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Abstract

Distributed parameter systems (DPSs) are distinguished by the fact that the states, controls,

and outputs may depend on spatial position. The certain class of dissipative DPSs includes

many underlying chemical and mechanical spatiotemporal phenomena such as chemical

reactions, convection and diffusion, flexible structures and certain wave propagation prob-

lems, all of which can be described by partial differential equations (PDEs). In the past

decade, considerable work has concentrated on the construction of a general framework of

reduced-order control synthesis for PDEs systems arising from the modeling of DPSs on

the basis of low-order ODEs models which are derived by spectral decomposition schemes.

Among those control synthesis, model predictive control (MPC) is a popular and widely

used method because of its ability to account for input and state constraints. However,

these works did not address completely the problem of state constraints in the predictive

controller design for either the PDE systems with non-self-adjoint operators or the PDE

system describing flexible structures. Furthermore, almost all the existing MPC designs for

DPSs are developed in an implicit form and implemented in an on-line way, which leads to

the numerically-determined control actions and relatively large computational effort.

This thesis presents a MPC scheme for the parabolic PDE system where a convective

term is included in the operator to describe the convective heat and mass transfer which

makes the operator non-self-adjoint as well as a MPC scheme for the flexible structural

system described by a fourth-order PDE, and an explicit/multi-parametric MPC scheme

for dissipative PDE systems. First, a MPC scheme which accounts for the input and state

constraints is proposed for the parabolic PDEs system describing the axial dispersion chem-

ical reactor. Subsequently, an approach is proposed to approximate the infinite-dimensional

representation of Euler-Bernoulli beam system by a reduced-order finite-dimensional model,

and the proposed MPC scheme is implemented on the reduced-order beam system. Follow-

ing this, an explicit MPC scheme, which is solved off-line, is proposed to stabilize the certain

class of dissipative PDE systems as well as guarantee the input and state constraints.
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by the explicit MPC law in simulation 2 (solid line); constraints of ũ in sim-
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Chapter 1

Introduction

1.1 Motivation

Transport-reaction process is a typical representative of a distributed-parameter system as it

usually possesses the characteristic of considerable spatial variations caused by the potential

presence of convection and diffusion phenomena. First-principle modeling of the transport-

reaction process within finite spatial domain usually leads to the system of parabolic PDEs.

The major characteristic of parabolic PDEs systems is that their spatial differential oper-

ators are featured by a spectrum that can be partitioned into a slow part which includes

a finite number of eigenvalues that are close to the imaginary axis and a fast complement

which consists of an infinite number of eigenvalues that are located far-left in the complex

plane [1]. In addition, the Euler-Bernoulli beam system described by a fourth-order PDE

is another representative of the dissipative distributed parameter system. Although the

fourth-oder PDE describing the flexible beam system is not parabolic, its spectrum shares

the same feature with the parabolic PDE system. In the past decade, there are many

existing results on the framework of predictive controller for distributed-parameter sys-

tems. However, these results did not address completely the problem of state constraints in

the controller design for PDEs systems with non-self-adjoint operators and non-symmetric

eigenfunctions. Furthermore, control practitioners will often face the scenarios in which ac-
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tuators and sensors have their limits due to physical properties or practical characteristics

associated with actuators/sensors implementation, or the system state is required not to be

in excess of specified limit values (for example, requiring the concentration of a certain prod-

uct to be maintained above some desired purity condition). Motivated by this consideration,

in this thesis, we present a model predictive control synthesis for the transport-reaction sys-

tem which has a convection term and for the flexible Euler-Bernoulli beam system which

involves a fourth order spatial operator. In addition, motivated by the consideration of

overcoming the drawback of regular model predictive control, an explicit/multi-parametric

model predictive control formulation is proposed for the certain class of dissipative dis-

tributed parameter systems as well.

1.2 Background

Control problem of various classes of distributed parameter systems, arising from the model-

ing of transport-reaction processes has attracted a lot of attention in the past decade. The

traditional approach for control of parabolic PDEs systems utilizes spatial discretization

techniques to obtain systems of ordinary differential equations (ODEs), which are subse-

quently utilized as the foundation of the finite-dimensional controllers design; see [2, 3].

This approach has a significant drawback that the number of states which must be pre-

served to obtain a system of ODEs in order to yield the required order of approximation,

might be quite large, which leads to a high dimensional controller realization and complex

controller design. In the past, considerable work has concentrated on the construction of a

general framework of reduced-order control synthesis for parabolic PDEs systems and other

PDEs systems arising from the modeling of distributed-parameter systems on the basis of

low-order ODEs models which are derived by the combination of the concept of inertial
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manifolds [4] and spectral method. A number of researchers have explored many problems

related to control of a system described by PDE, such as dynamic optimization, output

feedback controller design, nonlinear and robust control of the PDE system [5–7]. Besides

the above results which are concerned with the order reduction, stabilization, and tracking

problem of a parabolic PDE system, notable research has been carried out on the devel-

opment of methodologies on optimal control for the distributed-parameter systems [1, 8].

Apart from the issue of optimal controller design for distributed-parameter systems with

fixed sensors or actuators [9], significant research has been devoted to the optimal location

of sensors and actuators [10] and how to switch among actuators under an optimal control

policy [11,12].

Model predictive control (MPC) synthesis is a popular and widely used method in the

control of process systems because of its ability to account for manipulated input and state

variable constraints. The optimal control sequence over a finite horizon is computed by

solving an online open-loop controller performance optimization problem. At each sampling

instant, the controller performance is presented by the deviations of input and predicted

state from their set points. Only the first control move of the sequence is regarded as the

optimal control input and then injected into the system. By repeating the performance op-

timization problem with new predicted state values at each instant, an online implicit model

predictive controller is obtained. In the past, numerous research studies have concentrated

on the general framework of model predictive control synthesis for PDE systems describing

distributed parameter systems, such as MPC with internal model control structure on the

PDE system [13] and characteristic-based MPC on the hyperbolic PDE system [14]. Besides

the above MPC frameworks, which are derived with traditional order reduction techniques,

the issue of development of model predictive controllers which are constructed on the basis
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of reduced-order models has been explored by Dubljevic, Christofides, Alonso within the

framework of distributed [15] and boundary applied actuation [16], predictive output and

full state feedback control [17], multivariable predictive control of PDE [18], and robust

multi-model predictive control [19]. In all of the above results, the models of interest have

a feature that the spatial operator is self-adjoint, leading to symmetric spatial operators

and eigenfunctions. It is necessary to consider a non-self-adjoint operator arising from the

convective term which describes convective heat and mass transfer in a transport-reaction

process.

In another line of work, many mechanical systems, such as robots with flexible arms

and aircraft appendages can be modeled by distributed parameter systems. In the past,

the control problem of flexible systems is mainly focused on the boundary control method

and control related issues, such as controllability [20] and boundary control [21] of the wave

equation, boundary control of a Euler-Bernoulli beam [22], basis property and stability of

Euler-Bernoulli beam [23]. The flexible Euler-Bernoulli beam can be modeled by a fourth-

order PDE system which is neither parabolic nor hyperbolic. It is necessary to decompose

the fourth-order spatial operator by spectral method and develop a reduced-order predictive

controller for the beam system.

Apart from the issues of closed-loop stability, reference tracking, and constraint satisfac-

tion for regular MPC of distributed parameter systems, significant research has been devoted

to the modern issues of predictive controller design for distributed parameter systems, such

as economic MPC of parabolic PDE systems [24] and piece-wise constant predictive control

to satisfy predefined performance criteria [25]. In all of the above results, the MPC laws

applied on distributed parameter systems have a feature that the MPC formulations are

solved online and the optimal control action values are in an implicit form. Online opti-
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mization leads to the major shortcomings that the computational effort for regular MPC

is relatively large and we are not aware of any knowledge on the control actions which

are determined numerically. The disadvantages of regular MPC can be overcome by ex-

plicit MPC [26–30] as the solution to explicit MPC is derived as an explicit function of the

state variable with its corresponding critical regions, and the implementation of explicit

MPC is then completed in an off-line way. The optimization problem involved in explicit

MPC is solved as a set of off-line multi-parametric programming problems in which only

the current control variables, current states and constraints are considered [31]. In other

words, the single-stage multi-parametric programming problem is decomposed into a set of

smaller optimization subproblems by dynamic programming techniques [32] and each opti-

mization subproblem will then be solved by multi-parametric programming techniques [33].

The computational effort is reduced by disassembling the optimization problem into smaller

optimization subproblems and by implementing the controller in an off-line way.

1.3 Thesis outline and contributions

This thesis is organized as follows:

In Chapter 2, the algorithm of model predictive control is proposed for the axial dis-

persion chemical reactor system. We consider a scenario where a convective (first-order

partial derivative) term is included in the spatial operator to describe the convective heat

and mass transfer, which makes the operator non-self-adjoint. The eigenvalue problem of

the operator is then solved in a biorthogonal form with non-symmetric eigenfunctions. In

order to explore the best level of approximation for the infinite-dimensional system, dif-

ferent discretization methods are discussed and explored in this chapter. The synthesis of

modal model predictive control is formulated to control the temperature and concentration
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in the axial dispersion chemical reactor with input and state constraints. The modal model

representation of the PDEs system is derived using Galerkin’s method and spectral decom-

position technique. Two discretization methods are provided to derive different types of

discrete-time model representation. In order to obtain the discrete-time model representa-

tion, a transfer function of the PDEs system is required. Then the discrete-time model is

utilized in the design of a modal model predictive controller. Input and state constraints

are accounted for in the discrete-time predictive controller.

In Chapter 3, the algorithm of model predictive control proposed in Chapter 2 is imple-

mented on the flexible Euler-Bernoulli beam system. Since the Euler-Bernoulli equation is

neither hyperbolic nor parabolic, the method to solve the eigenvalue problem of the Euler-

Bernoulli equation is different with those to solve hyperbolic or parabolic equations. The

eigenvalue problem of a fourth-order spatial operator is addressed and the result is subse-

quently used for decomposing the two-dimensional spatial operator arising from the flexible

Euler-Bernoulli beam system with structural damping. After applying Galerkin’s method

and spectral decomposition technique, the standard discretization method and Tustin’s dis-

cretization method with Cayley transform are utilized to derive the discrete-time model

representations, respectively. The transfer function of the beam system is also obtained to

derive Tustin’s discrete-time model representation. Two MPC formulations, in which the

fast dynamics are only involved in the PDE state constraints equations, are developed on

the basis of two discrete-time system representations.

In Chapter 4, the algorithm of explicit/multi-parametric model predictive control is

proposed for the certain class of dissipative distributed parameter system described by

PDE system. A finite-dimensional modal representation of the infinite-dimensional system

is derived through Galerkin’s method and modal decomposition techniques. The algorithm

6



of explicit/multi-parametric MPC is constructed in a way that the objective function is only

concerned with low-order model dynamics, while the state constraints account for both low-

order and higher-order model dynamics. Finally, performance of the proposed explicit MPC

formulation is demonstrated through simulation studies on the transport-reaction system

and the flexible Euler-Bernoulli beam system.

Chapter 5 summarizes the main results of this thesis and discusses future research

directions.
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Chapter 2

Model Predictive Control of Axial
Dispersion Chemical Reactor∗

2.1 Introduction

This chapter discusses the development of model predictive control algorithm which ac-

counts for the input and state constraints applied to the parabolic partial differential equa-

tions (PDEs) system describing the axial dispersion chemical reactor. Spatially varying

terms arising from the nonlinear PDEs model are accounted in model development. Finite-

dimensional modal representation capturing the dominant dynamics of the PDEs system

is derived for controller design through Galerkin’s method and modal decomposition tech-

nique. Tustin’s discretization and Cayley transform are used to obtain infinite-dimensional

discrete-time modal dynamic representations which are used in subsequent constrained con-

troller design. The proposed discrete-time constrained model predictive control synthesis is

constructed in a way that the objective function is only based on the low-order modal repre-

sentation of the PDEs system, while higher-order modes are utilized only in the constraints

of the PDEs state. Finally, the MPC formulations are successfully applied, via simulation

results, to the PDEs system with input and state constraints.

∗This chapter is a revised version of “L. Liu, B. Huang, S. Dubljevic, Model predictive control of axial
dispersion chemical reactor, Journal of Process Control. 24(11) (2014) 1671-1690.”
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2.2 Axial dispersion chemical reactor

In this chapter, we consider the axial dispersion chemical reactor system. A first-order

exothermic reaction is occurring in a non-adiabatic tubular chemical reactor. Fluid which

contains reactant A at temperature Tf and constant concentration Cf flows into the tubular

reactor of length L and radius R from the left end of the reactor. A first-order chemical

reaction, A→ B, is taking place in the reactor, with constant reaction enthalpy ∆H. The

reactor is cooled by a cooling jacket in which the coolant is at temperature Tw; see Fig. 2.1.

Figure 2.1: Schematic description of the axial dispersion chemical reactor

The first-principle model for such a system is given in [34],

ρfCpf
∂T (z′, t′)

∂t′
=− ρfCpfv

∂T (z′, t′)

∂z′
+ k

∂2T (z′, t′)

∂z′2
+ (−∆H)k0e

−Ea/RgT (z′,t′)CA(z′, t′)

− 2U

R

(
T (z′, t′)− Tw(t′)

)
∂CA(z′, t′)

∂t′
=− v∂CA(z′, t′)

∂z′
+DA

∂2CA(z′, t′)

∂z′2
− k0e

−Ea/RgT (z′,t′)CA(z′, t′) (2.1)

with the following boundary and initial conditions:

k
∂T (0, t′)

∂z′
= ρfCpfv

(
T (0, t′)− Tf (t′)

)
∂CA(0, t′)

∂z′
=

v

DA

(
CA(0, t′)− Cf

)
∂T (L, t′)

∂z′
= 0,

∂CA(L, t′)

∂z′
= 0 (2.2)
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T (z′, 0) = T0(z′), CA(z′, t′) = CA0(z′) (2.3)

and subject to the following constraints:

Tmin ≤
∫ L

0
r′(z′)T (z′, t′)dz

′ ≤ Tmax

Tminw ≤ Tw(t) ≤ Tmaxw

Tminf ≤ Tf (t) ≤ Tmaxf (2.4)

where T (z′, t′) denotes the temperature of reacting fluid in the reactor and CA(z′, t′) denotes

the concentration of reactant A in the reactor; z′ ∈ [0, L] and t ∈ [0,∞) denote the spatial

coordinate and the time, respectively; Ea, Rg and k0 represent the activation energy, the

gas constant, and the pre-exponential constant; U denotes the overall heat transfer coeffi-

cient and is assumed to be constant; the heat capacity, density, thermal conductivity, mass

diffusivity and velocity of the reaction mixture are represented by Cpf , ρf , k, DA and v, re-

spectively and are fixed in constants. Tmax, Tmaxw , Tmaxf , and Tmin, Tminw , Tminf are all real

numbers denoting the upper and lower constraints related to the temperature in the reac-

tor, the temperature of the reactor wall, and the temperature of the inlet fluid, respectively.

r′(z′) ∈ L2[0, L], a square-integrable function, represents the state constraints distribution

and illustrates where the temperature constraints are enforced within the spatial domain

[0, L].

In order to simplify the system representation we put the model in a dimensionless form

by defining:

t =
t′v

L
; z =

z′

L
; Pe1 =

ρfCpfvL

k
; Pe2 =

vL

DA

x1(z, t) =
T − Tr
Tr

; x2(z, t) =
(CA − CAr)

CAr

uw =
Tw − Tr
Tr

; ui =
Tf − Tr
Tr

; Ci =
Cf − CAr
CAr

10



x10 =
T0 − Tr
Tr

; x20 =
CA0 − CAr

CAr

B1 =
(−∆H)k0e

−Ea/RgTr

ρfCpfTr

L

v
; B2 =

k0Le
Ea/RgTr

v
; γ =

Ea
RgTr

; β =
2UL

RρfCpfv

Xmin =
Tmin − Tr

Tr
; uminw =

Tminw − Tr
Tr

; umini =
Tminf − Tr

Tr

Xmax =
Tmax − Tr

Tr
; umaxw =

Tmaxw − Tr
Tr

; umaxi =
Tmaxf − Tr

Tr

where Tr and CAr are the reference temperature and concentration, respectively. Then the

system of Eqs. (2.1)-(2.3) can be written in the following form:

∂x1(z, t)

∂t
= −∂x1(z, t)

∂z
+

1

Pe1

∂2x1(z, t)

∂z2
+B1e

γx1(z,t)/(1+x1(z,t))(1 + x2(z, t))− β
(
x1(z, t)− uw(t)

)
∂x2(z, t)

∂z
= −∂x2(z, t)

∂z
+

1

Pe2

∂2x2(z, t)

∂z2
−B2e

γx1(z,t)/(1+x1(z,t))(1 + x2(z, t)) (2.5)

subject to the following boundary and initial conditions:

∂x1(0, t)

∂z
= Pe1

(
x1(0, t)− ui(t)

)
;

∂x2(0, t)

∂z
= Pe2

(
x2(0, t)− Ci

)
∂x1(1, t)

∂z
= 0;

∂x2(1, t)

∂z
= 0 (2.6)

x1(z, 0) = x10(z); x2(z, 0) = x20(z) (2.7)

as well as subject to the following input and state constraints:

uminw ≤ uw(t) ≤ umaxw , umini ≤ ui(t) ≤ umaxi (2.8)

Xmin ≤
∫ 1

0
r(z)x(z, t)dz ≤ Xmax (2.9)

where xi(z, t) for i = 1, 2 represents the PDE state; z ∈ [0, 1] and t ∈ [0,∞) denote the

spatial coordinate and the time, respectively. In Eq. (2.9), r(z) denotes the dimensionless

state constraints distribution function. The terms ∂xi(z, t)/∂z and ∂2xi(z, t)/∂z
2 represent

the first-order and second-order spatial derivatives of xi(z, t) for i = 1, 2, and xi0(z) is a

sufficiently smooth function of z.
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2.3 Eigenvalue problem

Since a nonlinear term exists in Eq. (2.5), it is essential to linearize this system about some

steady state of interest, x1s(z), x2s(z), uws, u0s, satisfying

0 = −∂x1s

∂z
+

1

Pe1

∂2x1s

∂z2
+B1e

γx1s/(1+x1s)
(
1 + x2s

)
− β

(
x1s − uws

)
0 = −∂x2s

∂z
+

1

Pe2

∂2x2s

∂z2
−B2e

γx1s/(1+x1s)
(
1 + x2s

)
∂x1s(z)

∂z

∣∣∣∣
z=0

= Pe1

(
x1s(0)− uis

)
;

∂x2s(z)

∂z

∣∣∣∣
z=0

= Pe2

(
x2s(0)− Ci

)
∂x1s(z)

∂z

∣∣∣∣
z=1

= 0;
∂x2s(z)

∂z

∣∣∣∣
z=1

= 0 (2.10)

After linearization, we obtain the linearized equation in x̂i(z, t) = xi(z, t)−xis(z) for i = 1, 2,

ûw(t) = uw(t)− uws, ûi(t) = ui(t)− uis

∂x̂1(z, t)

∂t
= −∂x̂1(z, t)

∂z
+

1

Pe1

∂2x̂1(z, t)

∂z2
+ J11(z)x̂1(z, t) + J12(z)x̂2(z, t) + βûw(t)

∂x̂2(z, t)

∂t
= −∂x̂2(z, t)

∂z
+

1

Pe2

∂2x̂2(z, t)

∂z2
+ J21(z)x̂1(z, t) + J22(z)x̂2(z, t)

∂x̂1(0, t)

∂z
= Pe1

(
x̂1(0, t)− ûi(t)

)
;

∂x̂2(0, t)

∂z
= Pe2x̂2(0, t)

∂x̂1(1, t)

∂z
= 0;

∂x̂2(1, t)

∂z
= 0 (2.11)

where Jij(z) is the Jacobian of the nonlinear term evaluated at xis(z) for i = 1, 2, j = 1, 2J11(z) J12(z)

J21(z) J22(z)

 =

 B1γ
(1+x1s)2 (1 + x2s)e

γx1s/(1+x1s) − β B1e
γx1s/(1+x1s)

− B2γ
(1+x1s)2 (1 + x2s)e

γx1s/(1+x1s) −B2e
γx1s/(1+x1s)

 (2.12)

The above boundary condition is nonhomogeneous due to the presence of ui(t). In order

to transform the boundary control problem into a distributed control problem, we make

the boundary condition in Eq. (2.11) homogeneous by inserting the nonhomogeneous part

into the differential equation with a Dirac delta function [34]. Then, we suppress the (̂ )
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notation and obtain the following equivalent equations:

∂

∂t

x1(z, t)

x2(z, t)

 =

A1 0

0 A2


x1(z, t)

x2(z, t)

+

J11(z) J12(z)

J21(z) J22(z)


x1(z, t)

x2(z, t)

+

β uw(t) + δ(z)ui(t)

0


(2.13)

subject to

∂

∂z

x1(0, t)

x2(0, t)

 =

Pe1 0

0 Pe2


x1(0, t)

x2(0, t)


∂

∂z

x1(1, t)

x2(1, t)

 = 0 (2.14)

where the operator Ai is defined as:

Aiφi(z) = −dφi(z)
dz

+
1

Pei

d2φi(z)

dz2
(2.15)

for i = 1, 2, and φi(z) denotes a smooth function defined on the spatial interval [0, 1], with

its dense domain:

D(Ai) = {φi(z) ∈ L2[0, 1] : φi(z),
dφi(z)

dz
, abs. cont.,

d2φi(z)

dz
∈ L2[0, 1],

dφi(0)

dz
= Pe φi(0),

dφi(1)

dz
= 0} (2.16)

In order to simplify the mathematical model representation, we reformulate the PDEs

of Eq. (2.13) in the form of an infinite-dimensional system defined in the space H = L2[0, 1],

with the following inner product and norm:

(γ1, γ2) =

∫ 1

0
γ1(z)γ2(z)dz, ‖γ1‖2 = (γ1, γ1)1/2 (2.17)

where γ1, γ2 are both elements of L2[0, 1].
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The eigenvalue problem of the operator Ai is in the form of:

−dφin
dz

+
1

Pei

d2φin
dz2

= λinφin (2.18)

subject to

dφin(0)

dz
= Pei φin(0)

dφin(1)

dz
= 0 (2.19)

for i = 1, 2;n = 1, · · · ,∞. λin represents an eigenvalue and φin represents the eigenfunction

associated with λin.

Since the operator Ai is a non-self-adjoint linear operator, Eq. (2.18) should be put into

Sturm-Liouville form:

1

Pei
ePeiz

d

dz
(e−Peiz

dφin(z)

dz
)− λinφin(z) = 0 (2.20)

with the orthonormality relation between the system eigenfunction φin(z) and the adjoint

eigenfunction φ∗in(z):

〈φin(z), φ∗im(z)〉 = δmn (2.21)

where δmn is Kronecker delta function, and the adjoint eigenfunction is given as:

φ∗in(z) = e−Peizφin(z) (2.22)

Now the eigenvalues and eigenfunctions of the operator A can be solved analytically with

the solution given by:

λin = −α
2
in

Pei
− Pei

4

φin(z) = Aine
Peiz/2

(
cos(αinz) +

Pei
2αin

sin(αinz)

)
(2.23)

where,

tan αin =
Peiαin

α2
in − (Pei/2)2
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Ain =

[ ∫ 1

0

(
cos(αinz) +

Pei
2αin

sin(αinz)

)2

dz

]−1/2

(2.24)

for i = 1, 2;n = 1, · · · ,∞.

Remark 1 The Péclet numbers Pe1 and Pe2 are defined to be the ratio of the rate of

convection to the rate of diffusion for heat transport and mass transport, respectively. The

value of the Péclet number determines the dominant transport phenomena between convec-

tion and diffusion. In this work, the process with Pe1 = Pe2 = Pe is considered, where Pe

is a constant and belongs to the range (0.1, 10). In this range, this choice of Péclet numbers

means that the importance of convection and diffusion are comparable in both heat and mass

transport. However, if Pe1 6= Pe2, we have to solve two eigenvalue problems numerically

in order to obtain a unique set of eigenvalues.

Since Pe1 = Pe2 = Pe is chosen in this work, the notations λn, φn and φ∗n will be used

instead of λin, φin and φ∗in in the following sections.

Next, Galerkin’s method is applied to the PDEs system of Eq. (2.13). Assume that the

solution to PDEs is in the following form:

xi(z, t) =

∞∑
n=1

ain(t)φn(z), i = 1, 2 (2.25)

Projecting Eq. (2.13) on the adjoint eigenfunction domain, one can obtain the following

modal representation:

d

dt

a1n(t)

a2n(t)

 = λn

a1n(t)

a2n(t)

+

bn cn

0 0


uw(t)

ui(t)

+


∞∑
m=1

a1m(t)f11
nm +

∞∑
m=1

a2m(t)f12
nm

∞∑
m=1

a1m(t)f21
nm +

∞∑
m=1

a2m(t)f22
nm


(2.26)

where,

f ijnm =

∫ 1

0
Jij(z)φ

∗
n(z)φm(z)dz, i = 1, 2, j = 1, 2 (2.27)
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bn = β

∫ 1

0
φ∗n(z)dz (2.28)

cn = φ∗n(0) (2.29)

For the purpose of controller design in the following sections, two measurements are set at

the output (right end) of the reactor, which are described as:y1(t)

y2(t)

 =

x1(1, t)

x2(1, t)

 =


∑∞

n=1 a1n(t)φn(z = 1)∑∞
n=1 a2n(t)φn(z = 1)

 (2.30)

Rewrite Eq. (2.26) as the following form:
ȧ(t) = Aa(t) +Bu(t)

y(t) = Ca(t)

(2.31)

where,

a(t) =

[
a11(t) a21(t) a12(t) a22(t) · · · a1n(t) a2n(t) · · ·

]T

A =



λ1 + f11
11 f12

11 f11
12 f12

12 · · · f11
1n f12

1n · · ·

f21
11 λ1 + f22

11 f21
12 f22

12 · · · f21
1n f22

1n · · ·

f11
21 f12

21 λ2 + f11
22 f12

22 · · · f11
2n f12

2n · · ·

f21
21 f22

21 f21
22 λ2 + f22

22 · · · f21
2n f22

2n · · ·

...
...

...
...

. . .
...

...

f11
n1 f12

n1 f11
n2 f12

n2 · · · λn + f11
nn f12

nn · · ·

f21
n1 f22

n1 f21
n2 f22

n2 · · · f21
nn λn + f22

nn · · ·

...
...

...
...

...
...

...
. . .



B =

b1 0 b2 0 · · · bn 0 · · ·

c1 0 c2 0 · · · cn 0 · · ·


T
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C =

φ1(1) 0 φ2(1) 0 · · · φn(1) 0 · · ·

0 φ1(1) 0 φ2(1) · · · 0 φn(1) · · ·

 (2.32)

The model representation in Eq. (2.31) needs to be transformed into an equivalent discrete-

time representation in order to be utilized for MPC construction. Appropriate discrete-time

model representation must be adopted to decouple slow dynamics and fast dynamics.

2.4 Modal decomposition

To this end, the technique of modal decomposition is applied on the system representation

(infinite-dimensional) of Eq. (2.31) in order to obtain an approximate system representation

(finite-dimensional). Spectral projection operators Ps and Pf are defined, such that the

space H can be partitioned into two subspaces, Hs and Hf , which are given as Hs =

span{φ∗1(z), φ∗2(z), ...φ∗q(z)} and Hf = span{φ∗q+1(z), φ∗q+2(z), ...} (q can be an arbitrary

positive integer greater than 1 because all λ < 0 for this system). For i = 1, 2, the eigen-

coefficients ai(t) of the PDE system can be decomposed as:

ais(t) = Psai(t) = 〈φ∗s(z), xi(z, t)〉 =
〈
φ∗s(z),

∞∑
n=1

ain(t)φn(z)
〉

aif (t) = Pfai(t) = 〈φ∗f (z), xi(z, t)〉 =
〈
φ∗f (z),

∞∑
n=1

ain(t)φn(z)
〉

(2.33)

Thus, we get two subsystems, as(t)− and af (t)− subsystem, which are referred to as slow

subsystem and fast subsystem, respectively. The slow subsystem is a finite-dimensional

subsystem which captures the dominant dynamic characteristic of the PDE system, whereas

the fast subsystem is an infinite-dimensional subsystem. Thus, the continuous-time model

dynamic given by Eq. (2.31) can be written as:ȧs(t)
ȧf (t)

 =

As A12

A21 Af


as(t)
af (t)

+

Bs
Bf

u(t)
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y(t) =

[
Cs Cf

]as(t)
af (t)

 (2.34)

2.5 Discrete-time system representation

There are two important issues arising from transformation of Eq. (2.34) to a discrete coun-

terpart. First is the question of transforming the continuous-time infinite-dimensional sys-

tem to discrete-time infinite-dimensional system representation, and the second one is the

degree of approximation applied on the discrete-time model in order to obtain a model

suitable for the MPC realization. In the ensuing section, two discretization methods are

explored and the obtained finite-dimensional approximations are discussed.

2.5.1 Standard discretization

In the first method, the fast subsystem is truncated by a 2lth order approximation. Trans-

form the slow subsystem and the approximation of the fast subsystem (2lth order approxi-

mation) into an appropriate discrete-time equivalent of the continuous-time dynamics:as(k + 1)

af (k + 1)

 =

Ads Ad12

Ad21 Adf


as(k)

af (k)

+

Bds
Bdf

u(k)

y(k) = Cdsas(k) + Cdfaf (k) (2.35)

where, Ads Ad12

Ad21 Adf

 = Ad,

Bds
Bdf

 = Bd,

[
Cds Cdf

]
= Cd, (2.36)

and Ad, Bd, Cd are calculated in the following way:Ad Bd

Cd 0

 =

eA2l∆t
∫ ∆t

0 eA2lτdτB2l

C2l 0

 (2.37)
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where ∆t denotes the discretization time interval; A2l, B2l, and C2l are the 2lth order

approximations of A, B, and C in Eq. (2.32).

Since the fast and slow dynamics are coupled by the off-diagonal elements of matrix Ad,

it is important to decompose this coupling. The above system can always be diagonalized

if the eigenvalues of the matrix Ad belong to the point spectrum of Ad. In another words,

there exists a transformation matrix V such that

V −1AdV =

Ǎds 0

0 Ǎdf


Then, we do the following state and matrix transformation with V :as(k)

af (k)

 = V

zs(k)

zf (k)

 ,
B̌s
B̌f

 = V −1

Bs
Bf

 , [
Čs Čf

]
=

[
Cs Cf

]
V (2.38)

Suppressing the (̌ ) notation, one may obtain the following equivalent discrete-time system:

zs(k + 1) = Adszs(k) +Bdsu(k)

zf (k + 1) = Adfzf (k) +Bdfu(k)

y(k) = Cdszs(k) + Cdfzf (k) (2.39)

where Ads, Adf , Bds, Bdf , Cds, and Cdf are (2q × 2q), ((2l − 2q) × (2l − 2q)), (2q × 2),

((2l − 2q) × 2), (2 × 2q), and (2 × (2l − 2q)) matrices, respectively. This is a diagonal

structure where the slow modes and fast modes are not coupled with each other and the

only coupling is through the control injection.

2.5.2 Discretization by Cayley transform

In the second method, the infinite-dimensional system of Eq. (2.34) is transformed directly

using Tustin’s approximation and Cayley transform to the following discrete-time equiva-
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lent: as(k)

af (k)

 =

 Āds Ād12

Ād21 Ādf


as(k − 1)

af (k − 1)

+

B̄ds
B̄df

u(k)

y(k) = C̄dsas(k − 1) + C̄dfaf (k − 1) + D̄du(k) (2.40)

where,  Āds Ād12

Ād21 Ādf

 = Ād,

B̄ds
B̄df

 = B̄d,

[
C̄ds C̄df

]
= C̄d (2.41)

In order to get the formulation of Ād, B̄d, C̄d, and D̄d, we introduce a unique extension

(by density and continuity) of the operator A, the operator A−1, known as the Yosida

extension of A ∈ L (X;X−1) where X is the Hilbert space and dom(A) ⊂ X. Take α ∈

ρ(A), where ρ(A) is the nonempty resolvent set of A, and define ‖x‖X1 = ‖(α − A)x‖X

for each x ∈ dom(A). Then X1 is a Hilbert space with respect to the norm ‖x‖X1 and

A ∈ L (X1;X). The Hilbert space X−1 is defined as the completion of X with respect to

the norm ‖x‖X−1 = ‖(α − A)−1x‖X [35]. On the basis of all of the above definitions, Ād,

B̄d, C̄d, and D̄d are given by the Cayley transform of the infinite-dimensional system:Ād B̄d

C̄d D̄d

 =

(δ +A)(δ −A)−1
√

2δ(δ −A−1)−1B

√
2δC(δ −A)−1 G (δ)

 (2.42)

where δ = 2/∆t and ∆t > 0 denotes the discretization time interval. G (δ) is defined as the

transfer function of the PDE system evaluated at δ.

The unbounded operators A, B and C of the continuous-time system are mapped into

bounded operators Ad, Bd and Cd in the discrete-time counterpart through Cayley trans-

form. And it turns out that control properties, such as controllability, are the same for both

systems [36].

As for the transfer function G (s) of the PDE system, two methods are used to obtain
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it in this work. In the first method, a closed-form expression for G (s) can be obtained by

taking Laplace transform of the PDEs in Eq. (2.13).

Let us first take Laplace transform of the PDEs, which gives the following boundary

value problem for xi(z, s), where s is regarded as a parameter:

d

dz

 x1(z,s)
dx1(z,s)

dz

x2(z,s)
dx2(z,s)

dz

 =

 0 1 0 0

Pe1
(
s−J11(z)

)
Pe1 −Pe1J12(z)

0 0 0 1

−Pe2J21 0 Pe2
(
s−J22

)
Pe2


 x1(z,s)

dx1(z,s)
dz

x2(z,s)
dx2(z,s)

dz

+

[
0 0

−Pe1β −Pe1δ(z)
0 0
0 0

] [
uw(s)
ui(s)

]
(2.43)

subject to

dx1(0, s)

dz
= Pe1x1(0, s),

dx2(0, s)

dz
= Pe2x2(0, s)

x1(1, s)

dz
=
x2(1, s)

dz
= 0 (2.44)

which has the general solution: x1(z,s)
dx1(z,s)

dz

x2(z,s)
dx2(z,s)

dz

 = eΓz

 x1(0,s)
Pe1x1(0,s)
x2(0,s)

Pe2x2(0,s)

+

∫ z

0
eΓ(z−ξ)

[
0 0

−Pe1β −Pe1δ(ξ)
0 0
0 0

][
uw(s)
ui(s)

]
dξ (2.45)

where the matrix

Γ =

 0 1 0 0

Pe1
(
s−J11(z)

)
Pe1 −Pe1J12(z)

0 0 0 1

−Pe2J21 0 Pe2
(
s−J22

)
Pe2


We cannot treat the matrix exponential of Γ directly because of the existence of a spatial

variable Jij(z). J
a
ij , which is defined as a spatial average of Jij(z), should be used instead

of Jij(z) for computing the matrix exponential of Γ. For the sake of simplicity, θij and κij

are used to denote the entries in the ith row and jth column of matrices eΓz and eΓ(z−ξ),

respectively.

According to the boundary condition of Eq. (2.44) and the solution of Eq. (2.45), we

have0

0

 =


dx1(1,s)
dz

dx2(1,s)
dz


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=

[
(θ21+θ22Pe1)x1(0,s)+(θ23+θ24Pe2)x2(0,s)−Pe1β

∫ z
0 κ22dξuw(s)−Pe1

∫ z
0 δ(ξ)κ22dξui(s)|z=1

(θ41+θ42Pe1)x1(0,s)+(θ43+θ44Pe2)x2(0,s)−Pe1β
∫ z
0 κ42dξuw(s)−Pe1

∫ z
0 δ(ξ)κ42dξui(s)|z=1

]
(2.46)

Thus,

x1(0, s) =
(θ43 + θ44Pe2)Pe1β

∫ z

0
κ22dξ − (θ23 + θ24Pe2)Pe1β

∫ z

0
κ42dξ

(θ21 + θ22Pe1)(θ43 + θ44Pe2)− (θ23 + θ24Pe2)(θ41 + θ42Pe1)

∣∣∣∣∣
z=1

uw(s)

+
(θ43 + θ44Pe2)Pe1

∫ z

0
δ(ξ)κ22dξ − (θ23 + θ24Pe2)Pe1

∫ z

0
δ(ξ)κ42dξ

(θ21 + θ22Pe1)(θ43 + θ44Pe2)− (θ23 + θ24Pe2)(θ41 + θ42Pe1)

∣∣∣∣∣
z=1

ui(s)

x2(0, s) =
(θ41 + θ42Pe1)Pe1β

∫ z

0
κ22dξ − (θ21 + θ22Pe1)Pe1β

∫ z

0
κ42dξ

(θ41 + θ42Pe1)(θ23 + θ24Pe2)− (θ43 + θ44Pe2)(θ21 + θ22Pe1)

∣∣∣∣∣
z=1

uw(s)

+
(θ41 + θ42Pe1)Pe1

∫ z

0
δ(ξ)κ22dξ − (θ21 + θ22Pe1)Pe1

∫ z

0
δ(ξ)κ42dξ

(θ41 + θ42Pe1)(θ23 + θ24Pe2)− (θ43 + θ44Pe2)(θ21 + θ22Pe1)

∣∣∣∣∣
z=1

ui(s) (2.47)

For the sake of simplicity, henceforth x1(0, s) and x2(0, s) are represented in the following

form:

x1(0, s) = p1wuw(s) + p1iui(s)

x2(0, s) = p2wuw(s) + p2iui(s)

Since the measurement is located at the output (right end) of the reactor, we obtain

y1(s) =x1(1, s)

=(θ11 + θ12Pe1)x1(0, s) + (θ13 + θ14Pe2)x2(0, s)− Pe1β
∫ z

0

κ12dξuw(s)− Pe1
∫ z

0

δ(ξ)κ12dξui(s)

=
[
(θ11 + θ12Pe1)p1w + (θ13 + θ14Pe2)p2w − Pe1β

∫ z

0

κ12dξ
]
uw(s)

+
[
(θ11 + θ12Pe1)p1i + (θ13 + θ14Pe2)p2i − Pe1

∫ z

0

δ(ξ)κ12dξ
]
ui(s)

y2(s) =x2(1, s)

=(θ31 + θ32Pe1)x1(0, s) + (θ33 + θ34Pe2)x2(0, s)− Pe1β
∫ z

0

κ32dξuw(s)− Pe1
∫ z

0

δ(ξ)κ32dξui(s)

=
[
(θ31 + θ32Pe1)p1w + (θ33 + θ34Pe2)p2w − Pe1β

∫ z

0

κ32dξ
]
uw(s)

+
[
(θ31 + θ32Pe1)p1i + (θ33 + θ34Pe2)p2i − Pe1

∫ z

0

δ(ξ)κ32dξ
]
ui(s) (2.48)
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Now, the transfer function of the PDE system:

G (s) =

G1w(s) G1i(s)

G2w(s) G2i(s)

 (2.49)

can be represented in the following form:

G1w(s) = (θ11 + θ12Pe1)p1w + (θ13 + θ14Pe2)p2w − Pe1β
∫ z

0

κ12dξ

G1i(s) = (θ11 + θ12Pe1)p1i + (θ13 + θ14Pe2)p2i − Pe1
∫ z

0

δ(ξ)κ12dξ

G2w(s) = (θ31 + θ32Pe1)p1w + (θ33 + θ34Pe2)p2w − Pe1β
∫ z

0

κ32dξ

G2i(s) = (θ31 + θ32Pe1)p1i + (θ33 + θ34Pe2)p2i − Pe1
∫ z

0

δ(ξ)κ32dξ (2.50)

Then, the matrix D̄d in Eq. (4.6) can be expressed as:

D̄d =

G1w(δ) G1i(δ)

G2w(δ) G2i(δ)


The second method to obtain the transfer function of the PDE is given as following:

G (s) =

∞∑
n=1

1

s− ζn
CΨn(B ∗Ψ∗n)T for ζn ∈ ρ(A) (2.51)

where A, B and C are the operators in Eq. (2.32). ζn denotes an eigenvalue of the operator

A; Ψn and Ψ∗n denote the corresponding eigenfunction and adjoint eigenfunction of ζn,

respectively.

Remark 2 The difficulty of the method given by Eq. (2.51) is that the eigenvalue and eigen-

function of the operator A, i.e., ζn and Ψn, are not identical with λn and φn in Eq. (2.23) due

to the existence of nonlinear terms Jij(z)x(z, t), i = 1, 2; j = 1, 2 in Eq. (2.13). Similarly,

the adjoint eigenfunction of the operator A, Ψ∗n, is never the same as φ∗n.
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Since the matrix Ād is diagonalizable with the transformation matrix V̄ such that

V̄ −1ĀdV̄ =

 ˇ̄Ads 0

0 ˇ̄Adf


we do the following state and matrix transformation with V̄ :z̄s(k)

z̄f (k)

 = V̄ −1

as(k)

af (k)

 ,
 ˇ̄Bs

ˇ̄Bf

 = V̄ −1

B̄s
B̄f

 , [
ˇ̄Cs

ˇ̄Cf

]
=

[
C̄s C̄f

]
V̄ , ˇ̄Dd = D̄

(2.52)

Suppressing the (̌ ) notation, the discrete time system of Eq. (2.40) can be rewritten as

following:

z̄s(k) = Ādsz̄s(k − 1) + B̄dsu(k)

z̄f (k) = Ādf z̄f (k − 1) + B̄dfu(k)

y(k) = C̄dsz̄s(k − 1) + C̄df z̄f (k − 1) + D̄du(k) (2.53)

Now we have two approximations of the system representation in Eqs. (2.31)-(2.32), given

by Eq. (2.39) and Eq. (2.53), respectively. The major difference between these two repre-

sentations is that the input contributes directly to the output in the second approximation

while the output in the first approximation is only associated with the state.

2.6 Modal model predictive control

In this section, two types of linear time-invariant discrete-time model dynamics as developed

in previous sections are utilized in the formulation of the model predictive control and they

are given in the standard exact discretization form:
z(k + 1) = Adz(k) +Bdu(k)

y(k) = Cdz(k)

(2.54)
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and the Tustin’s discretization form:
z̄(k) = Ādz̄(k − 1) + B̄du(k)

y(k) = C̄dz̄(k − 1) + D̄du(k)

(2.55)

The regulator is founded as the solution to an optimization problem such that the following

open-loop performance objective function on an infinite horizon is minimized at the sampling

time k:

min
uN

∞∑
j=0

(
y(k + j|k)TQy(k + j|k) + u(k + j|k)TRu(k + j|k)

+ ∆u(k + j|k)TS∆u(k + j|k)
)

(2.56)

where Q and S are symmetric positive semidefinite penalty matrices, and R is a symmetric

positive definite matrix. y(k + j|k) and u(k + j|k) represent the output and input variable

at future time k + j predicted at current time k, and the term ∆u(k + j|k) = u(k + j|k)−

u(k+ i− 1|k) denotes the change of an input vector at time k+ j. The vector uN contains

the sequences u(k|k), u(k + 1|k), ..., u(k +N − 1|k) in which the first element u(k|k) is the

future control action to be injected to the plant. At time k+N , the input vector u(k+ j|k)

is set to zero and kept at zero for all j ≥ N in the calculation of the open-loop quadratic

objective function value [37]. In the following formulations, we set the matrix S = 0.

First, the receding horizon regulator of Eq. (2.56) is applied on the discrete-time dynamic

model of Eq. (2.54) which is developed by the standard discretization method. Since the

slow and fast modes are coupled only by the input injection, the following modal model

predictive control algorithm is based on an approximate state representation zs(k) which is

constructed only with slow modes:

min
uN

N−1∑
j=0

(
zs(k + j|k)TCTdsQCdszs(k + j|k) + u(k + j|k)TRu(k + j|k)

)
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+ zs(k +N |k)T Q̄1zs(k +N |k) (2.57)

s.t. zs(k + j + 1|k) = Adszs(k + j|k) +Bdsu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤
∫ 1

0
rs(z)xs(z, k + j|k)dz ≤ Xmax (2.58)

where uN is a vector of future control inputs calculated on the finite horizon N , Q is a

positive semidefinite matrix, R is a positive definite matrix, and Q̄1 denotes the terminal

state penalty matrix. rs(z) represents the state constraint distribution function. The above

constrained optimization problem can be considered as a quadratic programming problem.

Given any initial condition zs(0), the above formulation gives a feasible solution. Although

this formulation has a low-order characteristic, a main disadvantage is the fact that the

MPC formulation of Eqs. (2.57)-(2.58), when performed on the full state system, can only

satisfy input constraints but not guarantee the PDEs state constraints, as the fast modes

zf (k) are not involved either in the objective function or in the PDEs state constraints

equation. Hence, the contribution of fast modes dynamics must be accounted for in some

manner by the MPC algorithm in order to satisfy the requirement of PDEs state constraints.

To this end, the algorithm of Eqs. (2.57)-(2.58) can be reformulated by explicitly incor-

porating the evolution of the fast subsystem into the PDEs state constraints equation [38].

The control move at time k, under the MPC law of this scenario, is calculated by solving

the following minimization problem:

min
uN

N−1∑
j=0

(
zs(k + j|k)TCTdsQCdszs(k + j|k) + u(k + j|k)TRu(k + j|k)

)
+ zs(k +N |k)T Q̄1zs(k +N |k) (2.59)

s.t. zs(k + j + 1|k) = Adszs(k + j|k) +Bdsu(k + j|k)
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zf (k + j + 1|k) = Adfzf (k + j|k) +Bdfu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤
∫ 1

0
rs(z)xs(z, k + j|k)dz +

∫ 1

0
rf (z)xf (z, k + j|k)dz ≤ Xmax (2.60)

In the predictive control law formulation Eqs. (2.59)-(2.60), the constrained optimization

program is concerned with only slow dynamics; however, the PDEs state constraints equa-

tion is expressed by the formulation that includes two contributions. One contribution in-

volves slow dynamics and the other complementary contribution is based on fast dynamics.

In this way, the PDEs state constraints, which are applied in the construction of a control

move, account for the fast subsystem in the MPC formulation. It is necessary to empha-

size that although the fast dynamics are involved in the PDEs state constraints equation,

they are not involved in the objective function, which keeps relatively low computational

complexity.

Next, the receding horizon regulator of Eq. (2.56) is applied on the discrete-time dynamic

model of Eq. (2.55) which is developed through Cayley transform. First, a state represen-

tation that is constructed only by slow modes, which is the same as Eqs. (2.57)-(2.58) in

some sense, is utilized. In this case, the MPC formulation is given as:

min
uN

N−1∑
j=0

(
(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

T
Q(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

+ u(k + j|k)TRu(k + j|k)
)

+ z̄s(k +N |k)T Q̄2z̄s(k +N |k) (2.61)

s.t. z̄s(k + j|k) = Ādsz̄s(k + j − 1|k) + B̄dsu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤
∫ 1

0
rs(z)xs(z, k + j|k)dz ≤ Xmax (2.62)
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where uN , N , Q, R, and rs(z) denote the same meanings as in Eqs. (2.57)-(2.58); Q̄2 denotes

the terminal state penalty matrix. The constrained optimization problem in Eq. (2.61) can

be considered as a quadratic programming for uN in a similar way as [37].

Due to the different type of discretization, the above quadratic programming is given

by

min
uN

(uN )T H̄uN + 2(uN )T Ḡzs(k − 1) (2.63)

where the matrices H̄ and Ḡ are given as following:

H̄ =


B̄TdsQ̄2B̄ds+D̄

T
d QD̄d+R ··· B̄TdsĀ

T (N−1)
ds Q̄2B̄ds+B̄

T
dsĀ

T (N−2)
ds C̄TdsQD̄d

B̄TdsQ̄2ĀdsB̄ds+D̄
T
d QC̄dsB̄ds ··· B̄TdsĀ

T (N−2)
ds Q̄2B̄ds+B̄

T
dsĀ

T (N−3)
ds C̄TdsQD̄d

...
...

...
B̄TdsQ̄2Ā

(N−1)
ds B̄ds+D̄

T
d QC̄dsĀ

(N−2)
ds B̄ds ··· B̄TdsQ̄2B̄ds+D̄

T
d QD̄d+R

 (2.64)

Ḡ =


B̄TdsQ̄2Āds+D̄

T
d QC̄ds

B̄TdsQ̄2Ā2
ds+D̄

T
d QC̄dsĀds

...
B̄TdsQ̄2ĀNds+D̄

T
d QC̄dsĀ

(N−1)
ds

 (2.65)

and Q̄2 is defined as the infinite sum:

Q̄2 =
∞∑
i=0

ĀT ids C̄
T
dsQC̄dsĀ

i
ds (2.66)

The MPC formulation of Eqs. (2.61)-(2.62) has the same disadvantage as in Eqs. (2.57)-

(2.58) in the sense that when performed on the full state system it can only satisfy input

constraints but not guarantee the PDEs state constraints. Therefore, the evolution of the

fast subsystem should be incorporated into the state constraints equation. In this case, the

MPC algorithm is given as the following constrained optimization problem:

min
uN

N−1∑
j=0

(
(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

T
Q(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

+ u(k + j|k)TRu(k + j|k)
)

+ z̄s(k +N |k)T Q̄2z̄s(k +N |k) (2.67)

s.t. z̄s(k + j|k) = Ādsz̄s(k + j − 1|k) + B̄dsu(k + j|k)
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z̄f (k + j|k) = Ādf z̄f (k + j − 1|k) + B̄dfu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤
∫ 1

0
rs(z)xs(z, k + j|k)dz +

∫ 1

0
rf (z)xf (z, k + j|k)dz ≤ Xmax (2.68)

In the above MPC formulations, the state constraints equations are all expressed with

state constraints distribution functions which will be replaced later by specified output

matrices from the discrete-time model representations in the ensuing simulation section.

When implemented on the full state system, the MPC formulations of both Eqs. (2.59)-

(2.60) and Eqs. (2.67)-(2.68) can satisfy the input constraints and also guarantee the PDEs

state constraints. The major difference between the two MPC formulations is that the

discrete-time model representations utilized for the construction of a predictive controller are

obtained through different discretization methods. The discretization method with Cayley

transform introduces the input injection directly into the state constraints equation together

with the matrix D̄d. The direct contribution from input to state constraints equation leads

to some consequence which will be shown in the following section.

2.7 Simulation studies

In this section, the performance of the two strategies of MPC formulations developed in the

previous section is demonstrated and compared through computer simulations. We consider

the parabolic PDE system given by Eqs. (2.5)-(2.9), with Pe1 = Pe2 = 7, β = 2, B1 = 0.25,

B2 = 0.1, γ = 7.5. The operating steady state, xis(z), i = 1, 2, is verified to be a stable one

with these values of parameters. The state constraints distribution function, r(z), is given

as r(z) = δ(z − zc) for z ∈ [0, 1] and zc = 1, which means that the state constraints are

only to be actualized at the single point of the right boundary. The control objective is to

enforce the two control inputs uw(t) and ui(t) and the PDE state at a desired point subject

29



to the input and state constraints of Eq. (2.8) and (2.9). For this simulation, the first two

eigenvalues are considered to be the dominant ones, which means that the slow subsystem

contains only the first two modes. Thus we can derive the following two types of state space

representations that describe the transient evolution of the first l pairs of modes through a

modal decomposition technique:

zs(k + 1) = Adszs(k) +Bdsu(k)

zf (k + 1) = Adfzf (k) +Bdfu(k)

y(k) = Cdszs(k) + Cdfzf (k) (2.69)

and

z̄s(k) = Ādsz̄s(k − 1) + B̄dsu(k)

z̄f (k) = Ādf z̄f (k − 1) + B̄dfu(k)

y(k) = C̄dsz̄s(k − 1) + C̄df z̄f (k − 1) + D̄du(k) (2.70)

where zs(k) = [z11(k) z21(k) z12(k) z22(k)]T , zf (k) = [z13(k) z23(k) · · · z1l(k) z2l(k)]T , z̄s(k) =

[z̄11(k) z̄21(k) z̄12(k) z̄22(k)]T , z̄f (k) = [z̄13(k) z̄23(k) · · · z̄1l(k) z̄2l(k)]T ; zin(k), z̄in(k) ∈ R are

the nth modes corresponding to the ith PDE, u(k) = [uw(k) ui(k)]. We now implement the

first two MPC formulations proposed in the previous section on the discrete-time system of

Eqs. (2.69). The initial condition of PDEs is considered to be x10(z) = x20(z) = 0.02φ1(z)

in all ensuing simulations, which implies that zin(0) = V −1〈φ∗n(z), xi0(z)〉 and z̄in(0) =

V̄ −1〈φ∗n(z), xi0(z)〉. l is chosen to be 15 (further increases of the value l led to identical

results). In the first case, the slow subsystem is utilized as the foundation of a predictive

controller design, while the fast subsystem is not involved in the MPC development. For
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this scenario, the MPC law is given by Eqs. (2.71)-(2.72):

min
uN

N−1∑
j=0

(
zs(k + j|k)TCTdsQCdszs(k + j|k) + u(k + j|k)TRu(k + j|k)

)
+ zs(k +N |k)T Q̄1zs(k +N |k) (2.71)

s.t. zs(k + j + 1|k) = Adszs(k + j|k) +Bdsu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤ Cdszs(k) ≤ Xmax (2.72)

where Q = I, R = 0.0001I, and the regulator horizon N = 100. The input and state

constraints are given as uminw = umini = −1.8, umaxw = umaxi = 1, Xmin1 = Xmin2 = −0.1,

Xmax1 = Xmax2 = 0.7. In all ensuing simulation studies, we keep the initial condition, input

and state constraints identical with the above values. The resulting constrained optimiza-

tion problem becomes a quadratic program which can be solved through the MATLAB

subroutine QuadProg. Then we implement the optimal control input on the continuous

full-state plant model. Fig. 2.3 shows the states profiles of the closed-loop system under the

performance of the MPC law given by Eqs. (2.71)-(2.72). The profile of the corresponding

constrained control inputs are shown in Fig. 2.2(b) (solid line). The profile of constrained

state at z = 1 is shown in Fig. 2.2(a) (solid line), it is obvious that the upper limit of the

PDEs state constraint is violated for a while. The violation of PDEs state constraints is

the consequence of neglecting fast modes dynamics in the construction of the PDEs state

constraints equation. In order to involve fast modes dynamics in the PDEs state con-

straints equation, we utilize the modified MPC formulation with the open-loop quadratic

cost function and input and state constraints equations given as the following:

min
uN

N−1∑
j=0

(
zs(k + j|k)TCTdsQCdszs(k + j|k) + u(k + j|k)TRu(k + j|k)

)
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+ zs(k +N |k)T Q̄1zs(k +N |k) (2.73)

s.t. zs(k + j + 1|k) = Adszs(k + j|k) +Bdsu(k + j|k)

zf (k + j + 1|k) = Adfzf (k + j|k) +Bdfu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤ Cdszs(k) + Cdfzf (k) ≤ Xmax (2.74)

The MPC tuning parameters are kept the same as those in Eqs. (2.71)-(2.72). Results are

shown in Fig. 2.5(a) (solid line) and Fig. 2.6 where it is demonstrated that the PDEs state

constraints are guaranteed for all time under the performance of the MPC law given by the

formulations of Eqs. (2.73)-(2.74). The profile of corresponding constrained control inputs

is given in Fig. 2.5(b) (solid line). It is demonstrated that under the MPC law given by

Eqs. (2.73)-(2.74), the input constraints are active.

Next we implement the latter two MPC formulations proposed in the previous section

on the discrete time system of Eqs. (2.70). Only slow subsystem is utilized as the foundation

of a predictive controller design in this scenario. For this case, the control law is given by

Eqs. (2.75)-(2.76):

min
uN

N−1∑
j=0

(
(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

T
Q(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

+ u(k + j|k)TRu(k + j|k)
)

+ z̄s(k +N |k)T Q̄2z̄s(k +N |k) (2.75)

s.t. z̄s(k + j|k) = Ādsz̄s(k + j − 1|k) + B̄dsu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤ C̄dsz̄s(k − 1) + D̄du(k) ≤ Xmax (2.76)
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The values of Q, N , initial condition, input and state constraints are kept identical with

those in Eqs. (2.71)-(2.72), while the value of R is 0.001I in this scenario. States evolution of

the closed-loop system is shown in Fig. 2.4. The profile of the corresponding control inputs

is shown in Fig. 2.2(b) (dashed line) and the constrained states are shown In Fig. 2.2(a)

(dashed line). The upper limit of the PDEs state constraints is violated for a while. The

violation of the state constraint is caused by the negligence of fast modes dynamics in

the construction of the PDEs state constraints equation. In order to involve fast modes

dynamics in the PDEs state constraints equation, we utilize the modified MPC formulation

with the open-loop quadratic cost function and input and state constraints equations given

as the following:

min
uN

N−1∑
j=0

(
(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

T
Q(C̄dsz̄s(k + j − 1|k) + D̄dsu(k + j))

+ u(k + j|k)TRu(k + j|k)
)

+ z̄s(k +N |k)T Q̄2z̄s(k +N |k) (2.77)

s.t. z̄s(k + j|k) = Ādsz̄s(k + j − 1|k) + B̄dsu(k + j|k)

z̄f (k + j|k) = Ādf z̄f (k + j − 1|k) + B̄dfu(k + j|k)

umin ≤ u(k + j|k) ≤ umax

Xmin ≤ C̄dsz̄s(k − 1) + C̄df z̄f (k − 1) + D̄du(k) ≤ Xmax (2.78)

The MPC tuning parameters, input and state constraints are kept identical as those in

Eqs. (2.75)-(2.76). The results shown in Fig. 2.5(a) (dashed line) and Fig. 2.7 demonstrate

that the state constraints are satisfied for all time under implementation of the predictive

control formulation of Eqs. (2.77)-(2.78). The profile of corresponding control inputs is given

in Fig. 2.5(b) (dashed line), which shows that the input constraints are also active.

As demonstrated clearly by Fig. 2.5(a), the PDEs state constraints can be guaranteed by

accounting for the dynamics of fast modes in the states constraints equation for the MPC
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formulations constructed on both standard and Tustin’s discrete-time system. However, in

order to decide which optimal control sequence is better for implementation on a continuous-

time plant model, the performance of MPC laws constructed on standard and Tustin’s

discrete-time system is compared in Table 2.1.

Standard discrete Tustin’s discrete

Plant model Time step Constraints Stability Constraints Stability

Finite difference 1× 10−5 Satisfied Stable Satisfied Stable

Galerkin

[1× 10−5, 3× 10−3] Satisfied Stable Satisfied Stable

[4× 10−3, 6× 10−3] Satisfied Stable Violated Stable

[7× 10−3, 1× 10−2] Violated Unstable Violated Unstable

Table 2.1: Performance of MPC laws constructed on standard and Tustin’s discrete-time

system when implemented on different continuous-time plant model

In Table 2.1, the MPC laws are built on the basis of discrete-time system obtained

by standard discretization method and Tustin’s discretization method, respectively. The

discretization time step utilized in both methods is 1 × 10−3. Then the MPC laws are

implemented on the continuous-time plant model obtained by finite difference method and

Galerkin’s method, respectively. The time step for finite difference model is 1× 10−5 while

the time step for Galerkin model is varied from 1× 10−5 to 1× 10−2. The constraints are

satisfied all the time on finite difference model with the optimal control obtained by MPC

laws constructed on either standard or Tustin’s discrete-time system. When the continuous-

time model obtained by Galerkin’s method is utilized as the plant model, the performance

of MPC laws depends on the value of the time step used for plant model approximation.

When the time step of the plant model is between 1 × 10−5 and 3 × 10−3, both the MPC
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law built on standard discrete-time model and the MPC law built on Tustin’s discrete-time

model have a good performance. But when the time step is between 4× 10−3 and 6× 10−3,

only the MPC law built on standard discrete-time system can guarantee that the constraints

will be satisfied. When the time step is equal or greater than 7× 10−3, both the MPC laws

are numerically unstable. Therefore, the time step must be chosen carefully in order to

avoid numeral instability. In summary, we conclude that it is better to choose a plant time

step which is close to the discretization time step of controller. For control practitioners, a

good choice is to choose the time step according to the internal clock.

In this work, the constrained optimization programs of the proposed predictive control

laws are concerned with only slow dynamics in order to reduce computational effort. Table

2.2 gives the computation time of optimization programs which are concerned with low-

order dynamics and full-order dynamics, respectively. The MATLAB subroutine QuadProg

is used as the optimizer in all simulations. Constraints and MPC tuning parameters are

kept identical in all optimization programs. The computation time of optimization program

with objective function accounting for only slow dynamics (2nd-order) is almost triple that

of the optimization program with objective function accounting for full dynamics (15th-

order). The statement holds for both the predictive control law constructed on standard

discrete-time model and that constructed on Tustin’s discrete-time model. Although only 2

modes are taken into account for the low-order objective function, it makes a good control

performance because the slow dynamics can capture the dominant dynamics of the PDEs

system. Thus the benefit of the proposed model predictive control synthesis using low-

order objective function and full-order constraints equation is that it makes a good control

performance and reduces computational effort.
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(a) States profile at z = 1 under the control law of Eqs. (2.71) and (2.72) (solid line); States profile at z = 1
under the control law of Eqs. (2.75) and (2.76) (dashed line); upper state constraint (dash-dot line).
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(b) Inputs profile computed by the control law of Eqs. (2.71) and (2.72) (solid line); Inputs profile computed
by the control law of Eqs. (2.75) and (2.76) (dashed line); inputs constraints (dash-dot line).

Figure 2.2: Comparison between profiles of closed-loop system under the control law of
Eqs. (2.71) and (2.72) constructed on standard discrete-time system with input and state
constraints accounting for only slow modes and profiles of closed-loop system under the
control law of Eqs. (2.75) and (2.76) constructed on Tustin’s discrete-time system with
input and state constraints accounting for only slow modes.
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Figure 2.3: Closed-loop state profiles under the control law of Eqs. (2.71) and (2.72) con-
structed on standard discrete-time system with input and state constraints accounting for
only slow modes.
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Figure 2.4: Closed-loop state profiles under the control law of Eqs. (2.75) and (2.76) con-
structed on Tustin’s discrete-time system with input and state constraints accounting for
only slow modes.
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(a) States profile at z = 1 under the control law of Eqs. (2.73) and (2.74) (solid line); States profile at z = 1
under the control law of Eqs. (2.77) and (2.78) (dashed line); upper state constraint (dash-dot line).
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(b) Inputs profile computed by the control law of Eqs. (2.73) and (2.74) (solid line); Inputs profile computed
by the control law of Eqs. (2.77) and (2.78) (dashed line); inputs constraints (dash-dot line).

Figure 2.5: Comparison between profiles of closed-loop system under the control law of
Eqs. (2.73) and (2.74) constructed on standard discrete-time system with input and state
constraints accounting for full modes and profiles of closed-loop system under the control
law of Eqs. (2.77) and (2.78) constructed on Tustin’s discrete-time system with input and
state constraints accounting for full modes.
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Figure 2.6: Closed-loop state profiles under the control law of Eqs. (2.73) and (2.74) con-
structed on standard discrete-time system with input and state constraints accounting for
full modes.
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Figure 2.7: Closed-loop state profiles under the control law of Eqs. (2.77) and (2.78) con-
structed on Tustin’s discrete-time system with input and state constraints accounting for
full modes.
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Model used for MPC Dynamics order Computation time (seconds)

Standard discrete Galerkin
2nd-order 154.18
15th-order 448.84

Tustin’s discrete Galerkin
2nd-order 147.01
15th-order 482.17

Table 2.2: Computation time

2.8 Conclusions

In this chapter, model predictive control algorithms are developed for the parabolic PDEs

system with consideration of input and state constraints arising in the context of an axial

dispersion chemical reactor process. We consider a dimensionless model described by non-

linear parabolic PDEs and solve an eigenvalue problem of the spatial operator which can be

transformed into the Sturm-Liouville form. Galerkin’s method and modal decomposition

technique are adopted to obtain a finite-dimensional system that captures the dominant dy-

namics of the parabolic PDEs system, which is used as the basis for the low-order controller

design subsequently. Two different discretization methods, standard and Tustin’s discretiza-

tion, are used to derive the discrete-time modal representations. The transfer function of

the PDEs system is also derived in order to obtain The Tustin’s discrete-time model with

Cayley transform. Four model predictive control formulations, which differ in the way that

the dynamics of fast modes are involved in the performance objective function and state

constraints equation, are derived on the basis of finite-dimensional approximations. Finally,

the MPC formulations are demonstrated and compared, via simulation studies, to achieve

the control objectives. The performance of the predictive control laws are compared through

the implementation of optimal control on different plant models. A comparison between

computation time is also provided to demonstrate the benefit of using a low-order controller.
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Chapter 3

Model Predictive Control of
Euler-Bernoulli Beam with
Structural Damping

3.1 Introduction

This chapter focuses on the development of model predictive control algorithm which ac-

counts for the input and state constraints applied to the fourth-order partial differential

equation (PDE) system describing the flexible Euler-Bernoulli beam system with structural

damping. The eigenvalue problem of the fourth-order spatial operator is solved, and orthog-

onal basis are chosen for model decomposition according to the eigenvalue and eigenvector

of the operator. The infinite-dimensional representation of the fourth-order PDE dynamics

is approximated by a reduced-order finite-dimensional model through spectral decomposi-

tion technique. The continuous-time model representation is transformed into discrete-time

equivalents by standard discretization method and Tustin’s discretization method with Cay-

ley transform, respectively. The transfer function of the beam system is also obtained to

derive Tustin’s discrete-time model representation. Two MPC formulations, in which the

fast dynamics are only involved in the PDE state constraints , are developed on the basis of

two discrete-time system representations. The effectiveness of the proposed MPC structure

is successfully illustrated via simulation studies.
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3.2 Euler-Bernoulli beam system

In this chapter, we consider a flexible Euler-Bernoulli beam of unit length, cross-sectional

area a, mass density ρ and structural damping with damping coefficient ε. If we suppose

the beam is simply supported, the out-of-plane displacement w of the beam is governed by

the Euler-Bernoulli Beam Equation,

ρa
∂2w

∂t2
+ ε

∂3w

∂t∂z2
+ EI

∂4w

∂z4
= 0 (3.1)

with the following boundary and initial conditions:

w(0, t) = 0 = w(1, t) =
d2w(0, t)

dz2

d2w(1, t)

dz2
= u(t) (3.2)

w(z, 0) = w0(z) (3.3)

where w(z, t) is the vertical deflection of the beam at time t and at a distance z from one

end, 0 ≤ z ≤ 1; u(t) is the control variable; E is the Young’s modulus of elasticity, and I is

the area moment of inertia of the beam’s cross section.

For the sake of simplicity, the parameters c = EI/(ρa) and α = −ε/(2ρa) are introduced.

Then the model in Eq. (3.1) can be rewritten in the form of:

∂2w

∂t2
− 2α

∂3w

∂t∂z2
+ c

∂4w

∂z4
= 0 (3.4)

with the following boundary and initial conditions:

w(0, t) = 0 = w(1, t) =
d2w(0, t)

dz2

d2w(1, t)

dz2
= u(t) (3.5)

w(z, 0) = w0(z) (3.6)
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The Euler-Bernoulli equation is neither hyperbolic nor parabolic. Because the Euler-

bernoulli equation does not have a finite speed of propagation, as do the hyperbolic equa-

tions, nor does it have smoother solution as time evolves, as do the parabolic equations [39].

Therefore, the method to solve the eigenvalue problem of the Euler-Bernoulli equation is

different with those to solve hyperbolic or parabolic equations.

3.3 Eigenvalue problem

The boundary conditions in Eq. (3.2) is non-homogeneous because of the presence of u(t).

In order to transform the boundary control problem into a distributed control problem,

we introduce a new state variable v(z, t) which satisfies the corresponding homogeneous

boundary conditions:

v(0, t) = 0 = v(1, t) =
d2v(0, t)

dz2
=
d2v(1, t)

dz2
(3.7)

The relationship between v(z, t) and w(z, t) is:

w(z, t) = v(z, t) + b(z)u(t) (3.8)

Substituting Eq. (3.8) into the boundary conditions in Eq. (3.2) and combining the results

with Eq. (3.7), we can obtain b(z) in the form of:

b(z) =
1

6
(z3 − z) (3.9)

and the following equivalent PDE model:

∂2v

∂t2
= −c∂

4v

∂z4
+ 2α

∂3v

∂t∂z2
− b(z)d

2u(t)

dt2
+ 2α

d2b(z)

dz2

du(t)

dt
(3.10)

In order to formulate an abstract state space system on a Hilbert space, the term of second-

order derivative respect to time must be transformed into a first-order derivative. To this
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end, we introduce a state vector:

[
x1(z, t) x2(z, t)

]T
=

[
v(z, t) ∂w(z,t)

∂t

]T
and a new control variable:

ũ(t) =
du(t)

dt

Thus the system representation is transformed into the following equivalent:

∂

∂t

x1(z, t)

x2(z, t)

 =

 0 1

−cA0 2αA
1
2

0


x1(z, t)

x2(z, t)

+

−b(z)
0

 ũ(t) (3.11)

subject to

x1(0, t) = x1(1, t) = 0

∂2x1(0, t)

∂z2
=
∂2x1(1, t)

∂z2
= 0 (3.12)

where A0 is a positive, self adjoint operator on L2[0, 1] defined as:

A0φ(z) =
d4φ(z)

dz4
(3.13)

with its dense domain:

D(A0) = {φ(z) ∈ L2[0, 1] :
dφ(z)

dz
,
d2φ(z)

dz2
,
d3φ(z)

dz3
,
d4φ(z)

dz4
∈ L2[0, 1],

φ(z),
dφ(z)

dz
,
d2φ(z)

dz2
,
d3φ(z)

dz3
, abs. cont.,

φ(0) = φ(1) =
d2φ(0)

dz2
=
d2φ(1)

dz2
= 0} (3.14)

The operator A0 has the square root:

A
1
2

0 φ(z) =
d2φ(z)

dz2
(3.15)

and its dense domain:

D(A
1
2

0 ) = {φ(z) ∈ L2[0, 1] :
dφ(z)

dz
,
d2φ(z)

dz2
∈ L2[0, 1],
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φ(z),
dφ(z)

dz
, abs. cont.,

φ(0) = φ(1) = 0} (3.16)

We define the Hilbert space Z = D(A
1
2

0 )⊕ L2[0, 1] with the inner product:

< ω, ω̄ >Z=< A
1
2

0 ω1,A
1
2

0 ω̄1 > + < ω2, ω̄2 > (3.17)

where ω =

ω1

ω2

 and ω̄ =

ω̄1

ω̄2

, and <,> is the usual inner product on L2[0, 1].

The system operator associated with Eqs. (3.11) and (3.12) is now

A =

 0 I

−cA0 2αA
1
2

0

 (3.18)

with its dense domain:

D(A ) = D(A0)⊕D(A
1
2

0 )

The eigenvalue problem of the operator A is:

A

φ1n(z)

φ2n(z)

 = λn

φ1n(z)

φ2n(z)

 (3.19)

subject to

φ1n(0) = φ1n(1) = 0

d2φ1n(0)

dz2
=
d2φ1n(1)

dz2
= 0 (3.20)

for n = 1, 2, · · · ,∞. λn denotes an eigenvalue; φ1n and φ2n denote the eigenfunctions

associated with λn. To solve the eigenvalue problem of the operator A analytically, the

determinant of A − λnI is set to zero.

0 =

∣∣∣∣A − λnI∣∣∣∣
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=

∣∣∣∣∣∣∣∣
−λn I

−cA0 2αA
1
2

0 − λn

∣∣∣∣∣∣∣∣
=λ2

nI − 2αA
1
2

0 λn + cA0

=

(
A

1
2

0 −
(αλn

c
+

√
(α2 − c)λ2

n

c

)
I

)(
A

1
2

0 −
(αλn

c
−
√

(α2 − c)λ2
n

c

)
I

)
(3.21)

Therefore,

A
1
2

0 −
(αλn

c
+

√
(α2 − c)λ2

n

c

)
I = 0 or A

1
2

0 −
(αλn

c
−
√

(α2 − c)λ2
n

c

)
I = 0

Assume the eigenvalue of A
1
2

0 is denoted by λ̄n, i.e. A
1
2

0 φn(z) = λ̄nφn(z). We can easily

get the spectrum of A
1
2

0 which is λ̄n = −n2π2. Replacing A
1
2

0 with λ̄n in Eq. (3.21), we can

obtain

λn = αλ̄n ±
√

(α2 − c)λ̄2
n

Thus, the eigenvalues of operator A is

λn =


−n2π2

(
α± j

√
c− α2

)
if α2 ≤ c

−n2π2
(
α±
√
α2 − c

)
if α2 ≥ c

(3.22)

Remark 3 Usually we take α2 ≤ c to avoid the linear growth of the wave, even though this

growth (formally) does not affect the stability of the scheme.

Therefore, in this chapter we consider the scenario where α2 ≤ c, i.e.,

λn = −n2π2
(
α± j

√
c− α2

)
(3.23)

We assume the eigenvectors of the operator A is in the form of

Φn(z) =

φ1n(z)

φ2n(z)


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then the eigenvalue problem of operator A

A Φn(z) = λnΦn(z)

implies that  0 I

−A0 2αA
1
2

0


φ1n(z)

φ2n(z)

 = λn

φ1n(z)

φ2n(z)

 (3.24)

Thus the eigenvalue problem is represented in the following form:

φ2n = λnφ1n

d4φ1n(z)

dz4
− 2αλn

d2φ1n(z)

dz2
+ λ2

nφ1n(z) = 0 (3.25)

subject to the boundary conditions:

φ1n(0) = φ1n(1) = 0

d2φ1n(0)

dz2
=
d2φ1n(1)

dz2
= 0 (3.26)

We can get the solution to Φn(z), which is

Φn(z) =

 sin(nπz)

λnsin(nπz)

 (3.27)

3.4 Modal decomposition

Since the eigenvector Φn(z) is two-dimensional and is nonorthogonal, there is a need to

choose two orthonormal basis {en, fn} according to the eigenvector Φn(z), which is given

as [40]:

en(z) =

√
2

(nπ)2

sin(nπz)

0


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fn(z) =
√

2

 0

sin(nπz)

 (3.28)

and {en, fn} satisfies the following orthonormal conditions:

< en, en >Z= 1, < fn, fn >Z= 1, < en, fn >Z= 0

where <,> is the inner product on the Hilbert space Z.

Now we assume the solutions to x1 and x2 are in the form of:x1(z, t)

x2(z, t)

 =


∑∞

n=1 a1n(t)ψ1n(z)∑∞
n=1 a2n(t)ψ2n(z)

 (3.29)

where,

ψ1n(z) =

√
2

(nπ)2 sin(nπz)

ψ2n(z) =
√

2sin(nπz) (3.30)

are the nonzero elements of the basis en(z) and fn(z), respectively. We also define the

adjoint functions of ψ∗1n(z) and ψ∗2n(z) as following:

ψ∗1n(z) =
√

2(nπ)2sin(nπz)

ψ∗2n(z) =
√

2sin(nπz) (3.31)

which satisfies

< ψ1m(z), ψ∗1n >= δmn

and

< ψ2m(z), ψ∗2n >= δmn

where δmn is Kronecker delta function.
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Now x1(z, t) and x2(z, t) can be represented in the following form:

x1(z, t)

x2(z, t)

 =

ψ11 0 ψ12 0 · · · ψ1n 0 · · ·

0 ψ21 0 ψ22 · · · 0 ψ2n · · ·





a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



(3.32)

Also b(z) can be decomposed with respect to the basis en

b(z) =
∞∑
n=1

βnψ1n(z)

The matrix [
en fn

]
=

ψ1n 0

0 ψ2n


will be referred to as the transfer matrix Tn. Then we do state transformation and obtain

the following model representation:

d

dt



a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



=



∆1

∆2

. . .

∆n

. . .





a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



+



−β1

0

−β2

0

...

−βn

0

...



ũ(t) (3.33)
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where,

∆n = T−1
n A Tn =

 0 n2π2

−cn2π2 −2αn2π2

 , n = 1, 2, ...,∞ (3.34)

and

βn =< b(z), ψ∗1n(z) >

=

∫ 1

0

z3 − z
6

√
2(nπ)2sin(nπz)dz

=
√

2(−1)n/(nπ) (3.35)

For the sake of simplicity for controller design in the following sections, the control variable

u(t) is incorporated into the state variables. Therefore, the model representation of the

system can be written as:

d

dt



u(t)

a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



=



0

∆1

∆2

. . .

∆n

. . .





u(t)

a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



+



1

−β1

0

−β2

0

...

−βn

0

...



ũ(t) (3.36)

A measurement is set at the boundary of the beam, which is described as:

y(t) =
∂w(z, t)

∂z

∣∣∣∣
z=1

=
∂

∂z

(
x1(z, t) + b(z)u(t)

)∣∣∣∣
z=1

=
∞∑
n=1

a1n(t)
∂ψ1n(z)

∂z

∣∣∣∣
z=1

+
∂b(z)

∂z

∣∣∣∣
z=1

u(t)
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=

[
∂b(z)
∂z

∣∣∣
z=1

∂ψ11(z)
∂z

∣∣∣
z=1

0 ∂ψ12(z)
∂z

∣∣∣
z=1

0 · · · ∂ψ1n(z)
∂z

∣∣∣
z=1

0 · · ·
]



u(t)

a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



=

[
1
3 β1 0 β2 0 · · · βn 0 · · ·

]



u(t)

a11(t)

a21(t)

a12(t)

a22(t)

...

a1n(t)

a2n(t)

...



(3.37)

Thus we obtain the following infinite dimensional state space representation:u̇(t)

ȧ(t)

 =

0 0

0 A


u(t)

a(t)

+

 1

B

 ũ(t)

y(t) =

[
1
3 C

]u(t)

a(t)

 (3.38)
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where,

a(t) =

[
a11(t) a21(t) a12(t) a22(t) · · · a1n(t) a2n(t) · · ·

]T

A =



0 π2 0 0 · · · 0 0 · · ·

−cπ2 −2απ2 0 0 · · · 0 0 · · ·

0 0 0 (2π)2 · · · 0 0 · · ·

0 0 −c(2π)2 −2α(2π)2 · · · 0 0 · · ·

...
...

...
...

. . .
...

... · · ·

0 0 0 0 · · · 0 (nπ)2 · · ·

0 0 0 0 · · · −c(nπ)2 −2α(nπ)2 · · ·

...
...

...
...

...
...

. . .


B =

[
−
√

2(−1)1

π 0 −
√

2(−1)2

2π 0 · · · −
√

2(−1)n

nπ 0 · · ·
]T

C =

[
√

2(−1)1

π 0
√

2(−1)2

2π 0 · · ·
√

2(−1)n

nπ 0 · · ·
]

(3.39)

Remark 4 Now the continuous-time infinite-dimensional model representation of the flex-

ible beam system is obtained. Since the first few eigenvalues and eigenvectors capture the

dominant dynamic characteristic of the PDE system, the MPC controller will be constructed

mainly on the basis of the first few modes. Therefore, appropriate model representation must

be adopted to decouple the first few modes and the other modes.

To decouple the slow and fast dynamics of the system, the technique of modal decomposition

is applied on the infinite-dimensional system representation of Eq. (3.38) in order to obtain

an approximate finite-dimensional system representation. We define two spectral projection

operators Ps and Pf such that the Hilbert space H can be partitioned into two subspaces,

Hs and Hf . Hs is defined as Hs = span{Φ1(z),Φ2(z), · · · ,Φm(z)} and Hf is defined as

Hf = {Φm+1(z),Φm+2(z), · · · } (m is an arbitrary positive integer greater than 1 because all
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λn < 0 for this system). Thus, the eigen-coefficients a(t) in Eq. (3.38) can be decomposed

as:

as(t) = Psa(t) =

[
a11(t) a21(t) a12(t) a22(t) · · · a1m(t) a2m(t)

]T
af (t) = Pfa(t) =

[
a1(m+1)(t) a2(m+1)(t) a1(m+2)(t) a2(m+2)(t) · · ·

]T
(3.40)

The two subsystems, as(t)− and af (t)−, are referred to as slow subsystem and fast sub-

system, respectively. The slow subsystem is a finite-dimensional subsystem and it captures

the dominant dynamic characteristic of the PDE system, while the fast subsystem is an

infinite-dimensional subsystem. With the above definition of slow and fast subsystems, the

continuous-time system representation in Eq. (3.38) can be rewritten as:
u̇(t)

ȧs(t)

ȧf (t)

 =


0 0 0

0 As 0

0 0 Af




u(t)

as(t)

af (t)

+


1

Bs

Bf

 ũ(t)

y =

[
1
3 Cs Cf

]

u(t)

as(t)

af (t)

 (3.41)

For the sake of simplicity, we incorporate the control variable u into the slow subsystem

such that the model representation in Eq. (3.41) becomes:żs(t)
żf (t)

 =

Ãs 0

0 Ãf


zs(t)
zf (t)

+

B̃s
B̃f

 ũ(t)

y =

[
C̃s C̃f

]zs(t)
zf (t)

 (3.42)

where,

zs(t) =

 u(t)

as(t)

 , zf (t) = af (t)
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Ãs =

0 0

0 As

 , Ãf = Af

B̃s =

 1

Bs

 , B̃f = Bf

C̃s =

[
1
3 Cs

]
, C̃f = Cf

3.5 Discrete-time system representation

The continuous-time slow and fast subsystem representations are obtained, however, a

discrete-time controller is more acceptable to control practitioners because it is not only sim-

ple to be derived but also convenient to be implemented. Since most of the control systems

used in industry are embedded control systems, it is quite common to implement discrete-

time control strategies with just a digital-to-analog converter. Thus the discretization of

a model before designing a controller is necessary. Therefore, the model representation in

Eq. (3.42) needs to be transformed into an equivalent discrete-time representation in order

to be utilized for MPC construction. Appropriate discrete-time model representation must

be adopted to decouple slow dynamic and fast dynamics.

Since the continuous-time system representation in Eq. (3.42) is infinite-dimensional,

there are two issues arising from transforming it to a discrete-time counterpart. The first

issue is how to discretize an infinite-dimensional system, and the second issue is what is

the appropriate degree of approximation applied on the discrete-time model in order to

obtain a suitable model for the MPC realization. In order to solve the above two issues,

two discretization methods are explored in the ensuing section.
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3.5.1 Standard discretization

For standard discretization, the infinite-dimensional fast subsystem is replaced by a 2l-

dimensional approximation. Then the slow subsystem and the 2l-dimensional approxima-

tion of the fast subsystem are transformed into an appropriate discrete-time equivalent:zs(k + 1)

zf (k + 1)

 =

Ãds 0

0 Ãdf


zs(k)

zf (k)

+

B̃ds
B̃df

 ũ(k)

y(k) =

[
C̃ds C̃df

]zs(k)

zf (k)

 (3.43)

where, Ãds, B̃ds, C̃ds, Ãdf , B̃df , C̃df are calculated in the following way:Ãds B̃ds

C̃ds 0

 =

eÃs∆t
∫ ∆t

0 eÃsτdτB̃s

C̃s 0


Ãdf B̃df

C̃df 0

 =

eÃf∆t
∫ ∆t

0 eÃf2lτdτB̃f2l

C̃f2l 0

 (3.44)

where ∆t denotes the discretization time interval; Ãf2l, B̃f2l, and C̃f2l are the 2lth-order

approximations of matrices Ãf , B̃f , and C̃f in Eq. (3.42).

Since the slow and fast dynamics are not coupled with each other, one may obtain the

following equivalent discrete-time system representation:

zs(k + 1) = Ãdszs(k) + B̃dsũ(k)

zf (k + 1) = Ãdfzf (k) + B̃df ũ(k)

y(k) = C̃dszs(k) + C̃dfzf (k) (3.45)

where Ãds, Ãdf , B̃ds, B̃df , C̃ds, C̃df are (2m× 2m), (2l × 2l), (2m× 1), (2l × 1), (1× 2m),

and (1× 2l) matrices, respectively.
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3.5.2 Discretization by Cayley Transform

In the second discretization method, the infinite-dimensional system of Eq. (3.42) is directly

transformed to the following discrete-time equivalent using Tustin’s approximation and

Cayley transform: zs(k)

zf (k)

 =

Āds 0

0 Ādf


zs(k − 1)

zf (k − 1)

+

B̄ds
B̄df

 ũ(k)

y(k) =

[
C̄ds C̄df

]zs(k − 1)

zf (k − 1)

+ D̄dũ(k) (3.46)

where, Āds 0

0 Ādf

 = Ād,

B̄ds
B̄df

 = B̄d,

[
C̄ds C̄df

]
= C̄d

and Ād, B̄d, C̄d, and D̄d are given by the Cayley transform of the infinite-dimensional

system: Ād B̄d

C̄d D̄d

 =

(δ +A)(δ −A)−1
√

2δ(δ −A−1)−1B

√
2δC(δ −A)−1 G(δ)

 (3.47)

where δ = 2/∆t and ∆t > 0 denotes the discretization time interval; A−1 is the Yosida

extension of A; G(δ) is defined as the transfer function of the PDE system evaluated at δ.

The unbounded operators A, B and C of the continuous-time system are mapped into

bounded operators Ād, B̄d and C̄d in the discrete-time counterpart through Cayley trans-

form. And it turns out that control properties, such as controllability, are the same for both

systems [36].

The expression of the transfer function G(δ) can be obtained in the following way:

G(s) = C(sI −A)−1B
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1
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|sI −∆n|
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3s
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2(s+ 2αn2π2)

n2π2(s2 + 2αn2π2s+ n4π4)

=
∞∑
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2n2π2

s(s2 + 2αn2π2s+ n4π4)
(3.48)

Since in Eq. (3.46) the slow and fast dynamics are not coupled with each other, the discrete-

time system representation can be rewritten as the following:

zs(k) = Ādszs(k − 1) + B̄dsũ(k)

zf (k) = Ādfzf (k − 1) + B̄df ū(k)

y(k) = C̄dszs(k − 1) + C̄dfzf (k − 1) + D̄dũ(k) (3.49)

Now two discrete-time approximations of the system representation in Eq. (3.38) are ob-

tained and given by Eq. (3.45) and Eq. (3.49), respectively. The major difference between

these two representations is that the control variable contributes directly to the output vari-

able in the second representation, whereas in the first representation the output variable is
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only contributed by the state variable.

3.6 Modal model predictive control

In this section, modal model predictive control formulations are constructed on the basis

of those two linear time-invariant discrete-time model dynamics which are developed in

previous sections. The two discrete-time system representations are given in the standard

exact discretization form: 

zs(k + 1) = Ãdszs(k) + B̃dsũ(k)

zf (k + 1) = Ãdfzf (k) + B̃df ũ(k)

y(k) = C̃dszs(k) + C̃dfzf (k)

(3.50)

and the Tustin’s discretization form:

zs(k) = Ādszs(k − 1) + B̄dsũ(k)

zf (k) = Ādfzf (k − 1) + B̄df ū(k)

y(k) = C̄dszs(k − 1) + C̄dfzf (k − 1) + D̄dũ(k)

(3.51)

The regulator is constructed as the solution to an optimization problem such that the

following open-loop performance objective function on an infinite horizon is minimized at

the sampling time k:

min
uN

∞∑
j=0

[
y(k + j|k)TQy(k + j|k) + u(k + j|k)TRu(k + j|k)

]
(3.52)

where Q is a symmetric positive semidefinite penalty matrix, and R is a symmetric positive

definite matrix. y(k + j|k) and u(k + j|k) represent the output and input variable at

future time k + j predicted at current time k. The vector uN contains the sequences

u(k|k), u(k + 1|k), ..., u(k +N − 1|k) in which the first element u(k|k) is the future control

action to be injected to the plant. At time k + N , the input vector u(k + j|k) is set to

60



zero and kept at zero for all j ≥ N in the calculation of the open-loop quadratic objective

function value [37].

First, we apply the receding horizon regulator of Eq. (3.52) on the discrete-time dynamic

model of Eq. (3.50) which is developed by the standard discretization method.

Remark 5 It is proved in [41] that the MPC formulation constructed only by slow dynamics

cannot guarantee the PDE state constraints because the fast dynamics are not involved either

in the objective function or in the PDE state constraints equation. Therefore, in this case

the contribution of fast dynamics are accounted for by the MPC algorithm in order to satisfy

the requirement of PDE state constraints.

The evolution of fast subsystem is explicitly incorporated into the PDE state constraints

equation. Thus the control move at time k, under the MPC law of this scenario, is calculated

by solving the following constrained minimization problem:

min
ũN

N−1∑
j=0

[
zs(k + j|k)T C̃TdsQC̃dszs(k + j|k) + ũ(k + j|k)TRũ(k + j|k)

]
+ zs(k +N |k)T Q̄zs(k +N |k) (3.53)

s.t. zs(k + j + 1|k) = Ãdszs(k + j|k) + B̃dsũ(k + j|k)

zf (k + j + 1|k) = Ãdfzf (k + j|k) + B̃df ũ(k + j|k)

ũmin ≤ ũ(k + j|k) ≤ ũmax

Xmin ≤
∫ 1

0
rs(z)x2s(z, k + j|k)dz +

∫ 1

0
rf (z)x2f (z, k + j|k)dz ≤ Xmax (3.54)

where ũN is a vector of future control inputs calculated on the finite horizon N , Q is a

positive semidefinite matrix, R is a positive definite matrix, and Q̄ is the terminal state

penalty matrix which is the solution of the following discrete Lyapunov equation.

Q̄ = C̃TdsQC̃ds + ÃTdsQ̄Ãds
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rs(z) represents the state constraint distribution function associated with slow dynamics,

and rf (z) represents the state constraint distribution function associated with fast dynamics.

The above constrained optimization problem can be considered as a quadratic programming

problem. Given any initial condition zs(0), the above formulation gives a feasible solution.

Remark 6 In the predictive control law of Eqs. (3.53)-(3.54), the optimization objective

function is concerned with only slow dynamics; however, the PDE state constraints equa-

tion includes two contributions. One involves slow dynamics and the other complementary

contribution involves fast dynamics. In this way, the fast dynamics are incorporated into

the PDE state constraints, which play a part in the construction of a optimal control move.

It is necessary to emphasize that although the fast dynamics are involved in the PDEs state

constraints equation, they are not involved in the objective function, which keeps relatively

low computational complexity.

Next, the receding horizon regulator of Eq. (3.52) is applied on the discrete-time dynamic

model of Eq. (3.51) which is developed with Cayley transform. In this case, the predictive

control law is given as the following constrained minimization problem:

min
ũN

N−1∑
j=0

[
(C̄dszs(k + j − 1|k) + D̄dsũ(k + j|k))

T
Q(C̄dszs(k + j − 1|k) + D̄dsũ(k + j|k))

+ ũ(k + j|k)TRũ(k + j|k)
]

+ zs(k +N |k)T Q̄zs(k +N |k) (3.55)

s.t. zs(k + j|k) = Ādszs(k + j − 1|k) + B̄dsũ(k + j|k)

zf (k + j|k) = Ādfzf (k + j − 1|k) + B̄df ũ(k + j|k)

ũmin ≤ ũ(k + j|k) ≤ ũmax

Xmin ≤
∫ 1

0
rs(z)x2s(z, k + j|k)dz +

∫ 1

0
rf (z)x2f (z, k + j|k)dz ≤ Xmax (3.56)
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where ũN , N , Q, R, Q̄, rs(z), and rf (z) represent the same meanings as in Eqs. (3.53)-

(3.54). The constrained optimization problem in Eq. (3.55) can be considered as a quadratic

programming for ũN . Due to the different type of discretization, the above quadratic

programming is given by

min
ũN

(ũN )T H̄ũN + 2(ũN )T Ḡzs(k − 1) (3.57)

where the matrices H̄ and Ḡ are derived in the same way as in Chapter 2.

The state constraints distribution functions in the above PDE state constraints equations

will be replaced later by particular matrices derived from the discrete-time system repre-

sentations in the ensuing simulation section. Both the predictive control laws of Eqs. (3.53)-

(3.54) and Eqs. (3.55)-(3.56) can satisfy the input constraints and also guarantee the PDE

state constraints. The main difference between these two predictive control laws is that

they are founded on different type of discrete-time system representation. The discrete-

time model derived by Tustin’s approximation and Cayley transformation introduces the

input injection directly into the state constraints equation together with the matrix D̄d.

3.7 Simulation studies

In this section, the performance of the two MPC formulations developed in the previous

section is demonstrated and compared through computer simulations. The PDE system

given by Eqs. (3.4)-(3.6) is considered in this section, with α = 0.05 and c = 1. The

operating steady state ws(z) with these values of parameters is verified to be a stable one.

The state constraints distribution function, r(z), is given as r(z) = δ(z − zc) for z ∈ [0, 1]

and zc = 1, which means that state constraints are only to be actualized at the single

point of the right boundary. The control objective is to enforce the first order derivative of

control move, i.e., u̇(t), and the PDE state at the desired point subject to the input and
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state constraints. For this simulation, the first 15 pairs of modes are used to approximate

the plant model and the first 5 pairs of modes are considered to be the dominant ones,

which means that the slow subsystem contains only the first 5 pairs of modes and the fast

subsystem includes 10 pairs of modes. By incorporating the control variable u(t) into the

slow subsystem, one can obtain the following two discrete-time model representations that

describe the transient evolution of the system dynamics:

zs(k + 1) = Ãdszs(k) + B̃dsũ(k)

zf (k + 1) = Ãdfzf (k) + B̃df ũ(k)

y(k) = C̃dszs(k) + C̃dfzf (k)

(3.58)

and 

zs(k) = Ādszs(k − 1) + B̄dsũ(k)

zf (k) = Ādfzf (k − 1) + B̄df ũ(k)

y(k) = C̄dszs(k − 1) + C̄dfzf (k − 1) + D̄dũ(k)

(3.59)

where,

zs(k) =

[
u(k) a11(k) a21(k) · · · a15(k) a25(k)

]T
zf (k) =

[
a16(k) a26(k) · · · a115(k) a215(k)

]T
Remark 7 Although the operating steady state ws(z) is stable, the whole system is unstable

because the input variable u is incorporated into the state vectors. In other words, the

eigenvalues of the discrete-time system represented in Eq. (3.58) and Eq. (3.59) consist of the

eigenvalue of PDE system which are stable and the unstable eigenvalue 1 which is associated

with the input variable u(k).

Next we implement the two MPC formulations proposed in the previous section on the

discrete-trim system represented in Eq. (3.58). The initial condition of the PDE state is
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considered to be

w0(z) =


0.4z 0 ≤ z ≤ 0.5

−0.4z + 0.4 0.5 < z ≤ 1

The slow subsystem is utilized in the objective function and the fast subsystem is only

involved in the state constraints equation. For this case, the predictive control law is given

by Eqs. (3.60)-(3.61):

min
ũN

N−1∑
j=0

[
zs(k + j|k)T C̃TdsQC̃dszs(k + j|k) + ũ(k + j|k)TRũ(k + j|k)

]
+ zs(k +N |k)T Q̄zs(k +N |k) (3.60)

s.t. zs(k + j + 1|k) = Ãdszs(k + j|k) + B̃dsũ(k + j|k)

zf (k + j + 1|k) = Ãdfzf (k + j|k) + B̃df ũ(k + j|k)

ũmin ≤ ũ(k + j|k) ≤ ũmax

Xmin ≤ C̃dszs(k) + C̃dfzf (k) ≤ Xmax (3.61)

where Q = I, R = 0.01I, and the regulator horizon N = 50. The input and state constraints

are given as ũmin = −65, ũmax = 95, Xmin = −0.60, Xmax = 0.4. In all ensuing simulation

studies, we keep the initial condition, input and state constraints identical with the above

values. The resulting constrained optimization problem becomes a quadratic program which

can be solved through the MATLAB subroutine QuadProg. Then we inject the optimal

control move into the continuous full-state plant model. Fig. 3.1 shows the resulting profiles

of the closed-loop system under the performance of the MPC law constructed on the basis of

standard discrete-time system, which is given by Eqs. (3.60)-(3.61). The evolution of PDE

state w(z, t) (vertical displacement of beam) is shown in Fig. 3.1(a) and Fig. 3.1(b). The

evolution of ∂w(z, t)/∂t (vertical velocity of beam) is shown in Fig. 3.2(a). The constrained
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output ∂w(1, t)/∂z is shown in Fig. 3.2(b). The constrained control variable ũ, which is the

first-order derivative of input u, is shown in Fig. 3.3(a). The input u is shown in Fig. 3.3(b).

Next we implement the second predictive control law proposed in the previous section on

the discrete-time system represented in Eq. (3.59). The MPC formulation with the open-

loop quadratic cost function and input and state constraints equations are given as the

following:

min
ũN

N−1∑
j=0

[
(C̄dsz̄s(k + j − 1|k) + D̄dsũ(k + j|k))

T
Q(C̄dsz̄s(k + j − 1|k) + D̄dsũ(k + j|k))

+ ũ(k + j|k)TRũ(k + j|k)
]

+ z̄s(k +N |k)T Q̄2z̄s(k +N |k) (3.62)

s.t. z̄s(k + j|k) = Ādsz̄s(k + j − 1|k) + B̄dsũ(k + j|k)

z̄f (k + j|k) = Ādf z̄f (k + j − 1|k) + B̄df ũ(k + j|k)

ũmin ≤ ũ(k + j|k) ≤ ũmax

Xmin ≤ C̄dsz̄s(k − 1) + C̄df z̄f (k − 1) + D̄dũ(k) ≤ Xmax (3.63)

The values of Q, R, initial condition, input and state constraints are kept identical with

those in Eq. (3.60)-(3.61). But the values of horizon length N is changed to 80 in order to

make sure there exist feasible solutions and active constraints. Fig. 3.4 shows the resulting

profiles of the closed-loop system under the performance of the MPC law constructed on the

basis of Cayley discrete-time system, which is given by Eqs. (3.62)-(3.63). Fig. 3.4(a) and

Fig. 3.4(b) show the evolution of PDE state w(z, t) (vertical displacement of beam). The

evolution of ∂w(z, t)/∂t (vertical velocity of beam) is shown in Fig. 3.5(a). The constrained

output ∂w(1, t)/∂z in Fig. 3.5(b) shows that the state constraints are satisfied for all time.

The constrained control variable ũ, which is the first-order derivative of input u, is shown

in Fig. 3.6(a). The input u is shown in Fig. 3.6(b).
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As demonstrated in Fig. 3.1 and Fig. 3.4, the input and state constraints are guaranteed

by accounting for the fast dynamics in the state constraints equation for the predictive

control laws founded on both standard and Cayley discrete-time system. But the MPC law

based on Cayley discrete-time model needs a larger horizon to get feasible solutions.

3.8 Conclusions

In this chapter, model predictive control algorithms are developed for the Euler-Bernoulli

beam system with consideration of input and state constraints. The Euler-Bernoulli beam

model which describes the vertical motion of a thin horizontal beam with small displace-

ments from rest is considered , and the eigenvalue problem of the beam system is solved.

Since the Euler-Bernoulli equation is neither a hyperbolic PDE nor a parabolic PDE, a

particular projection method and modal decomposition technique are adopted to obtain a

finite-dimensional system that captures the dominant dynamics of the PDE system, which is

used as the basis for the low-order controller design subsequently. Two different discretiza-

tion methods, standard and Tustin’s discretization, are used to derive the discrete-time

modal representations. The transfer function of the PDE system is also derived in or-

der to obtain the Tustin’s discrete-time model representation with Cayley transform. Two

model predictive control laws, in which the slow dynamics are involved in the performance

objective function and the fast dynamics are only accounted for in the state constraints

equation, are developed on the basis of two different discrete-time system representations.

Finally, performance of the proposed MPC formulations are demonstrated and compared,

via simulation studies, to achieve the control objectives.
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(b) Profile of displacement w(z, t) (b).

Figure 3.1: Profiles of the displacement under the MPC law of Eqs. (3.60) and (3.61) con-
structed on standard discrete-time system with input and state constraints accounting for
full modes.
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(a) Profile of velocity ∂w(z, t)/∂t.
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(b) Profile of constrained state at the boundary ∂w(1, t)/∂t (solid line); state constraints (dashed line).

Figure 3.2: Profiles of the velocity under the MPC law of Eqs. (3.60) and (3.61) constructed
on standard discrete-time system with input and state constraints accounting for full modes.
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Figure 3.3: Profiles of the control variable computed by the MPC law of Eqs. (3.60) and
(3.61) constructed on standard discrete-time system with input and state constraints ac-
counting for full modes.

70



0
3500

7000
10500

14000

0
0.2

0.4
0.6

0.8
1.0

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t
z

w
(z

,t
)

(a) Profile of displacement w(z, t) (a).

0 3500 7000 10500 14000
0

0.2
0.4

0.6
0.8

1.0

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t
z

w
(z

,t
)

(b) Profile of displacement w(z, t) (b).

Figure 3.4: Profiles of the displacement under the MPC law of Eqs. (3.62) and (3.63) con-
structed on Cayley discrete-time system with input and state constraints accounting for full
modes.
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(b) Profile of constrained state at the boundary ∂w(1, t)/∂t (solid line); state constraints (dashed line).

Figure 3.5: Profiles of the velocity under the MPC law of Eqs. (3.62) and (3.63) constructed
on Cayley discrete-time system with input and state constraints accounting for full modes.
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(a) Profile of constrained first-order derivative of input ũ (solid line); constraints of ũ (dashed line).
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Figure 3.6: Profiles of the control variable computed by the MPC law of Eqs. (3.62) and
(3.63) constructed on Cayley discrete-time system with input and state constraints account-
ing for full modes.
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Chapter 4

Explicit/Multi-Parametric Model
Predictive Control of Dissipative
Distributed Parameter Systems

4.1 Introduction

This chapter focuses on the development of an explicit/multi-parametric model predictive

control algorithm to stabilize the discrete infinite-dimensional system arising from the dis-

crete state space modeling of the certain class of dissipative distributed parameter systems,

specifically, the parabolic partial differential equation (PDE) system and the flexible Euler-

Bernoulli beam system. In particular, the class of dissipative distributed parameter system

yields discrete modal representation which captures the dominant dynamics of the PDE

system through Galerkin’s method and modal decomposition techniques. The proposed

explicit/multi-parametric model predictive control algorithm is constructed in a way that

the objective function is concerned with only the low-order modes, while the state con-

straints involve both the low-order and higher-order modes. The explicit model predictive

control problem is solved off-line by dynamic programming and multi-parametric quadratic

programming techniques [42], and the solution is expressed as a piecewise affine function

with its corresponding critical regions [26].
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4.2 System description

In this work, we focus on the following time-invariant, infinite-dimensional system Σ(A,B, C,D)

with input u and output y:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t) (4.1)

subject to the following input and state constraints:

Umin ≤ u ≤ Umax (4.2)

Xmin ≤ (rk, x) ≤ Xmax (4.3)

where A ∈ L(X) is a generator of a strongly continuous semigroup on a separable complex

Hilbert state space X, B ∈ L(U,X) is a bounded linear operator from a Hilbert input space

U to X, C ∈ L(X,Y ) is a bounded linear operator from X to a Hilbert output space Y ,

and D ∈ L(U, Y ) is a bounded operator from U to Y . Umax and Umin are real numbers

denoting the upper and lower constraints of the input, respectively; Xmax and Xmin are

real numbers representing the upper and lower constraints of the state, respectively. The

square integrable function rk ∈ L2[0, 1] is the k-th state constraint distribution function

representing how the state constraints are enforced within the spatial interval [0,1]. The

notation (rk, x) represents the inner product of rk and x. The inner product and norm of

w1, w2 ∈ L2[0, 1] are given as:

(w1, w2) =

∫ 1

0
w1(z)w2(z)dz, ‖w1‖2 = (w1, w1)

1
2 (4.4)

Since the discrete-time controller is simpler for implementation and is more acceptable for

practitioners, we transform the continuous-time infinite-dimensional system of Eq. (4.1) into
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the following discrete-time infinite-dimensional Σd(Ad,Bd, Cd,Dd):

x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) +Ddu(k) (4.5)

where Ad ∈ L(X), Bd ∈ L(U,X), Cd ∈ L(X,Y ), and Dd ∈ L(U, Y ) with Hilbert spaces U

and Y . The relationship between the Σ(A,B, C,D) and Σd(Ad,Bd, Cd,Dd) is given by:Ad Bd

Cd Dd

 =

(δI +A)(δI −A)−1
√

2δ(δI −A)−1B
√

2δC(δI −A)−1 G(δ)

 (4.6)

where δ = 2/∆t and ∆t > 0 denotes the discretization time interval. G(δ) is defined as the

transfer function of the PDE system evaluated at δ.

In order to decompose the system of Eq. (4.5) into a slow subsystem including all the

unstable modes and a complement fast subsystem including only stable modes, we define two

orthogonal projection operators, Ps and Pf such that xs(k) = Psx(k) and xf (k) = Pfx(k),

then the state x(k) can be decomposed as

x(k) = xs(k) + xf (k) (4.7)

Applying the separation operators Ps and Pf to the system Σd(Ad,Bd, Cd,Dd), the above

system can be written in the following decomposed form:

xs(k + 1) = Adsxs(k) + Bdsu(k)

xf (k + 1) = Adfxf (k) + Bdfu(k)

y(k) = Cdsxs(k) + Cdfxf (k) +Ddu(k) (4.8)

Remark 8 The separation can always be conducted when the slow modes and fast modes

are not coupled, i.e., Ad is diagonal. Furthermore, Ad is diagonalizable if the operator Ad

has a point spectrum, i.e., σ(Ad) = {λd1, λd2, · · · }.
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We assume the solution to x(k) can be expressed by:

x(k) =
∞∑
n=1

an(k)φn(z) (4.9)

where φn(z) is a smooth and orthogonal function on the spatial domain [0, 1]. Projecting the

system of Eq. (4.8) on the φn(z) domain, we can obtain the following model representation

for subsequent controller design:

as(k + 1) = Adsas(k) +Bdsu(k)

af (k + 1) = Adfaf (k) +Bdfu(k)

x(k) = xs(k) + xf (x) = Cdsas(k) + Cdfaf (k) (4.10)

4.3 Explicit/multi-parametric model predictive control

Despite significant efforts on the development of explicit/multi-parametric model predictive

control for a discrete-time lumped parameter system (see, [26], [29], [31]), few results are

available on the explicit model predictive control for the distributed parameter system.

In this work, we will explore the synthesis of explicit MPC for the class of dissipative

distributed parameter systems.

4.3.1 Preliminaries of multi-parametric programming

For the discrete-time system:

x(k + 1) = Ax(k) +Bu(k)

The explicit/multi-parametric MPC problem is defined as the following multi-stage opti-

mization problem:

VN (x) = min
uN

J(uN , x)

77



= min
uN

N−1∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]
+ x(N)T Q̄x(N)

s.t. x(k + 1) = Ax(k) +Bu(k)

Umin ≤ u(k) ≤ Umax

Xmin ≤ x(k) ≤ Xmax (4.11)

where vector uN contains the sequence of control inputs {u(0), u(1), · · · , u(N − 1)}; Q

and Q̄ are positive semidefinite matrices and R is a positive definite matrix of appropriate

dimensions; N is the predictive horizon. The term x(N)T Q̄x(N) is the quadratic terminal

cost where Q̄ is determined from the solution of the corresponding Lyapunov equation. The

above multi-stage optimization problem can be decomposed into the following stage-wise

optimization problems [31]:

Vk = min
u(k)

Jk
(
u(k), x(k)

)
= min

u(k)

N−1∑
i=k

[
x(i)TQx(i) + u(i)TRu(i)

]
+ x(N)T Q̄x(N)

s.t. x(i+ 1) = Ax(i) +Bu(i)

Umin ≤ u(i) ≤ Umax

Xmin ≤ x(i) ≤ Xmax (4.12)

for all k = N − 1, N − 2, · · · , 0. The problem of Eq. (4.12) is equivalent to the problem of

Eq. (4.11). In problem of Eq. (4.11), the sequence of current and future control variables

is considered in the optimization, however in the problem of Eq. (4.12) only the current

control variable is considered in the optimization as we assume the future control variables

have been obtained in the previous stages.

With the principle of dynamic programming, the problem of Eq. (4.12) at each stage can

be solved as a multi-parametric programming problem by considering the current control
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variable u(k) as the optimization variable, and considering the current state variable and fu-

ture control variables θk =

[
x(k) u(k + 1) · · · u(N − 1)

]T
as the vector of parameters.

Substitution of the state predictions in the quadratic objective function and inequalities of

Eq. (4.12) results in the following multi-parametric quadratic programming for u(k) [43]:

Vk = min
u(k)

[
1

2
u(k)THu(k) + θTk Fu(k)] +

1

2
θTk Y θk

s.t. Gu(k) ≤W + Eθk (4.13)

where, H, F , Y , G, W , E are obtained from Q, R, Q̄ by straightforward algebraic manipu-

lation. Since the optimization is only on the current control variable u(k), the term 1
2θ
T
k Y θk

in Eq. (4.13) is usually removed. Our goals are to solve the multi-parametric programming

problem in Eq. (4.13) off-line, and to provide the optimal control move u(k) as an explicit

function of the parameters vector θk.

We consider a set of active constraints G̃, W̃ , S̃, and assume that the rows of G̃ are lin-

early independent. Through solving the first-order Karush-Kuhn-Tucker (KKT) conditions

for the multi-parametric programming problem, the critical regions of the optimal control

variable are given by [26]:
(
GH−1G̃T (G̃H−1G̃T )−1S̃ − S

)
θk ≤W −GH−1G̃T (G̃H−1G̃T )−1W̃

(G̃H−1G̃T )−1S̃θk ≤ −(G̃H−1G̃T )−1W̃

(4.14)

and over the above critical region, the solution to the multi-parametric quadratic program-

ming of Eq. (4.13) at stage k is given by the following affine function of the parameters

vector θk:

u(k) =
(
H−1G̃T (G̃H−1G̃T )−1S̃ −H−1F T

)
θk

+H−1G̃T (G̃H−1G̃T )−1W̃ (4.15)

For the sake of simplicity, the solution in Eqs. (4.14)-(4.15) is written as the following explicit
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linear piecewise affine expression of the parameters vector θk [28, 29]:

u(k) = fk(θk) =



K1
kθk + L1

k if A1
kθk ≤ B1

k

...
...

Ksk
k θk + Lskk if Askk θk ≤ B

sk
k

(4.16)

where the supperscript sk denotes the number of critical regions; Ki, Li, Aiineq, and Bi
ineq

are matrices and vectors of appropriate dimensions, i = 1, 2, · · · , sk.

At stage k, the expression in Eq. (4.16) gives the control variable u(k) as an explicit

function of x(k), u(k + 1), u(k + 2), · · · , u(N − 1). Furthermore, since the future control

variables u(k + 1), u(k + 2), · · · , u(N − 1) are obtained from the previous stages, they can

be eliminated from Eq. (4.16) such that u(k) can be derived as an explicit piecewise affine

expression of the current state x(k), i.e., u(k) = µk
(
x(k)

)
.

The procedure to solve the explicit/multi-parametric MPC problem in Eq. (4.12) has

the characteristic of multi-stage optimization and is based on the solution to the multi-

parametric quadratic programming problem in Eq. (4.13).

At each stage k = N − 1, N − 2, · · · , 0, the solution of the multi-parametric quadratic

programming problem in Eq. (4.13) is expressed as u(k) = µk
(
x(k)

)
. Therefore, after

the final stage k = 0, the sequence of control variables U is computed as a sequence of

explicit piecewise affine functions U = {µ0

(
x(0)

)
, · · · , µN−2

(
x(N − 2)

)
, µN−1

(
x(N − 1)

)
}.

Furthermore, the first element of the resulting control sequence will be utilized as the

optimal control law and implemented to the system. Thus, an explicit/multi-parametric

MPC controller is obtained as the following:

u∗ = U(0) = µ0

(
x(0)

)
(4.17)
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4.3.2 Explicit/multi-parametric MPC on dissipative distributed param-

eter systems

Now, we apply the explicit/multi-parametric MPC control law on the discrete-time infinite-

dimensional system arising from the modeling of a dissipative distributed-parameter system.

In order to guarantee both the manipulated input constraints and the PDE state constraints,

the explicit controller is constructed as the explicit solution to the multi-stage optimization

problem where the object function is concerned with only slow dynamics while the PDE

state constraint equation is concerned with both slow dynamics and fast dynamics [38].

Remark 9 There are two main methods to involve the fast dynamics in the PDE state

constraints. One method is to incorporate the fast modes explicitly and update the evolution

of fast dynamics at each step over the whole horizon. The other method is to use the infinity

norm of the fast dynamics in the PDE state constraints equation instead of using the fast

dynamics directly. However, if the fast dynamics are explicitly incorporated in the PDE

state constraints, the solution to the multi-parametric quadratic programming will be an

explicit function of both slow states and fast states. As the number of fast states is relatively

large, the computation effort will be very large if the fast dynamics are explicitly incorporated

and updated at each stage. Furthermore, the resulting control move will be represented by

a relatively large number of parameters (including slow states and fast states), which will

lead to a very complex set of critical regions. Owing to the reasons above, it is not an ideal

option to incorporate the fast dynamics explicitly although it has good performance in the

case of the regular MPC.

To avoid the problem mentioned in Remark 9, we use the infinity norm of fast modes to

express the explicit fast states evolution in the PDE state constraints equation. The fast
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states evolution satisfies the following expression:

af (i) = Aidfaf (0) +
i−1∑
j=0

Ai−1−j
df Bdfu(i) (4.18)

which implies:

xf (i) = Cdfaf (i)

= Cdf

(
Aidfaf (0) +

i−1∑
j=0

Ai−1−j
df Bdfu(i)

)
(4.19)

Since,

Umin ≤ u ≤ Umax

we can obtain

Cdf

(
Aidfaf (0) +

i−1∑
j=0

Ai−1−j
df BdfUmin

)
≤ xf (i) (4.20)

and

xf (i) ≤ Cdf
(
Aidfaf (0) +

i−1∑
j=0

Ai−1−j
df BdfUmax

)
(4.21)

Thus,

‖xf (i)‖∞ = Cdf

(
Aidfaf (0) +

i−1∑
j=0

Ai−1−j
df Bdf sup |u(i)|

)
(4.22)

Therefore, satisfaction of the following inequalities:

Xmin ≤ xs(i) + ‖xf (i)‖∞ ≤ Xmax (4.23)

can guarantee the PDE state constraints:

Xmin ≤ xs(i) + xf (i) ≤ Xmax

We use the inequalities of Eq. (4.23) as the PDE state constraints in stead of using the

explicit fast dynamics. Then, the optimal explicit control move, under the explicit MPC

law, is calculated by solving the following multi-stage optimization problem:

min
u(k)

N−1∑
i=k

[
xs(i)

TQxs(i) + u(i)TRu(i)
]

+ xs(N)T Q̄xs(N)
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s.t. as(i+ 1) = Adsas(i) +Bdsu(i)

xs(i) = Cdsas(i)

‖xf (i)‖∞ = Cdf

(
Aidfaf (0) +

i−1∑
j=0

Ai−1−j
df Bdf sup |u(i)|

)
Umin ≤ u(i) ≤ Umax

Xmin ≤ xs(i) + ‖xf (i)‖∞ ≤ Xmax

for all k = N − 1, N − 2, · · · , 0 (4.24)

where {u(0), · · · , u(N − 2), u(N − 1)} is a sequence of control inputs computed on the

horizon N ; af (0) is the initial condition of af (k); Q ≥ 0, R > 0, Q̄ is the solution to the

discrete Lyapunov equation Q̄ = CTdsQCds + AdsQ̄Ads. The above multi-stage constrained

optimization problem can be considered as a multi-stage multi-parametric quadratic pro-

gramming problem. Given any appropriate initial conditions as(0) and af (0), a feasible

solution can be computed by solving the multi-parametric quadratic programming problem

using the algorithm and procedure given in Section 4.3.1.

In the explicit MPC law of Eq. (4.24), the constrained multi-parametric program is

concerned with only slow dynamics; however, the PDE state constraints equation consists

of two parts. One part explicitly involves the slow dynamics, and the other complimentary

part is baed on the bounds of fast dynamics. In this way, the PDE state constraints

account for the dynamics of fast subsystem in the explicit MPC formulation. However, the

fast dynamics are not involved in the objective function although they are involved in the

PDE state constraints, which keeps relatively low computation effort.
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4.4 Simulation studies

In this section, the performance of the explicit/multi-parametric MPC formulation devel-

oped in the previous section is demonstrated and compared through computer simulations.

4.4.1 Simulation 1

For the first simulation, we consider the transport-reaction process represented by a linear

parabolic PDE, of the form:

∂x(z, t)

∂t
= b

∂2x(z, t)

∂z2
+ cx(z, t)− cu(t) (4.25)

with the following boundary and initial conditions:

x(0, t) = 0, x(1, t) = 0, x(z, 0) = x0(z) (4.26)

subject to the following input and state constraints:

Umin ≤ u ≤ Umax

Xmin ≤
∫ 1

0
rk(z)x(z, t)dz ≤ Xmax (4.27)

The eigenvalues and eigenvectors of the PDE system in Eqs. (4.25) and (4.26) are given as:

λn = c− bn2π2

φn(z) =
√

2sin(nπz) (4.28)

We consider the parameters b = 1 and c = 2π2. Then, the first 3 eigenvalues of the system

are λ1 = 9.870, λ2 = −19.739, λ3 = −69.087. Since the first eigenvalue is in the right half

plane, the steady state xs(z) with these values of parameters is verified to be an unstable

one. The state constraints distribution function, rk(z), is given as rk(z) = δ(z − zck) for

k = 1, 2, z ∈ [0, 1], which means that state constraints are to be actualized at two points
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z = zc1 and z = zc2 within the spatial interval [0, 1]. For this simulation, we choose

zc1 = 0.16 and zc2 = 0.86. We transform the infinite-dimensional PDE system of Eq. (4.25)

into a discrete-time equivalent system. Then, the first 15 modes of the discrete-time system

are used to approximate the plant model and the first 3 modes are considered to be the

dominant ones, which means that the slow subsystem contains only the first 3 modes and

the fast subsystem includes 12 modes, i.e., the slow modes are as(k) = [a1(k) a2(k) a3(k)]T

and the fast modes are af (k) = [a4(k) a5(k) · · · a15(k)]T .

We implement the proposed explicit MPC law of Eq. (4.24) on the discrete-time system.

The control objective is to compute the control variable u(k) as an explicit piecewise affine

function of the eigen-coefficient a(k) and then stabilize the plant (full-state) system and

enforce the input and PDE state constraints through implementing the resulting explicit

control input on the plant system. The initial condition of the PDE state is considered to be

x(z, 0) = φ1(z) =
√

2sin(πz), which implies that an(0) =
(
φn(z), x(z, 0)

)
=
(
φn(z), φ1(z)

)
.

For this simulation, we choose Q = I, R = 0.0001, N = 4. The input and PDE state

constraints are considered as Umin = −23, Umax = 23, Xmin = −1.5, Xmax = 1.5. The

resulting explicit MPC controller consists of 19 critical regions and corresponding affine

control laws. The closed-loop evolution of the PDE state x(z, t) under the implementation

of the explicit MPC law given by Eq. (4.24) is shown in Fig. 4.1. The constrained optimal

control move computed by the explicit MPC law is given in Fig. 4.2, and the constrained

PDE states x(z = 0.16, t) and x(z = 0.86, t) of the closed-loop system are shown in Fig. 4.3.

It is clearly demonstrated in Fig. 4.1 that the PDE system is stabilized under the implemen-

tation of the explicit MPC. Fig. 4.2 and Fig. 4.3 show that both the input and the PDE state

constraints are guaranteed with the explicit predictive controller. The critical regions for

the explicit control law are provided in Fig. 4.4. The resulting control laws corresponding
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to these critical regions in Fig. 4.4 are as following:

u∗(k) =



46.05a1 + 13.43a3, yellow region

−23, green region

23, red region

(4.29)

4.4.2 Simulation 2

The second simulation is conducted on the flexible Euler-Bernoulli beam system which is

developed in Chapter 3. The model of the flexible beam system is given by the following

fourth-order PDE:

∂2w

∂t2
− 2α

∂3w

∂t∂z2
+ c

∂4w

∂z4
= 0 (4.30)

subject to the following boundary and initial conditions:

w(0, t) = 0 = w(1, t) =
d2w(0, t)

dz2

d2w(1, t)

dz2
= u(t) (4.31)

w(z, 0) = w0(z) (4.32)

where w(z, t) is the vertical deflection of the beam at time t and at a distance z from one

end, 0 ≤ z ≤ 1; u(t) is the control variable.

As in the previous chapter, we transform the non-homogeneous boundary condition into

a homogeneous equivalent by introducing a new state variable v(z, t), which satisfies

w(z, t) = v(z, t) + b(z)u(t)

and

b(z) =
1

6
(z3 − z)
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In order to transform the term of second-order derivative respect to time into a first-order

derivative, we introduce a state vector[
x1(z, t) x2(z, t)

]T
=

[
v(z, t) ∂w(z,t)

∂t

]T
and a new control variable:

ũ(t) =
du(t)

dt

Thus the system representation is transformed into the following equivalent:

∂

∂t

x1(z, t)

x2(z, t)

 =

 0 1

−cA0 2αA
1
2
0


x1(z, t)

x2(z, t)

+

−b(z)
0

 ũ(t) (4.33)

subject to

x1(0, t) = x1(1, t) = 0

∂2x1(0, t)

∂z2
=
∂2x1(1, t)

∂z2
= 0 (4.34)

Where A0φ(z) = d4φ(z)/dz4. For the sake of simplicity for controller design in the following

sections, the control variable u(t) is incorporated into the state variables. Therefore, the

model representation of the system can be decomposed as:

d

dt


u(t)

a1n(t)

a2n(t)

 =

0 0

0 ∆n



u(t)

a1n(t)

a2n(t)

+


1

−βn

0

 ũ(t) (4.35)

For this simulation, We consider the parameters α = 0.05 and c = 1. The operating

steady state ws(z) with these values of parameters is verified to be a stable one. We enforce

the input constraints on the first-order derivative of control variable, i.e., ũ, and the state

constraints on x2(z, t) = ∂w(z, t)/∂t, which is the vertical velocity of the beam. The input

and state constraints are given by the following:

Ũmin ≤ ũ ≤ Ũmax
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Xmin ≤
∫ 1

0
r(z)x2(z, t)dz ≤ Xmax (4.36)

The state constraints distribution function, r(z), is given as r(z) = δ(z − zc) for z ∈

[0, 1] and zc = 1, which means that state constraints are only to be actualized at the

single point of the right boundary. The first 15 pairs of modes are used to approx-

imate the plant model and the first 3 pairs of modes are considered to be the dom-

inant ones, which means that the slow subsystem contains the control variable u and

the first 3 pairs modes and the fast subsystem includes 12 pairs modes, i.e., the slow

modes are as(k) = [u(k) a11(k) a21(k) · · · a13(k) a23(k)]T and the fast modes are af (k) =

[a14(k) a24(k) · · · a115(k) a215(k)]T .

Remark 10 Although the operating steady state ws(z) is stable, the whole system is unsta-

ble because the input variable u is incorporated into the state vectors. In other words, the

eigenvalues of the discrete-time system consist of the eigenvalues of PDE system which are

stable and the unstable eigenvalue which is associated with the input variable u(k).

The explicit MPC formulation of Eq. (4.24) is implemented on the discrete-time beam

system. The control objective are to compute ũ(k) as an explicit piecewise affine function of

the eigen-coefficient a(k), and enforce the input and state constraints. The initial condition

of the PDE state is considered to be

x1(z, t = 0) =


0.4z, z ∈ [0, 0.5)

−0.4z + 0.4, z ∈ [0.5, 1]

We consider Q = 0.1I, R = 0.001, N = 4 as the MPC parameters. The input and

PDE state constraints are considered as Ũmin = −3, Ũmax = 3, Xmin = −1, Xmax =

0.8. The closed-loop evolutions of the beam displacement w(z, t) and the beam velocity

∂w(z, t)/∂t under the implementation of the explicit MPC law given by Eq. (4.24) are given
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in Fig. 4.5 and Fig. 4.6, respectively. The constrained PDE state x2(z = 1, t) of the closed-

loop system is shown in Fig. 4.7, and the constrained optimal control move ũ computed

by the explicit MPC law is given in Fig. 4.8. It is clearly demonstrated that both the

PDE state and the input constraints are guaranteed with the explicit predictive controller.

The corresponding boundary input profile is given in Fig. 4.9. The resulting explicit MPC

controller consists of 7 critical regions; due to space limitations, we present here only the

mathematical representation of the control law associated with the first three critical regions:

ũ∗(k) =



−3, region 1

−4.66a11 − 0.45a12 + 0.15a21 + 0.14a22 − 0.02a13 − 0.05a23, region 2

3, region 3

...
...

(4.37)
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Figure 4.1: Profile of the PDE state x(z, t) under the explicit MPC law in simulation 1.
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Figure 4.2: Profile of constrained control input u computed by the explicit MPC law in
simulation 1 (solid-line); input constraints in simulation 1 (dashed line).
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Figure 4.3: Profile of constrained PDE state x(z = 0.16, t) and x(z = 0.86, t) under the
explicit MPC law in simulation 1 (solid line); state constraints in simulation 1 (dashed line).
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Figure 4.4: Critical regions for the solution of the explicit MPC law in simulation 1.
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Figure 4.5: Profile of the beam displacement w(z, t) under the explicit MPC law in simula-
tion 2.
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Figure 4.6: Profile of the beam velocity ∂w(z, t)/∂t under the explicit MPC law in simula-
tion 2.
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Figure 4.7: Profile of the constrained PDE state ∂w(z = 1, t)∂t under the explicit MPC law
in simulation 2 (solid line); state constraints in simulation 2 (dashed line).
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Figure 4.8: Profile of the constrained first-order derivate of control variable ũ computed by
the explicit MPC law in simulation 2 (solid line); constraints of ũ in simulation 2 (dashed
line).
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Figure 4.9: Profile of boundary input u in simulation 2.
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4.5 Conclusions

In this chapter, an explicit/multi-parametric MPC law is developed in this work for the

certain class of dissipative distributed-parameter system with consideration of manipulated

input and state variable constraints. We consider the linear infinite-dimensional system

and develop a finite-dimensional system representation capturing the dominant dynamics

of the PDE system through Galerkin’s method and modal decomposition techniques, which

is utilized as the basis for reduced-order predictive controller design. An explicit/multi-

parametric model predictive control formulation is proposed in a way that the low-order

modes contribute to both the objective function and the PDE state constraints, while

the higher-order modes contribute only to the PDE state constraints. In particular, the

infinity norm of the higher-order modes is adopted to express the explicit higher-order

modes evolution in the PDE state constraints. The explicit MPC formulation is solved

through multi-parametric quadratic programming and multi-parametric dynamic program-

ming methods. Finally, the performance of the proposed explicit MPC is demonstrated via

its implementation on the transport-reaction system and the Euler-Bernoulli beam system.
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Chapter 5

Conclusions

In this thesis, model predictive control taking into account manipulated input and state

variable constraints are presented for distributed parameter systems. Furthermore, its per-

formance are illustrated by transport-reaction process examples and flexible Euler-Bernoulli

beam example.

Specifically, Chapter 2 proposed four model predictive control algorithms for axial dis-

persion chemical reactor system described by parabolic PDEs system with consideration

of manipulated input and PDE state constraints. The spatial operator of this nonlinear

parabolic PDEs is non-self-adjoint, and the eigenvalue problem of the operator is addressed

by transforming the operator into the Sturm-Liouville form. The model predictive control

algorithms are designed on the basis of low-order model representations which are derived

through Galerkin’s method and modal decomposition techniques. Standard discretization

method and Tustin’s discretization method with Cayley transform are adopted to transform

the continuous-time model into discrete-time equivalent. The transfer function of the PDEs

system is also derived in order to apply Cayley transform. The proposed MPC formulations

differ in the way that the fast dynamics are involved in the objective function and PDE

state constraints.

In order to implement the proposed MPC algorithms on other classes of distributed
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parameter systems, in Chapter 3, the performance of the proposed modal model predictive

control formulations are illustrated by flexible Euler-Bernoulli beam system which describes

the vertical motion of a thin horizontal beam with small displacements from rest. The flex-

ible beam system is given by a fourth order PDE system, which is neither parabolic nor

hyperbolic. The fourth order spatial operator is decomposed by a particular projection

method and modal decomposition techniques. Then a finite-dimensional model representa-

tion that captures the dominant dynamics of the PDE system is obtained and utilized for

subsequent predictive controller design. The transfer function of the fourth order PDE sys-

tem is derived to obtain Tustin’s discrete-time system. The input and PDE state constraints

are guaranteed by accounting for the fast modes in state constraints equation.

In Chapter 4, the linear infinite-dimensional system arising from modeling of the cer-

tain class of dissipative distributed parameter system is considered. An explicit/multi-

parametric MPC algorithm is proposed in a way that the infinity norm of fast modes are

accounted for in the PDE state constraints and only slow modes are involved in objective

function. The shortcomings of regular MPC is overcome by explicit/multi-parametric MPC,

which gives the control law as an explicit function of the state variable with its corresponding

critical regions. Multi-parametric quadratic programming and multi-parametric dynamic

programming methods are used to solve the explicit MPC formulation. Performance of the

proposed explicit MPC law is illustrated via its implemention on the transport-reaction

system and the flexible Euler-Bernoulli beam system through simulation studies. The pro-

posed explicit MPC formulation is proved to guarantee input and state constraints and

reduce computational effort as well.
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