

Master of Science in Internetworking

Department of Electrical and Computer Engineering

Exploiting SSL/TLS Vulnerabilities in Modern

Technologies

Supervisor:

Mr. Michael Spaling

Presented by:

Simreen Kaur Matharu

Fall 2020 – Winter 2021

i

Table of Contents

Abstract .. viii

Chapter 1 The Basics of Cryptography .. 1

1.1 What is Cryptography? .. 2

1.2 Types of Cryptographic Techniques .. 3

1.2.1 Secret Key Cryptography (SKC) ... 3

1.2.2 Public Key Cryptography (PKC): ... 3

1.2.3 Hash Functions.. 4

1.3 Symmetric Encryption [8].. 5

1.3.1 Classification of Symmetric Cryptography .. 6

1.4 Asymmetric Encryption [9] ... 8

1.4.1 Classification of Asymmetric Cryptography .. 8

1.5 Public Key Infrastructure [4] ... 9

Chapter 2 The History of SSL/TLS ... 10

2.1 Overview of SSL/TLS ... 11

2.2 Introduction to Secure Socket Layer Protocol ... 12

2.2.1 SSL Architecture ... 12

2.2.2 Birth of SSL 1.0 .. 14

2.2.3 The rise of SSL 2.0 ... 15

ii

2.2.4 Why is SSL 2.0 deprecated? ... 15

2.2.5 Upgrade to SSL 3.0 ... 16

2.2.6 Strengths of SSL 3.0 ... 16

2.2.7 Why is SSL 3.0 deprecated? ... 17

2.3 Introduction to Transport Layer Protocol .. 18

2.3.1 TLS Architecture .. 18

2.3.2 Origin of TLS 1.0 .. 20

2.3.3 The case of fraudulent Microsoft certificates ... 20

2.3.4 Deprecation of TLS 1.0... 21

2.3.5 Upgrade to TLS 1.1... 22

2.3.6 Companies disabling TLS 1.0/TLS 1.1? ... 22

2.3.7 Deprecation of TLS 1.1... 23

2.3.8 Enabling TLS 1.2 in your Internet browser .. 24

2.3.9 Why leave TLS 1.2? ... 25

2.3.10 Is TLS 1.3 the solution? .. 26

2.3.11 Advantage of TLS 1.3 over TLS 1.2... 27

Chapter 3 Attacks in SSL/TLS .. 28

3.1 Timeline of the attacks ... 29

3.2 Browser Exploit Against SSL/TLS (BEAST) ... 30

3.2.1 Working of the BEAST attack .. 31

3.2.2 How to mitigate the BEAST attack? ... 32

iii

3.3 Compression Ratio Info-Leak Made Easy (CRIME) ... 33

3.3.1 Working of the CRIME Attack ... 34

3.3.2 How to mitigate the CRIME attack? ... 35

3.4 Lucky13 ... 36

3.4.1 Working of the Lucky13 attack .. 36

3.4.2 How to mitigate the Lucky13 attack? ... 36

3.5 Heartbleed Attack .. 37

3.5.1 Working of the Heartbleed attack ... 37

3.5.2 How to mitigate the Heartbleed attack? .. 38

3.6 Padding Oracle on Downgraded Legacy Encryption (POODLE) 39

3.6.1 Working of the POODLE attack ... 40

3.6.2 How to mitigate the POODLE attack?.. 40

3.7 Factoring RSA Export Keys (FREAK).. 41

3.7.1 Working of the FREAK attack ... 42

3.7.2 How to mitigate the FREAK attack? .. 43

3.8 ZOMBIE POODLE ... 44

3.8.1 Difference between POODLE and ZOMBIE POODLE attack 44

3.8.2 Working of the ZOMBIE POODLE attack .. 45

3.8.3 How to mitigate the ZOMBIE POODLE attack? ... 45

Chapter 4 Performing the HEARTBLEED attack ... 46

4.1 HEARTBLEED Attack .. 47

iv

4.1.1 Objective ... 47

4.1.2 How to perform the attack?... 47

4.1.3 Where is the bug in the Heartbleed attack? .. 49

4.1.4 Was the Heartbleed attack successful? ... 50

Chapter 5 Performing the FREAK attack .. 51

5.1 FREAK Attack ... 52

5.1.1 Objective ... 52

5.1.2 How to perform the attack?... 52

5.1.3 Understanding the working of the attack .. 52

5.1.4 Cracking 256 - bit RSA key .. 56

5.1.5 Was this FREAK attack successful? ... 59

Chapter 6 Conclusion ... 60

6.1 Conclusion ... 61

References .. 62

v

List of Figures

Figure 1.1 Symmetric key cryptography [5] .. 3

Figure 1.2 Public-key cryptography [6] ... 4

Figure 1.3 Hash function [7] .. 4

Figure 2.1 Evolution of SSL/TLS [11] .. 11

Figure 2.2 SSL architecture [12] .. 12

Figure 2.3 SSL handshake protocol exchange [2] ... 13

Figure 2.4 Secure connection using SSL [14] ... 15

Figure 2.5 TLS architecture [19] ... 18

Figure 2.6 TLS handshake protocol exchange [20] ... 19

Figure 2.7 Microsoft logo [23]... 21

Figure 2.8 Deprecation of TLS 1.0/TLS 1.1 [24] .. 22

Figure 2.9 TLS versions usage on Microsoft Edge [26] .. 25

Figure 2.10 TLS1.3 handshake [27] .. 26

Figure 3.1 Analysis of scanned web servers and their vulnerabilities [29] 30

Figure 3.2 Crime injection [30] ... 33

Figure 3.3 Client HTTP request [15] ... 34

Figure 3.4 Modified HTTP request by attacker [15] ... 34

Figure 3.5 Heartbeat packets [34] .. 37

Figure 3.6 Heartbleed attack. [36] ... 38

Figure 3.7 Poodle attack [37] ... 39

Figure 3.8 Freak attack [40] ... 41

Figure 3.9 Freak vulnerability (The Washington Post) [43].. 42

Figure 3.10 NSA website vulnerable to the Freak attack [43]... 43

vi

Figure 3.11 Changes in SSL labs [46] ... 44

Figure 4.1 Successful Heartbleed attack. ... 48

Figure 4.2 Server is vulnerable to the Heartbleed attack. .. 48

Figure 4.3 Target is vulnerable to Heartbleed attack. .. 49

Figure 5.1 RSA 512-bits generated online [51] ... 54

Figure 5.2 Running msieve to factorize modulus ‘n’ .. 55

Figure 5.3 Msieve cannot factorize more than 120 digits .. 56

Figure 5.4 RSA 256-bits generated online [51] ... 57

Figure 5.5 Prime values of modulus ‘n’... 58

Figure 5.6 Decryption exponent obtained. ... 59

vii

List of Tables

Table 1.1 Symmetric encryption protocols .. 7

Table 3.1 Timeline of SSL/TLS attacks .. 29

Table 5.1 RSA 512-bits keys generated online (in hexadecimal) [51] 53

Table 5.2 RSA 512 – bits keys converted into decimal [53] ... 55

Table 5.3 RSA 256-bits generated online [51] .. 56

Table 5.4 RSA 256 – bits keys converted into decimal [53] ... 58

viii

Abstract

As the Internet is evolving, transporting information through the Internet requires security to

be an aspect to deal with. In a typical distribution, all of the traffic transmitted over the public

network (Internet) is secured, but security practice states that the internal traffic must also be

secured. If an attacker gains access to the hosts' resources and compromises any service, they

must not easily capture the confidential data. For years, Secure Socket Layer/Transport Layer

Security (SSL/TLS) has been the encryption protocols that encrypt the data-in-transit to ensure

the data remains confidential, and these web-applications aim to provide public key certificate

based on authentication, secure session key establishment and confidentiality.

The primary goal of the SSL/TLS protocol is to provide data integrity and privacy between

communicating applications. A large number of e-commerce applications, such as banking,

shopping, rely heavily on the strength of SSL/TLS protocol, and they are used along with other

protocols such as HTTP6, SMTP, etc. A security hole in these protocols makes the

communication channel vulnerable to various attacks, which can cause mental or physical

misfortune to a user. Several versions of SSL/TLS have been proposed, TLS 1.3 being the

latest version and replacing all of its predecessors. The existing versions and the algorithms

used have vulnerabilities that can be used to launch an attack.

This paper discusses the vast topic of cryptography [1], including the principle of

cryptography, different techniques of encryption, types of keys etc., the evolution of SSL/TLS

and their vulnerabilities [2], methods to mitigate the standard attacks. Performing a lab to

demonstrate how difficult it is to exploit the vulnerabilities and their impact on modern

technologies. Finally, highlight and review the performance of the lab, the characteristics and

strength of the protocols at the present – time.

1

Chapter 1

The Basics of Cryptography

2

1.1 What is Cryptography?

Cryptography is the science of hiding data and secret information from being breached by an

unauthorized person [3]. It allows anyone to communicate on the Internet by transferring

confidential information securely. The origin of cryptography is from "encryption" and

"decryption" keys. Encryption is the process of turning a text from a readable format to an

unreadable, formatted text, whereas decryption is the process of decoding the unreadable text

into a readable formatted text. The core concept of cryptography comprises of [4] :

 Integrity – Integrity guarantees that the data has not been modified. "Hashing" helps

to ensure that the data has not lost its integrity. A hash is a fixed–size string of bits or

characters that cannot be reversed to restore the original data. MD51, SHA2 are a few

common hashing algorithms.

 Confidentiality – Confidentiality guarantees that the data is only visible to the

authorized user. "Encryption" protects the confidentiality of data by disordering the

data to make it unreadable if intercepted. It uses symmetric keys and asymmetric keys

to encrypt and decrypt data.

 Authentication – Authentication proves the identity of the user with the help of

credentials, such as username and password.

 Non – Repudiation – Non-repudiation prevents a user from denying an action

performed by them. It uses "digital signatures" to prevent the sender from denying the

origin of the data.

Cryptography has many applications like computer passwords, ATM cards, e-commerce,

business applications, many other applications. As discussed earlier, the primary purpose of

cryptography is to protect information such as emails, banking credentials and other personal

data transmitted across a public network by using encryption and decryption. There is a need

for cryptography to provide protection and digital keys to ensure that information that is

transmitted in the public network remains secure.

3

1.2 Types of Cryptographic Techniques

Cryptography is divided into three main techniques [3]:

1.2.1 Secret Key Cryptography (SKC)

The Secret Key Cryptography only uses a single key for encryption and decryption of data,

also known as "symmetric encryption." [4] When the sender of the data sends the information,

he encrypts the data with the same key that the recipient will use to decrypt the information.

The drawback of this technique is that the distribution of a single key can fall into the hands of

an attacker, who can decrypt the information easily.

Figure 1.1 Symmetric key cryptography [5]

1.2.2 Public Key Cryptography (PKC):

Unlike SKC, Public Key Cryptography utilizes a pair of digital keys. The two-key system

allows users to communicate more securely on the public network. In this, each user has a pair

of keys; one of the keys is a "private key," while the second is a "public key," the public key

can be shared among the users. [4] When sending information, the sender encrypts the

information using the public key, and the recipient decrypts the information by using his private

key into a readable format.

4

Figure 1.2 Public-key cryptography [6]

1.2.3 Hash Functions

This technique does not require any digital keys as it uses a fixed-length hash value encrypted

into the plain text. A hash is simple, a number created by executing a hashing algorithm against

any data. If the data remains untampered, the value of the hash does not change. This is a one-

way encryption used for message integrity. MD51, SHA2 - 1, SHA2 – 2 are a few hashing

algorithms. [4]

Figure 1.3 Hash function [7]

1 Message – Digest Algorithm 5
2 Secure Hash Algorithm

5

1.3 Symmetric Encryption [8]

Symmetric encryption uses the same pair of keys to encrypt data as well as decrypt data. It is

also known as "secret – key encryption" or "session – key encryption." For example, imagine

encrypting a message "CAT" without using an encryption technique but by rotating each

character by three spaces [4].

 Three characters past "C" is "F" - Start at C (D, E, F)

 Three characters past "A" is "D" - Start at A (B, C, D)

 Three characters past "T" is "W" - Start at T (U, V, W)

The encrypted message is "FDW," to decrypt this message, move the encrypted characters three

spaces backwards to attain the original message. In this example, using the three spaces is the

symmetric key that is being used for encrypting and decrypting the message. The above

example displays a simple "substitution cipher" that replaces the plain text with ciphertext

using a fixed system. [4]ROT133 cipher uses the same substitution algorithm but uses a key of

13. However, since ROT13 uses the same algorithm and same key, it does not provide

encryption but provides "obfuscation."

Obfuscation is a method that attempts to make something difficult to understand or unclear;

however, this is not a reliable method for security. Advanced symmetric encryption techniques

use the same components of an algorithm and a key. Most symmetric algorithms either use a

block cipher or stream cipher.

 Block Cipher – A block cipher encrypts data in specific sizes of blocks, such as 64-bit

blocks, 128-bit blocks. This cipher divides large messages into fixed block sizes and

then encrypts each box individually.

 Stream Cipher – A stream cipher encrypts data as a stream of bits or bytes rather than

dividing them into fixed blocks. This cipher is much more efficient if the size of data is

unknown or if the data sent is in a continuous stream, like streaming audio or video

over a network. An important principle is the encryption keys must not be used with

stream ciphers.

3 Rotate by 13 places

6

1.3.1 Classification of Symmetric Cryptography

There are a plethora of algorithms for symmetric key cryptography such as AES, DES, 3DES,

RC4, Blowfish and Twofish. [8]

 Advanced Encryption Standard (AES)

The Advanced Encryption Standard is a strong symmetric block cipher that encrypts

data in 128-bit block sizes. AES uses key sizes of 128 bits, 192 bits or 256 bits, also

referred to as AES-128, AES-192, AES-256, to identify the number of bits being used

in the key. The size of the key directly corresponds to the key strength; even though

AES-128 provided strong protection, AES-256 provides even stronger protection

because of the larger key size. AES uses fewer resources compared to other algorithms

and can perform encryption and decryption quickly, even on small devices like USB

flash drives. [4]

 Data Encryption Standard (DES)

Data Encryption Standard is another symmetric block cipher that encrypts data in 64-

bit blocks. The process for encryption is divided into 16 stages, each consisting of 8 S-

boxes [4]. First, the bits are shuffled, proceeded with a non-linear substitution and

finally employs XOR operation to get the result. It uses a small key size of 56 bits which

can be broken by a brute-force attack. DES is not recommended for use today.

 Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard is a symmetric block cipher that is enhanced from the

DES algorithm. Just like DES, 3DES also encrypts data in 64-bit blocks. It is highly

reliable and has a key size of 56bits, 112bits or 168bits. 3DES encrypts data using the

DES algorithm except that the process is repeated three times. [4]The first key encrypts

the data, which is then decrypted by the second key and is further encrypted by the third

key. 3DES is not used as often as AES, as AES is much resource-intensive, but if the

hardware does not support AES, 3DES is the alternative.

 RC4 Algorithm

This algorithm is developed by Ronald Rivest and is also known as "Ron's Code" or

"Rivest Cipher," and the most commonly used version is RC4. It is a symmetric key

7

cipher that can be used between 40 to 2048 bits. It requires a successive change of state

entries which is based on the key sequence [4]. In RC4, the key size can vary from 1 to

256 bytes and is much faster than the DES algorithm. This cipher used to be the

recommended encryption mechanism in SSL4/TLS5 when used for encrypting HTTPS6

connections over the Internet. However, since 2013, the U.S National Security Agency

could crack RC4, thus disabling this algorithm ever since.

 Blowfish Algorithm

Blowfish is another symmetric block cipher [4]. The key size varies from 32 bits to 448

bits and encrypts data in 64-bit blocks [4]. This algorithm was designed to be a general-

purpose replacement for DES, but interestingly, Blowfish is faster than AES because

AES encrypts data in 128-bit blocks while Blowfish encrypts data in 64-bit block size.

 Twofish

Twofish is a symmetric block cipher algorithm that is related to Blowfish but encrypts

data in 128-bit blocks and has a key size of 128-bits, 192-bits or 256-bits.

Algorithm Method Key Size

AES 128-bit block cipher 128-, 192-, or 256-bit key

DES 64-bit block cipher 56-bit key

3DES 64-bit block cipher 56-,112-, or 168-bit key

RC4 Stream cipher 40- to 2,048-bit key

Blowfish 64-bit block cipher 32- to 448--bit key

Twofish 128-bit block cipher 128-, 192-, or 256-bit key

Table 1.1 Symmetric encryption protocols

4 Secure Socket Layer
5 Transport Layer Security
6 Hyper Text Transfer Protocol Secure

8

1.4 Asymmetric Encryption [9]

Asymmetric encryptions use two keys for encryption and decryption of data - a "public key"

and a "private key." To encrypt the data, a public key is used, and the corresponding private

key is used to decrypt the data. [9] If the public key encrypts the information, only the matching

private key can decrypt the information. The encryption key cannot produce the decryption

key.

Asymmetric keys are generally used for key distribution; even though it is a very strong

encryption algorithm, it utilizes a significant amount of processing power to encrypt and

decrypt data. [9] Because asymmetric cryptography is difficult to break, it is much more secure

than symmetric cryptography [4].

1.4.1 Classification of Asymmetric Cryptography

There are various algorithms for asymmetric cryptography, such as Diffie-Hellman, RSA, ECC

and DSA.

 RSA Algorithm

RSA is one of the most commonly used asymmetric algorithms and can be used for

encryption as well as digital signatures. [4]It is an asymmetric encryption that uses both its

key pairs over the Internet for its strong security. For high security, the RSA key size should

be 1024 bits and above, 2048 bits is the modern standard. It uses a mathematical equation

of calculating large numbers and the difficulty to factorize those numbers into prime

numbers makes RSA challenging to break.

 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography is often used with small wireless devices as it does not require

much processing power to achieve the desired level of security. It uses mathematical

equations to formulate an elliptic curve and then graphs the points on the elliptic curve to

create the keys. This requires less processing power and is difficult to crack. [9]

9

 Diffie – Hellman Algorithm (DH)

Diffie – Hellman is the first asymmetric encryption algorithm that allows users to exchange

a secret key over an insecure channel without knowing any prior secrets. After the users

know the symmetric key, they use symmetric encryption to encrypt data, Diffie – Hellman

is mainly used for the exchange of keys over the public network. It supports both static and

ephemeral keys; RSA is based on the DH key exchange concept of static keys.

There are two Diffie-Hellman methods that use ephemeral keys [4]:

 Diffie – Hellman Ephemeral (DHE) uses ephemeral keys, generating different

keys for each session.

 Elliptic Curve Diffie – Hellman Ephemeral (ECDHE) uses ephemeral keys

generated by ECC, another version, ECDH7 uses static keys.

 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm is used to generate as well as validate digital

signatures. DSA is an electronic version for a written signature which can be used by

the recipient to verify the sender's identity and ensure that the data has not been

tampered with. [4] DSA can also be generated for stored data to verify later that the

integrity has not been changed.

1.5 Public Key Infrastructure [4]

Public Key Infrastructure was developed to support asymmetric cryptography; it is a group of

technologies that are used to request, create, manage digital certificates. As discussed earlier,

asymmetric cryptography uses a pair of matching keys – a public key and a private key. As the

public key is not a secret key, key management, authentication were issues that arose from the

public key. To overcome this, public key infrastructure was developed to solve this problem

and to support asymmetric cryptography. The basic operation in PKIs are certification and

validation; the certificates bind the public key to ensure authentication. The certificates need

to be checked if they are still valid or not. A primary benefit of a PKI is that it allows users to

communicate securely over an insecure medium without knowing each other previously.

7 Elliptic Curve Diffie-Hellman

10

Chapter 2

The History of SSL/TLS

11

2.1 Overview of SSL/TLS

In 1995, a computer programmer ordered the first book ever sold by an online bookstore named

Amazon, just with a few clicks. Al that time, very few people knew how the Internet and

information space (World Wide Web) would change the lives of people forever. In the business

world, the World Wide Web (WWW) is required behind every action. As the user demand

increases in the utilization of WWW, the transformation from web services to secure web

services is required.

One of the things that made the revolution of the Internet possible was a security protocol that

would allow the users to buy anything online using a secure payment method. It started when

"Taher Elgamal", an Egyptian cryptographer, who was also at the time the chief scientist at

Netscape Communications, he led to the development of the Secure Sockets Layer protocol

[10]. SSL/TLS protocols are used to provide reliable services by running above the transport

layer; the protocol achieves a secure communication between a pair of nodes by exchanging

parameters (cipher suites, keys etc.) and by using them to encrypt the application layer.

Figure 2.1 Evolution of SSL/TLS [11]

The SSL/TLS protocol is used in electronic mailing sessions, VoIP, social networking, web

browsing, file transfers etc. SSL/TLS has gone through several updates such as SSL 1.0, SSL

2.0, SSL 3.0, TLS 1.1, TLS 1.2, TLS 1.3. Along with each upgradation, an attack was

associated with it, thus deprecating the predecessor protocol.

12

2.2 Introduction to Secure Socket Layer Protocol

SSL is a standard, protocol for secure communication between a web server and a web browser.

This security protocol protects all the information that is transferred between the web server

and the Internet browser so that it retains its integrity and remains confidential.

2.2.1 SSL Architecture

SSL is integrated with four protocols which provide security to the higher layer protocols.

They are distributed into two layers [2]:

Figure 2.2 SSL architecture [12]

 SSL Handshake Protocol

This is the very first protocol that comes into action when a session is established by a

transport layer protocol. The client and server, exchange information such as keys,

cipher suites, compression techniques, etc., to validate each other.

13

Figure 2.3 SSL handshake protocol exchange [2]

The handshake protocol deals with three fields:

 Type – It represents the type of the packet and deals with 1 byte.

 Length – It represents the length of the packet and deals with 3 bytes.

 Content – It represents the necessary security parameters that need to be sent

during negotiation and deals with ≥ 0 bytes.

 SSL Change Cipher Spec Protocol

This is one of the simplest protocols, and it uses SSL record protocol and deals with a

single byte. If the byte has a value of 1, it indicates that the current state is updated, and

the remaining states cause a new cipher suite to be activated for a current link. A new

SSL handshake is usually followed by the change cipher spec protocol.

 SSL Alert Protocol

This protocol generates faults to the peer devices during the SSL negotiation and

connection. It deals with 2 bytes, the first byte indicates the level of alert and is indicated

14

by two values; 1 and 2, where 1 stands for "warning", and 2 stands for "fatal". If the

alert message is fatal, the link is instantly terminated, and no new link is established on

that session. The second byte indicates the level of severity specified by the code related

to different alert messages.

 SSL Record Protocol

The final protocol works as a base for the above three protocols and provides

confidentiality and integrity to the higher layers. At the senders' side, this protocol

segments the information into a number of blocks compresses the block size

information, computes the MAC and encrypts the MAC together with that block size

information. At the receivers' side, the encrypted message is decrypted, and the block

size information is combined to form the original information which was sent by the

sender.

By default, compression is disabled in SSL 3.0 and all the TLS versions.

2.2.2 Birth of SSL 1.0

Netscape began the development of the SSL protocol shortly after the NCSA8 released the first

web browser, named "Mosaic 1.0", in the year 1993. By the next year, 1994, Netscape had SSL

version 1.0 ready, but this version never had its public debut as it had several significant

security flaws. The flaws included the vulnerability to replay attacks; also, it had a weakness

that could easily let the attacker change the users' plain-text messages. According to a well -

known computer scientist "Phillip Hallam – Baker", the reason SSL 1.0, failed terribly was

because the entire foundation of SSL 1.0 was based on theory, and was never adequately tested

in the real world. In 2011, he wrote "The actual history of SSL was that SSL 1.0 was so bad

that Alan Schiffman and myself broke it in ten minutes when Marc Andreessen presented it at

the MIT meeting." Andreessen is the co-author of Mosaic and also co-founder of Netscape.

[13]

8 National Center for Supercomputing Applications

http://www.metzdowd.com/pipermail/cryptography/2013-October/018041.html
https://en.wikipedia.org/wiki/Marc_Andreessen

15

2.2.3 The rise of SSL 2.0

After the failure of SSL1.0, Netscape worked on the next version and in February 1995,

Netscape released a version 2.0 of the protocol, which ended up being the core to use the web,

called HTTPS6 securely, it is the secure version of HTTP6, the protocol that is used to transmit

information to and from a browser and website. Netscape claims it is designed to work at the

"socket layer", to protect any higher lever protocols, such as HTTP6, FTP, TELNET.

SSL uses cryptographic algorithms that are applied to plain-text message, which when passed

through an insecure communication channel, such as the Internet, still has its confidentiality

and integrity retained. An SSL certificate is required for a website to have a secure SSL session.

Figure 2.4 Secure connection using SSL [14]

2.2.4 Why is SSL 2.0 deprecated?

Even though, SSL 2.0 was the upgraded version of SSL 1.0, it contains structural vulnerabilities

that should not be allowed and was deprecated in 2011 [15]:

 Handshake messages are not protected, which can permit a MITM9 to trick the client to

use a weaker cipher than it usually would.

9 Man – in – the - middle

16

 Sessions can be easily terminated. A MITM 9 can easily insert a TCP FIN to close the

session, and the peer is unable to identify if the end of session was legitimate or not.

 The same keys are used for message integrity and encryption, which is a problem if the

client and server negotiate on a weak encryption algorithm.

2.2.5 Upgrade to SSL 3.0

As discussed earlier, the primary goal of SSL is to provide security and reliability between two

users communicating on an insecure communication channel. SSL 1.0 was not publicly

released due to the significant security flaws, and SSL 2.0 had its own drawbacks for its

deprecation. SSL 3.0 was released to the public in November 1996, with the aim to overcome

the flaws in SSL 2.0.

The primary goals of SSL 3.0 are [16]:

 Cryptographic security – SSL should be used to establish a secure connection on an

insecure medium.

 Interoperability – Programmers should be able to design applications by the utilization

of SSL 3.0, which will be able to exchange parameters without the knowledge of each

other's codes.

 Extensibility – SSL pursues to provide a framework in which new public keys and

plethora of encryption methods can be integrated as required. The reason for

extensibility is to prevent the need to create a newer protocol or version and to avoid

the implementation of new security libraries.

 Relative efficiency – As the cryptographic operations require high CPU utilization, the

SSL protocol has integrated a session caching scheme which reduces the connections

that needed to be established from the beginning.

2.2.6 Strengths of SSL 3.0

To overcome the flaws in SSL 2.0, the newer version was introduced with the following

strengths:

 SSL 3.0 can defend against the MITM9 attack by storing the authenticated finished

messages including a hash from all the previous handshakes.

17

 SSL 3.0 uses HMAC10 which uses 128-bit of encryption. Attackers are unable to modify

the information even on an open connection. It provides key message authentication.

 SSL 3.0 allows the client to interrupt in the middle of a handshake and change the

algorithm and keys as required.

 SSL 3.0 has a general key exchange protocol. It allows the Diffie – Hellman and

Fortezza key exchanges and non – RSA certificates.

 SSL 3.0 uses SHA2 – 1 hashing algorithm which is much more secure than MD51

algorithm. It also provided additional cipher suites.

2.2.7 Why is SSL 3.0 deprecated?

Since SSL 3.0 was released in 1996, it has been a subject to series of attacks such as SSL

Renegotiation attack, POODLE attack, LUCKY13 attack, both on the key exchange

mechanism and encryption scheme it supports. Any version of TLS is much more secure than

SSL 3.0 (though the highest version of TLS is preferred). This version of SSL is no longer

secure due to [17]:

 Key Exchange – SSL 3.0 key exchange is vulnerable to MITM9 attacks when session

resumption or negotiations are being used. These flaws have been fixed in TLS, but

SSL 3.0 can no longer be updated to fix this issue.

 Record layer – The non – deterministic padding in the Cipher Block Chaining (CBC),

allows the recovery of plain text data which is the POODLE attack. The flaws in the

CBC mode are mirrored by the flaws in the stream cipher it uses. Unfortunately, the

mechanism to fix this required to add an extension (which has been added in TLS 1.0),

but cannot be updated in SSL 3.0

 Custom cryptographic primitives – SSL 3.0 defines constructions for HMAC, digital

signatures, but these constructions lack the cryptographic inspection that TLS have

received. Moreover, SSL 3.0 and its predecessors rely on SHA2 – 1 and MD51 as their

hashing algorithms, which are relatively weak.

 Limited capabilities – SSL 3.0 is unable to utilize many of the features that have been

added to the newer TLS versions, also the features that are included in ClientHello,

which SSL 3.0 does not support.

10 Keyed – hash message authentication code

18

2.3 Introduction to Transport Layer Protocol

The primary goal of TLS protocol is to provide privacy and data integrity between two users'

communicating on a public channel. Initially developed by Netscape Communications, the

protocol came under the IETF11 in the mid 1990s, and today it serves millions, if not billions,

of users daily. Initially released as SSL, this protocol has been a subject to a number of changes

over its long-life span, with the release of TLS 1.0, the protocol has been increasingly modified

to TLS 1.1, TLS 1.2 and the latest TLS 1.3 version. [18]

2.3.1 TLS Architecture

Since TLS is the upgraded version of SSL, it has the same architecture and protocols, except

there are few changes in the security parameters and the computation of MAC address, digital

signatures and key block.

Figure 2.5 TLS architecture [19]

 TLS Handshake Protocol

TLS uses handshake to ensure secure key exchange, this handshake regulates the key

handover onto the other hand. The other hand is responsible for authentication by using

asymmetric encryption methods and public key infrastructure. This protocol included

three other protocols that specifies the keys used, error messages issued and stores

application data:

11 Internet Engineering Task Force

19

 TLS Change Cipher Spec Protocol – Key exchange and cipher suites are

supported by TLS just as they are supported in SSL.

 TLS Alert Protocol – It issues error messages and included the same alerts that

are utilized in SSL.

 TLS Application Data Protocol – It stores the application data.

Figure 2.6 TLS handshake protocol exchange [20]

 TLS Record Protocol

The primary purpose of TLS record protocol is to secure the transmission of data.

This is achieved by Advanced Encryption Standard (AES), as discussed earlier, a

symmetric encryption is used to perform encryption of the data that needs to be

transmitted, as well as the key that is exchanged between the two users via another

protocol. This key can only be accessed by the users' and is valid for only one

connection. To know if the data has been tampered, a message authentication code

(MAC) is sent, this way they ensure that the data has been sent by the sender that

actually has the key and is not being manipulated in anyway.

20

2.3.2 Origin of TLS 1.0

TLS 1.0 is based on the last version of SSL, i.e., SSL 3.0, thus it is backward compatible to its

predecessor protocols. TLS1.0 was first defined in the RFC 2246 in January 1999 as an

upgraded version to SSL 3.0, written by Christopher Allen and Tim Dierks of Consensus

Development. It has been stated in their original paper that "the differences between this

protocol and SSL 3.0 are not dramatic, but they are significant enough to preclude

interoperability between TLS 1.0 and SSL 3.0" [21] [22].Although TLS1.0 and SSL 3.0 are

very similar, the version can still be downgraded to SSL 3.0 by an attacker.

The major goals of this protocol are: [22]

 Cryptographic security – TLS should be used to establish a secure connection between

two communicating users.

 Interoperability – Programmers should be able to develop applications that utilizes

TLS, which will be able to successfully exchange cryptographic parameters without the

exchange of each other's code

 Extensibility – To provide a framework to integrate new public keys and encryption

methods. This is also required to reduce the creation of a new protocol and to implement

a new security library.

 Relative efficiency - As the cryptographic operations require high CPU utilization, the

SSL protocol has integrated a session caching scheme to reduce the connections that

needed to be established from the beginning.

2.3.3 The case of fraudulent Microsoft certificates

In January 2001, an attacker calls VeriSign claiming to be from Microsoft, pays $400 and gets

away with two code - signing certificates [23]. The certificates itself may not be of any

particular use, but the name of the owner is misleading and can be potentially dangerous.

21

Figure 2.7 Microsoft logo [23]

Microsoft planned to drop support for TLS protocols 1.0 and 1.1 in its browsers by 2020 and

recommends their customers to get ahead of this issue by removing TLS1.0 and its

dependencies from their system, also completely disabling TLS 1.0 from their operating

system. They highly recommend that the deprecation of TLS 1.0 must include:

 Code to fix the hardcoded instances in TLS 1.0 or older security protocols.

 Scanning and traffic analysis of the endpoints to check the operating systems using TLS

1.0 and older protocols.

 Coordination with the business partners to ensure the customers are aware to deprecate

TLS 1.0.

 Understand that after disabling TLS 1.0, few clients may not be able to connect to the

Microsoft server.

2.3.4 Deprecation of TLS 1.0

TLS is a two-decade old protocol and has been vulnerable to several attacks such as BEAST12

attack, CRIME13 attack; in addition to supporting weak cryptography which does not keep

modern-day connections secure. However, due to its vulnerabilities, it has been deprecated

only recently, along with TLS 1.1, both the versions were deprecated in September 2020.

12 Browser Exploit Against SSL/TLS

13 Compression Ratio Info Leak Mass Exploitation

22

2.3.5 Upgrade to TLS 1.1

Despite the upgradation from TLS 1.0 to TLS 1.1, the goals of TLS remain the same, even

though both the versions were deprecated together, TLS 1.0 was established in 2006, seven

years after TLS 1.0. However, the differences between the two versions are as follows:

 The implicit initialization vector (IV) is now replaced with an explicit IV to safeguard

against the cipher block chaining (CBC) attacks.

 Padding error handling has been modified to use "bad_record_mac" alert instead of the

"decryption_failed" alert.

 The protocol parameters are defined by IANA14 registries.

 A premature close, no longer causes the session to be non-resumable.

 Additional notes were added regarding the new attacks along with clarifications and

improvements being made.

2.3.6 Companies disabling TLS 1.0/TLS 1.1?

The tech giants like Apple, Google, Microsoft, Firefox and Mozilla come together to end the

use of TLS 1.0/ TLS 1.1. This means that TLS 1.2 will become by default, with websites and

companies encouraged to add support for TLS 1.3 in the future.

Figure 2.8 Deprecation of TLS 1.0/TLS 1.1 [24]

14 Internet Assigned Numbers Authority

23

The reason that TLS 1.0 and TLS 1.1 are considered unsafe is that they make use of outdated

algorithms that have been found vulnerable, such as SHA2-1 and MD51. They lack modern

features like "perfect forward secrecy" and are also susceptible to "downgrade attacks". The

dangers in utilizing obsolete security protocols are:

 These protocols lack support for the present cipher suites and need to encourage older

versions to add extra effort for product and library maintenance.

 These protocols use SHA2 – 1, which is now feasible to carry a downgrade attack on

the handshake.

 The authentication of the handshake is dependent on the signatures that are either

created by SHA2 – 1 or by the concatenation of MD51 and SHA2 – 1, which allows the

attacker to impersonate the host when it is in shape to break the weakened SHA2 – 1.

 The older protocols do not allow the peers to pick more potent hash for signatures.

2.3.7 Deprecation of TLS 1.1

TLS 1.1 is a decade old protocol, which was designed to overcome a few flaws in TLS 1.0, but

has no significant changes in the newer version. Due to its vulnerabilities and hashing

algorithms, both of the protocols were deprecated in the year 2020 and are no longer in use.

Using TLS 1.1 is a bad idea, though it is halfway free from the TLS 1.0 problems, but since

the protocol does not provide any cipher encryption modes, this protocol fails to work in today's

world.

24

2.3.8 Enabling TLS 1.2 in your Internet browser

The most recent security protocol TLS 1.2 was first released in August 2008. The major

differences in the current protocol are [25]:

 The combination of MD51/SHA2-1 in the PRF15 has been replaced with the cipher –

suite – specified PRFs.

 The combination of MD51/SHA2-1 in the digitally signed element is now replaced with

a single hash. These signed elements now contain a field that explicitly indicates the

hash that has been used.

 Additional data modes and support for authenticated encryption.

 Tighter checking for the "EncryptedPreMasterKey" version numbers.

 The length of "verify_data" now depends on the cipher suites (having the default as 12).

 Alerts must be sent in many cases.

 If there are no certificates available after a certificate request, the client must send an

empty list of certificates.

 The mandatory cipher suite to use is TLS_RSA_WITH_AES_128_CBC_SHA2.

Just like the previous versions of TLS, TLS 1.2 holds the same goals:

 Cryptographic security – TLS should be used to establish a secure connection between

two communicating users.

 Interoperability – Programmers should be able to develop applications that utilizes

TLS, which will be able to successfully exchange cryptographic parameters without the

exchange of each other's code

 Extensibility – To provide a framework to integrate new public keys and encryption

methods. This is also required to reduce the creation of a new protocol and to implement

a new security library.

 Relative efficiency - As the cryptographic operations require high CPU utilization, the

SSL protocol has integrated a session caching scheme to reduce the connections that

needed to be established from the beginning.

15 Pseudorandom function

25

By enabling TLS 1.2 on the web browser, a client will be safe from attacks like BEAST12 and

will use more secure cipher suites, which reduces the dependency on RC4 stream cipher as

discussed earlier. The newer version prepares the web browser for the vulnerabilities that were

discovered in the older security protocols.

Figure 2.9 TLS versions usage on Microsoft edge [26]

As seen in the Figure 2.9, most of the web browsers now support TLS 1.2 by default, some

users may find it challenging to connect with websites that do not support TLS 1.2 as a proper

negotiation cannot be made. According to the PCI16 Compliance Standard, the sites responsible

for the payments being made by credit cards, such as Apple, Microsoft, Google and Mozilla

(responsible for Safari, Microsoft Edge, Internet Explorer, Google Chrome and Firefox

browsers) must use TLS 1.2.

It is evident that TLS 1.2 can improve the internet security significantly and must be complied

by all the business.

2.3.9 Why leave TLS 1.2?

Until now, TLS 1.2 was considered secure, and the default security protocol, but the discovery

of new vulnerabilities, puts TLS 1.2's reliability in question. Research has revealed two new

vulnerabilities in TLS 1.2 protocol, making attacks similar to POODLE to breach it.

 The cipher block chaining (CBC) method allows MITM9 attack on encrypted VPN and

web sessions. TLS 1.2's support for this older cryptographic method and minor tweaks

in the POODLE attacks makes it possible for the attackers to now hack the system.

16 Payment card industry data security standard

26

 ZOMBIE POODLE, similar to the POODLE attack, yet much more powerful, which

attacks the outdates cryptographic method in TLS 1.2. even if a system has completely

gotten rid of the POODLE flaw, the ZOMBIE POODLE is much more powerful that it

can still hack the system, this attack has been discussed in Topic 3.8, page 44 of this

report. [28]

2.3.10 Is TLS 1.3 the solution?

Few years ago, SSL/TLS was used exclusively by the government agencies and giant tech

companies. Today, TLS 1.3 is being used by organizations to protect their data and provide

security.

 TLS 1.3 Handshake

The process of handshake between the client and server has changed drastically in the

newer version.

Figure 2.10 TLS 1.3 Handshake [27]

The TLS 1.3 handshake process involves only one round trip as opposed to three in the

previous versions, resulting in reduced latency. In the first "Client Hello", the client

now sends the list of supported cipher suites and guesses which key arrangement

protocol the server may select. This helps the handshake save an entire round trip and

hundreds of milliseconds.

27

 Encryption Standards

In contrast to the earlier versions, TLS 1.3 provides additional privacy for data

exchanges by encrypting the TLS handshake to protect it from attackers. This further

helps protect the identities of the users. TLS 1.3 also enables forward secrecy by default.

As a result, current communications will remain secure even if future communications

are compromised.

2.3.11 Advantage of TLS 1.3 over TLS 1.2

 Benefit of speed – As discussed earlier, the time taken for TLS 1.3 handshake has

reduced, taking only one-round trip to complete a handshake, the number of

negotiations has been cut down from 4 to 2.

 Simpler cipher suites – TLS 1.3 supports cipher suites that do not include signature

algorithms and key exchange; however, it uses ECDHE7 for perfect forward secrecy.

TLS 1.3 has 5 different cipher suites:

 TLS_AES_256_GCM_SHA384

 TLS_CHACHA20_POLY1305_SHA256

 TLS_AES_128_GCM_SHA256

 TLS_AES_128_CCM_8_SHA256

 TLS_AES_128_CCM_SHA256

 Security Improvement – TLS 1.3 has removed all the insecure features such as SHA-

1, RC4, DES,3DES, AES-CBC, MD51 which gave open doors for hackers. TLS 1.3 is

much more trusted than TLS 1.2.

In a nutshell, TLS 1.3 is faster and more secure than TLS 1.2. Most of the major vulnerabilities

in TLS 1.2 was due to the older cryptographic algorithms that were still supported. TLS 1.3 no

longer supports these vulnerable cryptographic algorithms, and as a result it is less vulnerable

to cyber-attacks.

28

Chapter 3

Attacks in SSL/TLS

29

3.1 Timeline of the attacks

If there is transmission of information on a public medium, like the Internet, there will be

attackers lingering to capture sensitive data for their use, thus security is required, but flaws in

the security protocols can lead to threats in the transport layer security. SSL/TLS is commonly

used to secure the web sessions, email server, client-server communication etc. SSL/TLS also

provides strong authentication, encryption and ensures integrity of data between two

communicating users. Since almost a decade, several types of attacks have been designed to

disrupt various features in the SSL/TLS protocol, such as the design, weak cipher suites, key

establishment etc. Vulnerabilities in the SSL/TLS protocols can cause attacks such as BEAST,

CRIME, LUCKY 13, HEARTBLEED, POODLE etc.

Attack Release Date Protocol Vulnerable

BEAST September 2011 TLS 1.0

CRIME September 2012 TLS 1.0

LUCKY13 February 2013 TLS 1.1/1.2

HEARTBLEED April 2014 OpenSSL Library

POODLE October 2014 SSL 3.0

FREAK March 2015 SSL/TLS

ZOMBIE POODLE February 2019 TLS 1.2

Table 3.1 Timeline of SSL/TLS attacks

The attacks stated above compromise the security mechanisms that are provided by SSL/TLS,

nonetheless, these attacks can be mitigated without disturbing the structure of the protocol. [28]

30

3.2 Browser Exploit Against SSL/TLS (BEAST)

The BEAST attack was performed by Thai Duong and Juliano Rizzo in the year 2011 and

demonstrated a live session against PayPal at the Ekoparty conference session, however, the

vulnerability was discovered in 2002 by Phillip Rogaway [28]. Despite being a decade old

attack, it is still being talked about because according to a research done by “2020 Acunetix

Web Application Vulnerability Report”, 30.7% scanned web servers still have TLS 1.0

enabled, making them susceptible to the BEAST attack. [29]

Figure 3.1 Analysis of scanned web servers and their vulnerabilities [29]

The above estimates show that despite having many new features to secure the industry, IT

security is still a major issues and older attacks are still a problem. The same applies to the

SSL/TLS vulnerabilities including BEAST, POODLE, Heartbleed.

31

3.2.1 Working of the BEAST attack

SSL/TLS makes it difficult for an attacker to listen to the communication and steal valuable

data. However, by using MITM9 techniques, an attacker may be tap into a conversation

between the web server and browser. Even though the channel is encrypted, every encryption

does have a few weaknesses that the attackers exploit. This is the case of the BEAST attack; it

supports a cryptographic attack known as the “chosen – plaintext attack.”

TLS configurations use two types of mechanisms:

 Initialization Vector Mode (IV) – An IV is a random string of numbers that is

integrated with the plain-text by the XOR – operation, prior to the encryption of the

plain-text. This string of numbers is not encrypted, but creates randomness in the

message that is sent, using IV, encrypting a standard message twice will have different

cipher texts.

 Cipher Block Chaining Mode (CBC) – CBC uses a chaining mechanism that helps in

the decryption of a block of ciphertext, it uses IV of a fixed length.

As discussed earlier, IV is used to add randomness in the message, but applying IV with CBC,

does not make IV random, it is very predictable instead as CBC combines each new block of

input with the previously encrypted block. This is the weakness that is exploited by the

attackers to perform the BEAST. Understanding through a mathematical equation:

Where:

Ex – the xth encrypted block.

Cx – the encryption method.

Px – the xth input block.

⊕ - XOR operation.

If a block is encrypted where, the input is equal to the previously encrypted block (P2 = E1),

that means a bunch of zeroes are being encrypted which cancels out the IV for the attacker.

This can be applied by the attacker to “guess” (assume the guess is “g”) a previous input block

(P1) which is not controlled by the attacker. If a victim is sending their sensitive data to a

Ex = Cx (Px ⊕ Ex – 1)

32

banking website, and the attacker taps the information and encrypts (P2⊕E0⊕g) and checks if

the value matches E1(previously encrypted block), and if the input block that is controlled by

the attacker and the initially encrypted block are equal (E0 = P2), then the IV has been cancelled

out again and following this the attacker is able to break the ciphertext.

The above attack can be performed against SSL 3.0/TLS1.0 sessions, as these sessions uses

multiple packets and each packet uses the last IV associated with the previous block, this allows

the attacker to see the encrypted message that was sent by the sender to see the IV used for the

cookie of that session. Furthermore, if an attacker can select a plain-text message sent on the

behalf of the sender, the attacker can guess the cookie and check if the ciphertext matches.

 A BEAST attack is clearly not easy to perform, guessing 16 bytes of random session cookie

seems impossible, but the researchers who discovered this used a JavaScript to perform this.

The level of difficulty of this attack is the reason why it is rarely exploited but based on the

above research of users still using TLS 1.0, it is possible to exploit this protocol and users

should protect themselves.

3.2.2 How to mitigate the BEAST attack?

BEAST is a well – known attack and has been mitigated from the later versions of TLS (TLS1.1

TLS 1.2, TLS1.3), however, due to backward compatibility in TLS 1.1 and TLS 1.2, most

vendors to fall back to SSL 3.0 and TLS 1.0.

The best steps to mitigate BEAST are:

 Disable TLS 1.0 and lower versions on your systems.

 Enable TLS 1.1 and prefer to use TLS 1.2 (by default) or the latest version TLS 1.3.

 Ensure users browsers and vulnerable technologies like Java are patched.

 If cross-origin requests are not required, disable them on the server side.

33

3.3 Compression Ratio Info-Leak Made Easy (CRIME)

Just like the BEAST attack, Crime was also discovered by researchers Thai Duong and Juliano

Rizzo and demonstrated the attack at the Ekoparty security conference in September 2012. It

is a side – channel attack which can discover session IDs and sensitive information based on

compressed HTTP6 request size. This attack occurs by hijacking a session and decrypting the

session cookies in TLS 1.0. CRIME exploits the SPDY and TLS header compression. Google

developed a networking protocol called SPDY to control the HTTP6 traffic, these two protocols

use an algorithm that eliminates any duplicate strings by compression and then encrypting it,

this algorithm is called DEFLATE.

Figure 3.2 CRIME Injection [30]

By sending a compressed, encrypted request to a safe website, the attacker can obtain the key

by waiting for the HTTP6 response size and then further expanding the attack with the help of

the HTTP6 responses. The entire process is repeated till the key is obtained and is considered

as a type of brute-force attack. [2]

34

3.3.1 Working of the CRIME Attack

As discussed earlier, the main compression method for TLS is DEFLATE this method consists

of two algorithms:

 Lempel – Ziv Coding (LZ77) – This coding is used to eliminate the redundancy of

sequences that are repeated.

 Huffman Coding - This coding is used to eliminate the redundancy of symbols that are

repeated.

During a TLS handshake session, the client states the compression algorithm it supports in the

ClientHello message, and the server responds with the compression method to be used in the

ServerHello message. When this compression method is used, it is applied on the entire data,

and when used with HTTP6, this compression is applied on all the HTTP6 requests in the stream

which also includes the header. An example can show how the information is being leaked:

Figure 3.3 Client HTTP Request [15]

Even though the data is encrypted, the compression length is visible to the attacker, moreover,

the attacker is aware that the client will transmit “Cookie: secretcookie=” this is the value that

the attacker needs, by the help of a JavaScript, the attacker can issue a request that looks like

in Figure 3.4.

Figure 3.4 Modified HTTP Request by attacker [15]

35

The attacker performs these steps till it finds a possible match. CRIME is a brute-force attack,

which works by supporting a set of compression mechanisms and observing how the length of

the data that is compressed changes.

This attack is practical on all of the browsers as well as servers that support TLS compression.

According to statistics, around 40% - 45% servers and browsers supported TLS compression

during the time of this attack. However, Internet Explorer, Safari and Opera were safe from

this attack, as these browsers did not support TLS compression. The attack worked on web

browsers like Google Chrome, Amazon Silk and Mozilla Firefox as they supported the

DEFLATE compression algorithm. CRIME worked for all TLS versions and cipher suites;

browsers still support compression of HTTP6 requests making the attack still possible in present

– day.

3.3.2 How to mitigate the CRIME attack?

As discussed earlier, this attack is still practical on vulnerable clients using web servers that

support TLS compression, Google Chrome and Firefox have disabled the TLS and SPDY

compression mechanism. The approach to mitigate the CRIME attack can be patched through

updates and by disabling TLS compression.

The following servers have mitigated the CRIME attack by having TLS compression disabled

by default [28]:

 Internet Explorer (all of the versions have disabled TLS compression).

 Google Chrome - 21.0.1180.89 and above.

 Firefox - 15.0.1 and above.

 Opera - 12.01 and above.

 Safari - 5.1.7 and above.

36

3.4 Lucky13

A timing attack used against the implementations of TLS using cipher block chaining mode

was discovered in February 2013 and known as “Lucky13”. This attack is implemented against

TLS 1.1, TLS 1.2 and older protocols as well, this attack allows the recovery of plain-text for

OpenSSL, this allows an attacker to read the plain-text even in an encrypted TLS session. [31]

3.4.1 Working of the Lucky13 attack

Authentication and integrity are provided by Message Authentication Code (MAC), and the

best way to use MAC, is first to encrypt the message to be sent, then apply the MAC on the

ciphertext. However, in TLS, the message is first added to a block, the MAC is applied to the

plaintext message, and then padding (255 bytes) is added in order to increase the size of the

message to a multiple of the cipher block size. Finally, this message is CBC – encrypted,

unfortunately CBC – encrypting in TLS has a problem with protecting the padding and led to

the “padding oracle attack”. [28]

The padding oracle attack was fixed by removing any explicit error messages that could notify

an attacker if the padding check or MAC check has led to a decryption failure. But this solution

to the padding oracle attack, left the system vulnerable for a timing attack, known as Lucky13

attack, as now the attacker can see the time differences in the response of the server in case of

bad padding. Under best circumstances, an attacker may need 213 TLS sessions just to recover

one byte of plaintext. Moreover, for this attack to be successful, the attacker needs to be close

to the victim to suppress the noise, thus this attack relies a lot on the external factors as well.

[31]

3.4.2 How to mitigate the Lucky13 attack?

Mitigation of Lucky13 can be achieved by eliminating the time differences in the MAC

processing the ciphertext. It is practical to add random timing delays to the decryption to

mitigate timing attacks.

Utilizing strong authenticated encryption methods like AES – GCM, AES – CCM, which is

implemented in TLS 1.2 and by disabling TLS 1.1. [28]

37

3.5 Heartbleed Attack

Heartbleed is an attack that exploits the OpenSSL library, usually in the previous versions of

SSL/TLS and was discovered on April 7th, 2014, by a team of security engineers [32]. Once an

SSL connection is established, the connection stays alive, until the client and server are idle for

a while, then the connection is dropped [33]. In 2012, it was proposed to keep the session alive

even if both the communicating devices are idle, the idea was to introduce a “keep – alive

packet” or a “heartbeat packet”.

Figure 3.5 Heartbeat packets [34]

These heartbeat packets are stored in the memory where sensitive information is stored in the

client and server. To keep the session alive, a heartbeat is sent, the sender sending the initial

heartbeat packet, sends some sort of information along with the number of bytes and requests

the receiver to acknowledge the heartbeat with the same information and same number of bytes.

This is how a session is kept alive, this weakness allows the attacker to steal the information

by SSL/TLS encryption under regular conditions [32].

3.5.1 Working of the Heartbleed attack

The CVE – 2014 – 0160 has been dubbed as the “Heartbleed attack” because it refers to a

memory leak in a heartbeat packet when using OpenSSL. The heartbeat packet consists of two

types of messages: “heartbeat request” and “heartbeat response” [35]. After receiving a

heartbeat request, the receiver pulls out the length of the payload of the request message, copies

the message from the payload onto the heartbeat response and sends it back to the sender. If

the heartbeat request packet does not receive a response, the session is terminated. OpenSSL

contains a flaw in the TLS/DTLS17 heartbeat response packet. This flaw allows the attacker to

17 Datagram Transport Layer Security

38

retrieve the secret keys, username, passwords, sensitive information etc. which can be used

against the user by disclosing sensitive information leading to a future ransomware attack, this

vulnerability is known as the “Heartbleed”. Unfortunately, OpenSSL is widely implemented

around the world and is integrated with many different embedded systems, operating systems,

VPNs, chat servers etc. which makes this attack accessible to the entire world.

Figure 3.6 Heartbleed attack. [36]

3.5.2 How to mitigate the Heartbleed attack?

 Fix the vulnerable servers – The very first step that would be performed is to patch –

up all the servers that are vulnerable to this attack.

 Regenerate new private keys – As discussed, the attacker is able to pull out all the

sensitive data including private keys, thus new private keys should be generated.

 Reset passwords and revoke old certificates – All the passwords and usernames

should be reset, and certificates should be revoked in case the attacker has the data.

Due to improper input validation in the

implementation of the TLS handshake,

this vulnerability exists [35]. It occurs

because of a simple programming error,

which when exploited by the attacker can

read up to 64KB of memory. Figure 3.6

depicts how an attacker can retrieve

sensitive information from a chat server

by modifying the message. The

programming error allows an attacker to

craft a message in such a way that the

OpenSSL client/server can read the data

outside of the memory allocated [32] .

Thus, the chat server sends extra payload

content than it initially had to send

through a heartbeat response. The fact that

OpenSSL library holds all of the sensitive

information, session keys, makes this

vulnerability even more dangerous.

https://www.explainxkcd.com/wiki/index.php/File:heartbleed_explanation.png

39

3.6 Padding Oracle on Downgraded Legacy Encryption

(POODLE)

A POODLE attack is a MITM9 attack where the attacker is able to decrypt the HTTP6 cookies

by exploiting the SSL 3.0 vulnerabilities. It is a downgrade attack that was discovered by

B.Moller, T.Doung and K. Kotowicz in 2014 [2]. In the present – day, SSL 3.0 has been

deprecated and TLS 1.2 is used by default, nonetheless, the POODLE attack can convince the

client to downgrade the TLS version to SSL 3.0 in order to perform this attack and according

to Figure 3.1, the “Acunetix 2020 Web Application Vulnerability Report” [29] shows that 3.9%

of the web servers are still vulnerable to this attack in 2020.

Figure 3.7 Poodle Attack [37]

According to the Figure 3.6, an attacker sits between a client and server, tapping into their

conversation (this is known as MITM9) downgrades the TLS version 1.2 to SSL version 3.0.

The encryption method used in SSL3.0 is either RC4 or cipher block chaining (CBC), the issue

of using CBC encryption with SSL 3.0 is that it does not have a deterministic block cipher

padding and is not covered by Message Authentication Code (MAC), due to this, the integrity

of the padding cannot be trusted entirely in decrypting the message [38]. In SSL 3.0, a random

padding technique is used where padding of 1 to L bytes (L ~ block size (bytes)), obtains an

integral number of blocks (that is not covered by MAC) before performing CBC encryption.

40

Exploiting on this vulnerability in SSL 3.0, the attacker is able to perform the POODLE attack.

[2]

3.6.1 Working of the POODLE attack

As discussed earlier, the attacker can MITM9 a conversation and steal sensitive information.

However, this attack is not easy as there are various steps for it to succeed. SSL 3.0 uses CBC

to create a secure medium, MAC is used to check the integrity of that data, in SSL 3.0, the

MAC is added at the end of the data, then encryption is performed which included the padding.

However, the attacker exploits the “padding oracle”, the padding oracle is a situation can guess

why the data he sent has been rejected by the server: it is either because the padding was wrong,

or the MAC was wrong. This situation is used in other attacks as well. [38]

To perform a successful POODLE attack, the attacker tries to perform a MITM9
 attack where

he can eavesdrop on the conversation between the client and server as well as impersonate

either one. However, if this communication is encrypted, it can be difficult for the attacker to

understand the data being shared. Next, the attacker tries to perform a “downgrade attack”, in

this attack, the attacker convinces the server to use an older protocol like SSL 3.0, by dropping

the connection till the server realizes the client does not use the newer protocols like TLS 1.2.

Lastly, if the communication occurs by using SSL 3.0, the attacker tricks the user browser to

run a JavaScript which helps in decrypting confidential information. [39]

3.6.2 How to mitigate the POODLE attack?

Every server running SSL 3.0 and lower is vulnerable to the POODLE attack, to mitigate this

attack, the following steps can be followed:

 SSL 3.0 must be completely disabled on the servers.

 All the clients and servers should be updated to the latest version TLS 1.2 (by default),

TLS 1.3.

41

3.7 Factoring RSA Export Keys (FREAK)

During the 90s, the U.S. government made rules to limit the strength of the RSA encryption

keys to 512 bits (maximum) in any SSL method that needs to be exported. The FREAK attack

is a well – known attack that was found in several browsers like Safari, Cisco, Opera etc. and

is also known as a “server spoof attack against browsers” [2]. The vulnerability is exploited by

forcing the clients to use weaker protocol versions in which the traffic is protected by 512-bit

encryption key which can be broken by them.

Figure 3.8 FREAK Attack [40]

This attack was discovered in March 2015 by security researchers of the “French Institute for

Research in Computer Science and Automation (Inria)” and Microsoft [41], it exploits the

weakness of SSL/TLS protocols that support “export-grade-cryptography”.

42

3.7.1 Working of the FREAK attack

The FREAK attack is still possible because even today, few servers, browsers, still support old

export – grade cipher suites, which can let a MITM9 force the clients to use old export – grade

– ciphers. For the attack to work, an attacker requires a server that will still support the old

export – grade – ciphers, a vulnerable browser and a MITM9 with an out-of-date configuration

between the server and client [42]. Initially, the browser begins to connect to the web site

(HTTPS) and asks to use strong cipher keys, the attacker MITM9 this request, modifies the

message and asks the web site to use old and weak “export-grade” encryption.

Figure 3.9 FREAK vulnerability (The Washington Post) [43]

After modifying the request sent by the legitimate client, the server receives the modified

message and agrees to work with an “export - grade” cipher for encryption. Since the client’s

browser is vulnerable to such an attack, it does not notice this and continues to initiate a session,

the attacker can now capture the session and break the encryption used in a few minutes or

hours and attain the sensitive information. [44]

43

Due to the similarity of exploiting the flaws in SSL/TLS to show a vulnerable connection as

secure, experts have associated FREAK and POODLE attack together. The two attacks are

similar in the way of affecting the security protocol that supports as well as accepts export

versions of protocols.

The researchers, Alex Halderman, David Adrianand and Zakir Durumeric examined around 14

million websites supporting SSL/TLS and around 36% were vulnerable to FREAK [43]. Till

2015, the vulnerable clients that did included unpatched versions were of Internet Explorer,

Chrome (Mac OS, Android), Safari (Mac OS, iOS), Blackberry, Opera (Mac OS, Linux), along

with these browsers, the embedded systems that use TLS in the backend and have not patched

their system are still vulnerable to the FREAK attack. Hackers were able to hack the NSA

website, as seen in Figure 3.9, by using Amazon cloud computing power for a couple of hours

and a few hundred dollars. When the government decides to use weak encryption method in

the system, FREAK attacks are discovered.

Figure 3.10 NSA website vulnerable to the FREAK attack [43]

3.7.2 How to mitigate the FREAK attack?

The best way to mitigate this attack is to update the web browsers, disable all the support for

export ciphers and older protocols that have been deprecated.

44

3.8 ZOMBIE POODLE

In 2014, the POODLE attack was discovered which exploited the vulnerabilities in SSL 3.0

and around 3.9% of the web servers are still vulnerable to this attack in 2020 according to the

“Acunetix 2020 Web Application Vulnerability Report” [29]. It was believed that the POODLE

attack was “dead”, however in February 2019, Craig Young, a researcher has discovered two

new vulnerabilities in the TLS1.2 protocol [45]. According to Young, there are still products

that did not completely fix the issue of the original POODLE attack, and has called the

resurrected version of the original attack as “ZOMBIE POODLE” or “PODDLE 2.0”

Figure 3.11 Changes in SSL Labs [46]

3.8.1 Difference between POODLE and ZOMBIE POODLE attack

According to the POODLE attack, the padding bytes are not validated by the stack. However,

in terms of the ZOMBIE POODLE attack, the padding bytes were validated but has also leaked

the results. [45]

45

3.8.2 Working of the ZOMBIE POODLE attack

As discussed earlier, Young discovered the vulnerability in TLS 1.2 which led to exploiting

this vulnerability and bringing up the updated version of the POODLE attack. Initially, Young

developed a “TLS CBC padding oracle scanner” [45] and used the scanner to scan the top 1

million web site domains ranked by Alexa [47]. The primary behaviour of Citrix NetScaler

associated ZOMBIE POODLE with it due to the SSL hardware acceleration. The behaviours

observed in more than 2,500 domains was all of these vulnerable systems responded to all of

the MAC or padding errors by resetting the TCP connection, however, if the MAC is right, the

server initially sends a “TLS Bad Record MAC” alert. [45] [48]

An attacker injects a JavaScript code into the victim’s browser, once the browser is infected,

the attacker is successful in performing the MITM9
 attack and can capture the session cookie,

user credentials from the web session. The core problem is that till date, TLS 1.2 and older

protocols, still have not gotten rid of the older cryptographic method which stills makes these

protocols vulnerable to such attacks.

3.8.3 How to mitigate the ZOMBIE POODLE attack?

The best solution to keep attacks at bay is to disable older cryptographic protocols, TLS 1.1

and older, also TLS 1.2, as TLS 1.3 has officially been published. [45] Another way to stay

safe from such attacks, even if the users want to use the older protocols, prioritize the stronger

ciphers as the victim cannot force the selection of weaker ciphers.

The solution to the attacks till date is TLS 1.3 as it is not backward compatible with the older

protocol, thus it is not yet vulnerable to the older attacks, it is advised to start using TLS 1.3,

but a minimum of TLS 1.2 is required.

46

Chapter 4

Performing the HEARTBLEED attack

47

4.1 HEARTBLEED Attack

4.1.1 Objective

As discussed earlier, the Heartbleed attack exploits the vulnerabilities in the OpenSSL library,

by crafting a message in such a way that the OpenSSL client/server can read the data outside

of the memory allocated [32]. I have tried to perform this attack by using bWAPP, Bee-box

v1.6. Bee-box is a custom Linux Virtual Machine pre-installed with bWAPP and can explore

all the vulnerabilities of bWAPP. This attack was performed on my home machine under the

guidance of my mentor.

4.1.2 How to perform the attack?

The heartbeat protocol consists of two messages, “HeartbeatRequest” and

“HeartbeatResponse”. The HeartbeatRequest is sent by the client and the server acknowledges

with a HeartbeatResponse message. An attacker modifies the HeartbeatRequest message such

that, the server sends additional amount of the payload, which was not required, this additional

information can contain sensitive information of the user such as, username, passwords, session

ID, private key etc.

As an attacker, I initiated a HeartbeatRequest to a vulnerable client, hoping to steal sensitive

information (Note: this attack was performed under the guidance of my mentor and no

individual was personally affected). The actual damage occurs based on the kind of information

is stored in the server’s memory. After running a python script which was originally written by

Jared Stafford [49], I received an output with my screen filled with 00’s, however, I did some

content that did not contain the 00’s, indicating that the HeartBleed attack was successful, and

I was able to retrieve sensitive information.

48

Figure 4.1 Successful Heartbleed attack.

Figure 4.2 Server is vulnerable to the Heartbleed attack.

49

4.1.3 Where is the bug in the Heartbleed attack?

As shown in Figure 3.6, the attacker creates a special crafted code, that tricks the server in

sending excess payload, even though it is not required. Since the heartbeat packets are stored

in the server’s main memory location, it is easier for an attacker to exploit the vulnerability in

OpenSSL and retrieve all the information.

The bug is in the code itself. The attacker indicates a specific payload length without even

sending the payload. If the code runs successfully, the buffer will point to random memory

which can either contain sensitive information or null bytes. For example, if a client asks the

server to include 3 bytes of data “ABC”, such that the length field contains the value ‘3’, the

server will acknowledge with 3 bytes of data “ABC” with the length field having a value of 3.

But an attacker can modify this code and request the server to include 3 bytes of data “ABC”,

but the length field will contain a value ‘100’, the server will acknowledge with the 3 bytes of

data “ABC”, but the server will also send random memory of 100 bytes to the attacker. [50]

Figure 4.3 Target is vulnerable to Heartbleed attack.

50

4.1.4 Was the Heartbleed attack successful?

According to the figures above (4.1, 4.2, 4.3), the attack was successful using modern

technologies, an attacker requires a server using older security protocols that are vulnerable to

such attacks and a computing machine to exploit these servers. The Heartbleed attack may not

give sensitive information in the first capture, there are moments when null bytes are received

as the excess payload. Nonetheless, it is a dangerous attack, and all of the devices must patch

their systems from such attacks.

Such attacks can be mitigated by patching up the vulnerable servers. If an attacker is successful

in capturing sensitive information, it is best to regenerate new private keys, reset the passwords,

username and revoke all the certificates that might be in the hands of the attacker.

51

Chapter 5

Performing the FREAK attack

52

5.1 FREAK Attack

5.1.1 Objective

As discussed earlier, this attack exploits the of SSL/TLS, by forcing the clients to use weaker

protocol versions in which the traffic is protected by 512-bit encryption key which can be

broken by them. I tried to perform this attack on my home system (making sure no one is

affected by my practical experiment) under the guidance of my mentor.

5.1.2 How to perform the attack?

To perform this attack, I did require a virtual machine (I used Ubuntu), the initial step I took

was to factorize the RSA 512-bit encryption keys, which was taken from a “RSA generator

website” [51]. This website provides with a public key (along with the values of “n” and “e”),

and a private key, all in a hexadecimal syntax. Here,

 ‘n’ is the modulus

 ‘e’ is the public component

 ‘p’ and ‘q’ are the prime factors

 ‘d’ is the decryption exponent present in the private key that should remain a secret.

To successfully perform the attack, I need to factorize my public key (which is known to all)

and find the values of the private key through the public key I have attained.

5.1.3 Understanding the working of the attack

The mathematical equations for this security protocol have been engineered in such a way that

is very difficult to break. Nonetheless, an attacker always finds their way through. But before

performing the attack, it is important to understand the functioning of how to break the key.

An RSA key pair can be broken by factoring ‘n’ into its prime factor’s ‘p’ and ‘q’:

n = p * q

53

After obtaining the prime factors, the decryption exponent can be obtained by:

Once the decryption exponent is obtained, the attacker can capture the sensitive information of

the victim. [52]

An attacker performs the MITM9 and captures the public key, the public key looks like this:

Public Key (hexadecimal) Private Key(hexadecimal)

n: 00 83 22 50 45 4B F8 17 19 EA 88 65 F7

DB C0 45 A0 1B 26 78 15 81 9F D0 C9 60

60 70 05 AE 98 35 27 99 BE 9D 55 23 F2 DF

79 67 93 02 1E E0 77 D2 B3 A5 BD EB 0C

D3 1B BA 7C D1 1C B0 84 93 0F 23 D5

p: 00 FA AE F9 7F 4F 9F BE 73 F2 A9 44

77 20 A2 F8 F0 94 38 06 74 B7 DB 6B DF

2A E5 8C B8 23 FA 07 15

e: 01 00 01

q: 00 85 EA 46 2B 26 6A D7 FB 9B 29 A7

1F 83 54 76 C9 60 2E 3F D2 F7 D0 1D 56

E7 E4 34 E3 49 13 D9 C1

 d: 72 4C 5F 50 F7 55 87 B5 34 22 AD 56

2B F9 5B F6 A0 93 98 49 8E 91 61 27 95

54 99 6F AA 6D CA AD A9 6F 53 44 28

8E F5 D2 9B 34 7D AF 43 A4 D8 20 31 7E

66 04 DA CD B8 75 A4 00 9F 73 22 88 29

01

Table 5.1 RSA 512-bits keys generated online (in hexadecimal) [51]

d = e^ -1 mod (p -1) * (q - 1)

54

Figure 5.1 RSA 512-bits generated online [51]

After generating the 512 – bit public key, I had to factorize the value of ‘p’ and ‘q’ from ‘n’

[52]. Initially, I had to first change the hexadecimal to decimal for easier calculations, giving

me the values below:

Public Key (decimal) Private Key(decimal)

n:

68680468189294454308630285228719793

63964387238182715623302001432091394

60716950916522701529090262942725206

66846406829692967160142135717673319

94872499348437

p:

11338736550222699943920753879083713

81119392524935064717615091867449998

14498069

55

e: 65537

q:

60571535360300373638928051333010030

21147057296473056198557075419109727

4292673

 d:

59862892478707708828171685965487598

94528856862638071082745322913855634

74289842279919692424601520604290103

54563824037584216039490035113846810

11496220109057

Table 5.2 RSA 512 – bits keys converted into decimal [53]

After obtaining the decimal values of ‘n’ and ‘e’, I ran a python script on my Ubuntu machine

using “msieve”, msieve is a C library that is used to factorize large numbers. Unfortunately, I

was unable to receive an output through this script:

Figure 5.2 Running msieve to factorize modulus ‘n’

The reason for ‘msieve’ unable to provide an output is that libraries like ‘msieve’ and ‘yafu’,

factorize less than 120 digits, whereas a 512-bit key has 154 digits.

56

Figure 5.3 msieve cannot factorize more than 120 digits

Due to low computing resources, I was unable to perform the attack on my system for a 512-

bit key. Nonetheless, since ‘msieve’ can work with integers less than 120 digits, I worked on

cracking the 256-bit RSA key. According to the FREAK attack, the attacker is able to crack

the 512-bit RSA export keys, but for that I would have to access the “High – Performance

Compute (HPC)” services, instead I tried to work on the 256-bit RSA key to understand if my

machine is able to factorize a 256-bit RSA key.

5.1.4 Cracking 256 - bit RSA key

To perform the factorization of a 256-bit RSA key, the initial step was to generate the keys

from an online generator [51]:

Public Key (hexadecimal) Private Key(hexadecimal)

n: 00 96 AB A0 E2 17 41 C3 A6 C3 AD D4

C9 EE 4D 2E E9 6D 69 C0 2C 2A 91 0A 55

92 DD 0D D7 D0 AD 9D 1F

p: 00 F2 EC 77 94 A5 1F 18 4C B9 98 FE

A0 3C 76 5D 45

e: 01 00 01

q: 00 9E C7 E4 F5 52 30 19 D7 B1 19 7B

F6 EB 92 7D 13

 d: 0C 93 5A A4 44 48 AA E9 DA 5F 41 E9

70 C8 64 67 D9 C0 B4 06 2F BD 09 2C 61

2B DC 8A 83 08 ED 71

Table 5.3 RSA 256-bits generated online [51]

57

Figure 5.4 RSA 256-bits generated online [51]

To simplify the calculations to factorize the modulus ‘n’, the hexadecimals were converted into

decimal numbers and attained the following values:

Public Key (hexadecimal) Private Key(hexadecimal)

n:

681501685103797317997567903356446914

648472790940362320464969177606439953

76927

p:

32290098242217736529600876666400213

3317

e: 65537

q:

56881062873152132832547971853453234

40343529186723006378455068540461593

980273

58

 d:

56881062873152132832547971853453234

40343529186723006378455068540461593

980273

Table 5.4 RSA 256 – bits keys converted into decimal [53]

By comparing Table 5.2 and Table 5.4, it can be seen that the 256-bit have fewer digits, thus

can be factorized using low computing power. To obtain the value of ‘n’, it needs to be

factorized to get its prime factors, since it has only 77 digits, the factors were easily obtained

by an online website to generate prime factors [54], or even by msieve/yafu. The factors

computed online were:

 p:322900982422177365296008766664002133317

 q:5688106287315213283254797185345323440343529186723006378455068540461

593980273

The prime values ‘p’ and ‘q’ did match the same in the private key, thus the next step was to

obtain the decryption exponent ‘d’, which should remain a secret and not be known by the

attacker.

Figure 5.5 Prime values of modulus ‘n’

Now that I was successful in obtaining the prime factors of modulus ‘n’, i.e., ‘p’ and ‘q’, I ran

a python script on my ubuntu machine to obtain the value of the “decryption exponent - d”.

59

Figure 5.6 Decryption exponent obtained.

On comparing the public key and the private key generated (Table 5.3) I was able to retrieve

the private key of the user, this attack took me a couple of minutes to generate the decryption

exponent given the limited resources I had, however, it is easy to perform the FREAK attack,

provided one does have the desired resources.

5.1.5 Was this FREAK attack successful?

The FREAK attack is an attack when an attacker is able to crack the 512-bits RSA keys,

however, I was unable to crack the 512-bits, but was able to crack the 256-bit keys, this attack

does state that the MITM9 forces a negotiation of RSA_EXPORT keys that are no longer than

512 – bits, but does 256-bits qualify as a FREAK attack? That is a debatable topic as there is

not much information on this, nonetheless, it can be seen that a FREAK attack is easy to

perform on modern day devices having the required computing process and a weak server using

out - dated keys.

As discussed earlier, the best way to mitigate the FREAK attack is to disable the use of older

– weaker security protocols that are vulnerable to such attacks and enable TLS 1.2 or even

better, TLS 1.3.

60

Chapter 6

Conclusion

61

6.1 Conclusion

SSL/TLS are the security protocol used to provide data integrity and privacy between

communicating applications. A large number of e-commerce applications, such as banking,

shopping, rely heavily on the strength of SSL/TLS protocol and they are used along with other

protocols such as HTTP6, SMTP, etc. One of the key components provided by SSL/TLS is the

underlying algorithms providing the cryptographic strength used by the security protocol [55].

However, if an attacker acquires access to the users' resources and compromises any service,

they must not easily capture the confidential data.

The initial attacks on the SSL protocol took advantage of the fact of there was no authentication

occurring during the handshake process. The attacks started with the “Fraudulent Microsoft

Certificates” [56] in January 2001 to the most recent ZOMBIE POODLE attack in February

2019. In context of academic research, the attacks on SSL/TLS have been successful, but the

attacks on the services that are used by SSL have been successful in real – world, which is

really dangerous. As discussed in this paper, it can be seen that most of the attacks are MITM9

which allows an attacker to tap into a conversation and steal confidential data. Despite the

vulnerabilities in the security protocol, the feature of ‘flexibility’ made it easier to allow fixes

to counter the problems.

Decades later, researchers are still finding vulnerabilities in the latest versions. Various types

of attacks have been discussed in this paper, by reviewing and highlighting the process of each

attack as well as the mitigations associated with each attack. By performing the Heartbleed and

FREAK lab, it can be observed that even in modern technologies, vulnerabilities of SSL/TLS

can be exploited, given that the servers are not patched up or are still using older cryptographic

cipher – suites. In order to have a secure implementation of the security protocol, it is

compulsory to follow the well – known practises of security. Despite the high – profile attacks

on SSL/TLS, the greatest threat to the security protocol is the lenient controls applied by

organizations in securing the SSL/TLS certificates. By following the best framework provided

by SANS Institute [57], SSL/TLS security can be significantly improved.

62

References

[1] D. D. K. R. D. Sujatha K, "A Review Paper on Cryptography and Network Security,"

International Journal of Pure and Applied Mathematics, pp. 1279-1283, 2018.

[2] J. L. L. M. Ashutosh Satapathy, "A Comprehensive Survey on SSL/ TLS and their

Vulnerabilities," International Journal of Computer Applications, vol. 153 – No5, pp.

31-38, 2016.

[3] M. T. Gencoglu, "Importance of Cryptography in Information Security," IOSR Journal

of Computer Engineering (IOSR-JCE), vol. 21, no. 1, pp. 65-68, 2019.

[4] D. Gibson, CompTIA Security+ Get Certified Get Ahead SY0-501 Study Guide,

Virginia Beach: YCDA, LLC, 2017.

[5] "GateVidyalay," [Online]. Available: https://www.gatevidyalay.com/cryptography-

symmetric-key-cryptography/. [Accessed February 2021].

[6] K. Robinson, "Twilio Blog," 21 September 2018. [Online]. Available:

https://www.twilio.com/blog/what-is-public-key-cryptography. [Accessed February

2021].

[7] G. C. Kessler, "An Overview of Cryptography," [Online]. Available:

https://www.garykessler.net/library/crypto.html#types. [Accessed 10 February 2021].

[8] S. B. S. P. a. S. S. A. Sourabh Chandra, A Study and Analysis on Symmetric

Cryptography, Chennai: International Conference on Science, Engineering and

Management Research, 2014.

[9] Asaithambi.N, A Study on Asymmetric Key Cryptography Algorithm, Trichy:

International Journal of Computer Science and Mobile Applications, 2015.

[10] M. S. Roza Dastres, "Secure Socket Layer (SSL) in the Network and Web Security,"

International Journal of Computer and Information Sciences, vol. 14, pp. 330-333,

2020.

[11] S. Gorti, "OpenSource," 16 March 2020. [Online]. Available:

https://www.opensourceforu.com/2020/03/the-evolution-of-web-protocols-2/.

[Accessed February 2020].

63

[12] R. Jha, "mySoftKey," [Online]. Available: https://www.mysoftkey.com/security/ssl-

protocol-overview/. [Accessed February 2021].

[13] T. MATTHEWS, "exabeam," 6 February 2019. [Online]. Available:

https://www.exabeam.com/information-security/web-security-security-socket-layer-

protocol-ssl/. [Accessed 12 February 2021].

[14] "Sucuri," 20 April 2020. [Online]. Available: https://sucuri.net/guides/how-to-install-

ssl-certificate/. [Accessed February 2021].

[15] T. P. S. Turner, "Prohibiting Secure Sockets Layer (SSL) Version 2.0," Internet

Engineering Task Force (IETF) , RFC 6176, 2011.

[16] P. K. P. K. A. Freier, "The Secure Sockets Layer (SSL) Protocol Version 3.," Internet

Engineering Task Force (IETF), RFC 6101, 2011.

[17] M. T. P. L. R. Barnes, "Deprecating Secure Sockets Layer Version 3.0," Internet

Engineering Task Force (IETF), RFC 7568, 2015.

[18] T. v. d. Merwe, "An Analysis of the Transport Layer Security Protocol," 2018.

[19] F. Krief, "ResearchGate," August 2009. [Online]. Available:

https://www.researchgate.net/figure/TLS-protocol-architecture_fig6_220178854.

[Accessed February 2021].

[20] "Cloudfare," [Online]. Available: https://www.cloudflare.com/en-gb/learning/ssl/what-

happens-in-a-tls-handshake/. [Accessed February 2021].

[21] E. R. Tim Dierks, "The TLS Protocol Version 1.2," RFC 4346, 2006.

[22] C. A. T. Dierks, "The TLS Protocol Version 1.0," Internet Engineering Task Force, RFC

2246, 1999.

[23] "Microsoft," February 2020. [Online]. Available: https://developer.microsoft.com/en-

us/games/blog/gdc-and-the-wellbeing-of-our-teams-community/. [Accessed February

2021].

[24] G. S, "GBHackers," 16 October 2018. [Online]. Available:

https://gbhackers.com/disable-tls-1-0-and-tls-1-1/. [Accessed February 2021].

[25] E. R. T. Dierks, "The Transport Layer Security (TLS) Protocol Version 1.2," Internet

Engineering Task Force, RFC 5246, 2008.

64

[26] K. Pflug, "Microsoft," 15 October 2018. [Online]. Available:

https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/.

[Accessed February 2021].

[27] J. Thakkar, "hashedout," 20 March 2018. [Online]. Available:

https://www.thesslstore.com/blog/tls-1-3-handshake-tls-1-2/. [Accessed February

2021].

[28] S. F. Pratik Guha Sarkar, "ATTACKS ON SSL - A COMPREHENSIVE STUDY OF

BEAST, CRIME, TIME, BREACH, LUCKY 13 & RC4 BIASES," iSEC Partners, Inc,

San Francisco, 2013.

[29] Acunetix, "Web Application Vulnerability Report 2020," 2020.

[30] A. Prodromou, "Acunetix," 31 March 2019. [Online]. Available:

https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/.

[Accessed February 2021].

[31] K. P. N.J. Al Fardan, "Lucky thirteen: Breaking the TLS and DTLS record protocols,"

IEEE Symposium on Security and Privacy, Berkeley, 2013.

[32] A. A. H. Mohanned Hassan Momani, "Comparative Analysis of Open-SSL

Vulnerabilities & Heartbleed Exploit Detection," International Journal of Computer

Science and Security (IJCSS), vol. 8, no. 4, pp. 159-176, 2014.

[33] A. A. H. Shashank Kyatam, "Heartbleed Attacks Implementation and Vulnerability,"

Old Westbury.

[34] A. Prodromou, "Acunetix," 31 March 2019. [Online]. Available:

https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/.

[Accessed February 2021].

[35] D. A. T. B. F. Moniruz Zaman, "A Study of the Effects of Heartbleed Vulnerability in

Bangladesh," Dhaka, 2017.

[36] "xplainxkcd," 11 April 2014. [Online]. Available:

https://www.explainxkcd.com/wiki/index.php/1354:_Heartbleed_Explanation.

[Accessed 15 February 2021].

[37] A. Prodromou, "Acunetix," 31 March 2019. [Online]. Available:

https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/.

[Accessed 15 February 2021].

65

[38] T. D. K. K. Bodo Möller, "This POODLE Bites: Exploiting The SSL 3.0 Fallback,"

Google Security Advisory, 2014.

[39] S. F. H. A. A. S. Benjamin Fogel, "POODLEs, More POODLEs, FREAK Attacks too:

How Server Administrators Responded to Three Serious Web Vulnerabilities,"

Conference: Engineering Secure Software and Systems (ESSoS) , London, 2016.

[40] N. Sullivan, "Cloudfare," 10 August 2018. [Online]. Available:

https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/. [Accessed February 2021].

[41] K. Bhargavan, Concise summary of our recent attacks, Freak and Logjam, Paris, 2015.

[42] J. Curguz, "VULNERABILITIES OF THE SSL/TLS PROTOCOL," pp. 245-256, 2016.

[43] P. Paganini, "Infosec," 12 March 2015. [Online]. Available:

https://resources.infosecinstitute.com/topic/the-freak-vulnerability-from-discovery-to-

mitigation/. [Accessed February 2021].

[44] B. P. F. V. V. V. Nikos Mavrogiannopoulos, "A Cross-Protocol Attack on the TLS

Protocol," Leuven.

[45] C. Young, "TripWire Vert," 28 March 2019. [Online]. Available:

https://www.tripwire.com/state-of-security/vert/zombie-poodle/. [Accessed February

2021].

[46] Y. Sannegowda, "Qualys community," 22 April 2019. [Online]. Available:

https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-

vulnerabilities. [Accessed February 2021].

[47] "Alexa," [Online]. Available: https://www.alexa.com/topsites. [Accessed February

2021].

[48] K. J. Higgins, "DarkReading," 2 February 2019. [Online]. Available:

https://www.darkreading.com/vulnerabilities---threats/new-zombie-poodle-attack-

bred-from-tls-flaw/d/d-id/1333815. [Accessed February 2021].

[49] "GitHub," [Online]. Available: https://gist.github.com/sh1n0b1/10100394. [Accessed

December 2020].

[50] D. Dachman-Soled, " Programming Project 1: Heartbleed Attack," ENEE 457/CMSC

498E Computer Systems Security, 2017.

[51] "CSFG," [Online]. Available: https://csfieldguide.org.nz/en/interactives/rsa-key-

generator/. [Accessed January 2021].

66

[52] "Stackoverflow," [Online]. Available:

https://stackoverflow.com/questions/4078902/cracking-short-rsa-keys. [Accessed

February 2021].

[53] "Mobilefish," [Online]. Available:

https://www.mobilefish.com/services/big_number/big_number.php. [Accessed

February 2021].

[54] "factordb," [Online]. Available:

http://factordb.com/index.php?query=681501685103797317997567903356446914648

47279094036232046496917760643995376927. [Accessed February 2021].

[55] T. M. E. N. Homin K. Lee, "Cryptographic Strength of SSL/TLS Servers: Current and

Recent Practices," New York Soft- ware Industry Association, 2007.

[56] T. Fosmark, "Microsoft," [Online]. Available: https://docs.microsoft.com/en-

us/lifecycle/announcements/transport-layer-security-1x-disablement. [Accessed

February 2021].

[57] "SANS," [Online]. Available: https://www.sans.org/critical-security-controls.

[Accessed February 2021].

[58] "omnicalculator," [Online]. Available: https://www.omnicalculator.com/math/square-

root. [Accessed February 2021].

	Abstract
	Chapter 1
	The Basics of Cryptography
	1.1 What is Cryptography?
	1.2 Types of Cryptographic Techniques
	1.2.1 Secret Key Cryptography (SKC)
	1.2.2 Public Key Cryptography (PKC):
	1.2.3 Hash Functions

	1.3 Symmetric Encryption [8]
	1.3.1 Classification of Symmetric Cryptography

	1.4 Asymmetric Encryption [9]
	1.4.1 Classification of Asymmetric Cryptography

	1.5 Public Key Infrastructure [4]
	Chapter 2
	The History of SSL/TLS
	2.1 Overview of SSL/TLS
	2.2 Introduction to Secure Socket Layer Protocol
	2.2.1 SSL Architecture
	2.2.2 Birth of SSL 1.0
	2.2.3 The rise of SSL 2.0
	2.2.4 Why is SSL 2.0 deprecated?
	2.2.5 Upgrade to SSL 3.0
	2.2.6 Strengths of SSL 3.0
	2.2.7 Why is SSL 3.0 deprecated?

	2.3 Introduction to Transport Layer Protocol
	2.3.1 TLS Architecture
	2.3.2 Origin of TLS 1.0
	2.3.3 The case of fraudulent Microsoft certificates
	2.3.4 Deprecation of TLS 1.0
	2.3.5 Upgrade to TLS 1.1
	2.3.6 Companies disabling TLS 1.0/TLS 1.1?
	2.3.7 Deprecation of TLS 1.1
	2.3.8 Enabling TLS 1.2 in your Internet browser
	2.3.9 Why leave TLS 1.2?
	2.3.10 Is TLS 1.3 the solution?
	2.3.11 Advantage of TLS 1.3 over TLS 1.2

	Chapter 3
	Attacks in SSL/TLS
	3.1 Timeline of the attacks
	3.2 Browser Exploit Against SSL/TLS (BEAST)
	3.2.1 Working of the BEAST attack
	3.2.2 How to mitigate the BEAST attack?

	3.3 Compression Ratio Info-Leak Made Easy (CRIME)
	3.3.1 Working of the CRIME Attack
	3.3.2 How to mitigate the CRIME attack?

	3.4 Lucky13
	3.4.1 Working of the Lucky13 attack
	3.4.2 How to mitigate the Lucky13 attack?

	3.5 Heartbleed Attack
	3.5.1 Working of the Heartbleed attack
	3.5.2 How to mitigate the Heartbleed attack?

	3.6 Padding Oracle on Downgraded Legacy Encryption (POODLE)
	3.6.1 Working of the POODLE attack
	3.6.2 How to mitigate the POODLE attack?

	3.7 Factoring RSA Export Keys (FREAK)
	3.7.1 Working of the FREAK attack
	3.7.2 How to mitigate the FREAK attack?

	3.8 ZOMBIE POODLE
	3.8.1 Difference between POODLE and ZOMBIE POODLE attack
	3.8.2 Working of the ZOMBIE POODLE attack
	3.8.3 How to mitigate the ZOMBIE POODLE attack?

	Chapter 4
	Performing the HEARTBLEED attack
	4.1 HEARTBLEED Attack
	4.1.1 Objective
	4.1.2 How to perform the attack?
	4.1.3 Where is the bug in the Heartbleed attack?
	4.1.4 Was the Heartbleed attack successful?

	Chapter 5
	Performing the FREAK attack
	5.1 FREAK Attack
	5.1.1 Objective
	5.1.2 How to perform the attack?
	5.1.3 Understanding the working of the attack
	5.1.4 Cracking 256 - bit RSA key
	5.1.5 Was this FREAK attack successful?

	Chapter 6
	Conclusion
	6.1 Conclusion

	References

