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Abstract

We propose a domain-independent framework for extracting facts and relations 

from the Web and text repositories, where an extraction task is expressed in a query 

using a natural language phrase augmented with some wild cards, and the data 

that best match the query are extracted. Most existing techniques focus on a more 

specific task (e.g. job postings) or are only applicable to documents that follow a 

specific formatting (e.g. wrappers). We show that our querying mechanism, despite 

being simple, can extract a much wider range of facts. To address the problem that 

a given phrase query can be too restrictive, we propose a rewriting rule language to 

express alternative rewritings of the query. Also, to distinguish real facts from false 

matches, we propose a ranking algorithm that assigns higher weights to promising 

instances. Extensive experiments show that our approach outperforms other options 

in terms of both precision and recall.
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Chapter 1 

Introduction

The World Wide Web contains a vast amount of information, which makes it a rich 

source for data extraction. However, manually extracting data from the Web is a te­

dious and time consuming process, especially when a large amount of data matches 

the extraction criteria. Example extraction tasks include compiling a list of Cana­

dian writers, a list of car manufacturers, etc. Unless such lists have already been 

compiled and made available on the Web, one has to query a search engine, examine 

the pages returned, and extract a handful of instances from each page (if there is any 

at all). The problem is further complicated by the flexibility of natural languages. 

Consider the example of extracting Canadian writers', many bona fide writers are 

not referred to as writers. Instead, they are often coined as authors, novelists, jour­

nalists, etc. If only the term “Canadian writers” is used in the query, many qualified 

instances will not be extracted, thus the extraction quality is compromised. Many 

previous data extraction systems impose a tight restriction on the type of data that 

can be extracted. For example, the KnowItAll [14] system can extract hyponyms 

of a user-specified class. The online prototype of the system is further extended to 

support a limited form of binary relations such as X  “ceo o f"  Y. If a user wants to 

extract something other than hyponyms and those predefined relations, the system 

is no longer applicable.

We address some of the aforementioned challenges by introducing a framework 

that allows an extraction task to be encoded as a simple query. A query is a sentence 

or phrase1 with some wild cards, and the result of a query is a ranked list of tuples

'The query phrases in this thesis are in English, but our framework should be applicable to other

1
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that match the wild cards. For instance, given the query “% is a car manufacturer”, 

the output is expected to be a ranked list of car manufacturers, preferably the real 

car manufacturers ranked the highest. This query only uses one wild card, here 

denoted with %. In general, a query can use more than one % wild card, and the 

result of the query in this case is a table with one column for each occurrence of the 

wild card.

Our first contribution is a declarative querying framework that integrates wild 

cards in natural language phrases. Wild card support has several advantages. In our 

earlier example about Canadian writers, for instance, a user can use one type of 

wild card to indicate that terms similar to writers should also be considered. An­

other type of wild card may be used to indicate a probable position of the desired 

data, from which values can be extracted. Combining such wild cards with natural 

language phrases can provide a simple but powerful interface, which can handle 

much more extraction tasks than previous systems. There is a close correspondence 

between our queries and star-free regular expressions; our queries make use of cer­

tain abstractions geared toward natural languages which make it simpler to write 

queries.

Our second contribution is the idea of using query rewritings to improve the 

coverage of the queries and the quality of the results. This is important because 

a given query may not retrieve an adequate number of facts without considering 

possible rewritings. Our experiments, as reported in Chapter 6, show that increasing 

the number of rewritings can improve both recall and precision.

As our third contribution, we design a new algorithm for ranking extracted tu­

ples and patterns that are used to extract those tuples. We use the general term pat­

tern to refer to both query and query rewriting. The new ranking algorithm, which 

exploits the mutual reinforcing relationship between extracted tuples and patterns, 

ranks the tuples in terms of their relevance to the patterns, and measures the effec­

tiveness of extraction patterns. Since the results are ranked, it is possible to set a 

cutoff threshold to filter invalid rows from the result, making the final results more 

accessible to the user.

languages as well.

2
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Finally, as our last contribution, we implement our algorithms in the setting of 

the Web and report a comparison of our results with previously-proposed alternative 

data extraction algorithms.

The rest of the thesis is organized as follows. Related work is reviewed in 

Chapter 2. Chapter 3 describes both the syntax and the semantics of wild cards, 

the queries supported in our framework and an overview of our query evaluation in 

the context of the Web. Chapter 4 discusses the details of our rewriting rules and 

patterns. Our ranking algorithms are discussed in Chapter 5. Experimental results 

are presented in Chapter 6 and we end the paper with conclusions and future work 

in Chapter 7.

3
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Chapter 2 

Related Work

Automatic data extraction of facts and relations from textual contents has many 

real-world applications, such as putting together a comprehensive catalog and es­

tablishing the semantic Web. The problem is important because once the data is 

extracted, it can be treated as a table in a traditional database and processed with 

existing tools and techniques. Data extraction is an active research area and encom­

passes the fields of information retrieval, databases, machine learning, semantic 

Web, Web search and ranking, question answering, natural language processing, 

and so on.

This chapter begins with an overview of the challenges and techniques for ex­

tracting data from various sources, and proceeds to review related work in the areas 

of question answering, query rewriting, ranking algorithms, and indexing.

2.1 The Source of Data Extraction

The source of data extraction can be classified into two categories: natural language 

text (plain text) collection and the Web. Valuable data can be extracted from some 

large plain text corpus, such as document collections within a corporation and the 

Wall Street Journal archive. The Web is the largest knowledge base available, which 

makes it also a good source for data extraction. The Web is typically orders of 

magnitude larger than other document collections. Thus, techniques applicable to 

smaller collections may not be able to scale up to the Web. On the other hand, the 

phenomena of information redundancy on the Web opens the door to new extraction

4
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methods and makes large-scale extraction possible. In addition to plain text, Web 

pages contain many HTML markups for presentation purpose. Regularities among 

HTML tags and visual formatting of a Web page can also be used to extract desired 

data.

Our approach uses the Web as data source and therefore benefits from its large 

volume of information and redundancy. However, we do not consider the HTML 

tags within a page nor the page visual formatting. Instead, we remove the tags from 

a Web page and treat it as a plain text document. Details of our approach can be 

found in section 3.3.

2.1.1 Data Extraction From Plain Text

Interesting information and semantic relations can be extracted from large plain text 

corpus. For instance, we can automatically find nouns that satisfy the is-a or part-of 

relationship with respect to a given noun. More specifically, given the term “car”, 

lexico-syntactic patterns can be used to automatically identify from the text corpus 

that “the Honda Accord” is a (kind of) car, and a “speedometer” is part of a car. 

It is also possible to automatically find lexico-syntactic patterns that encode is-a or 

part-of relationships between entities.

Challenges in data extraction from plain text arise from the fact that natural lan­

guages are intended for human consumption, and they are much more complicated 

and informal than structured data formats (e.g. XML) in terms of knowledge rep­

resentation. Therefore, special techniques must be used to extract data from plain 

text and to evaluate the correctness of extracted results.

Hyponym Patterns

Hearst [23] describes a method to automatically identify hyponym lexical relations 

from a large text collection. (Hyponym relation is also known as is-a relation. 

For example, Canada is a hyponym of Country because we can say Canada is a 

country.) Her algorithm can be summarized as follows:

1. Pick a semantic relation that is of interest. In this case, it is the hyponym 

relation.

5
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2. Collect a few pairs of terms that are known to satisfy the hyponym relation, 

like (Canada, country) or (rose, flower). These pairs of examples can be found 

by bootstrapping from an existing knowledge base.

3. Find places in the text collection where terms from the same pair appear close 

to each other, and record the context.

4. The commonalities among the recorded contexts yield patterns that indicate 

the hyponym relation.

Table 2.1 shows a list of hyponym patterns found using the algorithm above (NP 

stands for Noun Phrase). There are syntactic patterns that indicate hyponym rela­

tions in natural language text but are not recognized by the algorithm. However, the 

algorithm seems to find frequent and reliable patterns that can be used independent 

of text domains.

__________ Table 2.1: Hyponym patterns identified by Hearst_________
NP{,} such as {NP,}* {(or | and)} NP 

Large cities such as Philadelphia and San Francisco. ..

such NP as {NP,}* {(or | and)} NP 
. . .  in such Alberta cities as Red Deer, Airdrie and Leduc . ..

NP{, NP}*{,} or other NP 
. . .  Jasper, Banff, or other National Parks in Canada ...

NP{, NP}*{,} and other NP 
. ..  Heather Mallick, Stuart McLean and other Canadian writers...

NP{,} including {NP,}* {or | and} NP 
. . .  top-end car manufacturers, including Porsche and Aston M artin . ..

NP{,} especially {NP,}* {or | and} NP 
. . .  operating systems, especially the MSDOS, OS/MVS, UNIX,...

To automatically find hyponyms of a given term, one can match the patterns 

listed in Table 2.1 to each document in the text corpora. The performance can be 

an issue if the text corpora is large, say 10GB, and a moderate to large number of 

patterns need to be checked. To reduce the time for pattern matching or to make

6
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online queries responsive, a faster algorithm than naively scanning the text collec­

tion is needed. There is already work on fast matching regular expressions on large 

text [11]. The idea is to automatically select substrings with high selectivity from 

the corpora and use these substrings to build a tree index on the collection. With the 

help of an index, only relevant documents, usually a small fraction of the collection, 

are retrieved and examined.

Our work makes use of the hyponym patterns compiled by Hearst to rewrite 

queries: if a query matches one of the hyponym patterns, it can be expanded with all 

other hyponyms patterns. Query expansion can improve both recall and precision, 

as reported by one of our experiments. Details on rewriting queries can be found in 

Chapter 4.

Part-of Patterns

Based on Hearst’s algorithm for finding hyponyms, Berland and Chamiak [6] suc­

cessfully extract part-of relations from the Linguistic Data Consortium’s North 

American News Corpus. More specifically, given a word denoting some entity 

that has recognizable parts, the algorithm extracts terms that are parts of the given 

entity from the corpus. For example, given the entity car, the algorithm may find 

terms like speedometer, brake, tire, airbag as parts.

By using Hearst’s algorithm, the authors find an initial set of five patterns for 

identifying “part-whole” relations. The set of patterns are evaluated in an exper­

iment and their respective performances are compared. Three of the five patterns 

are discarded due to their unsatisfactory results, and the remaining two patterns are 

shown in Table 2.2.

Table 2.2: Part-of patterns identified by Berland and Chamiak
NP’sN P  

e.g. . . .  car’s airbag...

NP o f {the | a} NP 
e.g. . . .  dashboard o f the ca r . ..

Given a word that represents the “whole” in a “part-whole” relation, the algo­

rithm instantiates the two patterns with the word, and then uses the instantiated

7
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patterns to find matches from the corpus. At the filtering stage, words ending with 

“ing”, “ness”, “ity” are filtered from the result because these suffixes are usually as­

sociated with words that denote quality rather than physical objects (e.g. the word 

“durability” in the phrase “durability of the computer”). At the final stage, results 

are sorted using some statistical methods.

2.1.2 Data Extraction From the Web

The vast amount of information on the Web makes it a rich source for data extrac­

tion. Many data extraction techniques developed for plain text are applicable to 

Web pages after HTML tags are removed. Meanwhile, some of the unique char­

acteristics of the Web, such as its unprecedented size and semi-structured layout 

within a Web page, lead to promising opportunities and tough challenges for data 

extraction. In this section, we review several extraction techniques and systems for 

the Web, including wrapper construction, extraction by examples, and a system for 

large-scale data extraction.

Wrappers

A wrapper is a computer program that is designed to extract required data from a 

set of similarly formatted Web pages hosted on a particular website. Applications 

of wrappers include meta-search engine [31] (e.g. a search engine built on top of 

other search engines), news/blog syndication, product shopping comparison, etc. 

A survey by Florescu, Levy, and Mendelzon [17] reviews the work in the area of 

Web query languages and wrappers before 1998. The survey observes that many 

websites can be viewed as a container of structured data. For example, the website 

of the Internet Movie Database (IMDB) is effectively a database for movies, since 

it contains hundreds of thousands of movie records; for each movie there are data 

on movie title, cast names, plot summary, average viewer rating, viewer comments, 

and so on. Information about each movie (typically stored in one HTML page) is 

analogous to a tuple in a relational database. However, unlike relational data, data 

in a Web page may not be structured at all or may be partially structured. Data 

in a Web page is typically wrapped in natural language text and visual formatting

8
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primitives (e.g. HTML tags and graphics). There is little meta-data describing the 

data in a page. The reason is that HTML pages are intended for human viewing 

rather than data description or querying. On the other hand, for large and resource­

ful websites, related web pages are automatically generated on the sever side by 

the same program (e.g. CGI program), thus there exist regularities among related 

pages that may indicate how the embedded data is stored. Consider two pages from 

the IMDB that describe two different movies. Since the pages are generated by the 

same program, the typesettings of data items are expected to be the same: movie 

titles from both pages are in 16-point, bold, sans-serif letters, followed by the re­

leased year enclosed within parentheses; the cast names are formated as a list; the 

genre is displayed following the string sequence “Genre:” and separated by “/”. 

Based on the commonalities of related pages, we can construct a wrapper specific 

to the target website, extract data of interest and transform it to a more structured 

format for more convenient querying and manipulation. For those dynamic web 

pages that are only accessible through a form, the wrapper also needs to pose an 

appropriate query in order to access the Web page.

Defining one wrapper by hand is tedious and time consuming; the task of man­

ually constructing wrappers for an increasing number of websites quickly becomes 

impractical. Therefore, it is more attractive to build wrappers rapidly with little or 

no human intervention instead of building them by hand. There is some work on 

the rapid creation of wrappers. One approach [21,22] allows the wrapper developer 

to specify the layout of the target Web pages by using a specialized grammar, and 

to indicate what data is of interest, thus the required data can be extracted. Another 

approach employs machine learning algorithms to create wrappers. Under the latter 

approach, one needs to provide a small set of hand-labeled Web pages as a training 

set to a machine learning algorithm. The wrapper induced by learning algorithms 

can take new Web pages and extract the required data. More details on wrapper 

induction using machine learning techniques can be found in [4,26].

Recent research on wrapper generation takes advantage of not only HTML tag 

regularities but also visual clues [43]. After all, HTML pages are designed for hu­

man viewing and people usually rely on visual patterns to find relevant information

9
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from a web page. Consider the scenario where a user tries to find relevant infor­

mation from a search engine result page: although the page may contain irrelevant 

blocks such as the search engine logo and the advertisement block, the user can still 

easily distinguish the actual result block from other “visual noises”. The reason 

is that each result record (i.e. URL and snippet of the result) is rendered within 

a (transparent) bounding rectangle; the rectangles often have the same width, and 

are of an equal distance from their neighbors and the left/right boundary of the 

web browser window. Such visual commonalities can be exploited to locate and 

extract the desired data. An algorithm [43] that uses visual content features can 

be briefly described as follows: First, render a sample page (e.g. a search result 

page with some records), and for each type of objects,such as text, link, and im­

age, record its bounding box’s coordinates relative to the browser window. Second, 

render an empty page (e.g. a result page with logo and advertisements but without 

any records), record the coordinates of each object. Third, “subtract” the objects 

rendered in the second step from those in the first step if they have the same coor­

dinates. The purpose of this step is to remove background noises that are present 

in both pages. Fourth, by using some heuristics, classify the remaining objects into 

groups of visually similar blocks. Each group, which may contain several records, 

becomes a candidate for generating wrappers. Fifth, since there may be multiple 

groups, the most promising group is chosen by studying both visual and non-visual 

content features. Ideally, the chosen group is the one that has all and only the result 

records. The content features that govern which group to be picked include: ren­

dering area, center distance, number of records, and average number of characters. 

Finally, generate a wrapper for the chosen group of blocks/records based on HTML 

tag regularities.

Due to its practical use and commercial value, rapid wrapper construction has 

become an active research area. One major drawback of wrappers is that existing 

wrappers would break when the underlying websites change their presentation for­

mats, which happens frequently in the real world. Our framework does not use 

wrappers. We use syntactic text patterns to locate target data instead. Since our 

approach does not depend on HTML tags or other visual features, changes in the

10
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formatting of websites will have no negative effects on performance of our system.

Data Extraction by Examples

Although wrappers prove to be useful in real world applications, there are also some 

limitations. First, a wrapper is specific to one particular website, so it does not 

work with other websites. If one wants to extract data from hundreds of websites 

then hundreds of different wrappers have to be built. Even with the state-of-art 

wrapper generation systems, creating and maintaining a large number of wrappers 

is costly. Second, building wrappers with automated systems still requires expert 

knowledge. It is not likely that an average user knows how to generate wrappers 

using specialized computer programs. Therefore, accessibility to data is limited. 

Third, even if a large number of wrappers are used, the coverage of these wrappers 

is still small compared to the whole Web. The vast amount of resources on the 

Web is not fully explored if information search is only limited to the websites with 

wrappers.

Brin [8] has proposed an approach to extract patterns and relations which is not 

limited to a specific page or site. One example of the relations that can be extracted 

is the pair of authors and titles. One nice property of Brin’s algorithm is that only a 

small handful of examples of the target relation is required as input, so an average 

user should find the system easy to use. The algorithm is summarized as follows:

1. Start with a small number of seed tuples of the target relation (e.g. authors 

and titles).

2. Find all pages that contain the seed tuples on the Web.

3. Generate patterns from the pages retrieved. A pattern may describe the URL 

prefix of a source Web page, the ordering of the columns in the page, and the 

common text surrounding the tuples.

4. Search the Web for more tuples of the target relation using the newly gener­

ated patterns.

5. Stop if enough tuples are found; otherwise go to step 2.

11
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Brin argues that a pattern cannot be too general because an overly general pat­

tern can extract many false positives. A pattern being too specific is not a problem, 

however, because its small coverage can be compensated for by information redun­

dancy on the Web.

Pattern relation duality is another observation made in the paper: starting with 

a good sample of patterns (i.e. those that have high precision and recall), a set of 

high quality tuples can be found. On the other hand, with a set of good tuples, a 

set of high quality patterns can be constructed. Therefore, it is possible to expand 

a small number of examples to a large set of relations and patterns. The Snowball 

system [1] explores the notion of pattern relation duality further and yields good 

performance.

Brin’s algorithm does a good job when data is structured in a tabular format but 

is not expected to work on free text. It is generally unlikely to find more than one 

example of the seed set in a text document such that its surrounding texts are the 

same. Another pitfall of the algorithm is that the semantic of a query sometimes is 

not clearly defined by the given examples. In particular, suppose several pairs of 

(Canadian author, title) examples are given, it is still not clear whether the query 

should be limited to Canadian writers and their books or should include authors 

from other countries and their work.

Large-Scale Extraction in KnowItAll

The data extraction system KnowItAll [14] takes the description of a concept or 

class (e.g. cities) as input and extracts instances (e.g. Paris, New York,. . . )  of the 

class. The system maintains a set of generic rule templates with some place holders 

which can be filled with class descriptions in order to identify the instances of the 

class. KnowItAll uses co-occurrence statistics, in particular mutual information, 

to assess the relatedness of each instance. One problem that plagues the system is 

low recall rate. An improved version of KnowItAll [15] adds three new techniques 

aiming to boost recall while maintaining high precision. The new techniques are:

• Rule Learning: learns domain-specific rules and use them to validate the ac­

curacy of the results.

12
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• Subclass Extraction: given a class (e.g. scientists), the algorithm tries to leam 

subclasses of the class (e.g. physicists, geologists,. . . )  and extract instances 

for the subclasses as well.

• List Extraction: find regularly-formatted lists on the Web that contain a large 

number of desired data and then extract from the list.

The three techniques are reported to have improved recall significantly while 

keeping precision comparable to the baseline KnowItAll system. Our approach dif­

fers from KnowItAll in several important aspects: First, the query-based interface 

and the support of wild cards make our approach more adaptive to different extrac­

tion tasks. Second, unlike KnowItAll where a concise description of a class must be 

given, a wild card query may specify only the context in which the instances may 

appear. This is useful when a concise class description is not available, as shown 

by some ad hoc queries in our experiments. Last but not the least, our algorithm 

for assessing the extraction results is novel and performs better than the one used in 

KnowItAll.

Other-Anaphora Resolution Using the Web

Modjeska et al. (33] propose a machine learning approach that uses the Web for 

other-anaphora resolution. An anaphor is a phrase that refers to another phrase 

used earlier. For example, in the sentence “I asked Jim to water the flowers and 

he did so”, the phrase “he” refers to “Jim”. In this case, “he” is called an anaphor 

and “Jim” is called an antecedent. Other-anaphors are anaphors that contain the 

modifiers “other” or “another”. The goal of other-anaphora resolution is to find 

what the given other-anaphor is referring to.

Given a set of manually labeled pairs of anaphor and antecedent, the machine 

learning algorithm for anaphor resolution trains a Naive Bayes classifier based on 

a few non-Web features, including semantic class for NPs (e.g. person, address, 

organization), distance between anaphor and antecedent, and so on. In addition 

to the non-Web features, the training of the classifier also considers one Web fea­

ture, which is the Mutual Information between a pair of anaphor and antecedent 

evaluated on the Web. It is reported that the results (in terms of recall, precision,

13
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and F-measure) improve significantly when the Web feature is used together with 

non-Web features to train the classifier.

2.2 Question Answering Using the Web

A large body of work exists on question answering (QA). For example, the Text Re­

trieval Evaluation Conference (TREC) [39] has a QA track, where systems compete 

with each other for retrieving short answers (rather than passages or documents) to a 

set of questions. QA systems typically decompose the task into two parts: retrieving 

documents that may contain answers and extracting short answers from those doc­

uments [27]. For the first part of the task, systems in the QA track of TREC usually 

submit a question in its original or modified form to an information retrieval sys­

tem (e.g. search engine), and retrieve relevant documents from the collection. For 

the second part, a large number of techniques have been explored, including part- 

of-speech tagging, named entity extraction, semantic relations, external knowledge 

base (e.g. dictionaries and WordNet [32]), hand-crafted or automatically generated 

rules, domain dependent or independent patterns, etc. Some of the aforementioned 

techniques (such as semantic relations) are computationally intensive and require 

rather heavy natural language processing; thus they can not easily scale up to large 

collections.

Our work is related to QA in the following aspects: first, our work makes use 

of some of the answer extraction techniques described earlier. For those techniques 

that are not currently used in our approach, it may be possible to incorporate them as 

enhancements to our existing system. It would be interesting to see how additional 

extraction techniques can affect the performance of our system. Second, although 

our system is designed with large-scale data extraction in mind, it is also shown 

to be effective in answering certain types of questions. Experiments on question 

answering can be found in Chapter 6.

The AskMSR QA System

The AskMSR system [13] is one of the earlier systems that exploit data redun­

dancy in large corpus (e.g. the Web) for answering natural language questions.

14
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The designers of AskMSR speculate that given a relatively small corpora, finding 

a correct answer is challenging without computationally intensive NLP techniques. 

However, if the Web is used as the data source, it is more likely that one can find an­

swers in the proximity to a question text. Therefore, it may be feasible to primarily 

rely on Web data (with little or no NLP) to perform question answering. AskMSR 

performs QA in the following four steps:

1. Query reformulation: Given a query, the system generates rewritings that are 

likely substrings of declarative answers to the question. For instance, “Where 

is the Louvre Museum located?” is rewritten as “the Louvre Museum is lo­

cated”. The rewritings are generated using hand-crafted rules with the help 

of a lexicon, and each rewriting has a weight that measures its importance. 

A backoff rewriting is also added in case all other rewritings fail to retrieve 

any documents. The backoff rewriting is generated by ANDing all non-stop 

words from the question.

2. N-Gram mining: Each rewriting is formulated as a search query and snippets 

of search results are downloaded. Unigrams, bigrams, and trigrams are ex­

tracted from snippets and weighted according to the rewritings that retrieve 

them. The final score for an n-gram is based on the weights of the rewritings 

that retrieve it and the number of unique snippets where it appears

3. N-Gram filtering: The n-grams are filtered and reweighted based on the ques­

tion type. More specifically, if the question is of who type (e.g. “Who killed 

Abraham Lincoln?”), but an n-gram is not a proper noun (i.e. noun phrase be­

ginning with capital letter), the n-gram should be filtered. The filtering rules 

are developed manually in advance.

4. N-Gram tiling: n-grams are merged to form longer answers. For example, 

“University o f ’ and “of Alberta” are merged and become “University of Al­

berta”. Longer n-grams have higher weights than shorter ones.

AskMSR emphasizes the data-redundancy approach to automatic QA. Although 

the approach works well for TREC questions, and each of which has only one or
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several correct answers, it still remains unclear whether the approach can be directly 

applied to large-scale data extraction, where the answer set may contain hundreds 

or even thousands of facts.

Mining the Web to Play “Who Wants to be a Millionaire?”

The ABC TV show “Who Wants to be a Millionaire?” is a game of multiple choice 

questions. For a human player, to answer the questions correctly, it requires com­

mon sense and the knowledge of popular culture. Lam et al. [27] design and imple­

ment a computer program to play the Millionaire game and the computer player is 

reported to have achieved performance (in terms of average amount of prize won) 

comparable to human players.

Unlike most QA systems that extract some text as answers, the computer player 

chooses one of the four choices for each question. Lam’s approach exploits the re­

dundancy and volume of information on the Web. More specifically, the approach 

is based on the idea that words from a question tend to appear in a document con­

taining the answer, and the question words are likely to repeat in that document as 

well. The idea is especially applicable to large corpus, thus it is natural to use the 

Web as data source and search engines as document retrieval tools.

The authors’ baseline algorithm is as follows. A question and each of its four 

choices are sent to a search engine and the number of matches are counted. Gener­

ally, the response to the question is the choice with the highest search result counts. 

For inverted questions (e.g. “Which of the following is NOT a city name?”), the 

response is the choice with lowest result counts. Since some search engines have 

limits on the maximum number of query terms, stop words from a question are 

removed, if necessary, to keep the total number of query terms within limits.

The baseline algorithm works reasonably well, but the authors also suggest 

some heuristics to improve the performance. For example, when a query returns 

a zero result count, the query can be relaxed by removing some terms from the 

query until a non-empty set of results is returned. Another heuristic is putting 

multiple-word choices in quotes to require that they appear as phrases in retrieved 

documents. In addition, many researchers working in the QA track of TREC be­

lieve that answers and questions not only tend to appear in the same document, but
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they also tend to appear close to each other [37]. Thus, a proximity metric, which 

measures the average distance among question words and answer words, is incor­

porated into the algorithm of the computer player. Search result counts, proximity 

metric, and other heuristics are used in combination in the improved version of the 

computer player, which is shown to be more effective than the baseline system in 

experiments.

2.3 Query Rewriting

One of the main challenges in extracting data from natural language text is that often 

desired data appear in different contexts and a user query may give only one of those 

contexts. As a result, the query may match very few or no results. For example, the 

query “X is a Canadian writer” can match a writer’s name from “Timothy Findley 

is a Canadian writer.” but fails to match anything in the sentence “Canadian writer 

Margaret Atwood shares her experience . . .  ”, which also contains a valid tuple to 

the query. Query rewriting is an effective technique to improve precision and recall 

for data extraction and QA systems. In fact, according to the TREC-10 QA evalua­

tion [38], the winning system uses only one resource: a large number of rewritings 

for each question type [35]. Automatically generating equivalent or similar rewrit­

ings for a query still remains an open research area due to its inherent difficulty. 

To address this problem, we propose a rewriting rule language and compile a set of 

generic and specific rules for rewriting user queries. A detail discussion on how we 

address the problem can be found in Chapter 4. This section reviews some methods 

proposed by the QA research community for automatic query or question rewriting.

Learning Text Surface Patterns

Ravichandran and Hovy investigate the problem of learning surface text patterns 

that can be used to find answers for various question types [34]. For instance, given 

a birthdate type question, the algorithm can learn text patterns such as <name> 

w as b o r n  i n  < b i r t h d a t e >  and <name> ( < b i r t h d a t e > - .  These pat­

terns can be used to find birthdates in sentences like “Mozart was bom in 1756.” 

or “Gandhi (1869-1948)... ”. To learn text patterns for a particular question type,
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say birthdate, the algorithm requires an example as input; in this case, the exam­

ple is chosen as “Mozart 1756”. “Mozart” is referred to as the question term and 

“1756” is referred to as the answer term. Both the question and answer terms are 

sent to a search engine and the top 1000 result pages are downloaded. Each page 

is broken into individual sentences, and only those sentences that contain both the 

question and answer terms are retained. Remaining sentences are passed through a 

suffix tree constructor. Once the suffix tree is built, it is convenient to find common 

substrings among sentences along with their lengths and counts (i.e. the number of 

sentences that contain each substring). All the substrings are filtered so that only 

those that contain both the question and answer terms are retained. Finally, patterns 

are generated by replacing the question term with the tag <name> and answer term 

with the tag < an sw er> . The pattern learning procedure is repeated for different 

examples of the same question type.

The precision of a text pattern is computed using the following algorithm: query 

the search engine using only the question term (in this example, “Mozart”). Down­

load the top 1000 pages returned, break them into sentences and only retain those 

that contain the question term. For each text pattern learned, record the number of 

sentences in which the < a n sw er>  tag matches by any word (C0), and record the 

number of sentences in which the < an sw er>  tag matches the correct answer (Ca). 

The precision of a pattern is calculated as CajC Q. Only the patterns with reasonably 

high precisions are returned.

A large number of high quality text patterns can be compiled for various ques­

tion types using the algorithms discussed above. Different text patterns for the same 

question type can be used to generate a query rewriting rule in our data extraction 

system, as it will be discussed later in Chapter 4.

Using Inference Rules for Query Rewriting

An unsupervised method for discovering inference rules is presented by Lin and 

Pantel [30]. An inference rule is of the form “X wrote Y «  X is the author of Y”. 

Inference rules can be used to expand a query. In particular, if a given query is “X 

wrote The Da Vinci Code”, it can be rewritten as “X is the author of The Da Vinci 

Code” according to the inference rule.
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To describe the algorithm for discovering inference rules, we need to define 

what a path is. Essentially, a path is a binary relation between two entities. For 

example, a particular path can represent the semantics that “X wrote Y”. Paths can 

be obtained by parsing a text corpus. Therefore, the problem of discovering infer­

ence rules becomes finding paths that are most similar to a given path. According 

to the Extended Distributional Hypothesis, two paths tend to be similar if they tend 

to appear in similar contexts. For instance, the two paths “X finds a solution to Y” 

and “X solves Y” are considered similar if words appearing at X in the first path 

have a large overlap with the words appearing at X in the second path, and the same 

holds for words appearing at Y.

Phrase Query Expansion

A term query can be expanded or relaxed by removing some of the terms from 

the query, as is commonly done in search engines. Removing terms from a phrase 

query, however, can often ruins its meaning. Phrase query expansion is related to 

our work because we rely on phrase queries to locate not only relevant documents, 

but also the exact positions from which tuples are extracted. Phrase query expansion 

has been shown to be a difficult problem [7]. The following are some of the known 

techniques for phrase query expansion.

The first level of expansion that is applicable to all phrase queries is proxim­

ity search. Proximity search still enforces the ordering of words to be the same as 

that of original query, but words can appear within some distance from their neigh­

bors. For instance, the phrase query “is a country” can be expanded to “is NEAR 

a NEAR country” in a proximity search. Proximity search weakens the restriction 

of the original query, thus a discount factor (i.e. penalty) is usually assigned to the 

rewritten query. Special expansion techniques also exist for some limited types of 

queries, namely those for people’s names and Noun-Noun Collocations. A person’s 

full name with optional title, say “President John F. Kennedy”, can be expanded to 

the last name (e.g. “Kennedy”). In this case, it is assumed that the full name and 

the last name are likely to refer to the same person. Noun-noun collocations can be 

expanded with appropriate pluralization information. For example, “laptop com­

puter” can be expanded to “laptop computers” but not “laptops computer”, while
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“attorney general” should be expanded to “attorneys general” instead of “attorney 

generals”.

The START Natural Language System

The START system [24] parses natural language text to create a structured knowl­

edge base for question answering. Given a sentence containing clauses, appositions, 

multiple levels of embeddings, etc, the START system breaks the sentence into 

smaller units such that each unit contains only one verb. Each unit is analyzed and a 

ternary expression of the form <s u b j e c t  r e l a t i o n  o b je c t>  is generated. 

For instance, two ternary expressions « B i  11 s u r p r i s e  H i l l a r y >  w i th  

an sw e r>  and < a n sw e r r e l a t e d - t o  B i l l >  are constructed from the sen­

tence “Bill surprised Hillary with his answer.” The ternary expressions are stored 

and indexed in a knowledge base. When given a question, say “Whom did Bill 

surprise with his answer?”, ternary expressions are generated from the question and 

are used to search the knowledge base for answers.

2.4 Ranking

Data extraction systems can automatically extract a large number of tuples from a 

source collection, but not all extracted tuples may be correct once verified by a user. 

Errors are almost always present in the extraction result due to the inherent difficulty 

of the extraction problem and the quality of the data source. The same can be said 

for QA systems. Although QA systems typically return only one or a few tuples as 

answers to a given question, most of them (e.g. [13]) still generate many candidate 

answers before the most probable one(s) are returned. Having many errors in the 

result set or contradicting answers for a question makes a system much less useful to 

users. Therefore, it is important to have a ranking function to assess each extracted 

tuple and then order the result into a sorted list according to the weights assigned 

by the ranking function. Once the result is sorted, it is possible to filter some of the 

errors by setting a threshold on the weight, or simply return the top n  tuples as the 

most promising answers.

This section reviews two ranking algorithms. The first one is the Hypertext In-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



duced Topic Selection (HITS) algorithm for ranking Web pages [25]. The HITS 

algorithm is closely related to our work because our ranking algorithm is an adap­

tation of HITS. The other ranking algorithm is Mutual Information (MI). MI has 

been used in many previous studies (e.g. [14, 36]) to rank candidate answers.

Web Page Ranking with HITS

Due to the large volume of information on the Web, a query in a search engine 

usually returns thousands or even millions of related pages, and a user is unable 

to digest all of these pages. One solution to the problem is to rank the Web pages 

according to their quality and relevance to the query. If one can find enough in­

formation from the first few results, there is no need to go through all of the pages 

returned by the search engine. HITS, in particular, is a well-known algorithm for 

ranking Web pages based on the hyperlink structure of the Web.

HITS is founded on the Web graph model, where each page is a node on the 

graph, and there is a directional edge from node p  (which denotes page p) to node 

q (which denotes page q) if and only if there exists a hyperlink from page p to page 

q. HITS identifies two kinds of pages, namely authorities and hubs. Conceptually, 

an authority page contains authoritative information on the query topic, whereas a 

hub page contains links to multiple relevant authority pages. From the perspective 

of the Web graph, authorities and hubs exhibit mutually reinforcing relationship: a 

good hub points to many good authorities; a good authority is pointed to by many 

good hubs. To break the circularity of the authority-hub relationship, an iterative 

algorithm is proposed to compute authority weights from hub weights, and vice 

versa, until both kinds of weights converge. Finally, pages with high authority 

weights are considered good authoritative pages, and those with high hub weights 

are regarded as good hub pages.

The HITS algorithm cannot be applied directly in our case to rank extracted 

tuples, since there is no hyperlink environment in the extraction result. However, 

a modified version of HITS, which is discussed in Chapter 5, can take advantage 

of the relationship between extracted tuples and extraction patterns and rank the 

results.
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Mutual Information

The history of Mutual Information (MI) can be traced back to as early as the 1960’s 

[16]. MI is a metric that measures the strength of association between two words or 

phrases. A pair of words that tend to co-occur, such as “hospital” and “doctor”, is 

expected to have a relatively large MI value.

Tumey uses MI to automatically answer multiple choice test questions on syn­

onyms [36]. Given a question word and a candidate answer word, their MI value 

is computed (details can be found in Chapter 5). The question and candidate pair 

with the largest MI value is chosen as the answer to the question. It is reported that 

about 74% of the questions can be correctly answered using this approach.

MI is used in the KnowItAll system [14] to assess the likelihood that an extrac­

tion result is correct. For example, suppose “Edmonton” is extracted as an instance 

for the class “City”, the MI between “Edmonton” and a discriminative phrase (e.g. 

“city of Edmonton”) is calculated, and the MI value is used as a factor to decide 

whether “Edmonton” is really a city or not.

Using MI for ranking has some drawbacks, which are discussed in Chapter 5. 

In our experiments, MI is used as one of the benchmarks to which we compare our 

ranking algorithm.

2.5 Indexing

We have developed an online prototype that implements our data extraction frame­

work. The prototype is currently built on top of commercial search engines. There 

are benefits of using search engines as our source of data. First, search engines gen­

erally provide more up-to-date information than locally maintained corpus. Second, 

development time required to develop the prototype is significantly reduced. How­

ever, there are also disadvantages of layering our prototype on top of search engines. 

One disadvantage is the longer response time for queries, since it is relatively slow 

to access search engines over the network. Should we decide to have a local collec­

tion as source data, there is previous work on indexing the local collection for fast 

retrieval of relevant documents.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Memory !: On Disk 
Vocabnlaiy !• Nextword Lists

i;

On Disk Inverted Vectors

- m - all 3.(<1,1,[12]>,<34,3,(23.34,111]>,<77,1J29]>)
i:
i: new 1,(<9,1,[6]>)
i:
i: the 15,{<1,15,[100]>,<65.1,[1]>,<74,7,[23,43,54,&2,68,114,181,2 03 ]> ,...)
i:i:

new |i j  * age 2,(<31.3,[21,41,91]>,<44,1,[34)]>)
i: Hampshire 305,(<9,2,(7,199]>,<532,1 ,|2 5 6 (> ,...) |
i:
i!
if
i:i:

to il

house 2,(<9,1((423]>,<19,1,(4]>) |

Figure 2.1: A nextword index with two firstwords. The figure is taken from [5]

Inverted index is a standard technique to speed up term queries. However, 

phrase queries are expensive to evaluate using a regular inverted index. Since the 

queries we issued are phrase queries (e.g. “countries such as %”), it is desirable to 

index the local collection using index structures that are efficient for phrase queries.

Nextword index is a special kind of inverted index that is geared towards effi­

cient phrase queries [5, 42]. As shown in Figure 2.1, a nextword index has three 

levels. The top level contains firstwords, or distinct index terms, in the collection. 

The middle level stores nextwords (i.e. words appear immediately after the given 

one) for each index term in the top level. The bottom level stores, for each nextword 

in the middle level, a posting that denotes the frequency of the firstword-nextword 

pair across the collection, the document IDs where the pair occurs, and the fre­

quency of the pair inside a particular document, and the position of the pair within 

that document. For example, the figure shows that the “in-all” pair occurs 3 times 

in the collection, and it appears within document 1 once with offset 12 w.r.t the 

beginning of the document. When a phrase query, say “new house”, is evaluated 

against a nextword index, the firstword “new” will be looked up first, followed by 

the nextword “house”, and the posting for “new house” is retrieved. Only docu­

ments in the retrieved posting is returned as matches. If a regular inverted index is 

used, the postings of both “new” and “house” need to be retrieved from disk and 

merged, and these postings often are much larger in size than the posting of “new 

house”. Therefore, nextword index provides faster phrase query evaluation than 

regular inverted index.
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Cafarella and Etzioni propose a specialized index to support phrase queries with 

typed variables [9], such as "powerful <noun> ” and “Louvre Museum located in 

<address> Typed variables can be of syntactic types (e.g. noun, verb, adjective) 

or semantic types (e.g. name, address, phone number). Without a specialized index, 

an application may have to download a large number of pages containing the phrase 

query, use a tagger to identify the syntactic and semantic types within the pages, 

and finally extract those entities that appear next to the given phrase and match the 

target typed variables. Since many of the returned pages do not have the required 

typed variables next to the given phrase, a significant fraction of returned pages 

turn out to be discarded by the application, leading to inefficient usage of network 

bandwidth and computation resources. If a search engine uses an inverted index 

that stores the index terms and their neighboring terms along with types, the search 

engine can return only pages that contain the phrase and matching typed variables. 

Figure 2.2 illustrates such an index: suppose Document A contains the sentence 

“.. .  Seattle mayors such a s . . .  ”, the index entry for “mayors” stores its left neighbor 

(i.e. “Seattle”) along with the left neighbor’s types (i.e. NP|e/ t and TERMje/t). 

Similarly, the entry also records the right neighbor “such” and its type. Queries in 

our framework will also benefit from such NLP application oriented index. Chapter 

3 discusses queries that can be accepted by our framework in detail.

2.6 Google’s Fill in the Blanks

Google has introduced a new search feature called “fill in the blanks” or wild card 

search. One can use an asterisk to mark up the blank, which indicates the infor­

mation to search for. Results returned from a wild card search in Google is a list 

of pages and their snippets. The query terms and the words that match the blank 

are highlighted within the snippets. For instance, given the query “Edmonton is 

famous for the returned snippets include “Edmonton is famous for our beau­

tiful river valley . . .  ”, “Edmonton is famous for its West Edmonton Mall”, etc. 

It is reported that softer pattern matching (e.g. stemming) and a specialized rank­

ing method are used in Google’s “fill in the blanks” [2, 19]. However, the detailed
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algorithm behind the wild card search in Google is not published.
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Chapter 3 

Query with Wild Cards

To express extraction tasks concisely and in a flexible manner, we make use of wild 

cards in our queries. This chapter first reviews the common usage of wild cards in 

computer science, and then introduces the wild cards supported in our framework.

3.1 Wild Cards in Computer Science

The use of wild cards is prevalent in many areas of computer science. Examples 

are SQL, operating system shells and scripting languages such as Perl, Awk and 

Python. There are two types of wild cards defined in SQL. The first type (i.e. %) 

matches any string of zero or more characters. For instance, the following SQL 

query finds suppliers whose names end with “soft” (e.g. Microsoft).

SELECT * FROM supplier
WHERE supplier_name like '%soft';

The other type of wild card in SQL (i.e. _) matches exactly one character. The 

following SQL query is intended to find suppliers whose account numbers consist 

of six characters and the first five are “263T5”.

SELECT * FROM supplier
WHERE account_number like '263T5_';

Regular expressions, which is a built-in feature for programming languages such as 

Perl, make extensive use of wild cards. Wild cards in a regular expression mainly
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serve as the purpose of quantifiers. A quantifier after a character or group speci­

fies how frequently the preceded expression can appear [41]. The three common 

quantifiers are ?, * and +:

• The question mark (?) indicates there is 0 or 1 of the preceded expression. 

For example, the regular expression y a h o o ?  matches “yaho” and “yahoo”.

• The asterisk (*) indicates there are any number of the preceeding expression 

(from 0 to unbounded many). For example, y ah o o *  matches “yaho”, “ya­

hoo”, “yahooo”, etc.

• The plus sign (+) indicates there are 1 or many of the preceeding expression. 

For example, y ah o o +  matches “yahoo”, “yahooo”, but not “yaho”.

In addition to quantifiers, there are many language-specific wild cards targeting 

to match subsets of characters. For example, in the Perl programming language, the 

dot (.) can match any character, \ d  matches numeric character (e.g. 0, 1, . . . ,  9), 

and \w matches any alphanumeric character plus the underscore

3.2 Wild Cards Supported by Our Framework

Unlike many of the wild cards we saw in the previous section, wild cards supported 

by our framework iterate over the domains of parts o f speech or other meaning­

ful groupings of natural language words. Parts of speech are lexical categories of 

words. Common parts of speech include nouns, verb, adjectives, adverbs, and so 

on. In particular, we introduce two types of wild cards, namely * and %. Their 

syntax and semantics are described as follows.

% wild card
The % wild card represents one or more noun phrases. A noun phrase may consist 

of one or multiple words, for instance, “movie” and “action movie” are both noun 

phrases. This wild card, when used in a query, indicates the location of a noun 

phrase or noun phrases that should be extracted. For example, the query “summer 

movies such as %” will extract noun phrases Harry Potter, Shrek, and Spiderman
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from the following sentence: “Popular summer movies such as Harry Potter, Shrek 

and Spiderman appeal to audience of all ages.”

* wild card

The * wild card represents a set of phrases similar to a given phrase. Consider the 

task of finding a listing of summer movies; we may type the query “% is a summer 

movie”. However, some bona fide movies are often referred to as “films”, “block­

busters”, and so on. In a naive way, one may have to try other terms similar to 

“movie” manually, save the results each time, and then put the results together at 

the end. The naive method is tedious and inflexible. In our queries, a term may be 

enclosed within a pair of * to instruct that the search should be extended to include 

terms and phrases similar to the given one. For example, the user can re-formulate 

the query as “% is a summer *movie*”, and the query will be automatically ex­

panded to include additional related queries (e.g. “% is a summer film”, “% is a

summer blockbuster'’, etc.).

It is feasible to consider other wild cards. For instance, we could have wild 

cards for verbs, adjectives, or a union of nouns, nouns preceded by adjectives. It 

is also possible to have a wild card that matches a fixed number of terms. In an 

attempt to keep the syntax of our queries simple, our queries extend phrase queries 

of a typical search engine with the two wild cards % and *, as discussed above. The 

following is a list of example queries:

• % is a *country*

• % is a summer *blockbuster*

• % invented the light bulb

• Google *acquired* %

A query may use any number of % wild cards. Given a query with k % wild 

cards, the result of the query is a table with k  columns, one for each % wild card. 

Queries with multiple % wild cards can be useful for extracting n-ary relations. 

For instance, the query “% headquarters in %” can be used to find occurrence of
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the binary relation Company -  H e a d q u a r te r s .  The result of a query may be 

ranked to show the fact that some matches are better supported by the text collection 

and the query rewritings (if available). Therefore, we assume that the result of a 

query is ranked and each row is assigned a score that shows the level of support it 

receives; Chapter 5 discusses a few measures to rank the matching tuples of a query.

A query can have any number of * wild cards. Given a query q with some * 

wild cards, let g i , . . . ,  qs be the set of queries that are obtained by replacing each * 

wild card with similar terms. A row matches q if it matches at least one of q\, . . . ,  

qs\ the score of the row for q is an aggregation of the scores of the row for qx, . . . ,  qs. 

For our purpose, two terms are considered similar if they have the same meanings 

(e.g. synonyms), one is a generalization of the other, or the two terms can be used 

interchangeably in the same context. The similar terms can be often obtained from 

dictionaries, thesaurus, online corpus [29], etc. Next we discuss how these queries 

can be evaluated.

3.3 Evaluating Wild Card Queries on the Web

Our framework for data extraction can be applied to any text repository. When the 

repository is stored locally, standard techniques can be used to index the collection 

(e.g. [9, 11]) for fast query processing. In this section, we consider the scenario 

where data is not stored locally. This is based on the observation that it is not always 

easy to collect a large text corpora with more up-to-date facts. In particular, we build 

our data extraction engine on top of a search engine. The response time, of course, 

will be compromised, but the goal in this thesis is to evaluate the effectiveness of 

the data extraction framework instead of optimizing the query response time. This 

section provides an overview of our data extraction algorithm in the context of the 

Web by using the query “% is a *country*” as an example.

As the first step, the query is analyzed and the words enclosed by pairs of * 

wild cards (if any) are automatically augmented with their similar terms. The word 

“country” is enclosed by *’s in the given query. An online system that gives similar 

terms [28] returns “nation” as one of the similar terms to “country”. A new query,
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“% is a nation”, is formed and added to the expanded query set. More than one 

query can be added if multiple synonyms are found. The terms returned by the 

online system may not always be appropriate for expanding the query. In particular, 

the online system also returns “China” as a similar term to “country”, which in turn 

leads to a new query “% is a China”. The meaning of the new query diverges from 

that of the original one and can have negative effect on the extraction results. To 

address this problem, we can ask the user to select the terms that are indeed similar 

from those returned by the online system.

In the next step, each query in the query set is passed to a Part-Of-Speech (POS) 

tagger. A POS tagger can identify the parts of speech of the words in a sentence or 

phrase, and optionally “chunk” a group of words into noun phrases, verb phrases, 

etc. For instance, the query “% invented the light bulb” is processed by a POS 

tagger and the result is % _VP ( i n v e n t e d )  _N P( the  l i g h t  b u l b ) ,  where 

NP and VP denote noun phrase and verb phrase, respectively. Each tagged query 

is compared with a set of precompiled patterns for possible rewritings. The result 

of query tagging is not always reliable, in particular for short queries. To account 

for those cases, queries are also rewritten using rules that do not require tagging. 

Let’s consider the query “% is a country” first; after tagging, the query conforms to 

the pattern “NP1 is a(n) NP2”. Note that the wild card % matches a noun phrase, 

as we defined earlier. A pattern may be assigned to a pre-determined class based 

on its semantic relationship with other patterns. The pattern “NP1 is a NP2”, in 

particular, belongs to the hyponym class, since the template indicates that NP1 is 

a (hyponym of) NP2. Other patterns in the hyponym class include “NP2 such as 

NPlList”, “NP2 including NPlList”, etc. All patterns in the matching class (i.e. the 

hyponym class) are instantiated according to the matched query. Thus, the query set 

is expanded with extra queries like “countries such as %” and “countries including 

(Chapter 4 discusses our query rewritings in more detail.) Similarly, the query 

“% is a nation” also matches a pattern in the hyponym class, and the query set is 

further expanded automatically. If the query cannot match any pattern, no query 

expansion will occur at this step.

As the third step, all queries in the query set are sent to a search engine. For
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each query, the matching snippets are downloaded for further processing. When 

there is a large number of matches, only a fixed number of them are selected.

HTML tags are stripped from downloaded snippets for each query and the re­

maining text is analyzed to identify the pieces that match the query. Noun phrases 

(identified by a POS tagger) that appear in the positions of % wild cards of a query 

are extracted from the text and are saved in the result set. Words other than noun 

phrases should not be extracted even if they appear in target locations. Suppose the 

query “% invented the light bulb” is sent to a search engine and the following two 

snippets are among those returned.

• Thomas Edison is often said to have invented the light bulb.

• We all learned in our history classes that Thomas Edison invented the light 

bulb in 1879.

The POS tagger identifies that the word “have” in the first snippet is not a noun 

phrase, while “Thomas Edison” from the second snippet is. Therefore, the phrase 

“Thomas Edison” is extracted but “have” is not.

The result of extraction in the previous step is a set of rows; for the given exam­

ple, each row is a noun phrase. A ranking algorithm is applied to the extracted set. 

Section 5.3 gives the details of our ranking algorithm. Finally, a sorted list of rows 

is returned.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

Rewriting Queries

A problem with extracting data from natural language text is that often desired data 

items appear in different contexts and a user query may give only one of those 

contexts. As a result, the query may match very few or no items. To address this 

problem, we propose rewriting rules to express the fact that a query, or in general a 

phrase, can be rewritten in alternative formats. These alternative forms of a query 

are expected to return the same or semantically related results but can be syntacti­

cally quite different. Our experiments as reported in Chapter 6 confirms that there 

is a correlation between the number of rewritings and the precision of the retrieved 

results. Also, using multiple related queries can increase the recall, as it can be seen 

from the example on Canadian writers. It is easy to show that many instances could 

not have been found if only the original query were used.

4.1 Rewriting Rule Language

The rewriting rule language lists all different ways of rewriting a query. Each rule 

here is of the form rule-head —► rule-body. A rule head consists of one or more 

regular expressions, and a rule body consists of one or more rewritings with place 

holders. Multiple regular expressions in the head or rewritings in the body are sep­

arated by newlines. A rule matches a query if any one of the regular expressions in 

the head matches the query. When a rule matches a query, the query is expanded 

with all rewritings in the rule body. For each match, keywords from the query may 

be remembered using capturing groups. Capturing group is a feature of regular
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expressions. To capture a substring for later use, one can put parentheses around 

the subpattem that matches it. The first pair of parentheses saves its substring in 

variable $1, and second pair saves its substring in variable $2, etc [40]. For ex­

ample, given a string “University of Alberta”, the regular expression “ ( .  *) o f  

( .  *) ” captures the substring “University” in variable $1 and “Alberta” in $2. The 

remembered substrings can be recalled later by referring to the variables. The cap­

tured keywords can be transformed (e.g. from a singular noun to a plural noun, 

or from a past participle to a present participle) before being used in the rewrit­

ings. The keywords transformation is done by looking up a dictionary, which is 

built from the resource files in the Java Extraction Toolkit [20]. This allows us to 

write generic rewritings that can match a large number of queries. The rewriting 

rule language should be extendable and we should be able to add more rules as they 

become available. Here is an example of a rule that makes use of hyponym patterns.

(.+),? such as (.+)
(.+),? including (.+)

$2, and other $1 && plural($1)
$2 is a $1 EcSc singular ($1)

Given the query “countries such as the first regular expression in the rule 

head matches the query. As a result, “countries” is captured in $1 and “%” is 

captured in $2. The variables in the rule body are assigned their corresponding 

values. Also, the value in $ 1 is transformed to its plural form for the first rewriting, 

and to its singular form for the second rewriting in the rule body. At the end, the 

rule generates “%, and other countries” and “% is a country” as two rewritings to 

the given query.

In general, a given query can match some of the rules and each rule can give 

a few rewritings. Hence, each query is mapped to a set of closely related queries 

which can in turn be used for the extraction.
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4.2 Compiling Rewriting Rules

Preparing a set of rewritings for a given query is rather easy, but compiling a set 

of rewriting rules in advance for any arbitrary query is not straightforward. The 

effectiveness of a rule usually depends on the precision and the recall for its rewrit­

ings and the fraction of queries the rule matches. We group the rewriting rules into 

two categories: generic and specific. The generic rules can potentially match many 

queries and can be compiled in advance. Two types of generic rules that we can 

identify are hyponyms and morphological variants. A hyponym pattern describes 

lexico-syntactic relations that can be used to infer one element is a hyponym of an­

other within a sentence. Hearst gives a list of hyponym patterns [23]. A sample of 

hyponym patterns (the first six from Hearst and the rest put together by us) can be 

found in Table 4.1.

Table 4.1: Hyponym patterns 
NP1 {,} “such as” NP2List 
“such” NP1 “as” NP2List 

NP1 {,} “especially” NP2List 
NP1 {,} “including” NP2List 

NP2List “and other” NP1 
NP2List “or other” NP1 

NP2, “a(n)” NP1 
NP2 “is a(n)” NP1 

NP1 NP2

The morphological variants of verbs are useful for rewriting many queries that 

contain verbs. A given query may be rewritten by simply changing its verb tense 

and without much affecting its meaning. Many extraction tasks are expressed in the 

form of “Subject transitive-Verb Object” which can be rewritten in a passive form 

and vice versa. For example, if a user wants to find out who invented the light bulb, 

she can express the extraction as “% invented the light bulb”; possible rewritings 

of the query by using morphological variants are “the light bulb was invented by 

%”, “% has invented the light bulb”, etc. Our morphological patterns enumerate 

different verb tenses (e.g. present tense, past tense, . . . )  and use both active and 

passive forms. Some of our patterns are presented in Table 4.2 with the objects and
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the verbs of the patterns instantiated to “the light bulb” and “invent”, respectively.

Table 4.2: Morphological patterns 
NP1 invent the light bulb 
NP1 invents the light bulb 

NP1 invented the light bulb 
the light bulb is invented by NP1 

the light bulb was invented by NP1 
the light bulb, invented by NP1

All the relationships described by patterns in the hyponym and morphological 

classes can be expressed as rules in our rule language.

Although generic patterns and rewritings can be applied to a wide range of 

queries, it is not hard to find queries where no generic pattern is applicable or suf­

ficient. These queries may be known in advance or may be obtained by examining 

the query log. In both cases, rewriting rules may be customized to a particular ex­

traction task. Table 4.3 gives some examples of specific patterns targeted to find dis­

coverers and their discoveries. These specialized rules are likely to match a larger 

number of high quality tuples, which will lead to improvements in both recall and 

precision. Manually defining and maintaining specific rewritings can be expensive. 

There is work on generating specific patterns automatically [30, 34], and the results 

are very encouraging. For instance, Lin and Pantel [30] automatically compile a 

list of over 182,000 classes of related patterns. This collection should be used with 

some care since two patterns in the same class may be loosely related; for instance 

the patterns “NP1 solves NP2”, “NP1 does something about NP2” and “NP1 uses 

NP2” are returned as related but we may not be able to use one pattern to extract 

matches for the other.

4.3 Rewriting Quality

Patterns are not equally strong in terms of their qualities. For example, “NP1 such 

as NP2List” is considered a strong pattern because a noun phrase that appears at 

NP2List is very likely to be a hyponym of the one that appears at NP1. On the 

other hand, “NP2, a(n) NP1” may be considered a weak pattern because sometimes
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Table 4.3: Specific patterns for discoverers and their discoveries 
NP2 “discovered by” NP1 

NP1 “find” NP2 
NP2 “found by” NP1 
NP1 “uncover” NP2 
NP1 “unearth” NP2 

NP2List “stumble upon” NP1 
NP1 “announce the discovery o f ’ NP2 

NP1 “reveal” NP2

the hyponym relation inferred by this pattern is incorrect (e.g. “select a city, a 

country, and a region from the list.”). For the rest of the time, the pattern can be used 

to extract hyponyms from sentences like “.. .  New York, a city of neighborhoods 

. . .  ”, Similarly, “NP1 NP2” may also be seen as a weak pattern, but we find it 

very effective in certain applications, such as the names of people. For example, 

the template can be used to infer from the sentence “Prime Minister Paul Martin 

attends a Canada Day ceremony . . . ” that “Paul Martin” is a “Prime Minister”. The 

effects of using weak patterns are two folds. First, weak patterns can become strong 

ones in some cases, and under those circumstances they can improve both recall 

and precision. Second, weak patterns often introduce more false positives than 

other patterns. We believe that the negative effects of weak patterns are alleviated 

since the final results are ranked and the false positives are likely to be removed 

or assigned very low ranks. Therefore, we use all the patterns returned by the 

applicable rewriting rules regardless of the patterns’ strengths.
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Chapter 5 

Bringing Order to Results

The data extraction process discussed in Section 3.3 can accumulate a large set of 

candidates. Some of the candidates are correct, meaning that a user would expect 

to see them, while the rest are errors.

5.1 Sources of Errors

A query typed by a user can match many more rows than what the user may have 

had in mind. For instance, the query “% is a country” can match the statement 

“Joe is a country singer,” thus Joe will be added to the list of country names. There 

are Natural Language Processing (NLP) techniques that are applicable in special 

cases (such as the given example) and may reduce the number of false positives 

[14]. More specifically, by requiring “country” to be the head of a noun phrase, the 

query in the example would not match the sentence because “country” is a modifier 

instead of the head in the phrase “country singer”. Using these techniques can be 

expensive and sometimes hard to maintain. Also, we are not sure if they can scale 

up to large volumes of data and queries, for instance on the Web. In general, broad 

queries are likely to match more false positives. Rewriting queries can also broaden 

the queries and introduce additional false positives.

False positives also arise when queries are posed to uncontrolled collections 

such as the Web which contains many incorrect statements. Since the published 

content may not be verified for correctness, statements, such as “New York is the 

capital of the United States” are not rare.
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One more source of error is due to using the POS tagger. Although the POS tag­

ger produces good results most of the time, it is still a best-effort program. Some­

times verbs are misclassified as noun phrases, or vice versa.

Since correct extractions are intermixed with errors, it is important to rank all 

candidates in terms of their relevance to the user query. A good ranking algo­

rithm should consistently rank correct matches higher than errors, so that errors are 

pushed down to the bottom of the sorted list. A good ranking would make it easier 

to draw a cutoff line somewhere in the sorted list, so that we can trade recall for 

higher precision.

5.2 Ranking Heuristics

Ranking the result of a natural language question over a text corpora is a problem 

that arises in any question answering system. The precision of an answer usually 

depends on factors such as the quality and the size of the corpora and the relation­

ships between the text of a question and possible answers. In our case, given a query 

and a set of rewritings, we want to find out meaningful ways of ordering the results. 

We first present a few heuristics that may be used to order the result of a query. 

Then, we present a novel adaptation of the HITS algorithm [25] to the problem of 

ranking extractions. A comparison of these heuristics and algorithms can be found 

in our experiments.

Number of Matched Pages or Documents (NPages)

Correct tuples are likely to appear frequently within a query pattern1 or one of 

its rewritings. One heuristic is to rank a tuple based on the number of pages or 

documents in which it matches the query or one of its rewritings. In particular, 

if the phrase “Thomas King is a writer” appears in 12 documents in the corpora 

and “Hugh Cave is a writer” appears in only 2 documents, then “Thomas King” is 

ranked higher by this heuristic than “Hugh Cave”. On the Web, we do not usually 

have access to all pages, and the numbers could be approximated by sampling from 

a search engine. There are however some problems with this heuristic. First, all

1The query would not have been issued in the first place if it is assumed otherwise.
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rewritings of a query are treated equally important. Second, many correct instances 

may not be frequent and we may not be able to separate them from false positives. 

Finally, the Web contains many duplicate pages and the scores of rows that appear 

in those pages can be inflated.

Mutual Information (MI)

Another ranking scheme which has been used previously to quantify the relation­

ship between two random variables is the Mutual Information (MI). If we denote 

the probability that a page contains the query string q with P(q), the probability that 

a page contains a row r with P (r) (the term row and tuple are used interchangeably 

in this thesis), and the probability that a page contains a proper encoding of the row 

using the query string with P(q, r ), then the mutual information between q and r is 

defined as

m { q ' r ) = , 0 9 m w r
Suppose q and r are independently distributed, then we have P(q, r ) =  P(q)P(r) 

and M I(q , r) equal zero. On the other hand, if q and r  tend to appear together, then 

r ) »  P(<l)P(r )> yielding a large positive MI value. In some formulations 

of the mutual information, the above formula is multiplied by P (q ,r ) [10]. This 

measure is used to evaluate the association between words [12], and also between 

the instances of a class and a discriminative phrase [14]. In our case, since P{q) is 

fixed for a given query, the score of a tuple can be estimated as the ratio between 

the number of pages where the tuple appears within the query template and the 

number of pages that contain all the columns of the tuple. These counts can be 

obtained from a search engine. For a given query and tuple, the MI measures the 

conditional probability that the tuple appears with the query template given that all 

the columns of the tuple appears in a page. However, using the MI also has some 

drawbacks. First, a tuple may not appear with the query but it may appear with one 

of its rewritings. In the context of the Web, obtaining hit counts can be costly and 

may not be reliable (e.g. see [3]).

Number of Matched Patterns (NPattems)

Another simple ranking is to count for each tuple, the number of different patterns
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(including the query and its rewritings) that would extract the tuple. Because of the 

semantic correlations between a query and its rewritings, if a tuple is retrieved by 

multiple patterns, then there is probably a good indication that the tuple is indeed 

a good match. This approach also has the drawback that all patterns are treated 

equally important. To address this problem, the next section presents an adaptation 

of the HITS algorithm for ranking. Note that the HITS algorithm by Kleinberg, 

which entirely relies on the hyperlink structure, is not directly applicable to our 

case because there is no hyperlink structure in our context.

5.3 Reinforcing Relationship between Patterns and 
Hiples

Our hypothesis is that good tuples and good patterns exhibit a mutually reinforc­

ing relationship: a good tuple is extracted by many good patterns; a good pattern 

extracts many good tuples. For example, if Canada is indeed a good match for the 

query “% is a country”, it should be extracted by many good related patterns, such 

as “countries including “such countries as and so on. Similarly, if “coun­

tries such as %" is indeed a good pattern for extracting country names, it should 

extract many good instances, like the U.S., Canada, China, etc. This mutually rein­

forcing relationship between patterns and tuples is illustrated in Figure 5.1.

An Iterative Algorithm: Let’s associate weight wx{t) to each tuple t, and weight 

wp(p) to each pattern p. The mutually reinforcing relationship between tuples and 

patterns can be re-stated as follows: if a tuple is extracted by many good patterns 

(i.e. those with large w;p-values), then it should receive a large wp-value; if a pattern 

extracts many good tuples (i.e. those with large top-values), then it should receive a 

large wp-value. In an iterative and alternating fashion, the weights can be updated 

as follows:

wr(t)  =  X wp (p ) (5-!)
{p |p extracts t}

wp (p ) =  X WT (t) (5.2)
{t|£ is extracted by p}
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Italy

such countries as %

Japan

is a country

a superpower

countries including % the United States

China

Patterns Instances

Figure 5.1: Mutually reinforcing relationship between patterns and tuples

The weights initially could be the same for all tuples and the patterns. Based 

on the reinforcing relationship, we update the weights of tuples and patterns in an 

alternating and iterative fashion. If we denote the set of tuples with Sp, where 

|5x| =  m , and the set of patterns with Sp, where \Sp\ = n, then we can normalize 

the weights of tuples and patterns, so that their squared sums are equal to 1 (i.e. the 

corresponding vectors have unit lengths): J2t&sT wr(t)2 =  1. a n d  E Pe s P w p (p )2 — 

1. The normalization is necessary to keep the weights bounded, which is needed 

to show the convergence of the weights. At the end, tuples with larger weights are 

considered better, and the same holds for patterns.

Let’s represent the set of weights {wp{t)} with vector T  such that each coor­

dinate of T  corresponds to the u;x-weight of a unique instance t. Similarly, let’s 

represent the set of weights (wp(p)} with vector P  such that each coordinate of P  

corresponds to the tup-weight of a unique pattern p. The following is the pseudo 

code for our rank computation.

Iterate(£V, Sp, k )

Sp- the set of extracted tuples, 15x1 =  m  

Sp: the set of extraction patterns, |5p | =  n
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k: a positive integer 

*"* : ( 1 , 1 , 1 , . . . , ! )  e R m 
zn : ( 1 ,1 , . . . ,  1) € R n 

Set T0 :=  zm 

Set P0 ■= zn 

For j  = l , 2 , . . . , k  

Apply Eq. 5 .1  to P j _ i ,  obtaining new Tr  

Apply Eq. 5 .2  to Tj, obtaining new Py  

Normalize Tj so that the length of the vector is 1.

Normalize Pj so that the length of the vector is 1.

End

Return (T fc, Pk)

Theorem 1 The sequences Ti, Tv, T$, . . .  and Pi, P2, P 3 , • ■ • respectively converge 

T* and P*.

Proof: Let A  be the pattem-tuple matrix such that the (i , j ) th entry of A is 1 if 

the ith tuple is extracted by the j th pattern, and 0 otherwise. Also let A tr be the 

transpose matrix of A. It can be verified that Equations 5.1 and 5.2 can be written 

as wt <— Awp  and wp <— A trwp, respectively. Thus Tk is the unit vector in the 

direction of (AAtr)fc_1 Az", and Pk is the unit vector in the direction of (A trA )kzn.

A standard result of linear algebra (see [18]) is that if M  is a symmetric square 

matrix, and v is a vector not orthogonal to the principal eigenvector of M , then the 

unit vector in the direction of M kv converges to the principal eigenvector of M  as 

k  approaches positive infinity. Also, if M  has only non-negative entries, then the 

principal eigenvector of M  has only non-negative entries.

In our case, A trA  is a symmetric square matrix with only non-negative entries. 

Since the principal eigenvector of A tr A  contains only non-negative entries and can­

not be a zero-vector, z n is not orthogonal to the principal eigenvector of A tr A  (i.e. 

their dot product does not equal zero). Hence Pk converges to a limit P* as k  in­

creases without bound. Similarly, one can show that Tk converges to a limit T* as
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k  increases without bound.

The proof of Theorem 1 leads to the following results (in the above notation).

Theorem 2 T* and P* are the principal eigenvectors o f A A tr and A tr A  respec­

tively.

The proofs of both theorems can also be found elsewhere [25]. Theorem 1 

shows that the weights of tuples and patterns stabilize when a large enough k is 

chosen. Alternatively, we can take advantage of Theorem 2 and compute the rank­

ings directly from matrix A, without using the iterative algorithm.
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Chapter 6 

Experiments

To experiment with our querying interface and to evaluate our algorithms, we built 

a system called DeWild which relies on the Web as its source of data *. Using 

the Web has both benefits and disadvantages. As a benefit, the Web’s information 

redundancy can compensate for the relatively small size and coverage of our rewrit­

ing rule set and the lightweight NLP techniques used. However, a challenge is that 

there are many bogus tuples that need to be filtered.

6.1 System Architecture of DeWild

Figure 6.1 shows the Web query interface of DeWild and Figure 6.2 presents an 

overview of the architecture of the system. When a query is issued through the 

Web interface, the query rewriting module, which implements the rewriting rule 

language, rewrites the query to similar or equivalent rewritings. Both the query 

and its rewritings are passed to the Extractor module, which sends each pattern to 

a Web search engine and retrieves the text snippets from search results. Tuples 

that match the wild cards in the patterns are extracted from the text snippets. All 

patterns and their corresponding tuples are taken as input by the Ranking module, 

which produces a ranking of the tuples as well as the patterns. The ranked lists 

are presented to the user as output. A sample output page is shown by Figure 6.3. 

One can click on a particular instance to view the URLs from which the instance is 

extracted (Figure 6.4). Furthermore, by following a URL one can go directly to the

'The name DeWild stands for Data Extraction using Wild cards. The system is available online 
at d e w i ld ,  c s  . u a l b e r t a .  ca.
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source Web page to examine the instance and the context where it appears (Figure 

6.5).

DeWild takes advantage of existing commercial search engines and queries 

Google and Yahoo (when Google does not respond) via their APIs. It is also possi­

ble to access multiple search engines simultaneously via multiple threads in order 

to reduce turnaround time. In our experiments, 200 snippets are downloaded for 

each extraction pattern. If there are fewer than 200 snippets found for a pattern, 

then all available snippets are downloaded2. The snippets returned by a search en­

gine typically consist of the search query and its surrounding text. Since the target 

data appear immediately before or after the user query, they can be often extracted 

using the snippets only (without downloading the actual pages), hence network and 

processing costs are significantly reduced.

To find matches for % wild cards, a publicly available POS tagger called NLPro- 

cessor3 is used to identify the part of speech from the text, so that only noun phrases 

are extracted. For * wilds cards, our system uses a collection of similar terms au­

tomatically compiled [29] from Wall Street Journal corpus, but it can equally use 

other collections as well. Two additional terms are retrieved from the collection for 

each query term that is enclosed by a pair of * wild cards.

Next we report our experiments with DeWild.

6.2 Recall and Precision

In general, it is difficult to measure recall on the Web since we often do not know 

the full answer set. The answer set may not be all on the Web, or it can be scattered 

in many pages of which some may not be crawled or indexed by a search engine. 

To measure both recall and precision under these constraints, we decided to extract 

instances of some known classes. To make a comparison with an alternative system, 

the class names were chosen from those reported for KnowItAll [14].

In our first experiment, we used a list of 191 country names, compiled by the

2Our online demo downloads at most 30 snippets for each query and also for each rewriting to 
keep the response time short.

3www.infogistics.com/textanalysis.html
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sm 0.233567

honda 0.22285
toyota 0.22285
volvo 0.211291
general motors 0.211291

audi 0.190271
bimv 0.177209
hyundai 0.174855

fiat 0.174855
porsche 0.174855

peugeot 0.174855

maxda 0.172542
mercedes-benz 0.157127

Icxus 0.157127

Chryster 0.147026

alfarom eo 0.123214

Ida 0.12069
Chevrolet 0.12069
ferrari 0.12069

citraen 0.12069

d u b  a ir 0.11843
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volkswa^pn 0.11059
............ n  l i n e n

Figure 6.3: Instances extracted and their weights for the query 
facturer”

is a car manu-
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hnp:,..••w w w .rs.ualbeita .ca Source Links M ozilla Firefox

The instance ford was extracted from the following pages: 

http://densocorp-na.cotn/VisionQnline/20Q4fall/s6l .html

http://w w w.ceda.cz/article.asp?nDepartroentlD= 189&nArticlelD=262&nLanguazeID=2 

http://www.bizioumals.eom/austin/stories/1999/Q4/19/storv3.httnl7fc:mrintable 

http://www.eiao.co.uk/Buving A Car 5013906 2

http://www.eu.int/commfreseafdi/infocentrefexporl/sucoess/article 702 en.html 

http://www.polishnews.com/fulltext/plbusiness/2003/plbusinessS6 1 .shtml 

http://www.alcoa.com/australia/enfriewsfreleases/2005-10-17 Aluminium cars petrol bonus 

http://www.st.com/stonline/companv/annu al/fv96/aa.htm 

http://www.newsandtech.eom/issues/2002/l 1-02/ot/l 1-02 semantics.htm

Figure 6.4: A list of URLs from which the tuple “Ford” is extracted.

fittp:,. d e n s o c o r p  r i a . c o m  V is io n  O n l in e  Fa ll  20 0 4  - M o z i l la  I-ire fox T51W
presidential messages | 
on long-term 
management plan.
Another World's 
1st
DENSO, KOITO 
develop ballast for 
mercury-free 
headlamp system.

Voices
Mexico president 
gives his take on 
DENSO way.

Grand opening in 
Guadalupe
This story tells ail.

» f n u n ta m a d s .

lines Into Its plant and start 
manufacturing the 
next-generation pump In August 
2005.

AFCO plans to produce about 5 
mllllonpumps In 2004, said 
Wolfgang Simon, president of 
AFCO.

"We expect the new fuel pump 
wdfl further expand our business 
in the united States," he said.

AFCO employs more than 350 
associates and enjoys a  good 

putatton with

Simon said.

QHpdNext QgndPifflrtotg [llH^hf^htaH EJMat£hcasej

Figure 6.5: A Web page that contains the tuple “Ford”. The Web page is retrieved 
by clicking on one of the links in Figure 6.4.
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US State Department4, as the ground truth. The query “countries such as %” was 

used to extract the country names in DeWild. The same query and its rewritings 

were also used to evaluate the two heuristics NPages and NPattems; these heuris­

tics are discussed in Chapter 5. As is shown in Figure 6.6, DeWild outperforms 

both heuristics at almost all recall rates. Note that the recall rate of KnowItAll stops 

at about 0.7 because that is the recall achieved by the KnowItAll system. Table 6.1 

shows the extraction patterns used in the experiment, as well as their weights com­

puted by our ranking algorithm. Any of the patterns in the table could have also 

been used as a query and the result of DeWild would have been the same. To do 

a ranking using mutual information (MI), we could use either the query or one of 

its rewritings. Since it is not clear which one performs the best, we ran the algo­

rithm three times with the discriminative phrases “country of X”, “countries such 

as X”, and “X is a country”. These variations of MI are respectively referred to as 

MI-1, MI-2 and MI-3. Figure 6.7 compares DeWild to the online system Know- 

ItAll5 and MI. We have to point out that there are differences between DeWild and 

KnowItAll. DeWild uses search engines as its data source; even though the result 

of a search engine is ranked, we are not making use of this ranking. KnowItAll 

was originally using Google but it had switched to its own local collection when we 

tested it. The lack of sufficient details in the KnowItAll paper prevented us from 

directly implementing it. Since we are comparing precision at each recall, the size 

of the collection should not have much impact on the comparison. We do not make 

use of the ranking provided by Google. In fact, out of the first 10 snippets returned 

by Google for the query “is a country”, it is possible to extract valid country names 

from only 2 snippets. The precision of MI is very poor at low recall rates, which 

means that the highly ranked instances by MI are mostly errors.

In our second experiment, we used the names of 50 US states as the ground truth 

and tried to retrieve and rank the same data using DeWild and our other heuris­

tics. Table 6.2 shows the extraction patterns which were used after instantiating 

“US states” in our generic patterns, as well as their weights computed by DeWild.

4www.state.gov/www/regions/independent_states.html
5www.cs.Washington.edu/research/knowitall
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Figure 6.6: Precision and recall for DeWild, NPages and NPatterns. The extraction 
target are country names.
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Table 6.1: Patterns that are used to extract country names, with the weights com­
puted by DeWild in each case_________________________

Pattern Weight
such countries as % 
countries such as % 
countries, including % 
% and other countries 
countries, especially % 
% is a country 
% or other countries 
%, a country 
countries %

0.645329
0.580203
0.434738
0.158705
0.127139
0.122413
0.038431
0.010205
0

Even though the same set of patterns as the one for country names was used, both 

the weights and the orderings were different. This is an evidence that the pattern 

weights are query-dependent and cannot be fixed in advance. Clearly, any of the 

patterns in the table could have been used as a query and the result returned by 

DeWild would have been the same. In our evaluation, a retrieved state name was 

treated “correct” if it was either a full state name or an abbreviation. Figure 6.8 

and Figure 6.9 show precision and recall for DeWild, NPages, NPatterns, MI and 

KnowItAll. Like DeWild, KnowItAll has a precision of 1 when recall is less than 

0.35, meaning that the top 35% of the answer is correct. For higher recalls, the 

precision for KnowItAll drops sharply whereas DeWild has a precision of 1 for all 

recall rates less than 0.75. Even for higher recall rates, the precision for DeWild 

does not drop sharply. For our experiments with MI, we used the discriminative 

phrases “US state of X”, “US states such as X” and “X is a US state”, which re­

spectively correspond to MI-1, MI-2 and MI-3 in Figure 6.9. Both MI-2 and MI-3 

perform poorly in terms of precision for all recall rates. MI-1 performs good at 

higher recall rates but not so good at smaller recalls, meaning that many incorrect 

instances show up at the top of the list.

6.3 Number of Rewritings

Adding each query rewriting introduces some cost at the query processing time, 

and a question is if this additional cost is justified. To evaluate the effect of the
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Figure 6.8: Precision and recall for DeWild, NPages and NPatterns. The extraction 
target are US states.

Table 6.2: Patterns that are used to extract US state names, with the weights com­
puted by DeWild in each case__________________________

Pattern Weight
US states, including % 
US states such as %
% and other US states 
such US states as %
US states, especially % 
% or other US states 
% is a US state 
US states %
%, a US state

0.739794
0.526682
0.320306
0.227648
0.113638
0.074993
0.046522
0.013729
0
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Figure 6.9: Precision and recall for DeWild, MI and KnowItAll. The extraction 
target are US states.
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number of rewritings on the precision and recall, we used DeWild to compile a list 

of “US states” but varied the number of rewritings that were used. We chose the 

best sets of 2, 3, and 5 patterns (i.e. those with the highest weights) from Table 6.2 

and ran DeWild each time with only one of these sets. The precision-recall curve in 

each case is shown in Figure 6.10. At the same recall rate, the precision improves 

significantly when the number of patterns increases from 2 to 3. The precision at 

higher recalls is further improved when the number of patterns is increased from 3 

to 5. We did the same experiment with the country names and the results were the 

same, hence they are not reported. The results of these experiments show that the 

performance depends strongly on the number of patterns used.

0.9

0.8

c  0.7
o

0.6o
2
CL

0.5

0.4

2 patterns 
—  3 patterns 
 5 patterns

0.3

0.2
0.1 0.2 0.3 0.4 0.5

Recall
0.70.6 0.8 0.9

Figure 6.10: The performance of DeWild depends strongly on the number of pat­
terns used.
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6.4 Handling Question-Answering Tasks

To do a further evaluation, we tried to use DeWild for question-answering where 

one of the goals is to return the actual answer to a question, rather than an entire 

paragraph or a sentence. If a question is formulated as a DeWild query, we can use 

our approach to locate the answer from the Web. For our evaluation, we took the 

first five QA targets from the TREC 2004 dataset [39]; since a QA target consisted 

of multiple questions, we ended up with a total of 22 questions in the experiment 

(see Table 6.3). For each question, we tried to manually formulate a DeWild query 

in order to retrieve the answers. We report the number of correct answers given by 

TREC, the number of answers (correct or otherwise) from DeWild, the number of 

overlaps between the two, and the number of rewritings used in DeWild. The result 

of the evaluation is presented in Table 6.4.

_________ Table 6.3: The First 22 Questions from TREC 2004_________
question id question

1.1 When was the first Crip gang started?
1.2 What does the name mean or come from?
1.3 Which cities have Crip gangs?
1.4 What ethnic group/race are Crip members?
1.5 What is their gang color?
2.1 What is the name of Durst’s group?
2.2 What record company is he with?
2.3 What are titles of the group’s releases?
2.4 Where was Durst bom?
3.1 When was the comet discovered?
3.2 How often does it approach the earth?
3.3 In what countries was the comet visible on its last return?
4.1 When was James Dean bom?
4.2 When did James Dean die?
4.3 How did he die?
4.4 What movies did he appear in?
4.5 Which was the first movie that he was in?
5.1 What does AARP stand for?
5.2 When was the organization started?
5.3 Where is its headquarters?
5.4 Who is its top official or CEO?
5.5 What companies has AARP endorsed?
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For 12 questions, all answers returned by TREC were also returned by DeWild. 

For four of the questions, we couldn’t find a pattern between the question and pos­

sible answers; hence we couldn’t form a query. These are marked with “na” in the 

table. We found out that the TREC answers for question 1.3 (“Which cities have 

Crip gangs?”) were not the ground truth on the Web; therefore there was small 

overlap between TREC and DeWild. For questions 2.3 and 4.4, there were more 

than one formulation of the query but these different formulations were not in our 

rewriting set; this explains the small overlap between TREC and DeWild. For ques­

tions 4.5, the TREC answer was not supported on the Web and we could only find 

it in NIST’s TREC pages. For question 5.4, which asked for the CEO of AARP, 

TREC had “Horace Deets” or “Tess Canja” as the correct answer; this was based 

on the information in year 2004. At the time of running our experiments, the correct 

answer was “Bill Novelli” or “Marie Smith”. DeWild extracted the more up-to-date 

correct answer.

DeWild sometimes returned additional instances of which some were correct 

and others were incorrect but appeared with the query and gave additional informa­

tion. For instance, consider the question “Who discovered prions?” from TREC 

which has only one correct answer. We transformed the question to “prions are dis­

covered by %” and passed it as a query to DeWild. The top 3 answers returned by 

DeWild are shown in Table 6.5. The highest ranked instance, “Stanley Prusiner”, 

was the correct answer to the question, and it also received a substantially larger 

weight than the second best instance. Our system returns other acceptable answers, 

including the 8th-ranked “Dr. Stanley Prusiner”, the 9th-ranked “researcher Stanley 

Prusiner”, and the 12-th ranked “Nobel Prize winner Stanley Prusiner”. These other 

answers show that Stanley Prusiner was a doctor, a researcher, a Nobel prize winner 

and he was from the University of San Francisco.

We also tried the TREC question “Who are the members of the Rat Pack?”, 

which is a list-type question. The question was transformed to “Rat Pack members 

such as %” before it was tried. Table 6.6 contains the top 8 rows returned by our 

system. The correct answer to the question consisted of five names, four of which 

corresponded to the top four rows in Table 6.6, and the remaining one corresponded
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Table 6.4: DeWild Handling the First 22 Questions from TREC 2004
question ans. in 

TREC
ans. in 

DeWild overlaps rewritings

1.2 na na na

1.4
1.5

na na na

2.2
2.3
2.4

3.2
3.3
4.1
4.2
4.3
4.4
4.5

na na na
na na na

5.2
5.3
5.4
5.5

Table 6.5: Top candidate answers for the question “Who discovered prions?”
Result Weight
Stanley Prusiner 
Scientists
University of San Francisco

0.507819
0.408304
0.295243
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to the 8th row in the Table. Note that the 5th row in Table 6.6 is also correct since 

it is a spelling variation of the first row.

Table 6.6: Top candidate answers for the question “Who are the members of the 
Rat Pack?” ______________________________________

Result Weight
Sammy Davis Jr.
Frank Sinatra
Peter Lawford
Joey Bishop
Sammy Davis Jr
Michelle Griffin
Sammy Davis Jr. playing pool
Dean Martin

0.454338
0.454338
0.27854
0.252512
0.252512
0.252512
0.252512
0.252512

6.5 Ad Hoc Data Extractions

As our last experiment, we tried to compile useful resource lists which we could 

not find in a list format anywhere on the Web. In one case, we tried to extract the 

names of senior researchers working at Google. To the best of our knowledge, no 

such list exists in the public domain. The query used for this task was “% is a senior 

research scientist at Google”. Due to space limitation, only the top 10 instances and 

their weights are presented in Table 6.7.

We manually verified the names in the table against resources on the Web, and 

all of them were bona fide researchers at Google. It is worth to point out that the 

name “Amit” refers to “Amit Singhal”, which appears at the 14th position in the 

list. Also, “lifelong bharat” refers to “Krishna Bharat”. A punctuation mark was 

missing between the two words in the original sentence, which caused the POS 

tagger to mistakenly group the two words as a noun phrase.

In another case, we tried to find the names of summer movies. Although some 

online resources maintain a quite complete list of movies, they don’t classify movies 

as summer movies or otherwise. The pattern “% is a summer *blockbuster*” is used 

as the query for the task. The term blockbuster, which is enclosed by * wild cards 

in the query, is augmented by two extra related terms: movie and film. The top 10
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Table 6.7: A list of senior research scientists at Google
Result Weight
Bay-Wei Chang 
David Cohn 
Sahami
Dr. Mehran Sahami 
Steve Lawrence 
Krishna Bharat 
Amit
Mehran Sahami 
Shumeet Baluja 
lifelong bharat

0.345906
0.345906
0.2727
0.2727
0.2727
0.2727
0.2727
0.2727
0.2727
0.2727

results are given in Table 6.8.

We manually evaluated the extracted results using the Internet Movie Database 

(IMDB) and concluded that all the results shown in Table 6.8 were indeed correct 

movie names, and their release dates were in the summer.

Table 6.8: A List of summer movies
Result Weight
Star Wars 
Shrek 2 
Spider-Man 2 
Harry Potter 
Spiderman 
Men in Black 
Pearl Harbor 
Mission Impossible 
Van Helsing 
Independence Day

0.279295
0.247855
0.225779
0.204052
0.203189
0.202629
0.177852
0.171008
0.171008
0.165511

In one more experiment, we used the query “% is a Canadian *writer*” to com­

pile a list of Canadian writers. The * wild card expands to include two other words 

that are similar to “writer”, namely “author” and “novelist”. This time, we put 

together a set of rewritings that were specific to the query. Table 6.9 shows the 

rewritings for “writer”. Rewritings for “author” and “novelist” are constructed in a 

similar way. The query returned over 1300 names. We could verify that 91 of the 

first 100 rows were real Canadian writers. Of the first 200 rows that we verified, 

156 were real Canadian writers. We also compared the first 200 tuples to two of the
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most comprehensive online lists of Canadian writers that we could find. DeWild 

retrieved 86 real names which could not be found in one list6 and 70 names which 

were not in the other list7. After combining the two lists, DeWild still reported 58 

names which we couldn’t find in the combined list. This experiment shows that 

our approach is a useful extension to current knowledge bases. By combining our 

approach with existing resource, more comprehensive knowledge bases can be cre­

ated.

Table 6.9: A list of hand-picked rewritings for finding Canadian writers 
Canadian writers including %
Canadian writers such as %

Acclaimed Canadian writer % 
such Canadian writers as %

% is a Canadian writer 
Award-winning Canadian writer %

Renowned Canadian writer %
%, and other Canadian writers 

Canadian writer %
%, a Canadian writer 

%, a well-known Canadian writer 
Canadian writers %

%, or other Canadian writers 
Canadian writers especially %

6www.trackO.com/ogwc/authors
7www.umanitoba.ca/canlit/authorlist
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Chapter 7 

Conclusions

We have presented a framework for large-scale data extraction from natural lan­

guage text, and have evaluated the effectiveness of our framework within a few 

data extraction tasks on the Web. Our developed querying interface is both simple 

and extendable with more wild cards and rewriting rules. In the experiments that 

measure precision and recall, we show that our ranking algorithm is more effective 

than other heuristics at almost all recall rates. We also show that there is a correla­

tion between precision and the number of rewritings used: more rewritings lead to 

higher precision in general. The experiment for extracting names of Canadian writ­

ers shows that our approach is useful for compiling new resource lists or extending 

existing knowledge bases.

Our work leads to a few interesting directions. One issue is extracting n-ary 

relations for n  > 3; the problem in general is difficult since the columns of target 

rows can be scattered in multiple sentences. To address this problem, we are looking 

into the possibility of extending our queries or integrating them inside a relational 

query language. Another direction is finding other interesting classes of wild cards 

while keeping the queries simple. To improve the running time and to scale up 

the system to a large number of queries, we may use indexes and do some query 

optimization in advance. Ordering rewriting rules to prioritize their evaluations and 

finding other pruning techniques is also another interesting direction.
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