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Abstract: As power systems are being highly stressed with the boost of loading levels and the introduction of new generation
sources, transmission expansion planning (TEP) has regained its significance as a pivotal problem to be solved. To ameliorate
the performance on both efficiency and accuracy for the solution of TEP from the aspect of algorithm design, a static DC TEP
without generation redispatch is investigated by the proposed multi-group particle swarm optimisation (MGPSO) algorithm.
MGPSO is based on the discrete PSO framework with several beneficial enhancements involved, such as Sobol sequence
initialisation method, multi-group co-evolution strategy, and mutation mechanism. For the solution of linear programming
subproblem within the framework of MGPSO, a linear equation system is extracted and then addressed with efficient LU
decomposition approach. Case studies have been implemented on five classical benchmarks, ranging from 6-bus to 118-bus,
between the MGPSO and commercial software Lingo 11.0 to validate the superiority of MGPSO. Speedup analysis as well as
performance evaluation of different acceleration strategy involved in MGPSO are implemented and discussed.

1௑Introduction
Continued increase in loading levels and an emphasis on accessing
far-flung renewable and distributed generation have underscored
the necessity of building new transmission lines worldwide, which
demands intensive research for an efficient solution of transmission
expansion planning (TEP) problem [1, 2]. Originally proposed in
1970 [3], the TEP is a decision-making problem that tries to design
the expansion plan at the lowest cost while meeting constraints for
safe and efficient operation. During the last decades, several TEP
problems have emerged along with the evolution of power system,
which can be categorised according to different aspects:

• Transmission network model: Four types of models representing
the transmission network have been investigated for TEP study:
(i) DC power flow model, which is the most widely accepted
model with a characteristic of mixed-integer, non-linear, non-
convex, and NP-hard [4]. (ii) Transportation model is a mixed-
integer linear programming (MILP) problem, which can be
generated from DC power flow model by eliminating the
constraints of Kirchhoff's voltage law. It is no longer popular
since its inaccuracy. (iii) Disjunctive model is also derived from
DC power flow model by replacing integer decision variables
with binary decision variables and introducing large constant to
linearise the power flow constraint, resulting in a MILP problem
with the whole characteristic of DC power flow model kept.
This model introduces large numbers of decision variables and
constraints during the process of linearisation. (iv) AC power
flow model, which is the most accurate one since both active
and reactive power flow are considered, but it is usually
considered only at a later stage of the planning process when the
most attractive topologies have been determined [5].

• Planning horizon: According to the time span considered, TEP
can be classified into static and dynamic TEP, where the former
considers only one stage, while the later divides the whole
period into several stages, leading to more accurate decision
making as well as heavily computational burden.

• Generation redispatch: Generation redispatch is required for
industry practice, especially when intermittent renewable energy
generators are utilised. However, it is reported in [6] that TEP

with generation redispatch is easier than the case of planning
without redispatch in computational complicity.

• Security criterion: Modelling security drastically increases the
complexity of the resulting problem since the unavailability of
system components needs to be characterised. One of the most
extensively adopted criteria in literature on TEP is the n − 1
security criteria.

• Uncertainty: The uncertainty usually comes from the fluctuated
renewable energy generation and load demand [7].

From the perspective of realistic operation, AC power flow model,
multi-stage planning, generation redispatch, security criterion, and
uncertainty should all be considered as a whole problem, which
makes the problem so complicated that the computation is
intensive or even intractable. According to Silva et al. [8], the
methodology suitable for the basic TEP can be extended to some
more complicated TEP problems. Thus, the static DC TEP
(SDCTEP) without generation redispatch, security criterion, and
uncertainty is investigated to provide inspiration for the addressing
of the whole problem in the future.

All the efforts devoted into solving the TEP problem can be
classified into three categories (for more comprehensive reviews,
the interested reader is referred to [9, 10]): (i) deterministic
methods [1, 2], (ii) heuristic methods [11], and (iii) meta-heuristic
methods [12–21]. To transform power system equations into
mathematical optimisation models, the original system should be
largely simplified with some aspects discarded, which is difficult
due to the requirement of rigorous analytical background for both
mathematical and power systems. On the other hand, meta-
heuristics methods [22] are relatively straightforward. Furthermore,
it is also possible to find the sub-optimal or global optimal
solutions for most problems regardless of whether they are non-
linear, non-convex, combinatorial, or even NP-hard due to their
global convergence capability [23].

However, the execution time still remains a bottleneck for meta-
heuristic algorithms when dealing with large-scale TEP problems
due to the long-time consumed by thousands of times of linear
programming (LP) solution (which has been reported by
Hashimoto et al. [24] that it may take up to 90% of the total
elapsed time). Therefore, for the purpose of improving the
performance, two alternatives have been emphasised in the

IET Gener. Transm. Distrib., 2017, Vol. 11 Iss. 6, pp. 1434-1442
© The Institution of Engineering and Technology 2017

1434

READ O
NLY



literature: (i) an efficient LP solver [25], and (ii) a better meta-
heuristic algorithm [11]. To fill this gap, an efficient LP solution
process was proposed by Hashimoto et al. [24], where the LP
subproblem was transformed into another equivalent LP problem
with reduced numbers of constraints and variables, resulting in less
solution time. On the other hand, as a popular meta-heuristic
method, particle swarm optimisation (PSO) gained widespread
application in the solution of TEP.

Many successful results have been reported in the solution of
TEP with classical PSO and its variants [12–19], of which the most
popular enhancement strategies include high diversity initialisation
[15, 16], replication [17], mutation [16, 17, 19], selection [17], and
evolutionary adaptation strategy [18]. In addition, four types of
PSO are discussed in [20] as a survey, and a multi-objective PSO
has also been proposed in [21].

The population of the majority of the above PSO variants are
led by a single global best, which usually results into premature
and local optimal solution; therefore, their applications are mostly
limited to small- or medium-scale systems. In this paper, a multi-
group co-evolution strategy is employed on the classical PSO to
increase the global search capability, resulting in a multi-group
PSO (MGPSO), which is then enhanced by several premature
elimination strategies, such as Sobol initialisation and mutation
mechanism. Furthermore, to improve the efficiency of thousands of
times of LP solution, a linear equation system (LES) is generated
for each LP, which is then tackled by the efficient LU
decomposition approach.

Five case studies are employed to verify the proposal ranging
from small-scale to large-scale: the Garver 6-bus system, the IEEE
24-bus system, the Brazilian 46-bus and 79-bus systems, and the
IEEE 118-bus system. The results indicate that MGPSO performs
better than other meta-heuristic algorithms, and achieves
considerable speedup than commercial software Lingo 11.0 in
execution time.

The rest of the paper is organised as follows. The TEP problem
formulation as well as LP subproblem are presented in Section 2.
Section 3 highlights the MGPSO and its implementation for TEP.
Case studies and discussion are reported in Section 4. Finally,
conclusions are drawn in Section 5.

2௑TEP problem formulation
2.1 DC power flow model

DC power flow model is the basic network model for TEP study,
which can be formulated as follows:

min ∑
(i, j) ∈ Ω

ci jni j + α ∑
k ∈ Γ

rk, (1)

s . t .

S f + g + r = d,
(2)

f i j − γi j ni j
0 + ni j θi − θ j = 0, (3)

| f i j | ≤ ni j
0 + ni j f¯i j, (4)

0 ≤ g ≤ ḡ, (5)

0 ≤ r ≤ d, (6)

0 ≤ ni j ≤ n̄i j, ni j integer, θi and θ j unbounded . (7)

where the objective function (1) comprises of the construction cost
∑(i, j) ∈ Ω ci jni j and the load curtailment penalty α∑k ∈ Γ rk, with ci j

and ni j represent the cost and the number of parallel candidate
circuit to be built for corridor i–j, α is the penalty factor, rk is the
loss of load for bus k, Ω and Γ are sets of candidate circuits and
buses, respectively. Equation (2) is the bus balance constraint,
where S is the bus-branch incidence matrix defined by (8), f, g, r,
and d denote vectors of power flow of corridor, generation, load
curtailment, and load, respectively. Equations (3) and (4) are DC

power flow constraints, where γi j, ni j
0  and f¯i j are the susceptance,

initial number, and maximum power flow of circuit i–j, θi and θ j

are voltage phase angles. Equations (5)–(7) are limit constraints for
the generation, load curtailment, and the number of new lines to be
built.

Si j =

−1, if branch i − j originates from bus i,

1, if branch i − j terminates at bus j,

0, otherwise .

(8)

2.2 Linear programming subproblem

The SDCTEP (1) is a mixed-integer non-linear programming
(MINLP) problem, which has been proved to be a typical hard
combinatorial problem [24, 25]. However, if a candidate solution n
is given, i.e. ni j is fixed, problem (1) can be converted to a LP
problem and rewritten as follows:

min ∑
(i, j) ∈ Ω

ci jni j + α ∑
k ∈ Γ

rk, (9)

s . t .

Bθ + g + r = d,
(10)

γi j ni j
0 + ni j θi − θ j ≤ ni j

0 + ni j f¯i j, (11)

Constraints (5) − (7) . (12)

where constraints (10) and (11) are derived from (2) and (4),
respectively, with f i j replaced by γi j ni j

0 + ni j θi − θ j  according to
(3). Accordingly, Sf is rewritten into Bθ, with θ represents the
vector of voltage phase angles, and B is a symmetric singular
matrix generated by

B = − S γ . ∗ n
0 + n 11 × nb

. ∗ ST , (13)

where 11 × nb
 is a vector of ones by the scale of 1 × nb and ‘. ∗’

means element-wise multiplication operator in Matlab, γ, n0, and n
are vectors of γi j, ni j

0 , and ni j, respectively, nb is the total number of
buses.

Since MINLP (1)–(7) contains large numbers of constraints,
which provides great obstacles for meta-heuristic algorithm with
conventional constraint handling methods, such as penalty function
method, therefore, another more efficient strategy [shown in
Algorithm 1 (see Fig. 1)] has been proposed and employed by the
majority of meta-heuristic algorithms when tackling TEP
problems. 

2.3 Linear programming transformation

To be solved more efficiently, the LP (9)–(12) was transformed
into a new form by Hashimoto et al. [24] via a series of processes,
resulting in the number of decision variables reduced from 2nb to
nb, and the number of constraints decreased from 2nb + 2nc to
nb + 2nc + 1, where nc is the number of candidate circuits. Due to
the reduction in problem scale, the revised LP formulation gained a
better performance than Minos 5.4 software in [24]. However, it
was pointed by the authors themselves that the proposed
transformation presented a disadvantage of requiring the inversion
of matrix B in an explicit way, which is relatively computationally
intensive.

Instead of transforming the original LP into another LP with
reduced scales, a LES is extracted in this paper since it is much
easier to be addressed. LES can be solved by matrix inverse or LU
decomposition in only one time while large numbers of iterations
are required for LP solution in either simplex method or interior
point method. To fulfil the transformation from LP to LES, the
following two assumptions are proposed:
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• Assumption 1: rk = 0 for all k. It is required that all load buses
are satisfied by generation buses for the optimal solution, i.e. for
each bus the loss of load is 0, which means rk = 0.

• Assumption 2: g = ḡ. This assumption holds for all the TEP
without the consideration of generation redispatch, such as the
real Brazilian 46-bus system [5, 6, 8, 15].

On the basis of Assumptions 1 and 2, LP problem (9)–(12) can be
modified into:

min ∑
(i, j) ∈ Ω

ci jni j + α ∑
(i, j) ∈ Ω

si j, (14)

s . t .

Bθ + ḡ = d,
(15)

γi j ni j
0 + ni j θi − θ j ≤ ni j

0 + ni j f¯i j + si j, (16)

si j ≥ 0. (17)

where si j is the relaxed coefficient. Compared with (9)–(12),
decision variables g and r are eliminated, as well as the constraints
of limits for them.

The key point for solving LP (14)–(17) is deriving θ from LES
(15), after which, the other decision variable si j is very easy to be
extracted from (16). There are several methods to tackle with LES,
such as LU decomposition. The details to solve (14)–(17) will be
explicated by Algorithm 2 in Section 3.6.

3௑Multi-group particle swarm optimisation
PSO was first proposed by Kennedy and Eberhart [26] in 1995
with the core idea of sharing information between particles, local
best, and global best, which can be expressed as follows:

vi
k + 1 = w0vi

k + c1w1(pi
k − xi

k) + c2w2(g
k − xi

k), (18)

xi
k + 1 = xi

k + vi
k + 1, (19)

where vi
k + 1 and vi

k are the velocities of particle i at the (k + 1)th and
(k)th iteration; xi

k + 1 and xi
k are the positions of particle i at the (k + 

1)th and (k)th iteration; w0 ∈ [0, 1] is the inertia weight;
c1, c2 ∈ [0, 2] are the self-knowledge and social-learning factors;
w1, w2 ∈ [0, 1] are random numbers; pi

k is the local best of particle i
till (k)th iteration; gk is the global best till (k)th iteration.

On the basis of the classical PSO, a MGPSO has been proposed
for the solution of SDCTEP problem, with the most important
features are detailed as follows.

3.1 Problem codification

The design of any iterative meta-heuristic algorithm requires an
encoding of the solution, which plays a crucial role in the
efficiency and effectiveness [27]. Several alternative codification
approaches were proposed in the literature, including binary
codification, independent bits, and decimal codification, etc. In this

paper, the decimal codification is employed based on the following
two considerations:

• Both binary and independent bits have Hamming cliffs,
introducing great obstacles for convergence. For example, two
successive numbers 3 and 4 in decimal will be expressed totally
inverse by binary bits as ‘011’ and ‘100’, respectively.

• The individual length is longer if the solution is represented by
binary bits and the transform process from binary to decimal
will be executed for thousands of times, which requires more
computational resources.

3.2 Population initialisation

To gain higher diversity, Sobol sequence [28] is adopted in this
paper. Different from the classical pseudo-random sequences, the
Sobol sequence is a quasi-random sequence. It can be observed
from Fig. 2 that the Sobol sequence is more uniformly sampled
than pseudo-random sequence, where a total number of N = 500
points is sampled for each method in a 1 × 1 square area. To do a
numerical analysis, both axes are divided into W = 1, …, 10
segments, resulting in W2 square subareas. If the points are ideally
distributed in even, each subarea should have N /W2 points.
Suppose subarea ij has yi j points (i = 1, …, W, j = 1, …, W), then
the abstract biases for each subarea from its ideal value can be
derived, and their average value E can be used to illustrate the
uniformity of each sequence.

E =
∑i = 1

W ∑ j = 1

W |yi j − N /W2|

W
2 . (20)

Fig. 3 shows the average bias E across different W and N. It can
be seen that for the fixed N, E is getting smaller as W increases,
which is due to the reduction of the ideal value N /W2. Another
important feature is that the average bias of Sobol sequence is
always smaller than pseudo sequence for any fixed N and W,
indicating that the Sobol sequence is evenly distributed, i.e.
diversity is guaranteed. 

3.3 Particle evolution

Particle evolution is the kernel of all kinds of PSO ranging from
single-group to multi-group. For the discrete version of PSO, the
most commonly utilised method is regulating velocity and position
to be integer using functions such as fix(), round(), and ceil(). As
the convergence continues, the current solution xi

k is getting close
to its local best pi

k and global best gk, thus the real value of velocity
is usually within an interval of (−1, 1) according to (18). At this
circumstance, fix() and ceil() may have huge error, such as fix(0.9) 
= 0 and ceil(0.1) = 1, therefore round() is utilised by Murugan [15]
with (18) is modified as

vi
k + 1 = round w0W0vi

k + c1W1(pi
k − xi

k) + c2W2(g
k − xi

k) , (21)

where W0 is a random number taking discrete values of 0, 1, or −1;
W1 and W2 are random discrete numbers of either 0 or 1; all the
other variables and parameters share the same definition as (18)
and (19). Different from (18), (21) provides more possibilities by

Fig. 1௒ Algorithm 1 Pseudo code of meta-heuristic algorithms for TEP solution
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the introduction of W0, W1, and W2, such as temperately eliminating
the influence of velocity, local best, and global best by setting W0,
W1, and W2 into 0 respectively. The search direction can even be
turned totally inverse if W0 = − 1. These possibilities bring more
diversity to the searching process. The performance of this strategy
has been verified by Murugan [15], and it will be employed as the
evolution strategy for each particle of MGPSO in this paper. If the

velocity is too high, particles might fly past good solutions; if it is
too small, particles may not explore sufficiently beyond locally
good regions [14]. Therefore, the velocity is bounded into [−2, 2]
in this paper.

3.4 Multi-group co-evolution

Although particle evolution strategy shown above has a good
performance reported in [15], beneficial improvements are still
possible to be investigated. For example, the current global best gk

involves in the evolution process of all particles in (21), which
forces the whole population to converge to a small space
dominated by gk, leaving large areas unexplored, where the real
global optimal might exist, i.e. the final solution is a local optimal.
Therefore, to reduce the strong influence of single global best, the
whole population was divided into ng groups in this paper to keep
diversity, and each group ( j = 1⋯ng) has a global best g j

k until
iteration k. The multi-group co-evolution strategy is guided by the
following two rules:

• All the global best of different groups are different. If g j1

k = g j2

k

while j1 ≠ j2, then a mutation process should be triggered on
either g j1

k  or g j2

k . This rule makes each group driven by different
‘leader’, which forces the whole population to explore more
space.

• The global bests of different groups should share information
with each other. Two-point crossover was employed to perform
the information exchange on randomly selected g j1

k  and g j2

k , with
two obvious benefits: (i) improving the gene characteristics of
poor fitness individuals, and (ii) introducing diversity on good
fitness candidates.

Fig. 4 shows the difference between single-group evolution and
multi-group co-evolution, where particles are represented by solid
circles and the influences are illustrated by dashed arrows. In
Fig. 4a, all the particles are influenced by the population global
best, while in Fig. 4b the particles are driven by each group's global
best, and each global best is influenced by other global bests,
which maintains a good trade-off between population diversity and
global convergence. 

3.5 Mutation mechanism

To prevent premature convergence and enable the MGPSO
algorithm escape from the local optimal, the mutation process has
been carried out in three steps:

Fig. 2௒ Sample points of different random sequences
(a) Sobol sequence, (b) pseudo-random sequence

 

Fig. 3௒ The relationship between E and W for different N
 

Fig. 4௒ Illustration of PSO evolution strategies
(a) Single-group evolution, (b) Multi-group co-evolution
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• Determine the candidate mutation individual according to a
mutation rate rm. Instead of doing the mutation directly on
points of each individual with the same probability, this step
could enable large numbers of particles undisturbed, leaving the
feasibility maintained.

• Replace the candidate mutation individual by its local best. This
process gives a good starting point for mutation, i.e. the
mutation always finds the points near the local best, representing
a higher probability to get good results.

• Perform the mutation process on the points determined by a
selection probability of rp. The point mutation process is carried
out according to the transformation probability shown in Fig. 5.
For example, the probability for a = 0 to mutate into a = 1, a = 2,
and a = 3 is 0.4, 0.2, and 0.4, respectively.

3.6 Fitness evaluation

Fitness evaluation and constraint handling consume the largest part
of the time for almost all meta-heuristic algorithms. According to
the power balance constraints, if the candidate solution n is
infeasible, there must be some loss of load for buses, which then
will be multiplied by α for penalty. To save computational effort,
the sum of power imbalance is directly valued as P for all
infeasible candidate without any solution of LP. On the other hand,
the LES (15) should be figured out to get the objective function
value for feasible solutions.

For the purpose of checking the feasibility of each candidate n,
a process of network analysis consisted of connectivity detection
and feasibility verification has been proposed, which is presented
in Fig. 6. The connectivity detection is implemented for each bus to
check whether it is connected to the grid or not, where the depth-
first search algorithm [29] from graph theory is adopted. The result
is represented by a binary vector Q consists of nb elements, if
Q(i) = 1, then bus i is connected, otherwise, it is disconnected.
Based on Q, the feasibility verification is performed. If the set of
disconnected buses contains generation or load buses, then the
power balance will be destroyed, i.e. the solution is infeasible;
otherwise, candidate n is feasible. 

As discussed above, the objective value of infeasible solution
will be directly valued as P, while for the feasible candidate, LES
(15) should be solved. It is required that the matrix B in (15)
should be non-singular for the utilisation of LU decomposition.
However, the original B is singular, thus two steps are
implemented: (i) delete column i and row i of B if Q(i) = 0,
resulting in Bconnected; (ii) select a slack bus j and eliminate the
corresponding row and column to get the final non-singular matrix
Bnonsingular. Similarly, the singular LES (15) can be transformed into
a non-singular LES:

Bnon − singularθnon − singular + ḡnon − singular = dnon − singular, (22)

where dnon − singular and ḡnon − singular are demand and generation
vectors with slack bus and those with Q(i) = 0 eliminated. The
process, based on LU decomposition since it is more efficient than
matrix inverse method, to derive the objective function value of
feasible candidate is illustrated in Algorithm 2 (see Fig. 7).

[L, U] = lu(Bnon − singular), (23)

θnon − singular = U∖(L∖(dnon − singular − ḡnon − singular)) . (24)

3.7 Terminate condition

The algorithm terminates if the incumbent (the best solution found
so far) does not improve after a specified number nt of iterations or
the maximum numbers of iteration G is reached.

3.8 Implementation framework

The overall implementation framework of MGPSO is illustrated by
algorithm 3 (see Fig. 8) with pseudo code, where the key functions
in line 6–9 have been explicated in the above subsections. 

4௑Case studies and discussion
Two types of tools are employed to perform the case studies,
Matlab 2015b and Lingo 11.0, which are all run on a Windows
desktop with an Intel Xeon E5-2620 CPU at 2.10 GHz with 32 GB

Fig. 5௒ Transform probability for point mutation
 

Fig. 6௒ Flowchart for network analysis
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RAM. In addition, results from the literature are also included for
comparison and discussion.

4.1 Case studies

Five systems without generation redispatch are considered in this
study: the Garver 6-bus system [3, 5], the IEEE 24-bus system with
the third future generation plan [30], the South Brazilian 46-bus
system [6], the Southeast Brazilian 79-bus system [31, 32], and the
IEEE 118-bus system [33]. The former four are the same with the
systems studied in [4], while the last one is modified from [33] by
reducing the maximum capacity of each line to 40% of its original
value due to over sufficient condition. All of these are classical
benchmark systems and have been investigated by several
researchers, an overview of whose scale and complexity is shown
in Table 1. 

4.2 Parameter settings

Control parameters are very significant for algorithm performance
in relation to solution quality as well as convergence speed, which

are usually problem dependent. In this work, all control parameters
related to MGPSO are manually tuned based on a few preliminary
experiments, which are given in Table 2. It should be noted that
these parameters may not be optimal since the comprehensive test
is not fully implemented. Apart from the above parameters related
with cases, c1, c2, and w0 are robust for all four cases, with c1 = 2.0,
c2 = 2.0, and w0 is expressed as follows:

w0 = wmax − (wmax − wmin) × i/G, (25)

where wmax = 0.6 and wmin = 0.2, i is the current iteration count. 

4.3 Results

It will be instructive to review the results reported in the literature
before introducing the results obtained by MGPSO. In 2014, a
work [4] was done to analyse the complexity of TEP with the
branch-and-reduce optimisation navigator (BARON). The result is
given in Table 3, where ϵr is the relative termination tolerance. It
was concluded that BARON converged very fast for the 6-bus and
24-bus systems, however, the execution time increased sharply for
the 46-bus system, and it even could not get the historical best
solution after a computation time of 8 h for the 79-bus system. 

Table 4 illustrates the main result of commercial software Lingo
11.0 and MGPSO programmed with Matlab 2015b running on the
same desktop; result reported by modified PSO (MPSO) [15] is
also included for referencing rather than comparison since the
simulation platform was different. 

Different versions of MPSO were reported in [15], the fastest
one with convergence rate over 50 and 100% are chosen for
referencing. For the 6-bus and 24-bus systems, MPSO is slower

Fig. 7௒ Algorithm 2 LU decomposition method for LP (14)
 

Fig. 8௒ Algorithm 3 Pseudo Code of MGPSO
 

Table 1 Scale and complexity of test cases considered
Systems n̄i j nb nc Search space size
6-bus 4 6 15 515 ≃ 3.05 × 1010

24-bus 3 24 41 441 ≃ 4.84 × 1024

46-bus 3 46 79 479 ≃ 3.65 × 1047

79-bus 3 79 143 4143 ≃ 1.24 × 1086

118-bus 2 118 186 3186 ≃ 5.55 × 1088
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than BARON, but it is a little faster for the 46-bus system. The
convergence rate of these systems can reach 100% for 10 times of
trial. No result has been reported by MPSO for the large-scale 79-
bus system.

The default setting of non-linear programming solver Lingo is
adopted in this paper due to its fast solution process. The precision
of elapsed time for Lingo is 1 s. A total number of 30 times has
been tested for each instance. It can be concluded that Lingo
performs better than MPSO on the execution time; however, the
convergence rate of Lingo is relatively low for medium- and large-
scale systems, the reason is that the option ‘global solver’ is
disabled in the default setting. Although the Lingo is very fast with
the default setting, the global optimal solution cannot be
guaranteed, which is due to the non-convex and multi-modal
feature of TEP. On the other hand, the global optimal can be
always reached if ‘global solver’ is enabled, at the expense of
much longer solution time as its low efficiency. For example, as
shown in Table 4, the average solution time of the 24-bus system
with Lingo on default setting is only 26.900 s, but it turns to be
09:24:11 (33,851 s, 1258 times longer) after calling the ‘global
solver’. The same solver has also been implemented on 46-bus and
79-bus systems, but the solution process cannot terminate after a
running of 2 days.

A detailed comparison is conducted between MGPSO and
Lingo. For the 6-bus system, both methods converge very fast and
accurate, but when it comes to the 24-bus system, the global best of

218 million US$ (MUS) is not reachable for some trials of Lingo,
even the running time is longer than MGPSO, for which the
convergence rate is 100%. MPSO, Lingo, and MGPSO get the
same global optimal with [34, 35] for the 46-bus system of 154.42
MUS with a probability of 100, 63.33, and 100%, respectively. For
the 79- and 118-bus system, no common acceptable global optimal
has been reported, thus the best result gained by MGPSO of 457.8
and 929.4 MUS are regarded as the criterion for convergence
judgment. As shown in Table 4, Lingo performs better or no worse
than MGPSO for 15 and 13 times; however, the average cost is
slightly higher and running time is more than 12 times longer.

4.4 Discussion

4.4.1 Speedup analysis: To do the numerical speedup analysis,
the average execution time for Lingo to solve the 6-bus system in
Table 4 is approximately assumed to be 0.3 s, therefore the speedup
for MGPSO over Lingo is ×1.7. For the other systems, a speedup
of ×3.9, ×6.8, ×12.5, and ×12.8 is also achieved, respectively,
which is illustrated in Fig. 9. The dashed line from 6-bus to 79-bus
system indicates that the slope goes higher as system scale
increases, i.e. the speedup is higher for larger systems. The
suddenly flattened trend from 79-bus to 118-bus system is due to
their similar search space size shown in Table 1. Actually, the
speedup has a linear relationship (shown in Fig. 10) with the search
space size rather than the number of buses. 

4.4.2 Performance evaluation of multi-group co-evolution: To
identify the performance improvement brought by multi-group co-
evolution, both single- and multi-group PSO have been
implemented. The 46-bus system was determined as the target
playground due to its proper difficulty. Fig. 11 depicts the
behaviour of convergence for both algorithms. It can be noticed
that the multi-group co-evolution strategy brings two influences: (i)
compared with single-group PSO, the MGPSO converges slower

Table 2 Control parameters of MGPSO for different cases
Systems m ng

α P G nt

6-bus 20 4 70 400 200 30
24-bus 200 20 30 400 400 80
46-bus 800 40 400 800 1000 100
79-bus 2000 80 600 2000 2000 300
118-bus 2000 80 600 2000 2000 300
 

Table 3 Run time of different simulations (s) [4]
Systems 6-bus 24-bus 46-bus 79-bus
BARON ϵr = 0.1 1 2 972 28,800a

BARON ϵr = 0.01 1 4 5347 28,800a

BARON ϵr = 0.001 1 4 6418 28,800a

a Best solution has not been found by 28,800 s.
 

Table 4 Summary of results for the case studies
Systems Alg. Cost (×1,000,000 US $) Convergence Time (s) Iterations

Best Worst Avg. Trial Sucd. Min. Max. Avg.
6-bus MPSOa 0.200 0.231 0.203 10 9 2.750 3.203 2.845 ≤200

MPSOb 0.200 0.200 0.200 10 10 10.672 10.828 10.733 ≤400

LINGO 0.200 0.200 0.200 30 30 <1.000 <1.000 <1.000 —
MGPSO 0.200 0.200 0.200 30 30 0.139 0.232 0.175 48∼57

24-bus MPSOa 218.000 284.000 232.800 10 7 — — 26.050 126∼245

MPSOb 218.000 218.000 218.000 10 10 — — 14.884 173∼342

LINGO 218.000 243.000 227.200 30 19 16.000 38.000 26.900 —
MGPSO 218.000 218.000 218.000 30 30 5.780 9.581 6.927 192∼208

6-bus MPSOa 154.420 166.040 158.810 10 6 279.700 1146.300 — ≤1500

MPSOb 154.420 154.420 154.420 10 10 633.140 1170.300 816.270 ≤2500

LINGO 154.420 164.752 158.597 30 11 200.000 1616.000 644.570 —
MGPSO 154.420 154.420 154.420 30 30 79.142 113.800 95.070 375∼394

79-bus LINGO 431.900 478.500 458.207 30 15 2279.000 65594.000 12661.200 —
MGPSO 457.800 457.800 457.800 30 30 876.789 1096.293 1014.784 721∼755

118-bus LINGO 915.800 967.600 933.138 30 13 2452.000 72384.000 14211.700 —
MGPSO 929.400 929.400 929.400 30 30 926.813 1259.915 1110.269 742∼783

—: Data is not been reported by the literature.
a and b: The fastest version generated from [15] with convergence rate over 50 and 100%.
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and the solution time is also longer; (ii) the quality of final solution
obtained by MGPSO is better. 

4.4.3 Performance evaluation of initialisation procedure: The
performance evaluation of initialisation procedure cannot be
distinguished with only one execution since the random sequence
has been involved. After 30 times of experiment on the 46-bus
system, MGPSO with and without the Sobol sequence gains a
convergence rate of 100 and 91.4% respectively to the global
optimal.

4.4.4 Performance evaluation of LU decomposition: The LU
decomposition does not affect the convergence characteristic; it

impacts the reduction of solution time of fitness evaluation at each
iteration. As illustrated in Table 4, the average execution time for
MGPSO is 95.070 s. In this section, two more experiments are
carried out: (i) if the LU decomposition is replaced by the matrix
inverse process, the solution time will increase to be 126.941 s; (ii)
if the network analysis shown in Fig. 6 is also eliminated, an
average time of 180.107 s should be required to finish the solution
process.

4.4.5 New results: For the 79-bus system, a solution with the cost
of 424.8 MUS was reported by Binato [31], however, 9.562 MW
loss of load existed on bus #30. Interestingly, [34] also reported a
solution of 444.49 MUS, which was indicated by the same author
in [35] (where they updated the result to be 478.99 MUS without
loss of load) that a total loss of load of about 37 MW was
presented. In addition, a configuration with a cost of 454.1 MUS
was illustrated by Robinson [32] without loss of load. In this work,
a new result of 431.9 MUS without loss of load has been
generated. Table 5 shows the details of each solution, where the
solution with a cost of 457.8MUS is also explicated. 

5௑Conclusion
The candidate transmission circuits considered in the TEP problem
are usually limited by the available computing resources. In this
paper, five case studies with as many as 186 candidate transmission
circuits considered are presented to verify the proposed MGPSO,
showing that the method achieves considerable speedup compared
to commercial software in execution time. The achieved speedup
has a linear relationship with search space size, showing that the
MGPSO algorithm is scalable. Performance evaluation has also
been carried out on several enhancement strategies to distinguish
their contribution. Future work will be concentrated on two
aspects: for the first part, solving more complicated TEP problems
with more realistic factors considered, such as generation
redispatch, AC power flow, uncertainty, security constraints, etc.;
for the second part, since PSO is highly suitable for massively
parallel implementation, the algorithm efficiency can be improved
within high performance computation context, for example, the
utilisation of general-purpose graphics processing unit.
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Fig. 9௒ Speedup analysis between MGPSO and Lingo 11.0
 

Fig. 10௒ Relationship between the speedup and the search space size
 

Fig. 11௒ Convergence characteristic of single- and multi-group PSO for
46-bus system
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Table 5 Solutions and costs for 79-bus system (×1,000,000
US $)
Solution Cost
n18 − 19 = 1, n21 − 20 = 1, n21 − 23 = 1, n23 − 25 = 1, n24 − 09 = 2,
n28 − 33 = 1, n28 − 60 = 1, n30 − 29 = 1, n34 − 56 = 1, n35 − 38 = 1,
n38 − 41 = 1, n40 − 56 = 1, n40 − 72 = 1, n48 − 51 = 1, n58 − 59 = 1,
n59 − 53 = 1, n59 − 67 = 1, n62 − 61 = 2, n62 − 64 = 1, n63 − 64 = 1,
n64 − 65 = 1, n69 − 72 = 1.

424.800
[31]

n18 − 19 = 1, n21 − 20 = 1, n21 − 23 = 1, n24 − 09 = 2, n25 − 60 = 2,
n30 − 29 = 1, n34 − 56 = 2, n34 − 64 = 1, n35 − 38 = 1, n38 − 41 = 2,
n40 − 41 = 1, n40 − 56 = 2, n40 − 72 = 1, n48 − 51 = 1, n48 − 71 = 1,
n58 − 59 = 1, n59 − 53 = 1, n59 − 67 = 1, n63 − 64 = 1, n64 − 65 = 1,
n69 − 72 = 2.

454.100
[32]

n18 − 19 = 1, n21 − 20 = 1, n21 − 23 = 1, n24 − 09 = 2, n25 − 26 = 2,
n26 − 29 = 1, n29 − 31 = 1, n34 − 56 = 1, n35 − 55 = 1, n38 − 41 = 1,
n40 − 56 = 1, n48 − 51 = 1, n58 − 59 = 1, n59 − 53 = 1, n59 − 67 = 1,
n62 − 61 = 2, n62 − 64 = 1, n64 − 65 = 1.

457.800

n18 − 19 = 1, n21 − 20 = 3, n21 − 23 = 1, n23 − 25 = 1, n24 − 09 = 2,
n28 − 33 = 1, n28 − 60 = 1, n30 − 29 = 1, n34 − 56 = 1, n35 − 38 = 1,
n38 − 41 = 1, n40 − 56 = 1, n40 − 72 = 1, n48 − 51 = 1, n58 − 59 = 1,
n59 − 53 = 1, n59 − 67 = 1, n62 − 61 = 2, n62 − 64 = 1, n64 − 65 = 1,
n69 − 72 = 1.

431.900
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