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Indirect and direct microwave regeneration were assessed as potential techniques for desorbing a CO2/CH4 mixture from Na-ETS-10. Indirect microwave regeneration consists of desorption with water followed by microwave drying, while direct microwave regeneration consists of constant power microwave heating. Five adsorption-desorption cycles were completed to determine and compare the swing capacity, net energy consumption, and gas recovery obtained with these two regeneration techniques. During indirect microwave regeneration the swing capacity of Na-ETS-10 was stable at 0.3 mmol/g, with the exception of the first cycle where it reached 1.6 mmol/g. The first cycle swing capacity decreased however, by five fold during the subsequent desorption cycles. During direct microwave regeneration, the swing capacity remained stable at 0.7 mmol/g over all five consecutive cycles. On average, 2.46 KJ and 0.32 KJ were consumed during regeneration of one gram of Na-ETS-10 using indirect and direct microwave regeneration, respectively. With the exception of the first cycle, gas recovery for indirect microwave regeneration was only 20%. In contrast, an average of 50% gas recovery was achieved by direct microwave regeneration. 
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1. Introduction

Microwave heating is an emerging technology in the chemical process industries (Bykov et al., 2001) with the advantages of being cheaper and faster than conventional adsorbent regeneration techniques such as steam regeneration (Polaert et al., 2010). The fundamentals of microwave regeneration are unique and opposite to the mechanism of conventional thermal regeneration techniques (Das et al., 2009). In steam regeneration, the thermal energy is transferred from the surface to the bulk of the adsorbent bed. By contrast, the thermal energy in microwave regeneration is transferred from the inside to the outside of the adsorbent bed (Hashisho et al., 2005).
Finding an efficient method for regeneration of the adsorbents is important for chemical industries because it is a time-consuming process with high-energy requirements. In this context, microwave regeneration was shown to be successful in dehydrating and regenerating adsorbents saturated with volatile organic compounds (VOCs) (Roussy and Chenot, 1981; Cha and Carlisle, 2001; Hashisho et al., 2005). Dehydration of adsorbents using microwave heating was studied for zeolite 13X (Roussy and Chenot, 1981), zeolite 3A, 4A, 5A, (Ohgushi et al., 2001), Na-X, and Ca-X (Ohgushi and Nagae, 2003, 2005). Constant power microwave heating has also been used to regenerate dealuminated Y zeolite (DAY) (Reuβ et al., 2002; Turner et al., 2000), silicate (Meier, 2009), mordinate (Kim et al., 2005), faujasite (FAU) (Kim et al., 2007) and Engelhard titanosilicate (ETS-10) (Shi et al., 2010). 
Natural gas is considered to be a cleaner alternative to other fuels and its supply currently meets one-fourth of the world’s energy needs. Typically, natural gas contains traces of impurities such as carbon monoxide, carbon dioxide, and nitrogen. In Australia and Germany, natural gas contains more than 10% carbon dioxide (CO2) impurity (Caventi et al., 2004). This percentage needs to be reduced to meet the ‘pipeline quality’ (< 2% CO2 impurity) set for methane (CH4) in order to protect equipment and pipeline infrastructures (Cavenati et al., 2004). ETS-10, a titanosilicate molecular sieve with pores large enough to accommodate CO2 and lighter hydrocarbons, is shown to purify CH4 by preferentially adsorbing CO2 over CH4. (Kuznicki, 1991; Anderson et al., 1994). ETS-10 can preferentially adsorb CO2  over C2H6 as well. (Anson et al., 2009). However like with adsorbents there is a need to efficiently regenerate and reuse ETS-10. Previous studies on regeneration of Na-ETS-10 with steam, conductive heating, and microwave heating techniques have shown that microwave regeneration is faster and more energy efficient than the other two techniques (Shi et al., 2010; Chowdhury et al., 2012). These studies reported that Na-ETS-10 provides maximum water desorption by mass action displacement but the energy requirement for drying wet Na-ETS-10 has yet to be determined (Shi et al, 2010, Chowdhury et al., 2012). 
This study investigates an indirect method for regenerating Na-ETS-10 (water desorption followed by microwave drying) and compares it to direct microwave regeneration. In direct microwave regeneration CO2/CH4 mixture was adsorbed on a packed bed of Na-ETS-10 and then desorbed by water injection. The wet adsorbent was then dried and reactivated using microwave heating. In direct microwave regeneration, CO2/CH4 gas mixture was adsorbed on a packed bed of Na-ETS-10, and desorbed using constant power microwave heating. The swing capacity, gas recovery, and energy consumption achieved over five adsorption-desorption cycles were measured and compared between indirect and direct microwave regeneration.
[bookmark: _Toc320568476]2. Experimental

Na-ETS-10 was synthesized using the hydrothermal technique as described elsewhere (Kuznicki, 1991). Powder Na-ETS-10 was pelletized into 16-20 mesh pellets. A detailed method of pellet preparation can be found elsewhere (Shi et al., 2010). 
Adsorption-desorption experiments were performed using an adsorbent bed 3.75cm long and 2.9cm in diameter containing 10g of Na-ETS-10 and a double ended cylindrical quartz column. Activation of the sample was completed at 200°C in a laboratory oven for 16h under 120ml/min helium gas flow. The feed gas mixture (Praxair) of 10%CO2 and 90%CH4 was introduced into the fixed bed column with a flow rate of 300 mL/min at 22°C and 101.325 kPa. The outlet gas was sampled and analysed by using a gas chromatograph (Agilent 5890) equipped with a thermal conductivity detector and Supelco matrix Heysep Q column. Adsorption proceeded under a continuous flow of feed gas until saturation when the outlet composition became the same as the feed composition. Na-ETS-10 became saturated with CO2/CH4 after 90 minutes.
In the indirect microwave regeneration, 5ml water was injected into the saturated adsorbent. The desorbed gas flowed to a downstream flask and was collected by water displacement. The experiment was carried out until no gas evolution was observed. The volume of the displaced water was equal to the volume of the gas that was collected at the outlet. After desorption with water, a microwave generation and propagation system was used to dry the adsorbent. The system consisted of a 2 kW switch-mode power supply (SM745G.1, Alter), a 2 kW variable output microwave generator (MH2.0W-S, National Electronics) equipped with a 2.45 GHz magnetron, an isolator (National Electronics), a three-stub tuner (National Electronics), and a waveguide applicator connected to a sliding short (IBF Electronic GmbH & Co. KG). At the beginning of the experiment the tuner and the sliding short were manually adjusted for matching the impedance and improving the energy transfer to the adsorbent. To determine energy consumption, power was monitored using a dual channel microwave power meter (E4419B, Agilent), two power sensors (8481A, Agilent), and a dual directional coupler with 60 db attenuation (Mega Industries). To avoid interference with the electromagnetic field, a fiber optic temperature sensor with a signal conditioner (Reflex signal conditioner, Neoptix) was used to monitor the temperature of the adsorbent during microwave heating. A data acquisition and control (DAC) system (Compact DAC, National Instruments) equipped with a Labview program (National Instruments) was used to record the signals from the temperature sensor, and power meter and control the output of the power supply. The Labview program was used to monitor and control the heating. During the microwave drying, a 120 sccm nitrogen flow was used as purge gas to provide uniform heating. After microwave drying, the nitrogen flow was adjusted to 300 sccm for faster cooling of the bed to room temperature. Once the bed reached room temperature, further adsorption-water desorption-microwave drying cycles were initiated. A block diagram showing adsorption and regeneration by water desorption followed by microwave drying is presented in Figure 1.
The same microwave generation system was used for both indirect and direct microwave regenerations. After saturation of the adsorbent, the microwave generation system was turned on, and the heating was initiated using the Labview program. The adsorbent was exposed to a constant incident microwave power of 60W until the bed temperature reached its set-point, then the heating was stopped. During the regeneration, the desorbed gas flowed to a downstream flask and was collected by water displacement. Microwave regeneration was continued until no gas evolution was observed. Then, the adsorbent was cooled to room temperature by purging with nitrogen at 120 sccm. After the bed reached ambient temperature, further adsorption-microwave desorption cycles were initiated. A block diagram showing adsorption and constant power microwave regeneration is presented in Figure 2.
For water desorption, the swing capacity of Na-ETS-10 is defined as the amount of gas desorbed during water injection. For microwave regeneration, the swing capacity is defined as the amount of gas desorbed during microwave heating. Gas recovery was calculated based on equation 1:
Gas recovery (%) = (VW/M/VW ) x100 ..……….. (1)
where, VW/M = volume of gas desorbed by water desorption (W) or microwave (M) heating, and VW= the volume of gas desorbed by water desorption from the fresh adsorbent.
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Figure 1: Block diagram showing adsorption and indirect microwave regeneration of Na-ETS-10 
[bookmark: _Toc321837706]
Figure 2: Block diagram showing adsorption and direct microwave regeneration of Na-ETS-10


[bookmark: _Toc320568477]3. Results and Discussion
[bookmark: _Toc320568478]3.1 Indirect microwave regeneration

Water desorption achieves complete (100 %) desorption through mass action displacement (Shi et al., 2010) within 7-8 minutes. A total of 410 ml gas was collected from approximately 10g of Na-ETS-10. Based on the GC-TCD analysis, the desorbed gas contained 89% CO2 and 11% CH4. Later, the wet Na-ETS-10 was dried by using microwave heating. 
The wet Na-ETS-10 was dried by microwave heating for 20 minutes at 190°C. A total of 2,294 J microwave energy was consumed per gram of Na-ETS-10 and 20% of the adsorption capacity was restored. Microwave drying restored 20% of the gas adsorption capacity. Under these operating conditions, further drying required more energy and heating-time. Based on the amount of recovered gas, the swing capacity of Na-ETS-10 during water desorption was 1.58 mmol/g.
Typical temperature and power profiles during microwave drying as a function of time are shown in Figure 3. These temperature and power profile can be divided into four zones. In zone I, the temperature increased, but no desorption was observed. The net power consumption increased slightly at this stage. In zone II, continuous desorption occurred and the temperature showed slow change. The power consumption rapidly increased to a steady level. In zone III, the temperature sharply increased until the set-point was reached. At this stage, the energy consumption is mainly attributed to adsorbent heating. Therefore, both the energy requirement for heating and the power consumption decreased due to the precise control of the PID controller. Finally in zone IV, the temperature stabilized at the set-point value. At this stage, the heat gain and the heat loss became equal, and very little desorption was observed.  The drying behaviour of Na-ETS-10 was consistent with reports in literature  (Polaert et al., 2007, 2010).


[bookmark: _Toc321837707]Figure 3: Microwave drying following desorption with water of Na-ETS-10 saturated with CO2/CH4: temperature and power profile.

The higher the microwave frequency, the larger the dielectric loss of water, resulting in more microwave power to be absorbed. In this experiment a microwave frequency of 2.45 GHz was used. This is much lower than the 20GHz where the maximum dielectric loss of water is obtained, but offers the optimum heating of water since the microwaves’ penetration depth decreases with the increase in frequency (Michael et al., 1991).
[bookmark: _Toc320568479]Table 1 compares the adsorption capacities for H2O, CO2, and CH4 on Na-ETS-10 and classical zeolites (NaX, NaY) as well as the normalised energy consumption for drying the adsorbents using microwave regeneration. At similar dehydration levels (81 to 100%) the energy consumed (normalized by gram of the adsorbent) for Na-ETS-10 was considerably lower than for NaX and NaY (16% of NaX and 32% of NaY). The consumed energy for Na-ETS-10 (normalized by gram of the water desorbed) was equal to 35% of NaX and 45% of NaY. Although the adsorption capacity of Na-ETS-10 for water vapor was equal to 67% and 52% of NaY and NaX, it was easier to dry. The adsorption capacity of Na-ETS-10 for CH4 is comparable to that of NaX and NaY. However, its adsorption capacity for CO2 is equal to 40% of the adsorption capacities of either NaX or NaY.
Table 1: Comparison of adsorption and microwave drying properties of Na-X, Na-Y and Na-ETS-10 at laboratory scale
	
	Microwave drying of adsorbent
	Adsorption capacity 

	Adsorbent
	Energy consumption (KJ/g desorbed water)
	Energy consumption (KJ/g adsorbent)
	Dehydration (%)
	Water (mmol/g)
	CO2 (mmol/g)
	CH4 (mmol/g)

	Na-Xa
	53.8
	14.5
	~100
	15.0a
	5.0b
	0.9c

	Na-Ya
	41.1
	7.1
	~81
	11.7a
	5.2 b
	0.7 c

	Na-ETS-10
	18.7
	2.3
	88
	7.8
	2.0d
	0.8 d


a Polaert et al., 2010.
b Walton et. al., 2006
c Choudhary et. al., 1995
d Anson et. al., 2009

3.2 Direct microwave regeneration
In direct microwave regeneration, 10 g of saturated Na-ETS-10 was heated under 60 W of constant incident power. The heating started at 22 ºC and continued until the adsorbent bed reached a set-point of 190 ºC. The bed took 110 sec to reach 190 ºC. Constant power microwave regeneration required 320 J per gram of Na-ETS-10. A total of 6.7 mmol gas was desorbed, which represents 50% of the gas that had been adsorbed. 
Figure 4 illustrates the temperature, power and desorption rate profiles as a function of time under constant power microwave heating. The adsorbent temperature linearly increased with a heating rate of 1.8ºC/sec while the net power consumption was constant at 35W. The desorption rate was 4.1-1.6 ml/sec. As long as adequate power was available to provide a thermal gradient, the desorption continued until it reached completion. The desorption rate therefore, depends on the absorbed power density (W/m3 bed). Similar findings have been reported for other zeolites (Polaert et al., 2007).

	

	



[bookmark: _Toc321837708]Figure 4: Desorption of CO2/CH4 and regeneration of Na-ETS-10 with constant power microwave regeneration; (a) temperature and net power profile and (b) desorption rate
3.3 Discussion
Five adsorption-desorption cycles were successively completed in order to regenerate Na-ETS-10. A comparison of the gas recovery and energy consumption during the five adsorption-desorption cycles for indirect and direct microwave regeneration is shown in Figures 5 and 6 and Table 2. During water desorption a higher gas recovery was achieved only in the first cycle only, while during constant power this was true over the 5 cycles. The swing capacity for direct microwave regeneration was higher than that for indirect microwave regeneration. During cycles 2-5 in water desorption, water was not totally desorbed from Na-ETS-10 after 20 minutes of microwave drying time. As a result, there was less CO2/CH4 mixture adsorbed in the 2nd and subsequent adsorption cycles, which led to a lower gas recovery. A longer microwave drying time could enhance water desorption and increase the swing capacity of the adsorbent increasing the gas recovery for cycles 2 to 5.
Indirect microwave regeneration was more energy intensive than direct microwave regeneration (Figure 6, Table 2). On average, 2,463 J microwave energy was needed to regenerate 1g of Na-ETS-10 in indirect microwave regeneration while direct microwave regeneration consumed 324 J per gram of Na-ETS-10 regenerated over five cycles of adsorption-desorption. Indirect and direct microwave regeneration required 694 J and 420 J per mmol of the desorbed CO2/CH4 mixture. Indirect microwave regeneration consumed more energy than direct microwave regeneration because Na-ETS-10 adsorbed more water than the CO2/CH4 mixture. The adsorption capacity of Na-ETS-10 for water is 0.14 g/g (7.8 mmol/g) while it is 0.09 g/g (2.0 mmol/g) and 0.01 g/g (0.8 mmol/g) for CO2 and CH4, respectively. If normalised by the number of moles of desorbed adsorbate, the energy consumed for drying ETS-10 (295 J/mmol desorbed water) is comparable to the energy consumed for desorbing CO2/CH4 from ETS-10 (419 J/mmol) through direct microwave regeneration. 

[bookmark: _Toc321837709]Figure 5: Variation in gas recovery (%) over 5 cycles during water desorption and direct microwave heating of CO2/CH4 on Na-ETS-10.

 
[bookmark: _Toc321837710]Figure 6: Energy consumption normalised by number of mmoles desorbed or adsorbed during direct microwave regeneration was significantly lower than in indirect microwave regeneration of Na-ETS-10

[bookmark: _Toc321904158]Table 2: Comparison of indirect and direct microwave regeneration for desorbing CO2/CH4 from Na-ETS-10 over five cycles.
	Indirect microwave regeneration (water desorption-microwave drying)
	Cycles
	Average and standard deviation over 5 cycles

	
	1
	2
	3
	4
	5
	

	Swing capacity (mmol/g)
	1.58
	0.29
	0.33
	0.28
	0.32
	0.56 ±0.57

	Gas recovery (%)
	100
	18
	21
	18
	20
	35±36

	Energy consumed per gram adsorbent regenerated (J/g)
	2,294
	2,565
	2,550
	2,494
	2,420
	2,465±111

	Energy consumed per mole gas desorbed (J/mmol)
	1,453
	8,903
	7,691
	9,030
	7,650
	6,945±3,138

	Direct microwave regeneration (constant power microwave desorption)
	Cycles
	Average and standard deviation over 5 cycles

	
	1
	2
	3
	4
	5
	

	Swing capacity (mmol/g)
	0.64
	0.69
	0.78
	0.75
	0.72
	0.72 ±0.05

	Gas recovery (%)
	40
	44
	55
	48
	46
	47±6

	Energy consumed per gram adsorbent regenerated (J/g)
	300
	309
	368
	332
	313
	324±27

	Energy consumed per mole gas desorbed (J/mmol)
	387
	399
	476
	428
	404
	419±35



The swing capacity, gas recovery, and net energy consumption over five cycles of adsorption and desorption remained relatively constant for direct microwave regeneration. Hence, the repetitive microwave heating did not affect the adsorption capacity of Na-ETS-10 which supports the previous findings (Shi et al, 2010, Chowdhury et al, 2012).
[bookmark: _Toc320568480]Water has higher adsorption strength than CO2 and CH4 (Li et al., 2009). In addition, since the amount of water adsorbed is higher than the amount of gas CO2/CH4 adsorbed, higher microwave energy is required to reactivate the adsorbent in water desorption. Microwave power can induce dipole moments into adsorbates that are typically non-polar, have low adsorptive strength but carry quadrupole moments. CO2 is quadrupolar and therefore can introduce polar behaviour into the desorption experiment. This issue requires further investigation (Li et al., 2009; Maryott and Birnbaum, 1962).
4. Conclusions

In this work, indirect microwave regeneration (water desorption followed by microwave drying) was studied and compared to direct microwave regeneration (constant power microwave regeneration) of Na-ETS-10. Based on five adsorption-regeneration cycles, direct microwave regeneration achieved on average 22 % higher swing capacity, and 24 % higher gas recovery compared to indirect microwave regeneration. The energy consumption per mole of gas desorbed was on average 16.6 times larger for indirect microwave regeneration compared to direct microwave regeneration. Indirect microwave regeneration was found to be energy-intensive most likely due to the high adsorption capacity and heat of adsorption of water. The results from this study are important because they provide a quantitative assessment of the performance of potential techniques for regeneration of Na-ETS-10. 
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Bed Temperature	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	20.99299999999986	40.401	51.502	58.154	62.003	65.316	67.25	69.906	73.88	77.225	77.586	87.548	126.653	166.2149999999999	190.4500000000001	190.05	190.075	189.947	190.026	190.255	190.047	190.292	189.96	0.0	1.0	2.0	3.0	22.277	93.805	142.994	171.609	11.0	12.0	13.0	14.0	15.0	16.0	16.0	15.0	87.548	126.653	166.2149999999999	190.4500000000001	Net power	0.0	0.166666666666667	0.333333333333333	0.5	0.666666666666667	0.833333333333334	1.0	1.166666666666667	1.333333333333333	1.5	1.666666666666667	1.833333333333333	2.0	2.166666666666666	2.333333333333333	2.5	2.666666666666666	2.833333333333333	3.0	3.166666666666666	3.333333333333333	3.5	3.666666666666666	3.833333333333333	4.0	4.166666666666667	4.33333333333337	4.5	4.666666666666667	4.83333333333337	5.0	5.166666666666667	5.33333333333337	5.5	5.666666666666667	5.83333333333337	6.0	6.166666666666667	6.33333333333337	6.5	6.666666666666667	6.83333333333337	7.0	7.166666666666667	7.33333333333337	7.5	7.666666666666667	7.83333333333337	8.0	8.166666666666676	8.333333333333335	8.5	8.666666666666676	8.833333333333335	9.0	9.166666666666676	9.333333333333335	9.5	9.666666666666676	9.833333333333335	10.0	10.16666666666673	10.33333333333333	10.5	10.66666666666673	10.83333333333333	11.0	11.16666666666673	11.33333333333333	11.5	11.66666666666673	11.83333333333333	12.0	12.16666666666673	12.33333333333333	12.5	12.66666666666673	12.83333333333333	13.0	13.16666666666673	13.33333333333333	13.5	13.66666666666673	13.83333333333333	14.0	14.16666666666673	14.33333333333333	14.5	14.66666666666673	14.83333333333333	15.0	15.16666666666673	15.33333333333333	15.5	15.66666666666673	15.83333333333333	16.0	16.16666666666667	16.33333333333312	16.5	16.66666666666667	16.83333333333312	17.0	17.16666666666667	17.33333333333312	17.5	17.66666666666667	17.83333333333312	18.0	18.16666666666667	18.33333333333312	18.5	18.66666666666667	18.83333333333312	19.0	19.16666666666667	19.33333333333312	19.5	19.66666666666667	19.83333333333312	20.0	20.16666666666667	20.33333333333312	20.5	20.66666666666667	20.83333333333312	21.0	21.16666666666667	21.33333333333312	21.5	21.66666666666667	21.83333333333312	22.0	22.16666666666667	22.33333333333312	22.5	22.66666666666667	22.83333333333312	23.0	23.16666666666667	23.33333333333312	23.5	23.66666666666667	23.83333333333312	11.95024528465692	11.53893779387596	11.33403514380532	11.38166286599835	11.1123301498489	12.01943331901348	12.0633834549634	11.67500198856777	12.44236643917265	11.61825498962515	11.8174114711027	12.8943541826783	12.31325144618487	13.07208110775606	13.48613957297644	13.78973728256272	13.05916812053375	13.89980097629451	13.98018658282317	14.20846060629827	13.67992433539204	14.98150338838358	14.60327768616987	15.34848403550078	14.65601255352213	15.02329808082206	15.56056055699416	15.25481232235793	16.01151181306746	16.30795201500102	16.53520325453453	16.33118291956907	17.28820081439421	17.30245025077019	17.63317314004993	18.23548302140703	17.36911770306039	18.801880733486	18.70523204604548	19.27032563441438	19.84478485357909	19.29554398282483	21.37340111750132	20.54897547679473	22.2027269275575	22.88902950429489	21.97421134464701	24.6623583271624	25.28705404188754	25.81740536445325	27.78860117662168	27.2701377991547	29.09684849364512	29.36371516344613	30.76575737063498	30.43302083681982	31.72000433892902	32.107889911006	31.33436985655455	33.02865004799396	32.65391849662795	32.6285667321748	32.42324533587413	33.2169311292952	33.06405036127977	32.728735245209	33.13145300914145	33.651383591526	33.23924034052166	34.08150707072834	32.95165709961631	32.93686215166584	33.29074331379054	32.437054341692	33.0583224125429	32.64015870597003	30.87549969656347	29.97277153936139	29.07875415169925	27.86806379021337	25.90695763734944	24.83195009208132	24.42483457996368	17.55181631455561	13.38905509352103	14.22248215451184	15.44614563774153	15.47392806072494	15.37872489387427	14.65010460164356	14.42019005302452	14.53380855807244	14.34747248000167	13.64278942693882	13.95471986821102	13.32618614631458	11.95174360705542	14.23399923840097	14.07528943104945	13.38297611181632	12.83310153818642	14.50470963802744	12.20228560743316	13.44982925768442	12.03376933663176	11.52243287360985	12.75497899261502	12.47137023730043	12.93271083615442	13.24214729814946	12.28220019019664	13.76507613706311	12.49948933996334	13.25428478351997	12.76156571604306	12.71899112923803	12.9041795141085	12.9671339923369	9.980153269412614	13.2835268326803	12.05928192410982	12.42094804816204	11.93773480207181	10.20898570376126	13.84223615706518	12.45197508172085	10.76445001547446	14.94351768607604	12.66948624092738	12.37553642994907	11.288781284568	10.63184179968215	9.690601206618581	12.85170297205801	11.67449158489212	11.72339243549141	14.11353290049384	10.38490196969435	11.53258105905115	12.19466412880859	9.468013495460701	11.01561241733366	9.187667972673963	10.93141580851923	Time (min)
Temperature (°C)
Net power (W)

Temperature	y = 1.8x + 14.1
0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58.0	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0	68.0	69.0	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	79.0	80.0	81.0	82.0	83.0	84.0	85.0	86.0	87.0	88.0	89.0	90.0	91.0	22.675	22.735	22.72299999999989	23.22	23.369	24.392	24.96899999999982	26.38899999999999	27.47899999999998	28.876	30.29599999999999	31.63100000000014	33.28800000000001	35.087	36.934	38.466	39.908	42.46700000000001	43.82700000000001	45.774	47.802	49.951	51.615	53.22100000000001	55.567	57.19500000000021	58.929	61.143	62.90300000000001	64.778	66.53	68.47	70.041	72.474	73.979	75.87799999999998	77.865	79.269	81.29	83.35299999999998	85.017	86.77299999999998	88.4110000000005	90.45800000000001	92.168	93.60799999999997	95.44000000000002	97.278	99.42	101.039	102.792	104.375	106.564	107.657	109.757	111.318	113.332	115.448	116.515	118.783	120.118	122.4100000000001	123.768	125.965	127.457	129.451000000001	130.943	132.623	134.969	136.622	138.4270000000007	140.009	141.918	143.727	145.733	147.602	149.353	151.074	152.918	154.951000000001	156.166	158.252	159.895	161.277	162.8550000000003	165.063	166.779	168.162	169.971	171.007	173.218	175.1	Net Power	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58.0	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0	68.0	69.0	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	79.0	80.0	81.0	82.0	83.0	84.0	85.0	86.0	87.0	88.0	89.0	90.0	91.0	-0.0371511161546517	25.73419200694816	27.56856114572251	28.21299454221133	27.80580200585577	28.03756925213526	28.33814170030723	28.45909808602829	28.99314162637091	27.85726414689822	28.24201631416705	28.88106295796408	29.41205064368463	29.10966447399293	29.27468139723943	29.90496499396143	28.86147013755129	30.18510313884245	30.05480320874931	30.40834756734319	31.11201263107579	30.47873557243548	30.45794278128733	30.4570157673873	31.17478979865933	31.31090453865083	30.76953774916878	31.37441025110849	31.71795128561237	31.6310839128227	31.3949464491911	30.7338821729567	31.88326551030103	32.46946209055901	31.65707111238815	32.7681370184253	32.79128239197127	32.60053526432153	33.03737755285492	32.53777845092608	32.23186713508214	33.98997960349	32.2759617302873	33.03356123001132	34.04950151938208	33.2361143600598	33.28121311725295	33.42445569973285	32.71641110767217	33.6886383041643	34.34946061886605	33.30906458363683	33.61227720257723	33.85928434373019	34.26179339961858	34.28525296432422	34.47765339256531	35.00060484384984	33.6801118980634	34.79141311493506	34.00670520138348	33.88581306445298	33.53051032424946	35.02857775502221	33.59467009377144	34.93754355236779	35.2280098536144	35.36493334894426	35.6671830402181	35.5098195189433	35.29040817915201	34.38628331442435	35.3747443287594	35.2908029828719	35.44784393005402	35.18624123801825	34.56333623034601	36.0615028956315	34.90815837409262	35.07708327595508	35.14664842012186	34.99000719512026	35.29888045163077	34.2666367750676	35.13323780634502	35.58048846170733	35.20283221358027	35.88865711585444	34.42059925525712	35.25582141581499	35.0561929825298	36.16387421125084	Time (sec)
Temperature (°C)
Net Power (W)

Constant Power	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58.0	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0	68.0	69.0	70.0	71.0	72.0	73.0	74.0	75.0	0.0	0.374000000000002	0.116	-0.0800000000000001	-0.608000000000001	3.035999999999999	4.1	3.9	3.6	3.591999999999999	3.402	3.359999999999998	3.520000000000003	3.269	3.329999999999998	3.495000000000004	3.421999999999997	3.346000000000003	3.244	3.494	3.423999999999994	3.18	3.319000000000017	3.153999999999998	3.337999999999994	3.338999999999998	3.194999999999993	3.135000000000019	3.0	3.063999999999995	3.060000000000003	2.919999999999978	2.877000000000009	2.935	2.887	2.826999999999998	2.709000000000003	2.787999999999985	2.730999999999994	2.62900000000002	2.692999999999983	2.320999999999998	2.567000000000008	2.561000000000007	2.325999999999993	2.401999999999987	2.408000000000015	2.320999999999998	2.171999999999997	2.28800000000002	2.144999999999982	2.169000000000011	2.251000000000005	1.951999999999989	2.205999999999989	1.89100000000002	2.150999999999982	1.968000000000025	1.881	1.947999999999975	2.061000000000007	1.768000000000001	1.956999999999993	1.79699999999999	1.888000000000006	1.867999999999987	1.616000000000014	1.823000000000007	1.660999999999972	1.802000000000021	1.638000000000006	1.798999999999971	1.703000000000003	1.590000000000004	1.723000000000013	1.71	Time (sec)
Desorption rate (ml/sec)

Water desorption- microwave drying	100.0	18.25	21.0	17.5	20.0	Constant power microwave	40.2948402948403	43.73464373464373	60.44226044226025	47.66584766584738	45.94594594594601	Cycles
Gas recovery (%)

Water desorption- microwave drying	1.453	8.903	7.690999999999994	9.030000000000001	7.649999999999998	Constant power  microwave 	0.387	0.399	0.476	0.428	0.404	Cycles
Energy consumption ( kJ/mmol)
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