

University of Alberta

MULTILEVEL ACCESS CONTROL AND KEY MANAGEMENT IN SCALABLE LIVE

STREAMING

by

Xingyu Li

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Digital Signals and Image Processing

Department of Electrical and Computer Engineering

©Xingyu Li
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. H.Vicky Zhao (co-supervisor), Electrical and Computer Engineering

Dr. Robert J.Davies (co-supervisor), TRLabs

Dr. Herb Yang, Computing Science

Dr. Hai Jiang, Electrical and Computer Engineering

Abstract

To prevent unauthorized access of multimedia content, effective access control and effi-

cient key management schemes are of crucial importance for multimedia live streaming

applications. To address the network heterogeneity, this thesis investigates scalable and

multilevel access control, where a single bit stream can offer access to different levels of

service. It uses the POSET hash-based structure to explore the data dependency between

different layers in scalable coding, and proposes a secure and efficient key management

scheme that uses public information and hash functions to reduce the rekey overhead. For

those applications that require strict forward/backward security, sequential rekey is used to

update keys. This thesis also addresses frequent membership update in live streaming, and

considers applications that can tolerate a small amount of content leak. Through explor-

ing their unique characteristics in membership dynamics, the proposed schemes reduce the

rekey cost significantly.

Acknowledgements

Firstly, I am deeply grateful to my supervisors Dr. H.Vicky Zhao and Dr. Robert J. Davies

for providing me this valuable opportunity to work with them and for training me as a

M.Sc. student at University of Alberta. Indeed, I would like to thank Dr. H.Vicky Zhao

for providing the valuable feedback that has gone into shaping this thesis, as well as my

approach to research, and for always encouraging me to seek the best path for me in future.

Next, I would like to thank all members in the multimedia laboratory for their support

and friendship. Also, I would like to thank all my friends at University of Alberta for their

encourage and advice.

I owe a great deal to my family. I definitely would not be where I am today without

their gifts of positivity, understanding, support and everlasting love.

Last but not least, I gratefully acknowledge the financial support of TRLab, the Depart-

ment of Electrical and Computer Engineering at University of Alberta, and my supervisors.

Contents

1 Introduction 1

1.1 Access Control in Live streaming . 2

1.2 Challenges in Key Management in Live streaming 3

1.3 Thesis Outline and Contributions . 5

2 Related Works 6

2.1 Centralized Key Management Schemes 6

2.2 Contributory Key Management Schemes 12

2.3 Multilevel Access Control Schemes . 16

3 System Model 21

3.1 Multilevel Access Control in Live Streaming 21

3.2 Key Tree Design . 24

3.2.1 Step 1 SG Subtree Design . 24

3.2.2 Step 2 DG Subtree Design . 26

3.2.3 Step 3 Integration of the SG Subtrees and the DG Subtree 27

3.3 User Dynamics in Live Broadcast Streaming 28

3.4 Performance Criteria . 30

4 Efficient Key Management in Multilevel Access Control 31

4.1 Sequential Rekeying Scheme . 32

4.1.1 Update of the Service Group Subtree 32

4.1.2 Update of {dI} . 33

4.1.3 Session Key Update for a User Join 34

4.1.4 Session Key Update for a User Leave 36

4.2 The Reconnection Scheme . 38

4.3 The Batch Rekeying Scheme . 40

4.4 Grouped User Placement in the ALX Tree 41

5 Performance Analysis and Simulation Results 43

5.1 Performance Analysis of Sequential Rekeying 44

5.1.1 Analysis of Cen . 44

5.1.2 Analysis of Cde . 45

5.1.3 Analysis of Cmsg . 46

5.1.4 Performance Comparison . 47

5.2 Performance Analysis of the Reconnection Scheme 49

5.3 Performance Analysis of the Batch Rekeying Scheme 53

5.3.1 Analysis of Cen . 54

5.3.2 Analysis of Cde . 56

5.3.3 Analysis of Cmsg . 57

5.4 Performance of Grouped User Placement 59

5.5 Simulation Results of A Popular Short-Duration Live Streaming 60

6 Conclusions and Future Work 68

6.1 Conclusions . 68

6.2 Future Work . 69

List of Tables

3.1 Access privileges of the SGs in Example 1. 23

3.2 The optimal values of (a, l) for different user numbers (k). 26

5.1 Performance comparison of different key management schemes. 49

5.2 Parameters of the user join/leave model for each service group 60

List of Figures

2.1 A example of key scheme with session key, group key and numbers of private keys. 7

2.2 The corresponding hierarchical key tree for Figure 2.1. 8

2.3 An example of ALX key tree. a = 2, l = 3 . 12

2.4 Topology of a JET tree [1]. 14

2.5 User’s subscriptions to a compressed bit streaming. 17

2.6 Independent key management scheme for the example shown in Figure 2.5. 17

2.7 Multi-group key management scheme for the example shown in Figure 2.5. 19

2.8 The POSET hash-based access control scheme for the example shown in Figure 2.5. 19

3.1 Data of different layers in Example 1. 22

3.2 SG Subtree design for Example 1. a = 3 and l = 1. 25

3.3 DG Subtree design for Example 1. 26

3.4 POSET Hash-based key management scheme for Example 1. 28

5.1 Performance of the reconnection scheme. λ = 4, 1/µl = 1500, 1/µs = 240, 1/υ =

90 seconds, and Tl = 150 sec. 52

5.2 Performance of the reconnection scheme. λ = 4, 1/µl = 1500, 1/µs = 240, 1/υ =

90 seconds, and α = 0.3. 53

5.3 Performance of batch rekeying. λ = 4, 1/µl = 1500, and 1/µs = 240. 1/υ = 90

seconds and α = 0.3. 62

5.4 KDC computation overhead with batch rekeying. λ = 4, 1/µl = 1500, and 1/µs =

240. 1/υ = 90 seconds and α = 0.3. 63

5.5 User decryption overhead with batch rekeying. λ = 4, 1/µl = 1500, and 1/µs =

240. 1/υ = 90 seconds and α = 0.3. 64

5.6 Performance of batch rekeying for different membership update rates. 1/υ = 90

seconds and α = 0.3. 65

5.7 Performance of the grouped user placement scheme. λ = 4, 1/µl = 1500, and

1/µs = 240. 1/υ = 90 seconds and α = 0.3. 66

5.8 Number of users in each service group in a short-duration live broadcast streaming

application. 67

5.9 Rekey overhead for a popular short-duration live broadcast streaming. 1/υ = 90

seconds and α = 0.3. 67

Acronyms

Acronyms Definition

ALX Non-fixed-degree balanced tree

AVL Self-balancing binary search tree

DG Data Group

DH Diffie-Hellman key exchange protocol

DRM Digital rights management

ECC Elliptic curve cryptography

GDH Group DH key exchange

InS Independent key management scheme

IPTV Internet protocol television

JDH Join-Tree-based Contributory Group Key Management

JET Join-Exit-Tree

KDC Key distribution center

KEK Key encryption key

LKH Logical key hierarchy tree

LKH+ Improved logical key hierarchy tree

MGS Multi-group key management scheme

OFCT One-way function chain tree

OFT One-way function tree

POSET Partially ordered set

QoS Quality of service

RECC Routing-driven ECC-based key management scheme

SG Service Group

SH High layer (enhancement layer) in spatial scalability

SK Session key

SL Low layer (base layer) in spatial scalability

SNR Signal to noise ratio

TH High layer (enhancement layer) in temporal scalability

TL Low layer (base layer) in temporal scalability

TOFT Threshold-based one-way function tree

WFL Wait-for-leaving

List of Symbols

Symbol Definition

aI ALX tree degree for the Ith SG

Cde user’s decryption overhead per second

Cen KDC encryption overhead per second

C(k) average number of rekey messages per one user departure

Cmsg communication overhead per second

dI public label of vertex I

kI group size of SG I

Ke key encryption key

Kg group key

Kp private key

Ks session key

nI the number of parent vertex I has

Pre
I probability of a leaving user rejoining the Ith SG within Tl sec

P′I probability of a leaving user rejoining the Ith SG before next batch moment

QI key set associated with vertex I

Rh parameters for high dynamics update rate

Rl parameters for low dynamics update rate

Tl batch interval

tuI
i

user uI
i ’s leaving time

uI
i the ith users in the Ith SG

vI,J public value of the arrow between vertexes I and J

αI probability of reconnection rate per leaving user in the Ith SG

λI user arrival rate for the Ith SG

1/µI user average staying time in the Ith SG

1/νI average interval between a user’s leave and rejoin for the Ith SG

η ratio of the rekey overhead between two schemes

τuI
i

user uI
i ’s absent time

Chapter 1

Introduction

Advances in communication, networking and digital media technologies have led to the

proliferation of real-time live streaming applications, for example, the internet protocol

television (IPTV). Different from the download-and-play applications, a user starts playing

the video while he/she is still downloading the data. Therefore, it enables users to enjoy

multimedia on the fly. In general, there are two different types of live streaming applica-

tions, (audio) video on demand and live broadcast. On-demand data are stored in a content

server and transmitted at subscribers’ requests. Live broadcast broadcasts multimedia data

to a group of users only at certain predetermined time, for example, live broadcast of an

NBA game, and a user who subscribes to a live broadcast stream has little control on the

streaming session except the ability to join and leave [2].

Since digital data is easy to copy and distribute, it provides adversaries with the capa-

bility to modify and illegally redistribute the media content, which violate the intellectual

property rights of the content owner. It raises a critical and vital issue to protect multimedia

content and to enforce digital right management in live streaming.

1

1.1 Access Control in Live streaming

Access control ensures that only authorized users can access the transmitted data and thus

protects multimedia content confidentiality. It encrypts the transmitted data with a secret

key shared by all users in the group, which prevents unauthorized users without the secret

key from accessing the content.

Multimedia files have large volumes, and are often compressed before they are stored

or transmitted. To ensure the multimedia content security, the compressed bit stream needs

to be encrypted before transmission. A straightforward solution to encrypt multimedia is to

apply generic encryption to multimedia data before compression. However, encryption of-

ten changes the statistical characteristics of multimedia data, and thus results in significant

reduction in compression efficiency [3]. Another simple solution is to compress multime-

dia data first and then encrypt the compressed bit stream. This solution destroys the syntax

structures (e.g. headers and markers) in the original bit stream that are important for QoS

management at the intermediate nodes, and therefore disables the ability of the stream to

adapt to network and device heterogeneity. Though it is possible to allow the intermedi-

ate nodes to decrypt the encrypted bit stream, process the data, and then re-encrypt the bit

stream to operate transcoding and congestion control when the network condition becomes

poor, it enables the intermediate nodes to access the content, which often violates the se-

curity requirements. To address this challenge, a promising solution is to jointly consider

encryption and compression. To support secure and universal access of the multimedia,

format-compliant encryption (or syntax-aware encryption) [4], [5] takes special care to

maintain the syntax structure of the multimedia compression standard during encryption.

It enables the intermediate nodes to easily identify the structure in the encrypted bit stream

and to process the bit stream without decrypting the bit stream. Many format-compliant en-

cryption techniques have been proposed in the literature, for example, the index-mapping

2

encryption [3], [6] and shuffling-based encryption [7], [8].

In group-oriented applications such as live broadcast applications, users may join/leave

the service at any time, and frequent membership update is often observed. Following

previous works, it is assumed that the server knows the join/leave time of each user. For

such group-oriented applications, forward and backward security is of crucial importance.

Forward security prevents leaving users from accessing the future content after they leave,

and backward security ensures that the new users can only access the content after they

join [9], [10], [11]. When there is a membership update, the encryption keys need to be

updated, and another important issue in access control is secure and efficient key update.

This thesis investigates secure and efficient key management schemes in live broadcast

applications. This chapter discusses challenges in key management in live streaming, and

briefly summarizes the main contribution of this thesis.

1.2 Challenges in Key Management in Live streaming

In multimedia multicast applications, subscribers’ bandwidth and their receiving devices

may vary drastically. For example, some users with powerful PCs and high-definition dis-

plays may have high-speed internet, while users who use cell phones can only access mo-

bile networks with low transmission rates. To address this heterogeneity, a straightforward

solution is to encode the same video into multiple streams with different bit rates. Since

multiple bit streams of the same content are transmitted over the network simultaneously,

this approach leads to a significant increase in the overall bit rate. A more efficient way to

address the heterogeneity in network and user devices is to use scalable coding [12], [13].

It decomposes video into layers of different priority in one bit stream, and one bit stream

can provide different levels of resolution/quality simultaneously. The lowest layer, called

the base layer, conveys basic information of the content, and the enhancement layers pro-

3

vide gradual quality refinements. With scalable coding, users with low bandwidth receive

part of the transmitted bit stream and recover a low resolution copy. For users who have

sufficient bandwidth to receive the entire bit stream, they reconstruct the high resolution

version. In addition, in scalable coding, one single bit stream may support different types

of scalability simultaneously, for example, spatial, temporal, and SNR scalability. Spatial

scalability is defined as the representation of the same video in different sizes or resolu-

tions; temporal scalability represents a video in different frame rates; and SNR scalability

is defined as the representation of a video with different quality versions [14].

In live broadcast applications that use scalable video coding, to ensure that only autho-

rized users can access the service and to support the business model “what you see is what

you pay” [15], multilevel access control and scalable digital rights management (DRM) are

often desired. It encrypts different layers of data with different secret keys, called session

keys. The session keys are distributed appropriately so that users only have the keys to

access what they subscribe to. Note that there exists strong data dependency between dif-

ferent layers in scalable coding, and an enhancement layer is useful only if all lower layers

are decoded correctly. Consequently, the secret keys of layers in multilevel access control

are not independent, and a user who has a key for a higher layer should also have the keys

for all lower layers. Thus, a challenging issue in multilevel access control for scalable live

streaming is to address this data dependency.

In addition, recent studies show that live broadcast applications have frequent member-

ship updates with unique characteristics [16], [17], [18], [19]. For example, the total num-

ber of users may vary drastically from time to time; some users may temporarily leave the

service due to network congestion or poor quality of the received video and then come back

later; and others may only stay in the service for a very short time. To achieve forward and

backward security, the session keys have to be updated when there is a membership update.

These unique membership dynamics in live broadcast applications may cause significant

4

communication and computation overhead for key update. Thus, another challenge in ac-

cess control for live streaming is to address this frequent membership update and design

secure and efficient key management schemes.

1.3 Thesis Outline and Contributions

This thesis considers live broadcast applications where a single server distributes video to

a group of users, and focuses on the scenario where a single bit stream supports multiple

types of scalability simultaneously. It addresses the challenging issues in key management,

and designs a secure and efficient key update scheme.

Chapter 2 reviews recent works on access control and key management. Chapter 3 in-

troduces the system model, including the POSET structure used to explore the data depen-

dency in scalable coding, and the characteristics of membership dynamics in live streaming.

In Chapter 4, a POSET Hash-based key management scheme is proposed. It uses the spe-

cial structure of the Hasse diagram, the public information and hash functions in POSET

to significantly reduce the rekey cost. The thesis considers two types of applications: those

that require strict forward and backward security, and those that can tolerate a small amount

of content leak. For applications that require strict forward and backward security, sequen-

tial rekeying is proposed to be adopted to update the keys. For applications that can tolerate

a small amount of content leak and do not require immediate key update after every user

leave, the unique user join/leave pattern in live streaming is explored to achieve efficient

key management. Chapter 5 provides a thorough performance analysis of the communi-

cation overhead, encryption overhead of a central server, called the key distribution center

(KDC), and user’s computation overhead to update keys, and shows the simulation results.

Finally, Chapter 6 draws conclusions and discusses future work.

5

Chapter 2

Related Works

This chapter reviews recent advances in group access control and key management. Access

control and key management guarantee that only authorized users can access the content.

During a membership change (e.g. a user join/leave), all secret keys known to the join/leave

users have to be updated and informed to all authorized users.

Depending on the key generation and distribution process, key management schemes

can be roughly categorized into centralized and contributory approaches. In the centralized

approaches, KDC generates and distributes key information to all group members. The

contributory key management schemes are designed for scenarios where there is no central

server and every participant contributes equally to the generation of the session keys, for

example, in distributed wireless sensor networks and mobile ad hoc networks.

2.1 Centralized Key Management Schemes

In centralized key management schemes, there is a central entity, KDC, who generates

and distributes keys to a group of users. This section reviews centralized key management

schemes for the scenario where all group members subscribe to the same service.

6

Figure 2.1 shows an example of the early works in centralized key management schemes

[20]. In this scheme, Ks is the session key which is used to encrypt the transmitted data,

Fig. 2.1. A example of key scheme with session key, group key and numbers of private keys.

and Kg is the group key used to update the session key. Each user stores his/her own private

key Kp, the group key Kg and the session key Ks. When membership updates, the session

key and the group key have to be updated. For example, when user 8 joins, to prevent

him/her from accessing the previous communication, Kg and Ks need to be updated. To

securely transmit the new keys to the existing 7 users, the new keys Kg,new and Ks,new are

encrypted using Kg,old . These two new keys are also encrypted using Kp8 and unicasted

to the new member. Since user 8 does not know Kg,old and Ks,old , he/she cannot decrypt

the multicasted data before his/her join. Consequently, backward security is guaranteed.

Compared to a user join, a user leave requires more rekey messages. Since the leaving

user knows the old group key Kg,old , it cannot be used to update the new group key Kg,new

and the new session key Ks,new. Thus, KDC has to encrypt these two new keys using each

user’s private key and multicasts the rekey messages to all users, which requires O(k) rekey

messages with k being the number of remaining users in the group.

7

To achieve efficient key update, the logical key hierarchical tree (LKH) was proposed

in [21] and [22] independently. It is now widely used in key management [23], [24]. LKH

introduces key encryption keys, and organizes keys as nodes in a balanced binary tree. For

example, for the network in Figure 2.1, the hierarchical key tree is shown in Figure 2.2(a).

The key above the tree root is the session key Ks. The tree root corresponds to the group

key Kg, and the intermediate tree nodes correspond to the key encryption keys Ke, each of

which is shared by users who are descendants of the corresponding inner node. A leaf node

corresponds to a user’s private key Kp. Each user in the group has all keys on the path from

the corresponding leaf node to the root node plus the session key. For example, in Figure

2.2(a), user 1 has 5 keys, Ks, Kg, ke0, ke2 and his/her private key Kp1.

Fig. 2.2. The corresponding hierarchical key tree for Figure 2.1.

When there is a membership update, KDC first updates the key tree, then updates the

keys that the leaving/join user knows one by one. Use Figure 2.2(a) as an example. After

user 8 leaves, the node denoted by Ke5 only has one child, user 7. KDC merges these two

8

nodes together, replaces the node labeled Ke5 with the node representing Kp7, and the new

tree is shown in Figure 2.2(b). To ensure forward security, all keys known to the leaving

user, that is, Ks, Kg and Ke1, should be updated, and the encryption-based method is used

to update these keys. To update Ke1, KDC generates a new key Ke1,new, and multicasts two

messages {Ke1,new}Kp7 and {Ke1,new}Ke4 , where the first message enables user 7 to have

the new key Ke1,new and {Ke1,new}Ke4 enables user 5 and 6 to get Ke1,new. Here, {K1}K2 is

used to denote the key update message {{K1, Ind(K1)}K2,Ind(K2)}, which means that K2

is used to encrypt the rekey message to update K1, and Ind(K1) is K1’s index. To update

the group key Kg, two messages {Kg,new}Ke0 and {Kg,new}Ke1,new are sent to enable user 1

to 7 to have Kg,new. Finally, KDC sends one rekey message {Ks,new}Kg,new to all users to

update the session key. The key update algorithm for a user join is similar and thus omitted

here. The LKH approach uses a logical balanced key tree to update keys, and reduces the

number of rekey messages to O(2log2(k)).

The work in [25] proposed an improved LKH key management scheme, called the

LKH+ scheme. It uses a secure one-way function f (·) [26] to update keys when a user joins

the service. Here, one-way function is a mathematical function that is easy to compute in

one direction (the forward direction), while it is hard to compute in the opposite direction.

For example, when user 8 joins the service, KDC splits the node denoted by Kp7 in Figure

2.2(b), puts user 7 and 8 under it, and generates a new key Ke5 for that node, as shown

in Figure 2.2(a). To ensure backward security, Ke1, Kg and Ks need to be updated using

the secure one-way functions. For example, KDC generates the new key Ke1,new = f (Ke1)

and sends the index of Ke1, Ind(Ke1), to all users. Since only user 5 to 7 know Ke1,

they update Ke1 using the same one-way function. Kg and Ks are updated using the same

method. To send the new key Ke5 to user 7, KDC encrypts it using Kp7. Finally, KDC

unicasts Ke5, Ke1, Kg and Ks to user 8. The LKH+ scheme still uses the encryption-based

method to update keys for a user leave, and the rekey computation cost is the same as that

9

of the LKH. Note that the computation cost of one-way functions is much smaller than that

of encryption/decryption and can be ignored. Therefore, the LKH+ scheme significantly

reduces the rekey computation cost for user join when compared with the LKH scheme.

The one-way function tree (OFT) was proposed in [9] to further reduce the rekey cost.

It uses the same balanced binary tree as the LKH scheme to organize keys. Different

from the LKH scheme, the keys are not randomly generated by KDC, but using the rule

Kx = g(f (Kx,le f t), f (Kx,right)), where Kx,le f t and Kx,right are the left and the right children

of node Kx. Here, g(·) and f (·) are a mix function (e.g. XOR) and a one-way function,

respectively, and f (Kx) is called the blinded value of Kx because users cannot derive Kx

from f (Kx). For example, in Figure 2.2 (a), Ke0 = g(f (Ke2), f (Ke3)). The session key

Ks is a crypto function of Kg, for example, Ks = f (Kg), where f (·) is a one-way function.

In this scheme, each user can derive all the keys that he/she needs if he/she knows the

blinded values of the keys that are sibling to the keys he/she knows. For example, in

Figure 2.2(a), given his/her private key Kp8 and blinded value f (Kp7), user 8 can calculate

Ke5 = g(f (Kp7), f (Kp8)). Similarly, given f (Ke4) and f (Ke0), user 8 can calculate Ke1 =

g(f (Ke4), f (Ke5)), Kg = g(f (Ke0), f (Ke1)) and Ks = f (Kg) that he/she needs to know.

In the OFT scheme, when there is a membership update, KDC first reorganizes the

key tree in the same way as the LKH scheme. Then it updates keys that the join/leaving

user knows. For example, when user 8 leaves the key tree in Figure 2.2(a), KDC puts user

7 under the node labeled Ke1 in Figure 2.2(b), and generate a new private key Kp7,new

for user 7. In this case, Ke1, Kg and Ks need to be updated. To update Ke1 to user

5 to 7, KDC multicasts { f (Kp7,new)}Ke4 which enable user 5 and 6 to derive the new

key Ke1 = g(f (Kp7,new), f (Ke4)). Note that user 7 has f (Ke4) and can calculates Ke1 =

g(f (Kp7,new), f (Ke4)) himself/herself. KDC uses the same method to update Kg and Ks to

user 1 to 7. The key update for a user join follows the same procedure as a user leave, and

KDC unicasts to the new user all the blinded values that he/she needs. From this example,

10

in the OFT scheme, only the blinded values of the updated keys need to be encrypted and

multicasted, and only one rekey message is required to update one key. Therefore, com-

pared with the LKH scheme that uses 2 rekey messages to update a key, the number of

rekey messages in the OFT scheme is reduce to O(log2(k)).

The one-way function chain tree (OFCT) was independently proposed in [27]. The key

tree design and the key update algorithm are the same as that in the OFT scheme except that

the OFCT uses a pseudo-random generator rather than a mix function to generate new key

encryption keys (KEK). Therefore, it achieves the same rekey overhead as the OFT scheme.

The threshold-based one-way function tree (TOFT) was proposed in [28]. It uses the quad-

tree structure (a tree with degree 4) rather than a binary key tree and further reduces the

rekey computation cost by half when compared with the OFT scheme.

The efficiency of a fixed-degree key tree approach depends critically on whether the

key tree remains balanced as members join and leave. The AVL-based key tree scheme

was proposed in [29] to help keep the fixed degree trees balanced over time. In the self-

balancing binary search AVL tree, the heights of the two child subtrees of any node differ

by at most one [30]. In the AVL-based scheme, the departure time of any member is

known at the time he/she joins the group, and users are placed in the tree in the descending

order of their departure time. When the key tree is updated, AVL tree rotates itself to

maintain the balance requirement, and this tree rotation does not incur any communication

overhead [29].

The ALX key tree, a non-fixed-degree balanced tree, was introduced in [31]. In an ALX

tree with a total of l +1 levels, nodes in the upper l levels (from level 0 to level l−1) have

a fixed degree a, while there is no constraint on the degree of nodes at level l. Each leaf

in the tree corresponds to a user’s private key Kp, the root node at level 0 corresponds to

the group key Kg, and the nodes at level 1 to level l correspond to the key encryption keys

Ke. Figure 2.3 is an example of ALX key tree with a = 2 and l = 3. The ALX tree scheme

11

adopts the rekey algorithm proposed in the LKH+ scheme. It was proved in [31] that the

optimal ALX key tree, which minimizes the number of rekey messages for a user leave,

achieves the lower bound of the rekey communication overhead of fixed-degree trees.

Fig. 2.3. An example of ALX key tree. a = 2, l = 3

2.2 Contributory Key Management Schemes

In the contributory key management schemes, there is no KDC and each participant con-

tributes equally to the generation of the keys. These schemes are usually used when a cen-

tral key server cannot be established. In the literature, many contributory key managements

have been proposed [32], [33], [34], [35]. In this section, similar to the previous section,

contributory key management schemes is reviewed for the scenario where all members

subscribe to the same service.

Most contributory key management schemes use Diffie-Hellman key exchange (DH)

[36], which is a cryptographic protocol that allows two parties to establish a shared secret

key via insecure communications. To establish a key for secure communication between

user 1 and user 2, they first agree on a pair of primes p and q. Then user 1 sends a =

12

(pK1mod q) to user 2, and user 2 replies user 1 with b = (pK2mod q). Here, K1 and K2 are

the private keys of user 1 and user 2, respectively. Consequently, both of them can calculate

their secret key K = (pK1·K2mod q) using K = (bK1mod q) and K = (aK2mod q).

Group DH key exchange (GDH) [33] is an extension of the two-user DH protocol to

a group of users. Consider an example with 4 members. Given the primes p and q, user

1 generates a secret key K1 and multicasts (pK1mod q). Then given his/her private key

K2, user 2 multicasts two numbers, (pK1·K2mod q) and (pK2mod q). User 3 calculates and

multicasts (pK1·K3mod q), (pK2·K3mod q) and d , (pK1·K2·K3mod q). Finally, user 4 mul-

ticasts a , (pK2·K3·K4mod q), b , (pK1·K3·K4mod q) and c , (pK1·K2·K4mod q). Then user

1, 2, 3 and 4 can calculate the group key Kg = (aK1mod q) = (bK2mod q) = (cK3mod q) =

(dK4mod q), respectively. During membership update, the authorized members update

their private keys and generate the new group key in a similar way. In the GDH scheme,

because each member has to multicast the results of modular exponential operations to

others, users need O(k) rounds to establish the group key. Here, a round is defined as the

duration in which each member can send and receive at most one message [37]. Therefore,

this scheme is time consuming to establish a group key when the user number is large.

The DH logical key hierarchy (DH-LKH) scheme introduced in [38] uses the DH pro-

tocol to generate KEKs in the binary hierarchical tree, and the logical key tree has the same

structure as the LKH scheme. Each KEK in the key tree is generated from the keys of its

two children using the DH algorithm, for example, Ke5 = (pKp7·Kp8mod q) in Figure 2.2(a).

In this scheme, since Ks only has one child and cannot be calculated using the DH protocol,

Ks is defined as a crypto function of Kg. When membership changes, keys known by the

arriving/leaving user need to be updated using the DH protocol. For example, when user 8

leaves in Figure 2.2(a), the updated key tree is shown in Figure 2.2(b). User 7 generates a

new key Kp7,new himeself/herself, and multicasts a = (pKp7,newmod q), which enables user

5 and 6 to calculate Ke1,new = (aKe4mod q). User 7 knows (pKe4mod q) and can calculate

13

Ke1 = ((pKe4mod q)Kp7,newmod q) himself/herself. Users use the same method to update

Kg. The DH-LKH scheme takes no more than O(log2 k) rounds to update keys for a user

join/leave, where k is the total number of users in a group. The logical hierarchical key tree

is now adopted in many contributory key management schemes [39], [40].

A dynamic Join-Exit-Tree (JET) was proposed in [1] to efficiently manage the join and

leaving users and to reduce the processing time to update keys. As shown in Figure 2.4, a

JET tree consists of three parts: the main tree, the join tree and the exit tree, all of which

are binary trees built using the DH protocol. When a user joins the group, he/she is put in

Fig. 2.4. Topology of a JET tree [1].

the join tree first. If the join tree is balanced, the root of join tree is chosen as the insertion

node. Otherwise, the node that is closest to the tree root is split and the new user is placed

under that node. Then all keys that the new user knows need to be update using the DH

protocol, same as the DH-LKH scheme. When the join tree reaches its maximal capacity

(which is defined as the maximum number of users in the join tree) or when there is a user

leaving from the main tree, all users in the join tree are relocated to the main tree. For a

14

user leave, the JET scheme assumes that users’ exact leaving times are known. It updates

the main key tree at predetermined time instances, called batch moments. At each batch

moment, users who are going to leave soon are moved from the main tree to the exit tree,

and all keys known to the relocated users are updated. In the JET key scheme, since users

join/leave the service from the smaller join/exit trees with smaller depths, the number of

keys need to be updated for each membership update is small. It was shown in [1] that with

parallel key update, the key update time is reduced from O(logk) to O(log(logk)), where

k is the user number.

A join-tree-based contributory group key management (JDH) was proposed in [41],

where new users are always inserted to the root of the join tree and the rekey overhead

for a join user is reduced to O(1). However, this rekey algorithm results in an extremely

unbalanced binary join tree.

A weighted join-exit tree was proposed in [42] to reduce the rekey overhead when a

user leaves. The exit tree is organized so that the sooner the user leaves, the closer he/she

is to the root of the exit tree. Thus, the leaving user is always a child of the exit tree root,

and the key update time for a user leave is reduced to O(1).

Wireless sensor networks have many applications, for example, in habitat monitoring,

and vehicular tracking. Due to the constraints on power, storage apace, and computation ca-

pability, traditional key management schemes using exponential operators exp(·) to gener-

ate session keys (such as the DH-based approaches) are not suitable for key management in

wireless sensor networks [43], [44] due to the large computation cost. Elliptic curve cryp-

tography (ECC) [45], [46], another approach to generate keys, can achieve the same level

of security as the RSA-based method with less storage and power requirements [47], [48].

To reduce the storage overhead, a routing-driven ECC-based key management scheme

(RECC) was proposed in [49] for heterogeneous sensor networks. In the RECC scheme,

sensors are grouped in clusters. The cluster head corresponds to the information sink, and

15

each sensor only communicates with neighboring sensors that are on the path from itself to

the cluster head rather than all neighboring sensors. Therefore, different from other sensor

key management schemes where a sensor needs to store all the keys of its neighboring sen-

sors, a sensor in the RECC scheme needs to store only the keys of those neighboring sensors

with whom it communicates, which largely reduces the storage overhead in implementing

the security scheme.

2.3 Multilevel Access Control Schemes

There are many group-oriented applications where group members subscribe to different

levels of service. For such applications, multilevel access control and key management

are often desired to support the business model “what you see is what you pay” [15]. In

multilevel access control scheme in live streaming, the key tree consists of the Data Group

(DG) subtree and the Service Group (SG) subtrees [50], [51]. The DG subtree is used

to manage the keys used to encrypt different layers in scalable video coding, and the SG

subtrees are used to manage a group of users who subscribe to the same level of service.

The works in this area mainly focus on the DG subtree design and session key update, and

many key trees reviewed in the Section 2.1, for example, the LHK scheme, can be used to

build the SG subtrees.

Figure 2.5 shows an example where ten users subscribe to a bit stream including three

layers with one type of scalability, e.g., temporal scalability. In this example, users are

grouped into 3 subgroups depending on their subscriptions. User 1 to 3 subscribe to

the low-resolution copy and can access only the base layer; User 4 to 6 subscribe to the

medium-resolution copy and receive the base layer and enhancement 1; and user 7 to 10

subscribe to the high-resolution copy and can access all three layers. Given this example,

three multilevel access schemes are introduced in the rest of the section.

16

Fig. 2.5. User’s subscriptions to a compressed bit streaming.

The independent scheme (InS) proposed in [50] manages different layers independently.

It generates independent session keys for different layers in scalable coding and distributes

them to the users who have access to them. Given the example in Figure 2.5, the corre-

sponding InS key tree is shown in Figure 2.6, where the DG subtree is made up of three

session keys, KL
s , KM

s and KH
s that are used to encrypt the base layer, enhancement layer

1 and enhancement layer 2, respectively. KL
g , KM

g and KH
g are the subgroup keys of the

three service groups. Since user 7 to 10 have access to the enhancement layer 2, they can

also access the base layer and enhancement layer 1. Therefore, user 7 to 10 know all three

keys. Similarly, user 4 to 6 who have access to enhancement layer 1 should also be able

to access the base layer and have KM
s and KL

s . Here, the rekey algorithm proposed in the

Fig. 2.6. Independent key management scheme for the example shown in Figure 2.5.

17

LKH+ scheme is used as an example to illustrate the rekey process in the InS scheme. For

example, when user 6 joins the subgroup whose members can access only the base layer

and the enhancement layer 1, KM
g , KM

s and KL
s are updated using one-way functions. When

user 6 leaves, these three keys need to be updated using the encryption-based algorithm.

To update KM
g , KDC sends message {KM

g,new}KM
e0

. Since only user 4 and 5 have KM
e0, only

these two users can decrypt and get the new key KM
g,new. To update KM

s , KDC multicasts

{KM
s,new}KM

g,new
and {KM

s,new}KH
g

. Similarly, three messages {KL
s,new}KL

g
, {KL

s,new}KM
g,new

and

{KL
s,new}KH

g
are multicasted to enable the remaining users to update KL

s . As seen in the

above example, the InS scheme does not explore the data dependency among scalable lay-

ers in scalable coding, and several rekey messages are required to update a new session

key.

To explore the data dependency between different data groups, a multi-group key man-

agement scheme (MGS) was proposed in [51], where the DG subtree employs one more

layer of key encryption keys Kd in the DG subtree, and introduces an integrated scheme to

connect the three session keys. Same as the InS scheme, all keys in the MGS are generated

and updated independently. Figure 2.7 shows the MGS key tree for the example in Figure

2.5. Users in the scheme need to store more keys when compared to the InS scheme, while

this extra layer of keys facilitates efficient session key update. For example, in the MGS

scheme, to update the session key KL
s , different from the InS scheme that requires 3 rekey

messages, KDC only needs to broadcast one rekey message {KL
s,new}KL

d
, and all users can

decrypt it.

A POSET hash-based access control scheme was proposed in [52] to generate session

keys, and the Hasse diagram was used in the DG subtree to address the data dependency

between different layers and to reduce the number of session keys each user has to store.

In this scheme, each vertex in the DG subtree, representing a layer in scalable coding, is

assigned a label d and a session key Ks, and each edge in a poset has a value v calculated by

18

Fig. 2.7. Multi-group key management scheme for the example shown in Figure 2.5.

applying a secure hash-based function to connect session keys. The labels and edge values

are public information. Figure 2.8 shows the POSET Hash-based key tree for the example

in Figure 2.5. Note that in POSET [53], [54], a user needs to know only one session key

Fig. 2.8. The POSET hash-based access control scheme for the example shown in Figure 2.5.

in the DG subtree, and he/she can derive the rest of the session keys himself/herself using

public information. For example, user 6 in the Figure 2.8 who has access to the base layer

and the enhancement 1 needs to store only the session key KM
s in Figure 2.8 as he/she can

derive KL
s using KL

s = vM,L + H(KM
s ,dL) himself/herself, where H(·) is a predefined hash

function [26]. However, the work in [52] did not discuss efficient update of the keys during

19

membership update.

20

Chapter 3

System Model

This chapter introduces the system model, including the POSET structure that is used to

explore the data dependency in scalable coding, and the characteristics of membership

dynamics in live streaming.

3.1 Multilevel Access Control in Live Streaming

Scalable coding is often used in live streaming to address the network and device hetero-

geneity. To achieve multilevel access control in a scalable video coding system, each layer

is encrypted using a different session key, and these keys are distributed appropriately to

users so that a user has the keys to access only the content that he/she is authorized to.

There is strong dependency between different session keys, and a user who subscribes to

an enhancement layer should have the session keys for all lower layers.

Following previous works [50], [51], the Data Group (DG) is defined as a particular

layer in scalable video coding, and the Service Group (SG) is defined as a group of users

who subscribe to the same level of service. Below is an example that explains the concepts

of DG, SG and the access privileges in a scenario where a compressed bit stream supports

21

multiple types of scalability.

Example 1: A compressed bit stream supports temporal and spatial scalability simultane-

ously, as shown in Figure 3.1. For temporal scalability, it encodes the odd frames in the

base layer denoted by T L, and compresses the difference between the even and the odd

frames in the enhancement layer T H. In the spatial domain, down-sampled frames are en-

coded in the base layer SL, and the difference between the original frames and the frames

reconstructed from the base layer is encoded in the enhancement layer SH. Assume that 9

users pay for the highest resolutions in both dimensions, 10 users subscribe to the lowest

resolution in both temporal and spatial domains, and for the two median resolutions (low

resolution in temporal and high resolution in spatial, high resolution in temporal and low

resolution in spatial), each has 8 subscriptions. In this example, the data groups, the service

groups, and the access privileges of each service group are defined as follows.

• Data Groups (DGs): Temporal and spatial scalability are independent, and each scal-

ability has one base layer and one enhancement layer. Therefore, the compressed bit

stream contains four data groups, which are DG(T H,SH), DG(T H,SL), DG(T L,SH) and

DG(T L,SL), each encrypted using a different session key. The arrows in Figure 3.1

shows the data dependency between different data groups.

Fig. 3.1. Data of different layers in Example 1.

• Service Groups (SGs): Depending on their subscribed service, users can be divided

22

into four service groups: 9 users in SG(T H,SH); 8 users in SG(T H,SL); 8 users in

SG(T L,SH); and 10 users in SG(T L,SL).

• For each service group, its access privilege defines the data groups that its users can

access. For the above example, the access privilege of each service group is shown

in Table 3.1. For example, users in SG(T H,SH) have all four keys, while users in

SG(T L,SL) have only key K(1,1)
s in Figure 3.1.

TABLE 3.1

Access privileges of the SGs in Example 1.

SGs Access Privilege

SG(T H,SH) DG(T H,SH), DG(T H,SL), DG(T L,SH), DG(T L,SL)

SG(T H,SL) DG(T H,SL), DG(T L,SL)

SG(T L,SH) DG(T L,SH), DG(T L,SL)

SG(T L,SL) DG(T L,SL)

In general, assume that a compressed bit stream supports N types of scalability, and the

ith type has Mi layers. In this thesis, a simple scenario where M1 = M2 = · · · = MN = M

is considered, and it can be extended to the general scenario where {Mi} are different.

To simplify the notation, let DGI with I = (i1, · · · , iN) denote the data group that contains

the i jth (1 ≤ i j ≤ M) layer for the jth type of scalability, where i j = 1 corresponds to the

base layer while i j = M is the highest enhancement layer. Correspondingly, SGI denotes

the service group that subscribes to a total of i j (1 ≤ i j ≤ M) layers for the jth type of

scalability, including the base layer. That is, for the jth type of scalability, i j = 1 means

that users in this service group only receive the base layer, while i j = M indicates that users

in this group receive all M layers. In the above Example 1 with N = M = 2, let temporal

23

and spatial scalability be the 1st and the 2nd types of scalability, respectively. Then, the

notations for data groups DG(T L,SL), DG(T L,SH), DG(T H,SL) and DG(T H,SH) are simplified

as DG(1,1), DG(1,2), DG(2,1) and DG(2,2), respectively. Correspondingly, the service groups

SG(T L,SL), SG(T L,SH), SG(T H,SL) and SG(T H,SH) are simplified as SG(1,1), SG(1,2), SG(2,1)

and SG(2,2), respectively. To achieve multilevel access control, each data group is encrypted

by a session key KI
s. In this paper, it is said that KI

s is associated with data group DGI and

service group SGI when KI
s is used to encrypt data group DGI.

3.2 Key Tree Design

This thesis focuses on live broadcast applications, where the service provider broadcasts

the video stream to a group of users and where a user has little control on the streaming

session except the ability to join and leave [2]. In these applications, the content owner or

the service provider can serve as KDC and manage the key update, and the centralized key

management approach is used in this work. Following the work in [50], [51], the key tree

design is divided into two parts: the SG subtree design and the DG subtree design.

3.2.1 Step 1 SG Subtree Design

It was shown in [31] that the ALX tree avoids the unbalanced tree structure that may often

happen in the fixed-degree logic key trees due to frequent membership update, and that it

helps to reduce the rekey overhead significantly. This makes the ALX key tree an ideal

candidate for key management in live broadcast applications, where large variations in the

total number of users is observed. Following the work in [31], to address the unbalanced

key tree structures, the proposed key tree uses the ALX tree to manage users in each service

group. Figure 3.2 shows an example of the four ALX SG subtrees built for the four service

groups in the Example 1 in Section 3.1. Here, a = 3 and l = 1 are chosen for all four

24

subtrees. Kg is the group key shared by all users in the service group, and Kp denotes

user’s private key.

Fig. 3.2. SG Subtree design for Example 1. a = 3 and l = 1.

An important issue in the ALX logic key tree design is to select the optimal parameters

a and l that minimize the number of rekey messages when a user joins/leaves the service.

From the analysis in [31], the rekey overhead for a user join is much smaller than that for a

user leave and can often be ignored. Therefore, in this thesis, the SG ALX trees is designed

to minimize the rekey overhead for leaving users. Given a total of k users in a service

group, assume that they are uniformly distributed in an ALX tree of degree a and level

l +1, that is, all the nodes at level l have approximately the same number of children. The

analysis in [31] showed that the average number of rekey messages for one user departure

can be approximated by C(k) = k/al +al−1. For a given k, all possible pairs of (a, l) are

enumerated to find the optimal one that minimizes C(k). The optimal pairs of (a∗, l∗) for

different k are shown in Table 3.2. From Table 3.2, it is observed that a∗ = 3 is the optimal

tree degree when 15≤ k≤ 25000, and the optimal l∗ remains the same for a wide range of k.

For example, l∗ = 5 for all k ∈ [365,1093]. Thus, the optimal ALX tree structure remains

unchanged even when the total number of users changes significantly. This is a desired

feature for live broadcast applications with frequent and drastic membership change.

25

TABLE 3.2

The optimal values of (a, l) for different user numbers (k).

k 15-40 41-121 122-364 365-1093 1094-3280 3281-9842 9843-25000

(a∗, l∗) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)

Fig. 3.3. DG Subtree design for Example 1.

3.2.2 Step 2 DG Subtree Design

A POSET Hash-based scheme was proposed in [52], [54] to address the data dependency

between different layers and to facilitate efficient management of session keys. Given

the data groups, the POSET Hash-based scheme first builds a corresponding Hasse dia-

gram [53], [55]. Then, each vertex is assigned a secret session key and a public label.

In addition, an edge value is assigned to each arrow connecting two vertices. Figure 3.3

is a POSET Hash-based DG subtree for Example 1 in Section 3.1. In Figure 3.3, the ar-

row connecting the two vertices DG(1,2) and DG(1,1) has a value v(1,2),(1,1) that satisfies

26

v(1,2),(1,1) = K(1,1)
s −H

(
K(1,2)

s ,d(1,1)
)

. In this scheme, the session keys are known only

to users who have authorization to the corresponding data groups, while the vertex labels

{dI} and the edge values {vI,J} are public information. Note that in the POSET Hash-

based DG subtree, given a higher layer’s session key, all the lower layers’ session keys can

be derived using the public information {dI,vI,J}. For example, in Figure 3.3, with knowl-

edge of K(2,2)
s for data group DG(2,2), a user can derive all the other session keys using

K(2,1)
s = v(2,2),(2,1)+H

(
K(2,2)

s ,d(2,1)
)

, K(1,2)
s = v(2,2),(1,2)+H

(
K(2,2)

s ,d(1,2)
)

and K(1,1)
s =

v(2,1),(1,1) +H
(

K(2,1)
s ,d(1,1)

)
(or equivalently, K(1,1)

s = v(1,2),(1,1) +H
(

K(1,2)
s ,d(1,1)

)
).

In the POSET scheme, vertex I = (i1, · · · , iN) (or key KI
s) is an ancestor of vertex

J = (j1, · · · , jN) (or key KJ
s) and vertex J (or key KJ

s) is a descendant of vertex I (or

key KI
s) if KJ

s can be derived from KI
s, that is, 1 ≤ jk ≤ ik for all k = 1, · · · ,N. De-

fine QI
4
=

{
KJ=(j1,··· , jN)

s |J ∈UI

}
as the set including KI

s and all its descendants, where

UI
4
={J : 1≤ jk ≤ ik, ∀k = 1, · · · ,N}. For service group SGI, QI includes all the session

keys that it should know. For example, in Figure 3.3, for service group SG(1,2), U(1,2) =

{(1,2),(1,1)} and Q(1,2) =
{

K(1,2)
s ,K(1,1)

s

}
. In addition, if an ancestor KI

s and a descen-

dant KJ
s are connected by an arrow in the Hasse diagram, that is, ∑N

k=1 |ik− jk| = 1, then

KI
s is a parent of KJ

s . In Figure 3.3, K(2,2)
s is an ancestor of K(2,1)

s , K(1,2)
s , and K(1,1)

s , but

K(2,2)
s is a parent of only K(2,1)

s and K(1,2)
s .

3.2.3 Step 3 Integration of the SG Subtrees and the DG Subtree

The last step is to connect the roots of the SG subtrees and the corresponding leaves of the

DG subtree and to construct the integrated key management scheme. Figure 3.4 illustrates

the corresponding integrated POSET Hash-based key tree for Example 1 in Section 3.1.

Note that in Figure 3.4, although a SG subtree SGI is directly connected to only one vertex

I in the DG subtree, users in SGI not only have access to the session key KI
s associated with

27

vertex I, they can also use the public information to derive all its descendants KJ
s ∈ QI.

Fig. 3.4. POSET Hash-based key management scheme for Example 1.

3.3 User Dynamics in Live Broadcast Streaming

Prior works showed that live streaming applications share several common characteristics

in their membership dynamics.

• Large variation in the total number of users is observed in many live streaming appli-

cations. For example, a study in [16] showed that a popular live streaming program

had a maximum of 74000 users, while the minimum number of users was less than

10000.

• Flash crowd is the phenomenon that the peak arrival rate is much higher than the

average arrival rate [18], [16], [17]. It is observed in all short streams (that have

pre-determined broadcast time and duration, such as NBA games or talk shows) and

28

in 50% of the popular streams (whose largest number of concurrent users exceeds

1000). For example, a study in [16] showed that the peak arrival rate can be twice

that of the usual arrival rate. Similarly, it is observed that the number of leaving users

is large at the end of the programs.

• High reconnection rate is observed in those programs that are both short and popular.

In these programs, users may leave the service due to excessively long waiting time

or poor network conditions, and reconnect to the service within a short duration. For

example, in a recent live baseball game that was broadcasted by Yahoo! Japan, at

the beginning of the game, in each time unit, a maximum of 200 users rejoined the

program within 2 minutes after their leaving [19].

• A large number of short sessions are observed, especially at the beginning of the

live streaming programs. A work showed that for popular programs, over 55% of

users stayed in the program for less than 5 minutes, and 30% of them stayed less

than 1 minute in the program [17]. The work in [19] studied a live broadcast of a

baseball game in Japan, and showed that the average number of short sessions (whose

durations were shorter than 120 seconds) was around 170 per minute, and the peak

number reached 400 short sessions per minute at the beginning of the program.

To summarize, the group membership may change drastically and frequently in live

streaming applications, which poses challenges to efficient key management. This work

addresses this frequent membership change in live streaming applications, and investigates

efficient key management schemes, which offer the desired level of protection of multime-

dia content and minimize the rekey cost.

29

3.4 Performance Criteria

To measure the efficiency of key management schemes, the following criteria are used to

measure the computation and communication rekey overhead:

• Cen: the average number of rekey messages that KDC needs to encrypt per second,

• Cde: the average number of rekey messages that a user needs to decrypt per second,

and

• Cmsg: the average number of rekey messages broadcasted by KDC per second, includ-

ing both the messages with encrypted keys and those to update public information in

POSET.

30

Chapter 4

Efficient Key Management in Multilevel

Access Control

The previous chapter introduces the proposed key tree. The purpose of the key tree de-

sign is to support secure and efficient key update. The InS scheme and the MGS scheme

use the encryption-based method to update both the SG and the DG subtrees and to se-

curely transmit new keys to users. For the POSET Hash-based scheme, instead of using

the traditional encryption-based method, this thesis proposes to use the public informa-

tion in the POSET ({dI,vI,J}) and the hash function to update the session keys in the data

group subtree. This is because hash functions introduce much lower computation cost than

encryption and decryption, and thus can help significantly reduce the rekey overhead. In

this work, two different applications are considered: those that require strict forward and

backward security, and those that can tolerate a small amount of content leak.

31

4.1 Sequential Rekeying Scheme

For applications that cannot tolerate any content leak, sequential rekeying that is widely

used in key management schemes [9], [21], [31], [23, 28], [51] is adopted. It updates

keys immediately after each user join/leave and treats each reconnection as a user leave

followed by an independent user join. It achieves strict forward and backward security,

and provides an upper bound of the rekey overhead of key management schemes. With

sequential rekeying, when a user joins/leaves the service, KDC immediately updates all the

keys that he/she knows, including the keys in the service group subtree and those in the

data group subtree.

4.1.1 Update of the Service Group Subtree

Following the work in [31], encryption-based method is used to update the keys in the ser-

vice group subtree when there is a membership update. In the example in Figure 3.2, when

user u(1,2)
8 joins the service group SG(1,2), KDC puts him/her under the node labeled K(1,2)

e2

(besides u(1,2)
7) in the ALX subtree, and two keys, K(1,2)

g and K(1,2)
e2 , need to be updated.

When there is a joining user, an efficient way to update keys is to use a secure one-way

function f (·) that is previously agreed upon by KDC and all users. For example, to update

key K(1,2)
g , KDC and all users in the service group SG(1,2) calculate K(1,2)

g,new = f
(

K(1,2)
g,old

)
,

where K(1,2)
g,old and K(1,2)

g,new are the old and the new versions of the group key K(1,2)
g , respec-

tively. Similarly, KDC and user u(1,2)
7 update K(1,2)

e2 through K(1,2)
e2,new = f

(
K(1,2)

e2,old

)
.

When user u(1,2)
8 leaves the service, 2 keys in the SG subtree, K(1,2)

g and K(1,2)
e2 , need to

be updated. To send the new key K(1,2)
e2 to user u(1,2)

7 , KDC multicasts the encrypted mes-

sage {K(1,2)
e2,new}K7

p
. To update key K(1,2)

g , KDC sends three rekey messages {K(1,2)
g,new}K(1,2)

e0
,

{K(1,2)
g,new}K(1,2)

e1
, and {K(1,2)

g,new}K(1,2)
e2,new

, which only enable the remaining users in the service

group SG(1,2) to find the new key K(1,2)
g . Thus, when user u(1,2)

8 leaves the service, a total

32

of 4 rekey messages are needed to securely update keys in the SG subtrees.

4.1.2 Update of {dI}

After updating the keys in the SG subtree, the next step is to update the keys in the data

group subtree. Note that when a user joins/leaves, before updating the session keys in

POSET, KDC and users first need to update the vertex labels {dI}. Otherwise, the join-

ing/leaving user can easily derive old/new session keys himself/herself. For example, if

d(1,2) is unchanged after user u(1,2)
8 joins/leaves the service group SG(1,2), then the old and

the new versions of K(1,2)
s satisfy:

K(1,2)
s,old = v(2,2),(1,2)

old +H
(

K(2,2)
s ,d(1,2)

)
, (4.1)

and K(1,2)
s,new = v(2,2),(1,2)

new +H
(

K(2,2)
s ,d(1,2)

)
. (4.2)

K(2,2)
s in (4.1) and (4.2) are the same since there is no membership update in the ser-

vice group SG(2,2). Therefore, if d(1,2) is not changed, the output of the hash function

H
(

K(2,2)
s ,d(1,2)

)
remains the same, and thus

(4.2)-(4.1)⇒K(1,2)
s,new−K(1,2)

s,old = v(2,2),(1,2)
new − v(2,2),(1,2)

old . (4.3)

In (4.3), v(2,2),(1,2)
new and v(2,2),(1,2)

old are public values known by all users. For the joining user

u(1,2)
8 , since he/she knows the new key K(1,2)

s,new, he/she can easily use (4.3) to calculate K(1,2)
s,old

and can access the content broadcasted before he/she joins. Similarly, for a leaving user

u(1,2)
8 who has the old key K(1,2)

s,old , he/she can also derive the new key.

In addition, when user u(1,2)
8 joins/leaves the service group SG(1,2), d(1,1) also needs

to be updated. This is because K(1,1)
s has two parents K(2,1)

s and K(1,2)
s , which means that

there are two equations, K(1,1)
s = v(2,1),(1,1) + H

(
K(2,1)

s ,d(1,1)
)

and K(1,1)
s = v(1,2),(1,1) +

H
(

K(1,2)
s ,d(1,1)

)
, that can be used to derive K(1,1)

s . Assume that d(1,1) is not changed but

K(1,2)
s has been updated already. In this example, since K(1,2)

s is updated, the new/leaving

33

user u(1,2)
8 cannot use (4.3) to derive the new key K(1,1)

s . However, he/she can still derive

the new key K(1,1)
s using the public information d(1,1) and v(2,1),(1,1). Note that the old and

the new versions of K(1,1)
s satisfy:

K(1,1)
s,old = v(2,1),(1,1)

old +H
(

K(2,1)
s ,d(1,1)

)
, (4.4)

and K(1,1)
s,new = v(2,1),(1,1)

new +H
(

K(2,1)
s ,d(1,1)

)
. (4.5)

With H
(

K(2,1)
s ,d(1,1)

)
unchanged,

(4.5)-(4.4)⇒K(1,1)
s,new−K(1,1)

s,old = v(2,1),(1,1)
new − v(2,1),(1,1)

old . (4.6)

Since v(2,1),(1,1)
old and v(2,1)(1,1)

new are public information, user u(1,2)
8 can derive the old/new

version of K(1,1)
s using (4.6), which violates the forward/backward security requirement.

Therefore, in the above example, even though there is no membership update in SG(1,1),

d(1,1) has to be updated too.

In general, when a user joins/leaves a service group SGI, the public value of the as-

sociated DGI and all of its descendants must be updated. A simple and efficient way to

update dI is to use a secure one-way function f (·) that is previously agreed upon by KDC

and all users, and let dI
new = f

(
dI

old

)
. It introduces little communication and computation

overhead that can often be ignored.

4.1.3 Session Key Update for a User Join

When a user joins the service, to ensure backward security, all session keys to be known by

him/her should be updated. Similar to the update of the service group subtree, an efficient

way to update session keys for a user join is to use the secure one-way function f (·).
For example, in Figure 3.4, when user u(1,2)

8 joins the service group SG(1,2), KDC puts

him/her under the node labeled K(1,2)
e2 in the SG(1,2) subtree, and updates 2 keys in the

data group subtree: the new K(1,2)
s should be known by service groups SG(2,2) and SG(1,2),

34

and all users in the service should have the new K(1,1)
s . First, the one-way function f (·)

is used to update d(1,2) and d(1,1). Second, KDC and users in SG(2,2) and SG(1,2) use

the one-way function to calculate K(1,2)
s,new = f

(
K(1,2)

s,old

)
, and similarly, KDC and all users

calculate K(1,1)
s,new = f

(
K(1,1)

s,old

)
. The third step in the rekey process is to update the edge

values. This is to ensure that for an arrow connecting a parent KI
s and a child KJ

s , the

edge value satisfies vI,J = KJ
s −H

(
KI

s,d
J) after the key update. In the above example,

since K(1,2)
s and K(1,1)

s are updated, the values of three arrows that are connected to the two

vertices, v(2,2),(1,2), v(2,1),(1,1) and v(1,2),(1,1), need to be updated. To update v(2,2),(1,2), KDC

and users in SG(2,2) calculate v(2,2),(1,2)
new = K(1,2)

s,new−H
(

K(2,2)
s ,d(1,2)

new

)
. KDC and users in

SG(2,2) and SG(2,1) derive the new v(2,1),(1,1) using v(2,1),(1,1)
new = K(1,1)

s,new−H
(

K(2,1)
s ,d(1,1)

new

)
.

Similarly, KDC and users in SG(2,2) and SG(1,2) derive the new v(1,2),(1,1) using v(1,2),(1,1)
new =

K(1,1)
s,new−H

(
K(1,2)

s,new,d(1,1)
new

)
. Finally, KDC unicasts to the joining user u(1,2)

8 all the keys and

public information that he/she needs.

In general, with sequential rekeying, for a user joining service group SGI, all keys in QI,

including the session key KI
s associated with SGI and all its descendants, must be updated.

• First, for every session key KJ
s ∈ QI, KDC and users find the corresponding vertex

and use the one-way function f (·) to update its public value dJ.

• Then, for every session key KJ
s ∈ QI, KDC and users use the one-way function f (·)

to update KJ
s .

• Finally, for every session key KJ
s ∈ QI, KDC and users check all the arrows con-

necting KJ
s and its parents. For each parent KM=(m1,··· ,mN)

s where ∑N
k=1 |mk− jk|= 1,

the public value of the corresponding arrow connecting KM
s and KJ

s is updated as

vM,J
new = KJ

s,new−H
(
KM

s ,dJ
new

)
.

The computation cost of the one-way function f (·) and the Hash function H(·) is much

smaller than that of encryption and decryption and can often be ignored. Thus, from the

35

above analysis, for a user join, the above proposed method introduces no overhead to update

session keys in the data group subtree.

4.1.4 Session Key Update for a User Leave

In the example in Figure 3.4, when user u(1,2)
8 leaves the service group SG(1,2), Q(1,2) =

{
K(1,2)

s ,K(1,1)
s

}
in the POSET need to be updated. KDC first updates K(1,2)

s that is associ-

ated with the service group SG(1,2), and lets SG(2,2) and SG(1,2) have the new K(1,2)
s . There

are two possible methods to update K(1,2)
s using public information. In the first algorithm,

• First, KDC and users update the vertex value d(1,2) using the one-way function, and

d(1,2)
new = f

(
d(1,2)

old

)
.

• Then, KDC randomly generates a new key K(1,2)
s,new. To let the remaining users in

service group SG(1,2) get the new key, KDC uses the newly updated K(1,2)
g,new to encrypt

K(1,2)
s,new and sends a rekey message {K(1,2)

s,new}K(1,2)
g,new

.

• Finally, KDC updates and broadcasts the new edge value v(2,2),(1,2)
new through v(2,2),(1,2)

new =

K(1,2)
s,new−H

(
K(2,2)

s ,d(1,2)
new

)
, which enables users in SG(2,2) to derive K(1,2)

s,new.

In the second algorithm,

• First, KDC and users update d(1,2) using the one-way function f (·).

• Then, KDC keeps the edge value v(2,2),(1,2) unchanged. KDC and SG(2,2) calculate

K(1,2)
s,new = v(2,2),(1,1) +H

(
K(2,2)

s ,d(1,2)
new

)
, which enables users in SG(2,2) to have access

to the new key.

• Finally, KDC sends a rekey message {K(1,2)
s,new}K(1,2)

g,new
to the remaining users in SG(1,2).

Note that in both algorithms, the update of d(1,2) changes the output of the hash function

H
(

K(2,2)
s ,d(1,2)

)
, and the secure hash function H(·) prevents the leaving user u(1,2)

8 from

36

deriving the new session key K(1,2)
s,new. Thus, both algorithms are secure. When considering

the rekey cost of the two algorithms, to update K(1,2)
s , Algorithm 1 needs 1 rekey message

to service group SG(1,2) and 1 message to update v(2,2),(1,2), while Algorithm 2 requires

only 1 rekey message to service group SG(1,2). Since both algorithms are secure while

Algorithm 2 introduces a smaller communication overhead, the second algorithm is used

in this work.

The last step is to update K(1,1)
s and let all users have the new session key to decrypt the

data group DG(1,1). To update K(1,1)
s ,

• First, KDC and all users update the vertex value d(1,1) using d(1,1)
new = f

(
d(1,1)

old

)
.

• Then, KDC uses the arrow connecting K(1,2)
s and K(1,1)

s to update K(1,1)
s and cal-

culates K(1,1)
s,new = v(1,2),(1,1) + H

(
K(1,2)

s,new,d(1,1)
new

)
. Note that service group SG(2,2) and

SG(1,2) also have knowledge of K(1,2)
s,new. Thus, they can use the same method to cal-

culate K(1,1)
s,new.

• Then, KDC encrypts K(1,1)
s,new with SG(1,1)’s group key K(1,1)

g and sends the encrypted

rekey message {K(1,1)
s,new}K(1,1)

g
to the service group SG(1,1).

• Finally, to let users in the service group SG(2,1) get the new key, KDC uses the

edge connecting K(2,1)
s and K(1,1)

s , calculates and broadcasts the new edge value

v(2,1),(1,1)
new = K(1,1)

s,new−H
(

K(2,1)
s ,d(1,1)

new

)
.

Therefore, to update K(1,1)
s , KDC sends one encrypted rekey message to SG(1,1) and one

message to update the edge value v(2,1),(1,1)). Note that in Figure 3.3, K(1,1)
s has two parents,

K(2,1)
s and K(1,2)

s . In the above example, the new key K(1,1)
s,new is generated using K(1,2)

s and

the edge value v(1,2),(1,1), and then update the other edge value v(2,1),(1,1). An alternative

way to generate the new key K(1,1)
s,new is to use the other parent K(2,1)

s and the corresponding

edge value v(2,1),(1,1), and then update v(1,2),(1,1). Both methods give the same rekey cost,

37

and either can be selected to update K(1,1)
s as long as KDC and all users use the same

method.

In general, to ensure forward security, when a user leaves SGI, KDC updates the session

keys in QI one by one. To update a key KJ
s ∈ QI,

• First, KDC and users update the corresponding public label dJ using one-way func-

tion dJ
new = f

(
dJ

old

)
.

• If the vertex KJ
s does not have any parent, KDC randomly generates a new ses-

sion key KJ
s,new. Otherwise, KDC selects one of its parents KM=(m1,··· ,mN)

s associ-

ated with service group SGM, where ∑N
k=1 |mk − jk| = 1, and calculates KJ

s,new =

vM,J +H(KM
s ,dJ

new). Then, KDC encrypts KJ
s,new using KJ

g, and sends the encrypted

rekey message to current users in SGI. Users in SGM and SGM’s ancestors also use

vM,J and the same method to derive KJ
s,new.

• Finally, KDC checks all the other parents of KJ
s . For each parent KG=(g1,··· ,gN)

s where

∑N
k=1 |gk− jk|= 1, KDC calculates and broadcasts the new edge value vG,J

new = KJ
s,new−

H
(
KG

s ,dJ
new

)
. This enables users in service group SGG to derive KJ

s,new.

To summarize, the proposed rekey scheme uses the secure hash function and public infor-

mation to securely update the session keys while significantly reducing the rekey cost.

4.2 The Reconnection Scheme

As discussed in Section 3.3, high reconnection rate and large number of short sessions are

observed in live streaming applications [19]. Sequential rekeying treats each reconnection

as one leave and one independent user join to achieve strict forward security, which results

in large rekeying overhead. In reality, many live broadcast applications do not require strict

38

forward and backward security, and can allow content leak up to Tl seconds. (The value

of Tl is determined by the content owner and is application dependent.) With the relaxed

requirement on forward security, KDC allows a leaving user to keep his/her keys (and thus

access to the content) for up to Tl seconds after his/her leaving. In this scenario, if a user

rejoins the same service group in less than Tl seconds after his/her leaving, KDC puts the

rejoining user to the same leaf in the SG subtree and does not need to update the keys he/she

previously had. Consequently, there is no cost associated with the rejoining user if he/she

comes back within Tl seconds.

For applications that do not require strict forward security, similar to the work in [31], a

wait-for-leaving (WFL) list is used to address the high reconnection rate. For each service

group, a WFL list is built to record information of each leaving user, including the user’s

identity and his/her leaving time. In this work, a rejoining user’s absent time is defined

as the duration between his/her leaving and his/her rejoining of the same service group.

A user is removed from the WFL lists when his/her absent time is larger than Tl or when

he/she rejoins the same service group within Tl seconds after his/her leaving. In this work,

it is assumed that KDC has sufficient computation capability and storage space to maintain

the WFL lists.

The proposed reconnection scheme is as follows:

• When user uI
i leaves the service group SGI, KDC records uI

i ’s identity and leaving

time tuI
i

in the WFLI list while not removing uI
i from the corresponding ALX subtree.

KDC still allows uI
i to continue receiving the service in the interval from tuI

i
to tuI

i
+Tl .

Then, KDC checks all other users in all WFL lists, removes from the lists those whose

absent time exceeds Tl , and update the keys using the sequential rekeying algorithm.

For example, assume that user uJ
j is in the WFLJ list for service group SGJ at the

current time tuI
i
. If tuI

i
− tuJ

j
≥ Tl , uJ

j is removed from both the WFLJ list and the

corresponding ALX subtree for service group SGJ, and KDC updates all the keys uJ
j

39

knows. If tuI
i
− tuJ

j
< Tl , KDC keeps uJ

j in the key tree and the WFLJ list.

• If no user leaves the service in the past second, KDC updates all of the WFL lists and

the key tree periodically (every second) in the same way as described above. This is

to ensure that for each leaving user, the maximum content leak does not exceed Tl

seconds.

• When user uI
i joins the service group SGI, KDC first checks the WFLI list. If uI

i is

already in the WFLI list, then uI
i is a rejoining user. KDC simply removes uI

i ’s record

from the WFLI list and does not update the key tree. Otherwise, KDC treats uI
i as a

new user, and updates the keys using the one-way function.

For those live broadcast programs that allow content leak up to Tl seconds, if a leaving

user rejoins the same service group in the same batch interval as he/she leaves, the proposed

reconnection scheme does not relocate him/her to another leaf and does not update the keys

he/she previously had. Consequently, there is no cost associated with such rejoining users.

4.3 The Batch Rekeying Scheme

A lot of live streaming applications have the flash crowd behavior and experience high

membership update rate [18], [16], [19]. For such applications, immediate key update after

each membership change may cause consecutive update of the same keys within a short

time interval, and sequential rekeying may introduce significant rekey overhead [56]. For

example, in Figure 3.4, assume that user u(2,2)
1 in service group SG(2,2) leaves the service

right after two users u(1,2)
1 and u(1,2)

8 leave the service group SG(1,2). Since all three users

have access to K(1,2)
s and K(1,1)

s , KDC and the remaining users have to update these two

session keys three times within a short period.

40

In this work, for applications that do not require strict forward security, batch rekeying

proposed in [56] is used to address redundant update of the same key. Here, sequential

key update is till used for a user join so that a user can access the content immediately after

he/she joins the service. Batch rekeying is only applied for leaving users only, and KDC pe-

riodically updates keys known to leaving users at predefined time called “batch moments”.

Let the batch interval, which is the period between two consecutive batch moments, equal

to Tl . It guarantees that the content that is leaked to a leaving user does not exceed the

maximum allowed Tl seconds. The proposed batch rekeying scheme is as follows:

• When user uI
i leaves the service group SGI, KDC puts him/her in the WFLI list,

records his/her identity, and keeps him/her in the key tree.

• When user uJ
j joins the service group SGJ, KDC first checks the WFLJ list. If uJ

j is

already in the WFLJ list, then uJ
j is a rejoining user. KDC removes uJ

j from WFLJ

list and does not update the key tree. Otherwise, KDC treats uJ
j as a new user, and

updates the keys using the one-way function.

• At each batch moment, KDC checks the identities of all leaving users in all WFL

lists, identifies all keys that they know, and updates them together. Then, KDC clears

all WFL lists.

Consequently, keys known by the leaving users are only updated once in one batch interval.

For the above example, only 1 rekey message is needed for each session key update, while

with sequential rekeying, each session key needs to be updated 3 times in a short interval.

4.4 Grouped User Placement in the ALX Tree

With batch rekeying, for each service group, the locations of leaving users in the ALX key

tree affect the performance of the key management scheme. In the extreme case where there

41

is a leaving user in every branch of the ALX subtree, all keys in the ALX subtree have to be

updated at the next batch moment, and it introduces the largest possible rekey overhead. On

the contrary, if all leaving users in a service group are in the same or neighboring subtrees

of an ALX SG tree, KDC only needs to update a few keys at the next batch moment, and the

rekey cost is much smaller. Thus, to further reduce the rekey overhead, a possible solution

is to strategically place joining users in the key tree, such that in one batch interval leaving

users in the same service group are close to each other in the ALX tree.

Prior works has shown that there are many short sessions in live broadcast streaming

applications, especially at the beginning of the programs [17], [19]. For such short-stay

users who stay in the service for only a few minutes, if they come at approximately the

same time, they also tend to leave in approximately the same or adjacent batch intervals.

To reduce the rekey cost when short-stay users leave the service, a grouped user placement

scheme is proposed. For an ALX subtree with level l + 1, for users who joins the same

service group at approximately the same time, instead of randomly placing them in the

ALX subtree, the proposed scheme puts them under the same or adjacent nodes at level l.

For those short-stay users who join and leave the service at approximately the same time,

grouping them in the same or neighboring subtrees helps increase the number keys that

they share and thus helps reduce the rekey overhead.

42

Chapter 5

Performance Analysis and Simulation

Results

The previous chapter introduces four key update schemes, and this chapter will provide a

thorough performance analysis of the communication overhead, KDC encryption overhead

and user’s computation overhead to update keys, and show the simulation results for each

key update algorithm.

From the above rekeying algorithms in Section 4, when a user joins, KDC only needs

to broadcast a message with the indices of all keys that need to be updated, and the one-

way function f (·) is used to ensure all users have the updated keys. When a user leaves

the service, to ensure forward security, KDC needs to multicast the encrypted updated keys

and the updated public values {dI,vI,J}. Thus, the rekey cost for a leaving user is much

higher than that when a user joins the service, and this thesis focuses on the rekey overhead

for leaving users only. For each service group SGI, following prior works [31], [16], users’

arrival process is modeled as Poisson with mean λI, and each user’s service duration follows

the exponential distribution with mean 1/µI. αI is defined as the probability that a leaving

user rejoins the same service group later. For a rejoining user, let the interval between

43

his/her leave and rejoin follow the exponential distribution with mean 1/υI.

5.1 Performance Analysis of Sequential Rekeying

First, the performance of sequential rekeying is analyzed. From Section 4.1, sequential

rekeying achieves strict forward and backward security.

5.1.1 Analysis of Cen

First, the KDC’s computation cost to update the ALX SG subtrees is calculated, that is,

the average number of rekey messages that KDC needs to encrypt per second to update the

service group subtrees. For service group SGI with a total of kI users, following the above

user join and leave model, the average number of leaving users per second approximately

equals to kIµI, and the average number of arrivals per second is λI. To analyze the per-

formance of sequential rekeying, the scenario where kI À kIµI and kI À λI and where the

variation on the total number of users in SGI within a second can be ignored is considered.

Furthermore, it is assumed that the kI users in SGI are uniformly distributed in an ALX

tree of degree aI and level lI +1. In this scenario, following the analysis in [31], for a user

leave in SGI, to update the corresponding service group ALX key tree, the number of rekey

messages that KDC needs to encrypt is CSGI
en,seq ≈ kI/alI

I +aIlI−1.

Then, the KDC’s computation cost to update the DG subtree is analyzed. When a user

leaves SGI, the session key KI
s associated with service group SGI and all its

(
∏N

j=1 i j−1
)

descendants need to be updated. That is, all session keys in QI have to be updated, and the

proposed rekey algorithm uses one rekey message to update each new session key. Take

Figure 3.4 as an example, when user u(1,2)
8 leaves SG(1,2), the session keys K(1,2)

s and its

descendant K(1,1)
s need to be updated. By using the proposed rekey algorithm, one rekey

message is required to update each new session key. Thus, a total of 2 rekey messages,

44

{K(1,2)
s,new}K(1,2)

g,new
and {K(1,1)

s,new}K(1,1)
g

, are sent to update K(1,2)
s and K(1,1)

s . Therefore, when a

user leaves SGI, a total of ∏N
j=1 i j rekeying messages are encrypted and sent by KDC to

update the session keys in QI.

To summarize, the average number of rekey messages that KDC needs to encrypt per

user leave in SGI is ∏N
j=1 i j +CSGI

en,seq. Given that kIµI users leave SGI in one second and

there are MN service groups, the average number of rekey messages to be encrypted per

second is

Cen,seq ≈ ∑
I=(i1..iN)

kIµI

(
N

∏
j=1

i j + kI/alI
I +aIlI−1

)
. (5.1)

5.1.2 Analysis of Cde

To calculate a user’s computation cost Cde, first, the average number of rekey messages that

a user has to decrypt per second to update the service group ALX key tree is analyzed. As-

sume that in each service group, users are uniformly distributed in the ALX subtree. When

user uI
i leaves the service group SGI, all the lI +1 key encryption keys in the corresponding

ALX subtree that he/she knows (excluding uI
i ’s private key) have to be updated. Let Kr

uI
i

be

the key on the rth level of the ALX subtree that user uI
i knows. Under the assumption of

uniform user distribution in the key tree, averagely speaking, a total of kI/ar
I users, includ-

ing uI
i , share Kr

uI
i
. Thus, when user uI

i leaves service group SGI, the remaining kI/ar
I− 1

users need to decrypt the new key Kr
uI

i
. Considering all the lI + 1 key encryption keys

that need to be updated in the SGI subtree when user uI
i leaves, the total number of rekey

messages decrypted by all users in SGI can be approximated by CSGI
de,seq ≈ ∑lI

r=0(kI/ar
I−1).

Next, let us consider the user’s decryption cost associated with the update of session

keys. In the example in Figure 3.4, when user u(1,2)
8 leaves SG(1,2), to receive the updated

key K(1,2)
s , only users in the same service group SG(1,2) need to decrypt the rekey message

{K(1,2)
s,new}K(1,2)

g,new
, while users in SG(2,2) can derive K(1,2)

s,new themselves using public information

45

d(1,2)
new and v(2,2),(1,2). Similarly, to update K(1,1)

s , only users in SG(1,1) have to decrypt

the rekey message, and the rest of users can derive the new key themselves using public

information. In general, when session key KI
s that is associated with SGI is revealed, only

users in the corresponding service group SGI need to decrypt the rekey message, and users

subscribing to higher-quality copies can calculate the new key using the predefined hash

functions and public information. In addition, when a user leaves the service group SGI, the

corresponding session key KI
s and all its

(
∏N

j=1 i j−1
)

descendants in QI =
{

KJ
s |J ∈UI

}

need to be updated. To update KI
s, all the remaining kI−1 users in SGI have to decrypt the

rekey message; while to update a descendant KJ
s ∈QI, all the kJ users in the corresponding

service group SGJ have to decrypt the rekey message. Consequently, for a user leave in SGI,

the total number of decryptions by all users to update the session keys is
(
∑J∈UI kJ

)−1.

Since each service group SGI has approximately kIµI user leaving per second, the av-

erage number of rekey messages that a user has to decrypt per second is

Cde,seq ≈∑
I

[
kIµI

(
∑

J∈UI

kJ−1+
lI

∑
r=0

(kI/ar
I−1)

)]/(
∑
I

kI

)
, (5.2)

where the denominator is the total number of users in the service.

5.1.3 Analysis of Cmsg

To analyze Cmsg, the average number of rekey messages that KDC needs to send per sec-

ond to update the service group subtree is first considered. From the analysis in Section

4.1.1, to update keys in the SG ALX tree, the encryption-based method is used and, there-

fore, the number of rekey messages sent by KDC is the same as the number of encryp-

tions performed by KDC. Thus, for a user leave in service group SGI, CSGI
msg,seq = CSGI

en,seq ≈
kI/alI

I +aIlI−1.

Here is the analysis of the communication overhead to update the session keys. Note

that in the proposed scheme in Section 4.1.4, KDC not only sends encrypted new keys to

46

users, but also broadcasts messages to update the edge values, both of which should be

counted when analyzing Cmsg.

For session key KJ
s , let nJ denote the number of KJ

s ’s parents. In a system that supports

N types of scalability with M layers for each scalability type, given J = (j1, · · · , jN), it can

be shown that nJ = ∑N
k=1 Ind[jk], where

Ind[i] =





1 if i < M

0 if i = M,

(5.3)

is an indicator function. Ind[jk] = 0 when the associated service group SGJ receives all

M layers for the kth type of scalability, and Ind[jk] = 1 otherwise. Following the scheme

proposed in Section 4.1.4, to update KJ
s , if KJ

s has no parent (that is, nJ = 0), then KDC

sends one message with the encrypted new key to the associated service group SGJ. If

nJ > 0, following Section 4.1.4, KDC sends one message with the encrypted new key KJ
s to

the associated service group SGJ, and nJ−1 messages to update the edge values. Therefore,

to update the session key KJ
s , KDC needs to send a total of max(1,nJ) messages.

For a user leave in SGI, all keys in QI need to be updated, and therefore, the total

number of messages sent by KDC is CDGI
msg,seq = ∑J∈UI max(1,nJ). Assume that an average

of kIµI users leave service group SGI in one second and there are a total of MN service

groups. With sequential rekeying, the average number of rekey messages sent by KDC per

second is

Cmsg,seq ≈∑
I

[
kIµI

(
kI/alI

I +aIlI−1+ ∑
J∈UI

max(1,nJ)

)]
. (5.4)

5.1.4 Performance Comparison

To compare the performance of the proposed POSET hash-based key management scheme

with that of the independent (InS) and the multi-group (MGS) key management schemes,

a system that support N types of scalability with M layers for each type of scalability is

47

considered. Thus, there are a total of MN data groups in the system. It is further assumed

that all service groups have the same average number of users k and the same average user

service time 1/µ . That is, kI = k and µI = µ for all service groups SGI. Sequential key

update is used for all three schemes.

Note that for all three key management schemes, the same ALX tree is used for the

service group key tree, and thus, the rekey cost to update keys in the SG subtree is the

same for all three key management schemes. Consequently, this work only compares the

average rekey cost to update the DG key trees. With the above system setup, for the POSET

hash-based scheme with sequential rekeying,

CDG
en,seq ≈ kµ ∑

I

(
N

∏
j=1

i j

)
,

CDG
de,seq ≈ kµ ∑

I

(
∑

J∈UI

k−1

)/(
MNk

)≈ kµ ∑
I

(
N

∏
j=1

i j

)/(
MN)−µ,

CDG
msg,seq ≈ kµ ∑

I

(
∑

J∈UI

max(1,nJ)

)
. (5.5)

For different values of N and M, the results are shown in Table 5.1.

From Table 5.1, the proposed POSET hash-based scheme introduces much smaller

rekey cost than the independent and the multi-group scheme. For example, when N = 1

and M = 3, the proposed scheme helps reduce Cen, Cde and Cmsg by 50% when compared

with the two encryption-based schemes. In addition, the POSET Hash-based scheme re-

duces the rekey cost by a larger amount when N and M take larger values. For example,

with N = 1 and M = 2, the proposed scheme helps reduce the rekey cost to approximately

60% when compared with the independent scheme. With N = M = 3, Cen, Cde and Cmsg

are reduced to approximately 7.3%, 7.4%, and 18%, respectively, when compared with the

InS scheme.

In summary, the InS scheme manages keys in each service group independently, and

thus the InS key tree is much simpler than the MGS scheme and the POSET Hash-based

48

TABLE 5.1

Performance comparison of different key management schemes.

CDG
en,seq/(MNkµ) CDG

de,seq/(MNkµ) CDG
msg,seq/(MNkµ)

〈N,M〉 InS MGS POSET InS MGS POSET InS MGS POSET

〈1,2〉 2.5 3.5 1.5 1.25 2.25 0.75 2.5 3.5 1.5

〈1,3〉 4.67 5.33 2 1.56 3 0.67 4.67 5.33 2

〈2,2〉 5.25 7.25 2.25 1.31 3.06 0.56 5.25 7.25 3.25

〈2,3〉 20.78 14.56 4 2.31 4.83 0.44 20.78 14.56 6.78

〈3,2〉 15.63 13.38 3.38 1.95 3.89 0.42 15.63 13.38 6.88

〈3,3〉 110.26 36.63 8 4.08 8.17 0.3 110.26 36.63 20.04

scheme. However, since it does not address the data dependency in scalable coding, it

introduces the largest rekey overhead among these three key management schemes. To

address the data dependency in scalable coding, the MGS scheme introduces one more

layer of key encryption keys to connect session keys in the DG subtree, which helps reduce

the rekey overhead. However, due to the extra layer of key encryption keys, user storage

overhead increases when compared with the InS scheme. The proposed scheme, POSET

Hash-based scheme, introduces public information {d,v} to connect session keys in the DG

subtree, and reduces the rekey overhead to update session keys by using hash functions.

5.2 Performance Analysis of the Reconnection Scheme

From the above analysis, the POSET Hash-based scheme gives a much smaller rekey over-

head than the InS and the MGS schemes. Therefore, in the following sections, only the

POSET Hash-based scheme will be consider, and the sequential rekeying method is used

49

as the benchmark.

In the reconnection scheme, for a given Tl , “retry users” is used to denote those rejoining

users who come back and join the same service group within Tl seconds after they leave.

And the term “departure users” is used to denote all other leaving users, including those

who never come back, users who join different service groups, and those rejoining users

whose absent time is larger than Tl . In the dynamics model, each user who leaves service

group SGI has a probability of αI to rejoin the same service group, and the absent time of a

rejoining user follows an exponential distribution with mean 1/υI. So the probability that

a leaving user rejoins the same service group SGI within Tl seconds after he/she leaves is

Pre
I = αI

∫ Tl
0 υIe−tυIdt = αI(1− e−TlυI).

Given a total of kI users in the service group SGI, this thesis considers the scenario

where the total number of users is approximately the same within Tl seconds, and the

change on kI can be ignored. As such, the average number of departure users in SGI per

second is (1−Pre
I)kIµI. Note that the proposed reconnection algorithm only removes the

rekey redundancies associated with the retry users, while KDC still updates all the keys

that a departure user has. Therefore,

Cen,retry ≈ ∑
I

(1−Pre
I)kIµI

(
N

∏
j=1

i j + kI/alI
I +aIlI−1

)
,

Cde,retry ≈ ∑
I

[
(1−Pre

I)kIµI

(
∑

J∈UI

kJ−1+
lI

∑
r=0

(kI/ar
I−1)

)]/(
∑
I

kI

)
,

and Cmsg,retry ≈ ∑
I

[
(1−Pre

I)kIµI

(
kI/alI

I +aIlI−1+ ∑
J∈UI

max(1,nJ)

)]
. (5.6)

Compared with (5.1) - (5.4), for service group SGI, the proposed reconnection algo-

rithm reduces the rekey overhead by a factor of Pre
I . In the extreme case of Pre

I = 1 for all

possible I, that is, all leaving users rejoin the same service group within Tl seconds after

they leave, the rekey overhead is zero and no keys need to be updated. Also, from (5.6),

when αI and Tl increase, Pre
I is larger (that is, the average number of departure users per

50

second is smaller), and the proposed reconnection scheme is more efficient.

To quantify the effectiveness of the proposed reconnection algorithm, η is defined

as the ratio of the rekey overhead of the reconnection scheme over that of sequential

rekeying. That is, ηen,retry = Cen,retry/Cen,seq, ηde,retry = Cde,retry/Cde,seq and ηmsg,retry =

Cmsg,retry/Cmsg,seq. When η takes a smaller value, the reconnection scheme is more effi-

cient. In addition, σ2
η is the variance of η .

To verify the correctness of the analysis, same as Example 1 in Section 3.1, it is assumed

that there are four service groups whose user join/leave parameters are the same. For each

service group, there are two types of users in this simulations: half of the users are short-

stay users who stay in the service for a short duration with mean 1/µs, while the other

half are long-stay users who stay in the service for a long time with mean 1/µl [17]. For

example, (λ = 4,1/µl = 1500,1/µs = 240) means that for each service group, on average,

there are 4 joining users in each second. Half of them will stay in the service for 1500

seconds on average, and the average staying time of the other half is 240 seconds. The

total number of users in each service group is approximately 3400, and remains relatively

unchanged in one second.

Figure 5.1 shows the analytical and the simulation results of the reconnection scheme

for different user reconnection rate. The maximum allowed content leak is fixed as Tl = 150

seconds, and α = 0 indicates that all leaving users leave the service permanently and there

is no rejoining user. The simulation results in Figure 5.1(a) are the average rekey overhead

based on 5000 simulation runs, and Figure 5.1(b) gives the variances of η for simulation

results. From Figure 5.1(a), the reconnection scheme is more efficient when α is larger,

and the rekey cost drops from 92% to 76% when α increases from 0.1 to 0.3. In addition,

from Figure 5.1(a), the analytical and simulation results match very well. From 5.1(b),

the variances of the simulation rekey overheads are small. For example, when α = 0.2,

σ2
ηen

< 10−6, σ2
ηde

< 10−3, and σ2
ηmsg

< 10−6.

51

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

User Reconnection Rate α
(a)

η

0 0.05 0.1 0.15 0.2 0.25 0.3

10
−6

10
−4

10
−2

10
0

User Reconnection Rate α
(b)

σ2 η

η
en,analysis

η
en,simulation

η
de,analysis

η
de,simulation

η
msg,analysis

η
msg,simulation

σ2
ηen

σ2
ηde

σ2
ηmsg

Fig. 5.1. Performance of the reconnection scheme. λ = 4, 1/µl = 1500, 1/µs = 240, 1/υ = 90

seconds, and Tl = 150 sec.

Then, the impact of the maximum allowed content leak on the efficiency of the re-

connection scheme is studied. In Figure 5.2, α = 0.3 is fixed, and Tl = 0 corresponds to

the scenario where strict forward security is required. From Figure 5.2, the reconnection

scheme is more efficient when the maximum allowed content leak is larger, and the rekey

cost drops from 85% to 76% when Tl is increased from 40 seconds to 150 seconds. Again,

the analytical and simulation results match very well. The variance of the simulation results

are similar to those in Figure 5.1(b), and thus omitted here.

52

0 50 100 150
0.75

0.8

0.85

0.9

0.95

1

Maximum Content leak T
l
 (sec)

η

η

en,analysis

η
en,simulation

η
de,analysis

η
de,simulation

η
msg,analysis

η
msg,simulation

Fig. 5.2. Performance of the reconnection scheme. λ = 4, 1/µl = 1500, 1/µs = 240, 1/υ = 90

seconds, and α = 0.3.

5.3 Performance Analysis of the Batch Rekeying Scheme

To analyze the performance of batch rekeying, the thesis considers the scenario where the

number of users in service group SGI remains approximately the same within one batch

interval. Following the user join/leave model, in one batch interval of length Tl , the aver-

age number of joining users of service group SGI is approximately TlλI, and the average

number of leaving users in SGI can be approximated by TlkIµI.

For a user uI
i who rejoins the service group SGI, let tuI

i
be the time interval between

the previous batch moment and uI
i ’s leaving time, and let τuI

i
be uI

i ’s absent time (the time

interval between uI
i ’s leaving and rejoining). tuI

i
and τuI

j
follow exponential distributions

with means 1/µI and 1/υI, respectively. The probability that uI
i rejoins the same service

group before the next batch moment is

P′I ≈ αIP[tuI
i
+ τuI

i
≤ Tl] = αI

(
1− υI

υI−µI
e−Tl µI +

µI
υI−µI

e−TlυI

)
. (5.7)

Note that if a leaving user rejoins the same service group before the next batch moment,

his/her leaving incurs zero rekey cost. Therefore, for service group SGI, in each batch

interval, the average number of departure users whose keys need to be updated at the next

53

batch moment (including those who never come back and those who rejoin the service after

the next batch moment) approximately equals to k′I ≈ (1−P′I)TlkIµI.

5.3.1 Analysis of Cen

i) To analyze Cen, first, the average number of messages that KDC needs to encrypt to

update the service group subtree in one batch interval is considered. For batch rekeying

with k′I departure users, it considers the scenario where the departure users are uniformly

distributed in the ALX key tree with degree aI and level lI +1. It gives the upper bound of

the rekey overhead for the batch rekeying scheme. In such a scenario, for a node at level j

in the ALX tree, an average of k′I/a j
I departure users are descendants of that node.

a) When k′I/a j
I > 1, that is, 0≤ j ≤ mI where

mI =
⌊

logaI
k′I

⌋
≈

⌊
logaI

(
(1−P′I)TlkIµI

)⌋
, (5.8)

each node at level j has at least one descendant who is a departure user, and all keys at

level j have to be updated at the next batch moment. For example, if users u(1,2)
1 and

u(1,2)
8 leave the service group SG(1,2) in Figure 3.4, m(1,2) = 0, and only K(1,2)

g at level 0

is known by both leaving users. To update K(1,2)
g at the next moment, 3 rekey messages,

{K(1,2)
g,new}K(1,2)

e0,new
, {K(1,2)

g,new}K(1,2)
e1

and {K(1,2)
g,new}K(1,2)

e2,new
, are encrypted by KDC. In general, to

update a key encryption key at level 0≤ j ≤ mI in the ALX tree, KDC needs aI encrypted

rekey messages, and there are a total of ∑mI
j=0 a j

I key encryption keys in the upper mI + 1

levels of the ALX subtree that need to be updated. Consequently, to update keys in the

upper mI + 1 levels in SGI’s key tree, the total rekey messages that KDC encrypts are

C0,mI
en,batch ≈ aI ∑mI

j=0 a j
I = ∑mI

j=0 a j+1
I = aI

(
amI+1

I −1
)

/(aI−1).

b) When k′I/a j
I < 1, that is, mI < j ≤ lI, some of the nodes at level j do not have

any departure users in their descendants. Take the above example where users u(1,2)
1 and

u(1,2)
8 leave the service group SG(1,2), node K(1,2)

e1 in the SG(1,2) subtree does not need to be

54

updated. Under the assumption of uniform distribution of the k′I departure users in the tree,

among all a j
I nodes at level j, k′I < a j

I of them have descendants that are departure users.

Thus, at level j > mI, k′I key encryption keys need to be updated at the next batch moment.

In the above example with u(1,2)
1 and u(1,2)

8 leaving the service group SG(1,2) subtree, only

2 keys, K(1,2)
e0 and K(1,2)

e2 at level 1 need to be updated.

To update a key encryption key at level mI +1≤ j≤ lI−1 in the ALX tree, aI rekeying

messages are needed. To update the k′I key encryption keys at level lI, the users’ private

keys is used to encrypt the new keys. Since each node at level lI has approximately kI/alI
I

children, an average of kI/alI
I rekey messages are needed to update one key at level lI.

Consequently, to update keys at level mI + 1 to level lI, KDC needs to encrypt and send

CmI+1,l
en,batch ≈ (1−P′I)TlkIµI[aI(lI−mI−1)+ kI/alI

I] rekey messages.

c) In summary, for service group SGI, the messages that KDC encrypts to update the

SG key tree in each batch interval can be approximated by

CSGI
en,batch = C0,mI

en,batch +CmI+1,l
en,batch

≈ aI
amI+1

I −1
aI−1

+(1−P′I)TlkIµI

[
aI(lI−mI−1)+ kI/alI

I

]
. (5.9)

ii) Then the KDC’s computation cost to update session keys in the DG subtree is an-

alyzed. This work considers the scenario where at least one user leaves from the service

group SG(i1=M,··· ,iN=M) (which corresponds to the top node in the Hasse diagram) in each

batch interval, and all session keys in the DG subtree have to be updated at the next batch

moment. This gives the upper bound of the KDC’s computation cost to update the DG key

tree for batch rekeying. In such a scenario, at each batch moment, KDC needs to encrypt

and send CDG
en,batch = MN new session keys.

iii) Since there are MN service groups in the service, with batch rekeying, the upper

bound of KDC’s computation overhead per second is

Cen,batch ≈ 1
Tl

(
CDG

en,batch +∑
I

CSGI
en,batch

)

55

≈ MN

Tl
+∑

I

{
aI(a

mI+1
I −1)

Tl(aI−1)
+(1−P′I)kIµI

[
aI(lI−mI−1)+ kI/alI

I

]}
. (5.10)

From (5.10), Cen,batch is a decreasing function of the batch interval Tl , and the average

number of rekey messages that KDC encrypts per second is smaller when Tl is larger.

5.3.2 Analysis of Cde

The analysis of the upper bound of Cde is similar to that of Cen. First, the decryption cost

associated with the service group key tree update is analyzed. Following the same analysis

as the previous section, in one batch interval, for service group SGI, since all keys in the

upper mI +1 levels need to be updated, all remaining users need to decrypt and update keys

in the upper mI +1 levels that he/she knows. Hence, in each batch interval, every remaining

user needs to decrypt (mI + 1) rekey messages to update the key encryption keys in the

upper (mI +1) levels. So, the average number of rekey messages all users decrypt to update

keys in the upper mI+1 levels of SGI is C0,mI
de,batch≈ kI(mI+1). Second, the update of keys at

level mI +1≤ j≤ lI is considered. For a key at level j, an average of kI/a j
I users share this

key, and to update that key, the remaining kI/a j
I−1 users need to decrypt the corresponding

rekey message at the next batch moment. There are k′I keys at level j that need to be

updated, and therefore, to update keys at level mI +1 to lI in the ALX subtree, the average

number of rekey messages that all users need to decrypt per batch interval is CnI+1,lI
de,batch ≈

k′I
[
∑l

j=mI+1(kI/a j
I −1)

]
. Finally, for each batch interval, for users in SGI to update the

corresponding SG key tree, the total number of decryptions performed by all users in SGI

is approximately CSGI
de,batch = C0,mI

de,batch +CmI+1,lI
de,batch ≈ kI (mI +1)+ k′I ∑lI

j=mI+1(kI/a j
I −1).

Then the user’s decryption cost to update the DG key tree is analyzed. In one batch

interval, when there is at least one user leaving from SG(M,··· ,M), all session keys in the

DG tree need to be updated, and each reamining user has to update all the session keys

that he/she has. For a user in SGI, following the proposed scheme in Section 4.3, to find

56

the new version of the associated session key, he/she decrypts the corresponding rekey

message. Then he/she uses public information to derive the rest of the session keys that

he/she needs. For example, in Figure 3.4, if user u(2,2)
1 leaves SG(2,2) during the batch

interval, the remaining users in SG(2,2) decrypt the message {K(2,2)
s,new}K(2,2)

g,new
to get the new

K(2,2)
s , and use public information to derive the other three session keys. Hence, in one

batch interval, the upper bound of the decryption overhead associated with session key

update is one decryption per user and a total of ∑I kI decryptions for all users.

Thus, with batch rekeying, the upper bound of the average number of rekey messages

that one user needs to decrypt per second, can be approximated by

Cde,batch ≈ 1
Tl ∑I kI

(
∑
I

kI +∑
I

CSGI
de,batch

)

≈ ∑
I

[
kI (mI +2)

Tl
+(1−P′I)kIµI

lI

∑
j=mI+1

(kI/a j
I −1)

]/(
∑
I

kI

)
. (5.11)

From (5.11), Cde,batch is a decreasing function of the batch interval Tl .

5.3.3 Analysis of Cmsg

In the proposed scheme, KDC sends two types of messages that contribute to Cmsg, those

that contain the encrypted new keys (both key encryption keys in the service group ALX

key tree and the session keys in POSET), and those that are used to update the edge values.

The number of rekey messages that contain the encrypted new keys is the same as Cen,batch,

the number of rekey messages that KDC needs to encrypt. To analyze the number of

messages that KDC sends to update the edge values, from Section 4.1.4, to update one

session key KI
s, KDC sends max(0,nI−1) messages to update the edge values. Under the

assumption that all session keys need to be updated at each batch moment, the number of

messages that KDC sends per batch interval is upper bounded by ∑I max(0,nI−1), and the

57

upper bound of Cmsg,batch can be approximated by

Cmsg,batch = Cen,batch +
1
Tl

∑
I

max(0,nI−1)

≈ MN

Tl
+∑

I

{
aI(a

mI+1
I −1)

Tl(aI−1)
+(1−P′I)kIµI

[
aI(lI−mI−1)+ kI/alI

I

]

+
max(0,nI−1)

Tl

}
. (5.12)

To verify the correctness of the above analysis, Figure 5.3 compares the the upper

bounds of the rekey cost and the simulation results of the batch rekeying scheme. The sys-

tem setup is the same as that in Figure 5.1. From Figure 5.3, (5.10), (5.11) and (5.12) give

tight upper bounds of the rekey overhead for batch rekeying. In addition, from Figure 5.3,

batch rekeying helps significantly reduce the KDC’s computation cost and the communica-

tion overhead. For example, with Tl = 100 seconds, batch rekeying helps reduce the KDC’s

encryption cost Cen to 27% when compared with sequential rekeying. In addition, batch

rekeying is more efficient when the batch interval is larger. For example, when Tl increases

from 50 to 150 seconds, ηen,batch = Cen,batch/Cen,seq and ηmsg,batch = Cmsg,batch/Cmsg,seq are

reduced from 35% to 22%, and ηde,batch = Cde,batch/Cde,seq is lowered from 1% to 0.4%.

Under the same system setup, the efficiency of batch rekeying in the DG subtree and

the SG subtree are investigated respectively. Figure 5.4(a) gives the analytical upper bound

and the simulation results of KDC encryption overhead to update session keys in the DG

subtrees. Figure 5.4(b) shows KDC computation overhead to update keys in the SG ALX

subtrees, and Figure 5.4(c) is the overall rekey computation overhead at KDC. Batch rekey-

ing reduces KDC computation overhead significantly in both subtrees, while it is more effi-

cient to reduce KDC encryption overhead for session key update in the DG subtree. When

Tl = 100 seconds, ηDG
en,batch = 0.11% while ηSG

en,batch ≈ 30%. In addition, from Figure 5.4(a),

(b) and (c), when the number of users is large, KDC computation overhead of key encryp-

tion key update is dominant in overall encryption overhead at KDC. ηbatch
msg is observed to

58

have the same trend as ηbatch
en and thus omitted here.

Figure 5.5(a) and (b) show user’s decryption overheads for session key update and key

encryption key update with the same setup. Figure 5.5(c) is the overall decryption cost per

user. Different from KDC computation overhead, user’s rekey overheads in both the DG

subtree and the SG subtrees fall to less then 1% when Tl ≥ 50 seconds.

Then the impact of the membership update parameters on the efficiency of batch rekey-

ing is studied. Same as in Figure 5.4, assume that the 4 service groups have the same set of

parameters. The simulation first considers the scenario where users join and leave the ser-

vice more frequently with a higher membership update rate, and select Rh
4
=(λ = 4,1/µs =

1500,1/µl = 240). That is, for each service group, the group size is around 3400 users, and

on average, 4 new users join the service group per second. Then another set of parameters

Rl
4
=(λ = 2,1/µs = 3000,1/µl = 240) is chosen, where for each service group, the group

size is about 3200 users, and only 2 users join each service group per second on average.

It corresponds to the scenario where users join and leave the service at a much lower rate.

Figure 5.6 plots the simulation results of the rekey overhead for these two different sce-

narios. Here, α = 0.3 and 1/υ = 90 are fixed, which are the same for all service groups.

From Figure 5.6, batch rekeying is more efficient when users join and leave the service

more frequently. For example, when Tl = 100 seconds, ηen,batch = 0.27, ηde,batch = 0.04

and ηmsg,batch = 0.25 with Rh, while ηen,batch = 0.37, ηde,batch = 0.1 and ηmsg,batch = 0.34

if the membership update parameters are Rl = (λ = 2,1/µs = 3000,1/µl = 240).

5.4 Performance of Grouped User Placement

Figure 5.7 shows the performance of the grouped user placement for the POSET Hash-

based scheme in Figure 3.4. Compared with random placement of joining users, grouped

user placement can further help reduce the rekey cost, especially when the maximum al-

59

TABLE 5.2

Parameters of the user join/leave model for each service group

duration (total 7200s) ≤ 900s 901-6600s >6600s

dynamics (λ ,1/µl,1/µs) (6, 3500, 240) (2, 1200, 240) (0.5, 240, 240)

lowed content leak Tl is small. For example, with Tl = 20 seconds, grouped user placement

can help further reduce ηen and ηmsg by another 3%.

5.5 Simulation Results of A Popular Short-Duration Live

Streaming

In this simulation, a popular short-duration live streaming of length 7200 seconds is con-

sidered. It is assumed that there are 4 data groups, same as in Figure 3.1. Time is divided

into three non-overlapping periods to address different user behavior at the beginning, in

the middle, and at the end of the program. There are two types of users in each service

group: half of the users are short-stay users whose average staying time is 1/µs and the

other half are long-stay users with average staying time 1/µl . Assume that the membership

update parameters {λ ,µl,µs,α,υ} are the same for all four service groups, and the param-

eters chosen for different types of users and for different periods of the program are given

in Table 5.2. α = 0.3 and 1/υ = 90 are fixed.

As all service groups have the same dynamics parameters, they have the same dynamics

pattern. Figure 5.8 shows an example of the user number in each subgroup. From Figure

5.8, the total number of users per service group changes from a few dozen to a maximum

of 3000, and in the interval between 900s and 6600s, the total number of users is around

60

2000 to 3000. Following the Table 3.2, an ALX subtree of degree a = 3 and l = 6 is used

for each service group to maximize the performance.

Figure 5.9(a) shows the average simulation results of the proposed POSET hash-based

key management scheme that uses the reconnection, batch rekeying and grouped placement

methods, and Figure 5.9(b) shows the variance of the simulation results. All data in Figure

5.9 are calculated based on 72000 simulation runs. From Figure 5.9(a), when compared

with sequential rekeying, the proposed scheme is more efficient when Tl is larger. When

Tl ≥ 50 seconds, the KDC’s computation overhead Cen and the communication cost Cmsg

are reduced by more than 50%, and each user’s computation cost Cde is reduced to less than

5%. This is consistent with the simulation results in the previous sections. Figure 5.9(b)

shows that the variances of the simulation results are small. For example, when Tl = 100,

σ2
ηen
≈ 10−7, σ2

ηde
≈ 10−4, and σ2

ηen
≈ 10−8.

61

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Invertal T
l
 (sec)

(c)

η m
sg

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(a)

η en

0 50 100 150

10
−2

10
0

Batch Interval T
l
 (sec)

(b)

η de

η
en,upperbound

η
en,simulation

η
de,upperbound

η
de,simulation

η
msg,upperbound

η
msg,simulation

Fig. 5.3. Performance of batch rekeying. λ = 4, 1/µl = 1500, and 1/µs = 240. 1/υ = 90 seconds

and α = 0.3.

62

0 50 100 150
10

−4

10
−2

10
0

Batch Interval T
l
 (sec)

(a)

η en
,D

G

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(b)

η en
,S

G

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(c)

η en
,D

G
+

S
G

η
en,DG,upperbound

η
en,DG,analysis

η
en,SG,upperbound

η
en,SG,analysis

η
en,SG+DG,upperbound

η
en,SG+DG,analysis

Fig. 5.4. KDC computation overhead with batch rekeying. λ = 4, 1/µl = 1500, and 1/µs = 240.

1/υ = 90 seconds and α = 0.3.

63

0 50 100 150
10

−3

10
−2

10
−1

10
0

Batch Interval T
l
 (sec)

(a)

η de
,D

G

0 50 100 150
10

−3

10
−2

10
−1

10
0

Batch Interval T
l
 (sec)

(b)

η de
,S

G

0 50 100 150
10

−3

10
−2

10
−1

10
0

Batch Interval T
l
 (sec)

(c)

η de
,D

G
+

S
G

η

de,DG+SG,upperbound

η
de,DG+SG,simulation

η
de,SG,upperbound

η
de,SG,simulation

η
de,DG,upperbound

η
de,DG,simulation

Fig. 5.5. User decryption overhead with batch rekeying. λ = 4, 1/µl = 1500, and 1/µs = 240.

1/υ = 90 seconds and α = 0.3.

64

0 50 100 150
0

0.5

1

Batch Interval T
l
 (sec)

(c)

η m
sg

0 50 100 150
0

0.5

1

Batch Interval T
l
 (sec)

(a)

η en

0 50 100 150
10

−3

10
−2

10
−1

10
0

Batch Interval T
l
 (sec)

(b)

η de

R
h

R
l

R
l

R
h

R
l

R
h

Fig. 5.6. Performance of batch rekeying for different membership update rates. 1/υ = 90 seconds

and α = 0.3.

65

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(c)

η m
sg

0 50 100 150
0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(a)

η en

0 50 100 150

10
−2

10
−1

10
0

Batch Interval T
l
 (sec)

(b)

η de

η
msg,random

η
msg,grouped

η
de,random

η
de,grouped

η
en,random

η
en,grouped

Fig. 5.7. Performance of the grouped user placement scheme. λ = 4, 1/µl = 1500, and 1/µs =

240. 1/υ = 90 seconds and α = 0.3.

66

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

Time (sec)

U
se

r
N

um
be

r
pe

r
S

G

Fig. 5.8. Number of users in each service group in a short-duration live broadcast streaming

application.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Batch Interval T
l
 (sec)

(a)

η

0 50 100 150

10
−5

10
0

Batch Interval T
l
 (sec)

(b)

σ2 η

σ2

ηen

σ2
ηde

σ2
ηmsg

η
en

η
de

η
msg

Fig. 5.9. Rekey overhead for a popular short-duration live broadcast streaming. 1/υ = 90 seconds

and α = 0.3.

67

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a POSET Hash-based key management scheme for secure and efficient key

update in scalable live broadcast applications is proposed. It explores the data dependency

in scalable coding to reduce the rekey cost, and addresses frequent membership update in

live streaming applications. The performance of the proposed scheme is analyzed and its

efficiency in reducing the rekey cost is demonstrated.

This work first considers applications that require strict forward and backward security,

and focuses on the design of data group key tree to address the data dependency in scalable

video coding and to efficiently update the session keys. The data group key tree design uses

the POSET Hash-based structure, and the proposed key management scheme uses public

information and the hash function to update the session keys. The results show that when

compared with the traditional encryption-based key update schemes, the proposed method

can help reduce 50% to 90% of the rekey cost to update the session keys. Also, it reduces

the rekey cost by a larger amount when scalable coding supports more types of scalability

and more layers.

68

For applications that can tolerate a small amount of content leak, this work designs

efficient key update schemes to address the frequent and drastic membership update in

live streaming applications, and analyzes their performance. The reconnection scheme,

the batch rekeying and the grouped user placement schemes are used to address the high

reconnection rate, the flash crowd phenomenon, and the large number of short sessions,

respectively. Both the analytical and simulation results show that the proposed schemes

can help reduce the number of rekey messages and the KDC’s computation cost by more

than 50%, and lower the user’s computation cost by more than 90%.

6.2 Future Work

The following directions would be explored in the future.

It is shown in this thesis that the rekey overhead can be reduced by exploring mem-

bership dynamics in live broadcast applications. The impact of user behavior on key man-

agement can be further investigated. For example, in scalable live broadcast applications,

a user may switch from one service group to another. In the current work, a user switch-

ing is treated as a user leave followed by an independent user join, and all keys known to

the switching user are updated. However, there is no need to update all those keys as the

switching user may have access to the same layers. For example, in Figure 3.4, when user

u(1,2)
8 switches from SG(1,2) to SG(2,2), the session key K(2,2)

s needs to be update using the

one-way function to prevent u(1,2)
8 from accessing the previous communication in DG(2,2),

while the session keys K(1,2)
s and K(1,1)

s can remain the same since u(1,2)
8 can still access

the data groups DG(1,2) and DG(1,1). Therefore, a possible way to further reduce the rekey

overhead is to investigate an efficient key update algorithm for user switch. In addition,

previous works in [1], [29], [42] assumed that users’ exact leaving times can be known

when they join the service, and used this information to reduce the rekey cost. In the fu-

69

ture, this work can be extended to this scenario, and investigates how users’ leaving time

can help further reduce the POSET rekey cost.

In addition, a popular live broadcast application may have millions of users. For exam-

ple, ESPN’s digital media platforms (including ESPN.com and the ESPN mobile website)

reported that there were over 2 billion total page views and more than 487 million total

visits for the 2008-09 NBA regular season [57]. For such applications with large audience,

a single KDC may not have sufficient computation power to handle all the key update. To

address this issue, a possible solution is to follow the work in [58] and to group users into

several subgroups depending on their geographical locations. Then a trusted agent is as-

signed to each subgroup to help update keys. The secure agent can be introduced to the

proposed POSET scheme, and each SG can be divided into two parts: the agent key tree

and the user key tree. In the agent key tree, the root node corresponds to the session key;

and the leaves correspond to agents. In a user key tree, the root represents an agent and

the leaves correspond to users. The KDC only updates the keys in the agent tree for each

service group in the POSET scheme, and the agents manage keys in the user subtrees. Such

a solution helps reduce the computation cost of KDC in popular live broadcast applications

with millions of users.

Furthermore, this thesis focuses on centralized key management schemes where there

is a KDC who generates and distributes secret keys. In reality, there are many applications

where such a centralized entity cannot be found, for example, in wireless sensor networks.

For such application, contributory POSET key management schemes can be investigated to

securely and efficiently update keys.

70

References

[1] Y. Mao, Y. Sun, M. Wu, and K. J. R. Liu, “JET: Dynamic join-exit-tree amortization and schedualing

for contributory key management,” IEEE/ACM Trans. on Networking, vol. 14, no. 5, pp. 1128–1540,

Oct. 2006.

[2] M. van der Schaar and P. A. Chou, Multimedia Over IP and Wireless Networks. Acedemic Press,

2007.

[3] Y. Mao and M. Wu, “A joint signal processing and cryptographic approach to multimedia encryption,”

IEEE Trans. on Image Processing, vol. 15, no. 7, pp. 2061–2075, July 2006.

[4] W. Zeng, J. Lan, and X. Zhuang, “Security for multimedia adaptation: Architectures and solutions,”

IEEE Multimedia Magazine, vol. 13, no. 2, pp. 68–76, Apr.-June 2006.

[5] B. Zhu, “Chapter: Multimedia encryption, multimedia security technologies for digital rights manage-

ment,” Academic Press, 2006.

[6] J. Wen, M. S. adn W. Zeng, M. Luttrell, and W. Jin, “A format-compliant configurable encryption

framework for access control of video,” IEEE Trans. on Circuits and Systems for Video Technology,

vol. 12, no. 6, pp. 545–556, June 2002.

[7] W. Zeng, J. Wen, and M. Severa, “Fast self-synchronous content scrambling by spatially shuffling

codewords of compressed bitstreams,” in Proc. IEEE Int. Conf. Image Processing, 2002, vol. 3, pp.

169–172.

[8] W. Zeng and S. Lei, “Efficient frequency domain selective scrambling of digital video,” IEEE Trans. on

Multimedia, vol. 5, no. 1, pp. 118–129, Mar. 2003.

[9] D. Balenson, D. McGrew, and A. Sherman, “Key management for large dynamic group: One way func-

tion trees and amortized initialization,” Internet Draft,draft-irtf-smug-groupkeymgmt-oft-00.txt, 2000.

71

[10] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issue in multicast communications,” IEEE

Networks, vol. 13, no. 6, pp. 12–23, Nov.-Dec. 1999.

[11] S. Rafaeli and D. Hutchison, “A survey of key management for secure group communication,” ACM

Computer Surveys, vol. 35, no. 3, pp. 309–329, Sept. 2003.

[12] T. Wiegand, G. Sullivan, G. Biontegaard, and A. Luthra, “Overview of the H.264/AVC video coding

standard,” IEEE Trans. on Circuits and System for Video Technology, vol. 13, no. 7, pp. 560–576, July

2003.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the

H.264/AVC standard,” IEEE Trans. on Circuits and System for Video Technology, vol. 17, no. 9, pp.

1103–1120, Sept. 2007.

[14] Y. Wang, J. Ostermann, and Y. Zhang, “Video processing and communications,” Prentice Hall, 2002.

[15] B. Zhu, Y. Yang, and T. Chen, “A DRM system supporting what you see is what you pay,” First In-

ternational Conference on Digital Right Management:Technologies, Issues, Challenges and System,

2005.

[16] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analisis of live streaming workload on the internet,”

in Proc. ACM Internet Measurement Conference, 2004, pp. 41–45.

[17] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibility of supperting large-scale live

streaming applications with dynamic application end-points,” in Proc. 2004 conference on Applications,

technologies, architectures, and protocols for computer communications, pp. 107–120.

[18] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A hiearchical characterization of a live

streaming media workload,” in Proc. 2nd ACM SIGCOMM Workshop on Internet measurment, 2002,

pp. 117–130.

[19] B. Li, G. Y. Keung, S. Xie, F. Liu, Y. Sun, and H. Yin, “An empirical study of flash crowd dynamics in

a P2P-based live video streaming system,” in Proc. IEEE GLOBECOM, 2008, pp. 1–5.

[20] H. Harney and C. Muckenhirn, “Group key management protocol (gkmp) architecture,” RFC 2094,

July. 1997.

[21] C. Wong, M. Gouda, and S. Lam, “Secure group communications using key graphs,” IEEE/ACM Trans.

on Networking, vol. 8, no. 1, pp. 16–30, Feb. 2000.

72

[22] D. Wallner, E.Harder, and R. Agee, “Key management for multicast: Issues and architecture,” Internet

Draft,draft-wallner-key-arch-00.txt, 1997.

[23] R. Torres, X. Sun, A. Walters, C. Rotaru, and S. Rao, “Enabling confidentiality of data delivery in an

overlay broadcasting system,” in Proc. IEEE INFOCOM, 2007, pp. 607–615.

[24] S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for group key management schemes,” in

Proc. 23rd Int. Conf. distributed computering systems, 2003, pp. 163–171.

[25] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The versakey framework:versatile group

key management,” IEEE Journal on Selected Areas In Communications, vol. 17, no. 9, pp. 1–16, Sept.

1999.

[26] W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, 2nd ed. Prentice

Hill, 2005.

[27] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast security: A taxonomy

and some efficient constructions,” in Proc. IEEE INFORCOM 1999, vol. 2, pp. 708–716.

[28] F. Zhou, J. Xu, L. Lin, and H. Xu, “Multicast key management scheme based on TOFT,” in Proc. 10th

IEEE Int. Conf. on High Performance Computing and Commmuniaction, 2008, pp. 1030–1035.

[29] G.Hao, N. V. Vinodchandran, B. Ramamurthy, and X. Zou, “A balanced key tree approach for dynamic

secure group communication,” in Proc. 14th Int. Conf. Computer Communications and Networks, 2005,

pp. 345–350.

[30] R. Sedgewick, “Algorithms,” Addison-Wesley Publication, 1988.

[31] Y. Sun, W. Trappe, and K. J. R. Liu, “A scalable multicast key management scheme for heterogeneous

wireless networks,” IEEE/ACM Trans. on Networking, vol. 12, no. 4, pp. 653–666, Aug. 2004.

[32] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,” in Proc.

EUROCRYPT’94, 1994, vol. 950, LCNS, pp. 275–286.

[33] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution extended to group communi-

cation,” in Proc. ACM 3rd Conf. Computer and Communications Security, 1996, pp. 31–37.

[34] W. Trappe, Y. Wang, and K. J. R. Liu, “Resource-aware conference key establishment for heterogeneous

networks,” IEEE/ACM Trans. on Networking, vol. 13, no. 1, pp. 134–146, Feb. 2005.

73

[35] ——, “Establishment of conference keys in heterogeneous networks,” in Proc. IEEE ICC, 2002, pp.

2201–2205.

[36] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. on Information Theory,

vol. 22, no. 6, pp. 644–654, Nov. 1976.

[37] K. Becher and U. Wille, “Communication complexity of group key distribution,” in Proc. 5th ACM

conf. Computer and communications security, 1998, pp. 1–6.

[38] O. Rodeh, K. Birman, and D. Dolev, “Optimized group rekey for group communication systems,” in

Proc. ISOC Network and Distributed Systems Security Symposium, 2000, pp. 275–286.

[39] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key agreement for dynamic collaborative

group,” in Proc. 7th ACM Conf. Computer and Communications Security,2000, pp. 235–224.

[40] L. R. Dondeti and S. Mukherjee, “Disec: A distributed framework for scalable secure many-to-many

communicaitons,” in Proc. 5th IEEE Symp. Computing and Commmuniactions Security, 2008, pp. 693–

698.

[41] X. Gu, J. Yang, J. Yu, and J. Lan, “Join-tree-based contributory group key management,” in Proc. 10th

IEEE International Conference on High Performance Computing and Communications, 2008, pp. 564

– 571.

[42] X. Gu, Z. Cao, J. Yang, and J. Lan, “Dynamic contributory key management based on weighted-join-

exit-tree,” in Proc. IEEE Military Communications Conference, 2008, pp. 1 – 7.

[43] L. Eschenauer and V. D. Gligor, “A key management scheme for distributed sensor networks,” in Proc.

9th ACM Conference on Computerand Communication Security, pp. 41–47, Nov. 2002.

[44] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor networks,” in Proc.

2003 IEEE Symposium on Security and Privacy, pp. 197–213, 2003.

[45] I. Blake, G. Seroussi, , and N. Smart, “Advances in elliptic curve cryptography,” Cambridge University

Press, 2005.

[46] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure for key distribution in tinyos

based on elliptic curve cryptography,” in Proc. First IEEE International Conference on Sensor and Ad

Hoc Communications and Networks, 2004.

74

[47] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing elliptic curve cryptography

and rsa on 8-bit cpus,” in Proc. 6th International Workshop on Cryptographic Hardware and Embedded

Systems, 2005.

[48] G. Gong, T. A. Berson, and D. R. Stinson, “Elliptic curve pseudorandom sequence generators,” in Proc.

6th Annual International Workshop, 2000, pp. 34–48.

[49] X. Du, M. Guizani, Y. Xiao, and H. Chen, “A routing-driven elliptic curve cryptography based key

management scheme for heterogeneous sensor networks,” IEEE Trans. on Wireless Communications,

pp. 1223–1229, Mar. 2009.

[50] S. Dexter, R. Belostotskiy, and A. M. Eskicioglu, “Multi-layer multicast key management with thresh-

old cryptography,” IS&T/SPIE Symposium on Electronic Imaging, Security, Steganography, and Water-

marking of Multimedia Contents VI Conference, Jan. 2004.

[51] Y. Sun and K. J. R. Liu, “Hierarchical group access control for secure multicast communications,”

IEEE/ACM Trans. on Networking, vol. 15, no. 6, pp. 1514–1526, Dec. 2007.

[52] K. Frikken, M. Atallah, and M. Bykova, “Hash-based access control in an arbitrary hierarchy,” CERIAS

Technical Report 2004-49, Purdue University, Nov. 2004.

[53] B. Zhu, M. Feng, and S. Li, “Secure key management for flexible digital rights management of scalable

codestreams,” IEEE 7th Workshop Multimedia Signal Processing, 2005, pp. 1–4.

[54] S. Zhong, “A practical key management scheme for access control in a user hierarchy,” Computer and

Security, vol. 21, no. 8, pp. 750–759, Dec. 2002.

[55] B. Zhu, M. Feng, and S. Li, “An efficient key scheme for multiple access of JPEG 2000 and motion

JPEG 2000 enabling truncations,” in Proc. 3rd IEEE Consumer Communications and Networking Conf.,

2006, vol. 2, pp. 1124–1128.

[56] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for secure group communications,”

in Proc. 10th ACM Int. World Wide Web Conf., 2001, pp. 525–534.

[57] http://www.espnmediazone.com/press releases/2009 04 april/20090416 NBAAudienceGrowthAcrossE

SPNPlatforms.htm.

[58] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in Proc. ACM SIGCOMM’97, 1997,

pp. 277–288.

75

