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® ~ Abstract
The basic issuc addressed in this study was the relation between skill and

understanding in multiplication. Of primary interest was the hypothesis that automatization
of tQe algprithmic procedure is related to greater operational and verbal understanding of
mullipujion. Al.'l additional objective was to examine possible differences in verbal and
operational aspects of understanding principles of multiplication. ,

The study was carried out with gr\ade 4 and grade 6 children and ;onsisted of three
1a§ks_. Task 1 was designed to assess the level of automatization of mulli:digit multiplication
algorithm. Automalization was assessed in terms of speed of several types of multiplication
problems that differed in complexity of the solution algorithm. Task 2 tested operational
understanding of multiplication. The measure of operational understanding was the ability to
employ short-cut strategies or helristics that were based on conceptual k;lowledge about the
sclected principles of mumplicalion. In Task 3 children’s verbal understanding was assesséd

]

in terms of explicit, verbal explanation of the principles of multiplication.

%@

With respect to the relation between skill and understanding, results ‘\?/Eféysupportive
of the automatization hypothesis for grade 6, in which speed of the algorith‘m was related to
greater ability to use and explain principles of multiplication. The hypothesis was not

. ‘ 7
" confirmed, however, for grade 4. This pattern of results may indicate that some critical level

of computational skill is necessary for the relation with conceptual knowledge to be #
established.

With respect to the relation between operational and verbal understanding, children in
both grad‘es‘wcre much more advanced in explaining ‘principles’ of multiplicatioﬁ tharn in using
them in problem solvihg. This patterr’of performance is characterized as a type of

production deficiency, that is, an inability to produce most efficient strategies despite the

presence of relevant knowledge.

%

) ¥ 4



Table of Contents -~

éha.pte,r. - Page
1. Introduction .............. e LSRR IUUPPRUTR 1
A. The Purpose and Overview of the Study ............... ... e 1

B. <Rationale for Studying Multiplication ... 2
C. Research on Multiplication ......................... USRI 2
D. Attentional Model of Knowledge Acquisition ... 4

E. An Auemional Model of Ma{hematics l,earn;-ng ................................. ® b

F. Description of the Study ................... PP U 0
Concepts and Measures ...............ccooovveieiiiiiiiiiin ]

Specific ‘Aims of the Study ...........oooooieiiiien SO T 9

I TASK 1 .......... S SO 1l
Av MO oo oo 1
SUbJECtS L n.ei i e PP 11

Materials =................ FUUTTTP [T 12

Proced‘ure B 13

B. Results ... e A e 13
Errors ..... ......................... 14

LATEICIES o evrenneeeeeeeeeee e e e e seeee e s e e aee e e st e e 14

Reliabilities of Latency Measures .............. e 16

Relations Arﬁong Latency Meaéu:ps .......... e pereeaas creereiaenerens i~ 16

Relation to CCAT and Math Survey Test .......ccvvrveivvmemmninnnn SUPTIURT 17

SUMMATY tvuvvenerrrneennenaneennenns e e e 17

08 B -] R U TS PR TP RS 18
A. Method ..coovoviimirineiiiieens SRR, SPOROPURRUSOTORROIS SRR 18

¢

SUDJECES .v.vovervevreessrenerreesenseneieens ST RARONNS |

Materials ................ Cerreneen .................................. 18

Procedure ................................... U0 APPSR 21



B R SIS e 21

Fatencies for Standard Problems ... P
Scoring and Classification of Short-cut Strategies ... 22
ANOVA on Hcuristic Usage .......... ......................................... 25
Relations Ameng Types of Heuristics ... ..., 26
Relation to CCAT and Math Survey Test ... e 26
IV TASK 3 oo e AN
A MO 28 <
S D LS L i 28
Material and PTOCRGUMIE ... .o e 28
_BA Results ....... U, SR 29
ANOVA on Explanations ...l 29
Relations Among Explanations ... 30
Relation to CCAT and Math Survey TeSt ... s 31
| Generalizalions ..., e 3]
V. RELATIONS AMONG TASKS . oo, . 33
A. Task 1 and Task 2 ..o 33
Relation Between Speed of Algorithm and Use of Heuristics ...................33
B. fTask 1 and Task 3 ... 34
\j Relation Between Speed of Algorithm and Explanation of Principles ........ 34
C. Task 2and Task 3 ..o e 35
) Relation Between Use and Explanation of Principles ............... et 35
VL. DISCUSSION ....cooiiiiiiiiineeiniiiiieenienen et e e e e e 38
A.* Relation Between Speed and Understanding .. .......... et ea e e 38
* Findings and ConcluSiONns ... coveiieiriiiiiieeiieeirr e e eee et aenens 38 -
A Comparison with Previou; Research on Multiplication ........o.............. 39
Limitations of the Study ....coiviiiiiii e | ....41
- vi



B. Relation Between Measures of Understanding .............ccooceiiiniiiiio. 4
© VI TaADIES o e 43
VIII: References ................. I TSP P PP 71
IX. Appendix 1: Task 1 ... e LTS
X. Appendix 2: Tasks 2and 3 ... ‘101‘

A7}

vii



List of Tables

Table Page
1. Problem Types for Task 1 .. o :..44

2. Percentages of Frrors on Task 1 as a Function of Age, Problem Type, and

AdmIniSration ... .........ccocoeeeiiiiiiieeiainn. USRI OO 45
3. Mean latencies and Standard Deviations for Each Problem Type '

and Grade for Task 1 ... [T P RIP PR e 46
4 Split-half Correlations for Each Grade and Problem Type for Task 1 ...t 47 |
5. Corrclations and Reliabilities Among Problem Types of Task 1 for Grade 4................ 48

6. Correlations and Réliabilities Among Problem Types of Task 1 for Grade 6................ 49
7. Corrclations Among Algorithm Latencies of Task 1 VCAT, NVCAT, and Math

Survey Test for Grade 4 ..o oo e P, 50

8. Correlations Among Algorithm Latencies of Task 1 VCAT, NVCAT, and Math;

Survey Test forGrade 6 ............c.....oil e e 51
9. Types of Short-cut Problems ...................... T S sJ
10. Criteria for Classification of Strategies on the (Short-Cut Problems..................ooieel. 53
11. Frequency of Strategies as a Funétion of Grade .........occooveeeee.. et 54

12. Total Percentages of Heuristics as a Function of Grade, Problem Type, and Problem

%
SHZE oot X\SS
13. Correlations among Types of Heuristics for Grade 4 ........ e 56
14. Correlations among Types of Heuristics for Grade 6 ....o.ocviviveiiiiiiiiiiiiiiiiicrienenins 57

15. Correlations Among Meuristics and VCAT, QCAT, NVCAT and Math Survey Test

€ v: T [ PP 58
16. Correlations Among Heuristics and VCAT, QCAT, NVCAT and Math Survey Test

101 Grade 6......covuucevicciiiee, et 39
17. Percentages of Subjects who Correctly Explained Princifales as a Function of Grade,
Problem Type, and Problem Size..........ccovvveniiiiiiviiiniiieiiinenenns S 60

- 18. Correlations Among Explanations for Grade 4 ...........ccceeevvevivireeereeeeireeeeeerennenns 61

viii



27.

19. Correlations Among Explénalions for-Grade 6 ...... e e B 62
20. Correlations Among Expla.nalions and VCAT, QCAT: NVCJI\T and Math Survey Test -

e DO N SO SRR b SUCORUVRIRTR 63
21. Correlations Among Explanations and VCAT, QCAT, NVCAT and Math Survey Test
| for Grade 6........ooiviiiiiiiii N eenens fe et ee e aaans 64
22. Percentages of Subjects who Generalized Principlés as as a Function of Grade and

Problem Tyf)e ................................. e e TN 65
23. Correlations Between Speed of Execution of Multiplication Algorithm and Use of

Heuristics for Gradé 4 ......vcccoooieveemviiiieeneninnnnn - | S JEUUT 66
24. Correlations Between Speed of Execution of Multiplication Algorithm and Usc of

. HOUTISHCS TOT GTAGE 6 .- oeereveeeeeseeeeseeeseeeeeeeereere eereesesoe e, 67

25. Correlations Between Sj)eed of Execution of Multiplication A:lgorilhm and

Explanations ‘f;r Gsa\dg 4 l"68
26. Correlations ‘Between épeed of Execution of Multiplicalibn Algoﬁthm and

Explanations for Grade 6 ...... USSP UPUO 69

_Patterns of Performance on Task 2 and 3 and Number of Subjects in Each Group as

a Function of Grade and Problem TypPe....c.oouiiniiieairi et i 70

ix



»

1. iIntroduction &

o
A. The Purpose and Overview of the Study ’

@
Concéptual and prbcedural knowledge often have been described as if they were somewhat
incompatible and unrelated. In the present study an attempt was made to investigate the
relation betwéen procedural and conceptual knowledge in the acquisition of mathematical
competence. Procedural knowledge is defined here as mechanical knowledge of facts and
algorithms. Conceptual knowledge or unders'tan(?ing is equated with explicit or implicit
knowledge of contepts add principles. The primary purpose of the study was to provide an

N
explanation for how these two types of knowledge might interact in the process of attaining
multiplication skill. Of parliéular interest was the hypothesis that automatization of
procedural skills promotes (a) ?he use of certdin conceptually based short-cut strategies

d L.

(heuristics) that fcflecl understanding of the number system and multiplicétion, and (b)
children's ability to ex.plain these strategies. An additional objective was to compare
children's perfbrmance on two measures of understanding multiplication, active use of
short‘-cut stratlegies versus verbal explanation of the underlyiné principles. The purpose of
this comparison was 10 examine possible differences in verbal and operati_onal understanding
of principles of multiplication, In the following Asections 1 first pfesent the rationale for
studying muli-digit multiplication. Next a brief review is %esented of research on
multiplication and the relation between procedural and conceptual knowledge. Of particular

interest are curren: models of cognitive development in which the relation between procedural

and conceptual knowledge is described in terms of processing resources and increasing

automatization of basic procedures. Finally, proposed tests of the relation between

procedural and conceptual knpwledge in multiplication are described.



B. Rationale for Study’ng Multiplication
. The concern with multipiication was thotivated by the significance of this operation for both

instruction and for psychological research. With respect to instruction, mastery of
* é
multiplication is a very important step in learning elementary school mathematics. lisa -
. - : . -

necessary prergquisite for learning division and fractions, operations that follow multiplication

in school Yicula.‘ Multi-digit, multiplication is also'a good indicator of previous learning

because it £§ not possible without proficiency in addition.” An additional educational
consideration for studying multiplication is that, for a large number of children, this _
; . " &

opéralipn is one of the most serious and persistent sources of difficulties in Jearning
arithmetic. Deficits in multiplication have also been found to be the most common probl’cm
of math-disabled children (Cohn, 1968; Ginsbusg, 1977; McLeod, 1982; Ross, 1964;
Weinstein1978). ‘
With respect to psychological research, multiplication a~p§ears-:o‘bc a parti'cularly

inf orrlna1i~v<.e domain for identifying developmental changes in cognitive pmces;cs and
strategies. Being an example of a complex, multi-step p‘roblem-so!ving process, multi-digit”
multiplication is a rich domai.n for studying ‘tieé natur.e and development of ‘memo}y retrieval,
for investiglating the a_lI(Scation of processing fesources among competing-de ds, SOr
analyzing children's understanding of probler‘i]-solving. progedures, and for studying the

- .
rtelation between knowledge of the domairf and the procedures in complex multi-step tasks.

L3

C. Research on Multiplication |

Until quite recent})/’ it has be;n traditional in malhematics education -and psych(glogy to treat
\ conceptual apd procedural knowledge as dfsttct domains, each having a se'parate, and ';’
ihdé{)gent course df development. For example, in the area <:f multiplicatiofx a growihg
amount of research has been directed Eo;vard understanding the development of cc;mputationﬂ
skill.  According to extant research (Campbell & Graham, 1985; Miller, Perlmlrmer. &
Keating,, 19%4; P_arkman, 1972; Siegler, 1987; Staz_)jk. A'shcrat:t. & Hamann, 1981) knowledge |

of single-digit multiplication'is represented in xﬁemory’,as a network of problem-answer
- o

v

&



“
ascocations  Remeval of ananswer from this network s accomphshed through the spread

14
of actnanion o the assectttion s not sutficentiy strong . through some backup stratdgy

Phe model postts that Tearnimy the basic combiations entails gracually strengthening

problem answer gSsocutions by means of extensive practice One aspect of multiplicabion

hnowledye not addressed W the model s the relation between the acqusition of mmpuln(mn;}l
1

skl and understandimg of underbving pranaples of muluphcation Moiever, some rescatchers

cxphoathy sugpested that acquisinon ol single digit mluphication proceeds mdependent of*

whatever knowledge of muttpheation prinaples children have (Stegler, 1987)

Consistent with this view are also the accounts of more compley computational
behavior ¢y ool rnﬁy dynt computational skl For example, Brown and Van Lchn (1980,
LONT) presenied o maodel of how children solve muit digit computational tasks. According 1o
this model, cildien’s behavior op anthmetic computational taskhs can be described 1n purely
svitac e (procedutal) terms Problems are solved by retnieving and applying the subsequent
steps of appropriate, previoush memortized algonithms. The model postulates that, when the
aAponithmie procedure cannot be retneved o1 1s obviously distorted, a ¢child will attempt to
“repant Tt with self mvented procedures. The suntability and correctness of these procedures
are behieved o be chedhed agatnst a gt of rules that are derived from knowledge about the

“\
alporichmic protedure iselt These rules specify certatn constraints lT’NI\ the algorithm must
obey such as acting at least once on cach column, not writing more lhm{ one digit in one
column, and so on Al these tules are essentially syntactic ones. No rules are included that
are based on conceptual knowledge about the operation.  Analogous to accounts of
single -digit computation, the problem of possible relations between algorithmic skill and
understanding of the domain was not even addressed.

Is development of proce'dural knowledge related at ali to the acquisition of the related
concepty” I it 15, what is the basis of this relationship? Do concepts and procedures .

o
gradually build upon each other or do they iniually develop in isolation and interconnect at
.

some later point in development” How is this connection or Iink established? Some insights

hto these 1ssues have been offerred recently by cognitive models that describe acquisition of



knowledge v the framework of modern attentional theones

). Attentional Model of Knowledge Acquisition

Contemporary theories of attention are mfluenced heavihy by the work of Kahnefhan (1973%).

who proposed a capacity model of attention in which attention s viewed as a hfnted resource
that can be flenibly deploved. Bxphoit in Kahneman's theony s the adea (h;u’ mental
operations differ in the amount of attentional capaciiv they require More speafically - he
proposed that attentional demands mncrease with the complenity of mental operations Over
the vears this wdea has been both eatended and challenged by 4 number of rescarchers who
have argued that, by means of extensive practice. even compley operations can be performed
with only mimmal attentional capacity allocated to them (Posner & Snvder, 1975 Shiftnin &
Schacider, 1977) Such mental operations are called automatc and they are characternized as
bemng fast. effortless, unconscious..and autonomous (Shiffrin & Schnewder. 1977, Zbrodof ‘A
I ogan, 1986). At the other end of the attentional continuum are the operations that require
a considerable amount of attentional capacity.  These (5pﬂalu)r15_ referred o as controlled,
are slow, effortful. intentional, and nonautonomous. The significance of the distnction
bc.;wcen automatic and controlled processes 1s that a limited capacity cogniive system operates
most cfficiently when trequently used basic mental operations are performed automatically,
lcaving maximal resources available for less often used and more sophisticated mental
opcrations which fequirc controlled processing. The imp;)rlance of controlled processing lies
in its ability to deal with novel kinds of information, to handle unfamiliar tasks. and to
I"lcxiibly approach changing requirements of the task situation.

The idea of differences between automatic and controlled processes has been used to
explain many aspects of cognitive development, one of them peing the relation between
procedural and conceptual knowledge in learning a domain. For example, Sternberg (1984)
proposed a "componential" mode! of intelligence in which development of intellectual ability

was partially explained in terms of automatization of several types of cognitive components in

performance. Sternberg postulated that, for each task, there is a set of procedural and



!

hnowledge .uqnmluﬁ) components that together form task specific functonal subsystems,
At cathy stages of leatning these subsyvatems cah be acuvated only by using effortful,
controlled processing With practice they become antomatized, and attention s freed to
perferm other, more global or novel ;Nw(l\ of problem solving.
) . i

Case (1983) presented a stage theony of cognitive development in which \hc
mechanism of automatzation plaved a cruaal role. Case proposed that dcvclupni(‘m within
cach major stage can be descnibed as 1 progression of qualitatvely distinet executive
strategies The mam fagtor esponsible for this progression Is increase in the size of working
memony Case fostulated h;u this mL rease i capacity of the working memory doeanot

- o . N

em TTom a structural mcrease i the attentional capacity of the organism but rather from
1S% . \ .

fundctional growth due 1o mereases i automaticity with which operations are exccuted.  As

these operations become antamatized, working memorny space s freed for additonal
UPL‘I.H!OII\ and storagc.

Finally ,*dhcrgc and Samucls (1974) proposed a model of reading acquisition 1n
which automatization of h;xsu“prr»o’uc»c.\ was a central aspect of learning to r;:ad. The model
predicted that with practice the encoding of words no longer requires conscious altention and
thus does not nterfere with, the deployment (){”al(crxlj()n to higher level features such as

meaning.  Consistent with this prediction are the results of research conducted by Perfetti

and 1 esgold (1977) . who found a substantial correlation between text comprehension and

speed of word decoding. N

F.. An Attentional Model of Mathematics Learning

A simular model has been recently advanced for explaining the relation between procedural and
conceptual knowledge in learning mathematics (Kaye, 1986; Resnick, 1980, 1983). According
to this m(')dcl_ mastery of basic computational skills has significance because it enables the
acquisition of higher-level conceptual knowledge. Children who have mastered basic
arithmetic facls\and algorithms to the level of automatization shou‘ld have spare capacity 1o

devote to other tasks. such as checking the plausibility of their gnswers and solutions, looking

*



for numerical relationships, emploving novel strategies, and reflecting why these strategies
work. Similarly, lack of fluency in the execution of the basic skills may act as a hmiting
fastor on the deplovment of attention to these activities.  1f a simple addition or
multiphication is a difficult, capacil)'-c0n§uming task for a child. he or she may not have any
any sparc resources availatic for applving the televant conceptual knowledge to the solution

of the problem in hand. From this perspective, automatization of basic arithmetic facts and

procedures is viewed as a necessary condition for building the relation between procedural
knowledge and understanding because it provides the necessary attentional resources for this
interconnetion to be realized (Kaye, 1986). ‘ “w

There are several interesting propositions about the development of mathematical
knowledge that stem from the model. First, basic arithmetic skills are viewed as being more
/lhan merely rote skills (Steffe & Blake, 1983). Rather. they are postulated to be an essential
foundation for the development of more comple;c abilities and concepts.  Sccond, the model
suggests that conceptual and procedural knowledge of mathematics may develop intially in
isolation from one another, and that Some‘critical level of efficiency of simple computation is
necessary for the connection to be establishgd (Kaye, 1986). Finally, automatization of basic
arithmetic skillls is viewed as a triggering m&hanism for the continued further development
of mathematical knowledge, both procedural and conceptual. That is, mastery of procedural
skill results in increasing acquisition of conceptual knowledge, which allows for greater case

‘

and efficiency in the execution of procedures, which in turn allows for more sophisticated

forms of later acquisitions of conceptual knowledge.

)

F. Description of the Study

The purpose of the present study was 1o examine the relation between procedural and
conceptual knowledge in multiplication. Of most interest was the hypothesis that
automatization of procedural skills is related to greater conceptual understanding of the

domain.

\‘ . .
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Concepts and Measures
-
Procedural Knowledge
In this study procedural knowledge of multiplication ref€rs to the various processes
\
that arc combined to solve multi-digit mul{iplicalion problems. Included among these
components are retrieval of products for single-digit multiplication problems and the
procedures for appropriately sequencing retrieval operations.  These components are jointly
referred to as the multiplication alg‘ori[hmA I
" The level of automatization of the multiplication algorithm was assessed in terms of
speed of its performance. | am aware of certain limitations in using speed as a measure of
automatization. The measures of trade-ofT in perf();mance in dual-task situations may be
optimal .for capturing the complex nature of automatic processing. However, 1 also believe
that speed of processing is a reasonably valid measure of automatization. This claim is based
on the Zbrodoff and Logan's (1986) proposal that automacity is a unitary phenomenon, so
that all its functional properties (effortfulness, speed, unconsciousness, and aqlonomily)
€O -occur in'a truly automatic process. Consequently, one would expect faster performance
1o become less effortful and more autonomous. The opposite would be true for the slower
performance. -
Conceptual Understanding
Conceptual understanding is defined in Lh.e present study as explicit or impli¢it
knowledge of certain selected principles of multiplication. Four principles of multiplication
were selected for te;ling in this stydy: commutativity, closure, a principle related to
multiplying by one (product equal to multiplicand), and a principle specifying the allowable
minimum magnitude of the product in multiplwlg two whole numbers (product less than

multiplicand).  All these principles capture some important aspect of knowledge of
5 . . ~ )

multiplication. The interesting characteristic that differentiates among these principles is the

way in which they are learned or discovered. Both the commutativity and the

product -equal-to-multiplicand principles.are probably learned through practice with solving

. T . L L e . ¢
various multiplication preblems. Learning commutativity in this context involves-the



discovery that the sémc numbers yield the same products, indcpcndcnily of the order in which
they are multiplied. l.earning the product-equal-m-multiplicénd principle is less difcct and
probably follows the discovery of the principle of multiplying by one. Discovery of this
principle allows for the recognition that on]y mulliplyingvb,\'_ oqc_‘and not by any other
Tumber, vields a product equal to the other multiplied ber. The common characteristic
of commulalij‘ily and product -equal-to multiplicand problems is, thercfore, that problems of+

L
the same or related type were likely to be already familiar to children and for this reason the”

underlying pri'nciplg:s were protbably retrieved rather manvaﬁiscovered duririg;he testing session.
Closure and product-less-than multiplicand problems, on the other hand, may represent
problems that are not likely to be encountered by children unless some compulational error is
made. These two principles were more likely to be discovered by children for the first time
(furing the testing situation.

.

It has been suggested that understanding of a concept is not an all-or-nothing

" phenomenon (Greeno, Riley, & Gelman, 1984). A child may develop some aspects o,f
coﬁceptual competence but not others. For example, Gelman and Meck (1983) and Baroody
and Mason (1984) showed that children’s performance on arithmetic ta;ks was systematically
governed by the pginciplés well before thése principlgs could be verbalized. Salatas‘ and
Flavell (1976), ir{ contrast, found that verbally demonstrated knowledge about efficient
strategies did not guarantee the spomageous use of thesé_strategics in the 1ask performance.
In order to determine whether children weré more advanced in verbalizing the prinéiples of
multiplicati?m or in actively using then{, two measuresﬂof understanding were used. First,
understanding of the selected prmclples of multiplication was assessed in terms of the use of
procedural heuristics that are based on conceptual knowledge about underlymg malhcmatucal
prmmples This type of knowlcdge is 1mp11c1t and is referred to as operational understandmg.

Second, understandmg was assessed in terms of explicit verbal explanation of the prmoiples

Heurnsm; are defined here as short-cut strategies,that shorten the solution of a prob}em and

mq{(e it glore ef ficient. This definition is consistent with Webster's Thll’d Inte mggo

Dictionary in which heuristics are defined as exploratory problem-solving wch;uques that _

'..-

s



utilize self -educating techniques to improve performance”.

Specific Aims of the Study

The main purpose of the study was to determine the degree to which automatization

'

of the multiplication algorithm was related 1o operational and verbal un“derslanding of certain
principles of mullipliéa[ion. Given the attentional hypotheses of Kayek(l986) and Resnick
(1983). it was expected that automatization of the algorithmic skill woﬁld be related®o g
operational and verbal measurcs‘ of conceptual knowledge.. There might be three possible
outcomes of the correlation between speed of performance of lhe. algorithm and both
measures of understanding.  First, a positive correlation would indicate that slower
performance of the algorithm was associated with greater conceptual understanding. This
result would be enllircl‘;' inconsi‘stem wia) the hypothesis. Second, a zero correlation might
indicate that there was no relation between automatization of the algorithm and
understanding.  Alternatively, it could mean. that this relation was not present for the tested
age groups, but it might be potentially imporlam.carlier or-later in develepment. Third, a
negative correlation wvould be most consisl_em with the tested hypothesis. This result would
suggest that faster, presumably more automatiied algorithmic performance was more likely to

be related to greater conceptual understanding. Because the correlational method does not

pcrmit‘the inference about the causality of the relation, however, this outcome shoulqﬁ_fbe
interpreted with caution. )

An additional aim of the study was to compare performiance on the two selected
mecasures of understanding. Of particular interest in this comparison was whether children
were more advanced in using ¢onceptua‘lly-based heuristics or in providing explicit verbal
cxplanations of the underlying principles. The first pattern of performance would ipdicate
that ability to explicitly and logically explain the?oncept lags behind active use of related
strategies. This outcome might suggest that conscious awareness of the strategy or concept

comes later in development than its intuitive usage. The second outcome would indicate a

type of %.ro\duction deficiency (Flavell, 1970), that is, an inability to produce most
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appropriate and efficient problem-sp]ving strategies despite the dengmstrqtcd availability of
relevant knowledge. This pattern of performance might suggest that a conscious awareness
of the concept or principle is a necessary precursor (o spontancous usc of retated strategies.
The study caonsisted of three tasks. Task 1 was designed to assess the level of
aulqma’lizalion of a multiplication algorithm. Tasks 2 and 3 were used to‘ assess
undcrstaeding of the selected principles of multiplication: Opcrational understanding was

-

assessed in Task 2 and verbal understanding was measured in Task 3. The tasks were

_administered in a consistent order. Because Tasks 2 and 3 necessarily involved considerable

interaction between the experimenter and the children, pfior administration of Task 1 made Hy
préi_ble o minimiz‘,e the effects of this int‘era\ction on children's algorithmic performance.

The study was carried out with children in grades 4 and graac 6. The choice of ~
students from these two grade; as subjects for the study was motivated by two considerations.
First, because I was interested in development of the relation, between skill and understanding
in learning multiplication, it was necessar‘y to test children from at least two diffecrent age and
know{edge groups. éecond, the ¢hildren must have sufficient skill and lznowlcdgc about
multiplication to deal with multi-digjt multiplication broblems. Stuidents from grades 4 and
grade 6 were selected after consultation with the teachers who were familiar with the
a‘rithmelic curricula and the requirements of fhe study. . Pilot data also were used to confirm
the sui£ability of these two grades for the study.

Half of ,children"i'n each age group were girls and half boys. The variable of sex was
ir}cludec_l in all analyses of variance because there is some evidence for the superiority of boys
in mathematical ability (Aiken, 1971).. Although the majority of studies show no sex |
differences in math¥matical ability at early grade school ages, lder in development boys
consistently exceed gitls in mosﬁ aspects of mathematical performance (Maccoby & Jacklin, '

1974).



II. TASK 1

The purposc of Task 1 was to determine the level of automatization of a written
multiphcation algorithm. A &‘(;IIIPICIC multi-digit mulliplicalipn algorithm consists of several
partial steps or components: reading and writing digits, retfieval of basic multiplication
combinations, column organization, adding, and carrying. These components are interrelated
and cach requires application of different knowledge or skills.  Depending on the ;Qp{plcxity',
solution of any multiplication problem involves application of some or all the components of
the complete algomhm_ In Task 1, speed was measured separately for several algorithmic
procedures that differed in the number of components required for execution. The task
required writing digits and solving a number of multiplication problems of increasing
complexity, from simple single-digit multiplication to 2-digit by 2-digit multiplication with
carrics.  kach increment in complex?ty involved implemenftation of a new component, or of
some combination of the old components and a new component, to the solution algorithm.
S;?ccd of execution at each level of complexity was then correlated with the measures of

.

undersitanding obtained in Task 2 and Task 3 to determine whether individual differences in
speed were related to individual diffefences in understanding. Also of interest was the

question of which components of the algorithm, or which combinations of these components,

were most important for understanding.
A . Method

Subjects

Thirty -two grade 4 and 32 grade 6 students participated in the stludy. Median ages
for these age groups were ‘(in years:months) 10:1 for grade 4 (range 8:9—1i:0), and 11:11
for grade 6 (range 11:3—13:8).

IQ data were obtained from school files for 28 children in grade 4 an-d 32 children in
grade 6. Median quantitative IQ scores for the two groups, as measured by the quantitative

scale of Canadian Cognitive Ability Test (CCAT), were 105 for grade 4 (range 79—132), and

-

11 -
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"\ 97 for grade 6 (range ‘75—137). With few exceptions, the 1Q data were 18 months old for
grade 4 students and 6 months old for grade 6 students.

The Math Survey Test (MST) is a mathematical achievement test developed and
administered by the local board of education. The results of most recent administration of
this test were available for 29 children in grade 4 and 31 children in grade 6. Median scores
for these two grades (in percentages) were 83 for grade 4 (range 55~98)>, and 65.5 for grade

6 (range 32—93). .

Materials
The stimulus set consisted of five types of‘problcms arranged in order of increasing
complexity of the solution algorithm. An example of each problem type, together with the
- components of the algorithm that are reqt‘xired for its solution, are presented in Table 1.
Type I items did not involve multiplication and were included in the set to determine whether
speed of reading and writing digits was related to speed of performing other componengs of
the algorithm. Type II items required single-digit multiplication and were separated into two
subtypes, ITa and Iib, .to assess possible differences in%etrieval of problems with products less
than 10 and products equal or greater than 10. Types IlI—V required multi-digit
multiplication of increasﬂg complexity of the solution algorithm, from 2 digit x 1 digit
multiplication withogt carries to 2 digit x 2 digit multiplication with carries.

Because the amount of time and effort required for solving the problems was not
uniform across the types,'the number of pro‘blems of each type was varied. There were 15
items of type I, 10 problems of types Ila and IIb, 6 problems of type III, and 3 problems each’
of types IV and V. This manipulation was inwoduced to assure that, for each problem type,
perf o;mance was not so rapid tha; measurement error constituted a substantial part of the
latency and not so Engthy as to cause fatigue in the children. |

The problems were presented in a bookle{. with each problem type on a separate page.
i:or zhe types I, Ila, m;, and III latencies wére measured for the whole set of probléms on the

page. For the types IV and V the individual problems within each ‘type were presented on
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the scparate pages and their latencies were also measured separately. Thvis was done in effort
1o balance thé time of solving the problems on each page and therefore to balance the effe;ls
of possible interfering variables (e.g. pausing) on children’s performance across all problem
types. |

Subjects were tested with two sets of problems of each type, set A and B (see
Appendix 1). In order 1o balance-the difficulty of problems in the two sets, the sets were
constructed so that each contained approz&im@lcly the same numb¢r.of problems with zeros,
ones, and ties (e.g., 4 x 4. 6 x 06).

Procedure o ) '

£

Each child was tested ihdividu‘all)' with a ylcl containing the test problems.

[3

Subjects were asked to solve the problems as quickil as possible withoyt making mistakes (se€

Appendix 1 for the instructions). To familiarize children wilh‘ the réquirements of the task,
the test problems were prccéded with a sct that contained sample pr(;blems of each type. In
order lo decrease the error of measurement, all problem types were tested twice, each time
with a different set of of numbers. Thp order of administration of both sets was
counterbalanced across children. Problems for both administrations were presented in the

*

same booklet, but on the separate pages.

. . _
B. Results '

The analysis of data was carried out in five steps. First, the analysis of errors on e?xch_
problem type was performed. Second, latencies of each problem type were analysed to to
determine the effect of age, sex, and practice on children's performance. Third, the
reliabilities of the latencies of each problem type were estimated. Foufih,,correlations among
the latencies-of all problem types were calculated to ev‘aluate the degree of correspondence
among the various multiplication algorithms. Finally, children's l;encies on all algorithmic

procedures were correlated with the scores of Canadian Cognitive Ability Test (CCAT) and

Math Survey Test (MST).
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Errors

Mean percentages of errors are presented in Table 2 as.a function of age, problem
type, and administration. A response was counted as a single error if it was incorrect, even
if more thdn one incorrect calculation was involvz&. In both grades error rates for the types
1, lla. ‘IIb, and Il were lower than 6%. Because it was unlikely that interpretation of
children's latencies would be affected as a Tesult of such a small number of crrors, these error

4

data were not anal;sed further. Error rates for the types IV and V were higher (see Table
) O

2).

Latencies X

The mean solution time for problems of each type was calculated by averaging the .
solution times from both admin‘strations. For types IV and V the r;rean solution times were
calculated by averaging the median solution times from both administrations. Because high
error rates on the types IV and' V may reflect’the use of some nonalgorithmic solution
strategies that could affect the latehcy data, only latencies for }érrecl solutions were used for
calculating the medians for these two types of problems. Because.theré were S children in
grade 4 and 2 in grade 6 with no correct latencies on one or both administrations of type IV

< .

or V, it was necessary to estimate these missing latencies in order to calculate the median and
mean latencies for these chiidren. For the children who did not have c<;rrect latencies on
only one administration of type IV or V, estimation of the missing latencies could be made
with existing correct data from the other administration of the same problem type, ‘providing
that the effect of administration on children’s perforfnance was nonsigm’f icant. Because
analyses of variance performed oﬁ the éorrec( latencies of children with f ﬁl! ‘data sets revealed
that there was a significant effect of admiQigtration for type IV, F(1, 57) = 5.09, p»< .05,
but not for type V problems, only the missing latencies on the latter type could be estimated
.with the correct data from the other administratioﬁ. For the children who did not Have
correct latencies on either administration of type IV, or on both adﬁxinistratiohs of type V,

. the possibility was checked that the missing corr_eqtjrdata migh't be estimated with the incorrect

] ’ - . » )
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latencies, providing that correct and incorrect latencies were not significantly different. The t
tests performed on the latencies of children with both correct and incorreclﬁalencies revealed |
that there was no significant difference between gorrecl and incorrect latencies on either type
or administration for Grade 6, and therefore all missing correct latencies of children in this
grade could be estimated with their incorrect latencies. For Grade 4, there was no significant
difference between correct and incorrect problem latencies on any administration of type IV,
but there was a significant difference on type V, 1(23) = 3.24, p < .05. Therefore, ;he data
of one child in"Grade 4 who was missing correct latencies on both adn‘iinistrations of Type A%
_ could not be replaced. The data from this child were excluded from all furt.her analyses.

Because variances for solution times differed widely as a function of problem type,
scparate 2(Age) x 2(Sex) x 2(Administration) analyses of variance (ANOVA) with repeated
measures on the last factor were performed for each problem type. Mean solution laléncies
for each grade and problem type are presented in-il"able 3.

Older children were faster than younger children on problem types I, F(1, 59) =
10.78, p < .05; lla, E(1, 59) = 4.7, p <:05; 111, E(1, 59) = 5.19,p < .05‘, IV, E(1, 59)
= 18.14, p < .001; and V, F(1,59) = 7.74, p < .01. On type 1Ib older c;ildren were.‘also
faster, but the difference was nonsignificant. Because grade 6 children presumably had more
practice in solving mulu’plicatibn problems than grade 4 children, one would expect gradel
differences in speed of performance on this type of task. The effects of grade on almost all
_types of problems partially confirms the validity of latencies as a measu?e of automatization.

Performance impros}ed across administrations only for the types Ila and IV, Fs(1, 59)
> 440, p <. 05, from \-14.12 to 13.20 s for type Ila, and from 10.42 to 9.73 s for type IV.
For the type 1Ib, administration intetacted with age, F(1, 59) = 4.04, p < .05. Tests of
simple main effects showed that the effect bf administration was significant only for grade 4
children, F(1, 118) = 551, p <. f95, who were faster on the first'tl}ian on the second
administration of [tﬁ;ﬁfoblem type. ' Examination of means of the‘problem types for which

effect of administration was present revealed that performance improved across

administrations for the types that were least demanding in terms of solution time (types Ila



and 1V) and deteriorated on the type that required longest time for solution (type 11b).
There was no significant effect of sex on performance on any problem type. This>,
finding seems to suggest that, at least in the tested age groups, there are no consistent

differences between girls and boys in arithmetical computation.

Reliabilities of Latency Measures

Because correlations are li'rhiled by the reliability of the measures involvcd‘ it was
necessary to deiermin_e whether feliabilities of the selected measures of automatization were
sufficiently high é) be meaningful. For each problem type split-half correlations were
calculated between the laFencies on the set A and the lalcnci;:s on the set B. These
correlations are presented in Table 4. .

i

It should be noted that each of-these split-half correlations is based on only half the
trials for e;ch measure. The Spearman-Brown formula \(A‘nastasi, 1976) can be uéed 1o
assess the effect of doubling a test on its reliability coefficient. The use.of the
Spearman- Brown formula is ba;sed on the assux’\ptidn that, other factors being equal, a longer
test is more reliable. The reliability of the whole test should, b.‘e_ therefore, greater than the
reliability of ohly haif a test. As is evident from examination of numbers in the diagoflals of

[

Tables 5 and 6, all types of problems had acceptable reliabilities, ranging from the high .70s

to the high .90s.

Relations Among- Latency Measures

Cbrre]ations among latencies of all p_roblem types are presented in Table 5 for Grade 4
and in Table 6 for Grade 6. '

“As glear from Tables 5 and 6, there wer.e many relaiions among éll problem types,
~ with the exception of the It);pe I for Grade 4. Such a finding is. not shrprising becaulse 3h§ "
coinéoncnts of the multiplication algorithin are not independent and, theref ore, many of the"
types shared COMmMON Processes. 'F-or example, speed on the ty;;e V was probgbly related to
speed of retrigval of simple multiplication fa?ijtypes IIa and Hb), agweil as to ef] ficicnqy in

e : .

4
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" ueamizing and adding the numbers (tvpes HEand 1V) 0 dnterestngly . speed of wniting digits

Yoo,
Q&;‘i.\ correlated with all aspects of the multiphication algonithm i grade 6. but not i grade 4
Fhts Linding mas ndicate that wiiting and computational skill are relatively mdependent at
N

Ihmuﬁxl stages of dearmny Later, however, they become related, probably in such a way

that speed of withing starts to act as a hnuting factor on the speed of cognmitive process

mvalved i performnng the algonthm

Relation to CCAT and Math Survey lest

Chiddien's Latencigs on all aigonithmece procedures were correlated with verbal
(VOA D) nonverbal (NVOAT) . and quantitauve (QCAT) scales of Canadian Cognitive
Abthity Test (CCATY, and with Math Survey Test (MST). The results are presented in Table

Ctor grade G andan Fable ¥ for grade 6

The pattern of results was simlar for both grades  There was no relanon between
the tvpe T problems and anv of the vaniables of interest for either Grade 4 or Grade 6.
Ndither problem type. on amy grade level, correlated wi;h the nonverbal scale of the CCAT
Interesungly . all tvpes, with the c,‘\u‘pnon of the type I, significantly correlated with the Math
Sur\'c_\",“lpsl_ This finding suggests that muluplicauon skill may serve as 4 rehable predictor

of general mathematical skl -~
+° -

AN

Summary \

Latenoy was used as a primary measure of automatization of the multiplication
algorithm. latencies on all problem types decreased with age. All latency measures had
acceptable reliabilities and. with exception of type I, they correlated highly with the scores of

Math Surveyv Test.



111, TASK 2

Lash 2 was designed to assess children’s operational undetstanding of muluphication
I he measure of understanding in this task was the abibity to emplov procedural heunsuies that
are based on conceptual knowledge about the selected principles of mu]lnph.\ulmn A usctul
charactenistuie of this measure as 1ts close relaton to the algonthmic procedure, which makes tt
possible to determine whether conceptual l\nowlcdg§' 15 used m the process of exvecuating the
algortthm

Children's ability 1o use heuristics was assessed with different tvpes of problems. cach
representing an mmportant aspect of knowledge about multiplicanon. ot cach probiem type,
use of heuristies was tested by comparing children’s performance on two kinds of
multiphication problems: §l;1vr)q;1_rq,pg(’)\l)jgg}§, which could be solved only by exccuting the
entire algortthm: and short-cut problems. which could be solved by emploving heunisties i
knowledge about certain important principles of multiplication were present and apphed

I'he difference between solution strategies on these two kinds of problems served as an indey

of heurnistic use.
A. Method

Subjects ' .

The same children as in Task 1 participated.
\) =
Materials [ ) -+

Types of Problems

To determine whether children can invent and use knowledge- based heuristic
L

procedures o increase the efficiency of problem solving, 1 asked them to verify the

correctness of the products of 32 multi-digit multiplication problems. There were two kinds

of problems. Standard problems were of the form:

. ]
L]

18



AR O 1510
\enfication of the cotrectness of this tvpe of problem required execution of the enure
algonthm and companson of the obtamed result with the provided answer, Sivteen standard
problems were patred with sinteen short cut problems, which could be verified without

~

actuathy performmg the compitations if certamn aspects of )knowl(‘dgc about muluphcation
operation were present and used in the venfication pmc{‘,\q‘ Short-cut problems were further
divided mito four tvpes, according to the arcas of relevant knowledge of multiplication for the
heunstios to be emploved. The tour lﬁ\‘p(‘s‘ol‘ short-cut problems are illustrated in Table 9.
When the product was smaller than the multipheand, it could be identified casily and

guichhv as false upon recogniiion that the product of two whole numbers cannot be smaller in
magnitude than cither of these numbers. When the product was equal to the multiplicand. it
could also be recognized as false without computation if knowledge that the product of two
pumbers can not be equal to anv of these numbers (unless. of course. one of the numbers
wis 7ero o1 one) was present and apphed to the verification process.  Closure problems could
be alse venfied as being false without computation if children uﬁdcrslood that the product of

\
two whole numbers must be a whole number.  Understanding of the commutativity principle

\\‘(-\:I;Li‘il-(:;\_‘l;](‘ wmémlmn that the products of two problems that had the same numbers but
differed in the order of multiplication should be the same and that, thercfore, the correctness
of the \a_‘u)nd product can be determined without computation by comparing it with the
pr(\dl‘l.(l already verified for the first problem.

There were 32 problems: 16 short-cut problems (4 of each type), and 16 matching

standard problems. Thev were constructed according to the principles described below.

Construction of the Problems
»

Multiplicand and multplier. Children often are more likely to notice and understand

Ay

¢ertain numerical relations and principles when the numbers involved are small rather than

large (\Uclm‘an_ 1978). This tendency appears to be greater for younger than for older

childreny(Bell, Costello, & Kucheman, 1983). To determine whether use of heuristics

a

depends on the magnitude of the multiplied numbers, all types of short-cut and standard
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problems were constructed so that two out of four problems of each tvpe involved multiplying
[ Y

3-digit by 2-digit numbers ("3 x 27 denotes a 3-digit multiphcand and 2-digit muluplier). and

the remaining two problems involved multiplying 2-digit by 1-digit numbers (72 x 1" denotes

" 2-digit multiphcand and 1-digit multiplier).

Product. Half of all commutativity problems were provided with false products and

half” with l;ue. The products.of the closure, product-less-than-multiphcand. and

product -equal -to-multiplicand short-cut problems were always false.  Eight out of sixteen
standard problems had true products, and the remaining eight problems had falsc. ¢
Thercfore, some false short-cut problems were paired with the false standard problems, and

- some with the true ones.  All false standar s were constructed by changing the value

of one digit in the correct products of these broblcms. However, the rightmost digit in all
(’alsé products of both starrdard and short-cut problems was always correct 1o assure that
accurate judgments were not based only on the last digit.

Presentation of the Problems

Four different sets of probl\ems were used and cach set was constructed according o
the following constraints. The 32 problems were presented in a booklet, with cight problems
per page (see Appendix 2). On each page problems were grouped into two four-problem
sets. They were presented horizontally (e.g. 19x 7 = 133). A horizontal (as opposed 1o
vertical) presentation of the problem§ mad; i‘l? difficult to perform the algorithm mentally,
and thus students wére more likely to do paper-and-pencil calculations when they needed to
compute the product. Therefore, childrén's overt behaviour was more likely reflect their
actual solution strategies on the presented problems.

Arrangement of problems on a page %)

The problems were arranged in such a way that the example of each short-cut type
together with its matching stangard ﬁroblem was presented only once on each page, and that
no more than two short-cut problems of any type appeared in a row. The number of 3 x 2
and 2 x 1 problems was balanced so that there were four problems of each size on a page.

v

The order of 'presemation of problems on a page was random but different for each page of

. | . N

(
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N

the t%oklcl to assure that the position of the problem on a page did not affect the results.

”

Procedure
Subjects were tested individually.  Each child was asked 1o read aloud the instructions
- (

(see Appendix ?) that required verification of the C(zrrccmess of the multiplication problems
printed in the booklet.  Although the children were asked to use paper and pencil whenever
they needed to compute the answer, it also was emphasized that 'Eompu(ing the result for each
problem was not necessary if the correctness of the product could be determined without
performing calculation.  In order to mdke sure that children understood the instruction, the
test was preceded with a practice set that contained sample problems of ea°Ch type. Subjects’
overt solution strategics on each problem, such as paper and pencil computation or obvious
signs of mental calculation, were carefully watched and noted. Solution time for each
problem was measured with a stopwatch. In order not to distract the child, a stopwatch was
started for the first problem on a page and only the times of finishing each problem were

recorded.  The problem was considered to be completed as s&in as the child marked it as

being correct (1) or incorrect (0).

B. Results

The analysis of data was performed in five stages. First, latencies for standard problems
were analyzed to determine the criteri;-pr evaluation of children’s strategies on the short-cut
problems. Second. the use of heuristics was determined by comparing performance on each
short-cut problem with the performance on the corresponding standard problems. Third, an
analysis of variance on heuristics usage was conducted to examine the relation between the use
of heuristics and‘age, sex, and problem type. Fourth, correlations were calculated to
determine whether usage of of heuristics showed any commonality across problem types.
Finally, correlations among heuristics of all types and the scores of CCAT and Math Survey

Test were calculated.



Latencies for Standard Problems
‘A 2(Grade) x.2(Sex) x 2(Problem Size) x 2(Problem Validity—true or false) x’
2(Practice— first or second half of the task) ANOVA was performed with repeated measures
on the last three factors. Latency of standard problems served as a dependent variable in
this analysis. Standard closure problems required multiplying more numbers than other
prg-l;lcms and were eliminated from this analysis because their latencies were not homogenous
with the latencies of the remaining standard problems.
Latencies decreased with grade, from 27.68 s for grade 4 10 16.20 s for grade 6, F(1,
59) = 28.62, p < .001, and increased with problem size, from 15.89 s for smaller problems to
27.82 s for larger problems, F(1, 59) = 170.83, p <. 001. The significant interaction of
grade and problem size, F (1, 59) = 13.80, p < .001, was qualified by two three-way
interactions, Grade x Problem Size x Validity and Sex x Problem Size x Validity, which
revealed that large false problems Wg,re solved more quickly than large truc problems by
children in grade 4 and by girls, Fs(1, 236) > 15.72, p < .001~. The analysis of simple main
effects of the marginally significant four-way interaction of Age x Sex x Problem Size x
‘ Validity showed that that large false problems were faster only for grade 4 girls, F(1, 295) =
25.18, p < .001.

. The results of the analysis do not seem to confirm the finding that boys are superior
to girls in mathematical performa}lce. On tt'xe contrary, it appears that girls are more likely
than boys to benefit in the situations in which solution strategies are important for
performance. Verification of false multiplication problems might be faster than verification
of true probiems if a self -terminating strategy was employed that terminated computation as
soon a.s the first incorreqt digit in the product was found.- It appears that only gitls in grade
4 E'ook advantage of this ‘strategy for verification lof large problems.

o
Scoring and Classification of Short-cut Strategies . ' i
Sianda.rd problems were selected for comparison with the short-cut problems using the

most stringent criterion possible. For each child, his or her performance on the short-cut
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problem was compared with the performance on all six standard problems of the same size as
the short-cut pr()blcr;x. This comparison is justified because there was no significant
difference bcuyccn the latencies of standard problems on the first and second part of the task,
and because the gverall difference beiween correct and incorrect problems was not significant
for grade, problem size, or validity (ts < 1).. Therefore, for each short-cut problem the
comparison could be made using all six standard problems, independently of their accuracy
and position in the task.

Because gréde 4 girls were generally slower for large true than for large false
problems, the comparison with all standard problems independently of their validity was an
especially stringent criterion for the large true commutativity problems in‘this particular group
of chi[dren. However, because the latencies of all these problems were shorter tharf the
latencies of all six corresponding standard problems, no child was affected as a result of this
restriction.

On standard problems children had no choice but to use the lengthy multiplication
algorithm to verify each problem and so they were expected to use paper and pencil to record
their computations. On the short-cut proble_ms,xfi'f children used the same algorilhm', then
their performance on these problems would be similar to lthe performance on the standard
problems. That is, written computations would be present and solution latencies would be
vomparable 0 the latencies of the corresponding standard problems. In contrast, if children
used heuristics on the shor(-cu.t problems, then solution ldtencies should be shorter than those

-
for the corresponding standard problems,-and correct verif’ icatioqs should not be accompanied
by writing.

' According to this rationale, a child's strategy on each short-cuj problem was classified .
z;s a heuristic if (a) the problem was verified correctly without written computation, (b)
answers on all or almost all c:orresponding standard problems were accompanied by writtep
computations, and (c) the short-cut problem was solved more quickly thap all or m;>st
corresponding standard problems. Specific criteria for classification of children's strategies

. B 7
on the short-cut problems are presented in Table 10. ‘ ‘
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Strategies H1, H2, H1A, and H2A were classified generally as heuristics but the
stringency of the criteria differed among these groups. For a given problem, a strategy was

classified as H1 if a child correctly verified a short-cut problem without showing evidence of

erl computational strategy, wrote on all six corresponding standard problems. and was
faster on the short-cut :problem than on any of the six corresponding standards. The
strategy of a child who did not write on all standard problems could also be classified as HI,
providing that the child was accurate on all six of them. This condition made it possible to
classify the strategies of children who mentally solved one or more standard probleins but
were vely accurate on them. In contrast, g strategy was classified as H2 ifra chiid did not
write on the correctly verified short-cut problem, but he also did not write on one or more
standard problems, and was inaccyrate on one Q1 lwoff therm. He or she also had 1o be
faster on the short-cut problem than on at least five ohl of six standard problems.

Strategies H1A and H2A were in fact equival;m to the previously described strategics
H1 and H2, except that writing was present for the part of the short-cut problem. This
incomplete writien strategy probably was related to the child's sudden realisation lhat
computing the answer was not necessary, and that a shorter, more efficient way of
determining the answer was possible:

Strategies G, ({Sl, CS2, and CS3 represent differént patterns of per?ormance that
were characteristic for children who were not using heuristics on the short-cut problem.
When a child correctly verified the short-cu; problem without wfiling, b{n he rarely computed
the answer on the standard problems and his performance on these prqblems was highly
erratic, his strategy og this ghort-éut prébleﬁ was classif ied as G. This pattern of
performance Was indicative of guessing. When a child corzectly verified the short-cut
problem without writing, and was accurate on most of the standard -problems, but his latency
oh the short-cﬁt problem was long compared to thé latencies of the standards, his strategy
- was classified as CS1.  This pattern of performance was indicative of some mental

gemputational strategy. A child who wrote on the short-cut prob)em. or was inaccurate on

this problem clea;ly showed the evidence of the lack of heuristic use. His strategy was then

-

~\



25

classified as CS2 or CS3.  The frequency of each strategy is presented in Table 11.

My initial intention was to analyze each strategy usage. Howcver, because the
frequency of occurance of some of the strategies was 100 low for the statistical analysis to be
meaningful (sec Table 11), the initial fine-grained scheme had to be collapsed. For the
purpose of further analysis strategics Hl, HIA, H2, and l‘—.lZA were classified as heuristics.

Performance consistent with any pattern described for the strategies G, CS1, CS2, or CS3 was

equivalent to the lack of heuristic use.

ANOVA on Heuristic Usage

A 2(Grade) x 2(Sex) x 4(Problem Type) x 2(Problem Size) ANOVA was performed
with repeated measures on the last two factors. A number of problems on which heuristics
were used (0—2) served as the dependent variable in this analysis. Percentages of short-cut
problems on which heurisiics were used are presented in Table 12 as a function of grade,
problem tvpe, and problem size.

Use of heuristics was highly related to the problem type, F(3,177) = 19.78, p <
- .001. Newman-Keuls tests revealed that heuristics were used more frequently on the
gommutativity and product-equal-to-multiplicand problems (means 49.18% and 40.73%
respectively) than on product-less-than-multiplicand and closure problems (means 23.75%
and 19.75% respectively). p < .05. It is plausible to suggest that this pattern of results may
be directly related to children's familiarity with different types of problems. The
commutativity principle was probably already familiar to chi]dren. through the every-day
school practice with analogous problems. The product-equal-to-multiplicand principle might
be learned through the analbgy to the of ten‘encountered and practiced problems that involve
multiplying by one. The closure and product-less-than-multiplicand problems, in contrast,
were more likely to be unfamiliar to children and, therefore, the underlying principles might
be first discovered during testing.

One might expect that grade 6 children, who had been learning mu?t?pliﬂc;tion longer

and had more experience in solving problems, should use heuristics more frequently than

a2
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younger children. Surprisingly, there was no-‘significam age differgncc in use of heuristics
F(1, 59) < 2, although means favored the ol’de‘r children in 7 of 8 cz:scs (see Table 12). Sex
differences were also not significant. Similarly, size of the problem did not have any
influence on the frequency of heuristic use for any grade or problcmlype (F <1). This
finding was contrary to the earlier prediction and seemed to indicate that even for young
children use of heuristics is independent of the size of the problem, at least within the present

T-

range of problem sizes.

Relations Among Types of Heuristics

Pres;:med in tables 13 and 14 are the correlations among heuristics of all the types:
commutalivi.ly (MCOM), product less than multiplicand (HP1.M), product equal to
mult;’plicand (HPEM), and closure (HCLS). These correlations were calculated to find out
whether use gf heuristics on one type of problems was related to use of heuristics on the other
types of problems. There w'as a considerable interrelation among the heuristics, with the

exception of commutativity for Grade 4. This findiné suggests that the use OM

shows certain commonality across different types of problems.

Relation to CCAT and Math Survey Test

Correlations among heuristics of all types and verbal, nonverbal, and quantitative
scales of CCAT and Math Survey Test are presented in Table 15 for grade 4, and in Table 16
for grade 6. In’;ddition to the already described types of heuristics the tables include the
correlations with the total m‘lmber of heuristics (HTOT) that were used on all problem types
combined. As evident from Table 15, use of heuristics was not related to the scores of any
scale of CCA'[ in grade 4. Correlatic.)ns were uniformly low across all types of heuristics.
Use of heuristics on the product -less-than-multiplicand and on all problem types combincd
‘was moderately related to Math Survey Test. The pattern of results wés quite different f or

grade 6 (see Table 16). Use of heuristics of all types was highly related to all scales of

CCAT and to Math Survey Test.
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It appears, thercfore, that individual differences in the use of heuristics can be

predicted from general cognitive and mathematical skills when multiplication is well

-

established dnd mastered. as in Grade 6 students. At an earlier slage of learning, however,

use of heuristics may be more related to some other variables, such as practice, or amount of

exposure 1o various multiplication problems. /



1V. TASK 3
Task 3 was designed to test verbal understanding of multiplication. In the present
\j a
task children’s understanding was assessed by asking them to explain explicitly the principles

N

of multiplication that justified use of heuristics on the short-cut problems _of all types. The

’ quality of children's explanations wag evaluated separately for each problem type and size.

A. Method

Subjects \

The saine chil(}en as in Tasks 1 and 2 participated”
/ ta

Material a;nd Procedure
Task 3 was administered immediately after Task 2 and was a structured interview with
individual childszn. The interview was based on examples of the shorf-cut problems Lhai had
been verified by the child in the preceding task and some new problems of the same types.
All c,hildren were presented with instructions that made them expect that some kirid: ;;;
expianation of their solutions on the preceding task was required. The children were |
questioned about their solution strategies on two out of four problems of each type, one 3 x
2, and one 2 x 1 problem. The set of problems for the interview was counterbalanced across
_ children, so that all fous problerﬁs of each type wefe used. For each short-cut type, the
interview started with a 2 x 1 problem followed by a 3 x 2 problem f or, half of the children,
énd witha 3 x 27 problent followed by a 2 x 1 problem for the other ;\mlf . The child was
~ asked to explain'how he knew that iﬁe answers to these problems we‘e incorrect or correct
["How did you know that the answer to this problem was wrong (good)?" or "Why is-this a
wrong answer?"]. The purpose.of these questions was to determine whether the child
understood and could explain the relevant principle's of multiplicatio’q that permitted use of

efficient short-cut strategies. If child's responses on either one or both, problems clearly

reflected the reliance on the algorithmic procedure (e.g., "Because I computed it"), and not

&
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on the understanding of the principle, he was asked whether he knew some more efficient
method of determining the correctness of the answer ("Can you think abqut any Shorter way
of finding out whether this answer is good or wrong, without computing it?").  This
question was intended to help the child to realize that he might use some other knowledge of
niultiplication available to him, not only his knowledge about the algorithmic procedure.

The above questions testing understanding of the principle were followed with
quésn’ons intended to determine whether children understood that two different problems of
cach type can be Feneralized as being the examples of the same, general principle of »
multiplication ("Do you think Lhat.ihese two problems are alike? How are they alike?").
Irrelevant or superficial generalizations (e.g., "They are both muitiplication problems”) were
prompled with an additional question ("Can you think about some other way these two
problems are alikcf’;).. Children's ability to generalize was tested with. new pairs of problems
* of each type (one 2 x 1, and one 3 x 2) that were not previously used for verification in the
Task 2. Generalization of commnutativity was tested separately for each problem size. All

'S

children’s responses were recorded with a tape recorder and coded on a special answer sheet.

B. Results
The analysis of verbal data was performed in four stages. The first three were analogical to
those performed on heuristics usage. First, the analysis of variance (ANOVA) on children’s
verbal explanations of princip]es was performed. Second, correlations were calculated to
determine whether explanatioris were equally f requent across different principle types. Third,’
correlations amoné verbal data Qnd the scores of CCAT and Math Survey Test were
calculated.” And f inally,__ generalizations of principle_s, were analyzed.
ANOYA on Explana;ions

In order to determine whether ability to explain tested principles of multiplication was
related to age, sex, type of principle, and size of thg problém, a 2(Age) x 2(Sex)x 4(Principle

Type) x"2(Prorblem Size) ANOVA was performed with repeated measures on the last two
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factors. A numbet of correctly explained problems of each type {0 or 1) was a dependent
variable in this analysis. g .

Percentages of children in each grade who correctly explained the pf;nciplcs on cach
problem type and size are presented in Table 17‘. Because for cach child explanations were
tested with only one problem of each type and size, the numbers in Table 17 also represent the
percentages of correctly explained problems in each grade, and therefore Tables 12 and 17 are
directly comparable.

Older children explained principles of multiplication more frequently lhar; younger
children, F(1, 59) = 6.66, p <. 05. Means were 57.26% for grade 4, and 78.90% for grade
6. Frequency of explanations was highly related 1o the type of principle, F(1, 177) = 21.34,
p < .001. Commutativity was explained more frequently than any of the remaining
principles, and the product-equal-to-multiplicand was explained morAe frequently than the
.product-less-than-multiplicand principle (Newman-Keuls, p < .05). Means for these four
types of principles were 91.33% for commutativity, 71.14% for product equal to multi(plicand.
61.67% for closure, and 48.18% for product less than multiplican&.

Grade and principle type interacted, :E(l, 177) = 6.29,p < .Of. Tests of simple
main effgcts revealed that older children explained more frequently than younger children the
product-iess-than-mulliplicand, F(1, 236) = 4.46, p < .05, product-equal-to-multiplicand,
F (1, 236) = 12.37, p < .01, and closure principles, F(i, 236) = 8.36, p < .01. '
Commutativity, however, was explained equally frequently by both groups of children.

Similar to use of heuristics, there v}as no-sex differences in performance. Intsrestingly, all
tested principles were explained more often on the small tharl on the large ’pfohxs, E(1, 59)
= 781, p < .0L. - ’

-
Relations Am;)ng Explanations ‘

Correlations _a_moné explanations of all the principles are vbresemed in Téble 18 for

grade 4 and in Table 19 for grade 6 In the tables explanation of the commutativity principle

is denoted as ECOM, of product-less-than-multiplicand as EPLM, of -

‘o

-
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product equal 1o muluphicand as FPEM and of dosare as FCTS
R
In both grades explanations showed o constderable uniformny across different
pranaple types. The onhy exception was explanation of commutativity m grade 4 which was
not related to evplanatons of the remamng prmaples  This finding soggests that, at least

tor vounger childien, «‘\;‘I.m;mm)&nl commutativiy mayv captute somewhat different aspect of

knowledge of multiphcation than the explanation of the remamng principles.

-

Relation to CCAT and Math Survey lest

- Presentedm Lable M0 .111(41 X1 are the cottclations among eyplanations of cach tvpe and
.Iﬁ%l\pv\ combined (F1OT) and the scotes of CCAT and Math ?ur\'v_\' Test. "As evident from
Lable 20 cvplanation of panaples was not related to any scal(‘A of CCAT In grade 4.
Faplanations of product less than-multuplicand princple (FPIM) and all the principles
combimed (FTOT)Y were moderatehy related 1o Math Survey Test. In grade 6 the pattern of
results showed twoanteresting trends. birst, explanation of prnciples was not related to the.
nonverbal scale of CCAT . The correlanons with this scale were umiformly low across all
primaple tvpes  Second, there was no relation between explanation of
product cqua’ to muluplicand pnociple and any scale of CCAT and Math Survey Tcsl&cThe

[} " i R

A
cortelations i all the remaming cells were significant, either moderate or high.  The lack o

e

correlation with product equal -to-multiplicand should be. however, interpreted with caution.
Faplanation of this pnnciple was also not correlated with use of heurisuics of the same type,

which may suggest some reliability problem with this particular measure.-

General iations

Only generalizations of the product -equal-to-multiplicand.,
product -less-than-multiplicand, and closure principles were analyzed. Commutativity was

not included in this analysis because, for this particular principle, generalizations were fested
L]

scparately for each problem size and, therefore. they were not comparabie to the

N

generalizations of other principles.

‘ v
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In comparison to axplanations, generahizations were i requent for all prinaples. The
percentage of children who cotrecthy generalized presented patrs of problems is presented
Table 27 as a funcoon of grade and prinaple type.

In both age groups product-less than multiphcand was generalized dess frequenth
than the product equal-to muluplicand and closure principles, X's(1) > 4 ps <05, Oldet
childien genceralized the product-less-than muluphicand principle more frequently than
vounger children, X5(1) - 581, p < 05 For the remaimng two pnnaples, the effect of
age was not significant.

Framiwation of cach child's perfofmance on both explanation and generalization of
cach principle revealed that in most cases generalizations were only present when the problems
of both sizes were correctly explained.  The exceptions from this general tendency were
present in only 2.cases (out of 93 possible) in grade 4 ahd in 4 cases (out of 96 possibic) in

grade 6. This finding suggesty that ability to generahze represents a more advanced stage in

understanding the principle than ability to explain 1t
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V. RELATIONS AMONG TASKS

A Tash 1 and Task 2

Relation Between Speed of Algorithm and Use of llcurisli&“s‘

o determine whether individual differences i speed;of execution of multuphication .
algonthm were related to mdividual differences miusc of heuristics, correlations were
calculated hctwcc’p the latencies of ¥arious multiplication algorithms and numbcer of heuristics
on cach of the described tvpes (product-less-than multiphcand,
product cqual - to multiphcand, commutativity, and closure) . These correlations are
presented i Table 23 for grade 4 and in Table 24 for grade 6.

As evident from lable 253, there was no relation between use of hevristes of any type
and speed ()f performance on the algonthmic task for grade 4. The correlations were
um!‘or;nl_\ very low across all algorithmie procedures.

For grade 6. use of heuristics was generally much more highly related to all aspects of
algonithime procedure, with exception of reading and writing digits (sce Table 24).  However,
the 18 were significant only for product-equal - to-multiplicand, and closure types, for which

use of heunistics Was highty related to speed of performance on all multiplication latencies.

AInterestingly, although the correlations for commutativity ang product-less-than-multiplicand

were not significant, speed of performance on all the algorithms was related to some general
tendencey 1o use heuristics. as evidenced by the significant correlations with total number of:
heuristics (HTOT).  This pattern of results is quite interesting.  First, it is clear that the
hypothests about the relation between speed of performing the algorithm and usage of
heuristics was not confirmed at all for grade 4, and was confirmed, at least partially, for

grade 6.  Grade differences in the pattern of results may be explained by postulating that

somg critical level of speed of execution of the multiplication algorithm is necessary for the

relation between the algorithmic skill and understanding of the principles to be established.

Recall that, consistent with this explanation, grade 6 children were faster than grade 4

33
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14
children on all aspects of the algorithmic procedure.  Sccond, with respect to grade 6, s

ol execution of the algorithm was related to the use of heuristics only on problems with
product-equal - to-multiphcand and closure problems, but not on commutativity and

product -less-than-multiplicand types.  This particular paticrn of results mighy, be directly
related 1o the degree of visual discrepancy between the “shott-cul products” and the correct
products, that is, the products one would get if the problems were solved correctly.  The
incorrectness of the closure products that had unnecessary dcdmalm and of the products that
were equal to multiplicands, was much more apparent than {he incorrectness of the other two
1ypes. It appears. therefore, that speed of performance of the algorithm facilitated
recognition of only these most diScrepant products.

.

B. Task I and Task 3

Relation Between Specd of Algoriihm and Explanation of Principles

Presented in Tables 25 and 26 ;re the correlations between speed of execution of
mulliplicalfon~ algorithm and explanations of principles of multiptication. Similar to
correlations with use of heurisliés, there'.was no relation between explanation of principles and
any aspect of the algorithmic procedure for grade 4 (see Table 25). For grade ¢ cxplanations
of product-less-than-multiplicand (EPLM), commumativity (ECOM), closure (ECLS), and

s

all the principles ccgmbined (ETOT) were related to s;;écd of performance on all multiplication

-

, 2
lgorithms, with exception of reading and writing digits. As evident from Table 26

exWanation of product-equal-to-multiplicand principle (EPEM) was W{ed with

perfof™ance on the algorithm. This resul),dm'ﬂhl be, however, interpreted with caution.
.

Recall that explanation of this principle was also not correlated with use of hewristics of the
same type, which may suggest inadequate reliability of this measure. It is not clear why this

particular measure might be unreliable, but the meanipgfulness of the negligible correlation is

- °

questionable.



" in Table 27 as a function of grade, problem type, and problerﬁ size.
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To summarize. individual differences in explanation of principles were related to speed
of the algorithm only for grade 6. This pattern of results seems to suggest that some critical

level of computational skill 1s necessary for the link with conceptual knowledge to be

cstabhshed.
(. lask 2 and Task 3

Relation Between Use and Explanation of Principles

Faamination of cach child's performance on both Tasks 2 and 3 revealed that, for
cach principle, four patterns of performance were possible. A child might neither use
hm-”Nm nor cxplain the principle..(ﬂF,), or might use heuristics but be unable to explain the

v -
underlving principle (HE), might not use heuristics for verification of the short-cut problems

.
-

but correctly explain the principle when explicitly asked to do so (I:I}'::)_ or might both use
heuristics and explain the principle (Plﬁ). The number of children in each group is presented

As is evident ftom the table, on majority of problems children’s performance was
consistent across the tasks (}.{IT or ;{I':) However, ther&also a large number of children
who demonstrated verbal knowledge about principles but failed to use heuristics for
verification of the short-cut problgms (ITIE). This pattern of perfo.rmance i's indicative\g a
production deficiency, that is, an inability to spontaneously produce mos\t\ apprioprate and
efficient problem-solving strategies despite the defnonstrated availability of relevant knowledge;
(Brown, 1975; Flavell, 1970).

It 1s plausible to suggest tha;,t}}e observed patterns of perf ormance represent certain
developmental stages in understanding principles of multiplication. First, noiknowledge or »

understanding of principle is present (f{I:Z). Verbal responses of children in this stage,

collected on the interview, were characterized by the certainty that computing the answer was

necessary for verification of the presented short-cut problems. Several children in this group

® -

referred also to some indirect computational strategy, such as addition or division (ez;, "I

~ X
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could divide the result by the first number to see if 1 get the other number™), but not to the
princigle.  This stage is followed by the "production deficiency " stage (F{ﬁ) in which

' chéalrcady know about the principle in the sense that they are able to explain it when
explicitly asked to do so, but they do not spontancously use knowledge-related problem
solving stralegies.- Children in this group were often unablé to give any definite explanation
for not using verbally demonstrated knowledge of strategies in the actual problem-solving
situation (e.g., "1 don't know why 1 didn't", "I didn't think about it", "I forgot”). Given
the availability of relevant knowledge, the developmental course of acquisition of effective
knowledge - related strategies may consist of gradual increase in the likelihood of its
spontaneous occurance in appropriate problem-solving situations. The final stage in
development of understanding of the principle is characterized by the ability to cxplain:lhe
principle and to spontaneously use effective problem-solving strategies (?iﬁ). Children in
this group usually not only explained the principle instantly, but they often were surprised
that such an easy and obvious statement was expelcled from thent. The transition from
nonproduction to production may proceed through the intermediate stage of "production
inefficiency" (Flavell, 1970), during which the appropriate strategy appears to be within
child's cognitive reach in the problem-solving task, but nonetheless it is not spontaneously
used, or not used consistently. This stage, although behaviorally not disiinguashab}e from
production def icieney (}.{ﬁ), is characterized by the intuition of the pessible utility of the
Strategy coupled with some uncertainty or lack of skill. Verbal comments of some childrers
conveyed the awaremess of the.strategy during problem solving and, at the same time, the lack
of confidence that the principle would work (é.g., "I wasn't sure so 1 wanted to c'heck", "1
wouldn't be absolutly sure if I didn't work it out"), or that it would work always (e.g., »'l
“;amcd to check whether it would work for for this problem as well”).

An important step in development of uhderstanding may be the ability to gericraiize

different préblems as being the examples of a common principle. Recall that explanations
were more frequent for small problems but use of heuristics was indepcnderit of the size of

the problems. It is plausible to assume, therefore, that verbal understanding develops first
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for smaller problems, and only later it becomes gencralized to larger problems as well. At

the stage of active employment of the strategy, when the principle is alrcady well internalized,
the magnitude of the problem may be not important.

If development of understanding does. in fact, follow the pattern in which verbal
understanding always precedes opcrz?lional use of the principle, one would expect that
r(‘lldll\'cl,\‘ few children would use heuristics before they are able to explain the underlying
plllluipl(‘, Fxamination of Table 27 revcal‘ed that the f’lf: pattern of performance was,
mndeed, least common for all principle types in both grades. Similarly, one would expect

-
ceftain continuity and consistency in develgpment of understanding, such as that principles

that are more frequently explained should be also more frequently used. Recall that

commutativity and product-equal-to-multiplicand principles were consistently most frequently

caplained and used. \ \




V1. DISCUSSION

There were two main issues addressed in the present study: (a) the relation between
automatization of multplication skill and understanding of principles of multiplication and
(‘b) differences among various aspects of understanding. Automatization of multiplication
skill was assessed in }erms of speed of performancé of multi-digit multiplication algorithm.
Understanding was assessed with two different but related measures: (a) use of heuristics that
were based on conceptual knowledge about principles of multiplication, and (6) explicit verbal
explanation of these principles. In the following sections most important findings are
presented ;n terms of how they relate to each of t}:esc issues and to other relevant research on
malliplicalioh‘. Limitations of the measures and conclusions are discussed also.

<

\

A. Relation Between Speed and Understanding .
Findings a'nd Conclusions g

The main hypothesis tested in the study was that automatization of multipliéation
algorithm was related to greater understanding of this operation as measured by the ability to
use and explain princéples of multiplication. The analysis of results revealed that this
hypOthésis was not confirmed for grade 4, in which speed of execution of the algorithm was
not correlated with any aspect of understanding. For-'grade 6 speed of thultiplication
algorithm was related to use of heuristics on product-equal-to-multiplicand and closure
problems, as well as to verbal explanations ‘of all principles with exception of
product-equal-to-multiplicand. Age differences in the pattern of r.sults suggest that the
- relationship between skill and understanding is not steady or static but increases with learning
and experience. These differences.may also indicate that some critical, threshold level of
speed of ;he\ algorithm i;necessary for the multiplication skill and understanding to become
related. It is tempting to suggest that for each principle this relation is first established with
more advanced, verbal aspect of understanding and only later is generalized to active use of .

related strategies. This interpretation is potentially flawed by the fact that for

\
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product -equal-to-multiplicand principle speed of algorithm was correlated with use of
heuristics but not with verbal understanding. Recall. however, that reliability of this
particular measure was Guestionable and therefore this result should be treated as tentative.
Thus the results of the prc.scr;l study suggest that, at least for older children,
automatization of the algorithm is related to greater availability and accessability of relevant
conceptual knowledge in the problem solving.  While not all the evidence is positive, the

preponderence of it appears o be so.

The corrcla'lional design of.lhe study does not permit the inference about the nature
‘uf’ the relation between automatization of the algorithm and conceptual understanding, bul it
is plausible to suggest that once this relationship is established, algorithmic skill and
understanding may build upon each other. That is, practice in algorithmic procedure would
make it more automatic, which would free processing resources for noticing mathematical
regularities, checking for errors, and looking at the plausibility of the calculations one is
performing. This more extensive processing might in turn further facilitate acquisition Qf

v

multi-digit multiplication procedures.

A Comparison with Previous Research on Multiplic:;lion
The framework proposed in the present study differs in several respects from the
previous acounts of children's multiplication. First, basic arithmetic facts and algorithms
are often viewed as being merely rote skills, corresponding to no meaningful aspect of
’
mathematics (Skeffe & Blake, 1983). The present approach posits, instead, that skill at basic
arithmetic may Rave deeper conceptual implications. The automatization argument.advanceq
here suggests that, to the extent that arithmetic skill becomes automatic, it results in greater
availability and accessibility of higher-level conceptual knowledge.
’ Second, it has been a prevalent view that acquisitior} and retrieval of basic arithmetic
. facts and algorithms i§ independent of existing conceptual knowledge. For example, with

respect to single-digit multiplication it has been suggested that retrieval speed and the

sequence of acquisition of multiplication facts are determined almost entirely by size of the
' *



'problcm and practice frequency (Campbell & Graham, 1985; Miller, et al., 1984; Stazyk,
Ashcraft, & Hamarm,, 1982; Siegler, 1987). Smaller problems and the problems that have
been extensively practided are acquired earlier and recalled faster than the larger or r'elaliivcl_\'
less frequent combinations. These models assume that. at any stage of lqarning, fact
acquisition and recall do not interact with and are not influenced by the potentially relevant
aspects of conceptual knowledge. Conscquently, the recall of the pair of probictis»ach as 5
x7 =235and 7x5 = 35 are v’it.:wed as two psychologically unrelated events, unaffected by
knowledge of commutativity. In contrast to association-learning models, the present
approach suggests that, at least at later stage of learning, as existing number-combination
knowledge is used and becomes more routine and auiomau’zed, it provides an opportunity to
discover new relalio;lships and principles which, in turn, can bc‘ used to facilitate acquisition
and recall of new or harder problems. From this perspective, knowledge of the
commutativity pringiple might obviate extensive practice of the 7 x 5 combination once related
by this principle 5 x 7 problem has been memorized. Thus, discovery of relations and
principles can give a child the sudden capacity to respond quickly to a wh?le range of related
combinations. In effect, sudden qualitative changes can be produced that are not necessarily
related to the amount of practice. Morever,dit apbears that, once discovered, knowledge of
principles and relations might also inﬂ':xen& the choice of backup strategies when the retrieval
process goes wrong. For example, a child might intentionally use his or he.r knowledge about
the relation bétween addition and multiplication for repeatedly executing addition procedure to
solve a difficult multiplication problem. This suggestion is contrary to the Siegler's (1987)
claim that the choice of strategies ir_1 multiplication is a self - regulatory, mindless process that
dogs not depend on conceptual knowledge of this operation. _ e

Finally, with re.spec't to multi-digit multiplication, the study offers an useful
framewnrk for conceptualizing the relation between procedural and conceptual knowiedge in
computational performance.. An interesting characteristic of the present approach is that it
postulates active interplay and interdependence between conceptual knowlcdgc andy ﬁrocedural

skills in learning complex algorithmic procedures. The suggestion is that the relation between
» . - N \

]
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these two types of knowledge is more than a one-sided facilitation of procedural skills by
conceptual understanding (Skemp, 1976). A distorted algorithm is more likely to be correctly
“repaired” or “reinvented” when procedural skills are supported by conceptual understanding,
but the inventions reflecting understandingan come about only when the procedures become

IS

well established and automatized so their results can be inspected and compared (Resnick,
1983).  Thus, from this perspective automatization of the algorithmic procedure provides a
necessary link between syntax of this agorithm and semantics of the corresponding conceptual

knowledge.

l,illlhgltiorl; of the Study

The prese_nl,gtgfy‘%}éo has certain limitations that need to be menlionea and

cvaluated. P’irﬂ',mw be noted that automatization of basic procedures and associated

il ,
increase in attentional resources may be a necessary but not sufficient condition for

)

corresponding increase in availability and accessability of conceptual knowledge.
Motivational, emotional, or intellectual factors may limit the potential role of automatization
in this respect.  For example, a child might be not willing, not interested, or intellectually not
capable of noticing and making use of mathematical regularities and principles despite the
availability of attentional resources gained by means of extensive practice and automatization
of basic algorithmic knowledge.

Second, the obvious limitation of the study is that all the conclusions and
interpretations are based on the correlational data, showing that the same children who are
fast and skillful on multiplication algorithm tend to have better understanding of principles of
this operation. As such, the data do not necessafily indicate that increasing skill at algorithm
will lead to any corresponding increase in conceptual sophistication. Within the obvious ~
limits of such data, however, they do nothing to discourage the view that fluent performance
of ba'sic algorith;p_ig procedu:es affects conceptual understanding, at least for older children.

Going beyond such correlations to real understanding of how acquisition of procedural skill

affects mathematical understanding would require detailed longitudinal studies of development
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of relation between these two aspects of mathematical knowledge.

B. Relation Between Measures of Understanding
Children's ability to employ heuristics was compared with their ability to explicitly explain the
underlying principles of multiplication that justified use of heuristics. Both consistencies and
differences in performance were revealed ;\s a result of this comparison. Consistent across
both measﬁrgs_ commutativity and product-equal-to-multiplicand principles were more
frequently used and more frequently explained than the remaining principles. Superiority in
understanding of these two principles has been explained in terms of different amount of
practice and famil.iarity with the related problem types. The¢ main difference in performance
across the two tasks was that children were more advanced in explaining the b'r‘inciples that in
spontaneously using them for verification of the short-cut problems. Consequently, in
addition to children whose performance was consisgent across both tasks (1’1? or Yﬂ’i) there
was also a lafge number of children who were able to explain the principles even though they
did not use heurislicé (Fiﬁ). This pattern of perf ormance has been characterized as
production deficiency, that is, an inability to produce most appropria{ge strategies despite the
presence of relevant knowledge (Flavell, 1970). It has been suggested that understanding of
principles of multiplication follows a path of. development in which verbal understanding
(production deficiency) precedes spontaneous use of related efficient stralégi?s (production).
Thus cemparison of performance on the two tasks clearly showed that children do not
possess a single understanding of principles of multiplication. Rather, their undergfanding
varies as a function of the employed measure. The child may use a conéept ih some
situations but fail to do that in others. This finding demongtrates that conceptual
understanding is not all-or-nothing phenomenon. It has many aspects that cannot be fully
assé‘sksed by examining performance on a single task. Only by investigating a concept both
broadly and deeply, on a variety of tasks, corresponding to diff erent aspects o;

understanding, can we discover what children know about the concept and how it is acquired.

l .
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Table 3

Mean latencias and Standard Deviations for tach Problem Type and Grade

tor Tosk 1 (in seconds)

Grade 4 Grade 6
Type
Stondard Stondardg
Lotencies deviations tatencies deviations
I 11 96 1 58 19 35 2 24
11A 15 29 6 89 12 16 3 77
e 40 12 38 59 27 20 © 23 e3
111 22 29 1139 17 19 S 35
v 12 09 4 4 8 25 2 03
v 25 79 14 42 18 15 6 93



Taobte 4

Sptit hat! Correlations for Each Grade and Proble Type

for Taoak 1

Grade n 1 Ito 1id [l v v
4 3 602 913 958 898 822 823
6 32 885 601 935 673 8es 763 &
Note All correlations ore significant with ps < 081  two-tailed
[ 34
o __l
a
2
-
<

47
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Table 6

Corretations and Reliabiities Among Problem Types

ot Task 1 for Grade 6

{ Ila I1b [l iv v
N - 939 554000‘ 5130 635e0e 635e0e 419
4o 751 640eee B853eee 900eee B6Bees
A)
I1b 966 588ese  6150ee 7100ee
i 805 827ese 715608

iv 893 862e0e N

v ) 866 \‘hhh\“--m

Note All Corretations were caolculated for n = 32
Reliabilities are provided 'n the diogonal
e p < 05, ee p < 01, see p < 001, all two-tailed

o T



Table 7

Corretations Among Algorithm

QCAT . NVCAT,

Lotencies of Task V' and

and Math Survey Test for Grode 4

VCAT ..

1 I1a Iid 111 Iv \'

VCAT —-.208 —. 479 — 419 ~ 478+ — 238 — 456+
n=28

QCAT 001 —.365¢e -.193 — . 427 - .380e - 344
n=28

NVCAT 249 - .919 —. 142 -.127 003 .034
n=28

M i - 001 - 493 — 4903 - .526e¢ — 406+ . 365
n=29

« p < 05 se p < 21, both two‘toiled/////
<



Table 8

Correlotions Among Atgorithm Latencies of Task 1 and VCAT.

QCAT, NVCAT, and Math Survey Test for Grade 6

I lia 11b (i v v

VCAT 148 ~ 405« - 390 - 287 - 300 - 506es
n=32

QCAT 15@ - 360 ~ 364ee - 329 - 317 - 428
n=32

3

NVCAT 895 - 169 - 280 ~ 147 - 122 - 191
n=32

MAT - o74 _ 468 - 443e - 412 - 465es  S13ee
n=31

* p< .05 e p < .01, both two)\onlod.



Toble 9

Types of Short-cut Problems

Problem Type

Product less than multiplicond
Product equal to multiplicand
Cloaure

Commutativity

136

146

123

215
13

a8

Example

x

x X

19
16
15

13
215

124

146

1845.5

2795
2795

52
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Table 11

Frequency of Strategies as a Function of Grade

Strategy
Grade M1 H1A H2 H2ZA G CS1 CS2 CcsS)
4 101 11 33 1 AR 26 308 5
6 123 36 28 3 37 3 244 10

—y
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Table 13

\

Correlations Among Types of Heuristics

for Grade 4

£
HPLM HPEM HCLS
HCOM . 259 302 .76
HP LM 1 763eee  73400e
HPEM . 693e0e

Note. n = 31
sse p < 201, two—tailed

N — _—



Table 14

Correlations Among Types of Heuristics

for Grode 6

HP LM HPEM HCLS

HCOM 587eee 665e¢ee 319
HP LM 684000 S26eee
HPEM 506

Note n = 32.
e p < Q1, ess p < 991, both

two—taoiled.
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Toble 15

Correlations Among Heuristics and VCAT, QCAT, NVCAT,

and Math Survey Test for Grode 4

Vo

HCOM HPLM HPEM HCLS ATOT
VCAT 022 024 139 \.Sz.ﬁ;/ 086
n=28
QCAT .895 025 11e - @25 978
n=28
NVCAT .82 317 .336 347 353
n=28 : i -
MST 34 245 415« 299 426+
n=29

« p < .05, two-tailed.



Table 1A /\
(orcatations Among Meuf st s and VOAT  (XK'A7  NVCAT,

and Math Survey Test Ibs Grade 6

- 4

HCOM L HPLM Hp HCLS nipi
T i T —— N - Q
A
Vi AT 35 51060 543e¥ 389 560e0e
w3y
AT 351 560ess 454+ 620see SQ4see
=32 {
Y~ \
NVCAT 200 4930 1954 S43ee 4/76%a -
ne Y2
>

MS T 45“0 60Qee e £3Qeese 73Qese 73% 6o
ne 1 "

. p o< 05, e+ p < Q1. eee p < Q01, oll two-tagrted
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Tatle 18

(orretations Among Explanantions for

Grade 4
EPLM EPEM [ X
.
ECOM a45 179 19
EPLM RB46eee 595eee
LPEM 618ese

Note n = 31
cse D < @01, two—tatled



Table 19

Correlations Among Explanaticons for

Grade 6
EPILM EPEM ECLs
ECOM 566see 40Be 185
EPLM ‘5540se 64Bees
EPEM N 396«

Note n = 32
e p < @5, eee p < 201 both
two-ta: led

62



Table 20

¥

Correlations Among Explanations and VCAT, QCAT ., NVCAT,

and Math Survey Test for Grode 4

ECOM i EPLM EPHM ECLS £ETOT
e /
VCAT - 218 209 215 237 229
n=28
- QCAT - 314 236 305 135 229
n=28
NVCAT - 338 287 200 258 249
n=28
MST 137 4200 101 296 408.
n=29

. p < Q5. two—tailed

AN

N\
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64

Correlotions kmong Explanations and VCAT, QCAT, NVCAT,

and Math Survey Test

for Grade 6

ECOM EPLM EPEM ECLS ETOT
VCAT . 404 . 406 243 5160 530ee
n=32
QCAT 3400 407 175 . 566e0e 510se
n=32
NVCAT . 289 205 197 .153 261
n=32
MST 517 Stl4ee 296 567eee 640cese
n=31

e p< .05, ee p < 01, ese p< 001)/0I| two—-taoiled.
v H
- / , -
14
-
h



Taobie 22

Percentages of Subjects who

of Grade and Problem Type

Generalized Principles as o Function

Grade Product less than Product equal to Closure
multiplicand multiplicand
4 16.12 6.45 29.03
6 43.75 £ 12 50 43.75
-
0 -
N

65



Toble 23 ’

Correlations Bdtween Speed of Execution of

Multiplication Algorithms and Use of Heuristics ftor

Grade 4
-

HCOM HPLM HPEM HCLS HTOT
1 - 043 062 012 222 109
lia 068 088 142 R ZANEN
iib 982 196 215 -~ 150 -.153
. 0990 212 069 - @23 - 006
v 047 289 do4 Q73 259
v 093 .062 128 ~ 857 - @51

Note n = 31

66



Tobte 24

Correlations

Between Speed of Execution of

Multiplication Algorithms and Use of Heuristics for

Grade 6
HCOM HP LM HPEM HCLS HTOT
I 206 077 o8 - 209 006
lla - 262 202 — 375 ~ 428 388+
I1b —-.146 246 ~ 44Q9e¢ - 351 373
Il ~ 243 269 — 413¢¢ — 533 4417
v - 161 142 - 2 —. 4770 331
v 187 289 - 44@es - 384e - 399
Note n = 32
s Q1. both two—toiled.

+ p g 05

67
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Table 25

Correlations Between Spbed of Execution of

Multiplication Algorithms and Explanations for

!

Grade 4
ECOM EPLM EPEM ECLS €707
1 .88 - 098 060 .983 231
Ila .032. —.245 .237 -.159 -.236
Iib .085 - 34 .315 -.336 ~.337
[ - . 004 -.142 . 164 - . 186 -.185
Iv AR - 159 190 .018 ~.124
\ .74 -.230 .267 -.195 -.247

g
Note. n = 3
*p < 05 two-tagiled’



Table 26

Correlations Between Speed of Execution of

Muitiplication Algorithms and Exptanatons for

Grode 6
ECOM EPLM EPEM ECLS Eror
N - 008 - 122 V4l - 155 - 159
[la - 398 — 475 -~ 164 ~.562000— 587
IIb —.457e¢ - 509+ - 014 -.501ee — 5080ee
i -.278 -~ 411 -.912 —.508¢¢ — 4530¢0
v ~ 481ee - 473es - 230 - 501ee — 60Bees
v - 523e¢ — 4B2ee - 218 - .532%e — 629ess
I
No\; n = 32
. < B5, ss p < B ess p < 001,
c:l)(wo~tonled
/
d
RS
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Appendix 1: Task 1
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L/
NAME -
GRADE
DATE
L]
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AN
3

I would like to know how quickly and accurateh vou can wnite and
muliiply numbers. 1 am going to ask vou to write some numbers and (0
solve several muluphicatod problems.  Some of these problems will be easv

and some may b hard.  Please, work as quickly as vou can bu[/u\\ not
BN
b

10 make anv errors. -

N/
“
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78

This is a task 1o see how: quickly you can write numbecrs. There are
saveral numbers below. On Yhe right side of each number there is a line.
[ wanl vou to copy each numbecr onto this line. Plecase. do that as

v
quickly as you can but do not skip any number.

There arc more numbers on the next two pages. Please, copy them as
quickly as®ou can without skippirig any. When yoh have finished the

first page, stop. Do not go “to the next page, until you are asked to do

N L _ .
S0. _



19

STOP
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IB

STOP

RS 3

44
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This is a task to sec how quickly and accurately vou can multiply
numbers.  There are several mudtiplication problems below. Plcast. solve

them as quickly as vou can bul try not to make any errors:

2 7
x 3 X 5
54 31
x 2 X 3
\ - 20 % 34
y x 14 x 22
94 A | 58 .
x 37 Xé"r ‘
Y
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There are more multiplication problems for vou to solve on the next
L4

pages. Solve them as quickly and accurately as you can. When vou have
finished each page, stop Please, do not g0 10 a next page until you are

asked 1o do so.

*

"
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STOP
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STOP
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IVA3

14

' STOP

91



IVB1
1
‘P

STOP



~ STOP

VB2
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IVB3

STOP

<

94



VAT

STOP

95



VA2

:\xl
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PO

© STOP
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STOP

VA3
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Iasks
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e
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NAME .

JRADE:

DATE:

TASK

5

pe
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I want vou o amagine that you are an anthmeuc teacher.  You asked
vour class to solve a number of muluplicaton problems as xgomework
caercise.  Now ovou want to find out whether each student solved the
problems correcthy o not Beoause vou are gomng to ask the s{vudcms 1o
correct their own errors, vou Jdo not have to find the correct answer for
Sverv problem. As soon as hvou are sure that the answer is wrong, mark
it with "O':A If the answer s night. mark 1t with "1, There are several

problems below Mark them av quickly s vou can but v not o miss

» muluphy the numbers vourself, vou

—

>
any wrong ans‘wch I vou need

can write on the side of the page. If vou do not have to muluply the

o
numbers vourself, just gark "0" or 1",
N\
T4y S = 370 )
37 x 3 = 32 N

123 x 12 = 1476

12 x 123 =1456

24 x 2 = 4838
\ 4
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(n the next four pages there s a complete work of one student.  Mark it

¢s quickly as vou can but try not 1o miss anv errors.  Remember that
(‘\\.‘

vou do not have to find the answer for every problem, but if vou need

to muluply the numbers vourself, do that on the side of the page. When

vou have fimshed cach page, stop. Please. do not go 1o a next page

until vou are askgd to-do so.
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A ¢
]
L .
Al) S a0 7 = 568
A2) 215 % 13 = 2793
A3) 13 x 215 = 2795
O
A4) 4y 7 = 308 )
A3) §7 % 4 =. 78
A6) 253 x 123 = 3131.% .
A7) 241 x 14 = 3374.4
A8) 2 x6 = 32
A ;
STOP e
A



B1)

B2)

o
(W]
S

Bo)

B7)

B§)

143 2 12 = 126

49 A 6.3 = 308.7

54 x 3 = 1622

64 x 4 = 236

4 x 64 = 256

127 x 14 = 1778

STOP

106



Cl1)
C2)
C3)

C4)

C3)
Cb6)
C7)¢

C8)

135 v 17

138 » 14

67 x 5 =
98 x 6 =

69 x 6

= 135

H
1o
-
<
to

= 1628

= 1608

= 170:5.

55

588.8 -+ ./

414

STOP

107



D3)

Do)

D7)

D§)

1345 » 153 = 17485
200 v 11 = 206
&
72 xS = 360
> X 72 = 360

213 x 14 = 2882
123 x 11 = 13533
84 x 6 =1 84

79 x 4 = 326

STOP

108



‘.

b x 1Y

208 x 23

421 x 21

194 x 23

LSox Y o-

= [478/&

li

I

320

421

4462

S

96 x 6 = 96

Shox 6 = 3244

109



