

Effect of Acetyl Co-A Overexpression on Fatty Alcohol Production in Saccharomyces cerevisiae

- they occur rarely in nature.
- has led to a loss of biodiversity [1].
- synthetically produce fatty alcohols [2].

Sarah Song | Bonnie A. McNeil | David T. Stuart

Department of Biochemistry | 5-61 Medical Sciences Building | University of Alberta

into S. cerevisiae rDNA clusters.

OCEDURES	Re
KanMX KanMX KanMX KanMX Transform into wildtype yeast adh1 5 KanMX gous recombination lockous adh1 control transform into	DNA Ladder (kb) DNA LADG-EcACS1 Pac1/Asc1 restriction (kb) insert and 3000 kb plasmid backbone. Digests, as as ALDG-EcACS1 strains in figure 7, were screened throw
	gel electrophoresis.
AsiS AsiS TRP1 PGK1 ALD6 FBA1 EcACS1 TDNA1	By employing techniques endemic to adh1::G418 knockout strain, which w
Plasmid Backbone – 3 kb	 In addition, we overexpressed the AI background. Our results indicate that combination cerevisiae strain that overexpresses additional overexpresses additional cerevisiae strain that overexpresses additional overtical overexpresses additional overexpresses additional ov
ng ALD6 and <i>E. coli</i> EcACS1.	Future
\mathbf{F}	 As yeast innately lacks the ability to exogenous mFAR plasmid in the AL conversion from fatty acyl-coA mole We intend to compare lipid profiles b strain with mFAR to the wild type <i>S</i>. fatty alcohols produced.
Select candidate transformants Extract gDNA	• Ontinately, we aim to optimize the yr environmentally friendly means of pr <u>ACKNOWI FDGFM</u>
Confirm presence of EcASC1 gene via PCR screening	 This research was supported by: The Faculty of Science at the University of Alberta Canada Summer Jobs The WISEST team
	Special thanks to members of Dr. David Stuart's lab including Dr. David S Dr. Bonnie McNeil, Rachel Kwan, XiaoDong Liu, and Winston Gamache

RESULTS

sc1 restriction ected 8000 kilobase ne. Digests, as well e screened through

Figure 7. Polymerase Chain Reaction (PCR) screening of candidate ALD6-EcACS1 containing strains. Lanes 1-5 show PCR products specific to the exogenous E. coli ACS1 gene for 5 candidate strains. Lanes 6-7 are positive control PCRs corresponding to the FAS1 gene.

CONCLUSION

endemic to genetic engineering, we successfully made an , which was verified through PCR.

sed the ALD6-EcACS1 cassette in an adh1::G418

ombination of these genetic modifications create an S. xpresses acetyl-CoA.

UTURE DIRECTIONS

e ability to produce fatty alcohols, we aim to express an l in the ALD6-EcACS1/adh1 strain, resulting in the -coA molecules to fatty alcohols [figure 1].

profiles between the mutant acetyl co-A overexpression ild type S. cerevisiae with mFAR, and analyze levels of

mize the yield of fatty alcohol synthesis for a more neans of production.

EDGEMENTS/WORKS CITED

ŮISES

[1] Fitzherbert, M.J., et al. 2008. How will oil palm explansion affect biodiversity? Trends in Ecology & Evolution. 23: 538-545. [2] Steen, E.J., et al. 2010. Microbial production of fatty-acid-derived fuels and chemical from plant biomass. Nature. 463: 559-562.

luding Dr. David Stuart