7 (M) + kr/2)] Sie e
= (=1)AQrN+Qs ) (41) (~-1)ART M) =Qr (N )+kr/2) 5'»“,

= Sy, = (£1) - (~1)krFalirHk=ED G
Thus, S,, = +8, ut Where the sign does not depend on either A or u. Both S and
S are modular data matrices, so they must obey (1.6b), i.e. the entries in their

first row and column must be positive. This forces the sign to be positive, and we
conclude that

Sau = Sxepe (3.17)
for all \. u € P* and X, ut € PL.

3.3 T matrix duality

We now consider the T matrix associated to C,x. Recall from (1.38) that

mi(A + pjA + p)]
K

T»:‘yexp[

where v is a constant that does not depend on A. We are interested in the dot
products (X + p)? and (A* + 5)2 for any A € P%, where A* is defined in terms of the

46



transpose of the Young diagram of A (as in §3.1). Our first result is that for any
simple current J of Ci ,, we have the following:

(k-1)2x-1)

1'Cl K
2 t L 52 — 2:-2_
A+p)* "+ (TN +p)° = 1 1

i=1
Proof. First note that relative to the orthogonal basis giver: in [2], the £*! component
of (A + p) looks like

(3.18)

r
A+t A+r+(1—O=r+1-£+Y =) (3.19)

i=¢
As we saw in §3.2.3, the simple current J acts on the set of A[f]'s by {JA[f]} =
{x — A[f]}, and the sum of the J[]’s with the A[{]'s is equal to the sum of all the
numbers from 1 to 7 + £ = k — 1. From these observations we get (3.19). 0

Equation (3.18) holds for all A € P_’f., and in particular for A = 0. We have

Taa Tz, 7o = Too Ty5. 750 (3.20)

where T is the matrix corresponding to A! and 0 is the vacuum for Cy ;. By [8]. the
simple current symmetry of the T matrix is given by

T7a. 70 Taa = w7(a) T70, 70 Too, (3.21)

and so we have

Trae. 73 Taexe = 07(N) Tr5. 75 Top- (3.22)
By (1.6a) T, is a root of unity, and so (3.20) and (3.22) tell us that
Tax Taexe = 9.7(A)Too Tgs (3.23)

We would like to show that MT = TM if and only if MT = TM, so that M
satisfies the modular invariant property (1.12a) whenever M does. First suppose
that M is a modular invariant for C; x and recall from (1.13) that M), #0 = T\ =
T,.. We prove the following selection rule for C;, x (which should not be confused
with (1.19), where the assumption M 7q 70 # O is required):

My, #0= p7(A) = o7(p)- (3.24)

Proof. For Cy ., by (1.17). we know that v 7(A) = p7(u) iff 31, iA = 377, jp;
(mod 2). By (1.13). we have T, = T},. and given the definition of T this implies
that (A + p)2 = (u + p)? (mod 2x). Hence,

i: (i/\i+(r—i+1)) Ei (iyi+(r—i+1)) (mod 2)
Jj=t

i=1 \ j=i i=1

= Zi)\i-kr(r;l)szmi-i-r—(’;——l)-(modﬂ
=1

i=1

and we have ¢ 7(A) = g 7(u) as required. O
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Now by (3.23) we can conclude that ’1.’»,\: = T“z“z for all A%, u', and this is
equivalent to MT = TM. The opposite implication is proved in the same way.

Based on the results above and those of §3.2.4, we may now conclude that M is
a modular invariant for C;  if and only if the corresponding matrix M is a modular
invariant for Cg .
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Chapter 4

Automorphism Modular
Invariants

The automorphism modular invariants of all the classical affine Lie algebras were

classified in [11]. This chapter specialises their work to the affine algebra C- .
Whenever a modular invariant M is a permutation matrix, we refer to M as an

automorphism invariant, and associate to it the permutation o of P¥ that satisfies

My, =4, ;- This definition of o is equivalent to requiring that

Sau = So(r)a(n), and (4.1)
Thx = So(a)o(n) (4.2)

for the matrices S and T defined in (1.36). We will show that for C5; there are at
most two distinct automorphism invariants.

We first establish that the sets of weights of C,; which have the second and
third smallest quantum-dimensions (see (4.3) below) are necessarily fixed by any
automorphism invariant permutation . Then we determine these sets explicitly
and use them to narrow down the possibilities for . The final step is to use the
norm condition to fully determine the automorphism invariants.

4.1 Preliminary results

Using (1.39) and the denominator identity mentioned in §1.6.1, we can write the
quantum-dimensions Sg)/Sog in terms of the Weyl denominator formula as follows:

'D(/\) = Soa - 1—[ sin(1ra- (p+/\)/n).

500 sin(ma - p/x) (43)

a>0

Let [A] := {A. J A} where J is the simple current involution given by J : (Ag, A1, A2) —
(A2, A1 Ag). Note that the simple current property {1.15) combined with (1.17) im-
plies that D(X) is constant on [A]:

S7a20 = ¢7(0)Sx0 = exp[27iQ 7(0)]Sro = Sho-
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By [6] we know that D(A) =1 if and only if A € [0] = {0, J0}; in §1.4 we found
that Spx > Soo for all A\. This means that D()\) achieves its minimum value on [0].
Let £, and &; represent the set of weights on which D()\) attains its second and third
smallest value, respectively, and let X’ € &, for m = 2,3. Then by (4.1) and the
fact that o must fix zero (otherwise Syg > 0 will be contradicted), D(c)’') = D(X).
This means that o)’ has the m*® smallest q-dimension if and only if )’ does, and so

0Em =Em form =2,3. (4.4)

Equation (4.4) provides an additional constraint on our automorphism invari-
ants. We will find that whenever k is greater than three, £ = [w!] for the funda-
mental weight w!. Thus (4.4) implies that either o(w!) = J(w!) or o(w!) = wi.
When k is odd we see that both actions of o are possible, while only the latter
occurs for even k.

4.2 Candidates for &,

Our task in this section is to prove the following lemma. In §4.3 we will precisely
determine &, for each level k.

Lemma 3. The candidates for €2 are [w!], [w?] end [kw!].

Let a and b # 0 be vectors in R® and suppose that for all t € [to,t1], a + bt €
P’ where P% is the same as the usual P¥ without the requirement that all the
components be integers. Using the definition (4.3), we show that D(a + bt) achieves
its minimum value at one of to, t;. To simplify the following terms, let 8 :=

(p+a+bt)/x. We denote the four positive roots of Cs by {ay, az. a1 + a2,2a; + az}
[2]. Now,

. _ sin(ra - 3)
Dla +bt) = QI>IO sin(ra - p/K)
= %’D(a +bt) = [%(al - b) cos[way - B] - sin[ras - F]

-sin[r(a; + ag) - B] - sin[7(2a; + a2) - B] + similar terms]
1
};IO sin(ra - p/K)’

The similar terms alluded to in the formula above are the three products involving
the cosine of each of as, a; + a2 and 2a; + a; that are analogous to the one given.
As a function of ¢, D will take on its extreme value on the interval [¢g, t;] at some
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point ¢’ such that D(a + bt') = 0. We have:

%D(a +6t) = = - [Z(a1 - b)(-sin(maq - B)) - sin(maz - B) - sin(r(a1 + az) - B)-

sin(7r(2a; + a2) - B8) + %(al - b)(aa - b) cos(ma; - B) - cos(ras - B)-
sin(m(an + ag) - B) sin(m (201 +a2) - B) + =(a1-b)((a1 +a2) -b)
cos(ma - B) - sin(mas - B) - cos(w(a; + az) - B) - sin(w(2a; + a2) - B) +
1:_-(011 -b)((2ay + an) - b) cos(mway - B) - sin{was - B) - sin(w(a; + aq) - B)-

1

cos(m(2ay + az) - B) + similar terms] . H W

a>0
We are assuming that %'D(a + bt'} = 0. In order to use this information we need
to rewrite the sums and products found in -;%D. Ignoring the constants (i.e. the
expressions that are independent of ¢), the terms that have been explicitly calculated
above simplify to:

z(al b) cos(may - 5)

K ) sin(ray - 8)

sin(r(a + a2) - B) - sin(r(2a; + a2) - ﬁ))].

['D'(a + bt) — (cos(wm -B)~! -sin(ras - B)-

Now letting t = ¢’ and including all of the terms in 7', we get
2 in(ra - B/K) (a + b)?
D'(a+bt) = ——- [[ 3=
(@ +bt) K2 g sin(ra - p/K) ;)% sin?(ra - B/x)

(a + b)?
sin®(ra - B/K)’

2
=—’D(a+bt)-§§~z

a>0

By definition, D > 0, and all the other terms in (4.5) are squared, so we may

conclude that if D'(a + bt) = 0, then D"(a + bt) < 0. In other words. D attains a

local maximum at ¢t = ¢/, and so its minimum value occurs at one of the endpoints
tg. t;. Thus,

(4.5)

D(a + bt') > min{D(a + btg), D(a + bt;)} whenever t' € [to, ¢;]. (4.6)

Lemma 4. Suppose that m = (my, ma, m3) € Z3, with mg + m; + m2 =0, and not
allm;=0. Then if A\ € & and Axm ¢ [0], A; < |m;| for some 0 <7< 2.

Proof. Let A € P and consider A(t) = A+mt. Note that A(t) € Fi, with A(t) € P¥
if t is an integer. Define

—\i —\:

1) and ¢ = min;m,; <o ( l) . 4.7
my my
Now, if tg < —1 and ¢; > 1, then both A(1) = A +m and A{—~1) = A — m must be
in P%¥. From (4.6),

ty = MaXi.m,;>0 (

D(A + mt) > min{D(A + m), D(A —m)}
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for all t between —1 and 1. In particular, D(A(0)) = D(A) > min{D(A +m),D(A —
m)}. This contradicts our hypothesis that A + m ¢ [0] while A € £. Thus either
—1 <ty or t; < 1. Given our definitions in (4.7), this is equivalent to the existence
of an 7 such that A; < |m;|. a

We can use Lemma 4 to get a short list of possible candidates for £,. Consider
m = (1.-1.0). m' =(1,0.-1) and m"” = (0, -1,1). We begin with the assumption
that A = (Ag, A1, A2) € &, while Ax{m,m’,m"} ¢ [0]. Our first n tells us that either
Ao = 0 or A\; =0 (recall that all the );’s are positive integers). The next vector, m’,
implies that one of A\¢ and As is zero. Note that if both A; and A, are zero, then
A = 0, which is not in £;. Therefore Ao = 0 and so none of A + {m,m',m"} are in
[0] = {(k,0.0).(0,0,k)}. Our final vector m" forces either A; or A; to be zero. If A2
is the nonzero component then A = (0,0,k) = J(0) which is not in £&. However,
A = (0.k.0) = kw! is a possibility.

While it may seem as though we have found only one candidate for £, there
are others, namely [0] = {m,m’,m"}. By checking each of these twelve vectors,
we find that only four of them are in P%. They are: {(0 — m) = w!,(0 - m') =
w2 (J(0) = m") = JT(w!), (J(0) + m') = J(w?)}. We have proved Lemma 3.

4.3 Determining &

Our main result is that £ = [w!] unless k = 2 or 3. If k = 2 then & = [w?] U [2w!]
and €3 = [w!]. while £ = 3 implies that & = [w!]U [w?] U [3w}].

We first look at those candidates for £ that are not dependent on k (except
in the 0'* node). By Lemma 3, these are [w'] and [w?]. We need to determine
the relationship between D(w!) and D(w?), and whichever is smaller will then be
compared to D(kw'). The distinction between those candidates that are dependent
on k and those that are not is made so that we can differentiate Dx(A) with respect
to k.

Using (4.3) we find that

De(w?) _ [y sinlrac (o + «?)/s] _ _sin(3E
Die(w!) ~ L sinfra-(p+w!)/k]  2sin(E)cos(Z)

(4.8)
a>0
The dot products (w' - a;) are computed relative to the orthogonal coordinates
{ei | ei-e; = %Ji,j} (as in [2]). For Ca, w! = 715(1,0), w? = 715(1,1), a; = 715(1,—1)
and a; = %(0.2).

We can show that (4.8) is increasing for all £ > 3 by taking its derivative. We
find that 3‘%%{%‘% > 0 for all kK > 0 (i.e. for k > 4). Now if there exists a kg such
that Di,(w?) > Di,(w!), then (4.8) tells us that Di(w?) will be strictly greater than



Di(w!) for all k > kq. By testing k values in (4.8) we find that ky = 3:

D3(w?) _ sin($%
D3(w!)  2sin(§)cos(f5)

=1 (4.9)

This means that w? will no longer be a candidate for £; whenever k > 3. If k = 2
or 3 we calculate the ratios of the g-dimensions directly. When & = 1 note that
[w?] = [0]. and so &> = [w!] automatically.

Now we consider [kw'] (note that kw! is fixed by J). The rank-level duality

properties of C» x as detailed in the previous chapter greatly simplify our task. Note
that by (3.17) )
- Sy Sxo
D) =22 =220 —p( 4.10
() = 28 = 22 =D() (4.10)

and so we must have A € & if and only if A € &,, where tilde’s are used to represent
quantities in Ci 2. Furthermore, we can calculate (w!)! and (kw!)* directly:

(') =ia' and (Gu')t =id’. (4.11)
Thus by (4.9) and (4.11),
D(kw') = D(@*) > D(@t) = D(w!), (4.12)

and we conclude that & = [w!] for all k¥ > 3.
If k = 2. the candidates for &; are [w!], [w®] and [2w!]. By direct calculation we
find that Da(w?) < Da(w') and Dp(w?) = D(2w!):

(w?) _ sin(E

(w!) 2sin(%) cos({5) <l

D,
D,
and.

Da(w?) _ sin(f)sin(3F)sin(3F)
Dy(21) ~ sin(¥)sin(F)sin(E)

This implies that & = [w?] U [2w!]. For C2, P¥ = {0,70.w!, Jw',w?,2w'} so by
the process of elimination we must have & = [w!].
When k& = 3 we have D3(w!) = D3(w?) = D3(3w?):

Dy(3) _ sin(F)sin(3E) _
Di3(w!)  sin(%)sin(3%

Thus & = [w!] U [w?] U [3w!] for k¥ = 3, and we have justified the results stated at
the beginning of this section. The next step is to actually find o.
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4.4 Classifying the Automorphism Invariants

We are now ready to determine all of the possible automorphism invariants for
C> . The results of the previous section, combined with (4.4), imply that any
automorphism invariant permutation o must fix [w!]. This means that o(w!) =
J®(w!) for some a € {0,1}. If @ = 1 then we apply the norm condition to get

(p+w')? = (p+ Jw")? (mod 25) = (k — 1)x =0 (mod 2x), (4.13)

so that & must be odd. It happens that by (1], another automorphism invariant
exists under exactly the same condition: If k£ is odd then the permutation o7 given
by

a7(A) = TN () (4.14)

defines an automorphism invariant. Note that o7(w!) = J'w!) = o(w!). This
means that by replacing o with o}l composed with o, we find that our new o fixes
w! for all k.

If k = 1. then P¥ = {(0,0).(1,0),(0,1)} = {0,w!,w?}. Then the simple current

action is
T ifA=w!
2\ = 4.15
a7} {)\ i A # Wl (4.15)

and so o7 = o), the trivial permutation.

The next step is to use the fusion product of w! with itself to show that, by the
norm condition, o must fix w? as well. Then by Lemma 5 below, we can conclude
that o is the identity permutation.

Recall from §1.5 that if A and p are elements of the fusion ring, then A x u =
SN X,V We can use (1.40) to calculate the fusion product of certain weights. By
[11], we have the fusion product

w! x wh = w? + 2wt (4.16)
The norm of the left hand side of (4.16) is fixed by o, and so this must also be the
case for the right side. Let o(w?) = (c,d) for some nonnegative integers ¢ and d.
Then (p + w? + 2w!)? = (p + o(w?) + 2w!)? implies that 2 + d? + 8¢ + 2d = 12.
The only possible solution is that ¢ = d = 1, which implies that o fixes w?, and
so by Lemma 5 below we may conclude that ¢ = id. Thus the only non-trivial
automorphism invariant permutation is o7, which occurs when & is odd.

Lemma 5. If o fizes w' and w?, then o is trivial on P%.

Proof. By [9] we know that Sy, /So, can be written as a polynomial P, in S, /So,.
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Applying o to P, we get:

Sa(\)a(n)
P, = —Qals)
"N Sy
— Sw

-5
=P,

by (4.-1)

Now. P, depends on S:,/Sou. and so this ratio must be fixed under o. By our
hypothesis the w* are fixed by o, and we always have o(0) = 0. Therefore,

Suiu _ So(wi)otw)

Sou B 50(0)0(#)
— S.ta(n)
 Soa(u)

and we may conclude that S, = S),(,) for all A, u. This is a contradiction to the
fact that S is an invertible matrix unless o is the identity mapping. O

We conclude this chapter by remarking upon the significance of the classification
of automorphism invariants. We have shown that for the affine algebra C3 i, the only
nontrivial automorphism invariant acts like a simple current and exists when k is
odd. This suggests that given Conjecture 1, §1.6.5, for odd k, our modular invariant
classification exactly matches the list of known modular invariants contained in that
section.
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