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ABSTRACT

Buried pipelines as a means of transportation of oil and gas have become
increasingly important in the last few decades. As new oil and gas resources are exploited
in remote regions, pipelines are being extended into more challenging environments. Two
important environmental loadings, namely, temperature variation and imposed deformation
are considered in this study.

One of the frequent fabrication features in steel pipelines is the presence of girth.
welds coﬁnecting the successive lengths of pipe. In order to study the effect of the girth
weld connections on the behavior of pipelines, a series of seven tests was carried out on
two sizes of girth-welded pipeline. Four specimens had a diameter of 20 in. (508 mm) and
a D/t ratio of 63. The other three had a diameter of 12.75 in. (324 mm) and a D/t ratio of
50. All specimens were 1.69 m long and contained girth welds at their mid-length. The
specimens were subjected to constant internal pressure, constant axial load, and
monotonically increasing curvature.

The test results consist of the load vs. rotation responses and the strain, curvature,
and displacement profiles along the length of each specimen. Global and local moment vs.
curvature responses are also developed for the test specimens. The local buckling and
wrinkling phenomena in the test specimens are studied. The wrinkling compressive strains
are determined and critical strain values are recommended. Empirical equations for
critical strain values are presented for both plain pipe and girth-welded pipe. It is
concluded that the critical strain values used in the current guidelines are overly
conservative for pressurized pipes. In the moment vs. curvature curves for the wrinkled
segments (i.e., the local response), the softening point always coincided with the limit
point. The presence of the girth weld connection decreased the deformation capacity and

critical strain values; however, it did not affect the ultimate moments at the specimen ends

significantly.



A numerical mddel was developed to obtain the local and global moment vs.
curvature response of a pipe similar to the test specimens up to local buckling. The model
is based on incremental theory of plésticity using different types of strain-hardening and
stress vs. strain measures. Two computer programs were developed in order to produce
the local and global moment vs. curvature response of the pipe. It is concluded that
updated Lagrangian formulation with isotropic-hardening is the most appropriate model

for the analysis of line pipe under combined loadings.
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in Chapter 5 and Appendix E
engineering longitudinal strain of cross-section at the start of bending

engineering principal strains
modulus of elasticity of the pipe material



Green-Lagrange principal strains
effective modulus of elasticity of steel pipe (in CAN/CSA-Z662-94)
Green-Lagrange longitudinal strain, E, = E,

 elastic constitutive matrix

yield function

eccentric load applied by the jack

yield strength of the cylinder material in Sherman's study
plastic potential function

shear modulus

length of an infinitesimal slice at an arbitrary ordinate around the cross-section in ,

deformed configuration
horizontal component of P; at the bottom end of pipe

horizontal component of P; at the top end of pipe

plastic modulus

reduced plastic modulus

hardening parameter

reduced hardening parameter

length of an arbitrary small length of pipe

length of pipe

Bending moment, used in Chapters 2 and 3
parameter of mixed hardening, used in Chapter 5
moment required to initiate yielding

moment at the bottom end of pipe

average of the two end moments

moment at the kth element of pipe used in developing global response
plastic moment capacity of the pipe cross-section

plastic moment capacity of the pipe cross-section modified for axial load

plastic moment capacity of the pipe cross-section modified for axial load and
internal pressure

moment at the top end of pipe

initial moment in Step 4 of the algorithm for developing local response

prescribed number of curvature increments used in developing local response
number of elements around one-half of cross-section

internal pressure of pipe
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pressure at the first occurrence of the proportional limit
external pressure in pipe (in CAN/CSA-Z662-94)

internal pressure in pipe (in CAN/CSA-Z662-94)

internal pressure when the hoop stress equals the yield stress

concentric load applied by the testing machine, used in Chapters 2 and 3
prescribed value of the load applied by the testing machine

prescribed external axial load

axial load required to reach the proportional limit

calculated external axial load

tensile axial force in the pipe wall due to internal pressure

initial axial load in Step 3 of the algorithm for developing local response
distributed resultant load of the pressure forces (acting in the plane of bending)

Ag?
2G+Ag

a constant in terms of Lame's constants, Q =

radius of bending neutral axis

inside radius of pipe

average of inside and outside radii
2nd Piola-Kirchhoff principal stresses

2nd Piola-Kirchhoff stress tensor

cross-section modulus
deviatoric stress tensor (generic)

reduced deviatoric stress tensor (generic)

reduced deviatoric principal stresses (generic)

‘reduced deviatoric longitudinal stress (generic), S, =§, =5,

vector of reduced principal deviatoric stresses (generic)

thickness of pipe

longitudinal force acting on the cross-section

operating temperature of pipe

ambient temperature when pipe is laid down

virtual forces used to define 2nd Piola-Kirchhoff stress

displacement in the ith direction of the coordinate system (x;,X,,X3)
resultant of the pressure forces (acting in the plane of bending)
deflection of the centerline of pipe



Y1
y2
Y«

vertical component of P; at the bottom end of pipe

vertical component of P; at the top end of pipe

ordinate of pipe cross-section measured from the bottom end of centerline
coordinates in global coordinate syétem

ordinate of an arbitrary point around the cross-section measured from the center,
used in Chapter 3

ordinate of an arbitrary point around the cross-section measured from the bending

neutral axis, used in Appendix E
depth of the strain gages from the center of the pipe cross-section

depth of the extreme fibers from the center of the pipe cross-section
deflection of the kth element of pipe used in developing globél response
Slenderness parameter in Sherman's study, a. = (E/ Fy)/(D/t), used in Chapter 1
thermal expansion coefficient for the pipe material, used in Chapter 2
rotation of the centerline of pipe, used in Appendix E

coordinates of the yield surface center in stress space

prescribed tolerance in determining the position of the bending neutral axis
prescribed tolerance in determining deformed configuration of pipe

stress correction vector :

stroke of the testing machine

limiting value for the stroke of the testing machine

stroke of the jack

temperature differential

longitudinal strain increment for a small element of cross-section

strain increment that moves the stress state onto the yield surface
longitudinal strain at an arbitrary point around the cross-section
longitudinal strain at the compressive gage location

longitudinal strain at the strain gage location on the compression side

longitudinal strain at the extreme compression fiber
compressive strain limit (in CAN/CSA-Z662-94)

longitudinal strain at the tensile gage location

longitudinal strain at the strain gage location on the tension side

longitudinal strain at the extreme tension fiber
true (logarithmic) principal strains
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principal strains (generic)
true (logarithmic) strain tensor

strain tensor (generic)
elastic strain tensor (generic)
isotropic portion of the plastic strain tensor (generic)

kinematic portion of the plastic strain tensor (generic)

plastic strain tensor (generic)

‘local strain

longitudinal strain at mid-section
overall strain

effective strain

reduced effective strain

softening strain

longitudinal strain (generic), €, =¢; =g,
curvature |
curvature at the first yield during bending

prescribed upper limit of curvature used in developing local response
initial curvature in Step 4 of the algorithm for developing local response

a proportionality factor used in correction vector
stretch (current length divided by the original length)

LE
(I+p)(1-2p)
Poisson's ratio for the pipe material
relative rotation of the pipe ends, 6 =6, +8,

Lame's constant, Ay =

absolute rotation of the bottom arm
rotation at each end of pipe used in developing global response
absolute rotation of the top arm

longitudinal stress in a thin-walled, closed-ended pipe that is elastic and subjected

to internal pressure only, 6, = Pzitl

effective stress



reduced effective stress

engineering principal stresses

principal stresses (generic)

engineering stress tensor

stress tensor (generic)

proportional limit of the pipe material
longitudinal stress (generic), 6, = o, = oy,
specified minimum yield stress of the pipe material
hoop stress (generic), 64 =0, =0,,
Reduced principal stresses (generic)
Reduced stress tensor (generic)

true (Cauchy) principal stresses

true (Cauchy) stress tensor

position angle around the cross-section of pipe
position angle of the bending neutral axis

4G(G+Ag-Q)
2G’+}\,E —Q

a positive constant in terms of Lame's constants, ( =



1 INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

In the last few decades, buried pipelines have become more widespread as a means
of transporting oil and gas. They are replacing other means of transportation in oil and
gas industries as the most economical alternative. As new oil and gas resources are
explored in remote regions, such as the Arctic and sub-Arctic, pipelines are being
extended into new and more severe environments. This requires a better understanding of
pipeline behavior and rational design procedures to address all the potential adverse
conditions.

Two important environmental loadings are those due to temperature variation and
imposed deformation. The effect of temperature variation on a long pipeline appears as
axial force. Imposed deformation for a pipeline can be produced by factors such as slope
movements, frost heave, and thaw settlements. The most important effect of imposed
deformation is the bending of the pipe due to the imposed curvature. Pipelines subjected
to imposed deformation often deform into elastic—plastic range. Because of the self-
limiting nature of the deformations arising from imposed deformations, the load-carrying
capacity is not a major concern. However, the pipeline may not remain functional under
the imposed deformation, and this then becomes a design consideration.

One of the frequent fabrication features in steel pipelines is the presence of girth
welds connecting the successive lengths of pipe. There have been no systematic
experimental studies in the past on the effect of girth welds on the structural behavior of
the pipe. However, it is obvious that the girth weld connection introduces residual
stresses and imperfections into the pipeline, and the resultant behavioral effects need to be
investigated. A series of tests on girth-welded pipe specimens comprise the first part of
this project. The specimens are subjected to constant internal pressure, constant axial
load, and monotonically increasing curvature. The latter two features idealize the thermal
and differential settlement effects. A comparison of the test results with the results of the
tests on plain pipes carried out at University of Alberta by Mohareb et al. (1994) will lead
to a better understanding of the structural implications of girth weld connections.



In the second part of this project, a numerical model is developed to obtain the
analytical moment vs. curvature response of a pipe similar to the test specimens up to local
buckling. The model is based on incremental theory of plasticity for a strain-hardening
material.

1.2 OBJECTIVES

This project is one of four studies on pipeline behavior that have been carried out
at University of Alberta over the past six years. The tests on plain pipes have been
performed by Mohareb et al. (1994) and numerical investigations have been carried out by
Zhou and Murray (1993), Souza and Murray (1994), and Mohareb et al. (1994).

The present research has the following objectives:

1. To establish an experimental data base for the structural response of girth-welded pipes
under conditions similar to those which they are subjected to in the field.

2. To compare these test results with the results of the tests on plain pipes in order to
determine the effects of girth welds on the structural behavior of pipe.

3. To define and propose a more rational basis for determination of the critical
compressive strain than is presently available in design codes for pipelines.

4. To develop a numerical model, based on incremental theory of plasticity, to predict the
local and global moment vs. curvature responses of pipes up to the point of wrinkling.

1.3 LITERATURE REVIEW
1.3.1 General

Buried pipelines must be able to function in complex environments. They are laid
in various types of terrain and subjected to different environmental loads. This gives rise
to a variety of structural problems. A number of these involve local shell buckling, soil-
structure interaction, and combinations of extemally applied loads and imposed
deformations.

Despite the significance of imposed deformations in the design of pipelines, the
current specifications for pipeline design do not fully address the problem. This is because



imposed deformation usually produces plastic deformations in the pipe, whereas the
current specifications are based on working stress design principles (elastic design).
Recently, however, there has been an attempt to introduce limit states design into the
Canadian code (CAN/CSA-Z662-94) through Appendix H, which is still in draft form.
The design procedure in the code, the literature on limit states design, and the draft
Appendix H are discussed in Sections 1.3.2, 1.3.3, and 1.3.4, respectively.

The experimental and analytical studies done in the past on the behavior of
cylindrical shells under different loadings are reviewed in Sections 1.3.5 and 1.3.6,

respectively.

1.3.2 Design Procedure in the Canadian Standard

The current Canadian design code for pipeline design (CAN/CSA-Z662-94) is
based on linear elastic stress analysis. The stress design requirements in the code are
based on the design conditions for operating pressure, thermal expansion, temperature
differentials, and sustained force and wind loadings. According to Clause 4.2.4.1 of the
Standard, no additional loading other than the specified operating loads is specifically
addressed; however, the designer is required to determine whether supplemental design
criteria are necessary for such loadings and whether additional strength or protection
against the damage modes, or both, should be provided. Such additional loadings, as
identified in the Standard, include slope movements, fault movements, seismic-related
earth movements, thaw settlement, frost heave, loss of support, and deformations resulting
from construction and maintenance. These imposed deformations normally result in
nonlinear response, which is not covered by the Standard.

The general design criteria for pipeline systems, as stated in Clause 4.6.1.1 of the
Standard, provide design specifications for:
(a) design wall thickness;
(b) maximum allowable temperature differential in restrained sections;
(¢) maximum allowable freely supported spans for axially restrained sections;
(d) minimum required flexibility in partially or fully unrestrained sections;
(€) maximum allowable support spacings for stress design of unrestrained sections; and
(f) maximum allowable cold-sprung reactions on equipment attached to flexible piping.



1.3.3 Limit States Design of Pipelines

The current Canadian design standard (CAN/CSA-Z662-94) is based on working
stress design, which is relatively simple in application because it requires only linear elastic
analysis. However, it does not deal with the failure conditions directly. The working
stress design concept attempts to control undesirable effects indirectly by requiring that
the structure have a factor of safety against the yielding of the pipe material under normal
operating conditions. As a result, the design produced has variable levels of safety for

different failure conditions.

The limit states design concept, on the other hand, is based on a direct evaluation
of each of the limit states; thus, a more uniform level of safety can be achieved. A safe
and economic design can be obtained with greater clarity and rationality for each of the
limit states if every potentially unsatisfactory condition is identified as such a state.
Consequently, the analytical approach for limit states design should be able to predict the
response of the structure up to the attainment of all of its limit states. This means that the
analytical approach consistent with limit states design must be based upon nonlinear
analysis, including both large displacements and nonlinear material response.

Price (1978, 1987, and 1991) proposed supplemental limit states criteria to protect
against deformation-related failure and damage modes that may be caused by various
additional loadings in unstable ground. Supplemental limit states design criterion required
that the following condition be satisfied (Price and Barnette, 1987):

Factored limit resistances > Structural response to operating loads and factored additional loads

The failure and damage modes included the fracture initiation, wrinkling, denting
and flattening, snap-through collapse, stability, and plastic cycling and fatigue. The limit
resistance for the wrinkling failure mode was specified by a maximum allowable
compressive stress. Price and Barnette (1987) also proposed monitoring and maintenance
limit states criteria. In a general form, this required that:

Factored limit resistances > Measured pipe deformations or loads computed from measurements

This was considered necessary for areas where geotechnical or other loadings are
uncertain and the risk of exceeding any of the specified resistance levels is excessive. This
requires a monitoring system capable of tracking deformations of the pipeline at sufficient
locations and with sufficient accuracy.



Row et al. (1987) developed a limit states probabilistic design method for offshore
Arctic pipelines. The potential failure and damage modes that need to be avoided were
reviewed. A new probabilistic load and load combination methodology was then
presented. Thereby, a limit states design approach was developed and preliminary design
criteria were recommended.

Lara (1987) studied the wrinkle growth of pressurized pipe under bending moment
using finite element analysis. The study was conducted in three parts. First, an analytical
model was validated by comparing its results with those of tests conducted by Bouwkamp
and Stephen (1973) (which will be discussed in Section 1.3.5.2). Thus, the conditions for
the wrinkle onset were established. In phase two, a study of the wrinkle growth was
undertaken to assess the level of conservatism of the then-current design criteria. A
sensitivity study to evaluate the effect of the pipe design parameters (i.e., internal pressure,
fluid temperature, pipe wall thickness, and pipe material type) was undertaken. Finally,
the effect of depressurization events on the growth of the wrinkle was modeled. It was
concluded that:

1. In the case of low operational pressures, where the wrinkle forms in an inward mode,
the wrinkle onset is an adequate failure criterion. However, the wrinkle onset criterion
is too conservative if the wrinkle occurs in an outward mode.

2. The critical strain after which rapid wrinkle development occurs is a more rational
failure criterion than the strain at wrinkle onset. The maximum allowable strain on a
pipe subjected to internal pressure, compression, and bending was thus obtained as

follows:
2.5-3.5% for internal pressure = 917 psi (6.32 MPa)
04% for internal pressure = 25 psi (0.17 MPa)

3. The critical axial compressive strain was not sensitive to compressive load within the
range of the loads considered.

4. Thicker pipe wall favors inward over outward wrinkles, thereby reducing the critical
axial compressive strain.

5. Increasing the yield strength of the pipe reduces the critical axial compressive strain, but
does not change the wrinkle shape.



Zhou and Murray (1993) defined the critical compressive strain as the compressive
strain corresponding to the point at which the first significant softening on the moment vs.
curvature curve is seen. The criterion for the initiation of significant sofiening was

expressed as
Predicted maximum compressive strain < Limiting compressive strain

According to Zhou and Murray, this criterion is not a limit states criterion;
however, it is a good alternative to the criterion based on buckling strain until rational
deformation limit states can be established. Improved deformation criteria were also
proposed to prevent various ultimate and serviceability limit states.

1.3.4 Draft Appendix H for CAN/CSA-Z662-94

Recently, an attempt has been undertaken to introduce limit states design into the
Canadian Standard (CAN/CSA-Z662-94). Appendix H of the Standard, which is still in
draft form, provides guidance for the design of steel oil and gas pipelines based on the
limit states method. It is intended to provide supplemental design criteria for loading
conditions that are outside the scope of Clause 4.0. These loading conditions mainly
consist of imposed deformations, such as slope movement, thaw settlement, frost heave,
and seismic-related earth movement.

Clause H2.2 defines five safety categories. They are based on risk to life and to
the environment and on the potential for economic loss. Two categories of limit states are
to be considered. They are ultimate limit states and serviceability limit states, as described
in the following (Clause H3.4.1).

Ultimate limit states can result in burst or collapse of the pipeline. They include
(Clauses H3.4.2)
(a) loss of pressure integrity (i.e., membrane rupture);
(b) overall instability;
(c) large inelastic deformations; and
(d) fatigue or brittle fracture resulting in membrane rupture.

Serviceability limit states restrict the normal operation of pipeline or affect its
durability. They include (Clauses H3.4.3)
(a) displacements or deformations that adversely affect the operation of the pipeline;



(b) local damage (e.g., local yielding, stable wrinkle growth, dents, corrosion, and non-
through-thickness cracking) that adversely affects the use or durability of the pipeline;

and
(c) motion, including vibration, that adversely affects the operation or durability of the

pipeline.

According to Clause H5.3.1, plastic theory can be used to analyze pipe sections
and pipe systems capable of developing and sustaining inelastic deformations. Such
systems should satisfy requirements as to temsile and compressive strain limits,
deformation limit, repeated yielding, effects of depressurization, and fatigue.

The limit on compressive strain has been set as the value of the compressive strain
at the point of wrinkle initiation. This is normally taken to occur at the peak in the
moment vs. curvature response. Accordingly, the compressive strain limit is given by the
following formula, which was developed by Gresnigt (1986):

2
et =051 - 0.0025+3000[M] (1.1
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where t is the pipe wall thickness, D is the outside diameter, p; is the internal pressure, Pe
is the external pressure, and E is the effective modulus of elasticity of the steel pipe. It is
admitted in the Commentary to the Appendix that the integrity of the pipeline can be
preserved well past its peak bending strength. Therefore, the above limit for compressive
strain can be overly conservative.

1.3.5 Experimental Studies
1.3.5.1 General

A large number of experimental studies to investigate the buckling behavior of
cylindrical shells have been performed in the past. Most of them, however, focused on the
buckling strength rather than on buckling strains. This is because, traditionally, the load-
carrying capacity and not the deformation capacity has been the center of attention.
Consequently, the design for imposed deformations receives little attention in the current
design guidelines. Only a few experimental studies have considered the buckling strain
and post-buckling behavior of the cylindrical shells.



The testing programs conducted by Bouwkamp and Stephen (1973 and 1974),
Jirsa et al. (1972), Korol (1979), Reddy (1979), Sherman (1986), Kyriakides and Ju
(1992), Mohareb et al. (1994), and Hu et al. (1993) are reviewed in the following
subsections. Note that the tests by Hu et al. were carried out on large diameter tubes.
Because of their fabrication process, these tubes contain a much higher level of
imperfection than do line pipes.

1.3.5.2 Tests by Bouwkamp and Stephen (1973 and 1974)

Bouwkamp and Stephen (1973 and 1974) conducted a series of tests on pipe of
the type that was to be used in the trans-Alaska pipeline. Seven specimens were fabricated
from 48-inch diameter longitudinally seam-welded pipe. Each specimen was subjected to
constant internal pressure, constant axial load, and increasing lateral load. A four-point
loading system was used for the lateral load to produce pure bending in the central section
of the pipe, between the two point loads. This section (called test section) was fabricated
from X60 pipe with a nominal wall thickness of 0.462 in. (11.7 mm) and a yield strength
of 60 ksi (413.7 MPa). In order to study the effects of full-penetration girth welds, the
test sections contained girth welds at their mid-length. Three levels of internal pressure
were applied: high pressures at 150 and 950 psi (1.03 and 6.55 MPa) and low pressure at
25 psi (0.17 MPa). The axial load was applied at two levels, which corresponded to the
temperature differentials of 135° and 90° F. (57.2° and 32.2° C)

The results from the first test showed that the operational integrity of the pipe
would not be diminished by initial development of the buckling. Therefore, the subsequent
tests continued into the post-buckling region so as to measure the post-buckling strength
and ductility.

The displacements at rupture were observed to be up to 20 times those under
which buckling occurred. Under high internal pressure, the pipe wall exhibited an outward
deformation over the total compression zone, and this extended over at least two-thirds of
the pipe circumference. However, under low internal pressure the pipe wall exhibited the
more common diamond-shaped inward-outward buckle. The compressive strain at
buckling for these specimens ranged from 0.23 to 0.82.



1.3.5.3 Tests by Jirsa et al. (1972)

Jirsa et al. (1972) carried out a series of tests on six specimens of pipe with
diameters ranging from 10.75 to 20 in. (273 to 508 mm) and with D/t ratios ranging from
30 to 80. Four of the pipes were uncoated and two were coated with concrete. The
objective was to investigate the influence of ovaling on the flexural behavior of pipelines
stressed beyond elastic limit. The pipes were tested as simple beams supported at the ends
and loaded at two points within the span to produce a region of pure flexure. Thus, the
only loading was bending. The moment vs. curvature curve was reported for each
specimen. It was concluded that ovalization did not significantly reduce the moment
capacity of the pipe until strains well into plastic region were developed.

1.3.5.4 Tests by Korol (1979)

Korol (1979) performed a series of 11 tests on single and double-span circular
hollow tubular beams to evaluate the inelastic bending and axial compression theories of
buckling. The double-span tests were carried out to ensure that the redistribution of
moments would occur and thereby to identify the plastic design sections. The effects of
strain-hardening and the yield strength on the limiting D/t ratios were examined for the
various categories of design. It was concluded that for ductile materials, which have an
essentially bilinear stress vs. strain curve and a small degree of strain-hardening, the
buckling strain is inversely proportional to the yield stress raised to an exponent lying
between 0.5 and 1. For elastic-plastic case, the exponent tends to 1, whereas, for a high
tangent modulus and small D/t ratio, it tends toward zero. In addition, ovalization was
found to have a relatively small effect on the moment capacity because local buckling
occurred before large reductions in moment capacity were observed. Therefore, local
buckling, rather than ovalization, was determined as the principal cause of the failure.

1.3.5.5 Tests by Reddy (1979)

Reddy (1979) carried out a series of tests on stainless steel and aluminum alloy
tubes with a nominal diameter of 25 mm to investigate the plastic buckling of tubes
subjected to bending moment. The D/t ratios of the ten steel tubes were in the range of 42
to 78, and those of the nine aluminum tubes were in the range of 34 to 58. Pure bending
moment was applied to the specimens by four-point loading. The ratio of the unsupported
length to the diameter of the test specimens was about 12; thus, the end conditions would
be expected to have a negligible effect on the sections of the specimens away from the
ends. Some results are summarized as follows.



1. One important observation was the appearance of wave-like ripples on the compression
sides of the specimens before collapse took place. The ripples were first detected when
the bending moment was about one-half the maximum value. This was attributed to the
influence of the imperfections. The relatively small amounts of ovalization indicated
that buckling was largely due to the growth of the ripples (bifurcation). The sine-wave
nature of the ripples led to the hypothesis that the test specimens behaved as imperfect
cylinders and the imperfections gave rise to a steady growth of the ripples.

2. The wavelengths of the ripples were considerably less than those predicted by the
bifurcation theory based on either incremental or deformation theory of plasticity.

3. The compressive strains at the intrados were found to be slightly higher than the tensile
strains at the extrados.

4. The maximum compressive strain at buckling ranged from 0.75 to 1.76 percent for the
steel specimens, and from 0.70 to 1.98 percent for the aluminum alloy specimens.

1.3.5.6 Tests by Sherman

Sherman (1986) conducted a series of tests on round tubes with outside diameter
of 10.75 in. (270 mm). The objective was to determine the moment redistribution
capabilities of round tubes and to evaluate the application of plastic design principles to
. the tubes subjected to flexure. Eighteen specimens were tested. The D/t ratio ranged
from 18 to 102 and there were three arrangements of support conditions. Three
specimens were 10-ft. long (3.41 m) cantilevers with end loading. Six specimens were 12-
ft. long (3.66 m) simply supported beams with third point loadings. The remaining nine
specimens were fixed-end beams with third point loadings and lengths of 20 ft. (6.10 m)
and 50 ft. (15.24 m).

The observed inelastic collapse and post-buckling behavior of the specimens in
bending were grouped in three categories. This was carried out by using a slenderness
limit o = (E/F,)/(D/t), where E and Fy are the modulus of elasticity and yield strength

of the material, respectively.
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(a) For values of o greater than 22, a long plastic plateau developed in the moment vs.
curvature curve. The pipe gradually ovalized and eventually the buckling waves
formed, after which the load slowly decayed. In some cases, one of the waves became
a single dominant local buckle.

(b) For values of o between 10 and 22, a single buckle gradually formed and the load
decayed slowly with little or no plastic plateau region.

(c) For values of o less than 10, several buckles formed, with very little ovalization, and
the bending moment dropped rapidly to a more stable level

As a result of the observation of the bending tests and some theoretical
discussions, it was concluded that ovalization is the dominant type of instability governing
the inelastic bending capacity. However, the instability is not because of a reduction in the
section modulus due to flattening. Ovalization leads to the formation of an inward local
buckle, which controls the subsequent load decay. If ovalization is prevented by end
stiffening and a steep moment gradient (as is the case for cantilevers), the bifurcation
buckling mode becomes dominant.

1.3.5.7 Tests by Kyriakides and Ju (1992)

Kyriakides and Ju (1992) conducted experiments on long aluminum 6061-T6 shells
with 11 different D/t ratios ranging from 19.5 to 60.5. The diameter of the cylinders
ranged from 25.34 to 38.10 mm and their length-to-diameter ratios ranged from 18.1 to
30.1. From the observations in the tests, the shells were divided into the following three
categories. Note that the following D/t limits for the three categories were considered to
be approximate and varying with the shell material properties.

(@) D/t> 40

In this category (relatively thin shells), the dominant mode of instability was short-
wavelength rippling. The specimens ovalized uniformly up to collapse. The short-
wavelength ripples were observed in small pockets randomly distributed along the length.
They appeared shortly before the shell collapsed and their amplitude grew locally in a non-
uniform manner. The specimens collapsed suddenly when a second instability occurred in
one of the ripple pockets. The collapse formed in diamond-shape mode. It was judged
that the post-buckling strength of these cylinders was too small to be of structural use.
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(b) 26 <D/t <40

In this category (moderately thick shells), short-wavelength rippling again
dominated the instability. Unlike the previous category, a distinct limit moment occurred
prior to failure in the moment vs. curvature response of the specimens in this category. In
addition, ovalization grew non-uniformly until just before the failure. The localized
deformation was 8-10 diameters long. The trough of the localized region usually
contained pockets of short-wavelength ripples. After attaining the limit load, the shell
collapsed suddenly by the formation of a sharp local kink (diamond shape), originated
from the ripples.

(c)D/t<26 .
For this category (relatively thick shells), response to bending was governed by the
limit load instability caused by uniform ovalization. Long wavelength imperfections were
amplified near the limit load. Following the limit load, the ovalization began to grow non-
uniformly along the length and localized significantly. It was concluded that the
localization was a direct result of the limit load instability and controlled the behavior of
the shell after the limit load. Consequently, the limit load calculated by the assumption of
uniform ovalization was very close to the actual value.

1.3.5.8 Tests by Mohareb. et al. (1994)

Mobhareb et al. (1994) carried out a series of tests at the University of Alberta on
seven line pipe specimens. Four of the specimens had a diameter of 20 in. (508 mm) and a
D/t ratio of 63. The other three had a diameter of 12.75 in. (324 mm) and a D/t ratio of
50. All specimens were 1.69 m long. The specimens came from the same lengths of pipe
as used subsequently in the experimental program documented in this report. The
objective of the tests by Mohareb et al. was to determine the strain at the onset of
wrinkling and to study the post-buckling behavior of pipe segments subjected to combined
axial load, internal pressure, and bending moment. In the following chapters of this
report, the results of these tests carried out on plain pipes are cited and compared with the
results of the tests on the girth-welded pipes conducted herein.

1.3.5.9 Tests by Hu et al. (1993)

Hu et al. (1993) carried out a series of tests on tubes that had a nominal inside
diameter of 430 mm and had lengths of 1.5 m and 1.0 m. The wall thicknesses for the
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tubes ranged from 4.5 mm to 9 mm and the D/t ratio for the tubes ranged from 50 to 100.
The objective of the research was to examine the influence of imperfections on the
strength of fabricated tubular beam-columns used in offshore structures. Unlike pipes,
such tubes are fabricated in the shop by cold-rolling plates into cylindrical components.
These are then seam and girth welded to one another to create the tubular shape. The
tubes produced in this fashion have much higher levels of imperfections than do line pipes.

A finite element modeling of the test specimens followed the experimental
~program. For the analysis, the elastic—perfectly-plastic stress vs. strain relationship,
obtained from the tension coupon tests of the virgin plate, gave unsatisfactory results.
However, a bilinear kinematic-hardening material relationship, obtained from the tests on
coupons cut from the tube after cold-rolling, gave analytical load vs. displacement
responses that fit closely with the experimental data.

It was found that the mismatch at abutting ends was the principal'factor in the
initiation of local buckling. In addition, the effects of out-of-straightness and out-of-
roundness on the ultimate strength of the cross-section were found to be negligible.

1.3.6 Analytical Studies
1.3.6.1 General

The local buckling of cylindrical shells in bending is characterized by two
phenomena. These are ovalization and the localization of the buckling waves, and they
may act alone or in combination.
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Kim (1992) concluded from previous studies on cylindrical shells that the _

predominance of each of the two phenomena is determined by the D/t ratio, level of initial
imperfections, pipe length and end conditions, and internal pressure.

The buckling phenomenon in cylindrical shells subjected to bending is further
discussed in following subsections, where the work of Tvergaard and Needleman (1983),
Calladine (1983), and Ju and Kyriakides (1992) is reviewed.

1.3.6.2 Analysis by Tvergaard and Needleman (1983)

Tvergaard and Needleman (1983) studied the development of the localized
buckling patterns from a broad point of view. They realized that presence of a periodic



buckling pattern is a common feature in a wide variety of structures subjected to
compression. Examples of such structures are axially compressed elastic—plastic plate
strips, cylindrical shells under compression or bending, elastic-plastic columns continuous
over several equally spaced supports, and railway tracks subjected to thermally induced
compressive forces.

Tvergaard and Needleman stated that for a cylindrical shell under bending, at or
subsequent to the attainment of a maximum load, the initial periodic buckling pattern loses
uniqueness. This initiates the mechanism of localization (involving bifurcation), which
leads to the final buckled configuration, involving only one or a few buckles.

1.3.6.3 Analysis by Calladine (1983)

Calladine (1983), considering Reddy's test results (discussed in Section 1.3.5.5),
rejected the bifurcation theory. Calladine stated that the ripples observed in Reddy's tests
were not formed by bifurcation, but by a process of propagation from the end-fixings of
the specimens soon after the specimen entered the plastic range. Calladine assumed that
the ripples formed shortly after the intrados became plastic, and that they behaved as if a
longitudinal strip of rippled material has a compressive stress vs. strain curve similar to
that of a perfectly-plastic material. Based on these assumptions, Calladine performed a
modified analysis of ovalization to obtain the maximum moment and critical compressive
strain.  The resulting analytical relation for the critical compressive strain agrees

approximately with the Reddy test results.

1.3.6.4 Analysis by Ju and Kyriakides (1992)

Ju and Kyriakides (1992) carried out a theoretical investigation concerned with the
prediction of the responses of the cylinders they obtained in their experimental program
(discussed in Section 1.3.5.7). They formulated the problem using Sander's shell
kinematics (Sanders 1963) and the principle of virtual work. The discretization of the
problem was done by a Rayleigh-Ritz procedure. Three types of behavior were studied.
These were bifurcation into short-wavelength ripples, localization following the attainment
of a natural limit load (peak moment due to ovalization), and the interaction of the two.
The analytical responses were found to be in good agreement with the corresponding test
results. The analytical predictions for the behavior of the test specimens are summarized

as follows.
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The thinner shells (D/t > 40 for aluminum 6061-T6 shells) bifurcated at an
increasing moment. The buckling mode consisted of axially periodic ripples on the
compression side. The uniform growth of the amplitude of the ripples reduced the rigidity
of the shell and this resulted in the development of a limit load. This occurred at a
curvature that was significantly smaller than that corresponding to the natural limit load.
Subsequently, the ripples localized and the moment dropped. A second bifurcation
occurred in the ripple with the most severe deformation. This buckling mode consisted of
circumferential waves. The second bifurcation and the softening nature of the response
prior to it led to a catastrophic collapse.

In the case of the thicker shells (D/t > 28 for aluminum 6061-T6 shells),
ovalization occurred along a localization length, which was a few diameters long. The
deformation and the length of the localized region were governed by local equilibrium and
not by the overall length of the cylinder. However, the overall moment vs. curvature
response following the limit load was significantly affected by the overall length of the
cylinder. As the overall length increased, the moment decreased at a much faster rate with

-curvature.

For the shells with intermediate values of D/t ratio (28 < D/t < 40 for aluminum
6061-T6 shells), the presence of small imperfections had only a relatively small effect on
the predicted response up to the first bifurcation point. As was the case for the thinner
shells, the first bifurcation produced short-wavelength ripples with growing amplitudes.
The bias imposed by the imperfection was amplified and the growth of the ripples
localized. The moment developed a maximum and dropped rapidly thereafter. Prior to
the peak moment, a second localization occurred. It involved a few diameters of the
cylinder on either side of the rippled section. As ‘was the case for the thinner shells, a
second bifurcation took place in the largest amplitude soon after the limit point. The limit
load occurred at much smaller curvature than was the case for the uniformly ovalized
shell. It was concluded that the short-wavelength ripples were the triggering mechanism
for the sequence of the events that led to collapse.

1.4 LAYOUT OF THE REPORT

The remainder of this report consists of five Chapters and five Appendices. The
major subjects and scope of each of the following chapters and appendices are

summarized as follows.
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Chapter 2 describes the experimental phase of the study. The test set-up and
loadings for different specimens are reported, and the fabrication of the test specimens,
instrumentation, and test procedure are described. '

Chapter 3 presents the experimental results. They consist of the load vs. rotation
responses and the strain, curvature, and displacement profiles along the length of each
specimen. Global and local moment vs. curvature responses are also developed for the

test specimens.

Chapter 4 discusses the experimental results. It compares the moment vs.
curvature responses of the test specimens (girth-welded) with those of the plain pipes used
by Mohareb et al. (1994). The local buckling and wrinkling in the test specimens are
studied. The wrinkling compressive strains are determined and critical strain values are
recommended. Empirical equations for critical strain values are presented for both plain
pipe and girth-welded pipe.

Chapter 5 presents the second phase of the study, the numerical investigation. An
incremental stress vs. strain formulation is used to develop the local moment vs. curvature
response of a pressurized pipe up to local buckling. The numerical model considers
different types of strain-hardening. A computer program is developed based on the

numerical model.

Another computer program is developed to obtain the global moment vs. curvature
response of a pipe with the boundary conditions and loading sequence similar to those for
the test specimens. The local and global responses for the test specimens are predicted by
the numerical model using different types of strain-hardening and stress vs. strain
measures. The numerical results are then compared with the experimental results obtained
in Chapter 3.

Chapter 6 summarizes the results of the experimental and numerical parts of this

study.

Appendix A is a manual for the program developed to obtain the local moment vs.
curvature response of the pipe (PAPS), and Appendix B contains the FORTRAN listing of
the program. Appendix C is a manual for the program developed to obtain the global
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moment vs. curvature response of the pipe (PDA), and Appendix D contains the
FORTRAN listing of the program.

Appendix E develops formulae for converting and relating the different stress vs.
strain measures used in Chapter 5. The curvature, as defined in this study, is related to the
stress vs. strain measures in Section E.2.



' 2 EXPERIMENTAL PROGRAM

2.1 INTRODUCTION

The experimental program established to investigate the behavior of girth
welded pipes had a two-fold purpose. One was to provide an experimental database
that would enable direct comparisons with predictive methods. The other was to
provide a comparison of the experimental results for pipes with transverse girth welds
to the previous results for plain pipes (i.e., without transverse girth welds).
Comparisons are made in various aspects; namely that of moment capacity, ductility,
strains and buckled shape. In this way the effects of the girth weld on behavior can be
isolated.

In order for the results to be directly comparable to the previous results of tests
on plain pipe, carried out at the University of Alberta by Mohareb (1994), the same
pipe sizes were selected for the experimental program. These were: (a) 508 OD x 7.9
mm DSAW Grade 386 (20 x 0.312 inch DSAW X56); and, (b) 324 OD x 6.35 mm
ERW Grade 359 (12.75 x 0.25 inch ERW X52). The former is the smallest diameter
DSAW (Doubly Submerged Arc Welded) pipe produced locally, and is of the greatest
- thickness that could be tested in axial compression in the 6200 kN capacity testing
machine. The latter ERW (Electric Resistance Welded ) pipe is the size that exists in
the Norman Wells Pipeline, which is operated by one of the sponsors of the project
(Mohareb et al. 1994). Although metric units are generally used in this report, the two
pipe sizes (i.e., the 508 mm OD pipe and the 324 mm OD pipe) are called 20-inch pipe
and 12-inch pipe herein. The experimental program consisted of four tests on 20-inch
pipe and three tests on 12-inch pipe. All of the specimens were approximately 1690
mm (66.5 in.) long. The specimens were subject to three types of loadings, namely,
internal pressure (in four tests only), axial load, and bending moment.

2.2 DESCRIPTION OF SPECIMEN DESIGNATIONS AND LOADINGS

The tests associated with the experimental program are itemized in Table 2.1.
It is important to understand the specimen descriptor (or test name) for each test
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because this is the key which explains the rationale for the load conditions of each test.

The system of notation, explained in detail in Table 2.2, is the same system as used in
the reports on pipes without girth welds (Mohareb et al. 1994), with the only difference



being the addition of W to the end of the designations. The W denotes the presence of
a transverse girth weld in the middle of the specimen. Specimens are identified by a
specimen descriptor of the form XYZnnW, where nn is the size of the pipe in inches,
and each of X, Y, and Z designates a particular characteristic of the loading simulation,
as shown in Table 2.2. In order to clarify the intent of the loadings for each simulation
a detailed description for the 12 inch pipe specimens is given below. This description
is similar to that in (Mohareb et al. 1994).

The principal active effect or, more precisely, action, associated with each test
is the imposition of a monotonically increasing curvature to the pipe. This simulates an
imposed bending of the pipe due to geotechnical movements. While these imposed
displacements are being applied it is assumed that the other loading conditions remain
constant and at levels equal to those associated with the design conditions.

The internal pressure is an action at any location that is dependent on the
position of the pipe segment relative to the pumping station. Immediately downstream
of the pumping station the internal pressure should have its maximum value. This
maximum value is limited, by the govering standard, to the pressure which will
develop a circumferential stress equal to a specified fraction of the specified minimum
yield stress (SMYS = o). Although Canadian standards currently permit a value of

0.80, for the circumferential stress, the Norman Wells line was installed at a time
when the limit was 0.72c,. Consequently, the maximum value of circumferential
stress for any of the 12 inch test specimens was set to 0.720 in order to simulate a

location immediately downstream of a compressor station (designated by X=D in the
specimen descriptor). The pressure in the line gradually reduces as the distance from
the pumping station increases. Immediately upstream of a pumping station the internal
pressure has been reduced to the point where it is only a small fraction of that at the
downstream location. Indeed, for practical purposes it may be considered to be zero.
Consequently, an upstream location (designated by X=U in the specimen descriptor) is
considered to be without internal pressure. An intermediate location, halfway between
the upstream and the downstream locations, is designated by X=H in the specimen
descriptor.
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Axial load is an action at any location that is dependent upon many factors. In
the absence of soil movement in the direction tangential to the pipe, it is normally
considered to arise from a combination of the restraint of the Poisson's ratio effect and
the restraint of thermal effects relative to the installation temperature. Specimens with
the greatest axial compressive force arising from this combination are designated by
setting Y=G in the specimen descriptor, and those with the least are designated by
setting Y=L. Unlike the previous set of tests on plain pipes, for all the specimens in
this experimental program only Y=G was used.

The characteristics of the axial force are dependent on the longitudinal
interaction between the pipe and the soil. If there is little longitudinal restraint from
the soil to prevent relative differential tangential motion between the pipe and the soil,
the longitudinal force can maintain an almost constant value as the pipe bends out of its
original configuration. This is similar to a simple column with gravity loading, in
which case the axial load maintains its full magnitude on the end of the column. Such
a loading situation is considered to be the most severe with respect to local buckling
that might be encountered in the field. It is designated as an active axial load by setting
Z=A in the specimen descriptor. The least severe axial loading condition is considered
to be one where the end segments of the pipe are rigidly clampéd against longitudinal
movement at points outside the region of flexural deformations. The axial force in the
pipe is then controlled by the reaction against this rigid support. Such a loading
condition is said to be reactive, and it is considered to be the least severe axial loading
condition once the pipe begins to bend. It is designated by Z=R in the specimen
descriptor. For all the specimens in this experimental program, the active loading
condition was selected, that is, Z=A.

The compression axial load in the pipe wall, denoted by C in Table 2.1, is a
combination of thermal and Poisson effects. For the case of no longitudinal extension
of the pipe it may be expressed as

C=A(Ea(T,-T;)-uoe) 2.1

in which A = the area of the pipe cross-section; E = the modulus of elasticity for the
pipe material (200,000 N/mm2); o = the thermal expansion coefficient for the pipe
material (11.7 x 107 mm/mm/°C); T, = the pipe operating temperature; T; = the
ambient temperature when the pipe is laid down; p = Poisson's ratio for the pipe
material (0.3); and og = the hoop stress in the pipe.
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Note 1: A maximum operating temperature of around 0° C is maintained in all
pipelines through regions of discontinuous permafrost. Therefore, this value is
used in the design of the tests.

Note 2: Practical considerations for winter construction put a lower limit of -45° C on
Ty . This value is used in the design of the tests.

2.3 TEST SET-UP

The test set-up for the series of tests on girth welded pipes is shown in Fig. 2.1.
It is the same arrangement as used for the previous series of tests on plain pipes
(Mohareb et al. 1994). A picture of the set-up is also presented in Fig. 2.2. The test
set-up is similar to that used in structural steel research to investigate the strength and
behavior of beam-columns. The free body diagram in Fig. 2.3a shows the forces
applied on the upper half of the pipe specimen.

As can be seen in Fig. 2.1, the pipe specimen is welded to two end plates. In
turn, these end plates are bolted to two loading arms. The axial load is delivered
through the compression head of a universal testing machine and then through the knife
edges and the web of the loading arm to reach the end plates of the specimen. Moment
is applied to the specimen by extending the jack between the loading arms at the
location eccentric to the centerline of the pipe. In Fig. 2.3a the symbol F represents
the jack force. In this type of test arrangement, the jack is usually used in tension
because it gives a more stable loading configuration. However, in these tests this
would put the jack on the same side as the compression face of the pipe, blocking the
view of the wrinkle development. Because photogrammetric techniques were to be
used to map the buckling configuration, it was desirable that the compressive face be
free from obstructions. Therefore, the jack force applied to the loading arm was
compressive, that is, it caused the loading arms to open. The measured values of jack
eccentricity, e, for different specimens are tabulated in Fig. 2.3b.

The length of the specimen, like the previous series of tests on plain pipes, was
selected to be three and one-third times the diameter of the larger pipe (i.e., 20 inch
diameter). As observed for axially loaded specimens (Mohareb et al. 1994), the local
discontinuities associated with the testing arrangement in the regions of the end plates
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can trigger local buckling and failure at the end locations. Two features of the test
arrangement acted to reduce this possibility. First, collars were added to the specimens
immediately adjacent to the end plates. These collars, shown in Fig. 2.1, were short
segments of pipe taken from the same source as test piece itself. They were split,
placed tightly around the specimen and then rewelded into a ring in such a way that
there was no mechanical connection between the collar and the pipe. Second, although
in the undeformed configuration the specimen is under uniform moment, the
eccentricity of axial force from the deflected shape of the specimen centerline produces
a moment variation along the specimen with the maximum at the mid-height. This will
move the most critical stress condition away from the end support.

Each loading arm was a closed, built-up section having two 10 mm thick webs
and two 25.4 mm thick flanges. Each of the 660 x 540 x 63.5 mm steel end plates was
bolted to the flange extremity of a loading arm using five ASTM grade A490 bolts on
the tension side of the pipe and two on the compression side. The other extremity of
the loading arms received the jack fittings. The distance between the pipe and the
application line of the eccentric force could be adjusted from test to test by changing
the position of the jack fittings. Stiffeners were provided at all possible loading points.

Internal pressure was provided by filling the interior of the specimen with water
and then using a manually regulated, pneumatically powered pump to pressurize it.
The magnitude of the pressure was monitored by means of a transducer installed in the
supply line. A hole was drilled through each end plate in order to be able to connect
the interior of the pipe to the pump and to bleed hoses. Constant internal pressure was
maintained by manual control.

In addition to providing the axial load in the pipe wall, the load applied by the
universal testing machine, P, should compensate for two tensile forces. The first of
these is the eccentric load, F, applied by the jack, which varies during the test. The
second is the tensile force P; due to the internal pressure acting on the closed ends of
the specimen (Fig. 2.3a). This latter force may be evaluated as

P,=7nR?p (2.2)
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where p is the internal pressure, and R; is the inside radius of the pipe. Consequently,
the longitudinal force that should be applied by the testing machine to the end of the
test specimen in order to maintain the force C in the pipe wall can be expressed as

P=C+F+P, 2.3)

2.4 FABRICATION AND ALIGNMENT OF SPECIMENS

Two 845 mm long segments of pipe were flame cut in order to make each
- specimen. One end of each segment was beveled at an angle of between 50 and 60
degrees so that it could be welded to the end plate. The other end of each segment was
beveled at an angle of 30 degrees, as per industry standard procedures, so that it could
be groove welded to the other segment. In order to simulate the fabrication procedure
of the specimens to that of the pipeline industry, a contracting crew used by a pipeline
company was employed. They were employed to align and weld the segments together
and were expected to use procedures and equipment similar to those they would have
used in the field. The girth weld connections then underwent X-ray inspection to
evaluate the quality of the weld.

Strain gages were attached to the specimen after the confining collars had been
placed around the specimen ends. A loading arm was placed on the floor, and then an
end plate was bolted to its upper surface. The pipe was then aligned vertically over the
end plate and welded to it using three welding passes. The resulting L-shaped frame
was then inverted and moved under the top head of the compression machine such that
the pipe centerline was concentric with the head of the compression machine. The
bottom loading arm and its end plate had already been placed in position in the testing
machine and the bottom of the pipe then was welded to the bottom end plate (a down-
hand weld). Great care was taken to center, level, and align each of the components as
they were moved into place.

After the test was completed, and if the specimen had been tested under internal
pressure, the fluid was first evacuated through drainage holes in the end plates. Then
the pipe was freed from the end plates by flame cutting. The arms were removed and
the surface of the end plates were ground and cleaned, while still attached to the arms,
so that the assembly could be reused for the next specimen. Of course, only the latter
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procedures were needed for specimens that had been non-pressurized during their
testing.

2.5 INSTRUMENTATION
2.5.1 Strains

Forty longitudinal strain gages were mounted on each specimen. Sixteen of
these were placed along the length of the specimen near the maximum compression
fiber, as shown in Fig. 2.4, in order to measure the values of the strains as buckling
was approached. Another sixteen gages were attached to the tension face of the
specimen in the same pattern as those of compression face. In addition, rings of strain
gages were mounted near the top and bottom of the specimen. These were used in
order that the alignment of the specimen could be checked during set-up, prior to
applying the eccentric load. Each ring consisted of eight equidistantly placed strain
gages. In addition to the strain gages, longitudinal strains based on Demec points
spaced at about 115 mm along the maximum compression and tension fibers were also
recorded. Fig. 2.4 shows the arrangement of the strain gages and the Demec points.
A photogrammetric technique (described in Section 2.5.4) that was originally employed
to record the buckling deformations, could conceptually be used to obtain the strains.
However the resolution of the cameras used in the procedure was not sufficient to
provide the accuracy required for meaningful results.

2.5.2 Loads and Axial Movements

The readings of load and the compression head movement for the universal
testing machine were recorded by a data acquisition system. Displacement transducers
were installed in order to measure the shortening of the specimen and the extension of
the eccentric jack. A load cell attached to the jack piston measured the jack load.

2.5.3 Rotation Meters

Two rotation meters that used electric resistance strain gages were installed, one
on the top arm and one on the bottom arm, at mid-height of the arms on the axis along
the pipe centroid. They measured the end rotations of the specimen.
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2.5.4 Deformation Response

Establishing a database for deformational response of the girth welded pipes was
one of the main purposes of the experimental program. Three types of measurements
were made in order to capture the deformation response adequately.

The first of type of measurement was that of radial displacements, and they
were taken at prescribed distances along the length of the specimen. This was
accomplished using a series of eight equidistantly placed linear variable differential
transducers (LVDT's) aligned radially (i.e., perpendicular to the initial surface of the
pipe). The arrangement of the LVDT's is shown in Fig. 2.5. These LVDT's were
mounted on a frame containing a 650 mm-diameter hole, which was enough to
encompass the pipe as it changed position throughout the test. The entire assembly
could be moved vertically. The hole was concentric with the initial position of the test
specimen and the frame slid along the fixed columns of the universal testing machine.
For a given deformed configuration, the frame was stopped at twelve fixed stations
along the length of the specimen to take the LVDT readings. Fig. 2.6 shows the frame
supporting the LVDT's when it is positioned at the bottom of the specimen.

The second means of measuring the deformed shape of a specimen was by
taking photographs of the compression face simultaneously with two different cameras.
The cameras were mounted on a column and viewed the compression face of the pipes
from a distance of about four meters. The coordinates of any point on the compression
side, which contains most of the local deformations, can be determined by
photogrammetric processing of the pictures. This photogrammetric method is still
being developed in the Department of Civil Engineering at University of Alberta.

25

Utilizing it for this series of tests permitted the effectiveness of the method to be

explored, but it turned out that the resolution of the cameras for this particular test
series was not adequate to provide quantitative results. However, the exercise assisted
in the definition of the requirements for further development of the photogrammetric
technique.

The third measurement of the deformed shape of the pipe, complementary to the
LVDT results, was the utilization of a surface contour gage that could be placed against
the pipe in locally deformed areas. As Fig. 2.7 shows, the contour gage was placed
longitudinally against the pipe and the movable metal teeth were adjusted so that they



came into contact with the pipe. In this way the longitudinal profile of the pipe in the
vicinity of the buckle could be captured by the outline of the contour gage. After the
contour gage was removed from the pipe, tracing its outline on a sheet of paper
reproduced a shape identical to the longitudinal profile of the pipe in the localized
region.

2.5.5 Electronic Recording of Data

All the readings of the LVDT's, strain gages, rotation meters, loads and strokes
were electronically stored in a 60-channel data acquisition system. In order to monitor
the progress of the test, plots of loads, strokes, and arm rotations were displayed on a
monitor program during the test.

2.6 TEST PROCEDURE

The general procedure for loading the specimens was first to apply the required
internal pressure, then to apply the axial load, and, finally, to gradually impose
curvature on the pipe by pushing apart the ends of the loading arms with jack stroke
increments. Displacements during the first and second stages of loading (pressurizing
and compressing) were very small and mostly in the elastic range. Thus, there was no
need for a step-by-step increase of the loads to measure the intermediate deformations.
The third stage of loading (imposing curvature), on the other hand, involved large
displacements and localized deformations began early in this stage. Hence, it was
necessary for the deformations to be monitored at a sufficient number of curvature
increments so as to provide adequate information about the deformation history.

Since it was necessary to test well into the post-wrinkling range, it was possible
that a snap-back situation would occur. If this occurred, a rapid, unstable increase in
the buckle deformation might take place during the latter part of the test, entailing a
snap-back from one axial load to a lower one, or from one moment to a lower one,
under constant end displacements. Consequently, it was considered prudent to have
feedback controls that would maintain the preset combinations of loading and
displacements regardless of the response of the specimen.

The actuators for loads P and F were controlled through a computer program
written using commercial software, namely, LabVIEW 2 (Ver. 4.2, 1990). The
program ran on a Mac Ilci microcomputer equipped with a card that provided two
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analog output and eight analog input channels. Four of the seven inputs for the control
program were P, F, Ap and Az. The latter two are the stroke of the testing machine
and jack, delivering forces P and F, respectively. The three other inputs were obtained
from three displacement transducers that monitored the axial elongation of the pipe.
Because of the geometry of the test set-up, the elongation of the pipe was not
necessarily equal to Ap.

Conceptually, three loading modes could be imposed for control of loading
during the increase of curvature delivered by the jack stroke, Ag. In Mode 1, the axial
force carried by the pipe is maintained at a constant value. For this mode, the testing
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machine load, P, is controlled such that P - F = C* = C + P; , where C* is the

prescribed value of the pipe axial force and P; is the force generated by the constant
internal pressure in the longitudinal direction. This mode of loading corresponds to an
active longitudinal pipe force, using the terminology of Section 2.2. In Mode 2, the
vertical projection of the length of the pipe is kept constant. This mode corresponds to
a reactive longitudinal pipe force, using the terminology of Section 2.2. In Mode 3,
the goal is to maintain the testing machine load, P, at a constant value, say, P = P*, in
which P* may be a minimum force to ensure that the specimen remains clamped in the
machine and does not become geometrically unstable. In this series of tests on girth
welded pipes only control Mode 1 (active force) was employed.

During each test, the value of C* = P - F was monitored continuously by the
control program. A target value of C* and a limiting value for the stroke of the testing
machine Ap* could both be changed from the keyboard at any time during the test. If
Ap were less than Ap*, the control program would adjust the axial load actuator so that
the actual value of C* equaled its target value; otherwise the limiting value of Ap equal
to Ap* would be maintained.

For operation during Mode 1 control, the value of Ap* was set slightly greater
than the current value of Ap. Whenever the value of Ap reached that of Ap*, Mode 1
control was suspended. Mode 1 control could be reinstated by adjusting Ap* so that it
was again greater than Ap. This provided a safety control in the event of specimen
snap-back.



Table 2.1
Experimental Test Specimens
Pipe Loading End Loading
1 8 9
Test Name | Variable [ Constant | C, =Active P; P=C+P F=
M p Cr=Reactive +F M/e
for o5 of ©
2 10
1: UGA20W-1| eF CA=0.27Cy 0.27C,+ F | M§/e
2
2:UGA20W-2| eF C=0.27Cy 0.27C,+ F | M§le
3 1
3 : HGA20W eF 040, |Ca=0.15Cy | 02C, | 0.35C,+F | M{%
4
4 : DGA20W eF 080, [Cs=0.03Cy | 0.4C, | 0.43C,+ F MS9/e
5
5:UGAI2ZW | eF CA=0.29 Cy 0.29C,+ F | Mg/e
6
6 : HGA12W eF | 0360, |CA=0.18Cy | 0.18Cy | 0.36Cy+ F MS%/e
. 7
7:DGAIZW | eF | 0720, |C,=0.08Cy | 0.36C, | 0.44C,+ F | M5

Explanatory notes keyed to subscripts in
Table 2.1: (See Fig. 2.3 for load designations.)

L C=A(Ea AT-pog)= -—L(Ea AT-pog)Cy
o .

For 20-inch pipes, cy=56 ksi = 386 MPa.
For 12-inch pipes, Gy=52 ksi = 358 MPa.

y

E = 200,000 MPa, p=0.3
a=117x10"% mm/mm°C, AT=45°C

Eo AT =200,000% 117 x 107 x 45 =105.3 MPa 9.

1053

2. C=(%-—O.3x 0)Cy =0.27C,

105.3

3.C= (W—03 X 04)Cy = 015Cy

105.3

4. C= (_38?_ 0.3x 0.8)C, =0.03C,

105.3
5. C=(—=-0.3x 0.0)C, =0.29C
(358 x 0.0)Cy y

6. C=(l§55‘—83—0.3x 036)C, =0.18C,

105.3

7.¢=A%3_03x 0.72)C, = 0.08C
(G55 ~03x 0.70Cy y

8. B,

_Acg _ Cyce

2 20y
given in the third column.

, with the values of og

P is the sum of C and P; (given in the

fourth and fifth columns) and F as a
variable.

10. M§ = Mp modified for C.

11. MS® =M, modified for C and 4.
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Table 2.
Test Designations

XYZnn(W) : General format of 2 specimen descriptor

X U U = Upstream (or empty). Upstream refers to a location of the pipe
immediately upstream of the pumping station. The upstream pressures are
low (e.g., approximately 0.34 MPa for the 20-inch pipe). Consequently,
there is no essential difference between an empty and an upstream
condition, and a zero pressure will be used to represent the upstream
condition. '

D D = Downstream (or fully pressurized). Downstream refers to the
location of the pipe being immediately downstream of the pumping
station. The downstream pressure is approximately 9.85 MPa for the 20-
inch pipe, and 10.45 MPa for 12-inch pipe.

H H = Halfway between U and D (Upstream and downstream). Half of the
pressures for downstream condition were used for the halfway condition.

Y G Greatest thermal effect (AT = 45°C)

L Least thermal effect (AT = 0°C)
Z A Active axial force (constant force)
R R = Reactive axial force (constant end locations)
nn Nominal diameter of the pipe in inches
W Indicates the existence of a girth weld at the mid-height of the specimen (W = Weld )
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Fig. 2.2 Photograph of test set-up
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P, = Force from
internal pressure

? C =Force in pipe wall
M = Moment

(a) Free body diagram of upper segment
of test specimens :

Specimen | e (mm)
UGA20W-1 1560
UGA20W-2 1560

HGA20W 1560
DGA20W 1110
UGAL2W 1005
HGA12W 1005
DGAI2W 1005

(b) Eccentricities for test specimens

Fig. 2.3 Loading details for test specimens



45’ (typical)

.::ZI:::::‘_:";@-‘Z_:_: ____________________ » . |
5 - ‘| Longitudinal strain
: gages
7
EeX : f
2y
B | Girth weld
g ~— I
g o .| Demec point
By . . 10
r .

Fig. 2.4 Strain gage and Demec point arrangement
(same for compression and tension sides)

Tension face (east side)
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seam weld \i

Radial LVDT’s
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Fig. 2.5 Arrangement of radial LVDT's

33



Fig. 2.6 Specimen UGA20W-2 embraced by the platform supporting radial LVDT's
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Fig. 2.7 Application of contour gage to trace deformed profile

35



36

3 EXPERIMENTAL RESULTS

3.1 INTRODUCTION

The process of data reduction is described in this chapter. The results are shown
graphically in six categories, selected to depict the test results in an appropriate way. In
the subsequent sections, the method of obtaining the graphs from the experimental data is
described. These graphs are presented for each test, along with observations of local
deformations. Classification of the development of local deformation in the course of
loadings concludes this chapter.

3.2 GENERAL PROCEDURE

Graphs for each of the following six categories are presented for each test:

® Applied loads vs. rotation. The rotation used in these graphs is the relative rotation 0
between the two ends of the specimen. See, for example, Fig. 3.1.

® Strain distributions along extreme fibers for various rotations. See, for example, Fig.
3.2.

® Curvature along the specimen for various rotations. See, for example, Fig. 3.5.

® The local profile of wrinkled shape along the extreme fiber for various rotations. See,

for example, Fig. 3.6.

® The average of the end moments and the average moment over the wrinkled segment
vs. overall curvature. See, for example, Fig. 3.8. The average moment over the
wrinkled segment is taken as the mean value of the moment over a gage length
straddling the wrinkle (see Section 3.2.5.2). Overall curvature is taken as the rotation,
6, divided by the length of the specimen, L.

® Average moment vs. average curvature over the wrinkled segment. See, for example,
Fig. 3.13. The average curvature over the wrinkled segment is taken as the mean
value of the curvature over the gage length selected as wrinkled segment (see Section



3.2.5.2). This is equivalent to the relative rotation of the ends of the wrinkled segment
divided by the gage length.

The procedure of obtaining each of the above graphs for a typical test will be
described in the following sections. The graphs for a particular specimen are used to
illustrate the descriptions associated with different categories of curves. Because a major
part of the discussion for some types of graphs is concerned with the internal pressure, a
typical pressurized specimen, namely, HGA12W, is selected to describe the procedures.

3.2.1 Loads vs. Rotation Response

Figure 3.1 shows four load lines plotted against the same rotation for specimen
HGA12W. Two of these are the loads applied by the testing machine and by the eccentric
jack, corresponding to P and F in Fig. 2.3a, respectively. Another load line is P;, the
force due to the internal pressure acting on the closed ends of the specimen, as shown in
Fig. 2.3a. The value of P; is evaluated from Eq. (2.2). For non-pressurized specimens,
the value of P; is always zero; thus, the load line associated with P; is not shown in the
plots for those specimens.

At the beginning of the test, after applying the internal pressure, the axial load in
the pipe is raised to its target value, C = C*, without inducing any curvature (F = 0).
Then, while maintaining the axial load constant through the control program, the moment
is applied to the pipe by gradually increasing the eccentric force, F. The last load line
plotted is the axial load in the pipe, C =P~ F-P,, which is intended to have a constant

value throughout the test for an active axial load.

3.2.2 Strains at Extreme Fibers for Various Rotations

As mentioned in Section 2.5, out of the three techniques used for measuring
strains, i.e., the longitudinal strain gages, the Demec gages and the photogrametric
pictures, only the results of the first two had adequate accuracy to be used in the study. In
turn, the strain gages proved to be more accurate than the Demec gages until the wrinkle
formed in the pipe wall or until unbonding of the gages took place. Therefore, it was
preferable to use strain gage results wherever they appeared to be more reliable.
However, upon wrinkling, the strain gage results lose their validity at the wrinkled region
because the strains become highly variable locally. At the same time, because of the large
overall shortening of the extreme compressive fiber at the wrinkled region, the accuracy of
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the Demec gage strains improves. Consequently, for the wrinkled region, having highly
variable localized strains, the Demec gages provide a more reliable measure of the average

strains.

The longitudinal distributions of strains in the extreme compressive fiber of
specimen HGA12W for various levels of relative rotations are shown in Fig. 3.2. Strain
gage readings were used to plot these results, except when dealing with the wrinkled
segment. This may be identified as the region of peak strains at high rotations, and when
this occurred, the Demec gage results were employed. This is necessary because, after
wrinkling, strains in the region of the wrinkle vary drastically, and pointwise strain gage
readings in this region do not represent the average shortening of the wrinkled segment.

For the data shown in Fig. 3.2, the point at which Demec gage readings started to
be used for the wrinkled region was a rotation of 4.52 degrees. As seen in the figure, the
strains at the gage located 750 mm from the reference level started to increase significantly
at some point in the interval of 3.66 degrees rotation and 4.52 degrees rotation.

When tensile strains are plotted, as for example in Fig. 3.3, they are all data from
strain gage results. This is because, even in the wrinkled segment, there is no significant
variation in the tensile strain along the extreme tension fiber. This is as would be

expected.

For both the compression and tension sides, the results of the two adjacent lines of
strain gages (shown in Fig. 2.4) were always close to each other. These two readings at
each level were averaged to obtain the strain gage result. A small correction was made to
the results of the strain gages, since they are located slightly off the extreme fiber, as

shown in Fig. 3.4. The tensile strain at the gage location, €}, and the strain at the extreme

tension fiber, €3, can be expressed as
t
ef=en+dy) (3.12)

& =En+0y; (3.1b)

where e, is the strain at mid-section, y, and y, are the absolute values of the y
coordinates of the two points and ¢ is the local curvature at the cross-section. The

amount of correction is simply
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e5—€ =0 (¥, -¥1) (3.2)

Similarly, €] and €3, the compressive strains at the location of strain gages and

extreme compression fiber can be expressed as

Sf =€m —d) i (3-33)

e3=en—0y, (3.3b)
Hence, the amount of the correction in compression will be

€3 -1 =—0(y2-y1) (3.9
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In these expressions, the curvature (¢), as computed in Section 3.2.3, is independent of the

correction because the uncorrected form of strain gage results is used to calculate
curvature. The original value of (y, - y,), i.e., that in the undeformed shape, was used in
Egs. (3.2) and (3.4) to calculate the corrections to strain gage results. This is because the
strain gage results are used only for non-wrinkled regions, where the change in (y; - yy) is
small. Moreover, the fact that the corrections are a small fraction of the average strain
values further justifies the approximation employed. The Demec gage results, on the other
hand, do not need such a correction because the Demec points are located exactly on the
extreme fibers, as is apparent in Fig. 2.4.

3.2.3 Curvature Along the Specimen

As long as plane sections remain plane, curvature is a direct reflection of the
compressive and tensile strains. Here the strain gage results in their uncorrected form
were used to calculate the curvature. This is because the two points on the cross-section
to be used to calculate the curvature do not need to occur at the extreme fibers, as long as

their locations are known.

Curvature at any section along the pipe was calculated using the following
formula:

¢=2_5 3.5)

where &' is the tensile strain at the gage location (see Fig. 3.4), ¢° is the compressive
strain at either the extreme compression fiber (when using Demec gage results) or the



location of strain gages (when using strain gage results), as shown in Fig. 3.2, and dy is
the distance between the tensile and compressive gages on the undeformed section. It was
assumed that the use of d, in the undeformed configuration will provide adequate
accuracy. The strain gage results along the tensile face are plotted at different elevations
than the Demec gage results used for the compressive face. Thus, linear interpolation was
employed to obtain the values of tensile strain at the elevations of the Demec data points.
This was not necessary where the compressive strains were obtained from the strain gage
results. This is because the strain gages along the extreme tensile fiber were located at the
same elevations as those along the extreme compressive fiber.

Equation (3.5) expresses the local curvature, ¢. Distribution of ¢ for various
rotations are shown in Fig. 3.5 for specimen HGA12W. For each line in Fig. 3.5, the
corresponding overall average curvature over the length of the specimen can be computed
as 0/L, as defined in item five of Section 3.2).

3.2.4 Profile of the Extreme Fibers

The displacement profile for the extreme compression fiber of Specimen HGA12W
is presented in Fig. 3.6 for different rotation values. The displacement profile was plotted
by using the readings of the closest radial LVDT to the extreme compressive fiber (see
Fig. 2.5). When there was a large out-of-plane deformation between two consecutive
stations of radial LVDT’s in the longitudinal direction, a contour gage was employed to
trace that interval along the extreme compression fiber. In Fig. 3.6, each of the profiles of
the extreme compression fiber for HGAI2W at the three last rotations has been
augmented with two intermediate points from contour gage results. These two points on
each curve are located between the heights of 693 and 768 mm, which are the two
successive heights of the radial LVDT stations that straddle the major buckle.

In contrast to the compression fiber case, the profile of the extreme tension fiber
always followed a smooth profile, such as would be associated with a beam deflection
profile. As a sample of these curves, the profile of the extreme tension fiber for various
rotations for the specimen HGA12W, as determined from the LVDT readings, is shown in
Fig. 3.7.
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3.2.5 Average End Moment and Average Moment over the Wrinkled Region
vs. Overall Curvature

The average end moment and average moment over the wrinkled segment vs.
overall curvature of the pipe for specimen HGA12W are presented in Fig. 3.8. The
expression M =F x e holds true only for very small rotations. As the overall curvature
increases, the simple expression given above must be modified in order to obtain the
correct values of the end moments and moment at any section along the pipe. It is
necessary to include these corrections in order to determine the average moment over the
wrinkled segment of the pipe. In the following subsections, the procedures of calculating
the end moments and the average moment over the wrinkled region are described.

3.2.5.1 End Moments

As depicted in Fig. 3.9, when the specimen is deformed, the testing machine load,
P, becomes eccentric both with respect to the pipe ends and with respect to the centerline
of the pipe at mid-length. From the deformed configuration shown in Fig. 3.9, the
moment at the top end of the pipe can be calculated as

M, =Fecosb, +Pdsinb, (3.6)

and, similarly, at the bottom end,
M, =Fecosb, +Pdsin, G.7

where d is the depth of the top and bottom arms, and®, and 6, are the absolute rotations
of the top and bottom arms, respectively. In the actual tests, these two rotations were
always relatively close to each other. The average of the two end moments has been used
in plotting the M4 line in Fig. 3.8.

3.2.5.2 Average Moment over the Wrinkled Region

In order to quantify the local curvature at the wrinkle, it seems rational to use the
local gage length as the length of the wrinkle and to locate it on the specimen in such a
way that it straddles the wrinkle. For an inward wrinkle, observed in non-pressurized
specimens, the gage length was selected as D/2, where D is the outside diameter of the
pipe. For an outward wrinkle, observed in pressurized specimens, the gage length was
selected as D. In order to obtain the average moment over the gage length, it is necessary
to be able to calculate the moment at an arbitrary cross-section along the specimen. By
averaging the moments obtained at an adequate number of sections along the gage length,
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the average moment over the wrinkled segment can be determined. The calculation of
moment at an arbitrary cross-section is described as follows.

Figure 3.10 shows the free body diagram of a deformed test specimen. In this
figure no shear reaction is considered at the ends of the pipe. This is because the
compressive head of the universal testing machine is connected through a ball joint
connection to the upper part of the machine; thus, it can not take any significant amount of
horizontal load. It is assumed that the two ends have different rotations (0, and 6, at the
top and bottom end, respectively) and different moments (M; and M, at the top and
bottom end, respectively). In reality, however, the differences are very small. The internal
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pressure p acting on the end plates generates tensile forces tangéntial to the pipe centerline -

at the ends. The magnitude of these forces, P;, can be expressed as
P, =nR2p (3.8)

where R; is the inside radius of the pipe.

As Fig. 3.10 shows, the vertical components of P; at the top and bottom end of the

specimen are designated by V, and V,, respectively. To determine the axial force in the -

specimen, these must be subtracted from the force P delivered by the testing machine.

Because the end slopes are very small (i.e., 6,,0, <5°), the value of P; can be used
instead of both V, and V,. The axial force (P —P,) multiplied by the deflection of the
centerline at any cross-section constitutes one of the contributions to the moment at the
section. In Fig. 3.10, the deflection of the centerline at the ordinate x (measured from the
bottom end of the centerline) is denoted by v(x). The centerline at any horizontal cross-
section is assumed to be located at the centroid of the closed curve on the middle surface
of the pipe wall intercepted by the cross-section. In order to locate the centerline,
readings taken by the radial LVDT’s were employed. They provided the coordinates of
eight points on the pipe surface at 12 cross-sections along the specimen. Using a computer
program based on cubic spline method (Souza, 1991), a smooth, closed curve was fitted
to the eight points of each horizontal section, passing through all of them. Then, by a
simple integration and assuming a uniform thickness, the centroid of the cross-section
could be located.

In addition to the end moment and the moment due to axial force, there are two
other moment components to be considered. The first is the product of the horizontal



component of P; (perpendicular to the pipe alignment) and the distance of the cross-
section from the corresponding end (i.e, Hy-x in Fig. 3.10). The second moment
component results from the internal pressure acting on a curved pipe. To describe the
action, an arbitrary infinitesimal slice of the deformed pipe is considered, as indicated by
Slice A in Fig. 3.10. The original length of the slice before applying any load is denoted
by dx. The end cross-sections of the slice are assumed to be perpendicular to the pipe
alignment in the original configuration. After introduction of curvature by applying
bending moment, the length of the slice will increase from intrados to extrados. Figure
3.11 shows that this variation in length results in a non-uniformity in the intensity of the
pressure line load per unit of circumferential length around the slice. In order to calculate
the resultant of the pressure force acting on the slice, the deformed configuration of the
slice is considered, as shown in Fig. 3.12. It is assumed for simplicity that the cross-
section remains circular. As shown in Fig. 3.12b, because of symmetry about xy plane, the
resultant of the pressure forces, dU, delivered on the inside of the slice is located in xy
plane, and it acts in y direction. The term dU is obtained by integrating the infinitesimal
components d(dU) as shown in Fig. 3.12a.

If € is the longitudinal strain at an arbitrary ordinate y and 4 is the length of the
slice at that ordinate, as shown in Fig. 3.12b, then

e=€, +dy (3.9)
h=dx(1+€) (3.10)

in which €, is the longitudinal strain at mid-section and ¢ is the curvature at the cross-
section. The curvature along the pipe is available from the curvature diagrams obtained
from the experimental data. See, for example, Fig. 3.5. From Fig. 3.12a,

y =R, cosy 3.11)

Substituting Eq. (3.11) in Eq. (3.9) and then putting the result into Eq. (3.10) gives

h=dx (1+em +¢Ricosw) (3.12)
In Fig. 3.12a, the inside area of the element confined by the angle dy, which is subjected
to internal pressure, has a magnitude of

dA; =hR; dy (3.13)
The y component of the force due to the internal pressure on the element can be expressed

as
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d(dU)=pdA; cosy (3.14)

Substituting Eq. (3.12) in Eq. (3.13) and then putting the result into Eq. (3.14) yields
d(dU)=pR;dx (1+em +6R; cosy) cosy dy (3.15)

To obtain dU, Eq. (3.15) is integrated to give

T
dU= ZJ PR, dx(1+am +¢R; cosw) cosy dy
0

=R podx (3.16)
Using Eq. (3.8), the expression in Eq. (3.16) can be further simplified to
dU=P ¢ dx (3.17)
or
a=S2=Po0x) (.18)

where ¢q is an equivalent distributed load approximately perpendicular to the initial pipe
alignment in the direction from intrados to extrados.

Now that all the moment components are known, the moment at the cross-section
located at the arbitrary location x in Fig. 3.10 can be expressed as

M=M, +(P-B) v+ Gin6,)x- [ P 4(8) (x-E) (3.19)

In order to check the result, the moment can also be calculated by approaching from the
top end:

M=M, +(®-PB)V+E (00 L-- [ 7,6() (=D& (20

The first additional term, (P-P;) v, will be called ‘the axial force correction,” and the
other two, collectively, ‘the pressure force correction.” These two types of corrections
have been plotted separately in Fig. 3.8. Since only one correction (the axial force
correction) applies to the non-pressurized pipes, there will be no correction curves shown

for these specimens.



3.2.6 Average Moment vs. Average Curvature over the Wrinkled Region

At each loading step, the average curvature over the wrinkled length is simply the
area under the curvature diagram over the gage length divided by that length. These
curvatures for specimen HGA12W are computed by integrating the curves shown in Fig.
3.5. The calculation of the average moment over the wrinkled region for Fig. 3.8 has been
described in the previous section. The curves of average moment vs. average curvature
over the wrinkled segment for specimens HGA12W, UGA12W, and DGA12W are shown
in Fig. 3.13. These moment vs. curvature graphs are particularly important in terms of
defining the characteristic pipe properties applied directly in analysis of pipelines.

3.3 PRESENTATION OF RESULTS

In the previous sections of this chapter, the general procedures for data reduction
have been discussed and illustrated through the presentation of the results for specimen
HGA12W. In the following subsections, the results for the remaining tests will be
discussed and the development of buckling for each specimen will be described.

3.3.1 Results for UGA12W

In the UGA12W test, the wrinkle formed in a diamond shape (inward buckle) at
the midheight of the specimen and contained the transverse girth weld. (This specimen is
shown on the right in Figs. 3.14 and 3.15). No other buckling wave or ripple was
observed at locations other than in the wrinkled segment.

Since the specimen UGA12W was non-pressurized, the value of P; for this
specimen is always zero. Thus, only three load lines are depicted in the loads vs. rotation
diagram shown in Fig. 3.16. The strain distributions along the extreme compression fiber
are shown in Fig. 3.17 for various rotations. These are mostly the results of the strain
gage readings: Demec gage results were used only for strains above two percent, which
occurred at the wrinkled region. As Fig. 3.17 shows, at the height of 960 mm (near the
top of the wrinkled segment), the strains recorded by the strain gages in fact become
tensile at high levels of rotation. This is because the local bending of the pipe wall in the
region of wrinkling can produce localized tensile zones on the outside surface of the pipe
wall even in the region of nominal compressive stresses. Electric resistance strain gages,
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mounted on the outside surface of the specimens, only measure the strain on this external

surface.

The strain distributions along the extreme tension fiber, as shown in Fig. 3.18,
indicate localization as well. However, the maximum tensile strain does not exceed 0.6
percent. As is apparent in Fig. 3.19, the curvature along the specimen for various
rotations shows a very sharp increase at the level of the wrinkled segment for high levels
of rotations. This is a basic characteristic of wrinkled segment.

The displacement profile of the extreme compression fiber for various rotations is
presented in Fig. 3.20. The contour gage was used from the rotation of 2.92 degrees
onwards. The results from the contour gage drawings appear as two additional
complementary points around the level of girth weld in the wrinkled segment. The
supplementary data from the contour gage indicates the first sign of distortion at 2.92
degrees. It also provides the measures to represent the deep, inward wrinkle, that
produces the sharp peaks evident in the profile curves of Fig. 3.20 for high rotations.

The average end moment and average moment over the wrinkled segment vs.
overall curvature are depicted in Fig. 3.21. This figure shows that the difference between
the two moments, which is the additional moment due to the eccentricity of axial load with
respect to the wrinkled segment, increases with the overall curvature. The curve of
average moment vs. average curvature over the wrinkled segment for specimen
UGA12W, along with those for HGA12W and DGA12W, is shown in Fig. 3.13.

3.3.2 Results for HGA12W

The plots for specimen HGA12W have all been presented in the subsections of
Section 3.2 as illustrations of the different categories of graphs for various specimens.
Consequently, only the observation of buckling needs to be discussed here.

In specimen HGA12W, the wrinkle formed as a single outwardly bulging wrinkle
(see the central specimen in Figs. 3.15 and 3.16). This was initially one of four waves that
could be detected by close visual examination. Two of these waves are apparent at, and
below, the rotation level of 3.66 degrees in the profile of the extreme compression fiber
(Fig. 3.6). Subsequently, one of the waves, just below the girth weld, grew to become the
wrinkle while the others died out. The other two waves appeared only at the early stages
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of bending and had very small amplitudes. As it happened, they occurred within the
spacings of the radial LVDT's. As a result, the latter two waves are not apparent in the
profile of the extreme compression fiber (Fig. 3.6). The contour gage was used at the
higher rotation levels only for the more noticeable local deformations.

3.3.3 Results for DGA12W

In the test of DGA12W, the wrinkle formed as a single outwardly bulging wrinkle
(see the specimen on the left in Figs. 3.15 and 3.16). This was initially one of the four
waves that could be detected by close visual examination. One of the waves, immediately
below the girth weld, grew to become the wrinkle while the others stabilized or died out.

The loads vs. rotation response for the specimen DGA12W is depicted in Fig.
3.22. The strain distn'butions along the extreme compression fiber for various rotations,
as shown in Fig. 3.23, are taken mostly from strain gage readings. Demec gage results
were used only for the strains above two percent, and these occurred in the wrinkled
region. The strain distributions along the extreme tension fiber for various rotations,
shown in Fig. 3.24, also indicate localization in the wrinkled region. However, the
maximum tensile strain does not exceed 1.9 percent. As is apparent in Fig. 3.25, the
curvature along the specimen for various rotations shows a very sharp increase within the
wrinkled segment at the higher levels of rotations. This is a basic characteristic of
wrinkled segment. The displacement profile of the extreme compression fiber for various
rotations is presented in Fig. 3.26. These profiles capture three of the four waves
observed early in the test. The fourth wave formed between two successive radial LVDT
stations and, hence, remained undetected by the instrumentation. The sharp bend in the
profile immediately below the girth weld level at high rotations identifies the outwardly
bulging wrinkle evident in Fig. 3.15.

The average end moment and average moment over the wrinkled segment vs.
overall curvature are depicted in Fig. 3.27. This figure also shows the curves of axial
force correction and the pressure force correction to the end moment diagram needed in
order to get the average moment in the wrinkled segment. The sum of the two corrections
for any value of overall curvature makes the difference between the two moments at that
curvature. The curve of average moment vs. average curvature over the wrinkled segment
for specimen DGA12W, along with those for UGA12W and HGAI12W, is shown in Fig.
3.13.
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3.3.4 Results for UGA20W-2

Because of inadequate safety measures in the control program (see Section 2.6),
control of the jack that exerts the eccentric load was lost near the beginning of the test of
the specimen UGA20W-1. As a result, the specimen was plastically deformed and
permanently bent at the beginning of the test. That left residual stresses and strains in the
specimen. The same thing happened to the second specimen, UGA20W-2, though to a
lesser extent than in the previous one. Thus, it was decided to abandon the data from
UGA20W-1, but to proceed with the results of UGA20W-2. For the rest of the tests,
sufficient safety measures were provided in the control program and the tests were
performed successfully in these cases.

In the UGA20W-2 test, the wrinkle formed in a diamond shape (inward buckle) at
the midheight of the specimen and in the region containing the transverse girth weld. This
is the specimen on the right in Fig. 3.28. No other wave or ripple was observed at
locations other than in the wrinkled segment.

Since the specimen UGA20W-2 was non-pressurized, the value of P; for this
specimen is always zero. Thus, only three load lines are plotted in the loads vs. rotation
diagram shown in Fig. 3.29. The strain distributions along the extreme compression fiber
for various rotations, as shown in Fig. 3.30, are the results of the Demec gage readings.
This is because, after the initial plastification of the specimen, the two lines of strain gages
on the compression side gave such different results that they were not reliable. The initial
residual strains have been removed from the strains of the extreme compression fiber
presented in Fig. 3.30. As Fig. 3.30 shows, near the top and bottom of the wrinkled
segment, compressive strains become tensile at high levels of rotation. This is because the
local bending of the pipe wall in the region of the wrinkle produces localized tensile zones
on the outside surface.

The strain distributions along the extreme tension fiber for various rotations, as
shown in Fig. 3.31, indicate localization as well. However, the maximum tensile strain
does not exceed 0.3 percent. In contrast to the strain gage readings on the compression
side, tension side strain gages gave consistent results. Therefore, only strain gage results
were used to depict the distribution of strain on the tension side. The residual strains have
been removed from the strains presented.
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As apparent in Fig. 3.32, the curvature along the specimen for various rotations
shows a very sharp increase in the wrinkled segment for high levels of rotations. This is a
basic characteristic of wrinkled segment.

The displacement profile of the extreme compression fiber for various rotations is
presented in Fig. 3.33. The contour gage was used from 2.3 degrees rotation and
onwards. The results of the contour gage drawings appear as two additional
complementary points around the level of girth weld in the wrinkled segment. The
supplementary data from the contour gage indicate the first sign of distortion at 2.3
degrees. They also provide the measures to represent the deep, inward wrinkle, apparent
from the sharp peaks in the curves for high rotations.

The average end moment and average moment over the wrinkled segment vs.
overall curvature are depicted in Fig. 3.34. This figure shows that the difference between
the two moments (i.e., the additional moment due to the eccentricity of axial load with
respect to the wrinkled segment) increases with the overall curvature. The curve of
average moment vs. average curvature over the wrinkled segment for specimen
UGA20W-2, along with those for HGA20W and DGA20W, is shown in Fig. 3.35.

3.3.5 Results for HGA20W

In the HGA20W test, the wrinkle formed as a single outwardly bulging wrinkle.
(See the second specimen from the left in Fig. 3.28). This was initially one of the four
waves that could be detected by close visual examination. The wave immediately below
the girth weld grew to become the local buckle and the others died out.

The loads vs. rotation for the specimen HGA20W are depicted in Fig. 3.36. The
strain distributions along the extreme compression fiber for various rotations, shown in
Fig. 3.37, are mostly the results of the strain gage readings. Demec gage results were
used only for strains above two percent, which occurred in the wrinkled region. The
strain distributions along the extreme tension fiber for various rotations, shown in Fig.
3.38, also indicate localization in the wrinkled region. However, the maximum tensile
strain does not exceed 1.5 percent. As apparent in Fig. 3.39, the curvature along the
specimen for various rotations shows a very sharp increase in the wrinkled segment for
high levels of rotation. This is a basic characteristic of wrinkled segment.
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The displacement profile of the extreme compression fiber for various rotations is
presented in Fig. 3.40. These profiles capture three of the four waves observed early in
the test. The fourth wave formed between two successive radial LVDT stations and,
hence, remained undetected by the instrumentation. The sharp bend in the profile below
the level of girth weld at high rotations indicates the outwardly bulging wrinkle.

The average end moment and average moment over the wrinkled segment vs.
overall curvature are depicted in Fig. 3.41. This figure also shows the curves of axial
force correction and the pressure force correction to the end moment diagram that are
required in order to get the average moment in the wrinkled segment. The sum of these
two corrections for any value of overall curvature makes the difference between the two
moments at that curvature. The curve of average moment vs. average curvature over the
wrinkled segment for specimen HGA20W, along with those for UGA20W-2 and
DGA20W, is also shown in Fig. 3.35. '

3.3.6 Results for DGA20W

In the DGA20W test, the wrinkle formed as a single outwardly bulging wrinkle.
This is the specimen on the left in Fig. 3.28. This was initially one of the four waves that
could be detected by close visual examination. The wave near the top of the specimen
grew to become the wrinkle, and the others stabilized.

The loads vs. rotation for the specimen DGA20W are depicted in Fig. 3.42. The
strain distributions along the extreme compression fiber for various rotations, shown in
Fig. 3.43, are mostly from strain gage readings. Demec gage results were used only for
strains above two percent, which occurred in the wrinkled region and in the wave below
the wrinkled region. The strain distributions along the extreme tension fiber for various
rotations, shown in Fig. 3.44, indicate localization in the wrinkled region as well.
However, the maximum tensile strain does not exceed 1.7 percent. As is apparent in Fig.
3.45, the curvature along the specimen for various rotations shows a very sharp increase in
the wrinkled segment for high levels of rotation. This is a basic characteristic of a
wrinkled segment.

The displacement profile of extreme compression fiber for various rotations is
presented in Fig. 3.46. These profiles capture all the four waves observed early in the test.
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The profiles from the rotation of 5.23 degrees onwards have been supplemented with two
additional points from the contour gage results. The sharp bend in the profile near the top
of the specimen at high rotations indicates the outwardly bulging wrinkle.

The average end moment and average moment over the wrinkled segment vs.
overall curvature are depicted in Fig. 3.47. This figure also shows the curves of axial
force correction and the pressure force correction. The sum of these two corrections for
any value of overall curvature makes the difference between the two moments at that
curvature. The curve of average moment vs. average curvature over the wrinkled segment
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for specimen DGA20W, along with those for UGA20W-2 and HGA20W, is shown in

Fig. 3.35.

3.4 CLASSIFICATION OF LOCAL DEFORMATIONS

In the non-pressurized tests (i.e, UGAI2W and UGA20W-1&2), the wrinkle
formed in a diamond shape (inward wrinkle), and no other wave or distortion was
observed at locations other than in the wrinkled segment. See Figs. 3.15, 3.16, and 3.28.

In the pressurized tests (HGA20W, DGA20W, HGA12W, and DGA12W), the
wrinkle formed as a single outward bulge. See Figs. 3.15, 3.16, and 3.28. This wrinkle
was initially one of the four waves or ripples that could be detected by close visual
examination. These buckling waves became evident at rotations approaching the softening
point that is defined subsequently in Section 4.2.2. As the deformation was increased, the
amplitude of the dominant wave increased and the amplitudes of the others decreased.
The result was that the inelastic deformation and the strains amplified in one dominant
" wave (wrinkle), while the other ripples disappeared or stabilized.
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Fig. 3.9 Geometry of deformed pipe
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Fig. 3.14 Post-wrinkle configuration of specimens DGA12W, HGA12W, and UGA12W
(left to right)
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Fig. 3.15 Close-up view of post-wrinkle configuration of specimens DGA12W,
HGA12W, and UGA12W (left to right)
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63



1600

1400

1200

1000

800

Height (mm)

Rotation (deg.)

._.—.—0
—0—0.47

Level of girth weld y 1.02

\\\ —<— 1.74
)K--

—*—— 2,92
—&— 3.57
—— 4.47
—0— 5.93
—x— 7.25

, \ . —X—— 8.59

50 100 150
Radial displacement (mm)

Fig. 3.20 Profile of extreme compression fiber at various rotations for UGA12W

250 T

200

Moment (kN.m)

50 T

150 +

100 T

0.2 0.4 0.6 0.8
6 /L (1/mm)x 104

Fig. 3.21 Average of end moments and average moment over wrinkled segment vs.

overall curvature for UGAI2W

64



Load (kN)

Height (mm)

1200 +

Concentric load, P
1000 T/')—.—‘\‘—-‘\"\"—\«'
Force from internal pressure, P;
800 ~— - . - . - > *~—e
600 T
400 T
Net axial load, C
Eccentric load, F
200
0 -
12
Rotation (deg.)
Fig. 3.22 Applied loads vs. rotation for DGA12W
1600 Rotation (deg.)

—®— 0.00

—&— 1.02

Level of girth weld

—*— 2.75
—<— 4.32
—*—— 5.85
—=— 7.38
—®—— 8.72
—O—— 10.06

—>x— 10.5

Strain (%)

Fig. 3.23 Strain distribution along extreme compression fiber for DGA12W
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4 DISCUSSION OF EXPERIMENTAL RESULTS

4.1 INTRODUCTION

The experimental results and the procedures used to obtain them were presented in
Chapter 3. In this chapter, the results are discussed from the viewpoint of the moment and
curvature relationship and the buckling phenomenon. In addition, the experimental results
for the girth-welded pipes tested in this program are compared with those for the plain
pipes obtained in 1992 at University of Alberta by Mohareb et al. (1994). At the end of
the chapter, the concept of the strain at the softening point is introduced. It will be
recommended as a substitute for the limits on compressive strain currently used in design

guidelines.

4.2 MOMENT VS. CURVATURE RELATIONSHIPS

In this section, the relationship between moment and curvature is studied. First,
the importance of the secondary moment components for the wrinkled segment are
discussed. This is followed by a description of the moment vs. curvature response.
Finally, a comparison between the moment vs. curvature behavior of the girth-welded
pipes and those of the plain pipes is presented.

4.2.1 Importance of Secondary Moments

In Chapter 3, the procedure for calculating those moments that are additional to
the applied end moments in order to get the total moment in the wrinkled region was
described. Figures 3.8, 3.21, 3.27, 3.34, 3.41, and 3.47 all indicate the significance of the
additional moments. As is shown in these figures, the secondary moments are more
significant in the pressurized tests than they are in the non-pressurized tests. The pressure
force correction in the half-pressurized tests (HGA12W and HGA20W), defined in
Section 3.2.5.2 and evident in Figs. 3.8 and 3.41, is of the same order of magnitude as the
axial force correction. In the fully-pressurized tests (DGA12W and DGA20W), shown in
Figs. 3.27 and 3.47, the pressure force correction constitutes the dominant portion of the
secondary moment. It is concluded that neglecting the secondary moments, especially that
for the pressure force correction in pressurized pipes, can cause a sizable error and one
that is unacceptable.
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4.2.2 Moment vs. Curvature Relations

The average of end moments vs. overall curvature and the average moment vs. the
average curvature over the wrinkled segment for the 12-inch girth-welded specimens are
shown in Figs. 4.1 and 4.2, respectively. The same types of curves for the 20-inch girth-
welded specimens are shown in Figs. 4.3 and 4.4, respectively. In Figs. 4.3 and 4.4, the
curves for specimen UGA20W-2 start off from a nonzero curvature because the specimen
had been overloaded and bent permanently prior to the beginning of the test. After
unloading the specimen, it was loaded again under better control. All the results for
UGA20W-2 in this document refer to the second loading of the specimen.

Figures 4.2 and 4.4 show that the local moment vs. curvature curves for the non-
pressurized and half-pressurized specimens start with reasonably identical slopes for the
two pipe sizes. Furthermore, this slope is different from that for the fully-pressurized
specimens. The same situation is observed for the end moment vs. overall curvature
curves (Figs. 4.1 and 4.3) as well, though it is not as evident as it is for the local moment
vs. curvature curves. This indicates that initial behavior for the non-pressurized and half-
pressurized specimens is elastic, but that in the case of the fully-pressurized specimens
there is little elastic response. This agrees with the results of the numerical investigation,
which is described in Chapter 5. According to the analytical results, the fully-pressurized
specimens start to plastify during pressurization (i.e., before bending), whereas the other
specimens do not start to plastify until after bending starts.

All of the curves in Figs. 4.1 to 4.4 soften, that is, they reach a point in the moment
vs. curvature relationship beyond which the moments decrease with increasing curvature.
The reason for the decrease in the moment resistance is that a wrinkle forms, creating a
sequence of geometric configurations in which the pipe has less capacity to resist moment
than it did in its previous configuration. As the amplitude of the wrinkle continues to
increase, the capacity of the pipe to resist moment continues to decrease.

It can be argued that wrinkling effectively begins at the point at which significant
softening is initiated in the moment vs. curvature curve. In this sense, wrinkling means the
amplification of local deformations that are clearly visible to the naked eye. These points,
which will be called softening points (SP), are based upon subjective judgment, and they
are identified as SP by the arrows in the figures. Obviously, for each specimen the
softening points indicated in the two categories of moment vs. curvature plots correspond
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to the same loading step. The total rotations of the specimens at the softening points so
selected are tabulated in Table 4.1.

The softening point is more distinct for the response of the specimen as a whole
(Figs. 4.1 and 4.3) than for the local moment vs. curvature curves (Figs. 4.2 and 4.4).
This is to be expected because the curvature is length-dependent when the angle change
deformations are localized. (Note the difference in scale between the plots of the odd and
even numbered figures.) It is apparent from the figures that the effect of internal pressure
is to decrease the moment capacity and to increase ductility.

It is evident that the change in the slope at the softening point in the end moment
vs. overall curvature curves is greater than that in the moment vs. curvature curves for the
wrinkled segment. This is because, as the curvature increases, a greater additional
moment is added to the end moment to get the average moment over the wrinkled
segment. See, for example, Fig. 3.8. Additionally, as the overall curvature increases and
especially after the softening point, the local curvature of the wrinkled segment grows at a
much faster rate than does the overall curvature. As compared to the end moment vs.
overall curvature curves, the points in the moment vs. curvature for the wrinkled segment
spread out as the overall curvature increases. In the local moment vs. curvature response,
there is a smaller moment decrease and a greater curvature increase than in the overall
moment vs. curvature response. This, in turn, reduces the slope of the descending branch.

One important fact is that, in the moment vs. curvature curves for the wrinkled
segment, the softening point always coincides with the limit point (i.e., the peak point
giving maximum strength). However, this is not the case for the end moment vs. overall
curvature curves, where the softening point may not be the limit point. This is the
situation observed for HGA12W and DGA12W in Fig. 4.1.

4.2.3 Comparison of Girth-Welded and Plain Pipe Results

One of the objectives of this project is to compare the results of the girth-welded
pipes with those of the plain pipes. Thus, it was decided to carry out the same procedures
as used to determine the moment vs. curvature responses for the girth-welded specimens
for the plain specimens as well. The average end moments vs. overall curvature for the
specimen and the average moment vs. the average curvature over the wrinkled segment

81 -



for specimens UGA12, HGA12, and DGA12, along with the results for the corresponding
girth-welded specimens, are shown in Figs. 4.5 to 4.10.

It is evident from the average end moment vs. overall curvature curves shown
Figs. 4.5, 4.7, and 4.9 that, for the 12-inch pipes, plain specimens demonstrate a greater
ductility than do the girth-welded specimens. It is considered that this reflects the fact that
the wrinkled segment includes the girth weld in all 12-inch girth-welded specimens. A
girth-weld connection is generally a weak spot because of the following factors: 1)
possible mismatch of the two cross-sections at the connection; 2) possible misalignment
of the two pipe segments, some of which occurs during the welding process; 3) the
geometric imperfection generated from the thermal contraction of the girth weld; 4) the
residual stresses in both longitudinal and circumferential directions produced by the
thermal contraction of the girth weld.

As Fig. 4.11 indicates, UGA20W-2 shows a ductility similar to that of UGA20W,
even though the girth weld was located in the wrinkled segment. This is probably because
a yield plateau is not present in the case of UGA20. In other words, both ‘specimens
buckled in an elastic—plastic manner prior to generalized yielding.

In DGA20W, the wrinkle formed near the top of the specimen. (See Fig. 3.28.)
Consequently, the wrinkled segment does not straddle the girth weld. This eliminates the
effect of the girth weld and the resulting imperfections on the behavior of the specimen.
Thus, the behavior is governed by the growing wrinkle in the vicinity of the end plate for
both welded and unwelded specimens. Therefore, as Fig. 4.12 shows, the responses of
DGA20 and DGA20W are very close, with no significant difference in ductility and
ultimate strength. (See also Table 4.2.)

Note that there is no counterpart to girth-welded specimen HGA20W in the plain
pipe tests, and therefore no comparison can be made for this case.

The ultimate end moments for the 12-inch specimens with and without girth welds,
tabulated in Table 4.2, are almost equal: values are within 2% of one another. (See also
Figs. 4.5, 4.7, and 4.9.) The values of the average ultimate moment over the wrinkled
segment for the 12-inch plain specimens, however, are slightly larger than those for the
corresponding girth-welded pipes. (See Table 4.2 and Figs. 4.6, 4.8, and 4.10.) This is
because the 12-inch plain pipes are more ductile and have a longer yield plateau than do
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the corresponding girth-welded specimens. As Figs. 4.6, 4.8, and 4.10 indicate, the yield
plateau in the moment vs. curvature response for the wrinkled segment appears as a mildly
ascending branch. Consequently, a longer yield plateau in a plain pipe results in a larger
ultimate moment than that in the corresponding girth-welded pipe. As mentioned in
Section 4.2.2, the moment vs. curvature response for specimen UGA20W-2, shown in
Fig. 4.11, is the result of well-controlled loading after being unloaded from a plastified
state. Therefore, the maximum moment capacity of UGA20W-2 cannot be compared with
that of UGA20.

4.3 BUCKLING AND WRINKLING BEHAVIOR
4.3.1 Behavior

In the non-pressurized tests (UGA12W and UGA20W-2), the softening points that
were determined from the moment vs. curvature plots correspond approximately to the
loading step at which the buckle became visible during the tests. As mentioned in Section
3.4, in the non-pressurized specimens the wrinkle formed in a diamond shape and no other
wave or local distortion pattern was observed at locations other than in the wrinkled
segment. In the pressurized tests (HGA12W, DGA12W, HGA20W, and DGA20W), the
wrinkle formed as a single outwardly bulging shape. Initially, this was one of four ripples,
or waves, that could be detected along the compressive face of the specimen by close
visual examination. As emerged later, these buckling waves became evident at values of
rotation immediately prior to the softening point on the moment vs. rotation curve. The
physics of the situation dictates, however, that the reduction in moment resistance is
governed by the wave which is of greatest amplitude and, consequently, possesses the
least resistance. As the deformation is increased, the amplitude of this dominant wave
increases while the amplitudes of the others decrease. The result is that the inelastic
deformation and the strains concentrate in one dominant wave, i.e., the wrinkle, while the
other ripples generally disappear. The wrinkles associated with the three 12-inch
specimens are shown in Figs. 3.15 and 3.16. Figure 3.28 shows the wrinkles associated
with the 20-inch specimens. All these wrinkles, except for DGA20W, are in the vicinity of
the weld. Nevertheless, they correspond in their general form to the wrinkles in the 1992
test series done on plain pipe (Mohareb et al. 1994).

4.3.2 Strain Localization

The physics discussed in the previous section indicates that the initiation of
wrinkling is related to softening and its associated strain localization. In other words,
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when wrinkling occurs through amplification of the dominant wave, the apparent
longitudinal strains in the vicinity of the wrinkle increase dramatically, while the strains in
the remainder of the specimen decrease somewhat. This phenomenon is evident in Figs.
3.2, 3.17, 3.23, 3.30, 3.37, and 3.43, where the distribution of the longitudinal strains
along the extreme compression fiber have been plotted at various load levels. It is
observed that the strain localization begins slowly and before wrinkling becomes evident
to the naked eye. Once wrinkling becomes visible with the formation of buckling waves,
the strain localization intensifies rapidly. The strains at which wrinkling is initiated are

discussed in greater detail in Section 4.4.

4.3.3 Displaced Configurations of Extreme Compression fiber \

The best indicator of buckling is the shape of the lateral displacement associated
with the extreme compressive fiber. The buckling waves that are observed visually should
be evident in a plot of the profile of these displacements. However, the wave lengths of
the ripples are of the same order of magnitude as the spacing between the LVDT reading
stations. Therefore, the ripples are only evident from the fact that the displacements of
points located on the wrinkle no longer follow a smooth profile, such as would be
associated with a beam deflection profile. Furthermore, upon wrinkling, the distortion of
the profile in the wrinkled zone grows rapidly. As mentioned in Section 3.3.2, the use ofa
contour gage cannot trace small local deformations, but is effective once noticeable
deformations are detected visually. Nevertheless, the contour gage was of assistance in
tracking down the initiation of buckling for some specimens.

In the following subsections, the initiation of buckling in comparison with the
initiation of softening (i.e., wrinkling) based on the above criteria is discussed. As
mentioned above, in all the pressurized tests four very small waves appeared at early
stages. Some of the waves died out during the following load steps and were not captured
by the instrumentation. In the following, no further comment is made on these

undocumented waves.

4.3.4 Buckling and Wrinkling for Individual Specimens
4.3.4.1 Specimen UGA12W

The definition of the softening point based on the moment vs. curvature plots gives
- a rotation value of 2.92 degrees for UGA12W (Figs 4.1 and 4.2). Note that the points on
the plots given in Figs. 4.1 to 4.12 are referred to by the values of the relative rotation

84 -



associated with them. These points correspond sequentially to the relative rotation values
used for the respective specimens in Chapter 3. The relative rotation values are tabulated
in the legends on the strain and profile plots of Chapter 3.

The plot of strain along the extreme compression fiber, shown in Fig. 3.17, also
indicates the first sign of localization at 2.92 degrees. The profiles of the extreme
compression fiber of the pipe show the first disturbance also at 2.92 degrees (Fig. 3.20).

4.3.4.2 Specimen HGA12W

From the moment vs. curvature diagrams (Figs. 4.1 and 4.2), the softening point
occurs at 4.52 degrées rotation. As Fig. 3.2 shows, strain localization begins at 3.66
degrees. Figure 3.6 shows two evident distortions in the compression profile of the pipe,
appearing first at the rotation of 2.69 degrees. One of these distortions dies out and the
other amplifies rapidly.

4.3.4.3 Specimen DGA12W

Moment vs. curvature plots (Figs. 4.1 and 4.2) identify the rotation of 7.38
degrees as the softening point. As Fig. 3.23 shows, strains along the extreme compression
fiber start to localize at 2.75 degrees. In Fig. 3.26, the first distortions in the profiles of
the extreme compression fiber can be detected at 1.02 degrees in the form of two waves.
One of these waves grows rapidly, while the other stabilizes. There is also an indication of
a small ripple near the top of the specimen from the rotation of 4.32 degrees onward.
However, it remains small throughout the loading history.

4.3.4.4 Specimen UGA20W-2

The moment vs. curvature plots for this specimen, shown in Figs. 4.3 and 44,
suggest the rotation of 2.3 degrees for the softening point. As Fig. 3.30 shows, strain
localizations in the extreme compression fiber also start at 2.3 degrees. As well, the
profiles of the extreme compression fiber show the first sign of disturbance at 2.3 degrees
(Fig. 3.33). Thus, as was the case with UGA12W, the initiation of buckling coincides
reasonably well with the initiation of wrinkling (softening).
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4.3.4.5 Specimen HGA20W

From the moment vs. curvature diagrams (Figs. 4.3 and 4.4), the softening point is
at the rotation 2.82 degrees. The strains along the extreme compression fiber, shown in
Fig. 3.37, start to localize at 1.5 degrees. The first distortion in the profiles of the extreme
compression fiber could also be observed at 1.5 degrees (Fig. 3.40). Later, at the rotation
of 2.82 degrees, two more distortions appear, near the top and bottom of the specimen.
These remained stable until the end of the test.

4.3.4.6 Specimen DGA20W

For specimen DGA20W, the moment vs. curvature plots (Figs. 4.3 and 4.4) show
that the softening point rotation is 4.06 degrees. The first signs of localization in the strain
along the extreme compression fiber are observed at 1.66 degrees (Fig. 3.43). Although
not obvious, the earliest distortions in the profile of the extreme compression fiber appear
at 0.92 degrees (Fig. 3.46). These distortions become more evident in the next increment
rotation (1.66 degrees), in the form of four waves. The wave near the top of the pipe
amplifies rapidly to become the wrinkle. The second ripple from the top grows in several
loading steps, but stabilizes in the last three loading steps. The other two, located in the
lower half of the specimen, stabilize and remain small to the end of the test.

4.3.4.7 Conclusion

It could be concluded from the observations made in Sections 4.3.4.1 and 4.3.4.4
that for non-pressurized pipe the onset of buckling (i.e., formation of the buckling waves)
is reasonably coincident with the onset of wrinkling (i.e,, softening). However, the
observations in Sections 4.3.4.2, 4.3.4.3, 4.3.4.5, and 4.3.4.6 indicate that the presence of
internal pressure both delays the initiation of wrinkling and causes the onset of buckling to
occur at an earlier stage. This is because, by the time wrinkling occurs, the pressurized
specimens have developed plasticity over a major part of the cross-section. The highly
developed plastification over a long range of global deformation facilitates the formation
and growth of the small local distortions. By contrast, at the time the non-pressurized
specimens wrinkle, only a relatively small part of the cross-section has become plastic. In
addition, wrinkling occurs during a much shorter range of pipe rotation for non-
pressurized pipe than for the pressurized specimens. Consequently, the buckling waves in
the non-pressurized specimens do not have the opportunity to develop noticeably prior to
the wrinkling.
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4.4 DETERMINATION OF SIGNIFICANT STRAIN VALUES

Strain distributions on the three 12 inch girfh-welded pipe specimens have been
presented in Chapter 3 (Figs. 3.2, 3.17, 3.23, 3.30, 3.37, and 3.43). In these plots, Demec
gage strains have been used for the region in the vicinity of the wrinkle and strain gage
results used over the remainder of the length. In the tests on plain pipes (Mohareb et al.
1994), Demec gage results were used throughout. This was possible because a higher
resolution Demec gage was available for that series than for this series of tests on the
girth-welded pipes. The lower resolution Demec gage used for the tests on the girth-
welded specimens made the Demec results erratic at small strains, and it is only at the
larger strains in the vicinity of the wrinkle that these strain measurements become reliable.

Typical strain gage results comparing the average strain in a length of D (the pipe
diameter) to the average strain over the length of the specimen, are shown in Fig. 4.13. It
is seen that the local strains are erratic once wrinkling begins because the strain depends
on the bending curvatures in the wrinkle at the point of application of the gage.
Therefore, strain gage strains are no longer representative of the average shortening within
the wrinkle. Clearly, such strains do not represent the behavior of interest. As a result,
the peak strains for the last four (three, three, three, five, and four) rotations in Figs. 3.2
(3.17, 3.23, 3.30, 3.37, and 3.43, respectively) are those from the Demec readings. The
majority of the other points are strain gage values. It is noted from strain results such as
those shown in Fig. 3.23 that no clear rotation level is associated with strain localization
because of perturbations to the curves at relatively low rotation levels. Consequently, it is
necessary to search for a better technique to determine critical strain values for initiation
of wrinkling. One possible technique is described below.

4.4.1 Determination of Critical Strain Values

Strain localization implies that the strain in a localized area (the area of the
wrinkle) increases more rapidly than does the average strain in the specimen. For uniform
strain in the specimen, the ratio of the strain in any local gage length to the overall strain is
unity. Therefore, the degree of localization of strain may be detected by the degree to
which the strain ratio deviates from unity. Alternatively, if the localized strain is plotted
against the overall strain, the departure of the line from a 45 degree line is a measure of
the strain localization. Such a plot, for example Fig. 4.13, indicates that very significant
non-uniformity of strain begins at the softening point.
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Because the goal is to determine the strains at the initiation of wrinkling, it is
rational to select the local gage length as the length of the wrinkle and to locate it on the
specimen in such a way that it straddles the wrinkle. The non-pressurized specimens
(UGA12W and UGA20W-2) wrinkled in a diamond mode, whereas the others wrinkled in
bulging modes. The wrinkle is somewhat shorter for the bulging mode than it is for the
diamond mode. Consequently, the local gage lengths for the specimens were selected as
D for the non-pressurized specimens and D/2 for the pressurized ones. Plots of these
strain measures for the welded specimens UGA12W, HGA12W, DGAI12W, UGA20W-2,
HGA20W, and DGA20W are shown in Figs. 4.14 to 4.19. These plots indicate that there
is a gradual development of non-uniformity in the strains as the specimen deforms.
However, once wrinkling starts, the local strain in the wrinkling gage length increases
much more rapidly than does the overall strain, and there is a relationship between overall
strain and local strain that is approximately linear.

Numerical values for both the local and overall strains at the softening points,
identified in Section 4.2.2, are shown on Figs. 4.14 to 4.19. In addition, the strains at the
points of intersection between the lines of initial linear response and the post-softening
linear response are determined. All these strains are tabulated in Table 4.1.

To make a comparison between the girth-welded pipe and the plain pipe test series
of Mohareb et al. (1992), strain results for girth-welded series are plotted in Figs. 4.20 to
4.22 for specimens UGA12, HGA12, and DGA12, respectively. Somewhat surprisingly,
the Demec strain results from this series deviate from uniformity almost from the initiation
of loading. However, the breaks in slope at the softening points are just as distinct as they
are for the girth-welded tests. The strain values, as well as the rotation values at softening
points determined in Section 4.2.3, are also tabulated in Table 4.1. Because of the lack of
experimental data for the 20-inch plain pipes, the corresponding plots for these specimens
could not be obtained.

4.4.2 Recommended Strain Limits

The strain values in Table 4.1 indicate the great dependence of all measures of
significant strain on the internal pressure. The overall strain values are generally less than
the local strain values, and slightly more than the intersection point strains. They represent
lower-bound strains for the softening points, determined from the moment vs. rotation
curves. These strains will probably be most consistent with those that are computed for
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design or assessment purposes or with those that will be measured in the field. It is,
therefore, judged that these strains are the most reasonable upon which to base lower-
bound estimates for design and assessment recommendations.

The minimum strains, by all measures, are associated with the empty (or upstream)
pipe conditions. These values may, therefore, be considered to be the lower bound for the
entire range of pressures. It is observed that the limiting overall strain for HGA12 is close
to one-half that of DGAI12 and, therefore, these strain limits are approximately
proportional to the internal pressure. A set of recommended lower bound strains for plain
pipe is that given by the upper line in Fig. 4.23. This lower bound reflects the minimum
strain associated with UGA12 and the proportionality shown by the HGA12 and DGA12
tests. The term py in Fig. 4.23 is the internal pressure when the hoop stress equals the

yield stress.

It is noted that the overall strains for the girth-welded pipe for specimens
UGA12W and DGAI12W are very close to 60% of those for UGA12 and DGAI2.
. Applying this factor to the limiting conditions for plain pipe to obtain limiting conditions
for girth-welded pipe produces the lower line shown in Fig. 4.23. As is apparent in Fig.
4.23, this line also establishes a satisfactory lower bound for the 20-inch girth-welded
specimen. Thus, in general, it can be seen that the lines shown represent good
approximations to lower bounds of the experimental points. Therefore, based upon the
results of the tests carried out on this project, lower bounds on the overall strains at the
time of initiation of wrinkling, called the softening strain, €, can be expressed by the

following equations:

(2) For plain pipe e =458 >110% @4.1)
Py

(b) For girth-welded pipe € = 2782 >0.66 % “4.2)
Py ’

As mentioned, the upper line in Fig. 4.23 (Eq. (4.1)) is based only on the results
for the 12-inch plain pipes and its application must be limited to pipe of that size.
However, there is good agreement between the results for the 20-inch girth-welded pipes
and the lower line in Fig. 4.23 (Eq. (4.2)). This justifies the recommendation of Eq. (4.2)
for both 20-inch welded pipe and 12-inch welded pipe.
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It should be noted that, according to these recommendations, the limiting condition
that may be applicable to the assessment of a field situation is dependent on the location
between pumping stations. Also, the limit for plain pipe can be used for all locations
except those in the immediate vicinity of a girth weld, say, within two diameters from the
girth weld.
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Table 4.1
Summary of Significant Strains and Rotations
Softening Point - Intersection
Rotation Local Overall Point Strain,
Specimen 0 Strain,e;, | Strain, ¢, £,=¢;
% % %
UGA12W 2.92 0.86 0.68 0.64
HGA12W 4.52 2.45 1.26 1.11
DGAI2W 7.38 2.51 1.93 1.90
UGAI12 441 1.81 1.10 0.99
HGAI12 6.89 2.26 1.62 1.58
DGAI12 10.8 4.73 3.29 2.90
UGA20W-2 1.92 1.13 0.92 0.81
HGA20W 2.82 1.82 1.16 1.04
DGA20W 4.06 2.96 2.13 1.87
Table 4.2

Ultimate Moments for Girth-Welded and Plain Specimens (kN.m)

Girth-Welded Specimens Plain Specimens
: Average of Average Average of Average
Specimen End Moment over | Specimen End Moment over

Moments Wrinkled Moments Wrinkled

Segment ' Segment
UGAI12W 209 225 UGA12 206 236
HGA12W 191 210 HGA12 187 225
DGA12W 143 172 DGAI12 149 191
UGA20W-2 640 656 UGA20 680 N.A.
HGA20W 589 614 HGA20 N.A. N.A.
DGA20W 439 463 DGA20 413 N.A.

Note: N.A. stands for Not Available because of insufficient test data.
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5 NUMERICAL INVESTIGATION

5.1 INTRODUCTION

In the preceding chapters, the experimental program was described and the results
were discussed. In this chapter, a theoretical approach describing the moment vs.
curvature response of the pipes is reported. In the numerical investigation, the strain-
hardening of the material is considered, using a mixed hardening formulation. However,
the change in the cross-section configuration is not considered. Therefore, ovalization and
local buckling are not taken into account. In addition, the residual stresses and transverse
girth welds are not taken into account in this investigation. The objective is to develop a
simple model capable of predicting the behavior of pipes up to the softening point.

The mathematical formulation for computing the moment vs. curvature response
of a pipe cross-section has been implemented in a computer program called Plastic
Analysis of Pipe Sections (PAPS). These results will be compared with the experimental
moment vs. curvature results for a buckled segment up to the softening point. Another
‘computer program called P-Delta Analysis (PDA) has been written to develop the
relationship between the end moment and the overall curvature response (i.e., the global
response) for a closed-ended pipe under loading conditions similar to those used for the
test specimens. The program PDA uses the local moment vs. curvature curve that is
output from PAPS to produce the end moment vs. overall curvature response for a closed-
ended pipe specimen. This enables the experimental response to be compared with the
analytically predicted response. The simplified model of this study permits the comparison
to be made only up to the point of buckling.

In the following subsections, the initial elastic behavior is described. Then, various
choices of stress vs. strain measures and strain-hardening rules are discussed. This is
followed by the formulation of the elastic-plastic model used in this study. The analytical
procedures to obtain the local and global moment vs. curvature responses of pipe are then
described. Finally, the analytical results are presented and compared with the test results.
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5.2 INITIAL YIELDING OF PIPES
5.2.1 General

In this section, a closed-ended pipe similar to a very short test specimen is
considered. The sequence of loading is identical to that of the test specimens. Thus, it is
assumed that the pipe is first pressurized to the final pressure, then it is subjected to the
external axial load, and, finally, curvature is imposed. In the latter step, the very short
slice of pipe is considered to be gradually subjected to the imposed curvature to some
prescribed value. During this bending procedure, the moment corresponding to the
increased curvature at each step is calculated by the computer program PAPS.

The behavior of the pipe is elastic from the beginning of the loading until the
proportional limit is reached anywhere in the cross-section. This is the beginning of
nonlinearity and plastic behavior. However, for a closed-ended pipe subjected to only
internal pressure and axial load, the longitudinal stress, ,, and the hoop stress, og, are

independent of the material properties and can be determined from statics.

In the free body diagram shown in Fig. 5.1, the equilibrium of the forces in the x
direction yields
21tRmt0'x=1cRi2p—P (5.1)

where t is the pipe wall thickness, R; is the inside radius, R, is the average of inside and
outside radii, p is the internal pressure, and P is the applied axial load. The (tensile) stress
G, can be obtained from Eq. (5.1) as

o =Pl Ry P 5.2)
2t ‘R’ 27nR_t

The free body diagram of a half-cylindrical portion of the pipe, with an arbitrary
small length £, is shown in Fig. 5.2. The equilibrium of the forces in the y direction gives

2lt0'e =2tRi P (53)

Hence,

oe=PRi (5.4)
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The through-thickness stress in a pressurized pipe varies from zero on the outside
surface of the pipe to the internal pressure on the inside surface. However, even at its
maximum (around 10 MPa for the highest pressure used in these tests), this stress is very
small compared to the longitudinal and hoop stresses. Thus, for simplicity, the through-
thickness stress is neglected.

The first encounter with the proportional limit could occur during any of the three
stages of loading. For a given cross-section and material stress vs. strain curve, this
depends on the magnitude of the final pressure and the external axial load.

Because of the biaxial state of the stress (longitudinal and hoop stress), a yield
function should be adopted (here yield means reaching the proportional limit). There are a
number of yield criteria available in the literature. In this study, the von Mises yield
criterion, which is commonly used for metals, is employed. This yield criterion has been
shown to be in excellent agreement with experimental results for many ductile metals,
including different types of steel (Hill 1950). The form of the von Mises criterion for the
biaxial state of stress, with the longitudinal and hoop stresses as the principal stresses can

be expressed as
cxz + 092 —0,0g = cp2 (5.5)

where G, is the yield stress (i.e., the proportional limit in a uniaxial test). The conditions

for reaching the proportional limit during each of the loading stages are discussed in the

following subsections.

5.2.2 Initiation of Yielding During Pressurization

Since no external axial load has been applied prior to pressurization, the value of P
in Eq. (5.2) is zero. Substituting Eq. (5.2) and Eq. (5.4) into Eq. (5.5) results in

R (5.6)
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where py is the value of the pressure at the first occurrence of the proportional limit.
Thus, if the final value of the pressure is less than p, the pipe remains elastic during the

pressurization.

5.2.3 Initiation of Yielding During Application of Axial Load

Here the pipe has remained elastic under the prescribed final pressure, p. If it is
assumed that inelasticity starts during the second stage of loading (i.e., the application of
axial load), then the value of axial load, Py, required to reach the proportional limit can be
determined by substituting Eq. (5.2) and Eq. (5.4) into Eq. (5.5). This yields

Py = anp[Ri(-R—i-— 1)+ \/I(E’ﬁ)z —3Ri2} 6.7)

Rn P

If the prescribed final axial load is less than P determined by Eq. (5.7), then the

pipe remains elastic throughout the application of axial load. It should be noted that the

use of Eq. (5.7) is valid only when the pipe has remained elastic during the pressurization.
This requires that the prescribed final pressure be less than p, obtained from Eq. (5.6).

For the usual sizes of line pipes, R; (the inside radius) is very close to Ry, (the
average of the inside and outside radii). Therefore, the first term in the bracket in Eq.

(5.7 (e, R; (-I%i——l) ) is much smaller than the second term in a general case.
m

Consequently, when the sign of the radical is positive, the solution for Py is positive,

meaning compression. Since the tests carried out at the University of Alberta were always
done for P, in compression, the only use herein for Eq. (5.7) is for the case when that

equation gives a positive answer.

5.2.4 Initiation of Yielding During Imposition of Curvature

If the pipe is still elastic at the completion of application of the axial load, then
plastification must begin during imposition of the curvature. Figure 5.3 illustrates the path
along which the stress state proceeds during the three loading stages. As shown in Fig.
5.3, in the first loading stage (i.e., the pressurization) the stress state of the whole cross-
section moves from point O to A on a straight line. This is because from Egs. (5.2) and

- (54)
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—= 2R—m = constant (5.8)
Ox Ri

For a very thin-walled pipe, the inside and mid-surface radii (i.e., R; and R,
respectively) are almost equal to each other. Hence, the above ratio is approximately 2.
Therefore, the stress state proceeds along the line Om, as shown in Fig. 5.3. However,
the actual path of the stress state for a closed-ended pipe segment subjected to internal
pressure must be to the left of the line Om because the slope of the stress path for an
actual pipe, given by Eq. (5.8), is always greater than 2.

The longitudinal movement of a pipeline in the field can be assumed to be
restricted. This implies that the longitudinal strain be zero. Thus, while still elastic, the
Poisson's effect gives the value of longitudinal stress as 11Gg. At the same time, the pipe
segment ends are open and, consequently, Eq. (5.2) does not apply. Therefore, the stress
state proceeds along the line On shown in Fig. 5.3 until it reaches the yield ellipse.

For the remaining two loading stages, the hoop stress, which depends only on the
internal pressure, remains constant. Therefore, the consequent movements of the stress
state for every point on the cross-section occur on the horizontal line passing through A
(perpendicular to the oy axis), as shown by line CD in Fig. 5.3. This line intersects the

yield surface at C and D, and the longitudinal stress values can be determined from Eq.

(5.5 as
64(C)=0¢ - ,/cpz - 30‘02 (5.9)
6,(D)=06¢+ ,/cpz ~36,° (5.10)

where G, = 229— = R&

It can be seen that point A is slightly to the left of the midpoint between C and D.
(The midpoint of CD in Fig. 5.3 is the point at which Om intercepts CD.) This is because
the value of o, for the midpoint equals
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%[GX(C)+GX(D)] =Gy = -1’—21% (5.11)

whereas from Eq. (5.2),

pRi R.
Oy (A)=—L(—L (5.12)
* 2t R,

Since R is less than one, the longitudinal stress at point A is smaller than that of the
m

midpoint.

Applying a compressive axial force moves the stress state from point A toward C
on the horizontal path. Here it is assumed that the axial compression does not initiate the
plastification. Thus, the stress state of the cross-section at the completion of application
of the axial load must be between A and C, the point B in Fig. 5.3. The value of
longitudinal stress for the whole cross-section at B is obtained from Eq. (5.2):

PR; R P
c,(B)= - 5.13
x(B) 2t (Rm) 2nR,t ( )

If the cross-section remains elastic during the application of curvature, the
resulting stress distribution can be determined by superposition. From elementary beam

. M
theory, the values of stress at the extreme fibers due to the imposed curvature are i—é—,

where M is the moment corresponding to the imposed curvature and S is the section

modulus,

§- 70’ =D/) (5.14)
32D,
where D, and D; are the outside and inside diameters of the pipe, respectively.
Therefore, for elastic conditions, the stress states of the extreme compressive and tensile
fibers occur at equal distances to the left and right of point B in Fig. 5.3. Since BC is
shorter than BD, the stress state of the extreme compressive fiber is the first to reach the
yield ellipse (see Fig. 5.3). Thus,
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cx(B)—'l\% = Gx(c) (5.15)

where M, is the moment required to initiate yielding. Equations (5.9), (5.13), and (5.15)
give the value of M, as

R ( R P
M, =S| /0.2 ~30,% - oo+ Bk =i |- 5.16
0 [ pmT0 0 Zt(Rm) 2ant) (>.16)

For the nonlinear analysis that will follow, the values of strains and stresses at the
extreme fibers and the curvature corresponding to the yield moment (M,) need to be

calculated. The stress at the maximum tension fiber at the beginning of plasticity is equal
to

0'§(=0'x(C)+2%)— (.17

Because the through-thickness stress is small, the longitudinal strains can be

obtained using the plane stress formulae. -Hence,

g’ = %(GX(C)— vGy) (5.18)

gl= %(0'; - vce) (5.19

‘where £° and €' are the values of the longitudinal strains at the extreme compression and
tension fibers, respectively. The value of curvature at the first yield, ¢, is calculated by

the same formula as used in Eq. (3.5),

bo =t (5.20)

Finally, from Eq. (5.9) and (5.16) to (5.20),

2 2 2 pR- R; P
= ,/o -304° —og +— L1- 5.21
bo EDO( P70 0T 9t \R, ) 27Ryt (.21
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Using the relationship ¢o =—2 to obtain the curvature ¢, gives the same result as that
EI

given by Eq. (5.21).

Note that the equations in this section are to be used only when the pipe is still
elastic at the completion of the application of pressure and axial load.

5.3 INCREMENTAL STRESS VS. STRAIN FORMULATIONS

Plasticity can be accompanied by large strains and the choices of strain and stress
measures become important. Some widely-used measures of stress and strain are
discussed in the subsequent sections in order to determine the most appropriate ones.
First, the strain-hardening of the material is examined by reviewing different theories.
Then, the elastic-plastic formulation implemented in the computer program PAPS is
presented.

5.3.1 Stress and Strain Measures

Among the large number of conjugate stress and strain measures in the literature,
three kinematic formulations are employed effectively in elasto-plasticity (Bathe 1982):

1. Engineering Stress and Strain Formulation (ESS)

This formulation assumes infinitesimally small displacements and rotations on the
basis that the strain measure is not invariant under rigid body motions (Bathe 1982). The
ESS formulation is recommended only for materially-nonlinear analysis. This formulation
has been chosen as one of the options in the program PAPS.

2. Total Lagrangian Formulation (TL)

This formulation employs 2nd Piola-Kirchhoff stresses and Green-Lagrange
strains. This measure of strain is unaffected by rigid body motions (Bathe 1982). The
kinematic assumptions for the strain measure permit large displacements and large
rotations. However, this formulation is most effective only for small strains. This is
because the constitutive tensor in each increment is subjected to a transformation
determined by the deformation gradient with respect to the initial configuration.
Nevertheless, if the strains are small, these transformations do not change the components
of the constitutive tensor (provided that the material is isotropic). This formulation
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without the transformation of the constitutive tensor is one of the options in the program
PAPS.

3. Updated Lagrangian Formulation (UL)

This formulation employs Cauchy (true) stresses and updated Lagrangian strains.
Under rigid body motion, the strain measure remains unchanged. Hence, it is applicable to
general elastic-plastic analysis with large displacements and rotations and large strains.
The formulation is effective in large strain analysis because the stress and strain measures
used are those that describe the material response in a natural way (Bathe 1982). This
strain measure is commonly used for problems in metal plasticity. One motivation for this
choice is that when true stress (force per current unit area) is plotted against logarithmic
strain, then tension, compression, and torsion test results coincide closely with each other
(Hibbit et al. 1993a). In general, at any point of a body the updated Lagrangian
longitudinal strain in the direction of an arbitrary axis attached to the body reduces to
In(A), where A is the stretch (current length divided by the original length) in that

direction.

5.3.2 Elastic—-Plastic Formulations

5.3.2.1 General

The elasto-plasticity formulation employed in this model, and discussed below, has
been adapted from the book by Chen and Han (1988). In the subsequent derivations, ©;;

and &;; are general notations that could represent any of the three stress and strain

measures mentioned in Section 5.3.1. The fundamentals of the elastic-plastic formulation
‘are discussed in the following subsections.

5.3.2.1.1. Yield Function

Yield function defines the elastic limit of a material under a combined state of
stress. In general, the yield stress is a function of the state of stress, o, and can be

expressed as
f (O'ij, k) =0 (5.22)

where k is the hardening parameter. The yield function can be best interpreted
geometrically as a surface in stress space. For a perfectly-plastic material, the yield
function is assumed to remain unchanged. Thus, the parameter k in Eq. (5.22) is a



. ' D y
R R pea——

113

constant, and the yield surface is therefore fixed in stress space. However, for a work-
hardening material the yield surface changes as elastic—plastic deformation occurs.

5.3.2.1.2. Hardening Rule

When an initial yield surface is known, the work hardening rule defines its
modification during the process of plastic flow. A number of hardening rules have been
proposed. The most widely used are those of isotropic hardening, kinematic hardening,
and a combination of both, so-called mixed hardening.

The isotropic hardening rule is based on the assumption that the initial yield
surface expands uniformly without distortion and translation in stress space as plastic flow
occurs. The size of the yield surface is governed by the value of a parameter k, which
depends upon plastic strain history.

The kinematic hardening rules assume that, during elastic-plastic deformation, the
loading surface translates as a rigid body in stress space, maintaining the size, shape, and

- orientation of the initial surface. This rule is implemented by keeping k constant and

replacing the stress tenor, cj;, in Eq. (5.22) with the reduced stress tensor, G;;. Reduced

stress components are measured from the center of the yield surface.
Eij = Gij - aij (5.23)

Here a.;; are the coordinates of the yield surface center in stress space, and they depend on

the plastic strain history.

A combination of isotropic and kinematic hardening leads to the more general

mixed hardening rule. In this case, the yield surface undergoes a translation defined by a;;

and a uniform expansion measured by k. This constitutes a more general work hardening,
which contains the isotropic and kinematic hardening rules as its two limiting conditions.

Detailed formulations of the isotropic and kinematic rules, along with their
contributions in the mixed hardening model, are presented in Sections 5.3.2.2.1 and
5.3.2.3, respectively. The applicability of the isotropic and kinematic hardening rules to
different loading conditions is discussed in Section 5.3.3.
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5.3.2.1.3. Elastic and Plastic Strain Increment Tensors
One important assumption for elastic—plastic.deformation is that the total strain

increment tensor is composed of the sum of the elastic and plastic strain increment tensors:

de;; = def; + e} (5.24)

where dafj and ds};- are the elastic and plastic strain increment tensors, respectively.

Hooke's law is assumed to provide the necessary relation between the incremental

changes of stress and elastic strain; hence,

dO'ij = Cijkl dsil (525)

where Cj;y is the tensor of elastic moduli. Substituting for def; from Eq. (5.24) gives

dO’ij = Cljkl ( dekl - dS%) (526)

This is the basic equation for developing the nonlinear constitutive relations to be
discussed in Section 5.3.2.4. |

5.3.2.1.4. Plastic Potential and Flow Rule !

The flow rule is the kinematic assumption postulated for elastic-plastic
deformation. It gives the ratio or the relative magnitudes of the components of the plastic

strain increment tensor, dsg-. In other words, the flow rule defines the direction of the

plastic strain increment vector, deg, in strain space. By defining a plastic potential

function, g(c;;), which is a scalar function of the stresses, the plastic flow equations can

be written in the form

def = 2 g (5.27)
i
where dA is a positive scalar factor of proportionality, which is nonzero only when
elastic-plastic deformations occur. Of great importance is the simplest case for which the
yield function and the plastic potential functions coincide, i.e., f=g. Thus,
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of
def =—d 5.28
© 0oy (5.28)

y
y

and plastic flow develops along the normal to the yield surface. Equation (5.28) is called
the associated flow rule and it has been used successfully for metals (Chen and Han 1988).
This equation will be used in formulating the nonlinear constitutive relations developed in
Section 5.3.2.4.

5.3.2.1.5. Consistency Condition

The consistency condition requires that the state of stress remain on the yield
surface during plastic flow. Thus, after a small elasticplastic deformation, the yield
condition represented by Eq. (5.22) must still be satisfied. Hence,

f(O‘ij-l-dO'ij, k+dk)=f(0ij, k)+df =0 (5.29)
This, in combination with Eq. (5.22), yields
df =0 (5.30)

The scalar dA can be determined from this condition, as described in Section 5.3.2.4.

$.3.2.2 von Mises Yield Function
5.3.2.2.1 Generalization of Yield Function for Mixed Hardening

The von Mises yield function for an isotropic-hardening material is expressed as

3 .
f(oij’k)=ESij Sij—k2=0 - (531)

where S;; is the deviatoric stress, defined as

S, (5.32)

1
J=Cij_50kk8

ij

In general, the hardening parameter, k, is defined as a function of either the
effective plastic strain or the plastic work. Bland (1956) showed that for any yield
function that is linear or quadratic (such as the von Mises yield function), using either the
effective plastic strain or the plastic work as the argument for k is equivalent. Herein, the
simpler choice, which is the effective plastic strain, is used as k in the von Mises yield
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criterion. For a von Mises material, the effective strain, &p, is defined in incremental form

de, = 1/-?- dsP ds? (533)

In the mixed hardening formulation, the plastic strain increment tensor is assumed

to be the sum of the isotropic and kinematic portions, denoted by dsiij and dsg,

by

respectively:
def = ds}j + dsg (5.349)

The isotropic strain increment, dsﬁj, is associated with the expansion of the yield surface,

and the kinematic plastic strain increment, dsg, is associated with the translation of the

yield surface. These two strain components can be written as

def; = M de} (5.35)

deff = (1- M) de? (5.36)

in which M is the parameter of mixed hardening. It has the range 0<M <1.

For a mixed-hardening material, the generalized form of the von Mises yield

function is expressed as
— . 35T T2,
£y, k=5 5;- k*(5,)=0 (5.37)
where §ij is the reduced deviatoric stress, defined as

s = 1_
S,J = cij —5 Ok 81_) (538)

and &, is the reduced effective strain, which is defined in incremental form as

de, = 1/% dej dej (5.39)
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From Egs. (5.33), (5.35), and (5.39), the relationship between the effective stress and the
reduced effective stress is obtained as

dg, =Mde, - (5.40)

The hardening parameter for an isotropic-hardening material (i.e., k in Eq.(5.31))
is called the effective stress because it identifies with the yield stress in a uniaxial tension
test. For a von Mises material, the effective stress, 6., can be expressed as

G, = g'—S

2%

i (5.41)

For a mixed-hardening material, the reduced effective stress, G,, is used as the hardening

parameter (i.e., k in Eq.(5.37)). For a von Mises material, the reduced effective stress can
be expressed as

— 35 &
5= 2§, - G4)

Therefore, the von Mises yield condition for a mixed-hardening material becomes (upon
redefining the arguments of the function fin Eq. (5.37))

f(04,%,8) == 5 §ij—6e2(§p)=0 (5.43)

W

5.3.2.2.2 Plastic Moduli

The effective stress vs. effective strain relationship, characterizing the hardening
process of a material, is determined by the experimental uniaxial stress vs. strain
relationship, which has the general form

Ce =0Ce(gp) (5.44)
In the incremental form it becomes
do. =H, de, (5.45)

where Hp (o) is called the plastic modulus. For an isotropic-hardening material, H, is

associated with the expansion of the yield surface. For a mixed-hardening material,
however, the reduced plastic modulus defined by
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H - ds, (5.46)
de,

represents the expansion of the yield surface. However, note that the experimental
relationship is always that expressed by Eq. (5.44). In a uniaxial test, do, and de,, are
equal to doy; and dg;,, respectively. (Subscript 1 represents the longitudinal direction in

the uniaxial test.) However, the values of the reduced effective stress and strain depend
on the choice of the mixed hardening parameter, M. Moreover, the value of dG,, which is
equal to do;;, cannot be determined from the test results because the value of do;; can be
obtained only from the theory. (Note that do;; = do;; —da,;; according to Eq. (5.23).)

5.3.2.3 Kinematic Hardening Rules
5.3.2.3.1 General Comment

The two kinematic hardening rules considered in the formulations herein are those
of Prager and Ziegler. The hardening rule in each case relates the increments in the

coordinates of the yield surface center, da.;j, to the strain increments and the current states
of stress and strain. These relations are used to substitute for da;; in the derivation of the

nonlinear constitutive equations to be described in Section 5.3.2.4. The two kinematic
hardening rules are discussed as follows.

5.3.2.3.2 Prager Hardening Rule

It is assumed herein that da.;; depends linearly on dsg. Thus,

doy;=C dsg or a;=Cef (5.47)
where C is the work-hardening constant, characteristic for a given material. By adopting
the "associated flow rule," the Prager hardening rule is equivalent to the assumption that
the vector do;; moves in the direction parallel to the normal vector on the yield surface at
the current stress state. For a mixed-hardening material, de,!JS replaces dsg- in Eq. (5.47)
and it can be shown (Chen and Han 1988) that

= 3
Hy=H,=>C (5.48)
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Thus, for a mixed-hardening material with the Prager rule,

2 2
daij = E Hp deg = 5 Hp (1 - M) defj’ (549)

5.3.2.3.3 Ziegler Hardening Rule

Ziegler (1959) modified the Prager hardening rule to make it valid for subspaces. He
assumed that the transition of the yield surface occurs in the direction of the reduced stress
vector in the form

daij = du. (Gij - aij) (5.50)

where du is a positive proportionality factor, which depends on the history of the

deformation. For simplicity, this factor can be assumed to have the form

dp=ade, (5.51)
in which a is a positive constant characteristic for a given material. Thus,

daij =a d8p (cij - aij) . (5.52)

For a mixed-hardening material, de, replaces de,, in Eq. (5.52) and it can be
shown (Chen and Han 1988) that

H,=H,=ag, (5.53)

- Thus, for a mixed-hardening material with the Ziegler rule, from Eqgs. (5.53) and (5.36),

daij = Eﬁ (1 - M) (Gij - ocij) (5.54)

5.3.2.4 Generalization of Kinematic Constitutive Relationships

In this section, a nonlinear constitutive relationship for a mixed-hardening material
is derived. This relates the stress and strain increments during elastic—plastic deformation.

Using the consistency condition, i.e., Eq. (5.30), for the yield function expressed in
Eq. (5.43) gives
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df = ﬁ‘dcij +—@f—daij +2f—d§
00 ;; oaL; oe.

ij ij P

»=0 (5.55)

In the following, each of the six terms in Eq. (5.55) is expressed in terms of the current
stress and strain states, strain increments, and the scalar dA. After the appropriate
substitutions, Eq.(5.55) is solved for the scalar dA. The constitutive relationship is then
obtained by using the expression for dA .

i) Expression for o
ij
It can be shown that (Chen and Han 1988) that

505 =35 (5.56)
it) Expression for dg,
In order to determine dg,,, the term deg is first obtained from Eq..(5.28) (i.e., the flow
rule) and Eq. (5.56) as
def =3§;dA (.57
Equations (5.33), (5.40), and (5.57) yield de;, as

dg, =2M 5, d\ (5.58)

iii) Expression for i
O p

To determine —;f—, Eq. (5.43) is differentiated with respect to €.
P

A 25 Be- 5. T

(5.59)
68P %P ’



121

From either Eq. (5.48) for the Prager kinematic hardening rule or Eq. (5.53) for the

Ziegler kinematic hardening rule, ﬁp equals Hy,. Hence,

of -
—63- =-2 Ce H (560)

P

P

. i of
iv) Expression for P

3

The chain rule can be used to derive gif—, and, with the use of Egs. (5.23) and (5.56),

3

as
o O By .x , <

= =3 -S. 5. 5.61

o BB O Skt (=S 851) (5.61)

where 3;; is the Kronecker delta. Hence,

X 3 S (5.62)

V) Expression for do;;
The term day; for the Prager rule can be obtained from Eqs. (5.49) and (5.57) as
For the Ziegler rule, do;; can be obtained from Egs. (5.54) and (5.58) as
vi) Expression for do;;
Finally, do;; is obtained from Eqs. (5.26) and (5.57) as
do-ij = Cijkl (dekl -3 §kl d?») (565)

Substituting Egs. (5.56), (5.58), (5.60), (5.62), (5.63), and (5.65) into Eq. (5.55)
and solving it for dA results in the following equation for a mixed-hardening material with

the Prager rule as the kinematic hardening part.
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3S. C..y de
dh, = —> >3 Cii 98w — (5.66)
9 Sij Cijkl S]d '|‘4Hp G,
In order to obtain the result for a mixed-hardening material with the Ziegler rule as
the kinematic hardening part, the same substitutions are to be made except that Eq. (5.64)

is used instead of Eq. (5.63). This reduces to the same expression for dA as in Eq. (5.66).

Substituting Eq. (5.66) back into Eq. (5.65) gives

9Cijlcl —S—kl Smn Cmnpq' )de (5.67)

do; =(C;,, ——— —
v ( P4 9 Si_] Cijkl Sk] +4Hp -662 Pa

This is the constitutive relationship between the stress and strain increments in an
elastic—plastic deformation.

*

By defining C;;. as the term in the brackets in Eq. (5.67), that is,

iipq
' 9 Ciia Skt Smn Crnpq 568
P =9 TS 0T 4l 52 (5.68)
ij Lijk Ok +4 5, Ce
Eq. (5.67) becomes
doj; = Cjpq depq (5.69)

in which, Ci*qu is called the elastic—plastic constitutive tensor.

5.3.2.5 Matrix Representation

The objective is to simplify the constitutive relationship, expressed by Eq. (5.67),
for the special conditions of the problem under study. The result, expressed in matrix
notation, has been implemented in the program PAPS, as discussed in Section 5.4.1.

It is taken herein that the subscripts 1, 2, and 3 are representative of longitudinal,
circumferential, and through-thickness directions, respectively. These are also the
principal axes for the stress and strain tensors at any point on the cross-section.
Therefore, the stress and strain tensors are each represented by their three principal values.

[
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Thus, in matrix notation, the stress and stress tensors could be represented by 3x1 vectors
and the elastic constitutive tensor could be represented by a 3x3 matrix, [E]. Equation

(5.66) is expressed in matrix notation as

__ 3{s} [B}{de}
o{5}) [E]{8}+4H, 5.2

(5.70)

and Eq. (5.67) as

{do}=|[E] O[E[{SHS} [E] ]{de} (.71

o5V [E] {5} + 41, 5.2

where

CiO‘l §l d81
{do}=1{do, {5}=15, {de}={de, (5.72)
d03 §3 d83

Here, the principal stresses or strains are noted by a single subscript (e.g., S, =S, is the
reduced deviatoric stress in circumferential direction). The elastic constitutive matrix,
[E], can be expressed as (Chen and Han 1988)

in which

E nE
G= A, =
2(1+p) T+ -2p)

where E is the modulus of elasticity and p is Poisson's ratio.

(5.74)
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5.3.2.6 Two-Dimensional Analysis
As mentioned in Section 5.2.1, the through-thickness stress is neglected in the
numerical model. This means that do; always equals zero. However, to be able to carry
out the above calculations in two dimensions (i.e., longitudinal and circumferential
directions), the yield function needs to be reduced to a two-dimensional form. The yield
function in terms of the reduced stresses, rather than the reduced deviatoric stresses, can

be expressed as

f————;-[((—):l—62)2""(62—63)2'*'(63_6:1)2]_—662 (575)

Recall from Eq. (5.23) that G; =o; —«;. Thus, in order for Egs. (5.70) and (5.71) to be
two-dimensional and since G5 always equals zero, the value of a; should remain zero
during plastification. (Note that the a; terms are zero at the beginning of plastification.)

For the Prager kinematic hardening rule, do; is obtained from Eq. (5.63) as
dotz = 2H, 1-M) S5 dA (5.76)

where S; is, in general, nonzero. For the Ziegler kinematic hardening rule, do is
obtained from Eq. (5.64) as

dois =2 H, (1-M) (03 —a3) dh (5.77)

in which o3 is always equal to zero and o3 is initially zero. Therefore, a; remains zero
throughout the elastic—plastic deformation. Thus, for a mixed-hardening material using
the Ziegler rule the yield function becomes two-dimensional. However, when the Prager
rule is used, the yield function remains three-dimensional. Note that in the case of the
isotropic-hardening material (i.e., M = 1), the yield function is two-dimensional because all
o; terms (including o.3) are zero.

In order to carry out the calculations in Section 5.3.2.5 in two dimensions, the
constitutive matrix, [E], must be that for a plane stress situation (o3 = 0). Thus, in this
case (Chen and Han 1988),

[2G+A5-Q 25-Q
[E]—[ Ag-Q 2G+XE—Q} (5.78)

where
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Ag

_ 5.

Q

5.3.2.7 Loading Criterion

The objective is to determine the loading criterion to be used during the bending
process. It is assumed that the stress state of an arbitrary point on the cross-section is on
the yield surface, i.e., f= 0. A subsequent curvature increment in the numerical procedure
increases the longitudinal strain at the point by an amount Ae..

One possible state of deformation due to the longitudinal strain increment is elastic
unloading. In this case, the longitudinal stress increment can be large enough to produce
an elastic—plastic loading subsequent to the elastic unloading (i.e., by meeting the yield
surface at a new point across from the initial stress state). Therefore, the criterion to be
used herein must be able to detect the immediate state of deformation. This is carried out
by assuming an infinitesimal increment in the longitudinal strain, de,, in the same direction
as the original longitudinal strain increment, Ae,. (Note that €, and &, are used
interchangeably herein.) This is accomplished if Ae, and de, have the same sign. In
addition, it is assumed tentatively that the deformation due to de, is elastic (i.e., either

unloading or neutral loading).

If the actual deformation is elastic, the increment in yield function, df, due to the
assumed elastic deformation will be non-positive. This is because, in an elastic
deformation (loading or neutral loading), the stress state either moves inside or slides on
the yield surface. This implies that df <0.

However, if the actual deformation is elastic—plastic, df which is due to the
assumed elastic deformation, must be positive. This is because the yield surface is
unchanged during the assumed elastic deformation. Thus, the resultant stress state ends
up outside the original yield surface. This implies that df > 0.

Hence, the loading criterion can be expressed as
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>0, loading
df { =0, neutral loading (5.80)
<0, unloading

Equation (5.55) is used to evaluate df. As mentioned, the assumed deformation is elastic;
thus, the plastic parameters such as a, 85, and €, remain unchanged. Therefore, do;

and de, are zero in Eq. (5.55). Hence,

— (5.81)
00
The through-thickness stress (o3) is small and can be neglected in this study. In addition,
during bending the hoop stress (c,), which depends only on internal pressure, remains
constant. Consequently, do; (= do,) is the only nonzero stress component in Eq. (5.81).

Thus,

of
df =——d 5.82
30, o3| ( )

The term do; (=do, ) is the stress increment due to the assumed elastic deformation.

Therefore, it can be obtained by the use of elastic stress vs. strain relationships

do; de;
0 ;=[E]{de, (5.83)
0 d83

where [E] is given by Eq. (5.73). Solving Eq. (5.83) for do, yields
do;=Cde; or do,=Cde, (5.84)
in which

[ 46(E+5-Q) 585
2G+ }"E —Q
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The terms g— and do; are substituted into Eq. (5.82) from Eqgs. (5.56) and (5.84),
1

respectively, to give
df =3¢ S, dg; =3¢ S, de, (5.86)

Here only the sign of df is of interest. Since § is a positive constant and de, has the same
sign as Ae,, the criterion expressed in Eq. (5.80) can be rewritten as

>0, loading
S, Ag,{=0, neutral loading (5.87)
<0, unloading '

Note that the result of the expression in Eq. (5.87) never comes exactly to zero in an
actual calculation by computer. Therefore, in practical terms there are only two cases,
loading and unloading.

In the case of loading, the entire deformation increment is elastic—plastic. In the
case of unloading, however, it must be checked whether there is an elastic—plastic
deformation following the initial elastic deformation. This is done by comparing the
longitudinal strain increment, Ae,, with the strain increment value, Aa;, that moves the

stress state onto the yield surface (onto a new point on the yield surface across from the
initial stress state). If|Ae,| exceeds 'Ae:(l, then there will be an elastic-plastic deformation

subsequent to the elastic deformation with a longitudinal strain increment of Ag, - Ag,.

5.3.2.8 Forcing Increments to Satisfy Consistency Condition

The consistency condition of Eq. (5.55), df = 0, must be met in an elastic-plastic
loading process. However, since many approximations are made in the numerical
implementation of the incremental constitutive relation, the consistency condition is often
only approximately satisfied. In other words, the stress does not stay on the subsequent
yield surface. A correction to the stress vector is required to meet the yield condition and
to prevent error accumulation. This can be achieved by adding a correction to the stress
vector in the direction normal to the yield surface. The correction vector, {5c}, can be

expressed as (Chen and Han 1988)
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{&}:Y%} (5.88)

where

-f({o'} ’ 8p)

By substituting for {%} from Eq. (5.56), the correction vector becomes

__—f{s}
{6c}= ; {g}T 5 (5.90)

This can be further simplified by using the yield condition Eq. (5.43) as

{60}=—{5} (5.91)

£
25,2

5.3.3 Evaluation of Strain-Hardening Rules

Isotropic hardening is generally considered to be a suitable model for problems in
which the plastic straining goes well beyond the incipient yield state where the
Bauschinger effect is noticeable (Rice 1975). This hardening is therefore used for such
applications as large motion dynamic problems and manufacturing process involving large
plastic strain, and where the plastic strain rate does not reverse direction sharply (Hibbit et
al. 1993a).

In cases involved low-amplitude strain cycling, it is important to model the
Bauschinger effect. Kinematic hardening is the simplest theory that does this. The basic
concept is that the yield surface shifts in the stress space so that straining in one direction
reduces the yield stress in the opposite direction. Various levels of sophistication in the
kinematic hardening model have been reported in the literature (Hibbit et al. 1993a). Two



129

of these kinematic hardening models, namely, the Prager and the Ziegler models have been
used in this investigation as alternatives to isotropic hardening.

Since a nonlinear stress vs. strain curve from a coupon test will be passed on to the
program, the hardening is nonlinear (more precisely, multilinear). In addition, large strains
form in the process of bending the pipe. The kinematic hardening theory, however, is not
a good material model for nonlinear work hardening and it is not recommended for large
strain problems (Hibbit et al. 1993b). This gives rise to some disadvantages in the use of
kinematic hardening as the work hardening model in this study.

In many problems, when the applied loads or displacements do not increase in
proportion but vary in a more complex manner (for instance, oscillating between fixed or
variable limits), the simple hypotheses of work hardening models are not sufficient to
describe the plastic behavior. Thus, more general work hardening models have been
introduced for these cases (Mroz 1969). However, since the loading procedure for the
pipe under study is rather simple and non-cyclic, only the isotropic and kinematic
hardening models have been used in this investigation. These hardening models are
combined in a mixed hardening model that is described subsequently..

5.4 ANALYTICAL PROCEDURES

In this section, the procedure for obtaining the local moment vs. curvature
response of a pipe is discussed first. Subsequently, in Section 5.4.2, a numerical model of
the test specimens is described. This latter model uses the results of the first phase of the
analysis (the analytical local moment curvature curves) to produce the global moment vs.
curvature response of the pipe. The computer programs developed for the analysis,
namely, PAPS and PDA, will be described in Section 5.5. The results of the numerical
modeling for the test specimens will be presented and compared with the experimental
results in Section 5.5.4.

5.4.1 Procedure to Obtain Local Moment vs. Curvature Response

The numerical model developed herein is based on the assumptions and
formulation described in the preceding sections of this chapter. This formulation has been
implemented in the computer program PAPS (Section 5.1). Appendices A and B contain
the user manual and the listing of the program PAPS, respectively. The output of PAPS
consists of the local moment vs. curvature response and the stress and strain values around
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the cross-section of the pipe throughout the loading. The loading sequence is similar to
that for the test specimens: pressure is applied first, axial load is applied next, and finally
the bending moment is applied. In the first and second stages of loading, the entire cross-
section has uniform states of stress and strain. Upoh bending, however, the cross-section
is discretized into a number of elements to represent the variation in the stress and strain
values around the section, as shown in Fig 5.4. Only one-half of the cross-section needs
to be considered because of the symmetry about the plane of bending.

The following steps are carried out in order to obtain the local moment vs.
curvature response of the pipe.

1. Find the stage at which plastification begins. This is done using the criteria developed
in Section 5.2. If the initiation of plasticity occurs during the pressurization, go fo Step
la. If plastification begins during the application of axial load, go to Step 1b. If the
initiation of plasticity occurs during bending, go fo Step Ic.

la. When the initiation of plasticity occurs during the pressurization, the values of
longitudinal and hoop stress upon yielding are obtained from Eqs. (5.2) and (5.4),
where the pressure, p, is determined from Eq. (5.6) (p = py) and the axial load, P,
equals zero. The values of strains are simply calculated by the plane stress
formulae. Go to Step 2 of the algorithm.

1b. When plastification begins during the application of axial load, the longitudinal and
hoop stresses upon yielding are obtained from Egs. (5.2) and (5.4), in which the
pressure, p, is at the prescribed (final) value and the axial load, Py, is determined
from Eq. (5.7). The strain values are calculated by the plane stress formulae. Go
to Step 3 with P=P,. Note that P is the initial axial load used in Step 3 of the
algorithm.

lc. When the initiation of plasticity occurs during bending, the values of internal
pressure and axial load are at their prescribed values (final values). The
longitudinal stresses at the extreme compressive and tensile fibers upon yielding
are obtained from Eqgs. (5.15) and (5.17), respectively. The corresponding strain
values are obtained from Egs. (5.18) and (5.19), respectively. The assumption that
the cross-section remains planar after deformation results in linear variations of
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stresses and strains with the depth. By interpolation of the stress and strain values
at the extreme tensile and compressive fibers, the stress and strain values for each
element of the cross-section are determined. The moment at first yield, M,, and
the corresponding curvature, ¢, are obtained from Egs. (5.16) and (5.21),
respectively. Go to Step 4 with M =M, and ¢ = ¢,. Note that M and § are the
initial values of moment and curvature used in Step 4 of the algorithm.

2. Increase the pressure from p, to the final value (prescribed). The pressurization is
carried out in a prescribed number of equal pressure increments. From Egs. (5.2) and
(5.4), the longitudinal and hoop stress increments can be expressed as

Ao, ApR( ) (5.92)
AO‘e=A—ptl}i (5.93)

where Ap is the pressure increment. For each pressure increment, the increment in
strain values are calculated from Eq. (5.71), and all the stress and strain values as well
as the effective plastic strain and the coordinates of the yield surface center are updated.
These updated values are used for the next increment; thus, the constitutive equation
(Eq. (5.71)) is updated at each increment. Go to Step 3withP=0and $=0.

3. Increase the axial load from P to the final value (prescribed). The compression of the
pipe is carried out in a prescribed number of equal increments of axial load. Since the
pressure has already been applied, it is constant (at its final value) from the beginning.
Therefore, the hoop stress increment is zero. Thus, the only stress increment is the
longitudinal one, determined from Eq. (5.2) as

AP

5.94
2R, t (5.54)

Aoy =-

where AP is the axial load increment. Go to Step 4 with M =0 and $=0.

4. Increase the curvature from § to the prescribed value, d)*. Bending of the pipe is

carried out in a prescribed number of equal curvature increments:
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*

Ad = "’Nj (5.95)

where A¢ is the curvature increment and N is the prescribed number of curvature

increments.

Note 1: Up to Step 4, all the calculations have been for the entire cross-section. At this
step, however, because of the variation in stress and strain values due to bending,
the cross-section is discretized into a prescribed number of elements (see Fig.
5.4). Each element will have a separate set of stresses, strains, effective plastic
strain, and coordinates of the center of the yield surface. Also, up to bending,
because the strains remain small, the three stress vs. strain measures lead to
almost identical results. Therefore, prior to bending engineering stress vs. strain
measures are used for convenience. In the process of bending, however, large
membrane strains are produced. Therefore, all the calculations in Step 4 are
carried out using the stress vs. strain formulation chosen for the analysis.

Note 2: Because the axial force of the pipe remains constant throughout bending, the
neutral axis of bending (i.e., the axis with zero longitudinal bending strain) stays
within the cross-section (see Fig. 5.4). However, the position of the bending
neutral axis varies with increasing curvature and this requires an iterative
procedure to locate the bending neutral axis. As shown in Fig. 5.4, the position
of the bending neutral axis is located by the angle y,. This angle is set to zero at
the beginning of the iterations for the first curvature increment. Thereafier, the
current position of the neutral axis is taken as the initial value for the next
curvature increment. Each curvature increment is carried out according to the

following procedure.
Go to Step 4.a

4a. Set the position of the bending neutral axis. As described above, if this is the first
curvature increment, set the angle y,, to zero; otherwise, set W, to the last position
of the bending neutral axis. Go 7o Step 4b.
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4b. Calculate the engineering longitudinal strain of each element, e, for the increased
curvature by the following formula (see Appendix E, Eq. (E.32)).

e=¢y+y(d+Ad)(1+eg) (5.96)

where e is the engineering longitudinal strain of the cross-section at the start of
bending and y is the depth of the center of the element from the bending neutral
axis, as shown in Fig. 5.4. This engineering strain is converted to logarithmic
strain or Lagrangian strain, respectively, depending upon whether the UL or TL
formulation has been selected. The conversion is carried out using the conversion
formulae derived in Appendix E (Eqgs. (E.8) and (E.9)). Next, the increment of the
longitudinal strain of the element, Ac,, is obtained by subtracting the initial value
of the strain (known at the beginning of the iteration) from the increased one. Go
to Step 4c.

4c. Examine the stress state of the element with respect to the yield surface. The stress
state at the beginning of the increment is known from the previous increment. If the
initial stress state is plastic (i.e., on the yield surface), go to Step 4c.1. If the initial
stress state is elastic (i.e., inside the yield surface), go to Step 4c.2.

4c.1. The loading criterion for an initial state of stress that is on the yield surface
has been discussed in Section 5.3.2.7. The loading criterion expressed by
Eq. (5.87) determines whether there is a loading or unloading condition due
to the longitudinal strain increment, Ae,. In the case of loading, go to Step

4d.1. In the case of unloading, go fo Step 4d.2.

4c.2. When the stress state is initially elastic, the deformation may be large enough
to entail an elastic-plastic loading after the elastic loading. This is checked by
comparing the longitudinal strain increment with the strain increment value
that moves the stress state onto the yield surface in the same direction as the
strain increment. Note that there are two possible directions, opposite to each
other, that can be taken to reach the yield surface. The direction in which the
stress state moves is determined by the sign of the longitudinal strain
increment. Go to step 4d.3.

4d. Solve the constitutive equations.
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4d.1. In the case of loading, Eq. (5.71) is solved for the three unknowns which are
the longitudinal stress increment (the other two stress increments are zero),
the hoop strain increment, and the through-thickness strain increment. If two-
dimensional analysis is selected, the two unknowns are the longitudinal stress
increment and the circumferential strain increment. Go fo Step e.

4d.2. In the case of unloading, a check is carried out to determine whether an
elastic—plastic loading follows the initial elastic deformation (as described in
Section 5.3.2.7). The elastic part of the deformation is evaluated by the plane
stress formulation and the elastic-plastic part, if any, is evaluated as described
in Step 4d.1. Go to Step 4e.

4d.3. The elastic part of the deformation is evaluated by the plane stress
formulation and the elastic-plastic part, if any, is evaluated as described in
Step 4d.1. Go to Step 4e.

4e. Calculate the axial force for the trial position of the bending neutral axis. When
Step 4d is carried out for all the elements, the axial force of the cross-section is
calculated by integrating the longitudinal stress over the area of the cross-section.

If the difference between the calculated axial force, P,;, and the prescribed axial
force, P*, is small enough to satisfy the following criterion

—2<B (5.97)
where B is a prescribed tolerance, then go o step 4e.1. Otherwise, go to step 4e.2.

4e.1. When P, satisfies the criterion in Eq. (5.97), the trial position of the bending
‘neutral axis is satisfactory. - Thus, all the variables associated with each
element (i.e, stress and strain components, effective plastic strain, and
coordinates of the yield surface center) are updated using the last results. The
loading moment is also calculated by integration to obtain the moment
corresponding to the current curvature. At this point, the increment is

complete. Begin the next increment from Step 4a.
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4e.2. When P, does not satisfy the criterion in Eq. (5.97), the position of the
presumed bending neutral axis is moved in a way that depends on the
magnitude of P, compared with P*. If P, is less than P*, the actual bending
neutral axis is located below the position assumed. Thus, the presumed
bending neutral axis is shifted downward by adding a prescribed fraction of
Oy to y (see Fig. 5.4) and the Steps 4b to 4e are repeated. Similarly, if P,
is greater than P*, the presumed bending neutral axis will be moved upward
by the angle 8y. This procedure continues until the actual bending neutral
axis is located within the current angle increment 8y. This happens when the
inequality in Eq. (5.97) changes direction (e.g., P, < P but after adding dy
to g, Py > P'). When the bending neutral axis is located within the angle
dy, the bisection method is employed to close in on the actual bending neutral
axis position until the criterion in Eq. (5.97) is satisfied. Upon satisfying this
criterion, the calculations for the curvature increment are final and the
variables associated with each element can be updated and the bending
moment corresponding to the current curvature calculated. Go to Step 4a for
the next curvature increment.

The set of moment and curvature values obtained by following Steps 1 to 4 of the
above procedure constitutes a local moment vs. curvature curve for the prescribed
constant values of axial force and internal pressure. Several examples of such curves are
shown in Figs. 5.8 to 5.12. They will be discussed subsequently in Section 5.5.

5.4.2 Procedure to Obtain Global Moment vs. Curvature Response.

The objective is to develop a model simulating the behavior of the test specimens
up to the softening point. This model uses the moment vs. curvature response of the
cross-section, obtained by the procedure described in the Section 5.4.1, and performs a
P — A analysis to obtain the global moment vs. curvature response of the pipe.

As shown in Fig. 5.5, because of symmetry, only one-half of the specimen needs to
be modeled. A fixed support is assumed to be located at the mid-length of the pipe. The
half-specimen is discretized into a prescribed number (N,) of elements (Fig. 5.5).
Because of the variation in moment and curvature along the specimen, each element is
associated with a separate set of moment and curvature values and separate values for
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slope and deflection. The quantities are evaluated at the mid-length of each element, and
these are considered to be the average values for the element.

The analysis is carried out by prescribing a number of increments of the end
moment, M,,4. For each end moment increment, AM. 4, the corresponding overall
curvature is defined as 6,4 /(L / 2) and is obtained by the following procedure.

1. Add AM,,4 to the moment of each element.
M® =M, +AM (5.98)

Here M, is the moment at the kth element (see Fig. 5.5), and Mg) is the updated value.
Go to Step 2.

2. Find the curvature of each element corresponding to the new moment from the local
moment vs. curvature curve. Go fo Step 3.

3. Integrate the curvature along the pipe to find the slope of each element. Go fo Step 4.
4. Integrate the slope along the pipe to find the deflection of each element. Go 7o Step 5.

5. Calculate the modified moment of each element considering the P — A effects. This is
carried out by the following formula (see Section 3.2.5).

N,
. L 1 .
M = My +(P - P,y +Pi(5inBeqg )[5—(k—-2-)Ax]—Pi(Ax)2 D Ci(-K) (599
=k+
where Mf) is the modified moment at the kth element, y, is the updated deflection of
the kth element, 6,4 is the updated end slope, and C; is the updated curvature of the

jth element. Go fo Step 6.

6. Check the convergence criterion

. i-1
Cgl) — Cgl )

o0 <Be (5.100)
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where Cgi'l) and Cgi) are the curvature values of the first element at the (i-1)th and ith
iteration, respectively, and B is a prescribed tolérance. The curvature value and its
variation at each iteration are maximum at the first element (closest to the support).
Thus, the above criterion checks the greatest variation in curvature along the length of
the pipe at the ith iteration.

If the criterion in Eq. (5.100) is not satisfied, further iteration is required; go 7o Step 2.
If the criterion in Eq. (5.100) is satisfied, the solution has converged; go o Step 7.

7. Calculate the overall (i.e., global) curvature for the load increment as

9 20 (5.101)
L L

Go to Step 1 for the next increment.

The set of end moment vs. global curvature values obtained using the above
procedure simulates the respoﬁse of a test specimen such as those described in Chapter 2.
Comparisons between experimental and analytical results are shown in Figs. 5.20 to 5.25.
These will be discussed subsequently, in Section 5.5.4.

5.5 NUMERICAL RESULTS
5.5.1. General

In the numerical analysis, the test specimens were modeled using their average
geometric measures (with no imperfection taken into account) and material response
(from tension coupon test). In modeling each test specimen, the same internal pressure
and axial load as applied in the real test (tabulated in Table 2.1) were used.

The analysis was carried out in three phases. First the local moment vs. curvature
responses of the 12-inch test specimens were developed using the program PAPS, which
considers an infinitesimal length of pipe. For each 12-inch specimen, the local response
was developed for formulations with different combinations of assumptions (i.e., stress vs.
strain measures) and strain-hardening types (i.e., isotropic or kinematic hardening with the
Prager or the Ziegler rule). The objective is to determine the most appropriate stress vs.
strain formulation. These analyses are discussed in Section 5.5.2.
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In the second phase of the analysis, PAPS was used to develop the local moment
vs. response for all the test specimens. The analyses were carried out using the most
appropriate stress vs. strain formulation, as was determined in the first phase of the
analysis. Different types of strain-hardening (i.e., isotropic and kinematic hardening) were
used in the analyses. These analyses are discussed in Section 5.5.3.

In the third phase of the analysis, the global responses of the test specimens were
obtained using the program PDA. The local responses of the second phase were passed
into the PDA program in order to develop the global moment vs. curvature responses of
the test specimens. These analyses are discussed in Section 5.5.4.

5.5.2 Local Moment vs. Curvature Response for Different Formulations

5.5.2.1 General

In the first phase of the analysis, the program PAPS was used to obtain the local
moment vs. curvature response of the 12-inch test specimens. Different types of stress vs.
strain formulation (i.e., ESS, UL, and TL formulations, discussed in Section 5.3.1) were
used in combination with different types of strain-hardening.

The material stress vs. strain curve that is input to the program is always in terms
of engineering stress and strain. However, the program converts it into true stress vs.
logarithmic strain for the UL formulation and into 2nd Piola-Kirchhoff stress vs.
Lagrangian strain for the TL formulation. The material stress vs. strain curves are
obtained from the tension coupon tests that were carried out for both 12-inch pipe (ERW
Grade 359) and 20-inch pipe (DSAW Grade 386) as part of the 1992 experimental
program (Mohareb et al. 1994). The results of the tension coupon tests, for the three
types of stress vs. strain measures, are shown in Figs. 5.6 and 5.7 for 12 and 20-inch pipe,
respectively. The engineering stress vs. strain data were converted to the other two stress

vs. strain measures using the formulae derived in Appendix E.

Although the program PAPS is equipped with a mixed hardening model, only the
limiting conditions for the model, namely, isotropic and kinematic hardening were used for
the presentation of results. This is because the intermediate states of mixed hardening
would simply give response curves lying between those for isotropic and kinematic
hardening. In the case of kinematic hardening, the use of the Prager and Ziegler rules
always yielded results very close to each other. Therefore, the kinematic hardening results
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are all presented in one category, with no distinction on the type of hardening rule
employed.

In addition, it was observed that for the non-pressurized specimens the results of
the isotropic and kinematic hardening with either the Prager or Ziegler rule were
essentially identical. In other words, for the non-pressurized specimens, where there is a
uniaxial state of stress (only longitudinal stress), the results are independent of the value of
M (the mixed hardening index in Eq. (5.35)) and the kinematic hardening rule chosen.
Therefore, no distinction as to the type of strain-hardening is made in the presentation of
the results for the non-pressurized specimens.

For further confirmation, a third-party finite element program, namely, ABP
(Analysis of Buried Pipelines) was employed in the first phase of analysis. This program
was developed by Zhou and Murray (1993) at University of Alberta. The program ABP
was used in a mode that does not consider buckling so that the results could be
comparable with those from PAPS. The program ABP uses the ESS formulation and is
capable of handling piecewise-linear strain-hardening using a mixed hardening model with

the Ziegler rule for kinematic strain-hardening.

In order to determine the most appropriate stress vs. strain formulation, the results
of the three different stress vs. strain measures for 12-inch pipe specimens are discussed in
the following subsections.

5.5.2.2 Results for UGA12 and UGA12W

The local moment vs. curvature results from the PAPS and ABP analyses, in
addition to the test results for specimens UGA12 and UGA12W, are shown in Fig. 5.8. It
is evident that all the analytical and experimental curves lie close to each other in the
region prior to softening induced by local buckling. However, the PAPS result with the
UL formulation (true stress vs. strain measures) has the best fit to the test results.
Furthermore, Fig. 5.8 shows that the ABP result is almost identical to the PAPS result
with the ESS formulation (engineering stress vs. strain).

5.5.2.3 Results for HGA12 and HGA12W

The local moment vs. curvature results from the PAPS and ABP analyses and the
test results for specimens HGA12 and HGA12W are shown in Figs. 5.9 and 5.10 for the
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isotropic and kinematic hardening cases, respectively. In both Figures, the curves are
similar. However, the PAPS results with the UL formulation show the best fit to the test
results. In Fig. 5.9, the ABP curve lies very close to the PAPS curve with the ESS
formulation. In Fig. 5.10, however, the ABP curve lies closer to the PAPS curve with the
TL formulation (using 2nd Piola-Kirchhoff stress and Lagrangian strain measures).

5.5.2.4 Results for DGA12 and DGA12W

The local moment vs. curvature results from the PAPS and ABP analyses and the
test results for specimens DGA12 and DGA12W are shown in Figs. 5.11 and 5.12 for the
isotropic and kinematic hardening cases, respectively. As these figures show, the
experimental curves for the plain and girth-welded specimens are not as close together
prior to softening, as had been expected. However, the analytical curves in Fig. 5.11,
modeled with isotropic hardening, agree well with the experimental results. In Fig. 5.12,
on the other hand, the PAPS result, modeled with kinematic hardening, does not fit the
experimental results properly. Nevertheless, the PAPS curve with the UL formulation is
still the closest to the test results.

5.5.2.5 Conclusions from Local Moment vs. Curvature Results for 12-Inch
Specimens

As was observed in Sections 5.5.2.2 and 5.5.2.3, the PAPS analysis using the UL
formulation gave the closest fit of the three formulations to the experimental results.
Moreover, there is a major theoretical advantage for the UL formulation over the ESS and
TL formulations. As pointed out in Section 5.3.1, when true stress is plotted against
logarithmic strain, tension, compression, and torsion test results coincide closely.
However, when plotted in engineering stress vs. strain or 2nd Piola-Kirchhoff stress vs.
Lagrangian strain measures, these coupon test curves diverge considerably at large strains.
Figure 5.13 shows an example (Crandall and Dahl 1959) for which the tension and
compression tests result in divergent curves if drawn in engineering stress vs. strain
measures. However, the results of the same tension and compression tests coincide if they

are plotted in true stress vs. strain terms.

In the program PAPS, the results of the tension tests are used for both tensile and
compressive parts of the cross-section. Therefore, only the UL formulation handles the
compressive part of the cross-section properly. As a result, only the PAPS results with
the UL formulation are used in the subsequent presentations.
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5.5.3 Local Moment vs. Curvature Response for Test Specimens Using
Updated Lagrangian Formulation

5.5.3.1 General

In this second phase of the analysis, the program PAPS was used to develop the
local moment vs. curvature response for each test specimen. The UL formulation, which
was determined in Section 5.5.2.5 to be the most appropriate formulation, was used in
these analyses. Two different strain-hardening models, i.e., the isotropic hardening and
kinematic hardening models, were used to obtain the local responses of the test specimens.

5.5.3.2 Presentation of the Results

In the following, the results of the PAPS analyses with the UL formulation and
using isotropic and kinematic hardening models are presented for the local response of the
test specimens. The analytical results are compared with the experimental results of both
plain and girth-welded specimens. Note that the experimental data for 20-inch plain
specimens was not sufficient to obtain local moment vs. curvature response curves.
However, the global responses of these specimens are available, and they will be compared
with the results of the third phase of the analysis in Section 5.5.4.2.

UGA12 and UGA12W
The analytical and experimental curves for the local moment vs. curvature

response of specimens UGA12 and UGA12W are shown in Fig. 5.14. It can be seen that
the isotropic and kinematic hardening results are identical, and they agree well with the
test results up to the softening point.

HGA12 and HGA12W

The analytical and experimental curves for the local moment vs. curvature
response of specimens HGA12 and HGA12W are shown in Fig. 5.15. The isotropic and
kinematic hardening results are close to each other and they agree with the test results up
to the softening point.

DGA12 and DGA12W
The analytical and experimental curves for the local moment vs. curvature

response of specimens DGA12 and DGA12W are shown in Fig. 5.16. It can be seen that
the isotropic and kinematic hardening results do not agree with each other. Figure 5.16
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shows that the isotropic hardening curve is higher than the kinematic hardening curve.
Also, it is evident that the isotropic hardening curve is in better agreement with the test
results than is the kinematic hardening curve.

UGA20W-2

The analytical and experimental curves for the local moment vs. curvature
response of specimen UGA20W-2 are shown in Fig. 5.17, where it is seen that the
isotropic and kinematic hardening results are identical. The reason that the experimental
curve is shifted somewhat to the right is that it is a reloading response of the pipe after it
was permanently bent at the beginning of the test (see Section 3.3.4). Nevertheless, if an
imaginary loading response is extrapolated from the reloading response, the analytical

curve seems to fit closely.

HGA20W

The analytical and experimental curves for the local moment vs. curvature
response of specimen HGA20W are shown in Fig. 5.18. As shown, the isotropic and
kinematic hardening results are close to each other and they are in reasonable agreement
with the test results up to the softening point.

DGA20W

The analytical and experimental curves for the local moment vs. curvature
response of specimen DGA20W are shown in Fig. 5.19. It is apparent that the isotropic
hardening curve is considerably higher than the kinematic hardening curve. In addition,
Fig. 5.19 shows that the isotropic hardening curve is in much better agreement with the
test results than is the kinematic hardening curve. This issue is addressed in Section
5.5.3.3.

5.5.3.3 Conclusions from Local Moment vs. Curvature Curves

It is concluded from the observations in Section 5.5.3.2 that the PAPS results
using the isotropic hardening model fit the test results satisfactorily. The isotropic and
kinematic hardening results are identical for the non-pressurized specimens (Figs. 5.14 and
5.17). However, for the half-pressurized specimens, the isotropic and kinematic hardening
results, though close to each other, are not identical (Figs. 5.15 and 5.18). This is because
in the pressurized pipes the state of stress is biaxial, whereas for the non-pressurized pipes

a uniaxial state of stress exists.
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For the fully-pressurized specimens, the kinematic hardening model gives a
significantly lower response than do the experimental and isotropic hardening results (Figs.
5.16 and 5.19). This is because the fully-pressurized specimens plastify due to the internal
pressure alone, and, by applying the axial load, the entire cross-section is subjected to
compressive yielding. When bending is superimposed, a portion of the cross-section is
unloaded elastically and undergoes tensile yielding. In these situations where reverse
loading occurs, the isotropic and kinematic hardening models respond quite differently.
This is because in the isotropic hardening model the yield surface expands as
elastic—plastic loading progresses. In the kinematic hardening model, however, the yield
surface preserves its size and only translates due to elastic-plastic loading. Under the
reverse loading that occurs in the fully-pressurized specimens, the stress state moves inside
the yield surface to meet the surface at a different region. Thus, the subsequent stress
state at yield could be quite different in the two models.

The kinematic hardening model was created to handle the reverse loading
situations. Thus, it is paradoxical that for the reverse loadings in this investigation, the
kinematic hardening model does not give good results. In conclusion, while the isotropic
hardening model performs satisfactorily, in this study the kinematic hardening model has

proved to be unreliable.

5.5.4 Numerical Results for Global Response of Test Specimens

5.5.4.1 General

In this third phase of the analysis, the global moment vs. curvature responses of the
test specimens are predicted up to the softening point. This is carried out by the PDA
program using the local responses of phase two, obtained from the PAPS output.
Although obtaining the analytical global response requires a second process, the situation
is the reverse of that required in obtaining the experimental global response. Analytically,
the local response is determined direcfly and the global response is derived from it.
However, experimentally, the global response is determined directly and the local response
is derived from it (see Section 3.2.5.2).

Because of insufficient test data for 20-inch plain specimens (Mohareb et al. 1994),
_the experimental local moment vs. curvature responses could not be obtained for
comparison with the analytical predictions. Nevertheless, the experimental global
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responses of the 20-inch plain pipes are available (presented in Chapter 3), and they are
compared with their analytical counterparts in the following section.

5.5.4.2 Presentation of Results for Test Specimens

The analytical global moment vs. curvature curves presented herein are the outputs
of the program PDA. They have been obtained by using the PAPS local moment vs.
curvature results of Section 5.5.3 as input. The local moment vs. curvature results
presented herein are those obtained by the UL formulation (the best formulation) and both
the isotropic and the kinematic strain-hardening models. In the following, the analytical
and experimental results for the global response of the test specimens are presented. In
the plots to be presented, the moment value is the average of the two end moments and
the curvature is the relative rotation of the specimen ends divided by the specimen length.

UGA12 and UGA12W

The analytical and experimental curves for the global moment vs. curvature
response of specimens UGA12 and UGA12W are shown in Fig. 5.20. The isotropic and
kinematic hardening results are identical and they agree with the test results up to the

softening point.

HGA12 and HGA12W

The analytical and experimental curves for the global moment vs. curvature
response of specimens HGA12 and HGA12W are shown in Fig. 5.21. The isotropic and
kinematic hardening results are close to each other and they agree with the test results up

to the softening point.

DGA12 and DGA12W

The analytical and experimental curves for the global moment vs. curvature
response of specimens DGA12 and DGA12W are shown in Fig. 5.22. As can be seen, the
isotropic and kinematic hardening results are not in good agreement with each other.
Also, it can be seen in Fig. 5.22 that the isotropic hardening curve is in good agreement
with the experimental curves but the kinematic hardening curve is noticeably lower than
both the experimental curves.
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UGA20 and UGA20W-2

The analytical and experimental curves for the global moment vs. curvature
response of specimens UGA20 and UGA20W-2 are shown in Fig. 5.23, where it is seen
that the isotropic and kinematic hardening results are identical. The good agreement’
between the analytical curve and the experimental curve for UGA20 is evident in Fig.
5.23. The reason that the experimental curve for UGA20W-2 has shifted somewhat to the
right is that it is a reloading response of the pipe after being permanently bent at the
beginning of the test.

HGA20W

The analytical and experimental curves for the global moment vs. curvature
response of specimen HGA20W are shown in Fig. 5.24. The isotropic and kinematic
hardening results are in close agreement, and they are in reasonable agreement with the
test result up to the softening point.

DGA20 and DGA20W

The analytical and experimental curves for the global moment vs. curvature
response of specimens DGA20 and DGA20W are shown in Fig. 5.25. It can be seen that
the isotropic hardening curve is considerably higher than the kinematic hardening curve.
As was the case in Fig. 5.19, Fig. 5.25 shows that the isotropic hardening curve is in much
better agreement with the test results than is the kinematic hardening curve.

5.5.4.3 Conclusion

It can be concluded from the observations in Section 5.5.4.2 that the analytical
results using the isotropic hardening model fit the test results satisfactorily. The isotropic
and kinematic hardening results are identical for the non-pressurized specimens (Figs. 5.20
and 5.23). However, for the half-pressurized specimens, the isotropic and kinematic
hardening results are not identical, though they are close to each other (Figs. 5.21 and
5.24). For the fully-pressurized specimens, the kinematic hardening model gives a
significantly lower response than do the experimental and isotropic hardening results (Figs.
5.22 and 5.25).

These observations are similar to those for the local moment vs. curvature
responses of the specimens. This is because the analytical local moment vs. curvature
response (PAPS output) is used by the PDA program to obtain the global response.
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Because of the poor performance of the kinematic hardening model for the giobal
response of the fully-pressurized specimens, it is not recommended for use herein. The
UL formulation with the isotropic hardening model appears to be the most appropriate for
the analysis of line pipe under combined loadings.
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Fig. 5.1 Free body diagram of end segment
- of test specimen

Fig. 5.2 Free body diagram of a half-cylindrical |
portion of test specimen



Fig. 5.3 von Mises yield criterion in two dimensions
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6 SUMMARY AND RECOMMENDATIONS

6.1 SUMMARY AND CONCLUSIONS

The main objective of this work was to establish an experimental data base that
describes the structural response of girth-welded pipes. To that end, a series of tests were
carried out on seven girth-welded line pipe specimens. Four of the specimens had a
diameter of 20 in. (508 mm) and a D/t ratio of 63. The other three had a diameter of
12.75 in. (324 mm) and a D/t ratio of 50. All specimens were 1.69 m long and contained
girth welds at their mid-length. The specimens were subjected to constant internal
pressure, constant axial load, and monotonically increasing curvature. The latter two
loadings simulated the thermal and differential settlement effects. The experimental results
consisted of the load vs. rotation response, plots of strain and displacement profiles along
the extreme tensile and compressive fibers, and plots of curvature along the length of each

specimen.

Ovalization was found to be of no significance in the tests. Non-pressurized
specimens wrinkled suddenly in a diamond shape (inward wrinkle), and no other wave or
distortion was observed at locations other than in the wrinkled segment. In the case of
pressurized specimens, the wrinkle formed as a single outward bulge. This was initially
one of the four waves, or ripples, that could be detected by close visual examination. All
of the specimens began to soften when the wrinkles became visible.

The strain localization began slowly at the initiation of softening and intensified
rapidly thereafter. For non-pressurized pipes, the initiation of buckling coincided with the
initiation of wrinkling (softening). However, for pressurized pipes, the buckling waves
appeared on the intrados of the pipe well before the wrinkling (softening) occurred. In
addition, local deformations remained contained and relatively small prior to wrinkling.
Thus, it was decided that the compressive strain at the softening point is a better measure
for limiting compressive strain than is the compressive strain at the onset of buckling.
These observations agree, in general, with those for the plain pipes reported by Mohareb
et al. (1994). Empirical equations for critical strain values were obtained for both plain
pipe and girth-welded pipe based on the onset of wrinkling. The critical strain values for
girth-welded pipes were found to be approximately 60% of those for corresponding plain

pipes.
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Both global and local moment vs. curvature responses were obtained for each of
the plain and girth-welded specimens. The secondary moments used to obtain the moment
at the wrinkled segment (i.e., local moment) were found to be significant. In the moment
vs. curvature curves for the wrinkled segment (i.e., the local response), the softening point
always coincided with the limit point. However, this was not the case for the end moment
vs. overall curvature curves (i.e., the global response), where the softening point
sometimes occurred shortly after the limit point.

As was the case for the plain pipes, when the internal pressure was increased, the
rotation capacity increased as well but the ultimate moment decreased. The global
moment vs. curvature responses showed that the ultimate end moments for the pipes with
and without girth weld were almost equal. Nevertheless, the pressurized girth-welded
pipes showed less rotation capacity than did their plain counterparts.

In the second phase of this project, a numerical model was developed to simulate
the local and global moment vs. curvature responses of line pipe up to local buckling. The
model is based on incremental theory of plasticity and employs several types of strain-
hardening models. Different stress vs. strain measures were provided in the numerical
model. The computer programs PAPS and PDA were developed to generate the local and
global moment vs. curvature responses based on the numerical model. Analytical results
were obtained for the test specimens and were compared with the test results. It was
concluded that the UL (updated Lagrangian) formulation with isotropic-hardening is the
most appropriate model for the analysis of line pipe under combined loadings.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The number of tests that have been carried out on girth-welded line pipe is very
small. More tests need to be performed on a wider range of pipe size in order to establish
a reliable experimental data base.

Future experimental programs on line pipe should include pipes produced by
different manufacturing processes. The influence of the effects of fabrication on pipe
behavior, such as the difference in behavior between spiral pipe and DSAW pipe, is
expected to be significant. However, to date the effect of the manufacturing process has
not been adequately investigated. It is anticipated that each manufacturing process will
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have its own characteristic strain values associated with the local buckling phenomenon.
It would be desirable to establish the limiting values relevant to each manufacturing

process.

Bending is not the only effect of imposed deformations. Depending on the ground
slope and pipe lay-out, imposed deformations can subject the pipe to high shear and
torsional loadings. Therefore, it is desirable that tests that include shear and torsion in
combination with bending be carried out on line pipe.
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APPENDIX A

User's Manual for Program PAPS

A.1 General

Program PAPS computes the moment vs. curvature response for the cross-section
of a closed-ended pipe subjected to internal pressure and external axial load. The program
employs a variety of incremental theories of plasticity considering no change in the cross-
section configuration. Thus, ovalization and local buckling are not taken into account.

The loading sequence is similar to that for eccentric column types of test
specimens: pressure is applied first, axial load is applied next, and finally the bending
moment is applied. In the first and second stages of loading, the entire cross-section has
uniform states of stress and strain. Upon bending, however, the cross-section is
discretized into a number of discrete elements in order to represent the variation in the
stress and strain values around the cross-section (see Fig. 5.4). Only one-half of the cross-
~ section needs to be considered because of the symmetry about the plane of bending.

The program is equipped with different choices of stress and strain measures,
namely, engineering stress and strain, 2nd Piola-Kirchhoff stress and Green-Lagrange
strain, and true stress and logarithmic strain. In addition, the program contains a mixed
hardening model using the Prager and Ziegler kinematic hardening rules as alternatives.
The calculations can be carried out in two or three dimensions.

Program PAPS is written in FORTRAN 77 language. The program is unit
independent. That is, any consistent set of units can be used. The input and output files
for program PAPS are described in the following sections.

A.2 Input

The input file for program PAPS consists of the geometric measures of the pipe
cross-section, the magnitudes of the loads, the indices prescribing desired options for the
solution procedure, and the material stress vs. strain response. The input file must be
under the name IN and located in the same directory as that of the program. The input file

structure is described in the following subsections.
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A2.1 Linel

- TITLE Format (A80)
This line allows for inputting a title. The title will appear on the top of the output file.

A.2.2 Line2

1D:

ISS:

LOP:

ID, ISS, HM, NP, LOP Format (*)

Index for the dimension of the stress and strain space in the solution
EQ. 0; calculations in two-dimensional space
EQ. 1; calculations in three-dimensional space

Index for the type of the stress and strain measures used in the analysis
EQ. -1; 2nd Piola-Kirchhoff stress and Green-Lagrange strain
EQ. 0; engineering stress and strain
EQ. 1; true (Cauchy) stress and logarithmic strain

Mixed hardening parameter (a real value)

—1< HM < 0; mixed hardening using the Prager kinematic hardening rule

0 < HM <1; mixed hardening using the Ziegler kinematic hardening rule

" Note: the actual hardening parameter (denoted by M in Chapter 5) is always equal
to the absolute value of HM. Therefore, for HM equal to zero, the mixed
hardening model reduces to the isotropic hardening model. Also, for
HM =+1, the mixed hardening model becomes an entirely kinematic

hardening model.
Number of the data points defining the material stress vs. strain curve

Note: the first data point is taken as zero stress and zero strain by default.
Therefore, this point should not be included in the data points input herein.
Index for saving the values of stress and strain around the cross-section at each

curvature step
EQ. 0; no stress and strain data saved
EQ. 1; stress and strain data saved

A23 Line3

R:
T:
PR:

. R, T,PR, P, X0 Format (*)

Inside radius of the pipe
Thickness of the pipe wall
Poisson's ratio of the pipe material
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P: Internal pressure
XO0:  External axial load

A.2.4 Line 4

NE, NPR, NAX, CM, NC Format (*)
NE: Number of divisions (elements) around one-half of the cross-section (see Fig. 5.4)
Note: It is recommended that NE be in the range of 40 to 60. Values too small for
NE decrease the accuracy of the results, and values too large for NE
increase the cost of the computation unnecessarily.
NPR: Number of the pressure increments subsequent to the initiation of yielding
Note: The NPR value is used only if plastification starts during the pressurization
before the application of other loads. Since the elastic—plastic loading at
this stage is done for the entire cross-section and without any iteration,
using large values for NPR will not be costly. Therefore, to increase the
accuracy of the results, values in the range of 1000 to 2000 are
recommended for NPR.
NAX: Number of the axial force increments subsequent to the initiation of yielding
Note: The NAX value is used only if plastification starts during the application of
axial load before the imposition of curvature. Since the elastic—plastic
loading at this stage is done for the entire cross-section and with no
iteration, using large values for NAX will not be costly. Therefore, to
increase the accuracy of the results, values in the range of 500 to 2000 are
recommended for NAX.
CM: Final value of curvature
NC: Number of the curvature increments subsequent to the initiation of yielding
Note: The choice of the value for NC depends on the distance between the
yielding curvature (or zero when plastification has already started at the
beginning of bending) and the final value of curvature, CM. However, the
following range can be used as a tentative guide.
0.25x10” CM < NC <10’ CM
where CM is in terms of (1/mm). Moreover, by choosing an appropriate
value for the tolerance BO (described in the following), a lower value for
NC can be used.



A.25 Line 5

DEL, C0, TOL, BO - Format (*)
Angular increment for the position of the assumed bending neutral axis
(corresponding to 8y in Section 5.4.1, Step 4e.2); values in the order of 10~

DEL:

Co:

TOL:

BO:

radians are recommended.
Modifying value for the initial curvature increment.
Note: When the curvature increments are very small, the bending neutral axis

sometimes tends to be very close to the edge of the cross-section for the
first curvature increment. This leads to the failure of the program to
determine the position of the bending neutral axis. In such a case, the first
curvature increment is increased by successive values of CO until the
bending neutral axis can be located. Values of the order of 10~ (1/mm) are
recommended for CO.

Tolerance for the axial force of the cross-section (corresponding to B in Section
5.4.1, Step 4e); values of the order of 10™ are recommended.

Step tolerance for effective stress in elastic—plastic increments (dimensionless)
Note: The formulation implemented in the program is based on small stress and

strain increments. To make sure that the increments taken are small, the
relative increase in the value of o, due to the increment is compared with
BO. If the relative increase in 6, exceeds BO, the increment will be broken

into sub-increments that satisfy the requirement. A value of 0.01 for BO is
recommended herein.

A.2.6 Pipe Material Property

The data points for the stress vs. strain response of the pipe material are given in

NP lines (see Section A.2.2) as follows.

A.3 Output

~ STRAIN, STRESS Format (*)  repeat for all data points

Program PAPS generates two output files. These are

(a) file OU, containing the moment vs. curvature response for the cross-section, and
(b) file OS, containing stress and strain values around the cross-section of the pipe for

each curvature increment.
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Since the latter output file (OS) can be very large, the generation of the file is optional. (It
is controlled by the parameter LOP described in Section A2.2.)

~ In the output file OU, the curvature values are scaled by a factor of 10%, and the
moment values are scaled by a factor of 105 In addition, FO is the position angle
(radians) for the bending neutral axis (corresponding to vy, in Fig. 5.4) and EYave is the
average hoop strain around the cross-section in percent.

In the output file OS, SX is the longitudinal stress; EX, EY, and EZ are total strain
values in longitudinal, hoop, and through-thickness directions; and PEX, PEY, and PEZ
are the corresponding plastic strains. For each curvature step, there is a block of data
containing rows of above-mentioned values for -elements around one-half of the cross-
section (see Fig. 5.4). These rows from top to bottom correspond to the element number

one to the element number NE, sequentially.

A.4 Example

As examples of input and output files, those used to model specimen DGAI2W
(see Table 2.1) are presented in the following. These results form the basis for the plots
designated by PAPS-UL (Iso.) in Figs. 5.11 and 5.16.

A.4.1 Input File

DGA12W/3-D analysis/true stress vs. log. strain/isotropic hardening
1,1,0,11, 1

155.7365, 6.477, 0.3, 10.45, 964E3

40, 2000, 2000, 2E-4, 50

1E-3, 1E-7, 1E-5, 0.01

0.001  199.6
0.002 314.1
0.003  356.3
0.005 378.0
001 3841
002 3973
004 4195
0.06 4336

0.08 442.1
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0.14 454.3
0.2 455.5

A.4.2 Output File
A.4.2.1 File OU

DGA12W/3-D analysis/true stress vs. log. strain/isotropic hardening

ISOTROPIC HARDENING, HM = 0.0

3-DIMENSION STRESS

TRUE STRESS & STRAIN

STEP TOLERANCE B0 = 0.100E-01

No. OF ELEMENTS = 40

INTERNAL RADIUS = 155.7365

THICKNESS = 6.4770

POISSON RATIO = 0.3000

AXJALLOAD  =0.96400E+06

INTERNAL PRESSURE= 10.450

INITIAL CURVATURE INCREMENT= 0.100E-06
FINAL CURVATURE = 0.200E-03
TOLERANCE FOR AXIAL LOAD =0.100E-04
ANGULAR INCREMENT FOR N.A .= 0.100E-02 rad.
No. OF DIVISIONS FOR PLAS. COMP.= 2000
No. OF DIVISIONS FOR PLAS. PRES.= 2000
No. OF CURVATURE INCREMENTS = 50
THE GIVEN STRESS-STRAIN CURVE:

STRAIN STRESS
0.000000  0.000000
0.001000 199.600000
0.002000 314.100000
0.003000 356.300000
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0.005000 378.000000
0.010000 384.100000
0.020000 397.300000
0.040000 419.500000
0.060000 433.600000
0.080000 442.100000
0.140000 454.300000
0.200000 455.500000

e ke 2k ok o ok ok ok ok ke o ok e ke ok ok ke o ok ke ok

NON-LINEARITY STARTS DURING PRESSURIZING THE PIPE

PRESSURE AT FIRST YIELD = 0.959439E+01

CURV. MOMENT FO(rad) EYave(%)

x 1E-4 x 1E6

0.00000, 0.00000 , 0.000000 ,
0.04000, 53.6942, 0.225137,
0.08000, 88.6580, 0.263074,
0.12000, 108.8171,0.333588,
0.16000 , 123.0783 ,0.391045
0.20000 , 131.2061 , 0.440572
0.24000 , 136.9002 , 0.480098
0.28000 , 141.1112,0.508097
0.32000, 144.6289 ,0.530327,
0.36000 , 147.8192,0.548147
0.40000 , 150.6206 , 0.563001 ,
0.44000 , 153.0986 , 0.572974
0.48000, 155.3909 , 0.580489 ,
0.52000 , 157.5699, 0.586440
0.56000 , 159.6541 , 0.590890
0.60000 , 161.6472 ,0.594253
0.64000, 163.6130,0.597147,
0.68000 , 165.4374 ,0.599575
0.72000 , 167.1408 , 0.600935 ,

0.00
0.16
0.19
0.22
0.26
0.31
0.35
0.40
0.45
0.50
0.55
0.59
0.64
0.69
0.73
0.78
0.83
0.87
0.92
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0.76000 , 168.7764 ,0.601179, 0.96
0.80000, 170.3681 , 0.600948 , 1.01
0.84000, 171.8991,0.599759, 1.05
0.88000, 173.3979, 0.598306, 1.09
0.92000, 174.8816,0.596948, 1.14
0.96000, 176.3352,0.595542, 1.18
1.00000, 177.7856 ,0.594214, 1.22
1.04000, 179.1971,0.592274, 1.26
1.08000, 180.5528,0.589513, 131
1.12000, 181.9053,0.586942, 1.35
1.16000, 183.2569,0.584532, 1.39
1.20000, 184.6058 , 0.582274 , 1.43
1.24000, 185.9349,0.579921, 1.47
1.28000, 187.2591,0.577588, 1.51
1.32000, 188.5418,0.575310, 1.55
1.36000, 189.7483 ,0.572815, 1.59
1.40000, 190.9323, 0.570491, 1.63
1.44000 , 192.0980, 0.568313, 1.67
1.48000, 193.2346,0.566091, 1.71
1.52000, 194.3295,0.563394, 1.74
1.56000 , 195.4147,0.560847, 1.78
1.60000, 196.4928 ,0.558437, 1.82
1.64000, 197.5662,0.556149, 1.86
1.68000, 198.6317,0.553982, 1.90
1.72000, 199.6939,0.551917, 1.94
1.76000 , 200.7512,0.549953, 1.97
1.80000, 201.8014 , 0.548061 , 2.01
1.84000, 202.8229,0.545824, 2.05
1.88000, 203.8355,0.543631, 2.09
1.92000 , 204.8457,0.541536, 2.12
1.96000 , 205.8564 ,0.539525, 2.16
f 2.00000, 206.8578 ,0.537616, 2.20
END OF THE PROGRAM
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A.4.2.2 File OS

The first block of data in the output file OS is presented below as a typical block.
It contains the values of longitudinal stress and strains for the first curvature increment for

all the elements around the cross-section.

CURV.=0.04000 MOMENT= 53.6942
SX EX EY EZ
-116.045 -0.128E-02 0.202E-02 -0.463E-03
-115.784 -0.128E-02 0.201E-02 -0.463E-03
-115.264 -0.127E-02 0.201E-02 -0.462E-03
-114.504 -0.126E-02 0.200E-02 -0.461E-03
-113.471 -0.125E-02 0.198E-02 -0.460E-03
-112.189 -0.123E-02 0.196E-02 -0.458E-03
-110.681 -0.120E-02 0.194E-02 -0.456E-03
-108.916 -0.118E-02 0.192E-02 -0.453E-03
-106.926 -0.115E-02 0.189E-02 -0.450E-03
-105.372 -0.112E-02 0.185E-02 -0.444E-03
-102.434 -0.108E-02 0.182E-02 -0.442E-03
-96.922 -0.104E-02 0.180E-02 -0.447E-03
-91.027 -0.100E-02 0.177E-02 -0.451E-03
-84.752 -0.960E-03 0.175E-02 -0.456E-03
-78.153 -0.915E-03 0.172E-02 -0.462E-03
-71.232 -0.869E-03 0.170E-02 -0.467E-03
-64.049 -0.822E-03 0.167E-02 -0.472E-03
-56.626 -0.773E-03 0.164E-02 -0.477E-03
-48.985 -0.724E-03 0.161E-02 -0.482E-03
-41.191 -0.674E-03 0.158E-02 -0.487E-03
-33.272 -0.624E-03 0.155E-02 -0.492E-03
-25.116 -0.574E-03 0.152E-02 -0.498E-03
-15.258 -0.525E-03 0.151E-02 -0.513E-03

PEX PEY PEZ
-0.327E-03 0.587E-03 -0.260E-03
-0.324E-03 0.584E-03 -0.260E-03
-0.319E-03 0.577E-03 -0.258E-03
-0.311E-03 0.567E-03 -0.256E-03
-0.301E-03 0.554E-03 -0.253E-03
-0.288E-03 0.537E-03 -0.249E-03
-0.273E-03 0.518E-03 -0.245E-03
-0.256E-03 0.495E-03 -0.239E-03
-0.236E-03 0.470E-03 -0.233E-03
-0.212E-03 0.437E-03 -0.225E-03
-0.191E-03 0.410E-03 -0.219E-03
-0.181E-03 0.396E-03 -0.215E-03
-0.170E-03 0.381E-03 -0.211E-03
-0.159E-03 0.365E-03 -0.207E-03
-0.147E-03 0.349E-03 -0.202E-03
-0.136E-03 0.332E-03 -0.196E-03
-0.124E-03 0.315E-03 -0.191E-03
-0.113E-03 0.298E-03 -0.185E-03
-0.102E-03 0.280E-03 -0.179E-03
-0.907E-04 0.263E-03 -0.172E-03
-0.804E-04 0.245E-03 -0.165E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03

-5.552 -0.476E-03 0.150E-02 -0.527E-03 -0.714E-04 0.230E-03 -0.158E-03
3.940 -0.429E-03 0.148E-02 -0.541E-03 -0.714E-04 0.230E-03 -0.158E-03
13.160 -0.383E-03 0.147E-02 -0.555E-03 -0.714E-04 0.230E-03 -0.158E-03
22.052 -0.338E-03 0.145E-02 -0.569E-03 -0.714E-04 0.230E-03 -0.158E-03

30.561 -0.296E-03 0.144E-02 -0.581E-03

-0.714E-04 0.230E-03 -0.158E-03
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38.634
46.221
53.277
59.757
65.621
70.834
75.364
79.182
82.265
84.594
86.154
86.937

-0.255E-03 0.143E-02 -0.593E-03
-0.217E-03 0.142E-02 -0.605E-03
-0.182E-03 0.141E-02 -0.615E-03
-0.150E-03 0.140E-02 -0.625E-03
-0.120E-03 0.139E-02 -0.634E-03
-0.942E-04 0.138E-02 -0.642E-03
-0.715E-04 0.137E-02 -0.649E-03
-0.524E-04 0.137E-02 -0.654E-03
-0.370E-04 0.136E-02 -0.659E-03
<0.253E-04 0.136E-02 -0.662E-03
<0.175E-04 0.136E-02 -0.665E-03
-0.136E-04 0.136E-02 -0.666E-03

-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
-0.714E-04 0.230E-03 -0.158E-03
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APPENDIX B

Program Listing for

PLASTIC ANALYSIS OF PIPE SECTIONS (PAPS)
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APPENDIX C

User's Manual for Program PDA

C.1 General

Program PDA computes the global moment vs. curvature response of a closed-
ended pipe using the local moment vs. curvature curve output from PAPS. The program
uses an iterative procedure to incorporate secondary moments. These moments must be
added to the end moments in order to obtain the moment value at any section along the
length of the pipe. The secondary moments consist of axial force correction and the
pressure force correction as described in Section 3.2.5.2.

The program is capable of tracking the global response of the pipe only up to the
limit point (peak) of the response. In other words, it can follow the response as long as it
is ascending. It is possible to draw closer to the limit point by executing the program
several times. In each of these executions, some input parameters must be updated based

~ on the previous results.

Program PDA is written in FORTRAN 77 language. The moment and curvature
values input to the program must be consistent with the PAPS output. It means that the
curvature values must be scaled by a factor of 104, and the moment values are scaled by a
factor of 10°. The output values are also scaled by the same factors (i.e., consistent with
the PAPS output). The input and output files for program PDA are described in the
following sections.

C.2 Input

The input file for program PDA consists of the geometric measures of the pipe, the
magnitudes of the loads, the values prescribing the refinement of the increments and
tolerances, and the local moment vs. curvature response. The input file must be under the
name INX and located in the same directory as that of the program. The structure of
input file is described in the following subsections.

C.2.1 Line 1
TITLE Format (A80)
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This line allows for inputting a title to be printed at the top of the output file.

C.2.2 Line2

LR:

LR Format (A80)

Name of the file containing the local moment vs. curvature of the pipe

Note: The values of curvature and moment must comprise the first two columns of
a block of data in the input file LR, respectively. The file OU presented in
Section A.4.2.1 of Appendix A is an example for the input file containing
the local moment vs. curvature of the pipe. The values of moment and
curvature in the file OU are in the block of data below the dashed line

C.2.3 Line 3

N1:

N1, NP Format (*)
Number of rows of data in the LR file preceding the block of the local moment vs.
curvature data (for the file OU in Section A.4.2.1, N1 is the number of rows from
the beginning to the dashed line.)
Number of rows of data in the block containing the local moment vs. curvature

data

C.2.4 Line 4

RI:
XL:
PR
P

RI, XL, PR, P Format (*)

~ Inside radius of the pipe

Length of the pipe
Internal pressure
External axial load

C.2.5 Line 5

NE:

CM:

NC:

NE, CM, NC, TOL Format (*)

Number of longitudinal divisions (elements) of the half-pipe (see Fig. 5.5)

Final value of curvature at the end of the pipe

Note: It is possible that the peak point of the global response occurs prior to the
attainment of CM. In this case the program fails to continue beyond the
peak point.

Number of the end curvature increments
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Note: The initial end curvature increment is equal to CM/NC. The number of the
curvature increments equals NC if the peak point of the response occurs
after the attainment of CM. Otherwise, the number of output points will be
less than NC. However, there is an option of refining the magnitude of the
increments so as to approach the limit point more closely. The following
range is recommended for NC.

102 CM < NC < 4x10> CM
TOL: Tolerance for the relative change of the end curvature (dimensionless) used to
check the convergence of the iterative procedure; a value of 107 is recommended
for TOL.

C.2.6 Line 6

N, CL1, CL2, CL3, CL4, FAC Format (*)
N: Positive integer used to refine the end curvature increment once the overall
curvature exceeds CL1 (described below); a value of 2 is recommended for N.
Note: The parameters CL1, CL2, CL3, and CL4 are limits of curvature for a
sequence of solutions. The values of CL1, CL2, CL3, and CL4 are
improved with successive runs of the program. '
CL1: Limit for the overall curvature increment after which the first refinement in the size
of the increments is made
Note: The program carries out a refinement internally as follows.

DC
DCl=—+ Cl1
ToN (C.D)
where DC is the initial value of the end curvature increment (= CM/NC) and

DC1 is the new, refined value of the end curvature increment.

For the first execution of the program, CL1, CL2, CL3, and CL4 must be
given values greater than or equal CM to make sure they do not interfere
with the procedure. If the first execution of the program stops before
attaining CM, the value of CL1 is recommended to be set equal to the last
overall curvature in the output for the second execution (CL1 should not
exceed that value). Meanwhile, CL2, CL3, and CL4 must not be changed.
CL2: Second overall curvature limit ( > CL1) after which the current size of the end
curvature increment (DC1) is divided by 10
Note: The program carries out a refinement internally as follows.
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pc2=2¢ (C2)
10

where DC2 is the new, refined value of the end curvature increment.

For the third execution of the program, the value of CL2 is recommended to
be set equal to the last overall curvature in the output for the second
execution (CL2 should not exceed that value). Meanwhile, CL1, CL3, and
CL4 must not be changed.
CL3: Third overall curvature limit ( > CL2) after which the current size of the end
curvature increment (DC2) is divided by 10 |
Note: The program carries out a refinement internally as follows.

pc3=2¢2 (C3)
10

where DC3 is the new, refined value of the end curvature increment.

For the fourth execution of the program, the value of CL3 is recommended
to be set equal to the last overall curvature in the output for the third
execution (CL3 should not exceed that value). Meanwhile, CL1, CL2, and
CL4 must not be changed.
CL4: Fourth overall curvature limit ( > CL3) after which the current size of the end
curvature increment (DC3) is divided by FAC (the next item described below)
Note: The refinement is carried out as follows.

pca=2C8 (C.4)
FAC

where DC4 is the new, refined value of the end curvature increment.

For the fifth execution of the program, the value of CL4 is recommended to
be set equal to the last overall curvature in the output for the fourth
execution (CL4 should not exceed that value). Meanwhile, CL1, CL2, and
CL3 must not be changed.
FAC: Positive integer used to refine the end curvature increment once the overall
_ curvature exceeds CL4 (as described above); a value of 100 can be recommended
for FAC.
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C.2.7 Line 7

CLT, FT Format (*)

CLT: Overall curvature limit after which the tolerance (TOL) is divided by FT (the next
item described below)
Note: The refinement is carried out as follows.

TOL
TOL =— S
(TOL)pey = 2 (€3)

where (TOL),,,, is the new value of the tolerance.

The current tolerance may be too large for the refined values of the end
curvature increment. This results in the divergence of the solution. Upon
obtaining a diverging solution, the value of CLT should be set at a value
slightly less than the last value of overall curvature in the output file.
However, to prevent divergence, it is recommended that the value of CLT
be always set equal to CL2.

FT: Positive integer used to refine the tolerance (TOL) once the overall curvature
exceeds CLT (as described above); a value in the range of 5 to 10 is recommended
for FT.

C.3 Output

Program PDA generates an output file by the name of OUT. The first two
columns of the output file contain the overall curvature and end moment values. The rest
of the columns give the values of the secondary moment at the mid-length of the original
pipe (i.e., at the support of the half-pipe model shown in Fig. 5.5). The third column,
under the SM1 heading, contains the values of the secondary moment due to the axial
force in the pipe and the deflection of the pipe centerline. The fourth and fifth columns of
data under the SM2 and SM3 headings contain the values of two components of the
secondary moment due to internal pressure (i.e., pressure force correction, as described in
Section 3.2.5.2). The fourth column gives the values of the secondary moment resulting
from the component of the pressure force acting at the end of the pipe (i.e., P; in Fig. 5.5)
perpendicular to the original centerline of the pipe. The fifth column gives the values of
the secondary moment due to the pressure force acting on the body of the pipe in a

- deformed configuration (see Section 3.2.5.2).



C.4 Example

As examples of input and output files, those used to model specimen DGA12W are
presented herein. The PAPS output file OU, presented in Section A.4.2.1, is used as the
input file for the local moment vs. curvature response. In the following, the input and
output files for only the first execution of the PDA program are presented. These results
form the basis for the curve designated by PAPS-UL-Iso. in Fig. 5.22.

C.4.1 Input File

DGA12W Global Response

ou

46,51
155.7365,1687,10.45,964E3
100,2.000,200,1E-5
2,2.000,2.000,2.0000,2.0000,100
2.0000,5

C.4.2 Output File

DGA12W Global Response

OVERALL CURV. END MOMENT SMl1 SM2 SM3

x 1E-4 x 1E6

0.00000, 0.00000 0.00000  0.00000 0.00000
0.01017, 13.42355 0.06157 0.57349 -0.28407
0.02035, 26.84710  0.12314 1.14698  -0.56813
0.03052, 40.27065  0.18471 1.72047  -0.85220
0.04108, 53.69420  0.24918 231565 -1.14431
0.05135, 6243515 031147 2.89454 -1.43038
0.06162, 71.17610 037377 3.47346 -1.71646
0.07189, 79.91705  0.43607 4.05237  -2.00254
0.08384, 88.65800  0.51100 4.72588  -2.32367
0.09432, 93.69778  0.57488 5.31661 -2.61413
0.10480, 98.73755  0.63875 590735  -2.90459
0.11528, 103.77733  0.70263  6.49808  -3.19504
0.12834, 10881710 0.78595  7.23423  -3.53932
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0.13903,
0.14973,
0.16242
0.18082,
0.19250,
0.20702,
0.22310,
0.24358
0.26006
0.27912,
0.30043
0.32425,
0.34407
0.36653
0.39177,
0.42004 ,
0.44603
0.47436
0.50504 ,
0.53865 ,
0.57376,
0.61433
0.66166 ,
0.71664
0.77168,
0.83752,
0.91339,
1.01458 ,

112.38240
115.94770
119.51300
123.07830
125.11025
127.14220
129.17415
131.20610
132.62963
134.05315
135.47668
136.90020
137.95295
139.00570
140.05845
141.11120
141.99063
142.87005
143.74947
144.62890
145.42648
146.22405
147.02163
147.81920
148.51955
149.21990
149.92025
150.62060

0.85145
0.91694
1.00076
1.12117
1.19511
1.29319
1.39948
1.53986
1.65219
1.78388
1.93095
2.09508
2.23291
2.39186
2.57194
2.77458
296137
3.16563
3.38705
3.63080.
3.88949
4.19188
4.54786
4.96354
5.38053
5.88365
6.46379
7.24815

7.83708

8.43994

9.15564

10.19251
10.85108
11.66967
12.57576
13.73059
14.65951
15.73344
16.93474
18.27759
19.39499
20.66097
22.08374
23.67738
25.14243
26.73933
28.46868
30.36298
32.34211
34.62937
37.29712
40.39649
43.49879
47.21001
51.48692
57.19073

-3.83426
-4.12920
-4.45056
-4.92103
-5.23186
~5.58892
~5.99495
-6.48914
-6.88942
-7.34354
-7.85264
-8.42301
-8.89171
-9.40941
-9.98436
-10.62395
-11.20958
-11.84473
-12.53156
-13.27816
-14.03906
-14.90214
-15.89322
-17.03468
-18.17281
-19.51404
-21.05815
-23.06671
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APPENDIX E
STRAIN, STRESS AND CURVATURE FORMULATION

E.1 Strain Measures

In the program PAPS, at each curvature increment, the longitudinal strains for the
elements around the cross-section are calculated in engineering strain measure. If any
formulation other than ESS is chosen (i.e., UL or TL), the engineering strains need to be
converted into a different type of strain (see Sect. 5.2.2.1). The definition and conversion
formulas for different strain measures are descussed in the following.

a. Lagrangian Strain

" Figure E.1 shows the original and deformed configurations of an infinitesimal
element of the pipe. The directions in the figure are as defined in Sect. 5.2.2.3.3 (i.e,
subscripts 1, 2, and 3 correspond to the longitudinal, circumferential, and through-
thickness directions, respectively. In the program PAPS, an infinitesimally short pipe is
considered to undergo symmetric bending. Therefore, the deformation of each element of
the pipe is only straining with no rigid body motion. As a result, the three principal
directions remain fixed throughout the deformation.

As Fig. E.1 shows, a; and x; are the ith coordinates of a body point in the original

and deformed configurations, respectively. The Lagrangian strain (or Green's strain in the
longitudinal direction, E, is expressed as (Fung, 1965)

2 2 2
s OR R I
Where u; is the displacement in the ith direction defined by
u; =X; — 3 (E.2)
Hence in differential form,
du; = dx; —da; (E.3)

Since the directions 1, 2, and 3 are the principal axes and always remain fixed,
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Suy _ Ou;
MM 4
aal 6a1 (E )

Thus, Eq. (E.1) becomes

2
du; 1{éu
E,=E =—1+-[ =L .

X 1 oa, Z(Gal) (E.5)

where % is, by definition, the engineering strain, €.

ay
e = e =20 (E.6)
6a1'
Hence,
. .
E, =¢, +—;— (E.7)

Similarly, for the ith direction,

e-z
Ei =€ +—é' (ES)

b. Logarithmic (true) strain

The updated Lagrangian strains can be reduced to the logarithmic strains when the
principal axes remain fixed during deformation. The logarithmic strain in the ith direction,
g;, can be expressed in terms of the engineering strain, e;, as (Hill, 1950)

g; =ln(l+¢;) (no sum) (E.9)

E.2 Area

Two measures of area are used in the formulations herein. They are the original
and deformed areas, shown by dA, and dA in Fig. E.1, respectively. Assuming the
volume of the element in Fig. E.1 remains constant during the deformation (this is a direct
result of the flow rule for a plastic deformation, and is approximately valid for an elastic

deformation),



[S—

[

-
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dA dxl = dAO da.l (E 10)
By substituting dx; from Eq. (E.3),

dA(l +i“—l) =dA, | (E.11)
dal

du, . . N .
where E—l is the engineering longitudinal strain, ¢;. Hence,
a)

dA
dA =—0 12
l+e1 (E )

E.3 Stress Measures

a. Engineering stress

Engineering stress is defined by the force per unit of the original area. Thus, the

_engineering longitudinal stress in Fig. E.1b can be expressed as

dT
=t (E.13
%179 . )

where dT; is the longitudinal component of the infinitesimal force vector acting on the

area perpendicular to the longitudinal direction (part of the cross-section area). Here the
longitudinal direction is a principal direction, therefore, dT, is the total force acting on the

element surface.

b. True (Cauchy) stress

True stress is defined by the force per unit of the current area. Thus, the true
longitudinal stress in Fig. E.1b can be written as

dg

=—1 .14

"=3A (E.14)
From Egs. (E.12), (E.13), and (E.14), the true stress is expressed in terms of the

engineering stress as

11=61(1+el) (E.15)
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similarly, in general,

1;,=0;(1+¢;) (ho sum) (E.16)

¢. 2nd Piola-Kirchhoff stress

Virtual forces dTi(k), used to define 2nd Piola-Kirchhoff stress, are defined by
(Fung, 1965)

Oa;
dT® = =L4T; (E.17)
: .
S

Substituting for x; from Eq. (E.2) and summing on j in Eq. (E.17) gives

dai dTl _ dTl
dai + dui 1+ €;

(no sum) (E.18)

dTi(k) -

The 2nd Piola-Kirchhoff stress in the ith direction, s;, (for the element shown in Fig. E.1)
is defined by

dr®

§; = ZTW) (no sum) (E.19)

where (dA,); is the original area perpendicular to the ith direction. Thus, for the
longitudinal direction (note that (dA), = dAg)

4T,
S = .20
1= A, (E.20)

Substituting dT,™ from Eq. (E.18) yields

1 dTl _ O (E21)

§ = =
! 1+e1 dAO 1+e1

Similarly, in the ith direction,

__Gi
1+ei

(no sum) (E.22)

§;
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E.4 Calculation of Force in Different Formulations

The longitudinal force for each element, dTj, is used to calculate the axial force
and bending moment of the cross-section. The longitudinal force, dTj, is obtained for

different formulations as follows.

a. Engineering stress and strain (ESS)

From Eq. (E.13),
dT, =0, dA, (E.23)

b. Updated Lagrangian formulation (UL)
From Eqgs. (E.12) and (E.14),

dA
dTl = 1,'1 1+ eol (E24)

c. Total Lagrangian formulation (TL)

Equations (E.18), (E.20), and (E.21) yield
dTl =8 (1 + ] ) dAO (E25)

E.5 Curvature Formulation
For the infinitesimally short slice of the pipe shown in Fig. E.2,
. da=Rda . (E.26)

where da is the length of the slice after the application of internal pressure and axial load,

R is the radius of the bending neutral axis, and dot is the angle made by the end surfaces of
the slice due to bending. By assuming that e is the engineering strain of the cross-section

at the start of bending, da can be expressed as
da=da(l+¢p) (E.27)

where da is the original length of the slice prior to any loading (see Fig. E.2).

Curvature in this study is defined as the inverse of the radius of the bending neutral
axis. Thus, from Eqs. (E.26) and (E.27), the curvature, ¢, can be written as
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_1_ da
¢_R_da(1+e0) E28)
Hence,
do=¢da(l+ey) (E.29)

From the geometry of the deformed configuration in Fig. E.2,

_dx—da(l+ep)
y

da (E30)

where dx is the length of the slice at the ordinate y, measured from the bending neutral
axis (Fig. E.2). Eliminating do from Egs. (E.29) and (E.30) gives

dx—da
da

—eo=0y(l+eg) (E.31)

Here, dx—da is, by definition, the engineering strain (e) at the ordinate y. Hence,

e=e;+oy(l+ep) (E.32)

or
=__e_—e_o_ 33
y(l+ep) ®33)

If (1+¢;) in Eq. (E.33) is replaced by 1, Eq. (E.33) is consistent with the
expressions used in Chapter 3 (e.g., Eq. (3.2)) for the experimental curvatures, . In fact,
for the test specimens, the value of e, is negligible compared to 1. Therefore, the

curvature formulas in Chapter 3 are in accord with the definition of curvature herein. !
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X (85)
A da,
da1 ' '
dag
area = dA,
>
X, (a)
X4 (ay)
(a) Original element configuration
4 X AdTa
ax

dX1 ' |

- p dT 2

—>
dx;

/ \

/ area = dA

dT,

>
Xa
Xq

(b) Deformed element configuration

Fig. E.1 Original and deformed configurations of an element of pipe slice
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A

Bending neutral axis

/

Fig. E.2 Original and deformed configurations of pipe slice
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