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Abstract

This thesis considers some aspects of generative models including my contri-

butions in deep probabilistic generative architectures and linear dynamical

systems.

First, some advances in deep probabilistic generative models are contributed.

Flow-based generative modelling is an emerging and highly applicable method

to construct complex probability density. Herein, I investigate a set of in-

vertible convolutional flows based on the circular and symmetric convolutions

with efficient Jacobian determinant computation and inverse mapping (de-

convolution) in 𝒪(𝑁 log𝑁) time. Further, an analytic approach to designing

nonlinear elementwise bijectors is proposed that induces special properties in

the intermediate layers, by implicitly introducing specific regularizers in the

loss. It is demonstrated that these transforms allow more effective normalizing

flow models to be developed for generative image models.

In the second part, a deep generative framework is expanded to multi-view

learning. This model is composed of a linear probabilistic multi-view layer in the

latent space in conjunction with deep generative networks as observation models

where the variations of each view is captured by a shared latent representation

and a set of view-specific factors. To approximate the posterior distribution

of the latent probabilistic multi-view layer, a variational inference approach

is developed that results in a scalable algorithm for training deep generative

multi-view neural networks. Empirical studies confirm that the proposed deep
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generative multi-view model can efficiently integrate the relationship between

multiple views.

Finally, the thesis considers maximum likelihood estimation of linear dynam-

ical systems (LDS) and develops an optimization based strategy for recovering

the latent states and transition parameters. Key to the approach is a two-view

reformulation of maximum likelihood estimation for linear dynamical systems

that enables the use of global optimization algorithms for matrix factorization.

It is shown that the proposed estimation strategy outperforms widely-used

identification algorithms such as subspace identification methods, both in terms

of accuracy and runtime.
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Chapter 1

Introduction

The field of data science has experienced growing demand for the ability to

process and understand high-dimensional and highly structured data, requiring

algorithms that can handle increasingly complex problems. The success of

machine learning in the era of big data not only relies on growing computational

power but also on advances in models and training algorithms. Building highly

flexible yet scalable learning models, and designing associated training algo-

rithms, has driven significant research in the past decade. New representation

learning methods are at the core of this movement [Bengio et al., 2013]. In

contrast to feature engineering, which depends highly on human expertise,

representation learning aims to develop algorithms that are sufficiently powerful

to automatically identify meaningful feature representations and useful implicit

structure that captures the essence of data. Generative models are among the

most successful schemes in this context. The main theme of this thesis is to

consider new advances in generative models, particularly from a probabilistic

point of view.

Depending on the context, generative models can refer to different notions.

In supervised learning, where features 𝑥 and targets, 𝑦 (also known as labels

in classification), are provided, generative models can be defined in contrast to

the discriminative models. In this context, the generative models describe the

statistical model of all observed variables, i.e. learning the joint distribution

over both features and targets 𝑝(x,y), while the discriminative models specify
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the conditional probability 𝑝(y|x), such as linear or logistic regression, or, in

non-probabilistic view, learns a forward mapping from features to targets such

as support vector machines. Some instances of supervised generative models

are Naive Bayes and linear discriminant analysis (LDA) [Ngiam et al., 2011].

In unsupervised learning, the notion of generative models is extended to a

broader family of learning algorithms. Unsupervised probabilistic generative

models, explicitly or implicitly, estimate the underlying distribution of data,

𝑝𝑑𝑎𝑡𝑎(x), with an approximate model density, 𝑝𝑚𝑜𝑑𝑒𝑙(x), using large pools of

unlabeled training samples. Therefore, these models offer a mechanism to

generate new realistic looking samples according to the estimated data distribu-

tion, hence are referred to as generative models. Many classical unsupervised

algorithms such as PCA, CCA or Auto-encoders (AEs) can be given generative

probabilistic interpretations, elaborated in chapter 3. Besides their classical

application, due to the success and flexibility in modeling high dimensional and

highly complex problems, generative unsupervised models have been recently

adopted in a wide range of applications, including, but not limited to, generat-

ing new contents or synthesizing image or voice [Radford et al., 2015, Oord

et al., 2016a], denoising [Ballé et al., 2015] inpainting or matrix completion

[Oord et al., 2016b, Yeh et al., 2017], image or audio super-resolution [Ledig

et al., 2017, Kuleshov et al., 2017] extracting semantically meaningful and

interpretable latent representation [Kingma and Welling, 2013, Dinh et al.,

2016], dimensionality reduction or data compression [Gregor et al., 2016, Ballé

et al., 2018, Theis et al., 2017, Tschannen et al., 2018, Townsend et al., 2019]

and modeling time series [Karami et al., 2017, Luo et al., 2018, Kumar et al.,

2019, Babaeizadeh et al., 2017]; as well as applications in other fields such as

astronomy [Fergus et al., 2014, Regier et al., 2015] chemistry [Gómez-Bombarelli

et al., 2018] and neuroscience [Wiltschko et al., 2015, Linderman et al., 2016].

1.1 Background and Context

The main trends in probabilistic generative models that provide some of the

relevant context for this thesis are briefly reviewed.

2



Autoregressive density estimation is an approach to probabilistic modeling

that decomposes the joint density of visible variables, 𝑝(x), into a product

of one-dimensional conditionals according to the chain rule of probability,

𝑝(x) =
∏︀

𝑖 𝑝(𝑥𝑖|x1:𝑖−1). Modeling the conditionals by neural networks provides

highly flexible learning algorithms that together with techniques such as masked

autoencoders [Germain et al., 2015] enables fast training on parallel computa-

tional hardware. Some recent works in this domain, e.g. PixelCNN [Oord et al.,

2016c] PixelRNN [Oord et al., 2016b], demonstrate the merit of the approach

in achieving state-of-the-art in density estimation and image generation. Since

no latent variable modeling is involved, tractable conditionals of these classes

of fully visible generative models offers exact log-likelihood evaluation and

scalable training, but on the other hand the absence of latent variables limits

the interpretablity and applicability of such models in downstream tasks that

rely on rich latent representation modeling. Also, their sequential nature makes

sample generation from these models non-parallelizable and computationally

inefficient, especially for high-dimensional and real-time applications such as

video or speech synthesis. In addition, these algorithms are sensitive to se-

quence of factorizations whereby the appropriate choice of ordering can play

an important role in the expressiveness of the learned model.

In contrast to fully visible models, the partially visible generative models

associate a latent variable for each observation that represents the data in a

simple and meaningful way. These models, also known as deep latent variable

models, enable inference of the latent representations from data as natural

features that explain the underlying factors of high-dimensional observations,

and hence alleviate the difficulty of learning in downstream tasks. These

benefits come at a price. Maximum likelihood learning for complex partially

visible models, such as deep generative networks, is hard, often intractable in

its standard form, which has motivated a large amount of research effort in the

past few years.

In this context, a generative probabilistic model describes the joint proba-

bility of the observation and latent variables, 𝑝(𝑥, 𝑧), and thus the generative

network maps the latent variable z ∼ 𝑝(𝑧) to a sample in observation space
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x ∼ 𝑝(𝑥) or by specifying the conditional probability 𝑝(𝑥|𝑧).

To overcome the difficulty of maximum likelihood training in a directed

deep generative model, and the intractability of posterior inference, 𝑝(z|x), a

standard approach is to follow the variational principle of [Jordan et al., 1999]

and introduce an approximate variational posterior 𝑞𝜂(z|x), which leads to

log 𝑝𝜃(x) = E𝑞𝜂 [log 𝑝𝜃(x|z)]−𝐷KL[𝑞𝜂(z|x)‖𝑝(z)]⏟  ⏞  
𝐸𝐿𝐵𝑂

+𝐷KL[𝑞𝜂(z|x)‖𝑝(z|x)] (1.1)

In the above, the last term measures the Kullback-Leibler (KL) divergence

between the true posterior and its approximatation. The non-negative property

of the KL divergence implies that the summation of the first two terms forms

a variational lower bound on the marginal log-likelihood that are known as evi-

dence lower bound (ELBO). Variational inference maximizes the ELBO instead

of likelihood and once stochastic backpropagation and a parameterized inference

network are deployed, the approach is referred to as amortized variational

inference [Rezende et al., 2014]. A schematic of VAE is illustrated in Figure

1.1.

One popular and successful approach to scaling such probabilistic generative

learning is the variational auto-encoder (VAE), which simultaneously trains

the approximate variational inference network, also called the encoder, and

the generative network, also called the decoder, leveraging both the stochastic

backpropagation and reparameterization trick [Kingma and Welling, 2013].

According to this perspective, classical auto-encoders (AEs) can be viewed

as a special case of variational auto-encoders when the probabilistic models

are reduced to deterministic variants and both the encoder and decoder are

trained in an end-to-end architecture. It has been shown in [Kingma and

Welling, 2013] that different dimensions of the latent variable encode underlying

explanatory factors of variation, therefore VAEs are considered powerful models

for discovering and disentangling the natural and interpretable representations

of observed inputs.

The gap between the true posterior and its approximation, however, hinders
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the performance of VAE, which has recently motivated many researchers to

enhance the expressiveness of approximate inference network to reduce this gap.

One such development is to construct flexible parametrized probability density

functions using normalizing flows, which is considered further in chapter 2.

Another recent approach to probabilistic latent variable modeling is to

associate a discriminator network to a generative network then formulate

the learning process as a two-player minimax game rather than the maximum

likelihood optimization. In such a two-player game, each player tries to optimize

its objective; the discriminator tries to distinguish the real data from the fake

samples while the generator tries to trick the discriminator by producing more

realistic samples, hence resulting in a minimax adversarial training algorithm

known as Generative Adversarial Networks (GANs). In contrast to AR and

VAE, which explicitly model the data distribution, GANs are more focused

on the generated samples by implicitly learning the underlying distribution of

the date, hence successfully trained GANs are able to achieve state-of-the-art

results in generating new realistic-looking, high-resolution images. Nevertheless,

training stability and sample generation diversity remain core challenges in

GANs applications. The minimax game nature of GAN training makes the

process unstable and prone to suffering from number of issues such as vanishing

gradient, converging to poor local optima and mode collapse [Wiatrak and

Albrecht, 2019]. Moreover, they do not naturally offer an inference network to

recover the latent representation from the sample points, and lack a tractable

and comprehensive metric to evaluate the diversity of generated samples [Theis

et al., 2015]. Research on tackling these issues and improving GANs has surged

in the past few years.

Another line of work that has received a large amount of interest recently

is to directly estimate the distribution of the data by normalizing flows. The

normalizing flow is a chain of smooth and invertible transformations (bijections)

to construct a complex probability density by transforming a simple base density,

such as a standard normal distribution, exploiting the change of variable formula.

Given a random variable z ∼ 𝑝(z) and an invertible and differentiable mapping

𝑔 : R𝑛 → R𝑛, with inverse mapping 𝑓 = 𝑔−1, the probability density function

5
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Figure 1.1: Schematic representation of (a) a vanilla Variational Auto-Encoder
(VAE) model, and (b) a Normalizing Flow model.

of the transformed variable 𝑥 = 𝑔(z) can be described by the change of variable

formula as

𝑝(𝑥) = 𝑝(z) |det𝐽𝑔|−1

= 𝑝(𝑓(𝑥)) |det𝐽𝑓 | (1.2)

This formula provides a framework for probabilistic generative modeling. Train-

ing such models necessitates evaluation of Jacobian determinant in formula

1.2, which is a non-trivial computation and merits special consideration. By

carefully designing the transformations, one can obtain exact and scalable

maximum likelihood training and exact inference. Recently, many researchers

have focused on designing highly flexible and expressive flows with scalable

Jacobian determinant evaluation, which is also the main focus of chapter 2.

Besides generative density estimation, flow based models have been adopted

in variational inference and representation learning for hybrid modeling and

reinforcement learning [Papamakarios et al., 2019]. Moreover, it has been shown

that the autoregressive models, if invertible transformations are employed,
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correspond to a form of normalizing flows [Papamakarios et al., 2017]. A

schematic of a normalizing flow model for density estimation is illustrated in

Figure 1.1.

1.2 Overview and Contributions

The main contributions of this thesis and abstracts of the main chapters

are summarized as follows. First, chapters 2 and 3 focus on designing deep

generative models based on the recent advances in this domain.

Chapter 2 is dedicated to deep invertible transformations, called normaliz-

ing flows, that have recently been extensively adopted in the design of deep

generative models. Normalizing flows construct a complex probability density

by transforming a simple base density, such as a standard normal distribution,

via a chain of smooth, invertible mappings (bijections). Flow-based generative

networks can be used to construct high quality generative probabilistic models,

but training and sample generation require repeated evaluation of Jacobian

determinants and function inverses. To make such computations feasible, cur-

rent approaches employ highly constrained architectures that produce diagonal,

triangular, or low rank Jacobian matrices. As an alternative, we investigate a

set of novel normalizing flows based on circular and symmetric convolutions.

We show that these transforms admit efficient Jacobian determinant computa-

tion and inverse mapping (deconvolution) in 𝒪(𝑁 log𝑁) time. Based on these

invertible convolution filters, we have proposed an alternative nonlinear con-

volution layer, the nonlinear data-adaptive convolution transformation, where

expressiveness is increased by allowing a layers kernel to adapt to the layers

input. Additionally, element-wise multiplication, widely used in normalizing

flow architectures, can be combined with these transforms to increase modeling

flexibility. We further propose an analytic approach to designing nonlinear

elementwise bijectors that induce special properties in the intermediate layers,

by implicitly introducing specific regularizers in the loss. We show that these

transforms allow more effective normalizing flow models to be developed in

many applications especially for images. This work has been published in
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[Karami et al., 2019a].

The focus of chapter 3 shifts to deep generative muli-view models. This

chapter begins by reviewing probabilistic PCA, probabilistic CCA and a general

probabilistic multi multi-view model. We then propose a deep probabilistic

multi-view model that is composed of a linear multi-view layer, based on

probabilistic canonical correlation analysis (CCA) description in the latent

space, together with deep generative networks as observation models. The

network is designed to decompose the variations of all views into a shared

latent representation and a set of view-specific components where the shared

latent representation is intended to describe the common underlying sources of

variation among the views. The proposed method is then extended to a deep

generative probabilistic multil-view model with an arbitrary number of views.

An efficient variational inference procedure is developed that approximates the

posterior distributions of the latent probabilistic multi-view layer while taking

into account the solution of probabilistic CCA. The proposed model is particu-

larly suitable for subspace clustering whereby the shared representation can

be utilized to extract the underlying cluster memberships. Empirical studies

confirm that the proposed deep generative multi-view model can successfully

extend deep variational inference to multi-view learning while it efficiently

integrates the relationship between multiple views to alleviate the difficulty of

learning. The ideas of this work are presented in [Karami and Schuurmans,

2020b].

In chapter 4, we consider maximum likelihood estimation of classical linear

dynamical systems with generalized-linear observation models. Linear dynami-

cal systems (LDS) provide a fundamental model for estimation and forecasting

in discrete-time multi-variate time series. In an LDS, each observation is asso-

ciated with a latent state; these unobserved states evolve as a Gauss-Markov

process where each state is a linear function of the previous state plus noise.

Such a model of a partially observed dynamical system has been widely adopted,

particularly due to its efficiency for prediction of future observations using

Kalman filtering. Maximum likelihood is typically considered to be hard in this

setting since latent states and transition parameters must be inferred jointly.

8



Given that expectation-maximization (EM), a classical iterative approach to

likelihood maximization, does not scale and is prone to local minima, moment-

matching approaches from the subspace identification literature have become

standard. These methods provide closed form solutions, often involving a singu-

lar value decomposition of a matrix constructed from the empirical moments of

observations. Recent evidence, however, suggests that these moment-matching

approaches may suffer from weak statistical efficiency, performing particularly

poorly with small sample sizes. In chapter 4, we instead reconsider likelihood

maximization and develop an optimization based strategy for recovering the

latent states and transition parameters under exponential family observation

noise. Key to the proposed approach is a two-view reformulation of maximum

likelihood estimation for linear dynamical systems which allows us to approxi-

mate the estimation task as a form of matrix factorization, and apply recent

global optimization techniques for such models. To extend these optimization

algorithms to this setting, we provide a novel proximal mapping update for

the two-view approach that significantly simplifies the algorithm. We show

that the proposed estimation strategy outperforms widely-used identification

algorithms such as subspace identification methods, both in terms of accuracy

and runtime, while scaling better with increasing sample size and dimensions.

The contributions of this chapter was published in [Karami et al., 2017].
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Chapter 2

Invertible Convolutional Flow

2.1 Introduction

Flow-based generative networks have shown tremendous promise for modeling

complex observations in high dimensional datasets. In flow-based models,

a complex probability density is constructed by transforming a simple base

density, such as a standard normal distribution, via a chain of smooth, invertible

mappings (bijections), to yield a normalizing flow [Rezende and Mohamed,

2015]. Such models are employed in various contexts, including approximating a

complex posterior distribution in variational inference [Rezende and Mohamed,

2015], or for density estimation with generative models [Dinh et al., 2016].

Using a complex transformation (bijective function) to define a normalized

density requires the computation of a Jacobian determinant, which is generally

impractical for arbitrary neural network transformations. To overcome this

difficulty and enable fast computation, previous work has carefully designed

architectures that produce simple Jacobian forms. For example, [Rezende and

Mohamed, 2015, van den Berg et al., 2018] consider transformations with a

Jacobian that corresponds to low rank perturbations of a diagonal matrix,

enabling the use of Sylvester’s determinant lemma. Other works, such as

[Dinh et al., 2014, 2016, Kingma et al., Papamakarios et al., 2017], use a

constrained transformation where the Jacobian has a triangular structure.

The latter approach has proved particularly successful, since this constraint
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is easy to enforce without major sacrifices in expressiveness or computational

efficiency. More recently, Kingma and Dhariwal [2018] proposed the use of

1× 1 convolutions for cross channel mixing in a multi-channel signal, achieving

tractability via a block diagonal Jacobian. Nevertheless, these models have

overlooked some opportunities for formulating tractable normalizing flows

that can enhance expressiveness and better capture the structure of natural

data, such as images and audio. Also, a new line of work based on ordinary

differential equations has emerged recently that offers promising continuous

dynamics based flows [Grathwohl et al., 2019].

In this work, we propose an alternative nonlinear convolution layer, the

nonlinear adaptive convolution filter, where expressiveness is increased by

allowing a layer’s kernel to adapt to the layer’s input. The idea is to partition

the input of a layer 𝑥 into {𝑥1, 𝑥2}, where the convolution updates 𝑥2 as

𝑤(𝑥1) * 𝑥2, while the kernel 𝑤(𝑥1) is a function of 𝑥1 that can be expressed

by a deep neural network. We present invertible convolution operators whose

Jacobian can be computed efficiently, making this approach practical for

normalizing flow. Unlike the causal convolution employed in [Oord et al.,

2016c] to generate audio waveforms, or in [Zheng et al., 2017] to approximate

the posterior in a variational autoencoder, the proposed transformations are

not constrained to depend only on the preceding input variables and also

offer efficient inverse mapping, also known as deconvolution, analytically. It is

worth noting that circular convolution has been recently adopted in [Karami

et al., 2018] as a normalizing flow for density estimation and in [Hoogeboom

et al., 2019] to design invertible periodic convolution for (almost) periodic data.

Furthermore, we propose an analytic approach to add invertible pointwise

nonlinearity in the flow that implicitly induces specific regularizers on the

intermediate layers.

2.2 Background

Given a random variable z ∼ 𝑝(z) and an invertible and differentiable mapping

𝑔 : R𝑛 → R𝑛, with inverse mapping 𝑓 = 𝑔−1, the probability density function

11



of the transformed variable 𝑥 = 𝑔(z) can be recovered by the change of variable

rule as 𝑝(𝑥) = 𝑝(z) |det𝐽𝑔|−1 = 𝑝(𝑓(𝑥)) |det𝐽𝑓 |. Here 𝐽𝑔 =
𝜕𝑔
𝜕z⊤

and 𝐽𝑓 = 𝜕𝑓
𝜕𝑥⊤

are the Jacobian matrices of functions 𝑔 and 𝑓 , respectively. One can use

these to build a complex mapping 𝑔 by composing a chain of simple bijective

maps, 𝑔 = 𝑔(1) ∘ 𝑔(2) ∘ ... ∘ 𝑔(𝐾), that preserve invertibility, with the inverse

mapping being 𝑓 = 𝑓 (𝐾) ∘ 𝑓 (𝐾−1) ∘ ... ∘ 𝑓 (1). By applying the chain rule to the

Jacobian of the composition, and using the fact that det𝐴𝐵 = det𝐴 det𝐵,

the log-likelihood equality (LLE) can be written as

log 𝑝(𝑥) = log 𝑝(z) +
𝐾∑︁
𝑘=1

log |det𝐽𝑓𝑘 | . (2.1)

Evaluating the Jacobian determinant is the main computational bottleneck

in (2.1) since, in general, its scaling is cubic in the size of input. It is

therefore natural to seek structured transformations that mitigate this cost

while retaining useful modeling flexibility.

Notation definition: Throughout the chapter, invertible flows are denoted

by 𝑓 , while 𝑓(𝑥) is used for unconditional flows, and conditional (data-

parameterized) flows are identified by 𝑓(𝑥2;𝑥1) or 𝑓(𝑥2; 𝜃(𝑥1)) where the

flow warps 𝑥2 conditioned on 𝑥1. Subscripts are intended to specify the type

of flow or its parameters while superscripts enumerate the order of flows in

the chain. For example, 𝑓* denotes the convolutional flow in general and 𝜎𝛼

is used to specify the pointwise nonlinear bijectors with its inverse being 𝜑𝛼.

Also, in general, 𝑦 and 𝑥 indicate the output and input of a flow, respectively

and when referring to the 𝑘𝑡ℎ flow in the chain, we use 𝑦(𝑘) and 𝑥(𝑘) where

𝑥(𝑘) = 𝑦(𝑘−1). Moreover, circular convolution and symmetric convolution are

denoted by ⊛ and *𝑠, respectively, while * denotes an invertible convolution in

general, and 𝑥ℱ , 𝑥𝒞 and 𝑥𝒯 denote DFT, DCT and trigonometric transform

of sample 𝑥, respectively.
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2.2.1 Toeplitz structure and Circular Convolution

Although available methods have typically considered bijections whose Jaco-

bians have block-diagonal or triangular forms, these are not the only useful

possibilities. In fact, various other transformations exist whose Jacobian has

sufficient structure to allow computationally efficient determinant calculation.

One such structure is the Toeplitz property, where all the elements along each

diagonal of a square matrix are identical (Figure 2.1(a)). The calculation of

the determinant can then be simplified significantly. Let 𝐽𝑇 be a Toeplitz

matrix of size 𝑁 × 𝑁 ; its determinant can be evaluated in 𝒪(𝑁2) time in

general [Monahan, 2011]. More specifically, if 𝐽𝑇 has a limited bandwidth size

of 𝐾 = 𝑟 + 𝑠, as depicted in Figure 2.1(a), then the determinant computation

can be reduced to 𝒪(𝐾2 log𝑁 +𝐾3) time [Cinkir, 2011]. Moreover, Toeplitz

matrices can be inverted efficiently [Martinsson et al., 2005]. The fact that

the discrete convolution can be expressed as a product of a Toeplitz matrix

and the input [Gray et al., 2006] highlights that the Toeplitz property is of

particular interest in convolutional neural networks (CNNs).

In this chapter, we consider a particular transformation whose Jacobian is a

circulant matrix, a special form of Toeplitz structure where the rows (columns)

are cyclic permutations of the first row (column), i.e. 𝐽𝑙,𝑚 = 𝐽1,(𝑙−𝑚) mod 𝑁 . See

Figure 2.1(b) for an illustration. This structure allows certain computationally

expensive algebraic operations, such as determinant calculation, inversion and

eigenvalue decomposition, to be performed efficiently in 𝒪(𝑁 log𝑁) time by

exploiting the fact that a square circulant matrix can be diagonalized by a

discrete Fourier transform (DFT) [Gray et al., 2006]. Define the circular

convolution as 𝑦 := 𝑤 ⊛ 𝑥 where 𝑦(𝑖) :=
∑︀𝑁−1

𝑛=0 𝑥(𝑛)𝑤(𝑖 − 𝑛) mod 𝑁 , which

is equivalent to the linear convolution of two sequences when one is padded

cyclically, also known as periodic padding, as illustrated in Figure 2.2(a). The

key property we exploit in developing an efficient normalizing layer is that the

Jacobian of this convolution forms a circulant matrix, hence its determinant

and inverse mapping (deconvolution) can be computed efficiently. Some useful

properties of this operation are needed:

13



𝐽𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑤0 𝑤−1 . . . 𝑤−𝑠 0
𝑤1 𝑤0

...
. . .

. . .
. . .

. . .

𝑤𝑟
. . .

. . .
. . .

. . . 𝑤−𝑠

. . .
. . .

. . . 𝑤0 𝑤−1

0 𝑤𝑟 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(a)

𝐽𝐶 =

⎡⎢⎢⎢⎢⎢⎣
𝑤0 𝑤𝑁−1 . . . 𝑤2 𝑤1

𝑤1 𝑤0
. . .

. . . 𝑤2

...
. . .

. . .
. . .

...

𝑤𝑁−2
. . .

. . . 𝑤0 𝑤𝑁−1

𝑤𝑁−1 𝑤𝑁−2 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎦
(b)

Figure 2.1: (a) 𝐽𝑇 is a Toeplitz matrix with limited bandwidth size of 𝐾 = 𝑟 + 𝑠, (b)
𝐽𝐶 is the Jacobian of circular convolution that is a circulant matrix.

Proposition 2.1 Let 𝑦 := 𝑤⊛𝑥 be a circular convolution on the input vector

𝑥 with its DFT transform 𝑥ℱ := ℱ𝐷𝐹𝑇{𝑥} whereas 𝑦ℱ := ℱ𝐷𝐹𝑇{𝑦} and

𝑤ℱ := ℱ𝐷𝐹𝑇{𝑤} are the DFT transform of 𝑦 and 𝑤, respectively. Then:

a) The circular convolution operation can be expressed as a vector-matrix

multiplication 𝑦 = 𝐶𝑤𝑥 where 𝐶𝑤 is a circulant square matrix having the

convolution kernel 𝑤 as its first row.

b) The Jacobian of the mapping is 𝐽𝑦 = 𝐶𝑤.

c) The matrix 𝐶𝑤 can be diagonalized using DFT basis with its eigenvalues

being equal to the DFT of 𝑤, hence log |det𝐽𝑦| =
∑︀𝑁−1

𝑛=0 log |𝑤ℱ(𝑛)| .

d) The circular convolution can be expressed by element-wise multiplication

in the frequency domain, 𝑦ℱ(𝑘) = 𝑤ℱ(𝑘) 𝑥ℱ(𝑘), a.k.a. the circular convolution-

multiplication property.

e) If 𝑤ℱ(𝑛) ̸= 0 ∀𝑛, this linear operation is invertible with inverse 𝑥ℱ(𝑛) =

𝑤−1
ℱ (𝑛) 𝑦ℱ(𝑛). Moreover, its inverse mapping (deconvolution) is also a circular

convolution operation with kernel 𝑤𝑖𝑛𝑣 := ℱ−1
𝑁 {𝑤

−1
ℱ }. On the other hand, the

log determinant Jacobian also acts as a log-barrier in the objective function that

in turn prevents the 𝑤ℱ(𝑛) from becoming zero hence enforces the invertibility

of the convolution filter.
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(a) (b)

Figure 2.2: (a) Cyclic (periodic) extension and (b) even-symmetric extension of the
base sequence, where the base sequence specified by dark solid lines.

f) The circular convolution, its inverse, and Jacobian determinant can all

be efficiently computed in 𝒪(𝑁 log𝑁) time in the frequency domain, exploiting

Fast Fourier Transform (FFT) algorithms.

These properties are based on the results in [Gray et al., 2006, Gonzalez

and Woods, 1992].

2.2.2 Symmetric convolution

Circular convolution is not a unique operation with such properties, symmetric

convolution is another form of structured filtering operation that can be adopted

to achieve interesting desirable properties. A family of symmetric extension

(padding) patterns and their corresponding discrete trigonometric transforms

(DTT) are outlined in [Martucci, 1994], based on which alternative symmetric

convolution filters can be defined that satisfy the convolution-multiplication

property. Among this family, we choose an even-symmetric extension that can

be readily interpreted. Define an even-symmetric extension of a base sequence

of length 𝑁 around 𝑁 − 1/2 as

�̂�(𝑛) = 𝜀{𝑥(𝑛)} :=

⎧⎪⎨⎪⎩𝑥(𝑛) 𝑛 = 0, 1, ..., 𝑁 − 1

𝑥(−𝑛− 1) 𝑛 = −𝑁, ...,−1
. (2.2)

This even-symmetric extension is illustrated in Figure 2.2(b). The symmetric

convolution of two sequences, denoted by *𝑠, can then be defined by the
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𝐽𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑤0 𝑤0 . . . 𝑤𝑁−3 𝑤𝑁−2

𝑤1 𝑤0

. . . 𝑤𝑁−4 𝑤𝑁−3

...
. . .

. . .
. . .

...

𝑤𝑁−2 𝑤𝑁−3

. . . 𝑤0 𝑤0

𝑤𝑁−1 𝑤𝑁−2 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑤1 𝑤2 . . . 𝑤𝑁−1 𝑤𝑁−1

𝑤2 𝑤3 . .
.

𝑤𝑁−1 𝑤𝑁−2

... . .
.

. .
.

. .
. ...

𝑤𝑁−1 𝑤𝑁−1 . .
.

𝑤2 𝑤1

𝑤𝑁−1 𝑤𝑁−2 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(a)

Figure 2.3: 𝐽𝑆 is the Jacobian of symmetric convolution that can be expressed as
summation of a Toeplitz matrix and an upside-down Toeplitz matrix (also called a
Hankel matrix where its skew-diagonal elements are identical).

circular convolution of their corresponding even-symmetric extensions, as

𝑦 = 𝑤 *𝑠 𝑥 := ℛ{�̂� ⊛ �̂�}, where ℛ{.} is a rectangular window operation

that retains the base sequence of interest in an extended sequence; that is,

it inverts the symmetric extension operation (2.2). Now, since the sequences

are extended by an even-symmetric pattern, the cosine functions provide the

appropriate basis for the Fourier transform, giving rise to the discrete cosine

transform of type two (DCT-II):

𝑥𝒞(𝑘) = ℱ𝑑𝑐𝑡{𝑥}𝑘 =
1√
𝑁

𝑁−1∑︁
𝑛=0

√
2√

1𝑛=0 + 1
𝑥(𝑛) cos

(︂
𝜋𝑘

𝑁
(𝑛+ 1

2
)

)︂
. (2.3)

The convolution-multiplication property holds for this convolution, which

implies that the symmetric convolution of two sequences in the spatial domain

can be expressed as a pointwise multiplication in the transform domain, after

a forward DCT of its operands, i.e. 𝑦𝒞 = 𝑤𝒞 ⊙ 𝑥𝒞. This property also offers

and alternative definition for the symmetric convolution: the inverse DCT

of pointwise multiplication of the forward DCT of its operands [Martucci,

1994].

One can also show that the symmetric convolution provides a structured

Jacobian that can be specified by Toeplitz matrices; see Figure 2.3(a) for an

illustration. Analogous to the results presented in Proposition 2.1 for circular

convolution, the symmetric convolution-multiplication property implies that

the Jacobian of the symmetric convolution can be diagonalized by a DCT basis,

with eigenvalues being the DCT of the convolution kernel. Similarly, the inverse
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Figure 2.4: The diagram of the data-adaptive convolution sub-flow.

filter (deconvolution) can be obtained by inverting the kernel coefficients in the

transform domain, i.e. 𝑤𝑖𝑛𝑣 := ℱ−1
𝑑𝑐𝑡{1./𝑤𝒞}, where, again, the invertibility of

the convolution is guaranteed by the fact that it log determinant Jacobian in the

objective function keeps the elements of 𝑤𝒞 away from zero (as a log-barrier).

On the other hand, since the DCT can be defined in terms of a DFT of the

symmetric extension of the original sequences, the symmetric convolution, its

inverse, and Jacobian determinant can exploit available fast Fourier algorithms

with 𝒪(𝑁 log𝑁) complexity.1

2.3 Convolutional normalizing flow

2.3.1 Data adaptive convolution layer

The special convolutional forms introduced above appear to be particularly

well suited to capturing structure in images and audio signals, therefore we seek

to design more expressive normalizing flows using the convolution bijections as

building blocks. To increase flexibility, we propose a data-adaptive convolution

filter with a filter kernel that is a function of the input of the layer.

Inspired by the idea of the coupling layer in [Dinh et al., 2016], a modular

bijection can be formed by splitting the input 𝑥 ∈ R𝑑 into two disjoint parts

{𝑥1 ∈ R𝑑1 ,𝑥2 ∈ R𝑑2 : 𝑑1 + 𝑑2 = 𝑑}, referred to as the base input and update

input, respectively, and only updating 𝑥2 by an invertible convolution operation

1All bijective convolutions in experiments were performed in transform domain using a
fast Fourier transform algorithm.
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with a data-parameterized kernel that depends on 𝑥1. The data-adaptive

convolution sub-flow can then be expressed as

𝑓*(𝑥2;𝑥1) = 𝑤(𝑥1) * 𝑥2. (2.4)

In the above transformation * is an invertible convolution operation and can be

one of the invertible convolutions introduced in last section. Here, the kernel

𝑤(𝑥1) can be any nonlinear function, which leads to a nonlinear adaptive

convolution filtering scheme. Its diagram is depicted in Figure 2.4.

2.3.2 Pointwise nonlinear bijections

Adding pointwise nonlinear bijections in the chain of normalizing flows can

further enhance expressiveness. More specifically, focusing on the Jacobian

determinant introduced by the nonlinearities in log-likelihood equation (2.1),

one can observe that these terms can be interpreted as regularizers on the latent

representation. In other words, specific structures on intermediate activations

can be encouraged by designing customized pointwise nonlinear gates; these

structures encode various prior knowledge into the design of the model. Let

𝜎(𝑘) denote the 𝑘𝑡ℎ bijection in the chain of normalizing flows that is assumed to

be a pointwise nonlinear operation, i.e. 𝑦
(𝑘)
𝑖 = 𝜎(𝑘)(𝑥

(𝑘)
𝑖 ). Dropping the indices,

this mapping can be simply written as 𝑦 = 𝜎(𝑥) with inverse 𝑥 = 𝜑(𝑦) = 𝜎−1(𝑦).

Since the nonlinearity operates elementwise, its Jacobian is diagonal, hence the

log determinant reduces to log |det𝐽𝑦| =
∑︀𝑑

𝑖=1 log
⃒⃒⃒
𝜕𝜎(𝑥𝑖)
𝜕𝑥𝑖

⃒⃒⃒
. Then, an analytic

approach to designing nonlinear invertible gates are derived in the following.

Proposition 2.2 Assume we want to induce a specific structure, formulated

by a regularizer 𝛾(𝑦), on the intermediate activation 𝑦 := 𝑦
(𝑘)
𝑖 . Then the

elementwise bijection can be defined as the solution to the differential equation:

|𝜕𝜎
−1

𝜕𝑦
| = |𝜕𝜑

𝜕𝑦
| = 𝑒𝛾(𝑦). (2.5)

In other words, the contribution to the − log |det𝐽𝜎| term in the negative
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Figure 2.5: Nonlinear gates corresponding to 𝑙1 and 𝑙2 regularizers.

log-likelihood from this unit will then reduces to log |𝜕𝜑
𝜕𝑦
| = 𝛾(𝑦).

Solving the above equation and deriving the nonlinear bijection for two well

established 𝑙1 and 𝑙2 regularizers leads to the following.

∙ 𝑙1 regularization: 𝛾(𝑦) = 𝛼|𝑦| which corresponds to Laplace distribution

assumption on 𝑦:

𝜑𝛼(𝑦) =
sign(𝑦)

𝛼
(𝑒𝛼|𝑦| − 1), 𝜎𝛼(𝑥) =

sign(𝑥)
𝛼

ln(𝛼|𝑥|+ 1). (2.6)

Due to its symmetric logarithmic shape, we call the forward function

𝜎𝛼(𝑥) an S-Log gate parameterized by positive-valued 𝛼.

∙ 𝑙2 regularization: 𝛾(𝑦) = 𝛼𝑦2 which corresponds to Gaussian distribution

assumption on 𝑦:

𝜑𝛼(𝑦) =
√︁

𝜋
4𝛼
erfi(
√
𝛼𝑦), 𝜎𝛼(𝑥) =

1√
𝛼
erfi−1(

√︁
4𝛼
𝜋
𝑥).

The proposed nonlinear gates, plotted in Figure 2.5, are not only differen-

tiable by construction but also have unbounded domain and range, making

them suitable choices for designing normalizing flows in many settings such as

density estimation. Due to its simple analytical form and closed form inversion,

the S-Log gate, (2.6), is adopted as nonlinear bijection in our model architecture.

For multichannel inputs, we assume that the gates share the same parameter

𝛼 over all spatial locations of a channel (feature map).
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2.3.3 Combined convolution multiplication layer

The convolution operation spatially slides a filter and applies the same weighted

summation at every location of its input, resulting in location invariant filter-

ing. To achieve a more flexible and richer filtering scheme, we can combine

an element-wise multiplication, indicated by 𝑓⊙, and invertible convolution,

indicated by 𝑓*, so that the filtering scheme varies over space and frequency.

The product of a diagonal matrix with a circulant matrix was also proposed in

[Cheng et al., 2015] as a structured approximation for dense (fully connected)

linear layers, while [Moczulski et al., 2015] showed that any 𝑁 × 𝑁 linear

operator can be approximated to arbitrary precision by composing order 𝑁 of

such products.

Overall, the aforementioned components can be deployed to compose a

combined convolutional flow as

𝑓𝑤,𝑠(𝑥2;𝑥1) = (𝜎𝛼′ ∘ 𝑓⊙ ∘ 𝜎𝛼 ∘ 𝑓*)(𝑥2;𝑥1)

= 𝜎𝛼′
(︀
𝑠(𝑥1)⊙ 𝜎𝛼(𝑤(𝑥1) * 𝑥2)

)︀
(2.7)

We found that a more expressive network can be achieved by stacking 𝑀

iterates of the combined convolutional flows and an additive coupling transform

in each step of the network. Therefore, the convolutional coupling flow (CONF )

can be written as⎧⎪⎨⎪⎩𝑦1 = 𝑥1

𝑦2 = (𝑓
(𝑀)
𝑤,𝑠 ∘ ... ∘ 𝑓 (1)

𝑤,𝑠)(𝑥2;𝑥1) + 𝑡(𝑥1).

(2.8)

The parameters of the flow {𝑤1, 𝑠1, ...,𝑤𝑀 , 𝑠𝑀 , 𝑏} can be any nonlinear

function of the base input 𝑥1 and are not required to be invertible, hence they

can be modeled by deep neural networks with an arbitrary number of hidden

units, offering flexibility and rich representation capacity while preserving an

efficient learning algorithm. These are also called conditioning networks in the

context of normalizing flow. The model complexity can be significantly reduced

20



�2∗ ⊙

�1 �1

×�
.....

{ , }�� �� , 2 ≤ � ≤ �

+

�

�2

�1

�1

Figure 2.6: The diagram of one step of flow (CONF) that is composed of 𝑀
combined convolutional flows defined in (2.7). In density estimation, the input to
the conditioning neural network is the base input, 𝑥1, and the flow updates 𝑥2. In
variational inference applications, the neural network is conditioned on the data
points 𝑥 while warping the latent random variable 𝑧.

by using one conditioning neural network for all parameters of a coupling flow

so that it shares all layers except the last one for generating the parameters of

the flow. Consequently, we achieve a more expressive flow with the stack of

bijectors in (2.8) without introducing too many extra NN layers in the model.

2.3.4 Jacobian determinant and inversion

The modular structure of coupling CONF modules (2.8) implies that its Jaco-

bian determinant can be expressed in terms of its sub-flows. More precisely,

its Jacobian is

𝐽𝑦 =
𝜕𝑦

𝜕𝑥⊤ =

⎡⎣ 𝐼𝑑1 0

𝜕𝑦2

𝜕𝑥⊤
1

𝜕𝑦2

𝜕𝑥⊤
2

⎤⎦ . (2.9)

Noticeably, the Jacobian is a block triangular matrix, so its determinant can be

readily computed as the product of determinant of the square diagonal blocks,
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therefore

log |det𝐽𝑦| =
𝑀∑︁
𝑖=1

log
⃒⃒
det𝐽 (𝑖)

𝑤,𝑠

⃒⃒
=

𝑀∑︁
𝑖=1

log
⃒⃒⃒
det𝐽

(𝑖)
𝜑𝛼′

⃒⃒⃒
+ log

⃒⃒⃒
det𝐽

(𝑖)
⊙

⃒⃒⃒
+ log

⃒⃒⃒
det𝐽

(𝑖)
𝜑𝛼

⃒⃒⃒
+ log

⃒⃒
det𝐽 (𝑖)

*
⃒⃒

(2.10)

where 𝐽
(𝑖)
𝑤,𝑠 denotes the Jacobian of 𝑓

(𝑖)
𝑤,𝑠. According to the results presented for

invertible convolutions in section 3.1, log
⃒⃒⃒
det𝐽

(𝑖)
*

⃒⃒⃒
can be computed efficiently

in 𝒪(𝑁 log𝑁) times using the fast Fourier transform algorithm. Also, it is

worth noting that this term plays the role of a log-barrier in the final loss

function that prevents the eigenvalues of the Jacobian from falling to zero hence

enforces the invertibility of the convolution filter. Then, the inverse model of

(2.8) is2

⎧⎪⎨⎪⎩𝑥1 = 𝑦1

𝑥2 = (𝑔
(1)
𝑤,𝑠 ∘ ... ∘ 𝑔(𝑀)

𝑤,𝑠 )(𝑦2 − 𝑡(𝑥1);𝑥1)

where 𝑔𝑤,𝑠(𝑦2;𝑥1) = 𝑤𝑖𝑛𝑣 * 𝜑𝛼(𝑠
𝑖𝑛𝑣 ⊙ 𝜑𝛼′(𝑦2).)

Remark: Note that the guarantee holds for continuous time gradient descent.

It is technically possible, though not observed in practice, that SGD could

produce a non-invertible kernel. Additionally, the space of non-invertible kernels

is measure zero in the space of kernels (its rare for an eigenvalue to be exactly

zero), and so non-invertible kernels are unlikely to occur by chance.

Initialization of the parameters: Better data propagation is expected to

be achieved for very deep normalizing flows if the combined flow (2.7) acts

(approximately) as an identity mapping at initialization. Accordingly, the

parameters of the nonlinear bijector pair, {𝜎𝛼, 𝜎𝛼′}, are initialized sufficiently

2The inverse kernel 𝑤(𝑦1)
𝑖𝑛𝑣 can indeed be derived through the procedure explained in

Proposition 2.1 for circular convolution or in a similar way for symmetric convolution.
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close to zero so that they behave approximately as linear functions at the

outset. Furthermore, the conditioning networks are initialized such that the

scaling filters, 𝑠, and the convolution kernels at the frequency domain, ℱ{𝑤},

are all initially identity filters.

Multi-dimensional extension: The multi-dimensional discrete Fourier trans-

form can be expressed in separable forms, meaning that the operations can

be performed by successively applying 1-dimensional transforms along each

dimension [Gonzalez and Woods, 1992]. The separability property ensures the

results mentioned so far can be extended to multi-dimensional settings. In this

work, we are particularly interested in 2-D operations for image data. Based

on the 2-D circular convolution definition, its equivalent block-circulant matrix

form, and diagonalization method by 2-D DFT [Gonzalez and Woods, 1992,

Ch. 5], the results of the circular convolution in Proposition 2.1 can be readily

generalized to the 2-D case.3 The same properties apply to the 2-D symmetric

convolution, since the symmetric convolution-multiplication property can be

generalized naturally to the 2-D setting [Foltz and Welsh, 1998].

2.4 Model architecture

A highly flexible and complex density approximation can be formed by com-

posing a chain of the convolution coupling layers introduced in this work.

As explained in Section 3.1, the determinant of the Jacobian and inverse of

the composition can then be obtained readily. In addition to the invertible

transformation introduced in this work, we use the following bijections in the

final architecture of the normalizing flow.

Cross-channel mapping (mixing) For multi-channel setting, the invertible

convolution operation is performed in a depthwise fashion i.e. each input channel

is filtered by a separate convolution kernel. Then cross channel information

3Due to the separability property, the 2-D DFT of matrices of size 𝑁1 × 𝑁2 can be
computed in 𝒪(𝑁1𝑁2(log𝑁1 + log𝑁2)) time.
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flow can be complemented by channel shuffling or using a 1× 1 convolution.

The latter offered significant improvement with small computational overhead

in normalizing flows [Kingma and Dhariwal, 2018] hence, is applied after each

convolutional coupling layer in our architecture. Also, for single channel inputs,

assuming equal size splits {𝑥1,𝑥2} (base input and update input), these can

be treated as two separate channels of the input and the same technique can

be applied to mix them after each coupling layer.

Multiscale architecture To achieve latent representations at multiple scales

and obtain more fine-grained features, a subset of latent variables can be

factored out at the intermediate layers. This technique is very useful for large

image datasets and can significantly reduce the computational cost in very

deep models [Dinh et al., 2016].

Normalization To improve the training in very deep normalizing flows,

batch normalization was employed as a bijection after each coupling layer

in [Dinh et al., 2016]. To overcome the adverse effect of small minibatch

size in batch normalization, Kingma and Dhariwal [2018] proposed actnorm,

as normalization, which applies an affine transformation and normalizes the

activation per channel, similar to batch normalization but with larger mini-

batch size, at initialization while the parameters of this bijection are freely

updated during training with smaller minibatch size; this technique is called

data dependent initialization [Salimans and Kingma, 2016]. Thus, in density

estimation experiments, we employed the actnorm layers as bijections in the

chain of normalizing flow and also in the deep conditioning neural networks.

2.5 Experiments

2.5.1 Density estimation

We first conduct experiments to evaluate the benefits of the proposed flow

model (CONF). As observed in [Huang et al., 2018], expressiveness of the affine
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Table 2.1: Average test negative log-likelihood (in nats) for tabular datasets and (in
bits/dim) for MNIST and CIFAR using fully connected conditioning networks (lower
is better). C-CONF and S-CONF stands for circular and symmetric convolutional
coupling flow presented in (2.8), respectively. Error bars correspond to 2 standard
deviations. The results of the benchmark methods are from [Grathwohl et al., 2019].

POWER GAS BSDS300 MNIST CIFAR10

MADE 3.08 ± .03 -3.56 ± .04 -148.85 ± .28 2.04 ± .01 5.67 ± .01

MAF -0.24 ± .01 -10.08 ± .02 -155.69 ± .28 1.89 ± .01 4.31 ± .01

Real NVP -0.17 ± .01 -8.33 ± .14 -153.28 ± 1.78 1.93 ± .01 4.53 ± .01

Glow -0.17 ± .01 -8.15 ± .40 -155.07 ± .03 - -
FFJORD -0.46 ± .01 -8.59 ± .12 -157.40 ± .19 - -
S-CONF -0.48 ± .01 -10.98 ± .13 -163.23 ± .13 1.26 ± .01 3.78 ± .03

C-CONF -0.47 ± .01 -10.84 ± .06 -163.23 ± .34 1.25 ± .01 3.82 ± .00

Table 2.2: Results in bits per dimension for MNIST and CIFAR10 using CNN based
conditioning networks. The results of the benchmark methods are from [Kingma and
Dhariwal, 2018] and [Grathwohl et al., 2019]

Real NVP Glow FFJORD S-CONF

MNIST 1.06 1.05 0.99 1.00
CIFAR10 3.49 3.35 3.40 3.34

coupling flows and affine autoregressive flows stems from the complexity of

the conditioning neural network that models flow parameters, and successive

application of the flows. Therefore for fair comparison we follow [Papamakarios

et al., 2017] and use a general-purpose neural network composed of fully

connected layers in the design of conditioning networks. In this way we

highlight the capacity of the flow itself, without relying on complex data

dependent neural networks such as deep residual convolutional network used

in [Dinh et al., 2016, Kingma and Dhariwal, 2018, Ho et al., 2019].

First we evaluate the proposed flow for density estimation on tabular

datasets, considering two UCI datasets (POWR, GAS) and the natural image

patches dataset (BSDS300) used in [Papamakarios et al., 2017]. Description of

these datasets and the preprocessing procedure applied can be found therein.

We also perform unconditional density estimation on two image datasets;

MNIST, consisting of handwritten digits [Y. LeCun, 1998] and CIFAR-10,

consisting of natural images [Krizhevsky, 2009]. In BSDS300, the value of
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bottom-right pixel is replaced with the average of its immediate neighbors

resulting in monochrome patches of size 8×8. For image data, the 2D invertible

convolution is used as the flow. All datasets are dequantized by adding uniform

distributed noise to each dimension, and then they are scaled to [0, 1] values.

Variational dequantization has been proposed as an alternative method offering

better variational lower bound on the log-likelihood [Ho et al., 2019], but we

here limit to uniform dequantization in order to focus merely on the evaluation

of the proposed flows.

We compare the density estimation performance of CONF to the affine

coupling flow models real-NVP [Dinh et al., 2016] and Glow [Kingma and

Dhariwal, 2018], and the recent continuous-time invertible generative model

FFJORD [Grathwohl et al., 2019]. These reversible models admit efficient

sampling with a single pass of the generative model. We also compare the

density estimation capacity of the proposed model against the autoregressive

based methods, MADE [Germain et al., 2015], MAF [Papamakarios et al., 2017].

These family of autoregressive normalizing flows require 𝒪(𝐷) evaluations of

the generative function to sample from the model, making them prohibitively

expensive for high dimensional applications. The results, summarized in

Table 2.1, highlight that the circular convolution-based (FFT-based) CONF

(C-CONF) and symmetric convolution-based (DCT-based) CONF (S-CONF)

offer significant performance gains over the other models. The performance

improvement of the symmetric convolution for CIFAR dataset over the circular

convolution is expected and can be explained by the fact that circular padding

causes discontinuity at the edges of its images while the symmetric extension

is designed to prevent this effect. On the other hand, such behavior is not

observed for MNIST as its images have black pixels all around their borders.

Since S-CONF outperforms C-CONF in most of the experiments, we use it as

the main convolutional flow in the next experiments, simply referring to it as

CONF. The significant performance improvement of CONF on image datasets

suggest that the feedforward conditioning NN were able to capture 2D local

structures.

To make a fair comparison, we used a feedforward neural network archi-
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(a)

(b)

Figure 2.7: Samples generated from the CONF model using general purpose fully
connected NN as conditioning network that is trained on (a) the MNIST dataset and
(b) the CIFAR-10 dataset.

tecture similar to the one used for MAF [Papamakarios et al., 2017] except

that we simplified the architecture by using a single network for all parameters
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Table 2.3: Average validation negative log-likelihood (in nats) of the ablations on
GAS dataset at 5600 epochs.

CONF ablation: linear gates ablation: no convolution

GAS -10.89 ± .13 -10.12 ± .29 -10.74 ± .06

of a flow layer, while MAF used separate networks for the scaling and shift

parameters. Each coupling flow is composed of a maximum of 𝑀 = 2 iterates

of the combined convolution flow. The parameters of the network and number

of layers are selected to be comparable to those used in [Papamakarios et al.,

2017]. Details of model architecture and experimental setup together with more

empirical results are presented in appendix. Additionally, generated samples

from the model are depicted in figure 2.7.

2.5.2 Ablations study

The coupling convolution flow (2.8) is composed of two new components

compared to the affine coupling flow, 1) the pointwise nonlinear bijector and 2)

the data-adaptive convolution. In this ablation study, we asses the contribution

of each of these components on the overall performance of the CONF. The

results in Table 2.3 highlights the effect of each ablation relative to CONF.

These results show that the nonlinear bijector, S-Log, contributes more than

the data-adaptive convolution in the performance improvement of CONF, in

this case study. It is expected that the performance gain of the data-adaptive

convolution is more significant in image datasets.

2.5.3 Density estimation using CNN based conditioning

networks

We further assess the performance of CONF when the conditioning networks

are based on convolutional neural networks, which are specifically designed for

image data. A shallow convolutional NN, similar to the one used in GLOW,

is employed to generate the parameters of the flow, except that we use one

NN to generate all the parameters of a layer, reducing the number of model
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(a)

(b)

Figure 2.8: Samples generated from the CONF model using CNN based conditioning
NN that is trained on (a) the MNIST dataset and (b) the CIFAR-10 dataset.

parameters. The results of the experiments on MNIST and CIFAR10 data are

presented in Table 2.2. The experimental setup and generated samples from

the model can be found in Appendix A.1.1 and figure 2.8, respectively.
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Table 2.4: Average test negative log-likelihood (in nats) and negative evidence lower
bound (ELBO) on four benchmark datasets (lower is better). Reported error bars
correspond to 2 standard deviations calculated over 3 trials. The combination of
number of flow steps 𝐹 and 𝑀 of each model is reported in the format (F-M).

MNIST Omniglot Caltech Silhouettes Frey Faces
-ELBO NLL -ELBO NLL -ELBO NLL -ELBO NLL

VAE 86.55 ± .06 82.14 ± .07 104.28 ± .39 97.25 ± .23 110.80 ± .46 99.62 ± .74 4.53 ± .02 4.40 ± .03

IAF 84.20 ± .17 80.79 ± .12 102.41 ± .04 96.08 ± .16 111.58 ± .38 99.92 ± .30 4.47 ± .05 4.38 ± .04

Planar 86.06 ± .31 81.91 ± .22 102.65 ± .42 96.04 ± .28 109.66 ± .42 98.53 ± .68 4.40 ± .06 4.31 ± .06

CONF(16-1) 83.89 ± .03 80.86 ± .05 98.35 ± .27 94.54 ± .12 108.64 ± 1.71 97.29 ± .91 4.43 ± .01 4.34 ± .02

O-SNF(4-8) 84.74 81.04 ± .15 101.41 ± .08 95.25 ± .09 109.37 ± .94 97.78 ± .47 4.50 ± .00 4.39 ± .01

CONF(4-8) 83.22 ± .05 80.64 ± .06 97.17 ± .08 94.19 ± .03 104.09 ± 1.03 94.56 ± .29 4.41 ± .01 4.31 ± .00

O-SNF(16-32) 83.32 ± .06 80.22 ± .03 99.00 ± .29 93.82 ± .21 106.08 ± .39 94.61 ± .83 4.51 ± .04 4.39 ± .05

CONF(16-16) - - 96.35 ± .05 93.66± .03 101.10 ± .49 92.37 ± .40 4.39 ± .02 4.29 ± .00

2.5.4 Variational inference

We also evaluate the proposed normalizing flow as a flexible inference network

for a variational auto-encoder (VAE) [Rezende and Mohamed, 2015]. Here flows

are only conditioned on encoded data points, produced by the encoder, and

transform the posterior distribution of the latent variable without a coupling

connection, resulting in 𝑧(𝑡) = (𝑓
(𝑀)
𝑤,𝑠 ∘ ... ∘ 𝑓 (1)

𝑤,𝑠)(𝑧(𝑡−1);𝑥) + 𝑡(𝑥). We compare

the performance of the trained VAE using this convolutional flow against

other approaches, including a non flow-based VAE with factorized Gaussian

distributions, and flow-based VAE using inverse autoregressive flow (IAF),

planar flow [Rezende and Mohamed, 2015, Kingma et al.] and Sylvester

normalizing flows (SNF) as the building blocks of the normalizing flows. We

used the encoder/decoder architecture of [van den Berg et al., 2018] and the

results of the available methods are adopted from that paper. The details of

training procedure are summarized in Appendix A.1.2.

The results in Table 2.4 show that CONF outperforms Sylvester flow in most

cases, and even smaller CONF models show similar or better capacity than

larger SNF. This performance gains is achieved while we noted that the CONF

and the SNF show almost similar speed in wall-clock time per training iteration.

Also, we observe that CONF with 𝑀 = 1 outperforms planar flow by a wide

margin on all datasets, except for FreyFaces which is a challenging dataset and

prone to overfitting for large SNF; here large CONF (𝐹 = 16,𝑀 = 16) perform
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the best among all methods, so demonstrates less sensitivity to overfitting on

the FreyFaces dataset.

Number of parameters: Let the stochastic latent variable be a 𝐷-

dimensional vector 𝑧 ∈ R𝐷 and the encoder’s output be 𝑒(𝑥) ∈ R𝐸, then

each step of CONF requires an additional 𝐸 × (2𝑀𝐷 +𝐷) + 2𝑀 parameters

to produce the flow parameters based on 𝑒(𝑥), which is comparable to the

number of parameters related to a step of planar flow if 𝑀 = 1. This is, also, of

the same order of the number of parameters of Sylvester flow with a bottleneck

of size 𝑀 , which is 𝐸 × (2𝑀𝐷 + 2𝑀2 +𝑀).
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Chapter 3

Deep Probabilistic Multi-view

Learning

3.1 Introduction

When observations consist of multiple views or modalities of the same underlying

source of variation, a learning algorithm should efficiently account for the

complementary information to alleviate learning difficulty [Chaudhuri et al.,

2009] and improve accuracy. A well-established method for two-view analysis

is given by canonical correlation analysis (CCA) [Hotelling, 1992], a classical

subspace learning technique that extracts the common information between

two multivariate random variables by projecting them onto a subspace. CCA,

as a standard model for unsupervised two-view learning, has been used in a

broad range of tasks such as dimensionality reduction, visualization and time

series analysis [Xia et al., 2014].

The goal of representation learning is to capture the essence of data and

extract its natural features. Such features can be categories or cluster mem-

berships. In multi-view data, the relationship between different views should

be leveraged by the representation learning algorithms to enhance feature

extraction. Learning representations in real-world applications, where the

data is typically high-dimensional with complex structure, poses significant
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challenges and necessitates flexible and expressive yet scalable models such as

deep generative neural networks to be applied.

It has been shown in [Chaudhuri et al., 2009] that by projecting multi-

view data onto low-dimensional subspaces using CCA, cluster memberships

can be recovered under a weak separation condition thus resulting in easier

clustering in the subspace. Nevertheless, CCA exhibits poor generalization

when trained on small training sets, therefore [Klami and Kaski, 2007, Klami

et al., 2013] adopt a Bayesian approach to solve a probabilistic interpretation

of CCA. However, real applications involve nonlinear subspaces where more

than two view are available. Recently, deep learning has received renewed

interest as a standard approach for describing highly expressive modelsof

increasingly complex datasets. In multi-view learning, several deep learning

based approaches have been successfully extended [Ngiam et al., 2011, Andrew

et al., 2013, Wang et al., 2015a]. A deep variational two-view autoencoder

was proposed in [Tang et al., 2017, Wang et al., 2016] that in principle offers

a generative two-view model with shared representation or shared plus view-

specific factors. Despite the names of the methods, their link to CCA are

only at a conceptual level without drawing theoretical connections between the

proposed two-view models with the probabilistic CCA interpretation in [Bach

and Jordan, 2005], while the black box variational inference was adopted.

Clustering Subspace clustering is a family of unsupervised learning methods

that divide the high dimensional data points that are drawn from a multiple of

low dimensional subspace into clusters of similar points. It has recently become

a famous tool especially in the field of computer vision [Ji et al., 2017]. As

stated in [Vidal, 2011] and [Ji et al., 2017], estimating the affinity matrix, that

collects the similarity between all the pairs, from data points is the a key step

in the subspace clustering, based on which the cluster memberships can be

extracted.

Two main categories of subspace clustering methods for estimating the

affinity matrix are [Ji et al., 2017]: 1) factorization methods: that estimate

the affinities by factorizing the data into low-dimensional subspaces [Costeira
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and Kanade, 1998, Ji et al., 2015, Mo and Draper, 2012, Vidal et al., 2008],

and 2) self-expressiveness based methods: that represent a data points as a

linear combination of other data points in the same subspace. Compared to

factorization techniques, several variants of self-expressiveness based methods

are tailored to be more robust to noise and outliers by choosing different forms

of regularization objective functions terms [Elhamifar and Vidal, 2009, 2013,

Feng et al., 2014, Li and Vidal, 2015, Liu et al., 2010, Wang et al., 2013,

You et al., 2016]. Recently, a deep subspace clustering (DSC) method was

proposed by applying the self expressive layer on a non-linear mapping of

the data using a deep auto-encoder resulting in significant improvement in

clustering performance for datasets lying in non-linear subspaces [Ji et al., 2017].

Abavisani and Patel [2018a] have recently extended the idea of DSC methods to

multi-modal datasets by applying the self expressive layers that share a single

common self-representation coefficients matrix for all modalities. However,

the main drawback of such methods is that they rely on a self-representation

coefficient matrix of size 𝑁 × 𝑁 where 𝑁 is the number of data points, as

the key component which makes these methods prohibitively expensive for

large datasets. Hence, in this work we are interested in designing a deep

representation learning method that performs clustering without relying on

this expensive structure. In this respect, the proposed method in this work lies

in the category of factorization based subspace clustering methods.

Main contributions: In this chapter, a modified formulation of proba-

bilistic CCA is presented, then this linear probabilistic layer is extended to

an interpretable deep generative multi-view network. The proposed model

captures the variations of the views by a shared latent representation, describing

the common underlying sources of variation, i.e. the essence of multi-view data,

and a set of view-specific latent factors. Importantly, the model can be naturally

generalized to an arbitrary number of views. We design the learning algorithm

using a variational inference principle, which is known to be a powerful tool for

scaling probabilistic models to complex problems and large datasets [Rezende

et al., 2014]. The proposed variational inference is customized to incorporate

the probabilistic CCA formulation, which also offers a flexible data fusion
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method in the latent space that is appropriate for the general multi-modal

setting. The proposed model is particularly suitable for subspace clustering

whereby the shared representation can be utilized to extract the underlying

cluster memberships. Empirical studies confirm that the proposed deep

generative multi-view model can efficiently integrate the relationship between

multiple views to alleviate learning difficulty in different downstream tasks,

which is known to be the goal of multi-view learning approaches [Chaudhuri

et al., 2009] 1.

Notation and Definitions Throughout this chapter, bold lowercase vari-

ables denote vectors (e.g. 𝑥) or vector-valued random variables (e.g. x), bold

uppercase are used for matrices (e.g. 𝑋) or matrix-valued random variables

(e.g. X) and unbold lowercase are scalars (e.g. 𝑥) or random variables (e.g.

x). The transpose of a matrix is denoted as 𝐴⊤ and 𝑒(𝑖) = [0, . . . , 0, 1, 0, . . . , 0]

is the standard basis vector with a 1 at 𝑖th position. There are 𝑀 views in

total and subscripts are intended to identify the view-specific variable, (e.g.

x𝑚,Σ𝑚𝑚), which is different from an element of a vector that is specified by

subscript (e.g. x𝑚𝑖). The difference should be clear from context.

In this work the terms view and modality are used interchangeably to refer

to the same concept. Likewise, in order to comply with many works in this

field, both multi-view and multi-modal refer to the general case that all the

views are available. The exception is in the experiments where it is specified

clearly that only one of the views, the primary view, is available at the test

time which will be referred as ”multi-view setting” in contrast to ”multi-modal

setting” where all the views are available at the train and test time.

3.2 Probabilistic PCA

Principal component analysis (PCA) is a classical subspace learning method

to learn a low dimensional representation with uncorrelated dimensions from

1Updated version of this work will be available on arXive [Karami and Schuurmans,
2020b]
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the observations. Let z ∈ R𝑑 be a random vector of observation, PCA

can also be defined as linear transformation of z into the subspace R𝑑0 as

r = 𝑈⊤z, where 𝑈 ∈ R𝑑×𝑑0 and 0 < 𝑑0 ≤ 𝑑, such that all the dimensions

of the projections have maximal variance. Let (𝜇,Σ) denote the mean and

covariance matrices of z, the solution of PCA is equal to 𝑈 = Λ
−1/2
𝑑0

𝑄𝑑0 where

Λ𝑑0 is a diagonal matrix of the 𝑑0 largest eigenvalues of Σ and 𝑄𝑑0 is formed

by their corresponding eigenvectors (𝑑0 principal eigenvectors). A probabilistic

generative interpretation of PCA is presented in [Tipping and Bishop, 1999]

that is extended in the following.

Theorem 3.1 Assume a probabilistic model of the form

𝜑 ∼ 𝒩 (𝜇0, I𝑑0), 0 < 𝑑0 ≤ 𝑑 (3.1)

z|𝜑 ∼ 𝒩 (𝑊𝜑+ 𝜇𝜖, 𝜎
2I𝑑), 𝑊 ∈ R𝑑×𝑑0 .

The maximum likelihood solution of this model in then

𝑊 = 𝑈𝑑(Λ𝑑0 − 𝜎2I)1/2𝑅,

𝜎2 =
1

𝑑− 𝑑0

𝑑∑︁
𝑖=𝑑0+1

𝜆𝑖, 𝜇𝜖 = 𝜇−𝑊𝜇0 (3.2)

that are a function of principle eigenvectors and their eigenvalues, i.e. they are

related to solution of PCA problem and 𝑅 is an arbitrary rotation matrix.

In comparison to the results in [Tipping and Bishop, 1999], an extra degree

of freedom 𝜇0, the mean of latent factor 𝜑, is introduced in (3.1) . This

parameter will be estimated when optimizing a lower bound of the maximum

likelihood of a combined model in the section 3.3.2.

3.3 Probabilistic CCA

Canonical correlation analysis (CCA) [Hotelling, 1992] is a classical subspace

learning method that extracts information from the cross-correlation between
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two variables. Let z1 ∈ R𝑑1 and z2 ∈ R𝑑2 be a pair of random vectors corre-

sponding to two different views. CCA linearly projects these onto the subspace

R𝑑0 as r1 = 𝑈⊤
1 z1 and r2 = 𝑈⊤

2 z2, where 𝑈1 ∈ R𝑑1×𝑑0 and 𝑈2 ∈ R𝑑2×𝑑0 and

0 < 𝑑0 ≤ min{𝑑1, 𝑑2}, such that each pair of components (r1(𝑖), r2(𝑗)) are

maximally correlated if 𝑖 = 𝑗 and uncorrelated otherwise. Let (𝜇1,Σ11) and

(𝜇2,Σ22) be the mean and covariance matrices of z1 and z2, respectively, and

Σ12 is their cross-covariance. Then CCA can be formulated as the optimization

problem

max
𝑈1,𝑈2

tr[𝑈⊤
1 Σ12𝑈2] (3.3)

𝑈⊤
1 Σ11𝑈1 = 𝑈⊤

2 Σ22𝑈2 = I𝑑0

Given (𝑣1𝑖,𝑣2𝑖), 𝑖 ∈ [1, ..., 𝑑0] as the pairs of left and right singular vectors

corresponding to 𝑑0 largest singular values, 𝑝𝑖 𝑖 ∈ [1, ..., 𝑑0], of the correlation

matrixΣ
−1/2
11 Σ12Σ

−1/2
22 , the solution to the CCA problem is given by (𝑢1𝑖,𝑢2𝑖) =

(Σ
−1/2
11 𝑣1𝑖,Σ

−1/2
22 𝑣2𝑖), 𝑖 ∈ [1, ..., 𝑑0] where (𝑢1𝑖,𝑢2𝑖), also called canonical pairs

of directions, form the columns of (𝑈1,𝑈2) and 𝑃𝑑0 = diag([𝑝0, ..., 𝑝𝑑0 ]) is the

diagonal matrix of canonical correlations.

Bach and Jordan [2005] and Browne [1979] proposed a probabilistic genera-

tive interpretation to the classical CCA problem that reveals the shared latent

representation explicitly. An extension of their results to a more flexible model

can be expressed as follows.

Theorem 3.2 Assume the probabilistic generative model for the graphical

model in Figure 3.1(b) as:

𝜑 ∼ 𝒩 (𝜇0, I𝑑0), 0 < 𝑑0 ≤ min{𝑑1, 𝑑2} (3.4)

z1|𝜑 ∼ 𝒩 (𝑊1𝜑+ 𝜇𝜖1 ,Ψ1), 𝑊1 ∈ R𝑑1×𝑑0 ,Ψ1 ≽ 0

z2|𝜑 ∼ 𝒩 (𝑊2𝜑+ 𝜇𝜖2 ,Ψ2), 𝑊2 ∈ R𝑑2×𝑑0 ,Ψ2 ≽ 0

where 𝜑 is the shared latent representation. The maximum likelihood estimate

of the parameters of this model can be expressed in terms of the canonical
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Figure 3.1: (a) Graphical representation of the CCA model, and (b) graphical
representation of the probabilistic CCA model.

correlation directions as

�̂�1 = Σ11𝑈1𝑀 (3.5)

�̂�2 = Σ22𝑈2𝑀

Ψ̂1 = Σ11 − �̂�1�̂�
⊤
1

Ψ̂2 = Σ22 − �̂�2�̂�
⊤
2

�̂�𝜖1 = 𝜇1 − �̂�1𝜇0

�̂�𝜖2 = 𝜇2 − �̂�2𝜇0

where 𝑀 = 𝑃
1/2
𝑑0

𝑅 is the square root of matrix 𝑃𝑑0 and 𝑅 is an arbitrary

rotation matrix and the residual errors terms can be defined as 𝜖1 := z1−𝑊1𝜑

and 𝜖2 := z2 −𝑊2𝜑. This probabilistic graphical model induces conditional

independence of z1 and z2 given 𝜑. The parameter 𝜇0 is not identifiable by

maximum likelihood.

Proof: See Appendix B.1. ■

In contrast to the results in [Bach and Jordan, 2005] where 𝜇0 = 0, here

we introduce 𝜇0 as an extra degree of freedom. We will see that this parameter

plays an important role in optimizing the upper bound on the likelihood, and
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also in the inference of the shared representation of deep probabilistic CCA.

We will also derive an analytical form to identify it based on the parameters of

the probabilistic multi-view layer. It can be easily verified that 𝐸(𝜑|z1)− 𝜇0

and 𝐸(𝜑|z2)− 𝜇0 lie in the same subspace spanned by the CCA projections,

r1 and r2, respectively.

3.3.1 Generalization to arbitrary number of views

As an extension to an arbitrary number of views for probabilistic CCA, [Ar-

chambeau and Bach, 2009] proposed a general probabilistic model as follows:

z𝑚 = 𝑊𝑚𝜑0 + 𝑇𝑚𝜑𝑚 + 𝜇𝑚 + 𝜈𝑚, (3.6)

𝜈𝑚 ∼ 𝒩 (0, 𝜏−1
𝑚 I𝑑𝑚),

𝑊𝑚 ∈ R𝑑𝑚×𝑑0 ,𝑇𝑚 ∈ R𝑑𝑚×𝑞𝑚 ,∀𝑚 ∈ {1, ...,𝑀}

where {𝜇𝑚}𝑀𝑚=1 and {𝜈𝑚}𝑀𝑚=1 are the view specific offsets and residual errors,

respectively. This model can also be viewed as a multibattery factor analysis

(MBFA) [Klami et al., 2014, Browne, 1980] in the statistics literature, which

describes the statistical dependence between all the views by a single shared

latent vector, 𝜑0, and the factor loading matrices 𝑊𝑚, and also explains

away the view-specific variations by factors that are private to each view, 𝜑𝑚

with factor loading 𝑇𝑚. Restricting to a single view, this model includes the

probabilistic factor analysis as a special case if the prior on the view-specific

factor is multivariate independent Gaussian, and reduces to probabilistic PCA

if the prior is also isotropic. Archambeau and Bach [2009] followed a Bayesian

approach to the linear generative model (3.6) and proposed a variational

Expectation-Maximization algorithm to estimate the model parameters.

Explaining the view-specific variations by the variance matrices for each
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view, we can represent the probabilistic multi-view model as

𝜑 ∼ 𝒩 (𝜇0, I𝑑0),

z𝑚|𝜑 ∼ 𝒩 (𝑊𝑚𝜑+ 𝜇𝜖𝑚 ,Ψ𝑚), (3.7)

𝑊𝑚 ∈ R𝑑𝑚×𝑑0 ,Ψ𝑚 ≽ 0, ∀𝑚 ∈ {1, ...,𝑀}

Where the latent factor 𝜑 captures the common variations between all the

views. This results in an appropriate candidate for subspace clustering where

the extracted common underlying representation can be deployed to obtain

the cluster memberships. Let (𝜇𝑚,Σ𝑚𝑚) be the mean and covariance matrices

of z𝑚. Inspired by the maximum likelihood solution of probabilistic CCA in

Theorem 3.2 and [Bach and Jordan, 2005], that reformulate the parameter

estimate for the probabilistic model based on the classical CCA solutions,

we can propose the following system of equation for the parameters of the

probabilistic multi-view model

𝑊𝑚 = Σ1/2
𝑚𝑚𝑉𝑚𝑃

1/2
𝑑0

𝑅

Ψ𝑚 = Σ𝑚𝑚 −𝑊𝑚𝑊
⊤
𝑚

𝜇𝜖𝑚 = 𝜇𝑚 −𝑊𝑚𝜇0 (3.8)

Where 𝑃𝑑0 = diag([𝑝0, ..., 𝑝𝑑0 ]) with diagonal entries 𝑝𝑗 ∈ [0., 1.] and 𝑉𝑚 are

composed of orthonormal vectors {𝑣𝑚𝑖}. To simplify the model, we assume

𝑉𝑚 = 𝑉 , ∀𝑚 ∈ {1, ...,𝑀}. The equations in (3.8) reduces to maximum

likelihood estimate of PCCA for 𝑚 = 2 views, hence can be viewed as an

extension of PCCA for multi-view with more than two views. Defining the

correlation matrix as 𝐶𝑙𝑚 := Σ
−1/2
𝑙𝑙 Σ𝑙𝑚Σ

−1/2
𝑚𝑚 , equations in (3.8) imply that 𝑃𝑑0

and 𝑉 are formed by the singular value and singular vectors of the correlation

matrix, respectively, i.e. 𝐶𝑙𝑚 = 𝑉 𝑃𝑑0𝑉
⊤. Therefore, analogous to the ML

solution of PCCA, 𝑃𝑑0 andΣ
−1/2
𝑚𝑚 𝑉𝑚 can be interpreted as matrices of canonical

correlations and canonical directions. This also implies that all the pairs of the

views have similar correlation matrix.
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In the following section, an analytical form is presented to recover {𝜇0,𝜇𝜖𝑚}𝑀𝑚=1

based on the moments of the views. We will also provide a simple treatments

for obtaining 𝑉 and 𝑅. As a consequence, given the first and second order

moments of the views together with the diagonal matrix of canonical correla-

tions 𝑃𝑑0 , one can infer the rest of the parameters for the multi-view generative

model in (3.7). This, in fact, simplifies the variational inference network to

learn a compact set of parameters.

It is worth noting that, although the deep generative model is built upon

a single shared latent factor (and also a single correlation matrix to specify

the relationship between all the views), it can be seen that the contribution

of the shared factor in mth view is controlled by the factor loading 𝑊𝑚 that

is, in turn, a function of 𝑃𝑑0 and the view specific parameter Σ𝑚𝑚. Thus,

the shared factor does not equally influence the views but instead its effect

on each view varies by the strength of its projection, 𝑊𝑚𝜑, which results in

dissimilar cross-covariances Σ𝑚𝑙 for each pair 𝑚 ̸= 𝑙. This property, in fact,

offers flexibility to model uneven dependencies between different subsets of

views which is crucial for expressive multi-view modeling when 𝑀 > 2.

Remark To specify all the pairwise correlations, 𝑀(𝑀 − 1)/2 factors are

required, on top of the view specific factors; training such a complex model is

prohibitively expensive and seems not necessary for some tasks such as subspace

clustering. To deal with this problem, group factor analysis (GFA) [Klami

et al., 2014] extends the MBFA by applying structured sparsity regularizer on

the factor loadings, hence offering a more flexible and interpretable model than

MBFA by describing the relationship between subsets of views by subsets of

factors. In contrast to GFA, here we are interested in a latent representation

that best explains the common underlying variation between all of the views

such as cluster membership in multi-modal dataset.

Although constraining the observation models to the classical linear model

(3.4) offers closed form inference for the latent variable(s), as well as efficient

training algorithms, the resulting expressiveness is very limited for modeling

complex data distributions. On the other hand, the generative descriptions of
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the probabilistic models in general, and the probabilistic multi-view models (3.4)

and (3.6) in particular, can be extended naturally as the building blocks of more

complex hierarchical models [Klami et al., 2013]. We can therefore append deep

generative networks, known to be powerful techniques for increasing modeling

capacity and improving its expressiveness, on top of the linear probabilistic

model to obtain a combined model, which we denote as deep probabilistic CCA

or a deep probabilistic multi-view network. A graphical representation of this

model is depicted in Figure 3.2. Let x := {x𝑚 ∈ R𝑑′𝑚}𝑀𝑚=1 denote the collection

of observations of all views and z := {𝜑 ∈ R𝑑0} ∪ {z𝑚 ∈ R𝑑𝑚}𝑀𝑚=1 be the

collection of the shared latent representation and latent variables corresponding

to each view. The latent linear probabilistic CCA layer of the formulation

presented in (3.4) (or the latent linear probabilistic multi-modal layer in (3.7))

models the linear cross-correlation between all latent variables {z𝑚}𝑀𝑚=1 in the

latent space, while the nonlinear generative observation networks, also called

the decoders in the context of variational auto-encoders, are responsible for

expressing the complex variations of each view. The observation models are

described by deep neural networks 𝑝𝜃𝑚(x𝑚|z𝑚) = 𝑔𝑚(z𝑚; 𝜃𝑚) with the set of

model parameters 𝜃 = {𝜃𝑚}𝑀𝑚=1. In the following, an approximate variational

inference approach is presented for training such a deep generative multi-view

model.

3.3.2 Variational inference

To obtain the maximum likelihood estimate of the model parameters, it is

desirable to maximize the marginal data log-likelihood averaged on the dataset

𝒟 = {𝑥(𝑖)}, 𝑖 = 1, .., 𝑁 , that can be expressed as

log 𝑝𝜃(X) =
1

𝑁

𝑁∑︁
𝑖=1

log 𝑝𝜃(𝑥
(𝑖)) ≃ Ex∼𝑃𝑑𝑎𝑡𝑎

[log 𝑝𝜃(x)]

This objective requires marginalization over all latent variables which entails

computing the expectation of the likelihood function 𝑝𝜃(x|z) over the prior
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Figure 3.2: Graphical representation of the deep probabilistic CCA model, where the
blue edges belong to latent linear probabilistic CCA model and the black edges repre-
sent the deep nonlinear observation networks (decoders) 𝑝𝜃𝑚(x𝑚|z𝑚) = 𝑔𝑚(z𝑚; 𝜃𝑚).
Shaded nodes denotes observed views and dashed line represent the stochastic samples
drawn from the approximate posteriors.

distribution on the set of latent variables, 𝑝(z). The marginalization is typically

intractable for complex models. One work around is to follow the variational

inference principle [Jordan et al., 1999], by introducing an approximate posterior

distribution 𝑞𝜂(z|x) — also known as variational inference network in the

context of amortized variational inference and is often modeled by deep NNs

with model parameters 𝜂 — then maximize the resulting variational lower

bound on the marginal log-likelihood

log 𝑝𝜃(x) ≥ E𝑞𝜂 [log 𝑝𝜃(x|z)]−𝐷KL[𝑞𝜂(z|x)‖𝑝(z)] (3.9)

This approach has recently attained renewed interest and studied extensively,

and, due to its success in training deep generative models, is considered a

default, flexible statistical inference method [Rezende et al., 2014, Kingma and

Welling, 2013]. This bound, also known as the evidence lower bound (ELBO),

can be decomposed into two main terms: the first, the expectation of the log-

likelihood function log 𝑝𝜃(x|z), is known as the negative reconstruction error.

The conditional independence structure of the deep generative multimodal

model implies that the likelihood function can be factored, allowing the negative
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reconstruction error to be expressed as

E𝑞𝜂 [log 𝑝𝜃(x|z)] =
𝑀∑︁

𝑚=1

E𝑞𝜂 [log 𝑝𝜃𝑚(x𝑚|z𝑚)].

Although the expectations above do not typically provide a closed analytical

form, they can be approximated using Monte Carlo estimation by drawing 𝐿

random samples from the approximate posterior 𝑞𝜂(z|x) for each data point

x = 𝑥(𝑖). 2

The second term in the ELBO is the KL divergence between the approximate

posterior and the prior distribution of the latent variables, which acts as a

regularizer that injects prior knowledge about the latent variable into the

learning algorithm. Considering the conditional independence of the latent

variables {z𝑚|𝜑} induced by the probabilistic graphical model of latent linear

layer (3.4), the approximate posterior of the set of latent variables can be

factorized as 𝑞𝜂(z|x) = 𝑞𝜂(𝜑|x)
∏︀𝑀

𝑚=1 𝑞𝜂(z𝑚|𝜑,x) therefore, the KL divergence

term can be decomposed into

𝐷KL[𝑞𝜂(z|x)‖𝑝(z)] =𝐷KL[𝑞𝜂(𝜑|x)‖𝑝(𝜑)]+
𝑀∑︁

𝑚=1

𝐷KL[𝑞𝜂(𝜖𝑚|x)‖𝑝(𝜖𝑚)] (3.10)

The detailed derivation can be found in appendix B.2.

We model the variational approximate posteriors by joint multivariate Gaus-

sian distributions with marginal densities 𝑞𝜂(z𝑚|x𝑚) = 𝒩 (z𝑚;𝜇𝑚(x𝑚),Σ𝑚𝑚(x𝑚)),

which are assumed for simplicity to be elementwise independent per each view,

so having diagonal covariance matrices Σ𝑚𝑚 = diag(𝜎2
𝑚(x𝑚)), 𝜎𝑚 ∈ R𝑑𝑚 . The

cross correlation specified by canonical correlation matrix 𝑃𝑑0 = diag(𝑝(x)),𝑝 ∈

R𝑑0 . The parameters of these variational posteriors are specified by separate

deep neural networks, also called encoders. In this model, a set of encoders are

used to output the view-specific moments {(𝜇𝑚,𝜎
2
𝑚) = 𝑓𝑚(x𝑚; 𝜂𝑚)}𝑀𝑚=1, and

2This, indeed, leads to the Monte Carlo approximation of the gradient of the expected
log-likelihood, required for stochastic gradient descent training [Rezende et al., 2014]
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an encoder network describes the cross correlation 𝑝 = 𝑓0(x
*; 𝜂0). Depending

on the application, x* can be either one (or a subset) of the views, when

only one (or a subset) of the views are available at the test time (e.g. in the

multi-view setting where x* = x1), or a concatenation of all the views (e.g. in

the multi-modal setting). Combined, the inference model is parameterized by

𝜂 = {𝜂0} ∪ {𝜂𝑚}𝑀𝑚=1. Having obtained the moments of approximate posteriors,

we can obtain the canonical directions and subsequently the parameters of the

probabilistic CCA model, according to the results presented in Theorem 3.2.

It is worth noting that the diagonal choices for covariance matrices {Σ𝑚𝑚}𝑀𝑚=1

simplify the algebraic operations significantly, resulting in a trivial SVD com-

putation and matrix inversion required for CCA solution used in Theorem

3.2.3 Consequently, one can also easily verify that the canonical pairs of di-

rections will be (𝑢1𝑖,𝑢2𝑖) = (𝜎
−1/2
1𝑖 𝑒(𝑖), 𝜎

−1/2
2𝑖 𝑒(𝑖)) where 𝑒(𝑖) is the standard

basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at 𝑖th position. The same argument

can be extended for the generalized probabilistic multi-view model and its

parametrization equations in (3.8).

We assume isotropic multivariate Gaussian priors on the latent variables

as 𝜑 ∼ 𝒩 (0, 𝜆−1
0 I), 𝜖𝑚 ∼ 𝒩 (0, 𝜆−1

𝑚 I) and specify the approximate posteriors

by Gaussian distributed vectors with diagonal covariances, as explained above,

that result in closed form solutions for the KL divergence terms [Kingma and

Welling, 2013] as

𝐷KL[𝑞𝜂(𝜑|x)‖𝑝(𝜑)] =
1

2
𝜆0‖𝜇0‖2 +

1

2

𝑑0∑︁
𝑖=1

(𝜆0 − log 𝜆0 − 1)

𝐷KL[𝑞𝜂(𝜖𝑚|x)‖𝑝(𝜖𝑚)] =
1

2
𝜆𝑚‖𝜇𝜖𝑚‖2 +

1

2

𝑑𝑚∑︁
𝑖=1

(𝜆𝑚𝜎
2
𝑚𝑖 − log 𝜆𝑚𝜎

2
𝑚𝑖 − 1)

Based on the above equations, in the following, we provide an analytical

approach to optimally identify the mean of shared latent variable, 𝜇0, from the

3These types of simplifying assumption on the approximate posteriors have also been used
in various deep variational inference models [Rezende et al., 2014, Kingma and Welling, 2013].
Although the representation power of such linear latent model is limited but using flexible
enough deep generative models, that can explain away the complex nonlinear structures
among the data, can justify these choices.
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parameters of the model, which is not identifiable by likelihood maximization

in theorem 3.2.

Lemma 3.1 I) Rewriting the KL divergences with respect to the terms de-

pending on the mean of latent factors give rise to the following optimization

problem

min
𝜇0

1

2
𝜆0‖𝜇0‖2 +

1

2

𝑀∑︁
𝑚=1

𝜆𝑚‖𝜇𝜖𝑚‖2 +𝒦 (3.11)

s.t. 𝜇𝜖𝑚 = 𝜇𝑚 −𝑊𝑚𝜇0, ∀𝑚 ∈ {1, ...,𝑀}

where 𝒦 is sum of the terms not depending on the means. Solving this opti-

mization problem results the optimal minimizer

𝜇*
0 = (𝜆0I+

𝑀∑︁
𝑚=1

𝜆𝑚𝑊
⊤
𝑚𝑊𝑚)

−1(
𝑀∑︁

𝑚=1

𝜆𝑚𝑊
⊤
𝑚𝜇𝑚). (3.12)

Having obtained the optimal 𝜇*
0, one can compute the means of the view-specific

factors, {𝜇𝜖𝑚}𝑀𝑚=1, subsequently.

Proof: See Appendix B.2 for the proof. ■

According to the inference network, the optimal 𝜇0 obtained via (3.12) is

a function of all the views, which can be viewed as a type of data fusion in

the latent space customized for the variational inference learning of our model.

This makes it an appropriate choice for the multi-modal setting. On the other

hand, in the multi-view setting we are interested in a solution that depends

only on the primary view available at test time. To deal with this, we can solve

a revised version of the optimization problem (3.11) by ignoring the terms that

depend on the non-primary views, leading to the minimizer

�̂�0 = (𝜆0I+ 𝜆1𝑊
⊤
1 𝑊1)

−1𝜆1𝑊
⊤
1 𝜇1. (3.13)

Remark As an alternative approach in the multi-view setting, one can train

the model using the optimal inference based on both views in equation (3.12)

while using the primary view-based estimate �̂�0 in (3.13) at the test time, but

46



our empirical studies showed that using the same inference as in (3.13) for both

training and test time offers richer shared representation variable resulting in

slightly better performance in the downstream tasks. This can be explained

by the fact that the train and test samples are drawn from the same data

distribution so the model learned by the training samples better describes the

test samples.

Remark Another possible approach is to treat 𝜇0 as an extra parameter

that is directly inferred by a deep NN, but this needs more NN layers to train

and in practice we found this approach less efficient than the proposed optimal

procedure.

We further assume that the rotation matrix 𝑅 is identity in the solution to

the probabilistic linear models (3.5), ((3.2), or (3.8)), while leaving it to the

deep generative network to approximate the rotation. Specifically, in our neural

network architecture, we select a fully connected first layer of the decoder to

exactly mimic the rotation matrix.

In summary, the encoders, together with the parameterization of the model

in (3.5), and/or (3.8) provide a variational inference network for the parameters

of the latent probabilistic multi-view model, {𝑃𝑑0(x1),𝜇0,𝑊𝑚(x𝑚),Ψ𝑚(x𝑚),

𝜇𝜖𝑚}𝑀𝑚=1, as non-linear functions of the observations.

Drawing samples from the latent variables: Given the variational pa-

rameters of the latent probabilistic CCA model, one can draw samples of the

latent factors {𝜑, 𝜖1, 𝜖2} from the approximate posteriors {𝑞𝜂(𝜑), 𝑞𝜂(𝜖1), 𝑞𝜂(𝜖2)},

using a differentiable transformation based on the reparameterization trick

[Kingma et al., 2019], and generate latent representations as z1 = 𝑊1𝜑+ 𝜖1

and z2 = 𝑊2𝜑 + 𝜖2, which are fed into the decoders to generate samples

{x̂1, x̂2} at the observation space. The conditional independence property of

the probabilistic CCA implies that the produced latent samples are condition-

ally independent given the shared latent variable 𝜑 while their cross correlation

is captured by 𝜑 and specified by the variational canonical correlation 𝑃𝑑0 .
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Therefore, the negative reconstruction error term can be stated as

E𝑞𝜂 [log 𝑝𝜃(x|z)] =

E𝑞𝜂(𝜑),𝑞𝜂(𝜖1)[log 𝑝𝜃1(x1|z1 = 𝑊1𝜑+ 𝜖1)]+

E𝑞𝜂(𝜑),𝑞𝜂(𝜖2)[log 𝑝𝜃2(x2|z2 = 𝑊2𝜑+ 𝜖2)].

3.3.3 Related work

To capture nonlinearity in multi-view data, several kernel-based methods have

been proposed [Hardoon et al., 2004, Bach and Jordan, 2003]. Such methods,

in general, require a large memory to store a massive amount of training data

for the test phase. Kernel-CCA in particular requires an 𝑁 × 𝑁 eigenvalue

decomposition which is computationally expensive for large datasets. To

overcome this issue, some kernel approximation techniques based on random

sampling of training data are proposed in [Williams and Seeger, 2001] and

[Lopez-Paz et al., 2014]. Probabilistic non-linear multi-view learning has been

considered in [Shon et al., 2006, Damianou et al., 2012]. As an alternative, deep

neural networks (DNNs) offer powerful parametric models that can be trained

for large pools of data using the recent advances in stochastic optimization

algorithms. In the multi-view setting, a deep auto-encoder model, called

(SplitAE), was proposed in [Ngiam et al., 2011] in which an encoder maps the

primary view to a latent representation and two decoders are trained so that

the reconstruction error of both views is minimized.

The classical CCA was extended to deep CCA (DCCA) in [Andrew et al.,

2013] by replacing the linear transformations of both views with two deep

nonlinear NNs, then learning the model parameters by maximizing the cross

correlation between the nonlinear projections. DCCA is then extended to

deep CCA autoencoder (DCCAE) in [Wang et al., 2015a] where autoencoders

are leveraged to additionally reconstruct the inputs, hence introducing extra

reconstruction error terms to the objective function. While DCCAE can

improve representation learning over DCCA, empirical studies have shown that

it tends to ignore the added reconstruction error terms, which results in poorly
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reconstructed views [Wang et al., 2015a]. Training algorithms for these classical

CCA-based methods require sufficiently large training batches to approximate

the covariance matrices and the gradients. Moreover, they do not naturally

provide an inference model to estimate the shared latent factor, nor do they

enable generative sampling from the model in the input space, while also being

restricted to the two-view setting. In contrast, the reconstruction error terms

appear naturally in the objective for variational inference, the ELBO, and

therefore play a fundamental role in training of the decoder hence, richer decoder

and reconstruction are expected using the proposed variational autoencoders.

Furthermore, the stochastic backpropagation method with small mini-batches

has proven to be a standard and scalable technique for training deep variational

autoencoders [Rezende et al., 2014]. Finally, the probabilistic multi-view model

enables enforcing desired structures such as sparsity [Archambeau and Bach,

2009] by adopting a broader range of exponential family distributions for priors

and approximate posteriors on the latent factors to capture while this property

is not immediately apparent in the classical CCA-based variants.

As explained in section 3.3.2, in our proposed deep generative model, the

effect of the shared factor on each view varies by the strength of its projection,

𝑊𝑚𝜑, which results in more flexibility in modeling uneven dependencies

between different subsets of views that is of significant importance for modeling

more general multi-view cases with arbitrary number pf views. On the other

hand, in the variational two-view autoencoders in [Tang et al., 2017, Wang

et al., 2016], the shared latent representation equally contributes in both views,

so these variational two-view methods can be viewed as special cases of the

more generic model proposed here when the posterior factor loading {𝑊𝑚}2𝑚=1

are substituted with identity matrix, hence, they are expected to offer lower

flexibility. This can explain why they offer less expressive representation than

DCCAE in some experimental studies.

More recently, different VAE based multi-modal deep generative models has

been proposed that model the variational posterior of the shared latent variable

given all modalities as the product of unimodal posteriors, namely product

of experts (PoE) [Wu and Goodman, 2018] or as a weighted summation of
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unimodal posteriors, namely mixture of experts (MoE) [Shi et al., 2019]. Refer

to chapter 5 for possible future direction on applying these ideas to enhance

the flexibility of the proposed variational PCCA.

3.4 Experiments

We empirically evaluate the representation learning performance of the proposed

method and compare against well established baselines in two scenarios: I)

when all views are available at training time but only a single view (the primary

view) is available at test time, namely the multi-view setting, and II) all views

are available at training and testing time, namely the multi-modal setting.

3.4.1 Multi-view experiments

Experimental design: For the experimental study, we used the two-view

noisy MNIST datasets of [Wang et al., 2015a] and [Wang et al., 2016] created

based on MNIST handwritten digits that consists of grayscale images of size

28 × 28 pixels with pixel values scaled to range [0, 1]. The first view of the

dataset was synthesized by rotating each image at angles randomly sampled

from uniform distribution 𝒰(−𝜋/4, 𝜋/4) while the image of the second view

was randomly sampled from the images with similar identity to the first view

but not necessary the same image, then was corrupted by random uniform

noise while the final value was truncated to remain in range [0, 1]. As a result

of this procedure, both views are just sharing the same identity (label) of the

digit but not the style of the handwriting as they are from arbitrary images in

the same class. The training set was divided into training/validation subsets

of length 50𝐾/10𝐾 and the performance was measured on the 10𝐾 images in

the test set.

To provide a fair comparison, we used neural network architectures with

the same capacity as those used in [Wang et al., 2015a] and [Wang et al., 2016].

Accordingly, for the deep network models, all inference and decoding networks

were composed of 3 fully connected nonlinear hidden layers of 1024 units, with
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(a) (b)

Figure 3.3: (a) Sample images from two-view noisy MNIST dataset

ReLU gates used as the nonlinearity for all hidden units. The first and the second

encoder specify (𝜇1, diag(𝜎
2
1)) = 𝑓1(x1; 𝜃1), (𝜇2, diag(𝜎

2
2)) = 𝑓2(x2; 𝜃2) with the

variances specified by a softplus function, and an extra encoder modeling the

canonical correlations diag(𝑝𝑖) using the sigmoid function as the output gate.

Independent Bernoulli distributions and independent Gaussian distributions

were selected to specify the likelihood functions of the first and the second

view, respectively, with the parameters of each view being specified by its own

decoder network; sigmoid functions were applied on outputs used to estimate

the means of both views while the variances of the Gaussian variables were

specified by softplus functions. To prevent over-fitting, stochastic drop-out

[Srivastava et al., 2014] was applied to all the layers as a regularization technique.

The ADAM optimizer [Kingma and Ba, 2014] was adopted for training the

parameters of the deep neural networks. The details of the experimental setup

and training procedure can be found in Appendix B.4.

To evaluate the learned representation, the discriminative and clustering

tasks were examined on the shared latent variable. For the discriminative goal,

a one-versus-one linear SVM classification algorithm was applied on the shared

representation 𝜑. The parameters of the SVM algorithm were tuned using

the validation set and the classification error was measured on the test set.
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Method Error (%) NMI (%) ACC (%)

Linear CCA 19.6 56.0 72.9
SpliAE 11.9 69.0 64.0
KCCA 5.1 87.3 94.7
DCCA 2.9 92.0 97.0
DCCAE 2.2 93.4 97.5
VCCA 3.0 - -
VCCA-private 2.4 - -

VPCCA 1.9 94.8 98.1

Table 3.1: Performance of the downstream tasks for different multi-view learning
algorithms on the noisy two-view MNIST digit images. Performance measures
are classification error rate (the lower the better), normalized mutual information
(NMI) and accuracy (ACC) of clustering (the higher the better) [Cai et al., 2005].
VPCCA: multi-view setting, i.e. only primary view is available at the test time
so 𝜇0 of equation (3.13) is used. The results of variational PCCA method are
averaged over 3 trials where the results of the baseline methods are from [Wang
et al., 2015a, 2016]. The baseline methods are Linear CCA: linear single layer
CCA, DCCA: deep CCA [Andrew et al., 2013], Randomized KCCA: randomized
kernel CCA approximation with Gaussian RBF kernels and random Fourier features
[Lopez-Paz et al., 2014], DCCAE: deep CCA-Auto encoder [Wang et al., 2015a],
VCCA: multi-view variational auto-encoder [Wang et al., 2016] VCCA-private:
shared-private multi-view variational auto-encoder [Wang et al., 2016].

We also performed spectral clustering [Von Luxburg, 2007] on the k -nearest-

neighbor graph constructed from the shared representation. To comply with

the experiments in [Wang et al., 2015a] the degree (number of neighbors) of

the nodes was tuned in the set {5, 10, 20, 30, 50} using the validation set, and

k -means was used as the last step to construct a final partitioning into 10

clusters in the embedding space. The proposed deep probabilistic CCA is

compared against available multi-view methods in terms of performance at the

downstream tasks, reported in Table C.1, where the results highlight that the

proposed variational model significantly improves representation learning from

multi-view datasets.

Repeating the experiments in the multi-modal setting (i.e. both views

available at test time) and using (3.12) to recover the mean of the shared latent

variable significantly improves the performance of downstream tasks resulting

in classification error=0.4% and clustering NMI=98.3% or ACC=99.4%. These

findings support the merit of the proposed algorithm for successfully integrating
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Figure 3.4: 2D t-SNE embedding of samples of the shared representation 𝜑 are from models
(a) VPCCA when only 1st view is available at test time, i.e. 𝜑 ∼ 𝑞𝜂(𝜑|x1), (b) VPCCA-2v
when both views are available at test time i.e. 𝜑 ∼ 𝑞𝜂(𝜑|x1,x2), (c) VCCA-private when
only 1st view is available at test time, i.e. 𝜑 ∼ 𝑞𝜂(𝜑|x1). Moreover, 2D t-SNE embedding of
samples of the residual error (view specific factor) of the first view 𝜖1 ∼ 𝑞𝜂(𝜖1|x1) are from
models (d) VPCCA (e) VPCCA-2v and (f) VCCA-private (the 1st private view).

information from different modalities.

Figures 3.4 depict the 2D t-SNE embeddings of the shared latent repre-

sentations and private factor of the 1st view for multi-view setting (VPCCA),

multi-modal setting (VPCCA-2v when both views are available at test time)

and VCCA-private [Wang et al., 2016]. They verify that the representation

of the images of different classes are well separated in the shared latent space

while VPCCA can separate the classes better; among them, VPCCA-2v results

in the cleanest 2D embedding.

Reconstruction of the second view based on the primary view In

some applications we are interested in estimation some of the views based

on the available views at test time. In order to design such network, one

can modify the variational inference of z2 so that its variance is specified as

a function of the first view, i.e. Σ22 = diag(𝜎2
2(x1)), results that the factor

loading of the second view, 𝑊2 depends only on the first view, hence we can
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perform the reconstruction of the absent view at the test time.

3.4.2 Multi-modal clustering

An important and interesting application of the proposed deep generative model

is in clustering multi-modal datasets which we evaluate in this set of experiments.

Recently, a deep multi-modal subspace clustering method [Abavisani and Patel,

2018b] has successfully extended the idea of deep subspace clustering (DSC)

[Ji et al., 2017] to multiple modalities. A key component of such approaches is

applying a self-expressive layer on a non-linear mapping of the data obtained

by deep auto-encoders, which represents the projection of data points as a

linear combination of other data point projections. Although offering significant

improvement in clustering performance for data lying in non-linear subspaces,

such methods require a self-representation coefficient matrix of size 𝑁 × 𝑁

where 𝑁 is the number of data points, making this approach prohibitively

expensive for large datasets.

Datesets

The clustering performance of the proposed method is evaluated on the following

standard datasets. Samples from all modalities of these datasets are depicted

in Figure 3.5.

Handwritten Digits: We chose two famous handwritten digits datasets

MNIST [Y. LeCun, 1998] and USPS [Hull, 1994] that consist of grayscale

digit images of size 28× 28 pixels and 16× 16 pixels, respectively. To make

multi-modal dataset, each digit image in the MNIST dataset is paired with

an arbitrary sample of the same digit identity but from USPS dataset. This

process guarantees that the images of both modalities are just sharing the

same identity (label) of the digit but not the style of the handwriting. The

handwritten digits datasets were used for single-modal training and also for

multi-modal, with 𝑀 = 2, subspace clustering.

Multi-modal Facial Components: We also evaluated the proposed

method on the multi-modal facial dataset used in [Abavisani and Patel, 2018a],
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(a)

(b)

(c)

Figure 3.5: (a) Sample images form MNIST dataset, (b) and their corresponding
samples from the second modality, drawn from USPS datasets. (c) Sample images
from faces and face components from Extended Yale-B dataset; modalities are showed
in different rows.

where the Extended Yale-B dataset [Lee et al., 2005] was used as the base and

4 facial components were extracted, by cropping eyes, nose and mouth, and

formed 5 different modalities, including the whole face image. All modalities

were resized to images of size 28× 28 pixels. This dataset is composed of 64

frontal images of 38 individuals under different illuminations and is a standard

dataset in subspace clustering studies. For this multi-modal data, we train the

general deep probabilistic multi-view model (equation (3.7)) that extends the

deep probabilistic CCA to arbitrary number of views.

Experimental design: To provide a fair comparison, the encoders and

decoders in this set of experiments were defined by neural networks with similar

architectures as those used in [Abavisani and Patel, 2018a], except that our

model does not require the self-expressive layer, a linear fully connected layer

with parameter matrix of size 𝑁 ×𝑁 coefficients where 𝑁 is the number data

points, which limits the total training size of the family of self-expressiveness

based methods. This is a key advantage of the proposed model that significantly

reduces the total number of parameters, especially for large input sizes. Thus,

the proposed architecture is sufficiently scalable to take advantage of all the

training samples.

Accordingly, the encoders (inference networks) of all modalities were com-

55



posed of convolutional NN (CNN) layers while the decoders (observation

networks) were built of transposed convolution layers. ReLU gate was used as

the nonlinearity for all the hidden units of the deep networks. The encoders

specified (𝜇𝑚, diag(𝜎
2
𝑚)) = 𝑓𝑚(x𝑚; 𝜃𝑚), where the variances were modeled

by a softplus function. An extra encoder network modeled the canonical

correlations, diag(𝑝𝑖), using the sigmoid function as the output gate. The

observation likelihood functions of all the views, 𝑝𝜃𝑚(x𝑚|z𝑚), were modeled by

independent Bernoulli distributions with the mean parameter being specified

by decoder networks, 𝑔𝑚(z𝑚; 𝜃𝑚); with sigmoid functions applied to estimate

valid means for the distributions. To train the parameters of deep generative

model, we used ADAM optimization [Kingma and Ba, 2014] with learning rate

of .0002 and default hyper-parameters and minibatch size of 200 data points.

Details of the model architecture and experimental setup together with more

empirical results are presented in appendix B.4.

We observed that an optimal choice of the ratio of prior noise precision,

𝜆0/𝜆𝑖, can significantly improve the learned representation for the proposed

model. This may be explained by the fact that adjusting the priors of the latent

linear probabilistic layer can control the view specific factors to be flexible

enough to capture the variations private to each view but restricted enough

so as not to describe the relationships between the views. A related idea was

elaborated in the formulation of group factor analysis [Klami et al., 2014]. In

contrast, VCCA-private Wang et al. [2016] did not exhibit such behavior in

our experiments and required less parameter tuning.

To estimate shared latent features, VPCCA used the optimal data fusion

of (3.11) in the latent space while, in VCCA-private, we applied a dense linear

layer on the outputs of the encoders, {𝑓𝑚(x𝑚; 𝜃𝑚)}𝑀𝑚=1, to estimate 𝜇0.

Clustering is, then, performed on the shared latent factor 𝜑 using spectral

clustering [Von Luxburg, 2007] on the k -nearest-neighbor graph, with the

number of neighbors set to 𝑘 = 5. As the last step, spectral clustering is used

to discretize the real-valued representation in the embedding space to extract

the final partitioning. Clustering performance are measured using clustering

Accuracy rate (ACC), Normalized Mutual Information (NMI) [Cai et al., 2005]
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(a) multi-modal clustering

Digits Extended Yale-B
ACC NMI ARI ACC NMI ARI

CMVFC 47.6 73.56 38.12 66.84 72.03 40
TM-MSC 80.65 83.44 75.67 63.12 67.06 38.37
MSSC 81.65 85.33 77.36 80.3 82.78 50.18
MLRR 80.6 84.13 76.53 67.62 73.36 40.85
KMSSC 84.4 89.45 79.61 87.65 81.5 63.83
KMLRR 86.85 80.34 82.76 82.45 85.43 59.71
DMSC 95.15 92.09 90.22 99.22 98.89 98.38

VCCA-private 90.02 92.43 85.09 97.52 98.09 96.07
VPCCA 98.78 96.72 97.35 99.72 99.56 99.22

(b) unimodal clustering

MNIST USPS
ACC NMI ARI ACC NMI ARI

SSC 67.5 71.64 57.03 37.5 36.61 28.4
LRR 67.4 66.51 58.33 44.35 35.18 32.11
DSC 92.05 87.07 84.6 72.15 74.73 65.47
DVFA 79.81 83.50 71.55 90.09 88.80 83.94

Table 3.2: Performance for different multi-modal clustering algorithms on single-
modal, two-modal handwritten digits made from MNIST and USPS and multi-modal
facial components extracted from Yale-B dataset. Performance metrics are clustering
Accuracy rate (ACC), Normalized Mutual Information (NMI) [Cai et al., 2005] and
Adjusted Rand Index (ARI) [Rand, 1971]; all measures are in percent and the higher
means the better.
In Table (a), a multi-modal setting is considered and we assume that all modalities
are available at test time so VPCCA uses 𝜇0 of equation (3.12). In Table (b), a
unimodal case is considered and the variational PCCA of (3.8) with 𝑚 = 1 is applied
which is called deep variational factor analysis (DVFA). The results of the variational
PCCA method are averaged over 3 trials. The baseline subspace clustering methods
are: SSC [Elhamifar and Vidal, 2013], LRR [Liu et al., 2010] and DSC [Ji et al.,
2017] for single-modal datasets, and TM-MSC [Zhang et al., 2015], CMVFC [Cao
et al., 2015], MSSC, MLRR , KMSSC, KMLRR [Abavisani and Patel, 2018b] and
DMSC [Abavisani and Patel, 2018a] for multi-modal dataset. The results of the
baseline methods are from [Abavisani and Patel, 2018a].

and Adjusted Rand Index (ARI) [Rand, 1971] as performance metrics.

The clustering performance of the proposed method is compared against

the well established subspace clustering methods SSC [Elhamifar and Vidal,

2013], LRR [Liu et al., 2010] and DSC [Ji et al., 2017] for single-modal datasets,
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while TM-MSC [Zhang et al., 2015], CMVFC [Cao et al., 2015], MSSC, MLRR,

KMSSC, KMLRR [Abavisani and Patel, 2018b] and DMSC [Abavisani and

Patel, 2018a] that are used as the baselines methods for the multi-modal setting.

The results summarized in Table 3.2 show that the proposed deep generative

models offer superior clustering performance compared to the reference methods

for most test cases. Specifically in the multi-modal setting, the proposed deep

generative model sets new state-of-the-art which, subsequently, highlights that

the proposed method can efficiently leverage the extra modalities and extract

the common underlying information among the modalities, that is the cluster

memberships. Extra experiments with multi-modal facial datasets when subset

of modalities are missing at test time are presented in appendix B.3.
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Chapter 4

Linear Dynamical System

Identification

4.1 Introduction

Linear dynamical systems (LDS) provide a fundamental model for estimation

and forecasting in discrete-time multi-variate time series. In an LDS, each

observation is associated with a latent state; these unobserved states evolve as

a Gauss-Markov process where each state is a linear function of the previous

state plus noise. Such a model of a partially observed dynamical system has

been widely adopted, particularly due to its efficiency for prediction of future

observations using Kalman filtering.

Estimating the parameters of an LDS—sometimes referred to as system

identification—is a difficult problem, particularly if the goal is to obtain the

maximum likelihood estimate of parameters. Consequently, spectral methods

from the subspace identification literature, based on moment-matching rather

than maximum likelihood, have become popular. These methods provide

closed form solutions, often involving a singular value decomposition of a

matrix constructed from the empirical moments of observations [Moonen and

Ramos, 1993, Van Overschee and De Moor, 1994, Viberg, 1995, Katayama,

2006, Song et al., 2010, Boots and Gordon, 2012]. The most widely used

59



such algorithms for parameter estimation in LDSs are the family of N4SID

algorithms [Van Overschee and De Moor, 1994], which are computationally

efficient and asymptotically consistent [Andersson, 2009, Hsu et al., 2012].

Recent evidence, however, suggests that these moment-matching approaches

may suffer from weak statistical efficiency, performing particularly poorly with

small sample sizes [Foster et al., 2012, Zhao and Poupart, 2014].

Maximum likelihood for LDS estimation, on the other hand, has several

advantages. For example, it is asymptotically efficient under general conditions

[Cramér, 1946, Ch.33], and this property often translates to near-minimax

finite-sample performance. Further, maximum likelihood is amenable to coping

with missing data. Another benefit is that, since the likelihood for exponen-

tial families and corresponding convex losses (Bregman divergences) are well

understood [Banerjee et al., 2005], maximum likelihood approaches can gener-

alize to a broad range of distributions over the observations. Similarly, other

common machine learning techniques, such as regularization, can be naturally

incorporated in a maximum likelihood framework, interpretable as maximum a

posteriori estimation.

Unfortunately, unlike spectral methods, there is no known efficient algo-

rithm for recovering parameters that maximize the marginal likelihood of

observed data in an LDS. Standard iterative approaches are based on EM

[Ghahramani and Hinton, 1996, Roweis and Ghahramani, 1999], which are

quite slow [Roweis and Ghahramani, 1999] and have been observed to produce

locally optimal solutions that yield poor results [Katayama, 2006]. A classical

system identification method, called the prediction error method (PEM), is

based on minimization of prediction error and can be interpreted as maximum

likelihood estimation under certain distributional assumptions (e.g., Ch. 7.4

of Ljung 1999, Åström 1980). PEM, however, is prone to local minima and

requires selection of a canonical parameterization, which can be difficult in

practice and can result in ill-conditioned problems [Katayama, 2006].

In this chapter, we propose an alternative approach to LDS parameter

estimation under exponential family observation noise. In particular, we

reformulate the LDS as a two-view generative model, which allows us to
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approximate the estimation task as a form of matrix factorization, and apply

recent global optimization techniques for such models [Zhang et al., 2012, Yu

et al., 2014]. To extend these previous algorithms to this setting, we provide a

novel proximal update for the two-view approach that significantly simplifies the

algorithm. Finally, for forecasting on synthetic and real data, we demonstrate

that the proposed algorithm matches or outperforms N4SID, while scaling

better with increasing sample size and data dimension.

4.2 Linear dynamical systems

We address discrete-time, time-invariant linear dynamical systems, specified as

𝜑𝑡+1 = A𝜑𝑡 + 𝜂𝑡

x𝑡 = C𝜑𝑡 + 𝜖𝑡
(4.1)

where 𝜑𝑡 ∈ R𝑘 is the hidden state at time 𝑡; x𝑡 ∈ R𝑑 is the observation vector

at time 𝑡; A ∈ R𝑘×𝑘 is the dynamics matrix; C ∈ R𝑑×𝑘 is the observation

matrix; 𝜂 is the state evolution noise; and 𝜖 is the observation noise. The noise

terms are assumed to be independent. As is common, we assume that the state

evolution noise is Gaussian: 𝜂 ∼ 𝒩 (0,Σ𝜂). We additionally allow for general

observation noise to be generated from an exponential family distribution (e.g.,

Poisson). The graphical representation for this LDS is shown in Figure 4.1.

An LDS encodes the intuition that a latent state is driving the dynamics,

which can significantly simplify estimation and forecasting. The observations

typically contain only partial information about the environment (such as in

the form of limited sensors), and further may contain noisy or even irrelevant

observations. Learning transition models for such observations can be com-

plex, particularly if the observations are high-dimensional. For example, in

spatiotemporal processes, the data is typically extremely high-dimensional,

composed of structured grid data; however, it is possible to extract a low-rank

state-space that significantly simplifies analysis [Gelfand et al., 2010, Chapter

8]. Further, for forecasting, iterating transitions for such a low-rank state-space
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can provide longer range predictions with less error accumulation than iterating

with the observations themselves.

The estimation problem for an LDS involves extracting the unknown pa-

rameters, given a time series of observations x1, . . . ,x𝑇 . Unfortunately, jointly

estimating the parameters A,C and 𝜑𝑡 is difficult because the multiplication

of these variables typically results in a nonconvex optimization. Given the

latent states 𝜑𝑡, estimation of A and C is more straightforward, though there

are still some issues with maintaining stability [Siddiqi et al., 2007]. There

are some recent advances improving estimation in time series models using

matrix factorization. White et al. [2015] provide a convex formulation for auto-

regressive moving average models—although related to state-space models,

these do not permit a straightforward conversion between the parameters of

one to the other. Yu et al. [2015] factorize the observation into a hidden state

and dictionary, using a temporal regularizer on the extracted hidden state—the

resulting algorithm, however, is not guaranteed to provide an optimal solution

due to the non-convexity of its objective function.

4.3 Two-view Formulation of LDS

In this section, we reformulate the LDS as a generative two-view model with a

shared latent factor. In the following section, we demonstrate how to estimate

the parameters of this reformulation optimally, from which parameter estimates

of the original LDS can be recovered.

To obtain a two-view formulation, we re-express the two equations for

the LDS as two equations for pairs of sequential observations. To do so, we

multiply the state evolution equation in (4.1) by C and add 𝜖𝑡+1 to obtain

C𝜑𝑡+1 + 𝜖𝑡+1 = CA𝜑𝑡 +C𝜂𝑡 + 𝜖𝑡+1; representing the LDS model as

x𝑡+1 = E𝜑𝑡 + 𝜖′𝑡+1

x𝑡 = C𝜑𝑡 + 𝜖𝑡
(4.2)

where we refer to E := CA as the factor loading matrix and 𝜖′𝑡+1 := C𝜂𝑡+ 𝜖𝑡+1
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𝜑1 𝜑2 𝜑3
. . .

x1 x2 x3

. . .

C

A

E

Figure 4.1: Graphical representation for the standard LDS formulation and the
corresponding two-view model. The two-view formulation is obtained by a linear
transformation of the LDS model. The LDS model includes only parameters C and
A and the two-view model includes parameters C and E = CA, where A can be
extracted from E after C and E are estimated.

as the noise of the second view. We then have a two-view problem where we

need to estimate parameters E and C. Since the noise components 𝜖𝑡 and 𝜖′𝑡+1

are independent, the two views x𝑡 and x𝑡+1 are conditionally independent given

the shared latent state 𝜑𝑡. To obtain the maximum likelihood estimate of the

LDS, it is desirable to maximize the marginal data log-likelihood that can be

factorized according to the chain rule of probability as

log 𝑝(x1:𝑇 |𝐶,𝐸) =
𝑇∑︁
𝑡=1

log 𝑝(x𝑡|x1:𝑡−1, 𝐶, 𝐸) (4.3)

To deal with the intractability of the marginalization over the latent state, one

can assume a Dirac delta posterior distribution on 𝜑1:𝑇 – that was adopted

from hard EM or Viterbi EM method [Brown et al., 1993] – therefore resulting

in a simpler objective for the maximum likelihood problem1 for the two-view

formulation:

max
𝐶,𝐸,Φ

log 𝑝(x1:𝑇 |𝜑0:𝑇 , 𝐶, 𝐸) = max
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

log 𝑝(x𝑡|𝜑𝑡−1,𝜑𝑡, 𝐶, 𝐸) (4.4)

where we used the fact that, given the hidden states, the observations are

1This is, indeed, maximizing a lower bound on the marginal log-likelihood instead. See
[White et al., 2015] for the detailed derivation.
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conditionally independent. The log-likelihood equation 4.4 is equivalent to the

original LDS, but is expressed in terms of the distribution 𝑝(x𝑡|𝜑𝑡−1,𝜑𝑡, 𝐶, 𝐸),

where the probability of an observation increases if it has high probability

under both 𝜑𝑡−1 and 𝜑𝑡. The graphical depiction of the LDS and its implied

two-view model is illustrated in Figure 4.1.

4.3.1 Relaxation

To tackle the estimation problem, we reformulate the estimation problem

for this equivalent two-view model of the LDS. Note that according to the

two-view model (4.2), the conditional distribution (4.4) can be expressed as

𝑝(x𝑡|𝜑𝑡−1,𝜑𝑡, 𝐶, 𝐸) = 𝑝(x𝑡|E𝜑𝑡−1) = 𝑝(x𝑡|C𝜑𝑡). Substituting each of these in

the summation of equation 4.4 would result in a factor loading model that

ignores the temporal correlation among data; therefore, to take the system

dynamics into account we consider a balanced averaging of both as 2

argmax
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

log 𝑝(x𝑡|𝜑𝑡−1,𝜑𝑡, 𝐶, 𝐸) = (4.5)

argmax
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

log 𝑝(x𝑡|E𝜑𝑡−1) + log 𝑝(x𝑡|C𝜑𝑡) (4.6)

This is equivalent to a natural choice on the likelihood as 𝑝(x𝑡|𝜑𝑡−1,𝜑𝑡, 𝐶, 𝐸) ∝

𝑝(x𝑡|E𝜑𝑡−1)𝑝(x𝑡|C𝜑𝑡), i.e. the likelihood of an observation increases if it has

high conditional likelihood given both 𝜑𝑡−1 and 𝜑𝑡.

Bregman divergences and exponential family distributions: We can

model the generalized linear observation model by exponential family distribu-

tions parameterized by 𝜃, defined as 𝑝𝐹 (x|𝜃) = exp(x⊤𝜃 − 𝐹 (𝜃))𝑝0(x), that is

specified by the potential function 𝐹 : R𝑑 → R. The exponential families en-

compass many well-know distributions such as the Gaussian, Bernoulli, Poisson,

2The balanced averaging can be generalized to a convex combination of the log-likelihood
which adds a flexibility to the problem that can be tuned to improve performance. However,
we found that the simple balanced combination renders the best experimental performance
in most cases.
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Figure 4.2: An illustration of the
Bregman divergence of the Gaus-
sian distribution defined as the dif-
ference between its corresponding
potential function 𝐹 (ẑ) = 1

2z
⊤z

and its linear approximation by
the first order Taylor expansion.
The figure is from [White, 2009].

gamma, beta and Weibull while can also be used to approximate a broad range

of distributions. Now, let’s review a general family of convex losses known as

Bregman divergences. For any strictly convex differentiable potential function

𝐹 , the Bregman divergence 𝐷𝐹 (ẑ‖z) is defined as the difference between 𝐹 (ẑ)

and its linear approximation by the first order Taylor expansion around z evalu-

ated at ẑ, so it can be formally written as𝐷𝐹 (ẑ‖z) := 𝐹 (ẑ)−𝐹 (z)−f(z)⊤(ẑ−z)

where f = ∇𝐹 is called the transfer function associated with 𝐹 [Banerjee et al.,

2005]. It is clear from the definition that the Bregman divergence is a convex

function in the first argument. It can be shown that maximizing the log-

likelihood of the natural exponential family distributions with respect to their

parameters 𝜃 reduces to the Bregman divergences3. As an example, a Gaussian

distribution, that can be expressed by an exponential family defined by the

potential function 𝐹 (z) = 1
2
z⊤z = 1

2
‖z‖22 with 𝑓 = z, results in the Euclidean

loss 𝐷𝐹 (ẑ‖z) = 1
2
||ẑ− z||22. See figure 4.2 for the illustration of this loss as a

Bregman divergence. Consequently, the log-likelihood in (4.5) can be expressed

as

argmin
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

𝐷𝐹 (E𝜑𝑡−1||𝑓−1(x𝑡)) +𝐷𝐹 (C𝜑𝑡||𝑓−1(x𝑡))

3This class includes many well-known losses, for example the Euclidean loss and Ma-
halanobis distance correspond to Gaussian distribution (with 𝐹 (z) = 1

2z
⊤Σ−1z and

𝑓(z) = Σ−.5z), logistic loss or cross entropy corresponds to Bernoulli distribution (with
sigmoid transfer 𝑓(z) = (1 + exp(z))−1) and relative entropy corresponds to multinoulli
(categorical) distributions (with softmax transfer 𝑓(z) = exp(z)(exp(1⊤z))−1 ). Consult
[Banerjee et al., 2005, White, 2009] for a complete overview of this correspondence.

65



Each Bregman divergence term can be interpreted as the fitness measure for

each view. The above derivation could be extended to different variance terms

for 𝜖 and 𝜖′, which would result in different weights on the two Bregman

divergences above. Further, we could also allow different exponential families

(hence different Bregman divergences) for the two distributions; however, there

is no clear reason why this would be beneficial over simply selecting the same

exponential family, since both describe x𝑡. In this work, therefore, we will

explore a balanced loss, with the same exponential family for each view.

In order to obtain a low rank solution, one can relax the hard rank constraint

and employ the block norm ‖Φ‖2,1 =
∑︀𝑘

𝑗=1 ‖Φ𝑗:‖2 as the rank-reducing regu-

larizer on the latent state.4 This regularizer offers an adaptive rank reducing

scheme that zeros out many of the rows of the latent states and hence results in

a low rank solution without knowing the rank a priori . For the reconstruction

models C and E, we need to specify a prior that respects the conditional

independence of the views x𝑡 and x𝑡+1 given 𝜑𝑡. This goal can be achieved if C

and E are constrained individually so that they do not compete against each

other to reconstruct their respective views [White et al., 2012]. Incorporating

the regularizer and constraints, the resulting optimization problem has the

form

argmin
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

ℒ1(E𝜑𝑡−1;x𝑡) + ℒ2(C𝜑𝑡;x𝑡) + 𝜆
𝑘∑︁

𝑗=1

‖Φ𝑗:‖2 (4.7)

s.t.‖C:𝑗‖2 ≤ 𝛾1, ‖E:𝑗‖2 ≤ 𝛾2 ∀𝑗 ∈ (1, 𝑘).

Where ℒ1 and ℒ2 are convex losses, in general, corresponding to the first and

the second view, respectively, that will become the Bregman divergences in the

case of generalized linear observation.

The above constrained optimization problem is convex in each of the factor

loading matrices {C,E} and the state matrix Φ, but not jointly convex in

terms of all these variables. Nevertheless, the following lemma show that

4Throughout this chapter, X𝑖: (X:𝑖) is used to denote the ith row (ith column) of matrix
X and also [X;Y] ([x;y]) denotes the matrix (vector) concatenation operator which is equal
to [X⊤,Y⊤]⊤ ([x⊤,y⊤]⊤).
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equation 4.7 admits a convex reformulation by change of variable.

Lemma 4.1 Let Ẑ(1) := CΦ and Ẑ(2) := EΦ with their concatenated matrix

Ẑ :=

⎡⎣Ẑ(1)

Ẑ(2)

⎤⎦ and Z(1) := [x1:𝑇−1], Z(2) := [x2:𝑇 ]. In addition, let’s define

I(1) := diag(

⎡⎣1
0

⎤⎦), I(2) := diag(

⎡⎣0
1

⎤⎦), then the multi-view optimization problem

(4.7) can be reformulated in the following convex form

min

‖C:𝑗‖2≤𝛾1

‖E:𝑗‖2≤𝛾2

min

Φ:

⎡⎢⎢⎢⎣C
E

⎤⎥⎥⎥⎦Φ=Ẑ

𝐿1(CΦ;Z(1)) + 𝐿2(EΦ;Z(2)) + 𝜆‖Φ‖2,1

= min
Ẑ

𝐿1(Ẑ
(1);Z(1)) + 𝐿2(Ẑ

(2);Z(2)) + 𝜆 max
0≤𝜂≤1

‖U−1
𝜂 Ẑ‖𝑡𝑟

where U𝜂 =
𝛾1√
𝜂
I(1) + 𝛾2√

1−𝜂
I(2) and 𝐿𝑖(Y; Ŷ) =

∑︀𝑇
𝑡=1 ℒ𝑖(y𝑡; ŷ𝑡). Moreover, we

can show that the regularizer term ‖U−1
𝜂 Ẑ‖𝑡𝑟 is concave in 𝜂. The trace norm

induces a low rank result.

Proof: The proof can be readily derived from the results of White et al.

[2012]. ■

In the next section, we demonstrate how to obtain globally optimal estimates

of E,C and Φ.

Remark 1: This maximum likelihood formulation demonstrates how the

distributional assumptions on the observations x𝑡 can be generalized to any

exponential family. Once expressed as the above optimization problem, one can

further consider other losses and regularizers that may not immediately have a

distributional interpretation, but result in improved prediction performance.

This generalized formulation of maximum likelihood for LDS, therefore, has the

additional benefit that it can flexibly incorporate optimization improvements,

such as robust losses.5 Also a regularizer can be designed to control overfitting

to noisy observation, which is an issue in LDS that can result in an unstable

5Thus, we used ℒ1 and ℒ2 in equation 4.7 to generally refer to any loss function that is
convex in its first argument.
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latent dynamics estimate [Buesing et al., 2012a]. Therefore, by controlling

undesired overfitting to noisy samples one can also prevent unintended unstable

model identification.

Remark 2: We can generalize the optimization further to learn an LDS

with exogenous input : a control vector u𝑡 ∈ R𝑑 that impacts both the hidden

state and observations. This entails adding some new variables to the general

LDS model that can be expressed as

𝜑𝑡+1 = A𝜑𝑡 +Bu𝑡 + 𝜂𝑡

x𝑡 = C𝜑𝑡 +Du𝑡 + 𝜖𝑡

with additional matrices B ∈ R𝑘×𝑑 and D ∈ R𝑑×𝑑. Again, by multiplying the

state evolution equation by matrix C the resulting equations are

x𝑡+1 = E𝜑𝑡 + Fu𝑡 +Du𝑡+1 + 𝜖′𝑡+1

x𝑡 = C𝜑𝑡 +Du𝑡 + 𝜖𝑡

where F := CB. Therefore, the loss can be generally expressed as

ℒ1(E𝜑𝑡−1 + Fu𝑡−1 +Du𝑡;x𝑡) + ℒ2(C𝜑𝑡 +Du𝑡;x𝑡).

The optimization would now be over the variables C,E,Φ,D,F, where the

optimization could additionally include regularizers on D and F to control

overfitting. Importantly, the addition of these variables D,F does not modify

the convexity properties of the loss, and the treatment for estimating E,C and

Φ in section 4.4 directly applies. The optimization problem is jointly convex in

D,F and any one of E, C or Φ and jointly convex in D and F. Therefore, an

outer minimization over D and F can be added to Algorithm 1 and we will

still obtain a globally optimal solution.
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4.4 LDS Estimation Algorithm

To learn the optimal parameters for the reformulated two-view model, we

adopt the generalized conditional gradient (GCG) algorithm developed by

Yu et al. [2014]. GCG is designed for optimization problems of the form

𝑙(𝑥) + 𝑓(𝑥) where 𝑙(𝑥) is convex and continuously differentiable with Lipschitz

continuous gradient and 𝑓(𝑥) is a (possibly non-differentiable) convex function.

The algorithm is computationally efficient, as well providing a reasonably

fast 𝑂(1/𝑡) rate of convergence to the global minimizer. Though we have

a nonconvex optimization problem, we can use the convex reformulation for

two-view low-rank matrix factorization and resulting algorithm in [Yu et al.,

2014, Section 4]. This algorithm includes a generic local improvement step,

which significantly accelerates the convergence of the algorithm to a global

optimum in practice. We provide a novel local improvement update, which

both speeds learning and enforces a sparser structure on Φ, while maintaining

the same theoretical convergence properties of GCG.

In our experiments, we specifically address the setting when the observations

are assumed to be Gaussian, giving an Euclidean (ℓ2) loss. We also prefer

the unconstrained objective function that can be efficiently minimized by fast

unconstrained optimization algorithms. Therefore, using the well-established

equivalent form of the regularizer [Bach et al., 2008], the objective (4.7) can be

equivalently cast for the Gaussian distributed time series x𝑡 as

min
𝐶,𝐸,Φ

𝑇∑︁
𝑡=1

‖E𝜑𝑡−1 − x𝑡‖22 + ‖C𝜑𝑡 − x𝑡‖22 + 𝜆

𝑘∑︁
𝑗=1

‖Φ𝑗:‖2 max( 1
𝛾1
‖C:𝑗‖2, 1

𝛾2
‖E:𝑗‖2).

(4.8)

This product form of the regularizer is also preferred over the square form used

in [Yu et al., 2014], since it induces row-wise sparsity on Φ. Though the square

form ‖Φ‖2𝐹 admits efficient optimizers due to its smoothness, it does not prefer

to zero out rows of Φ while with the regularizer of the form (4.8), the learned

hidden state will be appropriately projected down to a lower-dimensional space

where many dimensions could be dropped from Φ, C and E giving a low rank
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solution. In practice, we found that enforcing this sparsity property on Φ

significantly improved stability.6 Consequently, we need optimization routines

that are appropriate for the non smooth regularizer terms.

The local improvement step involves alternating block coordinate descent

between C,E and Φ, with an accelerated proximal gradient algorithm (FISTA)

[Beck and Teboulle, 2009] for each descent step. To use the FISTA algorithm

we need to provide a proximal operator for the non-smooth regularizer in

equation 4.8.

Let the proximal operator of a convex and possibly non-differentiable

function 𝜆𝑓(y) be defined as

prox𝜆𝑓 (x) = argmin
y

𝜆𝑓(y) + 1
2
‖x− y‖22.

FISTA is an accelerated version of ISTA (Iterative Shrinkage-Thresholding Algo-

rithm) that iteratively performs a gradient descent update with the smooth com-

ponent of the objective, and then applies the proximal operator as a projection

step. Each iteration updates the variable x as x𝑘+1 = prox𝜆𝑘𝑓

(︀
x𝑘 − 𝜆𝑘∇𝑙(x𝑘)

)︀
,

which converges to a fixed point. If there is no known form for the proximal

operator, as is the case for our non-differentiable regularizer, a common strategy

is to numerically calculate the proximal update. This approach, however, can

be prohibitively expensive, and an analytic (closed) form is clearly preferable.

We derive such a closed form for equation 4.8 in Theorem 4.1.

Theorem 4.1 For a vector v =
[︁
v1
v2

]︁
composed of two subvectors v1,v2, define

𝑓(v) = 𝜆‖v‖2𝑣 := 𝜆max(‖v1‖2, ‖v2‖2). The proximal operator for this function

6This was likely due to a reduction in the size of the transition parameters, resulting
in improved re-estimation of A and a corresponding reduction in error accumulation when
using the model for forecasting.
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is

prox𝑓 (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣v1max{1− 𝛼
‖v1‖ , 0}

v2max{1− 𝜆−𝛼
‖v2‖ , 0}

⎤⎥⎦ if ‖v1‖ ≤ ‖v2‖

⎡⎢⎣v1max{1− 𝜆−𝛽
‖v1‖ , 0}

v2max{1− 𝛽
‖v2‖ , 0}

⎤⎥⎦ if ‖v2‖ ≤ ‖v1‖

where 𝛼 := max{.5(‖v1‖−‖v2‖+𝜆), 0} and 𝛽 := max{.5(‖v2‖−‖v1‖+𝜆), 0}.

Proof: See Appendix D.1. ■

This result can be further generalized to enable additional regularization

components on C and E, such as including an ℓ1 norm on each column to

further enforce sparsity (such as in the elastic net). There is no closed form

for the proximal operator of the sum of two functions in general. We prove,

however, that for special case of a linear combination of the two-view norm

with any norms on the columns of C and E, the proximal mapping reduces to

a simple composition rule.

Theorem 4.2 For norms 𝑅1(v1) and 𝑅2(v2), the proximal operator of the

linear combination 𝑅𝑐(v) = 𝜆‖v‖2𝑣+𝜈1𝑅1(v1)+𝜈2𝑅2(v2) for 𝜈1, 𝜈2 ≥ 0 admits

the simple composition prox𝑅𝑐
(v) = prox𝜆‖.‖2𝑣

⎛⎝⎡⎣prox𝜈1𝑅1
(v1)

prox𝜈2𝑅2
(v2)

⎤⎦⎞⎠ .

Proof: See Appendix D.1. ■

4.4.1 Recovery of the LDS model parameters

The above reformulation provides a tractable learning approach to obtain

the optimal parameters for the two-view reformulation of LDS; given this

optimal solution, we can then estimate the parameters to the original LDS. The

first step is to estimate the transition matrix A. A natural approach is to use

equation 4.2, and set Â = Ĉ†Ê for pseudoinverse Ĉ†. This Â, however, might

be sensitive to inaccurate estimation of the (effective) hidden state dimension
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Algorithm 1 LDS-DV

Input: training sequence {𝑥𝑡, 𝑡 ∈ [1, 𝑇 ]}
Output: C,A,𝜑𝑡,Σ𝜂,Σ𝜖

Initialize C0,E0,Φ0

U1 ← [C⊤
0 ; E⊤

0 ]
⊤, V1 ← Φ⊤

0

for 𝑖 = 1, . . . do
(u𝑖,v𝑖)← argminuv⊤∈𝒜

⟨︀
∇ℓ(U𝑖,V𝑖),uv

⊤⟩︀ // compute polar
(𝜂𝑖, 𝜃𝑖) ← arg min

0≤𝜂≤1,𝜃≥0
ℓ((1− 𝜂)U𝑖V

⊤
𝑖 + 𝜃u𝑖v

⊤
𝑖 ) + 𝜆((1− 𝜂)𝜌𝑖 + 𝜃) // partially

corrective update (PCU)
U𝑖𝑛𝑖𝑡 ← [

√
1− 𝜂𝑖U𝑖,

√
𝜃𝑖u𝑖], V𝑖𝑛𝑖𝑡 ← [

√
1− 𝜂𝑖V𝑖,

√
𝜃𝑖v𝑖]

(U𝑖+1,V𝑖+1)← FISTA(U𝑖𝑛𝑖𝑡V𝑖𝑛𝑖𝑡)

𝜌𝑖 =
1
2

∑︀𝑖+1
𝑗=1(‖(U𝑖+1):𝑖‖22𝑣 + ‖(V𝑖+1):𝑖‖22)

end for
(C; E)← U𝑖+1, Φ← V⊤

𝑖+1

A← Φ2:𝑇 * Φ†
1:𝑇−1

estimate Σ𝜂, Σ𝜖 by sample covariances

𝑘. We found in practice that modifications from the optimal choice of 𝑘 might

result in unstable solutions and produce unreliable forecasts. Instead, a more

stable Â can be learned from the hidden states themselves. This approach also

focuses estimation of A on the forecasting task, which is our ultimate aim.

Given the sequence of hidden states, 𝜑1, . . . ,𝜑𝑇 , there are several strategies

that could be used to estimate A, including simple autoregressive models

to more sophisticated strategies [Siddiqi et al., 2007]. We opt for a simple

linear regression solution Â = argminA

∑︀𝑇−1
𝑡=1 ‖𝜑𝑡+1 −A𝜑𝑡‖22 which we found

produced stable Â.

To estimate the noise parameters Σ𝜂,Σ𝜖, recall 𝜂𝑡 = 𝜑𝑡+1 − Â𝜑𝑡, 𝜖𝑡 =

x𝑡 −C𝜑𝑡. Having obtained Â, therefore, we can estimate the noise covariance

matrices by computing their sample covariances as Σ̂𝜂 = 1
𝑇−1

∑︀𝑇
𝑡=1 𝜂𝑡𝜂

⊤
𝑡 , Σ̂𝜖 =

1
𝑇−1

∑︀𝑇
𝑡=1 𝜖𝑡𝜖

⊤
𝑡 . The final LDS learning procedure is outlined in Algorithm 1.

For more details about polar computation and partially corrective subroutine

see [Yu et al., 2014, Section 4].

4.5 Experimental results

We evaluate the proposed algorithm by comparing one step prediction perfor-

mance and computation speed with alternative methods for real and synthetic
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time series. We report the normalized mean square error (NMSE) defined as

NMSE =
∑︀𝑇𝑡𝑒𝑠𝑡

𝑡=1 ‖𝑦𝑡−𝑦𝑡‖2∑︀𝑇𝑡𝑒𝑠𝑡
𝑡=1 ‖𝑦𝑡−𝜇𝑦‖2

where 𝜇𝑦 =
1

𝑇𝑡𝑒𝑠𝑡

∑︀𝑇𝑡𝑒𝑠𝑡

𝑡=1 𝑦𝑡.

Algorithms: We compared the proposed algorithm to a well-established

method-of moment-based algorithm, N4SID [Van Overschee and De Moor, 1994],

Hilbert space embeddings of hidden Markov models (HSE-HMM) [Song et al.,

2010], expectation-maximization for estimating the parameters of a Kalman

filter (EM) [Roweis and Ghahramani, 1999] and PEM [Ljung, 1999]. These

are standard baseline algorithms that are used regularly for LDS identification.

The estimated parameters by N4SID were used as the initialization point for

EM and PEM algorithms in our experiments. We used the built-in functions,

n4sid and pem, in Matlab, with the order selected by the function, for the

subspace identification method and PEM, respectively. For our algorithm, we

select the regularization parameter 𝜆 using cross-validation. For the time series,

the training data is split by performing the learning on first 80% of the training

data and evaluating the prediction performance on the remaining 20%.

Real datasets: For experiments on real datasets we select the climate

time series from IRI data library that recorded the surface temperature on

the monthly basis for tropical Atlantic ocean (ATL) and tropical Pacific ocean

(CAC). In CAC we selected first 30× 30 grids out of the total 84× 30 locations

with 399 monthly samples, while in ATL the first 9× 9 grids out of the total

38×25 locations are selected each with timeseries of length 564. We partitioned

each area to smaller areas of size 3× 3 and arrange them to vectors of size 9,

then seasonality component of the time series are removed and data is centered

to have zero mean. We ran two experiments for each dataset. For the first,

the whole sequence is sliced into 70% training and 30% test. For the second, a

short training set of 70 samples is selected, with a test sequence of size 50.

Synthetic datasets: In the synthetic experiments, the datasets are gen-

erated by an LDS model (4.1) of different system orders, 𝑘, and observation

sizes, 𝑑. For each test case, 100 data sequences of length 200 samples are

generated and sliced to 70%, 30% ratios for training set and test set, re-

spectively. The dynamics matrix A is selected to produce a stable system:

{|𝜎𝑖(A)| = 𝑠 : 𝑠 ≤ 1, ∀𝑖 ∈ (1, 𝑘)} where 𝜎𝑖(A) is the ith eigen value of
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Table 1: Real time series

ATL(Long) ATL(Short) CAC(Long) CAC(Short)
NMSE Time NMSE Time NMSE Time NMSE Time

LDS-MV 0.45±0.03 0.26 0.54±0.05 0.22 0.58±0.02 0.28 0.63±0.03 0.14
N4SID 0.52±0.04 2.34 0.59±0.05 0.95 0.61±0.02 1.23 0.84±0.07 1.08
EM 0.64±0.04 7.87 0.88±0.07 3.92 0.81±0.02 5.70 1.02±0.08 4.12
HSE-HMM 675.87±629.46 0.79 0.97±0.01 0.16 11.24±8.23 0.39 2.82±1.60 0.17
PEM-SSID 0.71±0.08 20.00 1.52±0.66 16.38 1.38±0.15 19.67 2.68±0.78 20.58

Table 2: Synthetic time series

(S1) d=5 , k=3 (S2) d=5 , k=3 (S1) d=8 , k=6 (S2) d=8 , k=6 (S1) d=16 , k=9 (S2) d=16 , k=9

NMSE Time NMSE Time NMSE Time NMSE Time NMSE Time NMSE Time
LDS-MV 0.12±0.01 0.49 0.17±0.02 0.36 0.08±0.00 0.66 0.04±0.00 0.52 0.07±0.00 1.01 0.03±0.00 1.72
N4SID 0.12±0.01 0.81 0.42±0.04 0.76 0.11±0.00 1.45 0.39±0.04 1.38 0.10±0.00 4.29 0.42±0.04 4.40
EM 0.18±0.01 4.99 0.15±0.02 4.62 0.14±0.01 6.01 0.04±0.00 5.03 0.13±0.00 19.21 0.03±0.00 19.83
HSE-HMM 2.4e+4±1.7e+4 0.48 2.2e+7±2.2e+7 0.50 7.8e+03±7.7e+03 0.49 0.65±0.02 0.55 22.92±21.83 0.53 0.71±0.01 0.61
PEM-SSID 0.14±0.01 10.72 0.25±0.03 9.08 0.12±0.01 15.22 0.08±0.01 13.97 0.09±0.01 38.39 0.06±0.02 41.10

Table 4.1: Results for real and synthetic datasets are listed in Table 1 and Table 2,
respectively. The first column of each dataset is the average normalized MSE with
standard error and the second column is the algorithm runtime in CPU seconds. The
best NMSE according to pairwise t-test with significance level of 5% is highlighted.

matrix A. The noise components are drawn from Gaussian distributions

and scaled so that 𝑝𝜂 := 𝐸{𝜂⊤𝜂}/𝑚 and 𝑝𝜖 := 𝐸{𝜖⊤𝜖}/𝑛. Each test is re-

peated with the following settings: {S1: 𝑠 = 0.970, 𝑝𝜂 = 0.50 and 𝑝𝜖 = 0.1},

{S2: 𝑠 = 0.999, 𝑝𝜂 = 0.01 and 𝑝𝜖 = 0.1}.

Results: The NMSE and run-time results obtained on real and synthetic

datasets are shown in Table 1 and Table 2, respectively. In terms of NMSE, LDS-

DV outperforms and matches the alternative methods. In terms of algorithm

speed, the LDS-DV learns the model much faster than the competitors and

scales well to larger dimension models. The speed improvement is more

significant for larger datasets and observations with higher dimensions.

For test cases with |𝜎𝑖(A)| ≃ 1, designed to evaluate the prediction perfor-

mance of the methods for marginally stable systems, LDS-DV still can learn a

stable model while the other algorithms might not learn a stable model. The

proposed LDS-DV method does not explicitly impose stability, but the regu-

larization favors A that is stable. The regularizer on latent state encourages

smooth dynamics and controls overfitting: overfitting to noisy observations can

lead to unstable estimate of the model [Buesing et al., 2012a], and a smooth

latent trajectory is a favorable property in most real-world applications.

Figure 4.3(c) shows the MSE of LDS-DV versus N4SID, for all the CAC
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Figure 4.3: a) NMSE of the LDS-DV for increasing length of training sequence. The
difference between LDS-DV and N4SID is more significant in shorter training length,
while both converge to the same accuracy in large 𝑇 . HSE-HMM is omitted due to
its high error. b) Runtime in CPU seconds for increasing length of training sequence.
LDS-DV scales well with large sample length. c) MSE of the LDS-DV versus MSE
of N4SID. In higher values of MSE, the points are below identity function line and
LDS-DV is more likely to win.

time-series. This figure illustrates that for easier problems, LDS-DV and N4SID

are more comparable. However, as the difficulty increase, and MSE increases,

LDS-DV begins to consistently outperform N4SID.

Figures 4.3(a) and 4.3(b) illustrate the accuracy and runtime respectively

of the algorithms versus training length. We used the synthetic LDS model

under condition S1 with 𝑛 = 8, 𝑚 = 6. Values are averaged over 20 runs with

a test length of 50 samples. LDS-DV has better early performance, for smaller

sample sizes. At larger sample sizes, they reach approximately the same error

level.
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Chapter 5

Summary and Discussion

In this thesis, some new ideas in probabilistic generative modeling have been

developed that play important roles in expanding these models to tackle the

growing demand of complex and fast machine learning algorithms.

The main focus of chapters 2 and 3 was on recent advances in deep generative

models.

Chapter 2 showed that circular and symmetric convolutions can be used

as invertible transformations with fast and efficient inversion, deconvolution,

and Jacobian determinant evaluation. These features make the approach well

suited for designing flexible normalizing flows. Using these invertible convolu-

tions, we introduced a family of data adaptive coupling layers, which consist of

convolutions, where the kernel of the convolutions are themselves a function

of the coupling layer input. We also analytically derived invertible pointwise

nonlinearities that implicitly induce specific regularizers on intermediate acti-

vations in deep flow models. The results also help better understand the role

of nonlinear gates through the lens of their contribution to latent variables’

distributions. Using these new architectural components, we achieved state of

the art performance on several datasets for invertible normalizing flows with

fast sampling.

In chapter 3, deep probabilistic generative modeling for multi-view data

was studied. We developed a simple yet powerful tool for multi-view learning

based on the probabilistic interpretation of CCA. It has been shown that,
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following the theoretical formulation of the linear probabilistic CCA model in

conjunction with variational inference principles for deep generative networks,

we can obtain a scalable end-to-end learning algorithm for two-view data.

Moreover, the deep probabilistic model is generalized to problems with an

arbitrary number of views. Experimental results have shown that the proposed

model is able to efficiently integrate the relationship between multiple views to

obtain a more powerful representation, achieving state-of-the-art performance

on several downstream tasks. An important application of the proposed deep

generative model is in multi-modal clustering, where the proposed model could

efficiently leverage the extra modalities to uncover the cluster memberships,

the common underlying information among modalities. These, indeed, confirm

that the proposed method is an efficient way to extend variational inference to

deep probabilistic multi-view learning.

Lastly, we provided an algorithm for optimal estimation of the parameters

for a time-invariant, discrete-time linear dynamical system in chapter 4. More

precisely, we provided a reformulation of the model as a two-view objective,

which allowed recent advances for optimal estimation for two-view models

to be applied. The resulting algorithm is simple to use and flexibly allows

different losses and regularizers to be incorporated. Despite this simplicity,

significant improvements were observed over a widely accepted method for

subspace identification (N4SID), both in terms of accuracy for forecasting and

runtime.

The goal of this chapter was optimal estimation of the hidden states and

transition matrices as they are essential for forecasting purpose; however, in

some settings, estimation of noise parameters for LDS models is also desired.

An unresolved issue is joint optimal estimation of these noise parameters.

Though we do explicitly estimate the noise parameters, we do so only from

the residuals after obtaining the optimal hidden states and transition and

observation matrices. Moreover, consistency of the learned parameters by the

proposed procedure of this chapter is still an open problem and will be an

interesting future work.

The proposed optimization approach for LDSs should be useful for applica-
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tions where alternative noise assumptions are desired. A Laplace assumption

on the observations, for example, provides a more robust ℓ1 loss. A Poisson

distribution has been advocated for count data, such as for neural activity,

where the time series is a vector of small integers [Buesing et al., 2012b]. The

proposed formulation of estimation for LDSs easily enables extension to such

distributions. An important next step is to investigate the applicability to a

wider range of time series data.

5.1 Future Work

The methods presented in this work can be expanded in several ways. In the

following some interesting future directions are presented.

Combining LDS and invertible flows: Normalizing flows offer an exact

and efficient inference for latent variables using the invertible nature of the

generative network, therefore resulting in tractable exact maximum likelihood

estimation. This, in fact, makes NFs promising candidates to generalize multi-

variate time series models such as linear dynamical systems. Substituting the

observation model of LDS with a deep NF, one can achieve an invertible gener-

ative model associating a Gauss-Markov model as the latent space dynamics of

the model that sounds a promising avenue for future research in time series

analysis. In [Kumar et al., 2019], a flow-based sequence modeling was proposed

for multi-frame video prediction, called VideoFlow, which applied autoregres-

sive probabilistic priors on the hierarchical latent space of the NF. VideoFlow

produced results comparable to the state-of-the-art generative models in video

prediction.

LDA as CCA: Fisher linear discriminant analysis can be viewed as CCA

when the first view is the vector of features and the second view is the indicter

vector (one-hot encoding) of labels. A possible extension of variational proba-

bilistic CCA is to modify it to a deep variational LDA for classification. Here,

we suggest approximating the posterior of latent variables corresponding to
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the labels as 𝑞𝜂(z2|x2) = 𝒩 (z2;𝜇2 = x2,Σ22 = 𝑓(x1; 𝜃)), where the difference

with the deep probabilistic CCA is that both variances vectors are functions of

the features (1st view), hence a conditional model to estimate the labels given

the features can be approximated.

More flexible flow-based VCCA: Although simple Gaussian approximate

posteriors are adopted for the latent linear probabilistic model of the deep

generative multi-view models, arbitrarily complex approximate posteriors can

be obtained by applying rich normalizing flows on these simple base distribution,

as introduced in chapter 2. By reducing the gap between the true posterior

and its approximation, this technique is expected to provide a more expressive

generative models for complex multi-view applications hence serving as a

potential candidate for future studies.

Using the mixture of experts (MoE) or product of experts (PoE) to

design more flexible variational multi-modal architectures: In chap-

ter 3, a simple variational approach is proposed to model the approximate

posteriors of a set of cross-correlated multivariate Gaussian latent variables

{z𝑚}𝑀𝑚=1 whereas their cross correlation are specified by a linear probabilistic

CCA layer. On the other hand, the ideas of product of experts (PoE) and

mixture of experts (MoE) [Wu and Goodman, 2018, Shi et al., 2019] — which

model the variational posterior of the latent variable of all modalities as a com-

position of a set of unimodal posteriors — can be applied in combination to the

variational probabilistic CCA model to achieve more flexible posteriors in multi-

modal settings. To this end, simple unimodal posteriors {𝑞(𝜑, 𝜖1...𝜖𝑀 |x𝑚)}𝑀𝑚=1,

as defined in chapter 3, which model the cross-correlated latent factors by the

linear probabilistic CCA based on one of the modalities, can be combined in

MoE or PoE form to construct a multi-modal posterior 𝑞(𝜑, 𝜖1...𝜖𝑀 |x1, ...,x𝑀 ).

This idea proposes a future direction for multi-modal learning.

Deep variational CCA as an extension of LDS: CCA is fundamental

tool in LDS identification [Katayama, 2006]. Also, in [Karami et al., 2017] a
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two-view reformulation of LDS model for time series analysis was established.

Therefore, another possible extension of our work is to modify the probabilistic

generative multi-view model and derive a deep LDS model.
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Appendix A

Invertible Convolutional Flow

A.1 Model architecture and training procedure

A.1.1 Density estimation

To train the model, we used the Adam optimizer [Kingma and Ba, 2014] with

initial learning rate of .001 which was decayed slowly to 0.0001 with exponen-

tially decaying of rate .97. We apply sigm() to the output of conditioning

network to obtain the scaling filters, 𝑠 and the convolution kernels at the

frequency domain, 𝑤𝑓 . Actnorm [Kingma and Dhariwal, 2018] is employed

as normalization bijector in the chain of flow and as a layer in the NN. An 𝑙2

regularizer with coefficient of 5e-5 is applied on all the weights. Also to control

overfitting, we use dropout layer with 𝑝𝑑𝑟𝑜𝑝 = .2 for MNIST. To transform

MNIST data from a bounded to an unbounded domain, a logit mapping of

the form 𝑦 = logit(𝛼+ (1− 𝛼) 𝑥
256

) is applied with 𝛼 = 10−6. All datasets are

dequantized by adding uniform distributed noise to each dimension, and then

they are scaled to [0, 1] values.

The aforementioned setting is used for both density estimation experiments

in Table 2.1 and Table 2.2.

Normalizing flow architecture, NN architecture for parameter generation

and other hyper parameters of the results reported in Table 2.1 are outlined in

Table A.1. Squeezing from space to channel dimension is applied Q times and
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followd by K flow step after each squeeze, that is showed in the format 𝑄×𝐾

for MNIST and CIFAR10 in the Table. No factor out (splitting) is used. The

squeeze and convolution together can be interpreted as dilated convolution

of factor 2. Although, we used 2D invertible convolution flow for these two

datasets but the general purpose fully connected feedforward conditioning NN

is applied for parameter generation.

Table A.1: Hyper parameters of the results reported in Table 2.1.

normalizing flow architecture NN architecture
Dataset # flow steps M (itertes per step) # layers # hidden units Minibatch size

POWER 10 2 2 200 10000
GAS 10 2 2 100 10000
BSDS300 10 1 2 512 10000
MNIST 2×5 1 2 1024 512
CIFAR10 3×4 2 2 1024 512

For the CNN based NN experiments of Table 2.2, the results of realNVP

and GLOW on CIFAR10 dataset are adopted from Kingma and Dhariwal

[2018]. GLOW uses multiscale architecture with 3 scales each one composed of

32 steps of flow and use different shallow neural networks with 2 hidden layers

and 512 channels (width) for each parameter of the flow. Splitting is performed

on the channels dimension only. After each scale a factor out with rate 1/2 is

applied. We used the same architecture except that we use one NN to generate

all parameters of a flow step but we doubled its width to 1024 channels. For

MNIST, we again followed similar architecture for the normalizing flow where

2 scales each one composed of 12 steps of flow. The NN of depth 2 hidden

layers with width of 512 channels are applied as the conditioning network. The

results of realNVP and GLOW on MNIST dataset are adopted from Grathwohl

et al. [2019] where they used the following flow structure:

2 * (3 * (coupling layers with checkerboard masking) + squeeze+

3 * (coupling layers with channel masking))

+ 4 * (coupling layers with channel masking)

Each CONF is composed of 𝑀 = 2 iterates of convolution-multiplication
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on both datasets.

A.1.2 Variational inference

We employed the encoder/decoder architecture of van den Berg et al. [2018]

with different optimization setting. We apply exp() to the output of encoder

to obtain the scaling filters, 𝑠 and the convolution kernels at the frequency

domain, 𝑤𝑓 . Minibatch size of 500 samples (100 for FreyFaces) is selected and

the other hyper parameters are adjusted according to get better training. The

Adam optimizer [Kingma and Ba, 2014] is used for training with learning rate

decaying from initial value 𝑙𝑟𝑖𝑛𝑖𝑡 to .1× 𝑙𝑟𝑖𝑛𝑖𝑡 after warmup.

The annealing, a.k.a. warm-up, procedure is used that gradually increase

the effect of KL divergence term in the loss function Sønderby et al. [2016], but

we found that, on FreyFaces dataset, our model train better without warm-up.

The hyper-parameters are summarized in Table A.2.

Table A.2: Hyper parameters of VAE results reported in Table 2.4.

Dataset Minibatch size # warmup lr 𝜖𝐴𝑑𝑎𝑚

MNIST 500 100 0.001 0.1
Omniglot 500 100 0.001 0.1
FreyFaces 100 0 0.0005 0.1
Caltech 500 2000 0.001 0.1

A.2 Another symmetric convolution

There exist different extensions, here we define another type that can have

straightforward interpretation. Let a base sequence be extended by an even-

symmetric operation 𝜀{.} around its last element as

�̂�(𝑛) = 𝜀{𝑥(𝑛)} :=

⎧⎪⎨⎪⎩𝑥(𝑛) 𝑛 = 0, 1, ..., 𝑁

𝑥(2𝑁 − 𝑛) 𝑛 = 𝑁 + 1, ..., 2𝑁 − 1

(A.1)

this type of even-symmetric expansion is depicted in Figure A.1. Again, the
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Figure A.1: Even-symmetric expansion around first and last element of the base
sequence, where the base sequence specified by dark solid lines.

symmetric convolution of two sequences can be defined in terms of the circular

convolution of their corresponding even-symmetric extensions as 𝑦 = 𝑤 *𝑠 𝑥 =

ℛ{�̂�⊛ �̂�} and also the convolution-multiplication property holds for this type

given the discrete cosine transform defined as

𝑥𝑐(𝑘) = ℱ𝑑𝑐𝑡{𝑥}𝑘 =
𝑁∑︁

𝑛=0

𝑥(𝑛)× 2𝛼𝑛 cos

(︂
𝜋𝑘𝑛

𝑁

)︂
(A.2)

where 𝛼𝑛 =

⎧⎪⎨⎪⎩1/2 𝑛 = 0, 𝑁

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is called DCT-I in the literature. It can be shown that the Jacobian

matrix of this transform have the following structure

𝐽𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤0 𝑤1 + 𝑤1 . . . 𝑤𝑁−2 + 𝑤𝑁−2 𝑤𝑁−1

𝑤1 𝑤0 + 𝑤2 . . . 𝑤𝑁−3 + 𝑤𝑁−1 𝑤𝑁−2

...
...

...
...

𝑤𝑁−2 𝑤𝑁−3 + 𝑤𝑁−1 . . . 𝑤0 + 𝑤2 𝑤1

𝑤𝑁−1 𝑤𝑁−2 + 𝑤𝑁−2 . . . 𝑤1 + 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since scaling a column or row of a square matrix with factor 𝛼, multiply its

determinant by 𝛼, hence the multiplying the first and last column of this matrix
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by factor of two give rise to

𝐽 ′
𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝑤0 𝑤1 + 𝑤1 . . . 𝑤𝑁−2 + 𝑤𝑁−2 2𝑤𝑁−1

2𝑤1 𝑤0 + 𝑤2 . . . 𝑤𝑁−3 + 𝑤𝑁−1 2𝑤𝑁−2

...
...

...
...

2𝑤𝑁−2 𝑤𝑁−3 + 𝑤𝑁−1 . . . 𝑤0 + 𝑤2 2𝑤1

2𝑤𝑁−1 𝑤𝑁−2 + 𝑤𝑁−2 . . . 𝑤1 + 𝑤1 2𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤0 𝑤1 . . . 𝑤𝑁−2 𝑤𝑁−1

𝑤1 𝑤0

. . . 𝑤𝑁−3 𝑤𝑁−2

...
. . .

. . .
. . .

...

𝑤𝑁−2 𝑤𝑁−3

. . . 𝑤0 𝑤1

𝑤𝑁−1 𝑤𝑁−2 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤0 𝑤1 . . . 𝑤𝑁−2 𝑤𝑁−1

𝑤1 𝑤2 . .
.

𝑤𝑁−1 𝑤𝑁−2

... . .
.

. .
.

. .
. ...

𝑤𝑁−2 𝑤𝑁−1 . .
.

𝑤2 𝑤1

𝑤𝑁−1 𝑤𝑁−2 . . . 𝑤1 𝑤0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where det(𝐽 ′

𝑆) = 4 det(𝐽𝑆). Therefore, this symmetric convolution provides a

structured Jacobian matrix that can be specified in terms of a Toeplitz matrix

and an upside-down Toeplitz (also called a Hankel) matrix for determinant

computation.
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Appendix B

Deep Probabilistic Multi-view

Learning

B.1 Proof of Theorem 3.2

The marginal mean and covariance matrix of the joint views z = (z1, z2)

under the linear probabilistic model (3.4) are 𝜇 =

⎛⎝𝑊1𝜇0 + 𝜇𝜖1

𝑊2𝜇0 + 𝜇𝜖2

⎞⎠ and Σ =

𝑊𝑊⊤ +Ψ where we define 𝑊 =

⎛⎝𝑊1

𝑊2

⎞⎠ and Ψ =

⎛⎝Ψ1 0

0 Ψ2

⎞⎠, therefore,

similar to the proof in [Bach and Jordan, 2005], the negative log-likelihood of

the data can be written as

ℓ1 =
𝑛(𝑑1 + 𝑑2)

2
log 2𝜋 +

𝑛

2
log |Σ|

+
1

2

𝑛∑︁
𝑗=1

trΣ−1(z𝑗 − 𝜇)(z𝑗 − 𝜇)⊤

=
𝑛(𝑑1 + 𝑑2)

2
log 2𝜋 +

𝑛

2
log |Σ|

+
𝑛

2
trΣ−1Σ̃+

𝑛

2
(�̃�− 𝜇)Σ−1(�̃�− 𝜇)⊤
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Maximizing ℓ1 with respect to 𝜇 results in a maximum 𝜇 =

⎛⎝𝑊1𝜇0 + 𝜇𝜖1

𝑊2𝜇0 + 𝜇𝜖2

⎞⎠ =⎛⎝𝜇1

𝜇2

⎞⎠ and the negative log-likelihood is reduced to

ℓ1 =
𝑛(𝑑1 + 𝑑2)

2
log 2𝜋 +

𝑛

2
log |Σ|+ 𝑛

2
trΣ−1Σ̃

The rest of the proof follows immediately along the line of proof in Bach and

Jordan [2005].

B.2 Some proofs of section 3.3.2

B.2.1 Proof of additive property of KL (3.10)

Conditional independence of the latent variables {z𝑚|𝜑} induced by the proba-

bilistic graphical model of latent linear layer (3.4) implies that the approximate

posterior of the set of latent variables can be factorized as

𝑞𝜂(z|x) = 𝑞𝜂(𝜑|x)
𝑀∏︁

𝑚=1

𝑞𝜂(z𝑚|𝜑,x). (B.1)

In addition, assuming independent prior distribution on the latent variables,

i.e. 𝑝(z) = 𝑝(𝜑)
∏︀𝑀

𝑚=1 𝑝(z𝑚) leads to

𝐷KL[𝑞𝜂(z|x)‖𝑝(z)] =
∫︁

𝑞𝜂(𝜑|x)
𝑀∏︁

𝑚=1

𝑞𝜂(z𝑚|𝜑,x)× log
𝑞𝜂(𝜑|x)

∏︀𝑀
𝑚=1 𝑞𝜂(z𝑚|𝜑,x)

𝑝(𝜑)
∏︀𝑀

𝑚=1 𝑝(z𝑚)

=

∫︁
𝑞𝜂(𝜑|x) log

𝑞𝜂(𝜑|x)
𝑝(𝜑)

+
𝑀∑︁

𝑚=1

∫︁
𝑞𝜂(z𝑚|𝜑,x) log

𝑞𝜂(z𝑚|𝜑,x)
𝑝(z𝑚)

= 𝐷KL[𝑞𝜂(𝜑|x)‖𝑝(𝜑)] +
𝑀∑︁

𝑚=1

𝐷KL[𝑞𝜂(𝜖𝑚|x)‖𝑝(𝜖𝑚)]■

The final equation is derived by linear change of variable 𝜖𝑚 = z𝑚−𝑊𝑚𝜑𝑚.
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A similar derivation was also presented in [Antelmi et al., 2019] while both

proofs, indeed, approve the fact that KL divergence is additive for independent

distributions. ■

B.2.2 Proof of Lemma 3.1

Assuming isotropic multivariate Gaussian priors on the latent variables as

𝜑 ∼ 𝒩 (0, 𝜆−1
0 I), 𝜖𝑚 ∼ 𝒩 (0, 𝜆−1

𝑚 I) and specifying the approximate posteriors

as Gaussian distributed vectors with diagonal covariances results in closed form

solutions for the KL divergence terms [Kingma and Welling, 2013] as

𝐷KL[𝑞𝜂(𝜑|x)‖𝑝(𝜑)] =
1

2
𝜆0‖𝜇0‖2+

1

2

𝑑0∑︁
𝑖=1

(𝜆0 − log 𝜆0 − 1)

𝐷KL[𝑞𝜂(𝜖𝑚|x)‖𝑝(𝜖𝑚)] =
1

2
𝜆𝑚‖𝜇𝜖𝑚‖2+

1

2

𝑑𝑚∑︁
𝑖=1

(𝜆𝑚𝜎
2
𝑚𝑖 − log 𝜆𝑚𝜎

2
𝑚𝑖 − 1)

Splitting the terms in the KL divergence to those depending on the mean

variables and the remaining ones results

min
𝜇0

1

2
𝜆0‖𝜇0‖2 +

1

2

𝑀∑︁
𝑚=1

𝜆𝑚‖𝜇𝜖𝑚‖2 +𝒦

s.t. 𝜇𝜖𝑚 = 𝜇𝑚 −𝑊𝑚𝜇0, ∀𝑚 ∈ {1, ...,𝑀}

Now, solving this constraint optimization problem using the method of Lagrange

multipliers leads to the optimal minimizer

𝜇*
0 = (𝜆0I+

𝑀∑︁
𝑚=1

𝜆𝑚𝑊
⊤
𝑚𝑊𝑚)

−1(
𝑀∑︁

𝑚=1

𝜆𝑚𝑊
⊤
𝑚𝜇𝑚).

This provides an analytical approach to optimally recover 𝜇0 from the parame-

ters of the model.
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B.3 Extra experiments

B.3.1 Qualitative experiments

2-D embedding

Figures B.1 and B.2 depict the 2D t-SNE embeddings of the shared latent

representations for multi-view and multi-modal setting, respectively. They

verify that the representation of the images of different classes are well separated

in the shared latent space.

From B.1(e), the mean of residual error of the first view still contains the

categorical information which suggests that the discriminative performance

tasks based on the latent variable can be enhanced by employing some constrains

that enforce disentanglement in recovering process of the 𝜇0.
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Figure B.1: 2D t-SNE embedding of the samples of (a) shared representation
𝜑 ∼ 𝑞𝜂(𝜑|x, (b) residual error of the first view 𝜖1 ∼ 𝑞𝜂(𝜖1|x) and (c) residual error
of the second view 𝜖2 ∼ 𝑞𝜂(𝜖2|x). Also, 2D t-SNE embedding of the mean of (d)
shared representation 𝜇0, (e) residual error of the first view 𝜇𝜖1 and (f) residual
error of the second view 𝜇𝜖2. Multi-view setting is applied, i.e. only the primary
view is available at the test time so the equation (3.13) is used to recover 𝜇0.
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Figure B.2: 2D t-SNE embedding of the samples of (a) shared representation
𝜑 ∼ 𝑞𝜂(𝜑|x), (b) residual error of the first view 𝜖1 ∼ 𝑞𝜂(𝜖1|x) and (c) residual error
of the second view 𝜖2 ∼ 𝑞𝜂(𝜖2|x). Also, 2D t-SNE embedding of the mean of (d)
shared representation 𝜇0, (e) residual error of the first view 𝜇𝜖1 and (f) residual
error of the second view 𝜇𝜖2. Multi-modal setting is applied, i.e. both views are
available at the test time so the equation (3.12) is used for estimation of 𝜇0.

Disengagement of the shared and view specific factors

To quantify the disentanglement, we define the normalized orthogonality mea-

sure as

orth(Φ,𝐸) :=
‖Φ𝐸⊤‖𝐹√︀

‖𝐸𝐸⊤‖𝐹
√︀
‖ΦΦ⊤‖𝐹

where matrices {Φ,𝐸} are composed of the vectors of samples 𝜑, 𝜖.

This orthogonality measure is evaluated over the course of training and

plotted in figure B.3 for the first and the second view of the noisy MNIST dataset,

which show that VPCCA and VPCCA-2v models achieve more dissimilarity

between the shared and view-specific factors.
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(a) Orthogonality between 𝜑 and 𝜖1
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(b) Orthogonality between 𝜑 and 𝜖2

Figure B.3: Orthogonality measure between (a) shared representation and 1st view-specific
factor orth(Φ,𝐸1) (b) shared representation and 1st view-specific factor orth(Φ,𝐸2) where
the columns of Φ,𝐸𝑚 are drawn from 𝜑 ∼ 𝑞𝜂(𝜑|x) and 𝜖𝑚 ∼ 𝑞𝜂(𝜖𝑚|x), respectively, and
posteriors are evaluated on the validation set of noisy MNIST dataset.

B.3.2 Multimodal Yale-B with missing modalities at

test time

We repeat the experiments for multi-modal facial datasets when subsets of

modalities are missing and partial images are available at test time. These

two different setting are evaluated: I) 3 modalities (eye+ nose+ mouth) are

available at test time II) only one modality (eye) is available for downstream

task. Here, the canonical correlation in VPCCA, 𝑃𝑑0 , is built as NN function

of the available modalities for downstream task and a modification of equation

(3.12) is adopted for estimation of 𝜇0. The clustering results, compared in table

B.1, show that the VPCCA works better when more modalities are available

at test time while it is outperformed by VCCA-private in the case that most

of modalities are missing, which, in this case, demonstrate that the proposed

VPCCA can efficiently integrate higher number of modalities in learning richer

representation.

All modalities 3 modalities (eye+ nose+ mouth) 1 modality (eye)
ACC NMI ARI ACC NMI ARI ACC NMI ARI

VCCA-private 97.52 98.09 96.07 97.43 98.40 96.17 96.15 97.56 94.64
VPCCA 99.72 99.56 99.22 98.47 98.81 97.07 95.61 97.50 92.33

Table B.1: Comparison of clustering performance between VPCCA and VCCA for multi-modal facial
datasets when subset of modalities are missing. To estimate 𝜇0, here, the VPCCA uses a modified version
of equation (3.12) by dropping the terms whose views are missing at test time. The clustering performance
are averaged over 3 trails and the higher the better.
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B.4 Model architecture and training procedure

B.4.1 Two-view noisy MNIST experiments

The parameters of each algorithm are tuned through cross validation with

grid search over 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ {.0, .2} the variance of the shared representation 𝜑

𝜆−1

0 ∈ {100., 500., 2000., 5000.} and equal variance for residual errors 𝜖1, 𝜖2 in

range 𝜆−1

0 ∈ {8., 4., 2., 1., .5, .25, .125}. Results are averaged over 3 trails.

The dimensionality of the shared representation was 𝑑0 = 30 and the

dimensionality of the latent factors were 𝑑1 = 𝑑2 = 60.

Weight decay of 0.0001 was applied as the regularization for all the parameters

of NNs.

B.4.2 Multi-modal clustering experiments

Digits: The dimensionality of the shared representation was 𝑑0 = 30 and the

dimensionality of the latent factors were 𝑑1 = 𝑑2 = 60.

The parameters of each algorithm are tuned through cross validation with

grid search over 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ {.0, .2} the variance of the shared representation 𝜑

𝜆−1

0 ∈ {1., 5., 20., 100., 500., 2000.} and equal variance for residual errors 𝜖1, 𝜖2

in range 𝜆−1

0 ∈ {8., 4., 2., 1., .5, .25, .125}.

Yale-B facial components: The dimensionality of the shared repre-

sentation was 𝑑0 = 120 and the dimensionality of the latent factors were

𝑑1 = 𝑑2 = 160.

The parameters of each algorithm are tuned through cross validation with

grid search over 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ {.0, .2} the variance of the shared representation

𝜑 𝜆−1

0 ∈ {.2, 1., 5., 20., 100., 500., 2000.} and equal variance for residual errors

𝜖1, 𝜖2 in range 𝜆−1

0 ∈ {8., 4., 2., 1., .5, .25, .125}.

In both experiments a weight decay of 0.0001 was applied as the regulariza-

tion for all the parameters of NNs.
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Appendix C

Deep Generative Multi-view

Learning

C.1 Introduction

The problem of multi-view learning is studied extensively in the literature

and its merits has been demonstrated in extracting richer representation from

available multiple views at the training time [Chaudhuri et al., 2009] [Hardoon

et al., 2004] [Foster et al., 2008]. To capture nonlinearity in the model, one can

either use kernel methods or follow the recent growing path of the deep neural

network (DNN). Both of these methods have been explored in the literature

and researchers proposed some advanced two-view models [Hardoon et al.,

2004, Bach and Jordan, 2003] [Andrew et al., 2013]. Kernel based methods,

such as KCCA [Hardoon et al., 2004], require large memory to store a massive

amount of training data to use at the test time. To overcome this issue and

improve the kernel based method in terms of memory and speed, some kernel

approximation techniques based on random sampling of training data are

proposed in [Williams and Seeger, 2001] and [Lopez-Paz et al., 2014]. On the

other hand, the main advantage of the DNN over kernel based method is that,

its parametric model can be better trained with larger amount of data using

the fast stochastic optimization techniques.
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The proposed deep two-view methods can be mainly categorized in two

groups. On one hand, there are models inspired by auto-encoder, e.g. split

autoencoder (SplitAE) of [Ngiam et al., 2011], in which the deep autoencoders

are trained so that the reconstruction error of both views are minimized. In this

methods, the encoding network of both view are shared while each view has

its own (split) decoder network. On the other hand, another pathway is based

on canonical correlation analysis (CCA), such as deep CCA (DCCA) method

[Andrew et al., 2013] that extends the linear single layer CCA to deep CCA in

which the model parameters are estimated to maximize the cross correlation

between the projection of both views.

To combine the benefits of both deep auto-encoder (AE) and CCA for

multi-view datasets and hence enhance learned representation, the idea of

deep CCA-Auto encoder (DCCAE) is proposed in [Wang et al., 2015a]. This

method tries to optimize the following objective function that is combination

of reconstruction errors of two autoencoders and the canonical correlation

between the learned bottleneck features (the output of the deep encoders)

min
𝑊𝑓 ,𝑊𝑔 ,𝑊𝑝,𝑊𝑞 ,𝑈,𝑉

− 1
𝑇
trU𝑇𝑓(X)𝑔(Y)𝑇V

+ 𝜆
𝑇

𝑇∑︁
𝑖=1

(︀
‖x𝑖 − 𝑝(𝑓(x𝑖))‖2 + ‖y𝑖 − 𝑞(𝑔(y𝑖))‖2

)︀
s.t. 1

𝑇
U𝑇𝑓(X)𝑓(X)𝑇U = I

1
𝑇
V𝑇𝑔(Y)𝑔(Y)𝑇V = I

𝑢𝑇
𝑖 𝑓(X)𝑔(Y)𝑇𝑣𝑗 = 0 for 𝑖 ̸= 𝑗 (C.1)

Here, the functions {𝑓, 𝑔, 𝑝, 𝑞} are flexible nonlinear mappings modeled by

neural networks that are parameterized by the set of learnable parameters

{𝑊𝑓 ,𝑊𝑔,𝑊𝑝,𝑊𝑞}. 𝜆 > 0 is a trade-off parameter that controls the recon-

struction error and canonical correlation between the projected views in the

objective function (C.1). In this equation, CCA term tries to maximize the

mutual information between the projected views, 𝑓(x𝑖) and 𝑔(y𝑖), and AE loss

tries to minimize the reconstruction error between views and their projections.
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This approach was shown to outperform DCCA and SplitAE for classification

and clustering tasks in two-view application [Wang et al., 2015a].

On the other hand, DCCAE has some drawbacks that limits its applications.

Its main drawbacks are two folds. First, the objective function and the

constraints couples all the training samples through the (cross-)covariance

terms, this will block the stochastic optimization method (e.g. SGD) to be

applied here in its standard form. Nevertheless, it was shown in [Wang et al.,

2015b] that if the mini-batch size is large enough the stochastic gradient can

approximate the true gradient but still this requires very large mini-batch

sizes which imposes heavy computational complexity on the training algorithm.

Second, it does not estimate the hidden state and a model that can generate

the second view based on the observation from the primary (first) view. In

addition, the empirical studies showed that the canonical term of the objective

function (C.1) dominates in practice and hence the objective is less sensitive

to the reconstruction error; this in turn result in the trained autoencoders that

don’t reconstruct the views very well while mainly trying to learn projected

mapping U𝑇𝑓(X), V𝑇𝑓(Y) that are maximally correlated.

Wang et al. [2015a] also proposed a modification of their DCCAE method,

in which the constraints are relaxed so that the feature dimensions are no

longer required to be uncorrelated, the objective of this method, also called as

correlated autoencoder (CorrAE), is formulated as

min
𝑊𝑓 ,𝑊𝑔 ,𝑊𝑝,𝑊𝑞 ,𝑈,𝑉

− 1
𝑇
trU𝑇𝑓(X)𝑔(Y)𝑇V

+ 𝜆
𝑇

𝑇∑︁
𝑖=1

(︀
‖x𝑖 − 𝑝(𝑓(x𝑖))‖2 + ‖y𝑖 − 𝑞(𝑔(y𝑖))‖2

)︀
s.t. 1

𝑇
u𝑇
𝑖 𝑓(X)𝑓(X)𝑇u𝑖 =

1
𝑇
v𝑇
𝑖 𝑔(Y)𝑔(Y)𝑇v𝑖 = 1. (C.2)

This variation of the deep multi-view model is designed to examine the impor-

tance of the correlation among the learned feature dimensions by comparing its

performance with that of the original DCCAE method in some learning tasks.
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Deep Generative Multi-view (DGMV) model: On the other hand, it

was shown by White et al. [2012] and Yu et al. [2014] that simple linear CCA

can be expressed as a linear generative two-view form where the views are

generated as perturbed linear model of the latent representation 𝜑𝑖 as⎧⎪⎨⎪⎩x𝑖 = C𝜑𝑖 + 𝜖𝑖,

y𝑖 = E𝜑𝑖 + 𝜈𝑖

(C.3)

where the perturbation terms are Gaussian independent and identically dis-

tributed (i.i.d.) vectors 𝜖 ∼ 𝒩 (0,Σ𝜖) and 𝜈 ∼ 𝒩 (0,Σ𝜈). This model makes

the latent representation explicit and its joint model parameter estimation

and latent variable inference can be expressed as a regularized loss objective

function that can be reformulated as a convex optimization problem. We can

generalize (C.3) to nonlinear model resulting in the deep nonlinear generative

multi-view model ⎧⎪⎨⎪⎩x𝑖 = 𝑝(𝜑𝑖) + 𝜖𝑖,

y𝑖 = 𝑞(𝜑𝑖) + 𝜈𝑖

(C.4)

where the generative mappings 𝑝(𝜑𝑖), 𝑞(𝜑𝑖) can be modeled by deep neu-

ral networks parameterized by 𝑊𝑝,𝑊𝑞. Therefore, given the shared latent

representation 𝜑𝑖, two views can be generated by a non-linear mapping plus

independent Gaussian noises hence one can formulate the following regularized

loss objective function

min
𝑊𝑝,𝑊𝑞 ,Φ

1

𝑇

𝑇∑︁
𝑖=1

(︀
‖𝑥𝑖 − 𝑝(𝜑𝑖)‖2 + ‖𝑦𝑖 − 𝑞(𝜑𝑖)‖2

)︀
+ℛ(Φ), (C.5)

In this work, we tackle this deep multi-view subspace learning problem by

introducing auto-encoders as inference model.
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C.2 Problem Definition

As explained in the previous section, we prefer a deep multi-view network

that offers a model to explicitly infer the shared latent source that generates

both views and can predict the second view based on the available primary

view at the test time. To this end, we introduce two auto-encoder networks

with encoder (recognition) networks 𝑓(), 𝑔() that provide latent projected

views, 𝑓x𝑖
= 𝑓(x𝑖) and 𝑔y𝑖

= 𝑔(y𝑖), and the decoder (reconstruction) networks

𝑝(𝜑𝑖), 𝑞(𝜑𝑖) that reconstruct each view based on the latent representation. The

encoders and decoders can be modeled by deep neural networks with learnable

parameter matrices {W𝑓 ,W𝑔,W𝑝,W𝑞} that correspond to each deep model

function. Inspired by the generative interpretation of linear CCA (C.3), we add

a generative linear two-view layer, on top of auto-encoder in the latent space,

in order to obtain a shared latent representation 𝜑𝑖 for the pair of encoded

projected {𝑓x𝑖
, 𝑔y𝑖
}. Since the auto-encoders reconstruct each individual view,

the latent variable 𝜑𝑖 indeed provides a shared underlying representation of

both views in a deep nonlinear form. In the other words, the deep generative

two-view network (DGMV) can be expressed mathematically as the following

pairs of models ⎧⎪⎨⎪⎩x𝑖 = 𝑝(𝑓x𝑖
) + 𝜖𝑖,

y𝑖 = 𝑞(𝑔y𝑖
) + 𝜈𝑖

,

⎧⎪⎨⎪⎩𝑓x𝑖
= C𝜑𝑖 + 𝜖′𝑖,

𝑔y𝑖
= E𝜑𝑖 + 𝜈 ′

𝑖

(C.6)

where C,E are the factor loading matrices (matrices of basis) for each view

and the latent representations vectors 𝜑𝑖 are stacked in the matrix Φ. Figure

C.1 depicts the graphical representation of this model. Consequently, the deep

multi-view subspace learning problem can be formulated by the the following
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Figure C.1: Graphical represen-
tation of the deep generative two-
view model.

combined regularized objective function

min
W𝑓 ,W𝑔 ,W𝑝,W𝑞 ,C,E,Φ

𝜆
𝑇

𝑇∑︁
𝑖=1

‖x𝑖 − 𝑝(𝑓(x𝑖))‖2 + ‖y𝑖 − 𝑞(𝑔(y𝑖))‖2⏟  ⏞  
autoencodr objective terms

+ 1
𝑇

𝑇∑︁
𝑖=1

ℒ1 (C𝜑𝑖; 𝑓(x𝑖)) + ℒ2 (E𝜑𝑖; 𝑔(y𝑖)) + 𝜆𝑟

𝐾∑︁
𝑗=1

ℛ1(Φ𝑗:)ℛ2(C:𝑗,E:𝑗)⏟  ⏞  
linear two-view objective terms

(C.7)

Here, {ℒ1, ℒ2} are the loss functions that measure the divergences between the

latent projected views {𝑓x𝑖
, 𝑦y𝑖
} and their corresponding factorized estimates

{C𝜑𝑖,E𝜑𝑖}. These losses are assumed to be convex in their first arguments,

where different noise assumptions result different loss functions, for instance the

i.i.d. Gaussian noise assumption amounts to ℓ2 losses. The regularizer terms,

ℛ1(Φ𝑗:),ℛ2(C:𝑗,E:𝑗), capture special structures on the factors loading matrices

and the latent features which are controlled by constant factor 𝜆𝑟. On the other

hands, the loss functions that measure the fitness error between each view and

its reconstruction by the auto-encoder are modeled by ℓ2 losses. Minimizing

these loss terms results the latent projections that best reconstruct each view.

The parameter 𝜆 > 0 balances the trade-off between the auto-encoder loss and

the linear two-view loss.
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C.2.1 Deep multi-view with conditionally independent

views

One important assumption in multi-view learning is that the views are condition-

ally independent given the shared latent representation [Yu et al., 2014]. This

property is crucial in some applications aiming to recover a natural latent repre-

sentation. As explained in [White et al., 2012], this property can be encouraged

by selecting regularizer terms of the form ℛ2(C:𝑗,E:𝑗) = max{‖C:𝑗‖2, ‖E:𝑗‖2}

in the optimization objective (C.7). Using this regularizer, the basis of recon-

struction models of each view are individually constrained and don’t compete

against each other to obtain their own share in reconstructing the views x𝑖, y𝑖,

so this regularizer better respects the conditional independence of the views.

Here, we select ℛ1(Φ𝑗:) = ‖Φ𝑗:‖2 to encourage row-wise sparsity which, in turn,

results in low-rank representation. Subsequently, the two-view objective terms

in equation (C.7) can be reformulated as a convex optimization problem in the

parameters of linear two-view model, {C,E,Φ}, [White et al., 2012, Yu et al.,

2014]. Although, the combined objective function of the deep generative model

(C.7) is not convex in the parameters of deep networks, we found this convex

reformulation of the linear two-view layer to be beneficial for the training of

deep two-view model and final latent variable in practice.

C.2.2 Advantages of the proposed model

∙ As mentioned above, the proposed method provide a model for infer-

ring the hidden representation underlying both views and subsequently

predicting the second view based on the available primary view at the

test time. This is in contrast to CCA-based methods, such as DCCAE,

that don’t directly offer a model for generating samples from the latent

variable so it is difficult to reconstruct one view based on the other one

[Wang et al., 2015a].

∙ In addition, as opposed to CCA-based methods that require sufficiently

large batch size in order to estimate the whitening matrices in the
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constraints and the gradients, the average loss function (empirical risk) in

(C.7) exhibits the standard summation form that enables random sampling

for stochastic gradient calculation therefore the stochastic optimization

algorithms can be readily employed here to optimize for deep network

parameters.

∙ In contrast to the DCCAE that is limited to standard CCA formulation

on the projected views, our proposed model is more flexible to include

different types of losses for the two-view objective formulation to capture

different properties of latent variables and hence is able to learn more

complex models.

∙ Also, dissimilar to CCA based methods that are limited to two views,

this generative model can be naturally extended to datasets with more

than two views available at the training [Guo, 2013], so it can better

integrate different information related to the same source to enhance

representation learning.

∙ Additionally, it is expected that the reconstruction losses are more in-

volved in deep generative multi-view training compared to DCCAE since

all the objective terms in (C.7) has the form of losses. So, one might ex-

pect that other forms of losses can be replaced for the ℓ2 of reconstruction

error in the objective function (C.7) to improve reconstruction ability of

the model; the property that doesn’t seem practical in the DCCAE as its

CCA term tends to dominate in practice while ignoring the reconstruction

terms which in turn results in poor reconstructed views. This property

will be investigated in the experimental studies in section C.3.

∙ Similar to the deep variational CCA model [Wang et al., 2016], we can

introduce private variables that capture view-specific structures in the

datasets and disentangle the underlying shared and private information

in each view.

The combination of the aforementioned advantages, make the proposed deep

generative two-view model a powerful and flexible candidate in multi-view set-
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tings with different downstream goals such as classification, subspace clustering,

speech recognition and word pair semantic similarity. In the following section

we empirically study the performance of the proposed method.

C.3 Experiments

Experimental design For the experiments, we used the two-view noisy

digits datasets of [Wang et al., 2015a] created based on MNIST dataset that

consists of grayscale digit images of size 28 × 28 pixels. To synthesize the

views, the pixel values are scaled to range [0, 1]. The first view of the dataset

is generated by rotating each image at angles randomly sampled from uniform

distribution 𝒰(−𝜋/4, 𝜋/4) and the second view is selected from a different

image of the same identity as in the first view and a random uniform noise is

added, then the final value is truncated to remain in range [0, 1]. Following this

procedure, both views are just sharing the same identity (label) of the digit

but not the style of the handwriting as they are based on arbitrary images in

the same class. The training set is divided into training/validation subsets of

length 50𝐾/10𝐾 and the performance is measured on the 10𝐾 images in the

test set. This noisy MNIST two-view dataset was used in [Wang et al., 2015a]

to evaluate the performance of the multi-view model.

To make a fair comparison, we used neural network architecture for the

auto-encoders with the same capacity as the one used in [Wang et al., 2015a].

Accordingly, for the deep network models, the encoding networks are composed

of three fully-connected nonlinear layers of size 1024 units and the last linear

layer of size 𝐾 where 𝐾 is the dimensionality of the final mapping of the

encoding network. The decoding networks consist of three fully-connected

layers of 1024 nonlinear units with final layer of size 784 that reconstruct

the original images. Sigmoid function is used as the nonlinearity in the deep

auto-encoders. Here, we used sigmoid gate function for all the hidden units of

the deep networks. In order to prevent over-fitting, we also applied stochastic

drop-out to all the layers as regularization techniques.

In the experiments, the downstream task is classification and the misclas-
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Method Classification error (%)

Linear CCA (K=10) 19.6
SpliAE (K=10) 11.9
CorrAE (K=10) 12.9
DistAE (K=20) 16.0
KCCA (K=10) 5.1
DCCA (K=10) 2.9
DCCAE (K=10) 2.2
VCCA 3.0
VCCA-private 2.4
DGMV (K=50) 1.32
DGMV (K=70) 1.30

Table C.1: Classification error of different multi-view learning algorithms on a two-
view data set generated based on the MNIST digit images. The results of DGMV
method are averaged over 3 rials. The performance of the DGMV is compared against
the following benchmark methods: Linear CCA: linear single layer CCA, SplitAE:
split autoencoder with Sigmoid gates [Ngiam et al., 2011] , DCCA: deep CCA with
Sigmoid gates [Andrew et al., 2013], Randomized KCCA: randomized kernel CCA
approximation with Gaussian RBF kernels and random Fourier features [Lopez-Paz
et al., 2014], CorrAE: deep correlated auto-encoder with Sigmoid gates (C.2) [Wang
et al., 2015a], DistAE: deep minimum-distance auto-encoder with Sigmoid gates
[Wang et al., 2015a], DCCAE: deep CCA-Auto encoder with Sigmoid gates (C.1)
[Wang et al., 2015a], VCCA: deep variational CCA with ReLU gates [Wang et al.,
2016], VCCA-private: deep variational CCA with an extra pair of latent variables
for modeling the private information within each view. ReLU gates are used as the
nonlinearities in all the networks [Wang et al., 2016], The performance results of the
benchmark methods are from [Wang et al., 2015a, 2016].

sification rate is measured as the performance metric. For that goal, the

one-versus-one linear SVM classification algorithm is applied on the shared

latent representation 𝜑 of the proposed models or the projected mappings of

the CCA based methods. It is worth emphasizing that the proposed DGMV

model is able to infer the shared underlying representation of both views based

on both encoding projections {𝑓x𝑖
, 𝑔y𝑖

}. The shared latent representation

is not naturally available in the CCA-based methods which are only able to

construct the projection of each individual view. To tune the parameters

of the SVM algorithm, cross-validation procedure is employed selecting the

best performing model, averaged over 3 trials, on the validation set and the

final classification error is evaluated on the test set. For the proposed deep
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multi-view models, we used the ℓ2 loss function for both ℒ1,ℒ2 in the objective

function (C.7). To train the deep generative multi-view (DGMV) model, the

stochastic gradient descent is used for learning the parameters of the deep

networks and accelerated proximal gradient descent [Karami et al., 2017] is

employed for optimization of the latent two-view model while we alternatively

switch between training of latent multi-view model and the deep AEs after

each epoch of training while keeping the other set fixed. Furthermore, we

practically found that the convex reformulation of the linear two-view model

results in better performance than non-convex optimization algorithm for the

training of the latent two-view model and inference of shared latent variable.

Similar to [Wang et al., 2015a], deep auto-encoders are pre-trained using the

layer-wise training method of restricted Boltzmann machines (RBMs) [Hinton

and Salakhutdinov, 2006]. The parameters of each algorithm are tuned through

cross validation with grid search.

Classification performance of different methods are presented in Table C.1 in

bit error rate where the best dimensionality of latent variable for each method

is reported in parenthesis. The results highlight that DGMV outperform the

available methods in terms of the classification performance. In CCA based

methods, the dimensionality of the projected latent variable, 𝐾, is selected

from the set {5, 10, 20, 30, 50} in [Wang et al., 2015a] and the best results are

achieved by 𝐾 = 10 while in our experiments we found that DGMV can benefit

from larger projected latent variable size and it achieves better performance

with larger 𝐾.

In order to evaluate the learning behavior of the methods, we also compare

the running time of different learning algorithms in CPU seconds over the

rounds (epochs) of optimization in Figure C.2(a). To make a fair comparison,

all experiments were rerun on the same machine using Matlab. Comparing

the computation times, we can see that the training of the proposed DGMV

methods is faster than DCCAE and while the running time of DCCA is shorter

per epoch but it needs more epochs of training (50 epochs versus 14 epochs

used for DCCAE and deep two-view models) until it converge to a reasonable

result.
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(a) (b) (c)

Figure C.2: (a) Running time of different learning algorithms over the rounds (epochs)
of SGD optimization, (b) histogram of one dimensions of the primary projected view
𝑓(𝑥𝑖) of DCCAE and (c) histogram of one dimensions of the primary projected view
𝑓(𝑥𝑖) of DGMV.

Moreover, the histograms of projected view, depicted in Figure C.2(b) and

C.2(c), confirm that the outputs of the encoders in DCCAE are not Gaussian

distributed while CCA is known to work well in the Gaussian setting while on

the other hand, the histograms of projected view of deep generative multi-view

model in Figure C.2(c) shows that its distribution is approximately Gaussian.

C.3.1 Reconstruction Performance

To examine the sample generation behavior of the proposed method, the

reconstruction performance of the proposed methods is also evaluated and

compared against that of DCCAE. First, the reconstruction error of each view

is evaluated for different methods with latent variable dimensionality of 𝐾 = 10.

As the validation fitness over the course of training in Figure C.3 illustrates,

DGMV tends to decrease the reconstruction errors of both views as the training

algorithm progresses while DCCAE leads to increased reconstruction error to

achieve smaller canonical correlation among the projected views. This empirical

study shows that DCCAE sacrifices the reconstruction ability and focuses on

canonical correlation term in order to achieve good discrimination performance

while accurate reconstruction of input signal is highly desirable in practice.

Also to illustrate the reconstruction capability of the proposed method,

some training samples of digits in both views and their reconstructed images are

depicted in Figures C.4(a) and C.4(b) each reconstruction image is generated

by its own autoencoder network. Figure C.4(c) depicts the predicted images of
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(a) validation fitness of the 1st view

(b) validation fitness of the 2nd view

Figure C.3: Reconstruction fitness of both views for different learning algorithms
over the rounds (epochs) of optimization.

the second view based on the 1st view using the combined network: 1st encoder

(𝑓()) → latent linear multi-view on the encoded projections→ 2nd decoder (𝑞())

. Here, the network is trained with latent variable dimensionality of 𝐾 = 70.

These figures shows the reconstruction capability of DGMV method where the

generated samples in the input space can denoise the noisy observation, the

ability that was missing in DCCA and DCCAE. More specifically, one can

observe from Figure C.4(c) that the rotations of images in the first view are

eliminated from the generated images in the second view and a prototypical

image of same digit is reconstructed by feeding a sample from that digit class

to the network. This observation, which is also reported in [Wang et al., 2016]

for variational CCA (VCCA) model, can be justified by the fact that the 2nd

view only contains the class information of the 1st view but not its style and

the rotation so the trained autoencoder of the second view (AE2) will ignore
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(a) (b) (c)

Figure C.4: (a) Samples of the training dataset in the first views and their re-
constructed images generated by autoencoder network of view 1 (AE1) depicted in
columns 1 and 2, respectively. (b) Samples of the training dataset in the first views
and their reconstructed images generated by autoencoder network of view 2 (AE2)
depicted n columns 1 and 2, respectively. (c) Column 3 is the predicted images of the
second view based on the samples from the first (primary) view of the test dataset in
column 1. The second column shows the observed noisy samples of the second view.

the style information of the 1st view.

C.4 Conclusion and Discussion

In this work, a new deep generative multi-view model is proposed that extends

the linear generative interpretation of classical CCA to a nonlinear deep

architecture. The proposed deep multi-view network provides a model for

inferring the hidden representation underlying both views that subsequently

provides better class separation and also reconstruction. Furthermore, training

of the model parameters enjoys the stochastic optimization algorithms that

provide fast and efficient learning. This deep network can generate samples in

the input space, so it can be employed to reconstruct one view based on available

primary view at the test time. In addition to its denoising capability, this

method also showed the potential to suppress more complex forms of distortion,
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such as random rotation, from the signal. While CCA based methods achieve

good discrimination performance at the expense of sacrificing the reconstruction

error, the proposed method offers both class separation and sample generation

in a more flexible way.
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Appendix D

Linear Dynamical System

Identification

D.1 Proof of Theorems 4.1 and 4.2

Proof: [Theorem 4.1] Let 𝑥 = [𝑥1;𝑥2] 𝑦 = [v1;v2] then the proximal operator

of 𝑓(𝑥) = 𝜆max(‖𝑥1‖2, ‖𝑥2‖2) can be expressed as

𝑢 = prox𝑓(v) = argmin
𝑥

1

2
‖𝑥− 𝑦‖22 + 𝑓(𝑥)

= arg min
𝑥1,𝑥2

1

2
‖𝑥1 − v1‖22 +

1

2
‖𝑥2 − v2‖22

+ 𝜆max(‖𝑥1‖2, ‖𝑥2‖2). (D.1)

Now, splitting the search space into two subspace 𝑆1 = {𝑥|‖𝑥1‖2 ≥ ‖𝑥2‖2}

and its complement space 𝑆2 = {𝑥|‖𝑥2‖2 ≥ ‖𝑥1‖2}. If we confine our search

to subspace 𝑆1 the optimization problem (D.1) can be reformulated as the

following convex constraint problem

min
𝑥1,𝑥2

1

2
‖𝑥1 − v1‖22 +

1

2
‖𝑥2 − v2‖22 + 𝜆‖𝑥1‖2.

subject to ‖𝑥1‖2 ≥ ‖𝑥2‖2 (D.2)

According to KarushKuhnTucker (KKT) optimality conditions for convex
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problem [Boyd and Vandenberghe, 2004], a point 𝑥* = [𝑥*
1;𝑥

*
2] is optimal point

of this optimization problem if the following conditions are satisfied:

(𝑥*
2 − v2) + 𝜈𝑥*

2/‖𝑥*
2‖2 = 0

(𝑥*
1 − v1) + 𝜆𝑥*

1/‖𝑥*
1‖2 − 𝜈𝑥*

1/‖𝑥*
1‖2 = 0

‖𝑥*
1‖2 − ‖𝑥*

2‖2 ≥ 0

𝜈(‖𝑥*
1‖2 − ‖𝑥*

2‖2) = 0

𝜈 ≥ 0 (D.3)

where 𝜈 is the Lagrange multiplier for the inequality constraint. Solving (D.3)

for 𝑥*
1, 𝑥*

2 and 𝜈 one can readily obtain

⎡⎣𝑥*
1 = v1 *max{1− 𝜈

‖v1‖ , 0}

𝑥*
2 = v2 *max{1− 𝜆−𝜈

‖v2‖ , 0}

⎤⎦ (D.4)

According to the slackness condition () if ‖𝑥*
1‖2 − ‖𝑥*

2‖2 ≥ 0 then 𝜈 = 0 or if

𝜈 > 0 then ‖𝑥*
1‖2 = ‖𝑥*

2‖2. Therefore the optimal 𝜈 can be obtained as⎧⎪⎪⎨⎪⎪⎩
𝜈 = 0 if ‖v1‖+ 𝜆 < ‖v2‖

𝜈 = .5(‖v1‖ − ‖v2‖+ 𝜆) if ‖v1‖ ≤ ‖v2‖ ≤ ‖v1‖+ 𝜆

Hence, the optimum solution under 𝑆1 is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ 𝑥*
1 = v1

𝑥*
2 = v2 *max{1− 𝜆

‖v2‖ , 0}

⎤⎥⎦ if ‖v1‖+ 𝜆 < ‖v2‖

⎡⎢⎣𝑥*
1 = v1 *max{1− 𝜈

‖v1‖ , 0}

𝑥*
2 = v2 *max{1− 𝜆−𝜈

‖v2‖ , 0}

⎤⎥⎦ if ‖v1‖ ≤ ‖v2‖ ≤ ‖v1‖+ 𝜆

(D.5)

We can repeat the same approach to obtain the optimal solution for the

complement subspace 𝑆2. ■
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Lemma D.1 Let 𝐺𝜆𝑓 (𝑥, 𝑣) :=
1
2
‖𝑥−𝑣‖22+𝜆𝑓(𝑥) therefore the Moreau envelope

of function 𝜆𝑓 is defined as M𝜆𝑓 (v) := min𝑥 𝐺𝜆𝑓 (𝑥, 𝑣) [Parikh and Boyd, 2013].

a) M𝜆𝑓 (v) = 𝐺𝜆𝑓 (prox𝜆𝑓(v), 𝑣)

b) If 𝑓(𝑥) = ‖𝑥‖2𝑣 = max(‖𝑥1‖2, ‖𝑥2‖2) we have

M𝜆‖.‖2𝑣(v) = max
0≤𝛾≤1

M𝜆𝛾‖.‖2(v1) + M𝜆(1−𝛾)‖.‖2(v2) (D.6)

Proof: a) This is simply follows from the definition of proximal operator.

b) We can simply show that

‖𝑥‖2𝑣 = max
0≤𝛾≤1

(𝛾‖𝑥1‖2 + (1− 𝛾)‖𝑥2‖2)

then its Moreau envelop is

M𝑅𝑐(v)(v) =min
𝑥1,𝑥2

1

2
‖𝑥1 − v1‖22 +

1

2
‖𝑥2 − v2‖22

+𝜆 max
0≤𝛾≤1

(𝛾‖𝑥1‖2 + (1− 𝛾)‖𝑥2‖2)

= max
0≤𝛾≤1

min
𝑥1

1

2
‖𝑥1 − v1‖22 + 𝜆𝛾‖𝑥1‖2

+min
𝑥2

1

2
‖𝑥2 − v2‖22 + (1− 𝛾)𝜆‖𝑥2‖2

= max
0≤𝛾≤1

M𝜆𝛾‖.‖2(v1) + M𝜆(1−𝛾)‖.‖2(v2)

■
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Proof: [Theorem 4.2] The Moreau envelope of 𝑅𝑐(v) is

M𝑅𝑐(v)(v) = min
𝑥1,𝑥2

1

2
‖𝑥1 − v1‖22 +

1

2
‖𝑥2 − v2‖22

+ 𝜆 max
0≤𝛾≤1

(𝛾‖𝑥1‖2 + (1− 𝛾)‖𝑥2‖2) + 𝜈1𝑅1(v1) + 𝜈2𝑅2(v2)

= max
0≤𝛾≤1

min
𝑥1

1

2
‖𝑥1 − v1‖22 + 𝜆𝛾‖𝑥1‖2 + 𝜈1𝑅1(v1)

+ min
𝑥2

1

2
‖𝑥2 − v2‖22 + (1− 𝛾)𝜆‖𝑥2‖2 + 𝜈2𝑅2(v2)

= max
0≤𝛾≤1

M𝜆𝛾‖.‖2+𝜈1𝑅1(v1) + M𝜆(1−𝛾)‖.‖2+𝜈2𝑅2(v2)

(D.7)

Let ℎ1(v1) := 𝜆𝛾‖v1‖2+𝜈1𝑅1(v1) and ℎ2(v) := 𝜆(1−𝛾)‖v2‖2+𝜈2𝑅2(v2). From

[Haeffele et al., 2014, Theorem 3], we know that proxℎ1
(v1) = prox𝜆𝛾‖.‖2(prox𝜈1𝑅1

(v1))

and proxℎ2
(v2) = prox𝜆(1−𝛾)‖.‖2(prox𝜈2𝑅2

(v2)), and so

Mℎ1(v1) = M𝜆𝛾‖.‖2(prox𝜈1𝑅1
(v1))

Mℎ2(v2) = M𝜆(1−𝛾)‖.‖2(prox𝜈2𝑅2
(v2)) (D.8)

Then based on (D.7) and (D.8), we obtain

M𝑅𝑐(v)(v) = max
0≤𝛾≤1

M𝜆𝛾‖.‖2(prox𝜈1𝑅1
(v1))

+M𝜆(1−𝛾)‖.‖2(prox𝜈2𝑅2
(v2)) (D.9)

Finally, based on above equation and (D.6), we conclude the following compo-

sition rule for

M𝑅𝑐(v)(v) = M𝜆‖.‖2𝑣([prox𝜈1𝑅1
(v1); prox𝜈2𝑅2

(v2)])

and according to Lemma D.1 the proximal operator is

prox𝑅𝑐
(v) = prox𝜆‖.‖2𝑣([prox𝜈1𝑅1

(v1); prox𝜈2𝑅2
(v2)]).
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■

D.2 Experimental results for discrete value time

series

One of the major advantages of formulation equation 4.7 is its natural flexibility

to encompass any convex loss function such as the Bregman divergences that

associate with exponential family distributions and can express a broad range

of data property with non-linear transfers. An application that gains benefits

from the aforementioned property is to model the count data process with

generalized LDS model and consequently adopting the two view formulation

to identify the model parameters. An integer-valued stochastic process, that

explains the number of occurrence of one phenomenon, can be properly modeled

by Poisson distribution [Macke et al., 2015]. Therefore, the LDS with Poisson

distributed observation can be expressed as:

𝜑𝑡+1 = A𝜑𝑡 + 𝜂𝑡

z𝑡 = f(C𝜑𝑡)

P(x𝑖,𝑡|z𝑖,𝑡) =
1

x𝑖,𝑡!
(z𝑖,𝑡)

x𝑖,𝑡 exp(−x𝑖,𝑡) (D.10)

where f(𝜃) = exp(𝜃). The exponential mapping is not only a natural choice

in applications such as neural spike-rate modeling, as explained in [Macke

et al., 2015], it also matches with the transfer function associated with the

Poisson distribution. Therefore, the negative log-likelihood loss for this model

can be characterized by the Bregman divergence, defined as 𝐷𝐹 (ẑ‖z) :=

𝐹 (ẑ) − 𝐹 (z) − f(z)⊤(ẑ − z) where 𝐹 (𝜃) = 1⊤ exp(𝜃) (f(𝜃) = exp(𝜃)) is

potential (transfer) function corresponding to Poisson distribution.

In Table 3, we compare the performance of the LDS-DV method against

the standard N4SID and EM for synthetic time series setting.

For boolean setting, data are sampled from Bernoulli distribution whose

mean is changed according to non-linear transfer function of the LDS model
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Table 3: Synthetic time series

Bernoulli d=5 , k=3 Bernoulli d=8 , k=6 Bernoulli d=16 , k=9 Poisson d=5 ,k=3 Poisson d=8 , k=6

𝐺𝑂𝐹𝑏 Time 𝐺𝑂𝐹𝑏 Time 𝐺𝑂𝐹𝑏 Time 𝐺𝑂𝐹𝑝 Time 𝐺𝑂𝐹𝑝 Time
LDS-MV 0.66±0.01 3.03 0.59±0.01 2.40 0.51±0.01 2.52 0.59±0.02 0.61 0.51±0.02 1.70
N4SID 0.77±0.01 1.01 0.82±0.01 1.68 0.75±0.01 4.63 1.40±0.21 0.36 1.59±0.33 0.49
EM 0.75±0.01 2.46 0.67±0.01 4.61 0.63±0.01 24.17 1.60±0.34 1.83 2.53±0.60 2.48

Table D.1: Table of prediction performance for binary-values stochastic process.
The first column of each dataset is the average goodness-of-fit (GOF) for one step
prediction with standard error and the second column is the algorithm runtime in
CPU seconds. The best GOF according to pairwise t-test with significance level of
5% is highlighted.

where sigmoid transfer function f(𝜃) = (1+exp(−𝜃))−1 is used [Banerjee et al.,

2005]. Each test case is averaged over 100 data sequences where data are

generated similar to synthetic setting S1 of section 4.5. For Poisson setting,

data are sampled based on model equation D.10 where the final results averaged

over 30 data sequences.

Goodness-of-fit for the Bernoulli distribution is the misclassification er-

ror: GOF𝑏 = 1
𝑇𝑑

∑︀𝑇𝑡𝑒𝑠𝑡

𝑡=1 ‖𝑦𝑡 ̸= 𝑔(ẑ𝑡)‖1 , 𝑔(𝜃) = I𝜃≥0.5. And for the Poisson

distribution, we define goodness-of-fit as GOF𝑝 = 1
𝑇𝑑

∑︀𝑇𝑡𝑒𝑠𝑡

𝑡=1 ‖𝑦𝑡 − ℎ(ẑ𝑡)‖1 ,

ℎ(𝑧) = mode(𝑃 (𝑧)) = max𝑥 𝑝(𝑥|𝜇 = 𝑧).

This results are just some primitive results to show the capability of the

proposed method in modeling generalized-LDS models.
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