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S ABS' r

) eurrency than the currently nvsllsble npp{ngehes Two topies are examin nnd sevieral
. ‘new results m mpensed ’l‘he first sople deals with the eoneuﬂeney eont}ol problemy

s when.the only lnfomndon nvulsble about the mn\nctlons is. syntaetle—ln’ﬁmndom A

new ennqmency contml meehsnism is presented snd\hown -slm it works eoqe‘etly

- The proposed meebanlsm ls mote genenl than any prevlously introdueed mechanism,
beeause it contains a8 man specml esses . the degree of multlpnognmmlng of the
system. In pamcular, two-plnse locklng and timestamp orderisig are special enses of

. the proposed m chanism. Several other special cases of the proposed mechnism are
also presented Each of these special cases can be selected in’ advance,; ud enn even '
be cbanged dyn lenlly,dunng execution ' ‘

1

4 The seeond tople deals wuh the eoncurrency control prnblem when slmnnhc in-
formauon is avanlable about, the transactlons This semantic mlorm ation takes tbe form
of trnsaction types, transaction steps, and transaction btea.kpolnts A new elnss of
safe schedules called relanvely conssstent (RC) schedules is deﬁned and a new con-
currency coatrol mechamsm which allows only RC schedules is proposed The class
of RC schedules eontams serializable and non-semhznble schedules and. the pmpqsed
mechanism assumes fewer restnctlons on the interleaving nmong transactions than the
prevnously proposcd mechamsms whlch /allow non-senahzable schedules. Consequenx-;
ly, our mrchanssm nchleves blgher level of eoncurrency S \

) : ' . B ) , . P
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CHAPTER ] °
INTRODUCTION =~ %

‘

The 'proﬁlcin of coordinating concurrent accesses to a database system has

A

bcen studied by many rcacafchere and several concurrency control nlgonthms have

| been introduced [Esw?b Far85,Gar83,Kun8l, Ree78 Ron78] The task of a concutren-

cy control algomhm is to ensure the conslstenc} of the dntabue while allowing a set’
of transactions to execute concurrently. A databss¢ is a collection of entities named
X, Y, 1, etc. Each entity has a single value. The database is said to be conaistent if the

voloc"shof its entities satisfy a set of constraints called sintegrity constraints. Examples
Sy . - . S

" of integrity constraints are as follows.

3 T -~
1. Ina bankmg system, the sum of the vahles assigned to the loans fo; a particular

[y

account must be less than tbe hne of credlt of that account

2. In an airline reservation system, the number of assigned seats.must not be greater

than the capacity of the aircraft.

~Each trgnsaction is assumed to be a correct computgtion which pre’:erve\*the
Lo RN

‘

integrity constraints of the database, i.e., when executed by itself it transforms a con-~w—
: T . )y

P
o

. sistent database state into a new consistent state. It is also assumed that the con-

currency control mechanism does not know the integrity constraints of th\e database,

but operates in such a manner which preserves these constraints.

The following example demonstrates the importance of the problem and shows
that in the absence of concurrency control, concurrent execution of a set of transac-

" tiogs cih transfer a consistent database state into an inconsistent state.

.
X Lap

RN~ AN



Exs‘mpli 1.1: :

Ty x = x+1,

Yoyt
TQ: y -é.y'

Cx =2\ ;
. .
Suppose that the consistency constraint on x and y is that x=y. Consider the fol

.

lowing sequence of execution:

I S
Ty x = x++1,
Ty y - 2%,
.‘T,: y =y+l1,
Te:lx;2‘x. : | : "' | o | .

It is not difficult to see that after executing T, and T, concprrently as described above,

the values of x and yv,;“,‘will not be consistent (i.e., the values of x and y will not be the

.
.

same). -y

I .

ln pracuce. the entities of the database may represent accounts in a bank,
reserved seats on a flight of an airline, etc. An mconsxstent valueé for an entity x ina
banking system (or airline reservation ;ystem) will mean loss of money (or loss of
seats, resp’ectively).‘ln such systems, the database must a‘ways be consisteilt, even in

the face of failure [Ber83, Tra82). | ' -

>

One obvious solution to the concurrency control problem is execute the tran-
sactlons sequentlally, that is, one at a time. Although t.lm sol\mon guarantees the con-
slstency of the database, it ellmmates concurrency and hence causes’ serious perfor-

mance degradation.



"In thls thcsls, we ‘are m erested in concnrrency control mcchamsms whlch;
% ‘ . B
ensure the conslstency of the data ase whn}e allowrng as much concurrency as possnble

'Morcover, we are also ‘interéqted in those database systems in whlch thc concurrency :

A
»

o
control mechamsm perﬁorms at'the system level, i.e., is mvnsnble the users (see Flg 1),

no
Y
v ' -

- A L /
- ~
e ‘ .
- o . :
.D‘
RS )
¥ . . . .
. T ' . Database
p " mechanism v T
1 P : - e ’ - : 2 .
| \/ ’
Jv ' . .‘ &
! 3 . v . . .
' . ] he &
Figure 1 Database system model.
1 k] . ' .
. . c’ R : L
< i v
\ . ERI

Durmg the. concurrent, cxecutlon of a set of transactlons the con\rreney con-

trél mechamsm must ensure the followmg

- . o
L o 4 SR ‘ '",".‘ .
" 1. Each transaction sees a consistent database. o 5
B ) : . 8 . . Y
-2. Each transaction eventually, terminates. PR e CTe e
i 3. The final database state after all transactions terminate is consistent. T
) ‘~ - \ Ve . L a : : ‘o . - - »T‘v. .
The ﬁrst condmon mdlcates that although Lransacuons are executed con-
. - f
currqntly, each transachon wnl] have the llluswn that lt ls executlng alone oma .

Y



~ dedicated database. - S
\ , _ | )

. ] ’ ‘ )

+ - The second condition' meaxys that t.he mechamsm must ensure the eﬁmmatldn L

cof deadlock (and any other problein) whlch could prevent the termlnatlon of the tran-
‘ ,sact;lon. " ' T

.v"-n.“ y

The t,hxrd condition mdltca(es that each concurrent execution allowed by the

mechamsm cannot vxolate conslstency’ ' i

v
v

BN

o ! A
C )

11 Object,iveh of this th'eeief :

* |

® , T T R o , .
The main objectives of this thesis ate to explore new mechanisms for con-

.currency contrel, which are more'general than the currently available mech-nisms and
I . . . ) " N .
which prov‘ide more concurrency Increasing concurrency results in increasing the sys-
- : (e ;o ey
tem throughput and wrll 1mprove resource utlhzatlon Further e, since transaction
<

S dela}s and abortnons are reduced one. would expect the transh¢djon response iimeg to.

: decr'ease aswell. - ‘g Co "

'

It should be noted however that the actual performance of various mechan-

¢

isms is not the pnmary cohcern of this thesrs We have not run any reahstlc pcrfor-

mance experlments The emphasns is purely on developxng the theoretlcal basls under- )

»

hlng these- mechamsms We only touch upon the pcrformance |ssuev in terms of the
*

types of experlments that need to be run to evaluate the technlques proposed in tbls

'thesxs Therefore, even Lhough the mechamsms proposed here are more general no

"claxm is made as to thelr performance in companson to more restncted algorithms.

- o A

We examlne the concurrem;y control problem for two cases when the only '

information avallable about the transactrons is sy{tactlc mformatlon and when there

¢

is some semantlc lnformatnon avallable about the\transactlons The semantlc mforma-' ‘

]
>
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d . ) 5 ! P .
Y.1.1. Using syntactic information of transactions
When the only information dvailable about the _transéct,ions ,is'syntactic infor-

mation, acrcalszabtltty [Esw76] is the main correctness cnterlon for concurrency control.
_ Scrlahzablhty mcnns equnvalence to a sersal execut'on of the transactions. ~A con-
' current execution of a aet‘of transactions or a schedule is said to be acnahzablc if\it is
equ:valent to (l e., has the same effect on the database as) serial’ schedule in wh-lch the
transactlons are exccuted sequentlally, in-some order. Since tH executlon of a set of

transaction‘s serially c‘annot‘ violate the integrity constraints of the database, the exe-

-
v

cution of a éerializable schedulealso preserves these constraints. The concurrency con- -

trol mechanism performs its job by producing only serializable schedules.
' e ' ’ : " ‘

3 )
o
. ‘

~ The means for guarantymg the serializability of the executing transactlons are

dlverse The most popular means are two-phase locklng [Bay80 Esw76 Gra78] and”‘;

'tlme«namp orderm% Ber81 Lam76 Ree78] o ' . AR

In this thesis anew concurrency coiftr | algbrithm is proposed and‘ proven to

'work coriectly, ie., produces only serializable schedules. The proposed mechanlsm is .
; ,
more general than any prevnouslv mtroduced COnchrrency control algorlt,hm Thls is

because it. has as many specnal cases as the multxprogrammmg level of the system. In
: partlcular, two-phase lockmg and timestamp ordermg, which are consnd‘ered to be the

‘most pdpu’lér (and krac't'ical) conclrrency control algorithms_,'repreSent ;gdéial',‘éases of

*

¢ I

‘the proposed mechanism.
v_"I . K . -

. The set of transactions executing at any time under the proposed concurrency
" control algorithm can. be partitioned into als‘et of classes called strict classes. Two-
phase locking corresponds to a special case in which all exé_cliti'n_g transactions will

. ’ . !
- P - ’
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L

belong to the same strict class and timestamp'ordering corresp‘onds to,a special'case in
I |
“which every executmg transactnon will belong to a dlﬁ‘erent strnct class The mnxlmum
number of transactions whlch Can belong to the same strict class is called the stnct-
ness level of the concurrency control algorithm. The value of th_e strictness level can
be specified in advance and can be modified during execution.
. i .
: e LI .

We show that two—phase locking and timestamp ordering represent the two

cnd points-of a series. of concurrency\control algorltlxms Each results l'rom choosmg a.

: diﬁ'erent value for the strictness level and is consiflered: L) be a speclal case of the gen-

eral concurrenq control algorlthm descrlbed in thls theSIs - ‘ o B

1.1.2 Using semantic‘information of transactions ‘

Q.
The requirement of serializabilitﬁ“ tvli‘at the only accep_table sc.hedulesmare those

‘whlch are senallzable may be reasonable when transactions ‘are relatlvely s’hort But .

when transactlons are. Iong, this, reqmrement is too strong and can léad‘to lncreased'

transaction response time. - . o . U
Under the assumptlon that some semantlc lnl'ormatmn is available about the
' transactions, the notion of serlahzablhty can be weakened to allow more concurrency

[Fis81, Gar83, Lyn83]. The main |dea is to allow’ controlled non-senallzable schedules -

c(Wthh do mnot v:olate consistency). Thxs represents the subject of the second topic

rcported in this thesns We |Ilustrate thls |dea further by the follownng example (F/i‘

/

more detailed examples the reader can also refer to [Gar83)). y

Example 1.2:

Consider a banl\mg system in whlch a transfer transactlon can be divided |nto two

' consecutive ‘steps, a withdrawal s’t‘ep l'ollowed by a deposit step. ln order‘ to

-3 1
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. . i
o ! :

“lmprovc performance we may aIlow a transfer transactlon to be lnterrupted

hetween the withdrawal and deposlt steps by another transfer transactlon Thls '

_|nterleavmg can be specified by msertmg a certam command at‘the end of the wrth-

drawal step .} which instructs the concurrency “control mechanlsm that lnterleavmg |s

!

'allowed at this point l'or a transfer transactwn. We will call such a command a
| breakponnt ln this case, a transfer transacuon wrll appear to .another transfer tran—

_ saction as consrstlng of two (consecuuve)‘atomlc steps.

,~Similarly, -consider another audit transaction which reads the balal%es of all
il
accounts in the system In order for the audlt transactlon to return conslstent

values, the transfer and the audlt transactlons must appear to one anothcr as a sin-

‘gle »at.oml‘c step. That i lS, the audit transaction will be prohlblted from lnterruptmg

LN

the transfer transaction and vice}Msa'\. R - .A -
. . e . . . .‘ : ] ’
.

Thus, the atomlclty of the same transfer trar@on will be viewed dlﬂ'ewntly by

.

_ different. types of transactions. This concept is knows in the literature as "relative

‘atomicity” [Lyn83]'.'Which means that the atomicity of a tr
- another transac“t,ion.Tj will only depend on the breakpoints inserted in'T;. . -
“This thesis formalizes the concurrency.control problem when semantic lnfor-

mation are avanlahle about the transactnons A new class of safe'f schedules called

- relatively conslstent schedules (or RC schedules for short) is deﬁned Thls class con-

3

L tams scnahzahle as well as non- senallzable schedules It is proven that an RC schedule

cannot vnolate conslstency Moreover, a new concurrency control mechamsm whrch

‘ ‘produces only RC schedules rs proposed..The proposed mechamsm achieves high level.

w

of parallelism by allowing'-seria,lbizable as well as non-serialisable schedules to be pro-

ducid. N e

The organization of the rest of thls thesis is as follows. The first. topic is dis-

saction T, viewed by

S

&



cussed in Chapters 2 3 and 4 Chapter 2 deﬁnes the basnc concepts and descrlbes the
database system model used in formalizing the ﬁrst topic. Thts chapter also revnews‘»

»

the prevnously introduced mechanlsms Chapter 3 descnhes » new concurrency control

3

mechanlsm and ‘proves. that it works correctly, that is, produces only ‘serializable

: schedules Thls chapter also dlscusses the generahty of the proposed mechanlsm and

| descnbes its speclal cases. lt is shown that two-phase lockmg and timestamp 6rdermg

represent the two epd pomts of a series of concurrency control mechamsms Each of

them is a specnal case of the proposed concurrency control mechanlsm Chapter 4
" discusses some related problems that are assoclated with the proposed mechanlsm and‘ |

‘ outlmes some solutiens to these problems

' . 7 - . . . o } oo

The second ‘topic is discussed in Chapters 5, 6, and 7. Chapter 5 i'ntroduces

‘the concept of allon"ring’ non-serializable sched'ules Chapter 6 describes the basic model’

that will be used in formalizing the second toplc “This chapter deﬁnes a class of
schedules called correct schedules This class of schedules’ generalnes the class o{f
semantlcally conslstent schedules”™ defined in [Gar83] and the class of multllevel
atomic schedules defined in [Lyn83] Thls chapter also defines a dlrected graph called
the precedence graph Thls graph represents the precedence relatlons among the w
of the executing transactlons This graph is used to deﬁne a new class of sdhedules
called relatively consnstent (‘{C) schedules It is proven that an RC schedule cannot

vnolate consistency. Chapter 7 proposes a new concurrency control mechanlsm whlch

makes use of the semantic ml’ormatnop’ available about the transactlons to allow serial- -

: nzahle and non- ser:ahzahle schedules to be produced The proposed omechamsm

assumes fewer restnctlons on the mterleavmgs among transactlons than the locklng'

ta

mechanism , proposcd by Garcla-Mollpa [Gar83]~. Consequently, our mechamsm

~ ‘achieves higher level of parallelism. This ch_a‘pter‘al‘so proves the correctness of the

proposed conturrency control mechanism. Chapter 8 concludes the thesis and

discusses future work.



L ~ CHAPTER2

o .

| / .~ BASIC CONCEPTS

Thls chapter defines some ‘basic concepts whlch will be used throughout the |

: thesns and reviews prevnously lntroduced mechanisms.

¢

' A“ databaae is a collectnon of entltles named X, ¥, Z, etg. A lmmactmn is any
. sequence of read and /or#wﬂte operations which preserves the integrity constramts of
the diztabasc. A read operétion‘ by a traneaction T, on an entity X returns the current  »
value af X. Slmllarly, a‘write OPCTM'OD on x by T; updates the current value ‘of x. An

entity x can be read or wntten at most once by the same transaction. The read and the

K

write operglons of transactlon T; Wlll be denoted R(x) and W,(x), respectively. A
\transactlon is assumed to be 2 correct computation, that i is, either all its updates must

be reﬂected in the database or none of them. A transaction is sand to be terminated (or
*

commsttcd) when all its operations have been accepted by the concurrency control

mechamsm If an operation by the transaction is reJected the transactlon must be
_abog-ted.'i' N B _ M,“""t
' ‘“ L ,%e model of transaction is called the general model. This model con’ —
lm.nsl se\:erat other models of a transaction Whlch appeared in the hterature The prln-

TR o«..

cipal models are shown in Figure 2. lll thls figure the generality increases upwards

4 )
u Y

lf .t'h'e- transaction‘ is re3tricted so that all the read oper;tions. appear before all
the\an.e deratlons, the two- atep model [Pap79] is obtamed (refer to Figure 2) Slmn-‘ '
larly, if the transacuon is restricted so that an entnty must be read before it is written,
the restricted model (also called the read-before-write model) [Ste76] is obtained. °

Further, if each transaction is restricted so that an entity must be read before it is
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[}
written and all read operations appear before all the write operations, the restricted

two-step model is obtained. Finally, we have the action model, where each step is_an
indivisible\execut.ion of a read and a write operation [Kun79]. That is, the action

. ‘ | ‘ N
model is equivalent to a transaction model in which each write operation is immedi-

v

ately preceded by a read operation.

* An example of a transaction of each of the previous models is shown below.

w

, - '
L3 . ) . |
N .

T1=Rl(x)Wl(y)Wl(x)R,(z)Wi(z). "General model” S

P

Ta= Ro(x)Ra(2)Wa(y)Wa(x)Wy(2). "Two-step model” '
| ‘., 'i'f* Rs(x)R;(y'.)\\'a(y)W3(x)R3(z). "Restricted model” "

'T4= Ry(xJR4(¥)R4(2)W(x)W (y). "Two-steb res(rictgd model”

Ts=Rg(x)We(x)Rs(y)Wsly). "Action model”

" Definition 2.1: A achcd\u\le H of a set of transactions T = {T,,T2,;,Tn} is an inter-

’

leaved sequence of the operations of the transactions in T. Consider, for example, the

o

following three transactions:

T, = Ry (x)W,(x)Ry(y). -
o Les

Ty = Wylx)W(y).

T3 = Ry(x)..
An example of a schedule H of {T,T,,Ts}is

H = R (x)Ry(x)W,(x)Wo(x)R,(¥)Wo(y).

The order of the operations in H increases from left to right. Note that the

P

3
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a ®

order of operations of the same transaction must be preserved in H When the Opera- ‘
tlons of each transaction appear consecutlve}y (i.e;, without. mterleavmg with the.

other transactions) the schedule is said to be serial. Each serial schedule is correct,

" that is, its execution cannot violate the integrity constraints of the database. An

’

example of aserial schedule is )

H= R, (X)W, (XIR, (Y JRy(x)Wx) Wo(y). ; .

An operation Rj(x) in a schedule H returns the value of x written by the write
'opcratlon Wi(x) lf Wj(x) precedes R, (x,).m H and no other write operatlon on x appears ‘

between ‘W (x) and R(x) R; (x) returns the initial value of x (i.e., the value which

[

“exists in the database before executlng the schedule) if no write operatlon on Xx pre-

cedes R;(x).

+

Definition 2.2: Two schedules H and H2 for the same set of transacuom aré said to

e

be q?uwalcnl if the followmg two conditions are satisfied. . . B

-

(l) For eaﬁi \Y&a@gp’gration R,(x), either R;(x) returns the value of x wr'i‘tten by the

‘same Writé operation in H, and H,, or Rj(x) is not preceded by any write operation

©

on x in H; and H,.

(2) For each entity x updated in both schedules, the last write operation on X must be -

- the same in H, and H..

Condit.ion\'(l) ensures that each read operation in H, returns the same value

»

“returned by the corresponding read operation in H,. Condition (2) ensures that the

final value written for each entity is the same in both schedules. These two conditions
guarantee that H, has the same effect on the database as H,. The following two

schedules, for example, are equivalent.

-

Hy = Wolx)W, (IR (xR (5} Wty IR o()Ry( )R} W, 2).
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General model

v

Two-step model . | Restricted model /’\
| \ '
Y
©

\

estricted two-step ' Action model -

‘i o model

S

Fig. 2 Various transaction models.

= Wy Wy RyIW, (R (R sRRA2W ().

Definition 2.3: A schedule H is said to be serializable iff it is equivalent to a serial .



-

s.cbec‘lule.” B T . ) | »

In the above example,}the schedule H, is serializable since it is equivalent to

the serial schedule I,

Definition 2.4: Two operations belonging to’ two different transactions T, ind T; are
said to be in conﬂncl iff both operatlons access the same entity and at least one of

them xs a write operation. The transactlons T and T; which issue these operatlons

'

“are said to be conflicting transactions. : : )

N .
\

Intuitively, the conflict among two operations Ri(x) ahd W(x) indicates that
the order avmong them is significant. Note that by the above definition read operations

do not conflict and the-arder among them is insignificant.

4
N k

2.1. Dependency\gra.ph and serializable schedule;’f'

\
— . \

\

This section’ deﬁnes a directed graph called tlie dependency graph. Thls graph
. T—— o~
will be used in recognizing a class of schedules called sen\allzable schedules.

» N

2.1.1. Dependency graph

The dependency graph DG(H) of a schedule H is a directed graph representing
the conflict relations among the transactions in H. The nodes of this graph is the set
of all transactjons’in H (i.e., each transaction T, is represented by a node 'I;i)- An arc

(T;,T;) exists in DG(H) iff there is an operation in T; which cohﬂicts with and precedes.

another operation in T;.

For example, consider the following schedule.

H= W)W, (XRS(R, ()W IR R HIRA W (2).

,}"
/S



The dependency graph DG(H) is constructed in Figure 3.
p/ - . .
= s : .
*w-.;.'." '
N, " )
S
o, A
v , f t
(O
- , A ' ‘
i B Figure 3 The dependency graph of H. °
./;,\/ .
' - S
«"\’/ -
TS
. R -
. : N ,
2.1.2. Serialiuble'sche_d‘ules ' o

j’
)
L.}

In order for the concurrency control mechanism to epsure the consistency of
0‘
the database, it ‘must allovd only those schedules which do not violate consistency to be

i v“L
-

produced A serializable schedule which has the same effect on bhe database asa serlal

]

-‘scheduleqannot violate the.conslstency of the database. The means for guaranteeing

"the scnahzabﬂlty of the executmg transactions are dlverse The most popular means
‘ \

BN

t\mp orderin
.. ‘\

be\introduced Kgr characterizing serializable schedules by }hecking for the absence of
\ . . "

\ . : :
\ . v

are two-phailockmg and tlmestamp ordering. The two—phase Iockmg and the times-

mechanisms w_lll be revnewed in later sections. But first, a theorem will
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]
s cyclc in thc dependency gnph Tlus theorem will bc used to analy:e the concurrency ‘
contrel mcchamsmc prescntcd in later ccctlona and to prove that they work corrcctly,

i.e., produce only sertahzablc schedules.

Ny 3
Theardm 2.1: Suppose that the dcpendency graph DG(H) of a schedule H )acyclic, o

then Hi is scnahzable . | /'/c

Proof: Let H, be a scnal schedule formcd by sorting thc nkodes of DG(H) topologically
[Aho74] and replaclng cach node T, mth the operatlonc of F We clanm that H and H,
are equivalent. To prove this claim, suppose to the’ contrary that: H and H, are not
equivalent. Fof example, suppose thart condition (1) of scbedulc equivalence is not
satisfied. Let R (x) return the.value of x wnvtten by W(x) in H and suppose first that

R,(x) is not preceded by any write operation on x in H,. Since Wi(x) precedes and
conﬂlcts with Ri(x) in H, there is an are (T;,T;) in DG(H) This arc also implies that

J(x) precedes R (x) in H, and leads to a contradiction.

&ilarl contradiction atises if R;(x) is preceded by a write operation on x in

H, end is not preceded by any write operation on X in H. Slmllarly, suppose that R(x) -
returns t.hc value of x written by W(x) and Wk(x) in H and Hl, respectlvely (where
,(x)# W,(x)). InH, elther Ri(x) precedes W(x) or vice versa. If R(x) precedes Wk(x) |
in H, then there is an arc (T,,Tk) in DG(H) But this arc lZplles that Rj(x) precedes
w i(x) in H, and} leads toa dont.radlctlon lf on the othcr hand, W;(x) precedes R,(x)
a (and W(x)) in H, then thcrc \are .arcs (Ty,T;) and (T;,T;) in DG(H). These arcs also‘
imply‘that Wj()c)‘xppearp between W,(x) and R-i(’.‘)_ in H;; a contradiction. In each of

~

‘the above cases a contradiction arises, whick implies that our initial assumption that

condition (1) is not satisfied cannot be true. !

Similarly, ‘suppose that condition (2) of schedule equivalence is not satisfied -



, 16,

)
s 4

" apd let W,(x) 3nd Wy(x) bs the last write operations on x In 'H and H,, respactively. =~

Since W,(x) conflicts with and precedes Wi(x) in H, then there is an arc (Ty,T)) in
DG(H). But this arc implies that W,(x) precédes W,(x) in H, and leads to a contradic-
tion. Therefore, condition (2) is also satisfied and H is equiv‘lent to H,, i.e., H is seri-

alizable. D

2.2‘."Two-ph‘ne locking

Twalphase locking is the molt well-known mechanism for controlhng con-
currency. In this mechanism transactlons are required to obtain locks on the entities
of the database before accessing (i.c., readmg or updatmg) these entities. ' In order to
increase concurrency, two types of locks are allowed. These types will be denot;ed
read-locks (also called shared-lbcks) and write-locks (also called e’xclu‘sive-locks). Each
transaction must obtain a read-lock or a ;rite-loc‘k on an entity x before r?ading or

writing it, respectively.

%

The cdnditions for granting a read-lock or a write-lock on an entity x are as
follows. When a transacuon T, requests a read-lock on x, this lock will only be
granted if no other transaction already holds a write-lock on x. Slmllarly, when T,
requests a write-lock on x, this lock will only be granted if no other transactlon already
holds a read-lock or a wme-lock on X. That is, read-locks are shared locks i.e., several
transactions can obtain a read-lock on the same enmy concurrently, while wme-locks
are exclusive locks, i.e., no more than one transactnon can obtain a write Iock on x at.
the same time. If a read- lock or wnte-lock on some entity cannot be granted because
the entity is already locked, the transactlon which requested the lock has to wait unul

the lock is released.

4

Eswaran, et al. [Esw76) have shown that in order to guarantee consistency,
E B Y



o phases Thls ponnt is called thc locked pomt of the transactxon .

the followmg condltrons are satlsﬁed

%: The entltles -must be locke 8!

r) l’ o . "7.‘".,‘ "‘, , ’ "‘ ' . N “ ‘ 17 .

v

| eagh""transaction must be well,-formed' a}h‘d'two-{phase. A' transaction is: well-formed if’

et
Vo

1: 'I‘he transactzon must lock @an‘entlty before aecessmg Jt

%t R

W

lordlng to the rules desenbed above.-

a . .
e N

The transactlon must unlock all th,e entltles before it term!nates

Each transaction mu:st have two‘phases; a grOWlng p’haSe.during which locks ‘l

- cam onh be obtamed followed by a shrlnkmg phase durmg whrch locks can only be -

<«

: relcascd The pomt at whlch the transactlon releases its first lock dellmlts the two -

.ln"some systems, the transa"ction may not need to'use eXplicit com“mands (li-ke -
&

‘Lock(x) and Unlock(x)) to lock and release the entities it accesses Instead, requestlng

‘4

“or rcleasmg focks are performed on the system level (l e, mvrsrble of the users). A

V‘"xcad’lock or a wnte-lock is requested rmpllcltly when the transactron submlts a read or

l

* write oyeratlon respectn ely, to the concurrency control mecdamsm Thls lock will be
"grantcd if the operatlon is accepted otherwrse the operatnon is delayed When all the

_operatlons of the transactlon succeed (l €., have been accepted) .all Tocks are released

0
ur

*'\

"'byaslngleatomlcactlon e

RS

Y \4 : o o o .

Othef?‘ ~lpckmgi m‘echant/me-mhich- allow high_er level of; c‘oncurrency‘ than _tw‘o-pha_se

P

\' The above (restricted.)il'orm'of two—phas’e locking is called strict two;phaae tock-

',‘_mg [Ba}(SO Ros78] because each transactlon malntalns all locks until termlnatlon
':Throughob\hls thesis the term two-phase lockmg will refer toa strlct two-phase lock- -

' ’mg mechanlsm\n whlch locks are granted and released as descnbed above

“Two-phas' locking has the drawba'ck of reducing the level of concurren‘cy. This

» ls because transactlons can be arbltrarlly long (but ﬁmte) a.ndﬂeach tri.nsactlon must

g S
: malntam all the lock it obtams durlng executmn “until it is termmated (or aborted)

_—



. locklng have been propoﬁed [Ked79, l\ed80 SrlSO] However, thesc mechanlsms requnrc

! F]

a prnorn knowledge of the organlzatlon of. tbe entmes of the databaae and wlll not be

~ considered i in tlns thesxs o . o

-

I

'Another(and more seriods) problem is deadlock [Gra78,,Hol72]. .

I i b
R ‘ ‘ - . y s @ ?}
'Theorem 2.2: Every 'schedule produced by t.h'e two-phase locking mechanism is seri-
alizable [Esw76,Pap79]., o M : ‘g{a‘
: ’ . : . ¢ . " . ¢
- ° .
2,2.1. Deadlock o T, v . .

Deadlock can occur because tramsactions wait for one another. Informally, a

Lk

- deadlock situation is_/a set of reqnes_tewh'ich can never be granl,ed by the concurrency

control mechanism. The following example shows how a deadlock can occur.

'

Consnder a situation'in whlch transactions T, and T, are currently holding
.wnte locks on the entmes X and Y, respecuvely Suppose that transactlon Tl requests

a wrlte lock on y. Since y is currently locked by transaction T2, then transaction- TI

-

will have to wait for transactlon T2 to release ats lock ony. Suppose that, whlle tran-

saction Tl is waiting for transaction T2, transact:on T, requests a wnte-lock on the

»

entity x. Since X is currently locked by transactron Tl, then transactlon T, must wait
-

for transaction Tl to release its lock on x. In this case, the two transactlons may have

to wait for each’ other lndeﬁmtely unless the mechanlsm has detected and resolved the

o
'

. ;v_prOblem (see Flgure 4) ’ AT —

There are two approaches for solvmg the deadlock problem The first approach

is called deadlock detectnon and ‘the second approach is called deadlock prevenuon

‘-

Detecting a deadlock is simple and can be done by maintaining a directed
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- shorter, several transactions can be restarted n’nnec@arily.

o - | | 19

\ )
grapb called the watt -for graph Thls graph represents the wait-for relatlonshlp among

. the transactlons The eet of nodes of tlns graph represents the set of transactlons An

arc T,-7T exists in the graph n' T, is waltlng for T to release its lock on some entnty

" For example, the’ wait-for ‘graph‘ for the deadlock situation described above is shown in

Figure 4. .

.

Figure 4 Deadlock situation.

"A deadlock occurs when the wait-for graph eontains a’'cycle. Once a deadlock
is detected the cycle may be broken by aborting one (or more) transaction (Normally,

thc last transactlon which caused ‘the deadlock will be aborted') Under the assumptlon’

t

" that the cost of preemptmg each member of a set of deadlocked transactions is known, o

the problem of selectlng the mlnlmum total-cost set for breaklng the dead’lock cycle

‘has ‘been shown to be a diﬁicult (NP-complete) problem [Leu79]

~Deadlock can also be broken‘by _'u.sing time-onts tov ‘revoke waits aft‘er‘. a.
speeiﬁed time interval. H'oweyer, in practice it may sbe difficult to choose a workable
tinle interval. If the.ti.me-ont i‘nterval, is n_xade Ionger,.more time wil'i be ;vasted before
dead]ocked' transactions are restarted. F urthermore,' as the time-out interval re made

~

/. B N
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“The deadlock‘problem is more diﬂicult to handle in dist‘ribnt,'ed -systems. This

is because ‘some of the wamng transactlons may be reaidlng on dlﬂerent snes That i is,
ﬁb

local Walt-for graphs of the mdwndual sltes may not. be suﬂiclent for characterlzlng aII

‘deadlock situations. In this ‘case, edeadlock can be detected’ by deslgnatmg one site in

the distributed system as a deadlock detector [Sto79).. Menasce, et al; [Men79] have

~ shown that it is possible to detect a ck in distribnted system without maintain-

°

ing a centralized wait- for graph This thesis does not review all mechanlsms for detect-

mg deadlocl\ but’ mtereqted readers can refer to [G1i80,Men79, Obe82] SR

\

4

ln order to av ond unpocessary. abortlon deadlock avoidance mechamsms can be .

©

%
_used. Tﬁese mechamsms usually require transiclions to preclarm all entlues that W|l| '

be accessed before startlng executlons Preclai strategles ‘reduce’ tbe level of con-

kcurrenC\ and are not feasxble in environments where the entities to' be accessed are .
not known in advance. Thls is particularly t,rue for database systems demgned to sup-

~port concurrent user transactlons that, are allowed to query and update the database'
*

“interactively. ' o &

T
' 2.3. Timestamp ordering

- «

In a tlmestanp ordermg mechamsm each transacuon is asslgned a umque
'tlmestamp (1 e, a number) when it starts. The concurrency control mechamsm uses
" these tipestamps to resolve the conﬂlcts among the executlng transactions and to

ensure that their execution cannot violate consistency. The timestamp of “ transac-
tiop T; will be attaclied to every read or write operation issued by the transaction T;. -

' The basic timesta’mp odering mecbanism maint‘ains two values for each entity'

X, denoted TSR(x) and TSW(x) These values record the largest tunestamp of any

~ -

- read and write operatlons processed on X, respectwely Tlmestamp ordering guaran- -
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tees the serlahzablhty of the executmg transacuons by produqmg all conﬂlctlng opera-

-

t.lons in tlmestamp order The baslc tlmestamp orderlng mechamsm processes read and

write operatlons as follows

‘When a read operation R;(x) by a transactio_n T, is receiyed, the timestamp of

‘ | L o
T, is compared with the value TSW(x).. ll' it is smaller, the operation is rejected.
Y .

Otherwnse, (ie., if the timestamp ol' T, is larger than TSW(x)) the o'peration is
( &accepted Slmllarly, when a write operauoh W(x) is recewed the tlmestamp of T is
compared wnth,.the v,alue_ Max[TSR(x), TSW(x)]. If it is smaller, the operation is

rejected. Otherwise, it is accepted. . e

L When an operatlon is reJected the transactlon whlch |ssued the operatxon
must be aborted Abortlng a transactlon wnll anolve undomg all its prevxous steps

whlch have been executed and restartlng the transactlon from the ‘beginning. Abortlonr

is the mam drawback of the tlmestamp orderlng mechanism. If it occurs frequently,‘

“the performance can be d'egraded. Other tlmeStamp-based m,ech_anlsms which necessi- -
tate lesser abortlon than the basic mechamsm descrlbed above have been proposed

[Berso, Ree78, Tho78] IR o

-

The conservative tnmestamp ordermg [Ber80] avoids abortton by delaymg the

1

operatlons instead. An operation is delayed until the concurrency control mechanlsm is

sure that accepting the operatlon wnll cause no. futzure operatlons to be re]ected
-l

: Although thns mechamsm necessitates lesser abortlon than the baslc tlmestamp order-

mlg, it requlres more delay . to proces_s the exec_utmg tr‘ansactnons.‘ Van_atno_ns on the

‘conservative timestamp ordering are discussed in [Ber80].
Thomas ['l‘ho78] has'im'proved the performatice of the basic timestamp order-
mg mechamsm by mTroducmg a rule (called Thomas wrlte rule) for processing wrne

opcrauons “According to:this rule, a wrlte operatlou wlll only be re]ect.ed when it



+

Jamy M

R 3 N . . CoN

mvahdates a prevnous read operation, This them will only consider the baslc times-

°

v

tamp ordenng mechamsm descnbed prevlously .

/ . -
‘Timestamp ordermg mechamsm has the advantage that nt is deadlock free.’

v

°

. This makes the mplementatlon of the mechamsm snmple in centrahzed as well as in
.
dlstnbuted databases. Moreover, tlmestamp ordermg mechamsm achneves a hlgher )

Ievel of concurrency than two-phase lockmg This is because transactions never wait.

However, the basic tlmestamp ordermg mechamsm tends to re;ect many operations

o

that, arrlve late). - o - : o /
( N | -

The |dea of utlhzmg tlmestamps in /databgse system hns also been used for

Several other purposes. For example {n seﬂe systems they are used to assign priorities
o s

to the executmg transactlons to prevent the deﬁ}ock problem (see [Ros78]) In [Ste76] -

. . _ ,

Umestamps are used to solve the starvatlon problem

N 4
¢ H
. -

Theorem 2.3: Every s'chedole produced by the ti.mest,atnp‘ordering mechanism is

[

serializable [Ber81]. . - . : v‘ L

~»

T 2.4, Servi'ali'zafpidrl graph mechanism S o TR

1..A new transaction T; starts in the system. -

'2: A read or a write operation is received by the mechanism.

A serialization graph mechamsm works by exphcltly bulldmg a depcndency
graph and chec}ung it for cycles. The mechamsm updates its dependency graph when-

ever one of the following conditions takes place. - [ »ot »

o
s

3. A transaction T is terminated.

4. A transaction T;is aborted. . . , o - \
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When a3 transactlon T, begins, a new node T, representlng the transaction T,‘

will be added to the dependency graph fWhen a read or wrlte operatjon by a transac-
itron T, is recewed a set of edges ol‘ the form T —T will be added to the graph where,
T- is a different transaction whlch wsues prevnous operatlon that/ conflicts wrth the
' operatlon of T, After addlng these edges, the mechamsm wnll check the graph for
cycles, If the graph is acycllc the op\eratlon will be accepted. Otherwise (| e, if the.
graph is cyclic) the operatlon will be rejected. In the latter case the mechanism w:ll

abort T and abo@t all oth psactlons that are dependent on transaction T; (1 e/,
. .

" which read some entlty ‘written by T) The mechamsm must ‘also delete the node of |

every transactlon'Wthch has‘been a,borted to make its graph acyclic.

When all.operations of the transaction T; have been accepted' the mechanism
'
wnll check to see whether the node T; is a ‘source node i in the dependency graph. If it

N

is, then T wnll be termmated and its node will be regxoved from the dependency graph

fd .

Otherwuse, transaction T; has to wait.

L4

ln order to reduce the number of transactions that are reqmred to be backed-
up after aborting the transactlon T,, the mechanlsm must dxstlngulsh between the arcs
of the dependency graph. An ar Ti,T-) in the dependency graph is called a pnmary
arc [Far82] if rt is due to a conﬂlc among read and write operatlons/m tfnsactlons
T, and Ti, reSpectwely This primary arc 1mpl|es that T;is dependent on T,, that is,
abortlng transaction T, wnll necessitate aborting transactlon T;. An” arc that is not pri-

mary arc is called a accondary are. A secondary arc (T,,Tk) does not necessutate abort- '

mng. ‘ o B _ o

Since the mechanism does not accept any‘operat‘ion which creates a cycle in-

the dependency graph, therefore every schedule produced by mechanism is serializable.

s

Thle serialization graph mechanism has several dravrbaclls. For example, a
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/

transacuon may have to wait even it all its resd and ‘write operatlons have been
| accepted by the mechamsm A transaction can only be deleted if it isa aourbie node in
T
' i
the dependency graph (A source node i is a node mthout lncommg arcs. Note that the .

reason for this delay is that even' if all operations of the transactlon have been &

accepted, the transaction may be aborted).
Another problem is that abortion can propagate when a transaction is nhhrtedi
" Moreover, maintaining and updating the dependency graphis costly (especially in dis-
. 3 - . ) ¢ .
“tributed systems). The previous problems make the implementation of the serialization

graph mechanism more difficult in distributed systems.

Deepitie the above problems, some researchers have nlready shown that main- -

’

taining a dependency graph can inerease the level of concurrenc“y. In particula_r, Bayer .

et al. [Bay80] have introduced a locking mechanism which maintains a dependency

~

graph, and they have also shown that their mechanism achieves a higher level of con-

cnrren'cy than two-phase locking. In the proposed mechanism, two versions of eacb

N,

enmy are mamtamed When the mechanism receives a read operation it searches its .
dependency graph to ﬁnd which version. must be ret.urned by this operation. The:
mechanism increases éoncurrency by assigning some read operations the old version of

‘the entity.

2.5. Optimistic concurrency control mechanism

The optimistic concurrency control mechanism [Kun81] uses transaction -

backup as the main strategy for controlling concurrency. Unlike all mechanisms men-
tioned previously, the optimistic mechanism bever delays or rejects an operation sub-
mitted by a transaction Instead, the read and the write operatlons of each transactlon B

'are processed freely without updating the ‘actual database. At the end of each transac-

t . 4
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tion the méchanism will decide whether or not the transaction can be terminated. If
the decision is afirmative, the transaction updates will be stored permanently in the

database. Otherwise, ‘the transaction will be backed up. - S

Each update transaction (i.e., a transaction which updates at least one entity .
of the database) must consist of three phases; a read phase, a validativgn phase and a
write vphasé. A read only transaction (i.e., a transaction which:reads only entities of ',

the database without updating‘any of them) does not need a write phase.
. . ; ‘,

. \
*
Read Validation Write
W
T, - o 1
o - Figure 5 The three phases of transaction T;.

L
B
All read and write operations of the transaction are contained in the read -

phase. During this phase, a write operation by a'transaction T, on anentity x creates a

‘new value for x in the private work space area of T;. This value of x will not be accessi-

" ble to the other transactions. When all operations of the transaction have been pro-

-cessed; the transactions will entér its validation phase. -

EJ

The purpose of the validation phase is to check whether the transaction can be
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terminated without violating ".he integrif,y constraints of the database. If the ;validu-‘
‘tion bhas'e succeeds, the transaction will enter its wrvite.' phase. In the wrfte phase all
the local updates of the transaction will "be made global updates b‘y.'st‘o.ri'ng ihe'ae‘
“updates permanentl.v,‘ in the database); If the’ validation phase fails, thé transaction

L ]

will be backed up (possiBly to the béginning.

The optimistic mechanism ensures that the ﬁpdates of every executed: transac-
tion will not violate the integrity constraints by using a validation condition which
guarantees the serializability of the executing tr.ansactio'ns. This can be described as

follows. Each transaction T, will be assigned a unique timestamp t,(T;) before it is vali-

' \

: 'da"fed. When a transaction T, enters its ‘va‘lidatf‘on phese, T must satisfy the folloﬁing
validation condition. For every transaction T,":vith t,(Ti)<t,(T;), one of the following
conditions mu:t hold. |
‘(1) T, com}‘)letes its wr‘ite phase before T starts its read phase.

(2) The wrige set of T; does not intersect the read set of T, and T; completes its write
p(h,ase before T, starts its write phase. (The read and the write sets of a transac-

tions are the sets of entities read and written by the transaction, respectively).

~(3) The write set of T, does not intersect the read or the write set of T, ‘and T, com-

pletes its read phase before ‘T]- completes its read phase.
. .

. ‘Con'ditiou (1) states that T, actually completes before T; starts (sée Figure

~ 6(a)). Condition (2) étates that none of the entities upﬂated by T, is read by ’l"j.'and
"tha‘t T; finishes writing its updates into the aatabase before T; starts writing&‘Thus,
the updates of T; will not be overwritten by the updates of T; (see Figure 6(5)). Con-
dition (3) is similar to conditi-on (2) but doés not require that T, finish writing before

T, starts writing. It simply requires that the updates of T; d°M‘ the read-tho\
i ‘ .

or the write phase of T; (see Figure 6(c)). (the‘that 'I;j cannot aflect the read phase of



T, by the last part of the condition).

£

)

] ‘ . .
Fig. 8(c) Condition (3).

(5]

Fig. 6. The conditions for validations.

27
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~ Since every executed transaction has to satisfy the validation condition, it is

*not difficult to'see that the overall tién of the set of transactions is équivalent to

Lo TR e
:(Ti)<t‘n(Tj)j

‘Thevoptimistic mechanism has the advantage that it pllow;.d high Ieﬁl of con-
currency. Kung, et al. [Kunél] hayve already shownbthat when transaétién con‘ﬂi‘ct is
very rare, the optimistic mechanigm will perform better than locking. However, the
performance of the optlmnsuc mec amsm has not been exammed for the general case
in whlch‘,transactnon conflict may ot be very rare.

s several drawbacks. In ofder to validate a tran-

v . . .
saction, the optimistic Jnechanism has\to store the read and the write sets of several

The optimistic mechanism
other terminated transactions. This obviously increases the storage cost and makes the
implementation of the algorithm more dificult\in distributed systems.

Another problem is "starvation”. Consider

-

ituation in which the validation-__
. <

-

‘phase of a long.transaction fails. Then, the transaction will be backed up and restarted

again. Since the u:ansaction is long, it is possible that the vali hase of\th‘&&;an-

“saction will fail repéatediy. Tixe following solution has been prépoSed..by Kung, et;l.‘ .
[Kun81). Each transaction will be assigned a counter which keeps track of the number
of times the validation phase for the transaction will fail. If the validation phase has .

failed a specified number of times, then the starving transaction will be restarted and

executed to completion by locking all entities accessed by the &ransaétion.

Although the above solution resolves the starvation pl\oblein, it is still possible |
that a long transaction may be repeated several times before it is terminated. (The

reader inte%ted for more solutions to the starvation problem may refer to [Ste76)).
4 - = 'G . '
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CHAPTER 3

THE GENERAL CONCURRENCY CONTROL ALGORITHM

This chapter describes the proposed concurrency control algorithm and proves
- 1

that it works correctly, i.e., produces only serializable schedules. -«
. ¢
’ The proposed concurrency control algorithm is more general tﬁan'gny previ-
N ‘ " . \ . '
ously introduced mechanism. This is because it contains as many special cases as the
‘ ’ .
degree of multiprogramming of. the system (This statement will be proven later). In’

pnrtiéular, two-phase locking and timestamp ordering, which represent the most prac-

tical concurrency control mechanisms, are special cases of the proposed mechanism.

The general conchrréncy control mechanism collects til'lé‘ executing transactions
in a" set of clas.ses, which will b;: calléd atrsct claaac;. The set of all transaptions
belonging to the Same strict class are charactefized by a umique global timestamp (i.e.,
number). Furthermore, each of these transactions is identified by a diﬂ'erent local
timestamp. The method used for assigning timeétamps in our mechanism. is valid, that
is, the method' satisfies the validation condition mentioned in'[Ros78]. Accbrding to
tl{is condition, a method used for generating timestamps is said to be valid, if times-
tamps 'are generated injési monotonically increasing sequence. This séquence of timms-

tamps must reflect the starting time of the tranéactiong. ‘

-

3.1. Transaction timétamps

4

Each transaction T, is assigned a unique timestamp t,(T;), when it starts. The

,timestampvt',(Ti) is a pair (t,(T;),4(T;)), where t,(T;) and t,(T;) are called the global

29
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na‘f"the local timentnmps of T;, respectively .' Several transactions cnln have the same
globnl timestamp slmultaneoualy durmg execution. Each of these transactions mun
, ‘.hnvc a different local timcatnmp Tbe meéaning of th‘lﬁbcﬂ and the ﬂbbﬁ tillmlmp!‘
will become appnrent later when we describe how the mechamam proceuen rend and

write operations. ' , ’ ' T Co

v

The method used for assigning tlmestampl usumes that there is some integer
L, whnch we will call the smctness leyel represenuhg the maximum numbcr of tran-
s‘xcnons which can bave the same global timestamp srmultnneoualy during execution, ‘
That is, at any time during execution, the number of transactlons whlch can bave the
same global tlmestamp cannot exceed the value of L. This chapter assumes an arbi-’
t,r:irxy value for L. Moreover, the ‘value of L\la assumed to be ﬁxed during s'xecut.i'on.
C hoo«nng the value of L and its impact on the pel;formance of the concurrency control

’

algonthm will be discussed later. ‘ | ‘

The method used for assigning timestamps utilizes four counr.ers C,, C,; C; '
and C,. Tne current value of each counter C; is denoted V(C,). C,.and C, are used to
generate the gl‘obal and the Ioc/al- timesiamps respectively. C, is use'd to knen t.rnck of

: thc nhmber of transactlons which have the current global umestamp V(C ). V(Cs) can- ’
pot exceed the value of L C,is used to keep track of the number of all executing tran-
sactions. V(C,) must always be = M’ where M is some integer representlng,the mul-
tiprogramming. level of the system lt is. assumed that if V(Cy) = M, then no other
transactnon can start execution until one of the currently executlng transactlons is ter-

minated or aborted. ” Timestamps are -assigned as,descrlbeq. bclow.‘ lnmally, all

counters contain the value 0. o .



' l"3.1.l. Sttrt'l'ngor restarting a tr'ans‘actien PR . -

‘ values of tz(T ) and t,(’I‘ ) are assxgned as follows

]

( ) ! When a new transactlon T arrlves in the system (or when T is restarted) the_-

- i

e

,’.
ol

lf V(Cq) = M then T has to wait untll one of the. currently executmg transactions

is termmated or aborted Otherwrse V(C,) = V(C )+1

1 EaS

2:‘1'11' V(Cy) <L, "{hen V(Cs)= Cs)'“ 'and 'V( 2) = (02) . ‘(')_therwiee,_ "

. ;V(-bs) - ‘.’('C,)\.- 1 a’nd'V(Cl)'= V(c,)+v1.-

3 tz(T)=V(C)andt,(T) V(cg)

o ’ ;» N . \' . . .
Thué the transacﬁon T wxll be assngned the cug.rent global trmestamp.
;- .

_’recordcd in the counter C ‘as long as there are less than L executmg transactlons wnth

S~

thc current global t;mestamp V (C ) and the total number of executmg transactlons is

leqq than M. Otherwnse e, if there are L transactlons with the cu[rent global times-

-

tamp V(»C‘l-), the transactlongTi will be ass;gned a new global tlmestamp (after lncre-' E

- menting‘the,'coun-t.eer'l).

3.1.2. Termina:t‘ing or aberting 'a.,transaetion RPN ’

; "é% thn a transactlon T is termmated or aborted the values of V(Cs) and V(C4)

' ’_‘mll hc modlﬁed as followq

1. lr,p,(r,) = \_'(C,), at, the time of termination or abortion, then V(Cy) = \‘/(c‘;‘;);l,.

LA

Thus, when the transactlon T is termlnated {or aborted) the value of the

counter Cy must be decremented to reﬂect the corréct number of executmg transac--

P . v

e _ftlons Moreover&. if the value V(C ) equals to the global tlmestamp of T,, the counter

. Ca'mll also be decremented byl ' W
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' For each entity X t.he concurrency control algorlthm malntaln« the followmg

'values GTSW(x), LTSW(x), GTSR(x) md LTSR(x) The mechamsm uses these values

to declde whether a' read or a wrlte operatlon should be accepted, reJected or delayed

1

(as described latver'). The_se values are described as follows.

‘ ,‘( ) GTSW(x) and LTSW(x)

‘GI‘SW(x) records the I.;.rgest global tlmestamp of any transactlon which has

r‘. %!h- -

wrxtt,en x. This value is recorded whed- the write operatlon ol' the transaction is .

-'accepted The local tlmestamp of the transacmon will be recorded, at the snme A

time, in *LTSW'(x) ll' the transactlon is termmated (or aborted) and its global

. and local tlmestamps are snll recorded in GTSW(x) and LTSW(x) respectlvely,

its local tlmestamp will be deleted from LTSW(x)

L ’ . ; . L

| .(ii.) GTSR(x) and LTSR(x)

NG

ot

,&ﬂ

GTSR(x) records the largest global tlmestamp of any transaction which read X.

Th|s value is recorded when the read operatlon of the transactlon 1S accepted :

‘.The local tlmestamp of the transactlon is recorded ‘at the same time, ln
‘ LTSR( ). 1o general several transactlons ‘with the same or dlﬂerent global times- .

» tamp can read X snmultaneously LTSR(x) records the local tlmestamp of every

transacplon ‘whoee 'global tunestamp, is recorded in GTSR(x) and read x. If a

" transaction is terminated or aborted and its global and loc ! times_tamps'a‘rc\ A
_recorded ‘in GT_$R(X) and LTSR('x),:_» respectively, its local timestamp is deletved‘

from LTSR(x)’._ '

lnitially, i._e., before startlng executlon, LTSW(x) and LTSR(x) are empty and

GTSW(x) and GTSR(x) record the mmal value of t,he c&ter Cl
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_ the following eonditi,ons must, be true.

33

3.3. Processing read and write operations '

Thls section d‘esc/ribes how the concurrency control algor‘ithm processes read

and wrlte o.pe:at,lons, and proves t,hat the concurrency control algonthm p,roduces only

serlallzable schedules

-~
.

3.3.1. Processing read ope,ra.tions' : ” ' e .’

«

When the con¢urrency c'p\‘ntrol algorithm receives a read operation Ri(x), oneof -

4

)

(1) t4(T;) < GTSW(x). This condition means that x has been written by a transaction

which has a larger global timestamp than T,. In this case R(x) is rejected.

‘.

r

-

(2) t(T; ) >. GTSW( x). This condmon means that x has not been wrltten by any tran-

v

. saction whose global timestamp is larger than or equal to the tunestamp of T;. In
‘ oAty , , .
K e
thls case R, (x) is atcepted

(3) ty(Ty) = CTSW(x)l This .c;onditionbmeans that x has been wl'lt'ten by one (or more)

transactiofe¥hich has the same global timestamp as T;. In this case, one .ol',..@‘h_e " .

. foJlowing conditions must be true. "

{(a) -LTSW(x) is empty. This means that any t.rans_action':with the same global

\

timestamp as T;-and has written x has been terminated. In this case Ri(x‘z is

’acceptedlll . o R _ L @

- : [y ©

(b) ‘vLTSW(x) is not empty Thls means that x has been written by another tran-.
e.sacuon whxch has the same global tmﬁstamp as ‘T, and t,hls transaction is stnll

'm the system In t,hns case R,(x) is’ dela) ed.

Tl



84

When the mecbanism delays a read.or write operation by a transnction T

»

-

: because |t conflicts vnth a previously accepted operatlon by a dlﬂerem. trausaetlon Ty

A
T has to wan for T until it is tcrmmated or aborted (and therefore, the conﬂnct o
longer e‘xlsts‘) If anot.he.r operation with a larger global tlmestamp than the waiting
operatlon and conﬂlctmg wnth it has been accepted the waiting operation will be

re;ected (l e., the transaction T, whlch issued the operation will be aborted)

3.3.2. Processing write operations
. \ -

When the concurrency control mechanism receives a write operation W,(x),

_one of the following conditions must be true.

(1) t,(Ty) < Maximum[GTSR(x),GTSW(x)}. This ‘condition means that x has been
read or written by a transaction which has a larger global timestamp than T;. In

this case, Wi(x) is rejected.

(2) t (T) > Maxnmum[GTSR(x) GTSW(x)]. Thns condmon means that x has not .
been réad or wrltten by any other transactlon whose global tlm&tamp :is larger

than or equal to the global txmestamp of T;. In this case, W (x) is accept,ed

. , ' o) ; .
(3),4(T)) = Maxnmum[GTSR(x) GTSW(x)]. This condition Ii)eans that x has been 8
read or written by one (or more) transaction which has the same global timestamp -

as T,. In thl\s\{ase, one of t,he following condmons is true. -

(a) GTSW(x) > GTSR(x) This means that X has ‘not been read by any transac-
tion whlch has the same global umestamp as T In thls .case, the mechamsm
. " examines LTSW(x). If it is empty, then any transaction whnch wrope x has

‘been. terminated. Therefore, Wi(x) is accepted. Otherwise (i.ev.,'vif:- LTSW(x) is

Ty
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not empty)‘Wi‘(‘x‘) is dclayed;

(b) GTSW(x) < G'-I‘SR'('x).‘ This means that x has not been written‘by any tran-

" saction whlch has the aapxe global tlmestamp as' T, ln this {case the con-

currency control mechan:sm examines LTSR(x). If LTSR(x) is mpt,y or con-

tains only the local tlmestamp of T;, then any ,other. transaction whlch read X

has been “ter%ﬁted: Therefore, W(x) is accepted. Otherwise, W;(x) is
"ﬂ

‘dolaycdr.

-.(c) GTSW(x) - GTSR(x) In thls case the concurrency control mechanlsm exam-,
\'meq LTSW(x) a’nd LTSR(x) lf LTSW(x) is empty and LTSR(x) is empty or
contams hplv ‘the Iocal trmestamp of Ti, then Wi(x) is accepted Otherwnse,

W;(x) is clelayed.r

3.3.3‘.‘The correctness of the rrxechanism

Thls se}ctlon proves that the - mec}};amsm works correctly, i.e., produces only

, serlahzable schedules The glven proof is basedz’ on the (serlallzablhty) theorem given in

Sectlo_n 3.1.

W .
7 i

Theorem 3.1:»E.ver‘y schedule prociucéd by the proposeci mechanism is ‘serializal‘).le.
Proof: Let H bc av'scvhedule oroduccd by the 'nvxlecha.nism ‘and Ict T; and T; oe arbitrzfry '
transactions ln H such that there is an operatlon m T; whlch accesses the entity x, and
. whlch conﬂlct.s wlth and precedes an operatlon in T Suppose first that the conflicting
_ | operation of T; is a read operatnon on X. Accordmg to the procedures descrlbed prevn-

. ‘ously for processing the (read and write) operatlons, one of the followmg condmons

must be true at the time the conﬂlctmg operation of T} is recelved:
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(a) ts(T) > GTSW(x) = (T

(b) l,‘(T) - GTSW(x) = t‘(T) and LTSW(x) is empty

ot

The above conditions imgly that either t(Ty) < t(T)), or t(T)) = {(T)) and
T terminates before T;. It is not diﬂlcult to‘ show that this‘is ;153 true -’evén'il‘ the
conﬂlctmg operauon of Tjis a- write operation. This actually lmplles that for each arc
T;~T; in DG(H) either to(T;) < ts(T) or t‘(T) ‘(T) and T; termmates before T;. :
Let Tk and T| be two arbltrary nodes in DG( ) such’ that there is a path (of Iength'

" greater than zero) from Tk to T| Then, hy transmvn,y. either t‘(Tk) < t‘;(Tll or

o te(Ty) = tgl l) and Ty terminates before T,

Suppose first .that t (Tk) < tg(‘T) Aholher path lrom Ty to Ty ivill lea’d to'the »
contradiction that t ( ,) < tg(Tk) Slmllarly, suppose that t‘(Tk) - t‘(’l‘l) and Ty ter- ‘
mlnates before T). Anot,her .path from TI\ to T} will lead to the contradlctlon that T|; :
terminates bcfore T,. In éither case, another path from T to Tk cannot exnst because it

leads to a contradiction. Therefore, DG(H) is acycllc, ie., H is serPallgahl_e., o

3.4. Specia.l cases of the proposed me,chaniggi.

_/
!

Thls section descnbes the special cases of the proposed concurrency control.. |
algonthm and shows that twoophase locking and tnmestamp ordermg represent the
two end pomts of a series of concurrency control algonthms Each of them is a spcclal

case of the proposed algorithm

xecuting at any time under the proposed algorithm

' -can'he partmone'd |i‘£o a set of disjoyat classes each rlass contalmng the set ol' tran-

’

/sactlons with the same global tnmestamp Th:s set ol' classes changes dynamlcally dur-

-,,;/ ing execution (i.e., when a transaction is started, termmated or aborted). These classes
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will be called strict classes The valﬁe chosen for the strictness level determines the

»maxlmum number of tranaacuonn s which can.have the same global timestamp at any

“tlme dunng execution (i.e., whlch can belong to the same strict class).

+

3.4.1. The two-phase locking apecia.l case

PR

Consider a épecial case of the ‘prop‘osed algorithm in which L'2 M, where L

'_ gmd M are as dcﬁned prekusly Accordmg to the procedure descrlbed in Sectlon 3.1

-

. for asslgmng umestamps when a new transactlon starts in the system, the counter C,
wnll onlv be lncnemented if V(Ca) =], (| e., if there are L executmg transactions m

_the ‘system wnth the current global timestamp V(C, )) Since L = Mvand the topal'

/

mber of executxng transactlons cannot’ exceed M, the executnng transactlons wnll

alwa)s have the 'sa.me global tlmestamp Thls global tlmestamp will equal to the lnmal‘_

vqlue of the counter C,. In this case, the number of strict classes at time during execu-

tion will equal 1.

f\ In the procedure described in the’previouély for processing read operations

only condition (3) (i.ev., t(T;) = GT.SW(x)) can be satisfied. In this’case a read opera-

* tion R;(x) will- be accepted if LTSW(x) is empty. Otherwnse R i(x) will be delayed That

s, R,(x) will only be delayed lf it conﬁlcts wnth a prevnous write operatlon |ssued by a

traqsacmon which has not been terminated.

Similarly, in the procedure described for processing write operations only con-

“dition (3) (i.e., to(T;) = Maxnmum[GTSW x), GTSR(x)]) can be satlsﬁed In thls case, a

: wnte operatlon W;(x) will ﬁ\e accepted, if LTSW(x) is empty and L’I.‘SR(x) is empty or

contains the local timestamp qf T;. Thls is because .the values’ of GTSR(x) and"
GTSW(x) will a-lways’ be t_,.he same. .Otherwise, W,(x) will be delayed. That is, W(x)

will be delayed if it conflicts with a previdus_ read or write operation isstisd by a tran- E
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3

. saction which.has not been terthinated.’

It is not difficult to see that _ih this part.i‘eul;r case the processing of read and
write operitions is performed as in the two-phase locking mechanism. In this special
case the conflicting operations cannot b? processed concurrently. Instead, the conflicts

will be resolved by delaying the operations.

3.4.2. The timestamp Qr'dering special case

Consider another special ncase in which L = 1. In the procedure described for
essigning timestamps, wher) a’new t,ransﬂact,ion Ti‘.atarts, the value of the counter C,
will only be i.ncrement.ed if V(C,) = ‘l;r(i.e'., if there are L exeet\xtin}g;transactions with
the current‘g‘lobal timestamp) ‘SincevL - 1, -t;hen the cxecuting‘transactions will

always have dlﬁ'erent global tlmestamps, ie., the number of strict classes at any tune :

.durlng execution will equal to the number of transacnons executmg at that time.

In the procedure described for proc"es‘sing read ‘operatio.ns only conaitiorx (n
(i.e., g(T) < GTSW(x)) or oondltlon (2) (l e, tg(T) > GTSW(x)) can be satisfied. In
.thls case, a read operation R; (x) will be accepted if condition (2) is satlsﬁed otherwnse
R,(x) will be rejected.

Similarly, in the procedure described for processih'gfiavrite Operations condition
¥

(3 ) (e, tg(T) = Maxnmum[GTSW(x) GTSR(x)]) can only be satlsﬁed if there is a read

operation R; (x) which has been accepted by the mechamsm In this e:se a write opera- |
tion W(x) will- be rejected  if condltlon (1) s satlsﬁed (iie., if
t(T;) < Maxlmum[GTSW(x) GTSR(x)]) Otherwnse (i.e., if condition (2) or condition

. () is satisfied) Wi(x) will be agcepted.

It is not difficult to see that in this particular case the processing of read and
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write gpeiations will be performed as in the timestamp ordering mechanism. Unlike

the previous special case, the conflicting operationé will never be delayed. Instead,

&ach operation is either accepted or delayed, depending on the condition satisfied when

the operation is received.

3.4.3. Other special. cases

Several other specnal cases of the proposed mechanlsm anse for L = 2,3, ,M-1.
Procesemg read and write operatlons in each of these cases is performed by the con-
currency control mechamsm as. |f n is a combination of the two-phase locklng and the
umestamp ordenng mechamsm .sAn bperatlon will be processed relatlve to another

opcratlon whlch has the same global timestamp as if the concurrency control is two-

-

phase lockmg and relative to another operatlon which has different global tlmestamp
(J .
as if the concurrency control is tlmestamp ordering. The followmg lemma gives the

\ -

minimum and the maximum number of strict classes at any time during execution for

: .any valueof L,1 s L s M.

A
\
: b ' . . .
Lemma 3.1: Let C refer to the number of/strict classes at any given time during exe-

!

cution and let. L,M and v(C,) v‘be ~as  defined previously.  Then,

.

“y

fv(cy)/Ll =C = Minimum[V(C4),'M-L+l]. . -
L ,

‘Proof: The proof of the aboov'e Lemma is an immediate consequence of the method

described pi'eviously for assigning timestamps. The minimum number of strict classes

corresponds to an instant in which at most one class has less than L transactions. The

maximum number of strict classes corresponds an instant in which M-L transactions

(or every transaction if V(C,) s M-L) will 'beldq‘gito M-L (V(C,)) di classes and

—

the remaining transactions will belong to another strict class. © L N
/
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«  Thus, two-phase locking and t,iinestamp ordering reb;eaent the tv:;\imd points
of a series of concurrency control algorithms. Each r;:aults from .choo;ing a different .
value for the strictness level and is considered to be a special case of the general con-
currency control mechanism described previously (see Figuré 7). Although we have
previously assumed that the value of L'is fixed dunng execution, thls is not necessary.
In fact the value of L can change from time to time (dunng e'xecuuon) thhout

! B

affecting the correctness of the proposed mechanlsm.

Concurrency controls

Two-phase locking - e Timest;ﬁp ordering

Fig!re 7 Special cases of the general mechanism. -
*



3.5. 'i‘he generality ‘feature of the proposed mech

i

Integrating a series of comcurrency control mechanisms, which include two-
pbasé locking and timestamp ordering, within one general mechanism has several
advantages. The most obvious advantage is that the general mechanism provides

several special cases; any of them can be selected in advance and can even be changed

[
fad

-

]

during execution.

‘Most implementations of database management systems tljat'are currently in
use support only unique concu;rency control mecﬁani:ﬁn, such as tivo-phase locking, or
timestamp ordering. This mechanism is chosen when the dgt#base s;}stem is designed.
If the datagase designers'dcc.ide at. a Ijat.er time to replace the implemented con-
currency control mechanism by a different mechanism, a lot of work needs to be done
in order to implement the new m'e'chanis’m. This problem is completely eliminated in

.the proposed approach. In order to change the currently used mechanism, we only

nced to change the current value of L.

The two critical factors in evaluating the performance of a concurrency control

mechanism are the level of: concurrency allowed by the mechanism and the likelihood

of transaction conflict. The first factor depends on the mechanjsm used , while the

second factor is application dependent, i.e., it varies from application to application.
Two-phase locking and timestamp ordering mechanisms, represent the two extremes in
‘terms of allowing concurrency in the proposed mechanism. That is, two-bhase lockiﬁg
allows. the Iow¢st leyel of concurrency, while timéstamp ordering allows the highest

level of concurrency. The other special cases allow intermediate levels, of concurrency.

N
+
L4

When the likelihood of transaction conflict is very low, we believe that the

¥

timestamp ordering mechanism will perform better. Under such conditions it is .

unlikely that many conflicting operations will arrive out of order. In this case delaying
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the operations will not be necessary. Similarly, when the likelihood of transaction
conflict is very high, we believe that two-phase lo_cking me;ia‘niklm will perform better.
i’n this case u'm'ny operations may arrive oﬁt of order, aﬁd .Vconuequ:ntly many transac-
tions tay be aborted if the operations a}re not; delayed. Between these two extremds of

transaction conflict, the intermediate special cases of the proposed mechanism are

expected to perform better than two-phase locking and timestamp ordering.

e}



CHAPTER 4

N _ . ) . -
'RELATED PROBLEMS
\ This chapter discusses some problems that are associated ‘wlth the mechanism

prksented in in the previous chapter and outlines some solutions to these problems.
\ v .

L
1

\

4.1: Deadlock

/ :
Deadlock can only occur if the strictness level is greater than 1 (i.e., for any

) ! . . .
mechanism except timestamp). Moreover, when it occurs it only involvestransactions

which have the same global timestamp. This' is because a transgptign never waits for

" The deadlock problem can be resol_véd by detecting deadlock and .abortipg one
(or more) transaction [Obe82]. Detecting deadlock requires maintaining a‘;w:gfit_-fbr
graph qimilér to the one described in Chapter 3. Sim‘ilarly, the deadlock problem can
“also be resolved by preventing deadlock from occurring (as described in
S < ‘
[Ros78, Ryp79)). ' , R

\

4.2, Assigning timestamps in distributed systems
&

Assigning titp?stamps in a centralized system is simple and spraightforward.
.This is due to the fact that the values of ali counters (l;sed‘for assigning timest : ps)
and the parameters L and M will be ava%blg at the same (centralized) site. Assi‘gniné
timestamps in a distributed sysf.em will depend v_<;n the way in which the concurrency

control will be implemented. The 'main approaches for implementing a concurrency

-
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control mechanism in a distributed system are the centralized approach and the distei-

>

. . ‘ . : )
= . A ’ ] : : ke " P

buted approach.

(1) The centralised approach , ) /
A RS .

In this approach the concur:ency.,control mechanism resides on one (desig'-'

: A‘nat-ed) site in the distributed system. This master aite‘ coordinates the' activities of all’
transactions in the distributed system.‘ The read and the write operations of all tran-
sa;:tionls‘in the system will be directed to th:: master site and the deci;idn of accepting, .

. delaying, or rejecting the operations will also be tak‘en at that site. Such a desfg’if%a ‘
distrfbutea\»sysktem is actually a centralized control whose database happens to be dis-

tributed.

Assigning timestamps in this case is simple and simil cemitralized case.
The values of all counters (used for assigning timestamps) an eters L and M
will be stored at the master site. The value of L will be chosen (and can only be

‘modified) by the master site. The value of M in this case represents the maximum ‘

number of transactions that can be executed concurrently at all sites in the system.

When a transaction T, is initiated at any site, the local ahd the global times- '
tamps of T} will be computéd at the master site using the same procedure described in
.the previous chapter. Similarly, when T, is terminated (or aborted) the counters C,
and C, will also be modified as _deséribed in previqusly.
® .

(2) The distributed approach

“

In this approack the concurrency control mechanism resides on every site in
the distributed system. The local mechanism at each site S; will be réspongible for

resolving all the conflicts at S;, that is, accepting, delaying, or rejecting an operation ,
- h .

'
o ®



, oh some entlty X stored at S Wlll be decrded by the local mechanlsm xndependently of

l

all Other sltes in the system When communlcatlon cost is hrgh such a design of ‘a dls-

: rcprcsents the maximum number of transactrons that can be executed concurrently at

““ may also be stored at several other srtes in the system if one of these srtes fail, these -

. ;. )
tnbuted system becomes more attractlve than the centrahzed desrgn descrlbed prevn-

B

_ously,‘__r

. . - .~ : {u}‘
v .\) ,

In this case,. asslgnlng trmestamps can be done locally as. follow3u Let M;

v

the srte Slmllarh let M represents the maxnmum number of transactlons that can -

be executed concurrently at all S|tes (that is, M=2 M, for all srtes)

: M
; - : - : o v" ’ Sy
; The values of the counters Cl, Cy, and C; and the parameters L and M will be

stored at a par’trcular site in’ the dlstrrhuted system. This srte must be known to all the

4

other srtes (ln order to increase . the relxablllty of the dlstnbuted system, these values

’ values can be found on another srte that is still operatlng) The counter C4 in thls case

- will be replaced wq!h a set ol' counters one counter C,; for each srte S The counter Cy”

currencv contrdl res:dmg at S, V(Cy) wxll represent the number of transactlons"

= rhapter al'ter replacrng M and V(C, ) in thrs procedure W|th M, and V(Cﬁ) respec-‘ ‘

vonésite)., R 0

.

wlll _be stope\ at the site S Moreover Cy; will only be accessrble to th% local con—

.., '_/

| -currentlv executlng at 'S;. (Note that some transactlons may be executed at more than

- . : "t
~ . . | N .

When a transactlon T, starts at’ S,, the local concurrency contgrol mechanrsm

o

at S, assrgns new (local and global)‘tlmestamps to Ty as follows.- Flrst the merhanrsm

S

must obtain exclusive |ock-s on' Ci Cg, Cs, and L. Then, the local and the g‘lobal times-

r

gtamps of Ty wrll be computed usmg the same procedure descrlbed in the prevrous .

: ‘ , v _ R

tlvely. R SRR

v . i ) -
Similarly, when T, is terminated (or aborted), the faechanism’ must obtain

o

.
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,excluswe locks on Cl and Cs. Then, the values of the counters will be modnﬁed using
/

© the procedure descnbed in the prevnous chapter after replac1n7/'V(C4) with V(C,) in

" this procedure.

ST

« - The initial value of L in' this cvaéé must be accepted to all sites. .If one of the
W . i R . i

o . ' i R
‘sites wants to.change the current value of L, it. must first notify all other sites. If the

L

response of all sites is "Yes , l.e., if all sites agfee on thenew value, then this site can”

.'modify the value of'L.r

. ‘ ‘ : o i; : X \ .

+
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f[Ku’n79,Lynl83]. e L T

may be’ drﬂicult

—— - -

CHAPTER 5

' ALLOWING NON-SERIALIZABLE SCHEDULES
W . ‘ ‘ ‘ - ‘)‘ , L .

In-order to allow a set. of transactions"to access (i.e., 'retrieve and update) the -

" entities.of a database concurr:ently, a concurrency control mechanism is. needed to

resolve the conﬁlcts that mlght arise among transactions and to ensure that the overall‘

b

' ell’ect. of their executlon is correct (i.e., transforms a consrstent database state into a

2

«®

‘new consistent state). Several concurrency control mechamsms that allow only serlallz-

able schedules have been introduced. Designing these mechanlsms has proven to be

simple. However, :very little work has be_'en done on designing concurrency control

b N

mechanisms which allow non-serialigable schedules.
~w The main motivation behind allowing non-serializable schedules (which do not
violatc ' consistency) is improving) performance Sev‘eral researchers -

t
[Gar82 Gar83,Gra76, Lyn83] ha\e already not,lced that in some appllcatlons allowmg

~only serxallzable schedules may lead to rexducmg the level of concurrency and increas-
‘_lng transaetlon response ume Allownng non-serializable schedules, on.the other hand

~‘increases concurrency and lmprovesvperformance. These facts are well ‘known

"There are two main dlﬂicultles assocxated with the concept ql allowmg non-

v'senallzable schedules The ﬁrst is that deslgmng concurrencyﬁonotrﬁfmechanlsms that

o

& L;»f» &
_ 'pTe The second problem is that specifying
i
&
thesa\sched‘ules in a w~ay wlnch is surtable for use by a concurrency control mechanism
¥ O . v'\' .

“A %

PR

Lak4
accept-non-senallzable schedules is nbt
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One , simpl@ )way to improve perl'orrnsn“ce ‘and to allow noh—seri‘aliuble B
schedules is “to extend the basic senallzablllty theory to allow several degrees (or Iev-
els) of consnstency [Gar82,Gra76]. That is, serraluabnhty can be consldered the strong- '

_est degree | of conSIstency and other (weaker) degrees of comsistency, that permlt non-
sernalnz@ble schedulves? can be allowed.»We lllustrat.e this idea by the following exam-

o4

. ple. - e -

Elxamp‘le 5.1: . . . : . ‘ ) * ' - i

Consnder the schedule H descnbed below, H Is. qg e (ie., H is not

)
2
equnvalent to a serlal schedule of the transacu})ns) ”ﬁoﬁ.ever, all update-

transactions of H appear in a serial order, ie., do not overlap. (Note that an
‘ update -transaction is a transactlon which updates some entities of the datahase)

Clearly, the execuuon of the schedule H cannot, vnolate consnstency, éven though H

§ . .
A

is non-sernahzable schedule . ,

é’u .

~ been proposed in [Gar82].

ln th|s ‘thesis, wé are interested in other approaches which make use of the

' semantic knowledge avallable about the transactions in allownng non- sehahzable

v schedules TlllS idea has been recently mvesugated by Garccla-Molma [Gar83] and an‘
interestmg prellmmary work has been'proposed for designing a concurrency control
'mechamsm whxch accepts a certain class of non- senallh?hﬁschedules called * "semanti-
cally consnstent schedules The detalls of this class of schedules, as well as the lockmgﬂ

- mechanism proposed by Garcla-Molma [Gar83], will be revnewed in Appendix I.

The basic idea behind the locking rnechanisui proposed by Gvarcia-Molinna

;
i
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, (GarSQ] is, dividing the executlng transactions into 3 set of disjomt claes/ such that

Q“v a i'

the trar‘l?a"ctlons which belong to the same class are compatlble , i.e., can mterleave

arbjtrarily, and the _tra’nsactlons which belong to dill'erent classes are lncompatrble ,

. ' : XS
i.e., cannot interleave at all.

_The compatibility concept 'deﬁned iti {Gar83] has been refined further by
Lynch [Lyu83]. In this forma‘lization several levels of compatibility among transac-
. tions are defined. At each level, the transactlons are grouped into a set of classes called

nested classes”. The main ldea is that the transactions whléh belong to the same class -

?

~at a high Ievel can have many' relevant breakpomts (l.e. can mterleave ‘a great deal),

while the transactions that belong to the same class at a low level might have fewer

S

relative breakpomts (l e cannot interleave very much) Although the class of correct-

able schedules deﬁned in [Lyn83] can be recognlzed in- polynomlal time it is still ag

-

opcn problem whether there is an elﬁcnent on-line scheduler forthls class. ¢
Aﬂ«‘v’r)’. . ’

The rem alnlng chapters of this thesis examine the c?ncurrency control problem -

\"{vhen semantic lnformatidn is available about the trans'act;ons The l'ormahzat on -
- ‘presented here is more general than those used in Garcla:Molma [Gar83] and Lyn ch
&

[Lyn83] This is because there is no assumption regardmg any structural rule for t‘e

lnterleavmg among the transactlons We shall describe a concurrency control mechan-
ism whlch lmproves performance byn allowmg serlahzable and non-serlahzable
schedules to be produced."I_‘-he proposed mechanism assumes fewer restnct\ons on the
mterleavmg among the transactlons than those assumed in [Gar83] and therefore

achleves a higher level of concurrency The proposed mechamsm also avoids other
[ .

problems that are assoclated with the locking mechanlsm of Garcna-Mohna regardlng

. 1
transaction l‘ailure.'ln the "se.manticall ,consistent transactio‘n classes" formalization
‘ . ’
¥

the only way to handle transaction failure is to run another compensating.transaction.

In some cases, writing a compensating transaction may not be simple, and may itself
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be the source of inconsistencies. Although the ¢oncept of compensating transactions

can also be used in our mechanism, another approach is also presented which avoids -

the'problems of the compensating,transactions.
/ ) \

oo



CHAPTER 8

THE MODEL
' [
\{‘v

#

"This chapter describes the database system model used in formalizing the
second topic in this thesis, and defines a new class of schedules called relatively con-

sistent \(FRC) schedules.

9

A databaac is a set:D of entities. The entmes of D are named X, Y, z, etc. The

' L

‘values of these cntltles can be read and modlﬁed by a set of application _programs,

which will be called ,lramactaona. It is. assumed that each of these transact}ens is a

[4

correct computation which preserves the integrity constraints of the database. These
. ’ ~ + .
transactions are divided into a set of types, based on thelr semantic knowledge and
' 9

the actions they perform. The type of a transaans denoted t(T) and the set of

- all types of transactions is denoted TP. The elemedts of the set TP are named

TP1, TP2, TP3, etc. (For examﬁle, in a banking system the elements of the set TP
. , . N

iight represent transfer transactions, audit transactions, creditor‘transactions, etc).
: ' ’ S

The idea of classnfymg the transactions into a collection of types has also been

used in [BerSOa Gar8s3, Lvn83] The classxﬁcatlon used in [Gar83,Lyn83] is slmllar to

s

ours, that is, this tlassification i is based on the semantlc mformatxon of the transac-
t,lons, while the classification proposed in [Ber80a) is based on the syntgctlc informa-

~* tion of the transactnons . :

Each transaction T; is modeled as a sequence of steps and a termination com-

mand TR('f‘i) at the end of this sequence, that is, T;=S;;S;S;s...S;x TR(T;). Each step

o . 9 0 s . ' : . '
_S;; in T consists of a sequence of atomic actions and a breakpoint at thegmd of these

< -

_actions. An action is either a readnoperatioq, denoted R(x), or a write operation,

51

1
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oW . * 1

denoted Wi(x), on some entity x. Each step must have at least one operation, and an

entity x can be accessed in at most one step in the same transaction. The breakpoint of

, tﬁe step S‘ijy re;preéents the tgrmjnatibn point of S;;. This breakpoint will be Qeno@cd
B;;.. The termi‘nation cox;lmand TR(T,) represents the termination p.oi'nt. of (t;ll steps of)
T,. An example of altransactioh; is shown below. | | |

Ty= Ry ()W, (0B, R, ()W, (5)Bi TR(T,).

T'Be steps o}f" T, are

S11=Ry(x)W(x)By;.

‘ﬁ N
S12= Ri(y)W,(¥)Bo.

.

Associated with each breakpoint B;; is a set t'(Bij)., which denotes the types of
all transactions. that.are allowed to interleave at B (t'(B;;) © TP). No restriction will

be assumed on the breakpoints of a transaction (until Gh:ipier 10).

An interleaved sequence of the operations and the breakpoints of a set of

{ransactions is called a .schedule. Consider, for example, the three transactions '

descr\ibed below. j "4 ‘ . 40
Ty=Ry(xBy Ry (yB,TRIT,). e o
T =V'v2(x)Balwz(fsf)R;(z)BozTR(TQ). |
3= W3(z)331 Y)BsoTR(Ts)
Ao example of a schedule H of {T, T Ts} is
H=R, .x)anz(x)Bm A¥)Re(2)B, TR(T,)W J(2)Bas (5B TR(TR,(3)B, TR(T, ).
The order ‘of operations and breakpoints in H (apd in the transactlons)

mcreases from left to rlght We requlre the order of operatlons (and brcakpomts) of

~ the same transaction to be preserved in H. Wesay that a step S,, precedes a step Supy
.

if the bregkﬂg_;pg Bj; precedes the,ﬁrst operatnon of Sy, in H. A read opcratlon Rv,(x_)v

returns the value of x written by the write operation Wj(x); if W(x) precedes R (x) and

1o other write operation on x appears between R;(x) and W(x). If no write-operation

AY
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on x precedes R;(x) in H, R,(x) returns the initial value of x, i.e., the value which exists

in the database before executing the schedule H.

We shall use the symbols "<" and "<" to denote the precedence relations
among the operations and the breakpoints, where "<" means "precedes” and "<"
means "precedes or the same as”. We shall also use the symbol "S;" to indicate "the

series of operations and breakpoint of S;;."

Definition 8.1: Two schedules H,’al‘xd H, fo‘r\the same set of transactions are said to

be equivalchl if the fo"owing two conditions are satisfied.

(1) l:*‘o'r each read operation Ri(x), either R;(x) returns the value of x written by the
same Wwrite operationin H, and H,, or R(x) is not préceded by any write speration

onx in Hyand H,.
L4

(2) For each entity x updated in both schedules, the last write operation on x must be

the same in H, and H,. !

Condition (1) ensures that each read operation in H, return the same value
returned by the corresponding read operation in H,. Condition (2) ensures that the

final value written for each entity x is the same in both schedules. These two condi-

/

tions guarantee that each transaction will see the same database in both schedules.

\
f
! [

Note that our definition of $chedule equivalence is identical to the 6ﬁe uéed for
serializ;abilitj [_Esw?G]v. This is to be exbected, because the .insertion of breakpoints iﬂ a
transaction cannot change the meaning of equivalence. For example, the following two ,
schedules are equivalent. .
Hy= R, (x)B1y Wa(y R () Byy W x)Bo TR(T,)Wy(2)By, Wiy )Byy TR(T R, (¥)

B)2TR(T,)R(z)B,, TR(T,). '

‘ He' W(y)Ro( '-)leRx(x)Buws(’-)Balwz(x)BzzTR(Ti)ws‘(Y)BazTR(Ts)Rq(z)
. B, TR(T,)R;(y)B,,TR(T,). '
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Definition 8.2: A schedule H is said to be corrfecl if the following two conditions are
satisfied. | ' | .
(1) H is a stepwise serial schedule [Gar83], i.e., ihg operations and the breakpoint of

.

each step in every transaction appear without interleaving.
(2) ‘Fdr‘elvver’y pair of steps S;; and Sjj,, (of the same transaction T,) and for every

diﬂ'ereﬁt step S, appearing between S;; and Sij“ (if any), t(T)) € t(B;).

Condition (1) prohibits interlea\}ing in..side‘ the same step and condition (2)
ensures t,hat' the interleavi,nzg among the steps is gildwed by the slyst,em. These two
conditions. guarantee ‘that the execution of 'a correct schedule cannpt violate con-
sistency. ' ' "L b |

ot

Note thad adding the restriction tdh"zsg.t the v‘-breakpoint..of‘ the last step of each

i

transaction alldws all types in TP to in,tl.e‘rlea\f,‘e cannot change the set of correct

4

schedules. In order to make our analysis consistent with the implementation discussed

| in Chapter 10, such a restriction will not be added.

- Note also that in our definition ofthe class &»)correct sched‘ulves;, we have not
assumed any structure on the way the transactions can interleave. This actually
implies that the class'vof correct schedules generalizes the class of "semantically con-
sistent schedules” defined in [Gar83] and the class of "mul‘tillevel atomic sch;-dule's"
defined in [Lyn83]. According to the definition of these ;lasses, tl;e iﬁterleavings among
~trapsactions must obey a certain structure, lthat is, must satisfy a set rules which

define the "compatibility” among transactions.

Deﬁnitio\ig 68.3: An operation in step S;; is in conflict with another operation in step
.* Sy;, where T,2 T,, iff both operations access the same entity and one of them is a write
operation. The steps S;; and Sy (and the transactions T and T)) are also said to be

‘conflicting or interacting steps (transactions).

\ | :
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Definition 6.4: For each step S;; and transaction Tk‘we define two symbols, denoted
P(S;;Ty) and F(S;;,Ty), which represent the beginning and the end of a series of steps
in T, that must be viewed b): T, as an atomic action. (The significance of defining

these symbols will become apparent later). P(S;;,Ty) is defined ;s follqws.
‘ (1) lf. j=1, or’ t(Tk) ¢ t'(B,p) for any Bip<Bi,- in T, then P(éij,'T‘k)-Su. Othery’se,

(2) let (T)) € t'(B,p), whére B;,<B;; in T, and for.each breakpt;int ;Biq~appearing .
‘between B, and Bjjin T; (i.e., B,,<B;<By), UTy) € t'(B;,), then P(S;;, T )=S;py,. »
Similarly, F(S;,T}) is defined as follows.  — |
(1) If S;jis ihe last stei) in T;, or t(Tk)_ ¢ tl(B,p) for anyv ﬁij = B;,in T, thén F(S;;,Ty)

~ equals to the Jast step in T;. Otherﬁiéej
(2) let 4(Ty) € t'(B,), \Qhere'Bij < B;, in T;, and for each breakpoint B, appearing

between B; and B;, in T, (if any), YT,) € t'(B;y), then F(S;;, T,)=S;,.

Example 6.1:
Consider for example the following two transactions: ,
| Tl-Rl(x)\vl(x)BllRl(-y)\vl(y)BIQRl(z)\Vl(Z)BI3TR(T1)'
T’2-RQ(Z)RQ()')_BQITR(TZ)'
- Assume the following: 't(TQ) € i'(Bl,), t(T,) € t(B,,), and t(T,) € t'(B,3)" Then,

P('Snasz)"" S12, and F(S;3,T2)= S35

‘(\ :

8.1. Relatively consistent schedules

This section defines a new class of schedules called relatively consistent (RC)

, schedules. This class contains serializable and non-serializable schedules.
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o

6.1.1. Precedence graph

o

The precedence graph of a schedule H is a directed graph PG(H)-'(S,A)’ where
S is a set of nodes represeniing the set of all steps of the transactions in H and A is a

set of arcs defined as follows. -

C————

(1) For each pair of consecutive steps, S;; and 'Sijﬂ, of the same tran‘paction T;, an arc
| | 3
(Sij"sijﬂ) exists in A.

(2) For each palr of steps, Sij and SH, belonging to two dlﬂerent transact',lons, an arc
(F(Si; Ty ), P(Si, T )) exxsts in A 1f there is an operatlon in S;; which conflicts with
and precedes (in H) a'notvher operation in Sy. |

(3) The remaining arcs of PG(H) are added i‘re":ursively according to the fo&llowing con-

. dition. For each pair of steps, S;; and. Sy, belonging to two different transactions
such ihqt there is a path from S; to Sy in PG(H), an arc (F(5;;,T,),P(Sy, T;)) exists
inA. | .-

' ‘ ‘ ,

* Intuitively, an arc satisfying condition (1) intrt;duc'es precedence relation
at;‘ongut'wo' steps belonging tLo the same transactiotix.r‘We will call such arc an internal
aré (or l-arc,'for short). Similarly, an arc satisfying condition (2) or (3) introduces pre-
.cedence relation among two steps belongmg to dxﬂ"erent transactions. We will call the

arcs satisfying conditions (2) and (3) conflict-arcs ( C-arcs) and trammvc-arcs (T-arcs),

respectively.

The C-arcs represent the conflict relationships among the transactions, while

the T-arcs are induced arcs, added to the precedenée graph to enforce the view of

' atomlclty among the mteractlng transactions. (Note that there is at most one arc .

between any pair of nodes in PG(H), i.e., some of the arcs may satisfy conditions (2)

and (3)). -

Example 8.1:
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consider the schedule H deacnbed below.

‘Hs®, (")Bn|Wz(x)anz(Y)R2(!)BzzTR(Tz)Wa(L)Balwa(}')BazTR(Ta)RJ2)

B,,TR(T,)R,(y)B,QTR(T,) .
Assume the following: .. ‘
(a) TP-{TPl,TP2,TP3,TP4,TP5}: »
(b) z('r )= TP1; t(TQ)-TP‘t t(Ty)=TP5; t(T,)=TP3. ‘
(c) t(B,,)-(TP4 TPS); t(B,,)-{TP2},t(B,,)-{TP3 TP \\Q .

t'(Bya)=t(Byy)=t (Bsz)" t(B,,)=TP.

The precedence graph PG(H) is constructed in Figure 8.

Figure 8 The precedence graph of H.

Definition 8.5: A schedule H is said to be relatively consistent (RC) schedule iff

v

(;\ .

Bt ol



(1) PG(H) is acyclic, and

(2) phere is a topological sort for the nodes of PG(H) which yields a cq;rect schedule,
that is, a correct schedule H, can be formed by dorting‘ the nodes of PG(H) topo-
‘logica'lly, replacihg each node S;; with the é;ier:’;tions ';nd‘ breakpoint of S;;, ;and

| adding the terBination command ETR(Ti) at the end of each transaction T;.

v

Example 8.2: ‘ : -

The schedule § of Example 6.1 is an RC i’éhedule.‘.This is because the nodes of
PG(H) can be sorted to obtain the following correct schedule.

1= Ry(x)B;, W, (x)lewszz(z)BnTR(Tz)wa(z)Bs,ws(y)Bu"rR(T,)Rl(y)
B,r.I‘R(T JRy(2)By TR(T,). .

The following Lemma proves that the acycli;ity of the ﬁecgdenée graph is not

a sufficient condition for finding a topological sort Which yields a éorreét,schéd-ule; {In

the impl'ementati&n discussed in Chapter 10, further restrictions will be added on the

interlcavings among'transactions. These restrictions will make the g&yclicty' of the
- dependency graph suffictent condition for finding.a topological sort that yields a

~correct schedule).

b:- ) ) .
% . ‘ L
& )*&na 8{1&.%&(3 is a schedule H such that PG(H) is acycllc and nong 0 tbe topo-

+3

é .v o Pt _qu;!d a correct schedule
; 'for example the schedule H descnbed below.

2 B W B RE(Y )R (5B, R (B)R (K B TRIT RS IRofa) B
2(:*)522TR(T2)W3()’ )BsﬁTR(Ts)W4(Z)B42TR(T4)

Esu‘m,, the followmg
(a.) TP-{’DPL TP2 TP3}

'»"(b)"t(T )‘t(T2)=TPl; t(Ta)aTP2; T,)=TP3. e
1{e) t(B,l)=t(le)-{TP2 TP3} t(Byy)=t(By)={TP1};

t (an)“ t (Bzz)" t (Bsz)"‘ t (342)" TP.

g

113
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.

"~ The: precedencc graph of t}xe above scﬂdule ls shown "l Fxgure 9. lt is not dlﬂicult to . .

"

’

(&\cause in an) Lopologlcal sort for. PG(H), elther the steps of the transacuons T, and

- -« Tn must, mterleave or the st}:ps of the transacuons ’Fa and T/ must lnterle\fe o

L o
T -~ )
[}
y . < s
B 22
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& w,
’
¢ ,
o 3 “ -~
S32 Y,
e
. 2° t
% » i ! . /,,‘
N ’ y
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% 1 P
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RN J ' “ )

| ’_ A O Flgure 9 Au acyclic precedence graph: PG( H) such that/none of
SUDE ' the topologlcal sorts of PG( }yneld a correct sched*ule
. o L

",J . '\. . ~ foo '/o

] mschedule-_A RS ‘ DR - '

.
W v
' e

7 v
- show 'that none of the topological sorts of PG(H) yield a correct schedule Thls is

Theorem 6 " b Suppose \hat H is an. RC schedule then H is equw‘i\lent to a correct ‘-

. Proof Smce His an RC !Ehedule, therefore there 1s a topologlcal sort for the nodes of.

PG(H) whlch ynelds a, correct schedule H We pro}xthat H and H’ are equlvalent To |

o ‘prove that condmon (l,) of schedule-e21uwalence is- s'gusﬁed let R, (x) be an arbltrary\.

read operatlon in H and suppose that R,(,x) belongs to the step S, Suppose ﬁrst that
(x) is not preceded by any write operatlon on x in H. Then for each wme operatlon

" on X belongnng to a step SH (where k¢1), th%\arc (F(S.;»Tk) P(Sk,,T }) in P?(H)

| “ This arc Vlmplnes.tha_t there is a path;-from S to Su in PG(H) and that Si; precedes S

‘: . . -'v - N d:\ v.: ‘* o /év L “ J i . ) “ Ly
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m————

in H Whlch also lmphes that Ri(x Jannot be preceded by any wrlte operatlon on x in
H Sumlarly, suppOSe that R, (x) returns the vnlue of x wntten by Wp(x) mﬂl%and that

(x) belongs to the step Sph Then, there is an arc (F(Sph,T ), P(S,,.Tp)) in. PG(H) For’

ach write operatlon 'Wk(x) belongmg to a sted Sui (where k#l) such ¢
R{x). < Wk(x) m H there is an arc (F(qU,Tk) P(SH,T )) in PG(H): Further, I'or‘.
‘ ‘wrne operation Wq(x) belongmg toa step Sqr (where q#= p) such that W (x) < Wi;(x) in
+ H, there is an arc (F(S,,T,), P(Sph,T ) |n PG(H) ‘This actually lmphes that the follow-
ing pathe exist in PG(H) a path from Sqr to Spb. a path from S ph 0 Su’ and a path
from ,u to Sy, which also lmplles that the followmg wust: be true ln t.he schedule H |
precedeq Sph precedes S,] precedes Sk} Tlus obVIously indicates that R,(x) returns
o the 'value of X wrltt,en by \ﬁi’*‘,ﬁ&)i‘ln;}l .In elther case, Ri()e) returns (the _sa_me .value.m H
g ad’d H', wh’ieh i-mplies‘that condition (l) of//s_cvheduleeQuivaie'nce is satisﬁed.
‘Similarly, to prove that eondxtlon (2) of 8chedule equlvalence is sausﬁed let

' W( ) be the laet write operatlon on X l H and suppose that W,(x) belongs to the step |

. For each wrlte operatlon W, (x) belonging to a step Sy (where k#l) such that,‘

7

W ((x)<W(x)in H, there is an - arc (F(ék,, T.), P(S,J,Tk)) in PG(H).‘ThlS arc lmpllee th‘at
Sy must precede S inH' , whlch’ also mphes. that W;(x) ij‘s the last write operation on'x

in }1 Therefore,icdnditi@,p (2) is also satisfied and H is equivalent to H': 0

&



_CHAPTER?7 -~

THE CONCURRENCY CONTROL MECHANISM |

‘ ' . ) . . -
T ' ) X ‘ . ‘(
_This chapter describes a locking mechanism based on the concepts mentioned

. !

“in the previous chapters. The proposed mechanism ac‘hieveslhigh level of parallelism

9 ) o~ B o

", .

by allowing serializable as well as non-serializable schedules (which do not violate ¢con-
“sislency).f The prppoéed mechanism ‘assumes fewer restrictions .on the interleavings
" among transactions than those assumed in the locking mechanism proposed by

Garcia-Molina [Gar83). Voo

: 7‘.1.L‘ocking;mo‘deé . e
55 ,

2y

Fach transaction is req,mred to obtam a lock on an ent,n,y x before accessing
)

: (l e., readmg or wrmng) X. Locks are not requested or released exphcntly by .the tran- |

- [y

tres.po\nse to tbe operat'lons and the breakpomt,s iss\xed'by the transactlon.‘ : Lo

The mechamsm utxhzes four types (or mod"’s) of locks, denoted exclu%(E
, sbared (S) relat:vely excluswe (RE) and relatlvely shared (RS) Each transacuon T. |
ﬁ »

mustobtam &n S-Iock or E-lock on an enm,y X before readlng or writing x, respec-

tlvely (The condluo‘ s for' grantlng thls Iock WI" be descrlbed in detall later) An S-‘ _
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+

P
RS- lock or an RE lock, respecuvely This new RS- lock (or RE-lock) wlﬂ be assoclatcd‘

with the breakpomt Bu and will be viewed dlﬁerently by dlﬂ'erent transactlons Those‘
transactions that are allbwed to interleave at Bij’ sce‘x as an unlocked entity, while
those that are not allowed to interleave at B;; see an S-lock (or E-lock) on x.

The mec‘hanism uses the S-locks and uie E-locks to'ensﬁre tha’t each m.-;i' isl
every tnnsactlon is processed as an atomlc action. Similarly, the mcchanlsm uses thie
s
RS- locks and the RE-locks to ensure that the mterleavmgs among the steps cannot
violat® consistency. | |

' . . .

7.2. The valu% maintained by the mecha.msm

. ' ' ‘ ‘ . b’.
We descr,ibe the values maintained by thé bﬁechanism. These values wjll be -
used by the mechanism in proce‘ssi‘ng the operations, tbe breakpoints,-and the termi-

nation command of the transaction. .

T

+

L(x)- © The lock of x. L(x) is a bcolesn variable indicating whethcr"x is currently

locked. ¢
M(T;.x): The A‘x'no'dev of the lock of T, on x. M(T;,x) is a,varia%le denoting the mode of

the lock of transaction T on x. M(T;x) will‘o.nl! be needed if T, is currently:

: holding a lock on x. .

<

LS(x): = The lotk set of x. LS(x) contains all transactions currently holding aflock on

X

lS(T,,x)\ The mterleavmg set of T; on x. T} accumulates the types of transactlons that ‘
\ . ¢ o * '

IR

are allowed to lnterleave on x.in IS(T,,x) lS(T,,x)-¢ ‘when' ’l‘, obtalns its

lock on x. More types will be added to IS(T ,,x) as T; encountﬁ more brcak-

\ pomts I1S(T I,x) wnll only be needed if T, is curxently lloldmgézz1 lock on k.

End(T) A boolean vanable mdncatlng whether T bas reached its termination: i)onnt

e A0



. that is, whelher T;. has lssued the termination cqpmand TR(T ). The locks of .
T mn/ not be necessanly released at thls point. (The condition under which :

the locks bf T, can be released wnll be given later).

‘R‘G:;‘ The releaqe{lgraph of the executmg transactnons The mechamsm uses this
| directed gra;lh to decide whether the locks of a certain transaction can be
- released. Euch executmg transactlon is represented by a.node i in RG: This
: ,node will be added to the graph when the transactxon starts. An ar¢ (T,,T) :
| in the gnlv-aphlndlcates that the locks of transsction T, cannot be released
‘hel'vore‘T- reaches":}lgs termin\?\zt}ion poiit. Thislanc will he“ added to RGlﬂ'one ’

of‘the l'ollownng cond&tlons is ‘true: . (.

DI 4

1. T, obtams an §- lﬁck on an éﬁ%y x at the time T is holdlng an RE-lock _
‘onx.- “ o '
2. T, obtains an E-lock on an entity x at the time T} is holding an RS-lock or

&
Ed

RE-lock on x. = 4

The node of the transaction T; (as well as all other Values associated with T;)

- will be deleted vllhen a‘lllll\he locks of T, hnve been nele%ased.

&

- Rel(T;):: The release indicator of T Rel(T |s a boolean varlable, when lt is true,
g ) w ' ;

thcn the relcase graph need to be checked to see whether the locks of T can .

. b +

be r’eleased‘, and when |,t,‘:_\|s false the locks of Ti cannot be released.

Lo e 'v ‘

_In addition to the values descnbed above, we deﬁne two sets called the destl-

'y

~ nation set DS(T) and the source set SS(T) ol' the transact;on T;. None of these sets

Iy

, Wlll be xnamtamed by theﬁnechamsm and’ they are only deﬁned to sunphfy some of the

it
e

: concepts presented m this chap&er
.‘,‘.DS(T) DS(T) contanns all types of transactions that are allowed to mterleave at
any hreakpomt in T That 1s, for each breakpomt B in T;, TPl € t{Bu) :
, unplles that TP1 E DS(T) | |
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; SS(Ti):f,_ S‘S(Ti):(:oqpailns‘ all types of 'traﬁmétiqpp that allow ¢(T;) t,o interleave at. any

'

bré'akpoint. ‘That is, for each breakpoint By, in a tranéaction Ty,

UT)) €(By) implies that ¢(Ty) € SS(T). *

7.3. Assump‘tidh‘s on the breakpc‘ﬁn@t‘s,

We add the fqlrowing constraints on the brcakpbints of the transactions.

-Assun;ﬁtion 7.1:1f Y(T;) € t'(By)), then DS(T;) € t'(By))-

—~ Assumption 7.1 makes the interleaving among the transactions transitive, that.

is, if transaction T; can interleave at a breakpoint By, in transaction Ty and transac-

" tion Tj can interleave at any breakpoint in transaction T,, then transaction T; can
also interleave at the breakpoint B,,.

Assumption 7.2: If t(T;) € t(B) and t(T,) € t'(B;), then-SS(T;) G t'(By). That is‘,.

" if transaction T, can interleave at any breakpoint B in trahsactiop T,, then any

" ‘breakpoint in T, that allows.T; to interleave also allows all types in SS(T;) to inter-

leave, ‘ : 4 ,

The .above assumptions are less restricted than those assumed in I[Gar83]."
?&According to the assumptioné_ in [Gar83], if T; can interleave (at any breakpoint) with

Tj, then T} can interleave (at evefy breakpoint) with T; and the set of types that is
) ’ ) . ¢
~ associated with any breakpoint in T; or T; is the same. In other words, transactions are
: . : : ‘ ) ' : v .

"divided into a‘set of (disjoint) classes such that the transactions that belong to the
same class can interleave arbitrarily, while the transactions that belong to different
| N o N v -
classes cannot interleave at all. Our-assumptionss allow other interleavings which are ,,

not allowed ip {Gar83]..
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7.4. Precuqihg the operations and m(anngin; t_he locks

65

This eection describes how the ‘locki"ng mechanism.. manages the locks, and .

"M-".“ L ) ) :
. ’(;u.l.!inea the procedures used for processing the operations, the breakpoints, and the
Lo 3 ' ) :
7 NN R . st . ! T N . . -l
% n&ption commaxnd. We assume th values associated with each entity x will
>

+

»

.

tfansactlon‘-T star'ts, End(T) and Rcl(T ) are false.

(lf) P;c‘cessing a read operqtion and granting an S-lock: When a read operation R;(x)is - .

s

Ea mltlshzed_ follows L(§) is false and LS(x) is empty We also assume that when a

reccived by the me'cha.nistn the mechanism will respond$y’either accepting the

-

operatlon and grantmg T; an S- lock on X, or delaying the operation. The condl- o

tlons under whlch each of the previous Tesponses will be taken are descnbed in the

following procedure.

Procedure Process-read (R,(x))

- begin

if L(x)=trwe
then begin .
for each T, € LS(x) do .-
if (M(T;,x)=E) or (M(T,,x)=RE and t(T;) € IS(T,,x)))
then begin
~delay R(x) (until T, releases its lock or issues
. % breakpoint that ailows Y(T;) to mterleave),
exit {;lt from procedure*} o
end a
accept R; (x)
end
- else accept Ri(x),
L(x) = true;
LS(x) - LS(x) U {Tik;.
M(T;x) = S; _ .‘ ‘ o
IS(T,x) = ®; %, . . ‘
for each T; suo-h that, M(T ,x)- RE do -
- add the arc (T, T, ) to RG 3
“end; -

" ’i;“g"',

(2) Processmg a wnt.e operatlon and grantmg an E-lock a “write operatlon Wi(x)

s

is recelved by the mechamsm, the mecha’msm will respand by elther acceptlng the

operatlon and grantmg T, an E-lock on x or delaylng"ge qperatlon-

Tne condl-
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tions under which each of the prele[sJesponses wlll be taken a‘e_scribed‘ﬂin the -

-

f ollowmg pnoo.)edure

Procedure. Process-write (Wi(x))
begin oo
if L(x)= true
then begin o
+ for each T; € LS(x) do
if - (T, -T i} or (M(T;,x eARS and t(T;) € lS(T,,x)) or
(M(T,,x)- RE and () IS(T; ,x))) .
then begin ‘
. _delay Wi(x) (until T; releases its lock or muoq
T e a breakpomt that allows t(T ) to mterleavb)if
' \ exit . '
: end S L : S '
acc8pt Wi(x) ’ \ : Y B .
end . ‘ : - ' '
else accept W(x);
L(x) = true; _ L
- LS(x) - LS(x) U {T} o S e
"M(T;x) - , ' . o N ‘
IS(T;x) = ‘ : '
for each T such that M(T;,x)=RS or RE do
add the arc (T;,T;) to RG
end;

(3) Processi.x;yg a breakpoint B;;; When a breakpoint Bj; is received by the mechanism,

'~ the mechanism ,wiﬂ respond by modifying the locks obtained during the execution

of the siep S;; as described in the following procedure.

-

Procedure Process-breakpoint (B;))
begin °.
for each entity x such that T; € LS(&) do
if M(T,,x)=S.
then begin
. ' M(Ti,x) -~ RS ‘
. l.Sd(Ti,X) - tr(Bij) : . ' ) R

else if M(T;,x)=E
" then begin

. o M(T,,X)

e 15(T;x) = z(B.,)
SR T ‘end - : .
L else lS(T,,x) - IS(T ,x) U t(B,J) o
T bnds ) I R

s )
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(4) Processmg the termination command and releasing locks: When the termination

command TR(T,) is rccclvcd by the mechanism, thc mechamsm will check the

1

releases graph (RG) to see whether or not the locks of T; can be released. The con-
ditions under which the locks of T; can be released are described in the following
procedure. (In this procedure, we will use the symbol R(T;) to denote the set of

2 nodes in RG that are reachable from the node T;)!.

o

Procedure Process-tcrmlnate (TR(T))

» Procedure Release-locks (T;)
begin
for each entity x such that T, € LS(x) do
begin }
LS(x) ~ LS(HTH
if LS(x)= :
then L(x) « false; - ' . ‘ ,
end ‘
end;

h Procedure Check- release (T,)
_ begin -
for each T;€R(T;) do
if End(T;)=false then ‘
begin . 2
delay (releasmg the locks of) T;; ' L ’
for each T} GR (T;) do Rel(T;) = false;
exit
end ) ‘ S
. for eachTER(T)do :
begin
Release-locks (T . :
for each T, such that (Tk,T )isin RG and T ¢R(T;) do
begin
delete the arc (Ty,T)) from RG; S
if End(T} )= true t.hen Rel(Tk) ~ true f
end .
end
delete all nodes T €R (T ) (and the values assoclated with them)

‘end

_ begin v .
" End(T,) ~ true _ , S
Rel(T,)~ true;
while there is a node Tk in RG such that Rcl(Tk)-true do

! This set can be found by performing depth-first-search [Aho74] startmg at the node T;. ‘ 63,



Cbcck-release(Tk)
end

7.5. Com?nitment;of transaction ’ &

" - .
: 5,

So far‘we hav'e 'not mentioned when f}he trépsaction can be“ct';mmitted i.e. ,
_when the usér will’ be acknowledged that his transactlon has been successfully com-
_pleted. The answer-to this question is dependcnt on the approach uspd for handling
transaction faxlure A transaction may fail for several reasons (like mtegrlty violation,

system fallure hardware fanlure ete.), When a/o?ansactlon T; fails, T, may be backed
up. Bacl\mg up T, mdy necessitate backlng up aiﬁ other transaction ¢ T wblch read au
entnt) written by T;. Similarly, backing up T; may also neceasntate backmg up other

transacnons, and so on. That is, a cascade of back-ups m{ght occur. (ln the probosed

mechanlsm the set gf transactions that must be. aborted aftcr backing up T can be

/
found by searching tBe refease graph. These transactions can be minimized by dlstln-

‘2

guishing among the arcs of the release graph as described in [Far82)).

Allowing a cascade of back-ups to occur can degrade performance. Moreover,
it‘ will also prevent thg commitment of a transaction T; until all the locks held by T;
have B_een released. . BN
. | . : . ' ' . O
There-are also other approaches which avoid a cas}:ade of back-ups and allow
phe transpction to be colmmitted when it reaches itp termination point. One apptoaéh
is b;sed on tke conc‘ept of "countersteps” used in [Gar83]. In this approach, undoipg

the effect of a stép‘ §ij can be achieved by requiring the user to provide a counterstep

C;;- Similarly, to undo the effect of the whole transaction, the user must provide a

.

<

counterstep for each step-in the transaction. K

’ The above approach has the drawback that in some applications, in which

Y

transactions may be long and complicated, the task of analyzing the transactions and
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writing countersteps may be dnlﬁcult to be done by an inexperienced user. Fhrther-
¢ 1 .
more, relying on such \ user may add the risk of destroying the consistency of the

database.

Another solution (which reduces concurrency) is to modify the procedures
given previously to make the S-lock and the RE-lock-"incompatible", i.e., cannot be
held on the same eatity concurréntly. In this case, backing up a transaction T, cannot

lead to backing up any other transaction.

7.6. Othcq problems

O’ne‘prdblem which has not, been discussed and which ls. associated with the
proposed mechanism (and with most of the other loclcing-based mechalxism’s) is
deadlock (Gra78 Hol72]. Deadlock can occur: because transactions wait for ome

| another. The main approaches for solvmg the deadlock problem are deadlock detection
<[Gra78] and deadlock preventloh [Ros78,Ryp79]. In the first approach the problem will
be resolved by detectmg_t.h/céadlock and aborting one (or more) transaction. Detect-
ing a deadlock requires maintaining a directed graph called the wait-for graph which
represents the wait-for relatioqships among the executing-traneactipns. This graph

- has been described in Chapter 4.

ln"the second approach, the problem’ will be resolved by preventing the

a

deadlock from occurring. Thls can be achleved by assngnmg timestamps to'the tran-
: aactlons lnd usmg these tnmestamps to decide whether a transaction T, can wait l'or

- another transaction T (as in [Ros78]). Other methods for aveiding deadlock require

-__.\

‘ t,hat, the transactions preclat{n all the ent\tles that will be accessed in advance [Ryp79), ‘

© . or t.hat the transactlons acc,ess the entmes ina certain (predefined) order.

v

A\
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" 7.7. The correctness of the proposed mechanism ' o

" This section proves the toriectness of the locking mechanism, that is, it proves

* that the mechanism produces only RC schedules. ‘

Fifsp, we define two sets for each trans;;tion T,, called the input set IN(T,)
andltbe output set OT(T,). None of these sets need to be maintained by the mechan-
ism and they are only defined to s'in?n'plifj th; proof of. correctness. Let H ‘bc'a schedule
of aset of transactions {T,T,,T;, etc.} produced by the locking mechanism. The in[{utl
set IN(T,) is defined as follows: |

(1) Esch step in T, is also in IN(T,).
a ' , . . , :
(2) For each C-arc (S;;Sy) in PG(H), if Sy, € IN(T,), then every step in T; is also in

IN(T,).

Similarly, the output set OT(T,) is defined as follows: .~

(1) Each step in T,Iis also in OT(T,).
(2) Foi- each C-arc (S:j,Skl) in PG(H), if Si; € OT(T,), then eivgry step in ka is also in
OT(T,).

r

Observation 7.1: If IN(T,) N OT(T,)# ®, then transaction T, cannot reiease_ any

lock before transaction T, reaches its termination point.
: |

In the following lemma an‘d'theoremhs, we may use the symbol TR(SU) to denote the
~ breakpoint of the step S;;.

Lemma 7.1_:~Let'H be a schédule produced by the inechanism-ana let ('S‘,i,Szl) be a C-
arc.in:PG(H). (84i,S7) will be called C-arc if (T,) € DS(T,). Otﬁgrwise, (S1i,Sq) will

be called Cyarc. Let (F(Sy;,T;),P(Sy;T)) be any T-arc in PG(H), then one of the fg]

L
® .
s %
Y T

lowing two-conditions is true:
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[

' (1) .There is a C,-arc (SH, q) such that Skl d S, belong to OT(T,) N INET,).

(2) There is a path from F(S,.,T,) to P(SQJ, V) such that each a arc along this path is an

l-arc or Cp-arc, | i |

Proof: First, we introduce a rec_ursiwlg,r,}deﬁnition for the T-arcs as follows. Let

(F($,,T;).P(S5,Ty)) be a T-arc in PG(H), then - '

(1) (F(S;.,TQ) P(Ssz )) will be called T\arc if for each arc (S;;,S,,) along the path
from S to Sy; (which caused the, T-art (F(S,,,Tz) P(SQJ,T.,))), (Su,S pq) is l-arc or
C-arc. ‘

(2) Slmllarly, (F(S,,,TQ) P(Sg,,T )) will be called T -arc, n>1, if for each arc (Sy;,9 pa)
along the path from S;; to Sy; (which caused the T-arc (F(S,,,Tz) P(SQJ,TI))),

(Sk,S pq) 18 I-arc,.C-arc, T,-arc, T,-arc,..., or T,,_,-arc.

 We. prove this lemma by induction on the T,arcs (rl'zll. Subpose that
(F(S;;, T, ) P(S,;,T,)) is T;- arc. If the path from Sj; to 8; contams a Cl arc, then it is
obvious that '(F(S,i,TQ),P(ng,T,))‘ satisfies condition (1) of the lemma. Otherwise, #t
'each C-arc along the path from S,; to S,; be Cj-arc (as ‘shown itl Fig. 10)2. Supp.ose;_:‘
;(without loss of generality) that the first alld last oz-a;cs along the p;th rmm'sli to Sy
are (Snusap) and (SM,S.,,), respectlvely (refer to Fig. 10). Since there is a path from Six
“to S.,, such t.hat -each C-atc along this path is C,-arc, therefore by assumptlon 4.1

Y T,) € t'(Byy) Further, ince S;; precedes S,, then

9

F(S,;,T,) precedes or the same as S,,. Similarly, by assumption 4.2, the path from Sy,
“to Sy also implies that Sy P!’Cé_edes dr the same as P(S,;,T,). But since there is a path
from S“ to S, (such th_at each are along this patl'z is Iearc or C,-arc), therefore there is

“also a path from F(S“,Tg) W"P(Szj, ) sausfymg condmon {(2) of the: Iemma Thus

"2 The precedence graphs shown on all ﬁgures in this chapt.er may not contain all necessary arcs,
The figures show only t.he arcs wluch are useful in mmphfymg the proof.
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 _, suppose that thq lemma is true for any T‘sarc, where nal Let

IW‘:J& - E Aot
: (F(84isT2),P(S2;T))) be ”-arc It there is a Cy-arc along the path from S,, to S,,. or
te

y  there is a T-arc along the path which s‘o)usﬁes coﬁluon (l) of the Iemma, then lt is
obvious that (F(S,i,TQ),P(SQj, D)) also, satisfies condition (1) of the lemma.’ Othermse,

let every C-arc along the p.ath be CQ-arc and every T-arc along the path satisfy cc;ndi-

-~

tion (2) of the lemma, then lkls not difficult to see that (P(S,;,Ta), P(SQ,.T )) must also

- »satnfy cgndmen (2) of the lemma o

Dt

Observation 7.2: 11 (S;;,Sy) is T-arc i in PG(HYthen S;; € IN(T,) and Sy, € OT(T,).

. . ﬂnl
. R » .
Theorem\7.1: Let H be a schedule ,p?;'oduced by the mechanism, then PG(H) is acy-

ta - .t ‘
clic. o R T I O .
. . ‘ Sw s 1) ..
¥ L
. 4 e . v DN ’ i ”

xd\n‘

Proof Suppose to the contrar);;zthat PG(HJ) is cycllc Moreover suppose (wnhout loss

of generahty) that tho semEB{(S,,;Syf (S?k,S;,. Sap,S4q) (S4q:S l,)} represents the set

“ . .‘

of all arcs along the cycle t!;at connect ..nodes belongmg to diﬂeren!, transactions (refer .
v;’ - ' : . .

to Fig. ll). . B A :?s % o
B . {E ‘3

t v
e v A ~ <

s o e Cb R ?\ ‘:“.,
e &n 1 ’g’q LR * ’ i

Suppose ﬁrst t,hat evqry a*rc m E ls C'-arc SuRpose furtherkhat E contains one

. (or more) Cj-arc. For eXample, ht[‘(Szk, 3|) be C‘l-arc 'The \rcjsﬂ,s,.) implies that
vs '. 3 ,‘; LS

transaction T, releases all‘ Its{ligck”s"before transactron T, reaches its termma&non
A A . y

point. But since Sy, is an anceatolf of Szk ip’ PG(H), &hen transaction T; cannot release

.'u, ‘ y

any lock before T3 reaches |ts termmauon pomt a contradrctlon Otherwnse, suppose
*F .o

that every arc in E Cé-arc Then, the arc (S,,,Szl) implies that

TR(Sy) < TR(F(S2,,T )i in H Srhce S,, precedes Sﬂ, then TR(S;;) < TR(F(Sy, Ty)).

Further, since there is a path from S,y to Sy; such that each C-arc along thns path is

Cp-are, thenefore by assumptlon 4.1, TR(F(S”,T ))-TR(Szk) This obvrously |tnplles

-
-
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: /t/hat TR(S,,) < TR(S“) in H ln a similar way, we can easnly prove t’h,at the arcs of the

l'rom 3,'to Snk and OT(T.,) ﬂ IN(T3)¢¢ the,refore OT(TG) ﬂ IN(T5)=#¢ But, this =~

i

Aen E |mply t,he fouowmp 'I‘R(Si,) < TR(S“) < TR(Q;,,,) < TR(S4q) < TR(S ,,) That -

i s, TR(Sul < TR(S l) a contradlctlon Therefqre, there cannot be a cycle in PG(H)

e 2 e T .

‘ such that each arc along Lhe cycle is [-arc or C-arq B ‘ S, ‘

o s ‘\ .- . i y (I c . . N [ . * o
o . N - , - o . ’., ,

Cal Ot.h?rwlse let E conl}lns one' (or more) T-arcs Suppose (wntbout loss of gen-' :

) ernlntv) that (S.,k Ssll is the only T-arcﬁ E. Su,ppose ﬁrst that (Sf,k,Sa,) satisfies condl-‘ )

T %N } ",

uon (l) ol‘ Lemma 7.1 and let (Ssp,Sss) be a’ Cl arc such that Ssp and Seq belong to e

@’I‘(Tg}) f‘l ]N(Ts) The arc (Ssp,Ssq) lmplles that transactlon T5 releases all |ts locks“ :

bcfore trnnwactlon T6 ree'aches its termlnatnon poxntl Furthw

-

' acluall\ lm.bhes that T5 cannot rellaase any 1 ck befo‘re Ts reaches lts termlnatlon;"

ponnt a contradlctlou Slmllarly, S“uppoae that (Szbssll satlsﬁes\ condmon (2) of

- Q Cae

l

)Lcmma 7. l Thls actually lmplles that there is.a cycle lD PG(H) such t,hat each arc '
along tshe cycle :s “I-arc or C-arc a contrédlctlon Therel’ore, our |n|t1al assumptlon

l
S
‘l

. r -, --n

that PG(H) is cychc cannot be true O- |

W R S 3 ‘ . : . . o

Theor;_m 7. 2: Let H be a schedule produc d by the mechanlsm Then, there is a topo~

( l - \,‘\
logrcal sort l'or the nodes of PG(H) whlch ylelds a correct schedule oo

,.l ] .

Proof* We prove thns theoreg: by 1nduct|on on t,he number of topologlcal sorts for 4 f

PG(H) Sup se. ﬁrst that thére is only one)opologncal sort l'or PG(H) %pd Jet- H, be

o 2

mg eacb step Su m the sort wnh t,he operatlons and the breokpomt ol‘ Su, and tflen

the schedule that corresponds to thxs topologu:al sort (that 13, Hl is formed by replac-' x

N~

smce there' is a path S

Y

ERRNRN

addlng the termmauon command at, tl)e end of“eac-h transactlon) We cla:m that Hl.ls‘
A f.

.\ -
te S N _-.“ S 15

"ict,‘scheaule\ . w N DR sl L,
4 . . B - PR ; ’ . N ) s A
T "v‘.‘w"" ! &pw - S N . \ Lol e
: : Wy A =

quppose that our clalm is not true a,nd let S,, and S,,“ be. apalr of steps in H,

L S

NS S 5 ‘_,; T EE ;_'. B ture .
B PRIt A . > . [ L ~ RIS ¢ S U

PRP SR |
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~ such that 'SQJ‘ app ‘,een S and Smn and t(TQ) ] t(B,,) Slnce PG(H) has oply‘m ; -
‘.,.ione topologlcal sort therefore there is a path bet.ween any pair of’ nodes in PG(H) (ln'v'

' one’ dnrecmon) Furt,her, smce S,, appears before Sgpin Hﬁ’, then there is a path from S,,l

.. 10 S, in PG(H) Slmllarly,‘slnce SQ, appears before S,,,H in Hl, then there is also a path
from SQ; to Sn+1 The path from S,, to S2j also 1mplxes tll\at, there is a Tarc‘ ‘
V(F(Sl,,To) P(SQJ,I‘ )) in - PG(H). Moreover,, since t(TQ) € t'(By;),- then the T arc" : ,‘
: . (F(Sn,To) P(Sn’,T )) implies that there is a patb from S“.,.l to SQJ, that is, PG(H) |si
| cyclic; a contradlctlon Therefore Hl mus,t be.a correct schedule

B . L . A )

LI

Snmllarly, suppose that the theorem ls truc for any precedence graph w:th .

t

‘lopologlcal sorts mhere n a l and et PG(H) hal'e n+1 topologlcal sorts Now we
, prove that PG(H) has a topologlcal sort that ylelds a correct schedule by showmg that, -
a n«} precedence graph PG(l-l whlch has less than n+1 topologrcal sorts can be con-~" : .
| structed b) addmé more arcs Lo PG(H) Let S "and SQJ be arbltrary nodes in PG(H)A_‘ |

Qé)such thaL there is no path from Su to Sn or vice versa. Cohslder Lhe follownng cases:

i ! 1

(1) OT(T)ﬂ lN(To)"<D(see an l2(a)) s Tl -

*,
¥ NQ"?

(2) There is-a Cl arc (S,],S“) such th@t éu amd'ﬁwgng 1Q; Owﬂ‘&ll\l(T?) (see F‘ng ‘;"

( ) OT(T, ) n IN(TQ)#:Q and f,or each C’-arc (S,,,Skl) sueh that Su dnd SH belong to. f
‘ : . LA
; OT(T )n lN(TQ) ’(zSu,SH) lS 02 arc (see Flg l?(c)) .
buppose that case (l) is true and let, the arc, (F(SQJ,’R*) P(S,,,Tz)) he added to:\'
' 'PG(H) (Thls arc is not, shown i Flg ll 3.(3)) The addlmon of thls arc wxll lead to."
/ r .addmgﬁa‘ nelv set of T-arcs (accordmg to condmon (3) of - the precedence graph) lt ls

o f.vnot drﬂicult to see- that. each arc. to be add’ed (mcludlng the are (F(ssz )'P(sgluTglll' v
.WI<" be dlrected from a node in lN(Tz) to. another node in OT(T,) (refer to F,g 12(3)) e

S ;"B“l‘ sitice that OT(T 1) n IN(TQ)- then the addmon of'all new arcs cannot create a o
.,";f FR ! \ o .- i ” s

oL



o "(ﬁrected from a nocu,ln lN(T3) to another in OT(T4) But smce OT(Tr) )

N '
; 1

(F(SlnTn) P(SQJ,T ) cannot create a cycl\)

-A?"

e - T

75

+reyele,

Sun larly, suppose that case (2) is true and let (Sal,S,ki,k\e a Cl are such that

,i53| and Sm belong to- OT(T )N lN(T2) (as shown in Flg 12(b)) Then, it is not

o »dlﬂlCUlt to seé thab&T(TQ n lN(T,)-‘D (Otherwnse, ie, if OT(T4) n lN(Ts)#tb

\

zransactlon T, cannot release any lock before T reaches its termmatlon pomt con-
e ' ' ‘ Y L
tradlctlng the meanlng ol‘ the “?&warc (Sa|,S4k)) Suppose that, -'the arc

-

(F(S,,,Tg) P(éu,T )) is added o PG(H) (Thls arc is not shown in Flg ll :3(b)). The

addmon of this‘arc wnll lead to adding a new set of T-arcs in PG(H) lt. is no -dlﬂicult R
l‘ W )w- :

"to .see t,hatl each arc to be added (mcludlng the arc (F(Sl,,Tz) P(Sz,,T )) will be'

then the addltlon of t,he new arcs cannot, Greate a cvcle ~;”"3 o 1.

>

Fmally, suppose that case (3) is-true and let the arc (F(S,,,TQ) P(S,5: P)) hev"

added to the graph (Th|s arc is. not shown in Flg ll3(c)) If addmg the arc

(F(Sn,Ta) P(SZJ,T ))-alone creates a. cycle in PG(H), then there is already a path from -

P(Sn T, ) to F(b,,.TQ) Tlns path also lmplles that there is a T-arc (F(Szj,T ) P(Sh,TQ)) .

m PG(H) But thls ay: mplles that there was’ already a path from S21 to Sl, beforef_l ‘

o
.'.‘

addmg the arc (F(ql.,To) P(SQJ,’l‘ ) to P8

), a contradlctnon Therefore, the addmon
i S
of the arc (F(Sm'f )P(Sg,,T ) alone cannot create a cycle in PG(H) lt remams to

show t,hat any T -arc Whlch need to be added after the addmon of the arc

Let Sa| and%S“, be arbltrary nodes in PG(H) such that there is a patl'lf from- Ssl g

to F(S,,,Tz) and thae is another path from P(Sz.‘, 1) to S,k These two paths |mplyi_

that after addlng t:he arc (F(S,,,TQ) P(Sm, ,)) there wrll be a path m PG(H) from Sal,

.to S“ The path from S‘,l to S“ lmplles that the T-arc (F 3,,T4) P(§“,T3)) need to be - '

added to the graph l[ one of the arcs along the path from Ss, to S,k is Crarc, or T-
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b are which satisfies cohdjtioh (1)'of Lémma 7.1, then it is easy laQ hl\ow that the zi_lddition; Vl :

of the arc\(F(Slm, T,),P(S41,T3)) cannot create'a‘cycle (the proof is aimple and eirhilar‘td; /
. case (2)) Otherwxse, let each arc along the path from S,, to S,k be Cg‘arc, or T-arc ,
- which satlsﬁes condmon (2) of Lemma 7 1. ln this case, we prove that thmaddltlon of
the arc (F(Ssl,T4) P(S“,Taﬂ cannot create a cycle by showmg that there is already a
' path from F(SsI,T4) to P(S“,Ts) before addlng the arc (F(S,l,TJ‘P(S“,T,)) (and al't,er .
adding the arc (F(S,,, )P(Sf. T,)). Slnce there is a path from Ssi to F(S,,,’I‘Q) then |
t':ere is a T-arc (F(S;,,, 1) P(F(Sh,TQ),Ta)) in: PG(H) (rel’er to Fig. l2(c)) Further, by
o "assumptnon 4.1, the path from Ss| to S“ |mphes -that. F(SS,,T4) precedes or the samq»as
' .F‘(SSI,T ). This obvnously unphes &hat there ls a path from F(Sal,T4) to F(S,,,Tg) in -
PG‘(’H). Sunnlarly, the "ﬁ'ath from P(SQJ,T ) to S“‘ lm‘phes tl;at, the T-arc

(F(P(S,;, T )T ) P(S“‘,Tq)) exms m PG(H) (refer to Flg Moreover, by assuxhp-

4

tlon 4.2, 1the path from Sy, to Sax |mp‘lles t,hat,\\P(S“,
o P(S4k Ts) Whlch also lmplles that there is a path from P ;T 1) to P(S;k,Ts'l.j There-

l'ore, the. followmg three " eXist- 1 P» :H) before addlng the '_~a’rc
‘(F‘(%,,T )P(S,.k,T3)) (and af&er addmg‘the arc. ( (S,,,TQ) P(§ l))), a path from
F(SaT,) to F(S,;,Te), a path *from F(S,,,TQ) to P(ng, ), and a pa.th from P(Sy,T)) o+
. P(S4k,T3) Which also lmplles that the addition of the aré (F(Sa|,T4) P‘(S“,Ta)) cannot

P

create a cycle .

The previous argument can be abphed recursnvely (that |s, if Ssp and Sﬁq are ~

‘arbxtrary no;es in PG(H) such that’ there is-a path from §5p to F(S,,, 4) and there is :

/./ another path from P(S“,Ta)[ to Ssq, t,hen ‘We can easnly prgve that the addmon ol‘ the

: arc (F(S5P,T6) P(Ssq,T5)) cannot create a cycle ) Thls actually lmphes that the addltlon

N ¢

' of all new arcs cannot create a cycl}w‘

=-‘;~' 3
S

Thus, in each of the prevnous éases, a new precedence graph PG(H) can be
: &,

constructed I'rom PG(H) by addlng more arcs (which do not create a3 cycle) PG(H) hu

-
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o tOpologlcal sort. whlch yields a correct schcdule. But since each topmoglcal sort for . .

\é’G(H)’ is also a topologwal sort for PG(HR then PG(H) also has a topological sort '

which ylelds a correct schedule. O
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dalfﬂ)ase is deﬁned interms of; % set of constralnts called consistency or lntegrlty con-

: %y o I

~ ' CHAPTERS . . ’

. : y _
CONCLUSIONS S .

The concurrency control problem in databyse systems has been examined by
many researchers antl several concurrency control algorithms haVe been proposed. The

task of a concurrency control algorithm is to ensure the consistency of the data.base

-

wlnlc allowmg a set of transactions to execute concurrently The conslst,ency of the

L o > i ?
" stramts The database is - conmstcnt/whenever ‘the values of its entities'satisly the

!kgi . \( ‘e
mtcgrnv constraints; otherwnse the database is 'inconsnstent )
"’-m <1
. » .

5 ¥

In this thesis, twovtopics have been examined. The first topic deals with the

concurrcncy control problem v‘ch the otly ml’bx‘inatlon available ‘about the transac- b
gtms is syntaetlc mforma.tlon In. this topic senallzablhty is the corré‘c‘?’ness crlter"o’ﬁw
. ! §
for concurrency control. Senahzabnhty requires that the only aéceptable schedules are
; Ve

pthose which provide equivalent to a serl'al execution of the transactions. 4 ,

[y
. 2

The means for achieving serializability are diverse; .thg most popular means are 4

-~

'two-phase’loclcing and timestamp ordering mechanisms. In this thesis these/‘,‘o )
N ) i

A LY .
}t‘mlsms have been revrew,ed and . provcn to be specxal cases of a gencral con-

4
'proven to work corregtly (I e., produces only senahzable schedules).

v - -

currency control. mechamsm Thls general mechamsm has been descrlbed in detall and
[ .

-

~ .
~

E It.has been shown that two-phase locking and timestamp ordering represent ,

. . N . . . o - . . 4 .
*‘the two end points of a series of concurrency control mechanisms.;Each of these

\

mechanisms results ftom chooslng a different value fqr tPc Stnctness level and is con-

sldered t.o be a cpeclal case of t.he general concurrency mecb;msm proposed in tli/s

§

Y . ' . . . -
M .
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thesis. The value of the strictness level can be apcclﬁed in advance ond can) be modnﬂed

P
durmg executlon (wntbout aﬂecung the correctnesu of the propoacd mechamsm) ‘
ln the second topic, the concurrency control problem has been exsmlned when '
~ semantic mformatnon is available about the transactions. The semantic lnformatlon
considered is transaction types, t.n'n_saction steps, and transactlon breakpoints. A new
, alass of schedules called relatively consistent (RC) schedules has been defined. This
' N

class of RC schedules cobpafns serializable and non-serializable schedules.

.

The main Thotivatibn behlnd allomng non-senahzable schedules is to lmprovc

perl‘ormance Sevcral researchers have nouced that in some**plicutlm allowing only\

.

serializable schrdules ‘can’ reduce the level of concurrency’ and increase transacuon

“responsc time. One way to increase concurrency is to allow non-sermhuble schedules “'
o . . : !/

that do. not violate consistency. A new concurrency control mcchannsm that allows \(

Lo ,‘\

serlahzzble and non-senallzable schedules (which do not vnolaﬁ!’tcnsnst\ncy) has been \"

I

a

‘ mproposed The presented mechamsm allows more lnterleavmgs among tkc cxecutlng
N~

t{ansactlons than the locking mechamsm proposed by |Gars3]. Conﬁequently, the pro} \

poaed mechamsm achlevcs higher Ievel of concurrency

- Vi . . oL : . o )
' e e 4 i ’ : : : .
K ) A - . . ) . \/’n‘ ' O '_,-‘
. .Fu w “ ‘ . i ' - . ~
8 & "uture ork) o ' -

There ‘are Still other estions that ret‘n‘ain open for futyre résearc’h. One prob-

lem that x“s\very mportant and which has not been dlscusséd in detall is pcrforman’co

’ ""' *

We bcheve that the-performance of a concurrency control mechanls ; must depend on

) . both the llkelrhood of transacuon conﬂlct nd the level of concurrency Ilow by the - ,,',;

mechamsm. o ' R
{ » T =Y . 5\ : .‘ _— o

" The likelihood of trsnsacuon conﬂnct is apphcaﬁ n dependent ~tha& is, n
5 - T-- s e
varlcs from’ apphcmon to apphcauon, wlule concurrency depends on the mcchnmn

N ' I P
AN ) ) . . . . . : “w ,' X . . ) *t.’ A‘, ) ".. -
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"w‘ L sl ‘

used Some "mcchenlsms allow more concurrency than others. Foricmmple,ltwo-phase

loclnng doel ndl, sllow twp conﬂlcthg tnnssctlons to execute concurrently, that is, if

l\ A

tvo tranuctlons sre |n conﬂlot“ then one of them must wait for the other. Other

s

mechanisms (llke tnmcstamp ordenng) may aIIow two (or more) transacuons to cxecuce

-

: concurrently as long as their conflict cannot violate consistency.Several other tnechan-

.lsms exist between these two extremes (see Chapter 3).

- - .

In. the me”cbanism proposed in Chapter 3, the level of concurrenciy ‘can be

'changed by modll'ylng the current value of L. The smaller the value of L, the greater -

r . J
thc "expected” value ol' strict classes (asﬂndlcated by Lemma 3.1); &hrmct:ng

hd » . °

transaccnons can procecd executnon togethcr. Thus, tl;e performance can be tuned by -

modifying the valueof L. The exact relationship between performance and the previ-
‘ous two conceptsi(i.e., transaction cg;ﬁl;c& and concurtgncy) is an interesting problem

‘( l.thatdeserves furtberresearc’h "t G .. I .
L J .. - '

4

There are also other problems related to the second topic. One. prqblem is

extendlng our work for - mupm, transactlon models Anothcr problem ls B;ndhng

.":.ﬁ S e

dlﬂerent1ypes of l'allures efficiently (such as transactron failure, system failure, etc. ) A

A tlnrd problem is companng the per{ollmance of the concurrency control mechamsms- E .

that allow senallzable and non-serlalme schedules agalnst ‘those that, allow only

4

serializable SChcdules Recent results on thls area are encouragmg [Cor85] These ‘

- reswwhen trans)ctlon conﬂlct is relauyely lugh the lockmg mechamsm of
.

t

Garcna-Mohne [Gar83] outperforms the conventional two—phase loc,l(lng mechamsm in

L4
e

sv"

.
’ +

. ’ > - L

on res‘ponse 'tune Slnce our mechamsm does not, x:equu'e each tran- N

»
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* 4. APPENDKXI

™ ’
'SEMANTICALLY CONSISTENT SCHEDULES = =
' o - |
L ' »; o ' ’ :
\\ . : \ ‘ . - L C . . . P

Garcla-Molma [Gar83] has deﬁned a new class of schedules called aemantlcally
».consnstwent schedules This cjaas contams senahzable and non-senallzable schedulea

(which do not vnolate consxstency) A concurrency control mecbamam that accepts onjy

.semantlcally consistent schedules has also been pr‘oposed in. [Gar83]. This chapter -
reviews the work that has been done by Garcia-Molina [Gar83] First, we introduce

thefollowmgdeﬁnmons - .’ n_‘i B

Definition 1. 1 We.modlfy shg/tly our previous definition of a transactlon given in

Chapter 8. In the new definition, a transaction will not contain- breakpomts lnstead
. & . s

~ each transaction will consist of a series of steps. (The beginning and the end of each
N\
step may be |dent1ﬁed by a spemal Lymbol) g

A

Defigition 1.2: A scBedule is defined as in Chapter 8, except that we will only allow -
step-wise serial schedules. ' That is, each step in every traneaoction will- be executed

atomically.

. ) . ) - -

Definition 1.3: A sthedule H is said to be semantically consistent iff the following con-

ditions'are true. , ' .- T .
(1) The execution of H maintains the consistency of the.database (i.e., S transforins a

consistent database state into a new. consistent state).
- (2) Any transactlon in H that dlsplays data to users must obtain a cons:stent view. of

[

the database, that is, all consnstency constraints that can he evaluated by \the data

accessed by the transact;on must evaluate to true. _ o

i
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3, ! o . / L
(3) For certzyn dletlngulshed entMof the database, the execution of H m% v\‘
Py

¢ the same effect on these entmes as a senal !xecutnon of t,he transactions.
, B «
l ‘ ) . . . N . N ! V ) L - _h
I.1. Specifying lem'a.ntically %dnalstent schedules

1

Semantlcally consnsten& schedules are deﬁned in. terms ef a collection of sets,.
> r

called compatnbllny sets These actq’t}escnbe all the rules that govern the lnterleavmg

among the transqctlons Any schedule l-l that satlsﬁes these rules is semantlcally con-

slstent (that is, H will satisfy the colﬂhlo@s &scnbed prewously) There is a compau-
bility set CS(TP1) for eaclytype TP1. The deﬁnmon o,l' the compatlblllty sets will only

depend’on the semantlc}nformatlon avallable about the transactnons .
§ '/. )

’ Examplel.l: . ‘ : ' . . o
Consider the EOmpatibility set déscril:ed below. .

uCS(TPL)a{{’I‘Pl TP2}, lTPl TP3}}

‘ The ‘above set lmplles the fo\ljlowmg

L A transactlon of type TPI can lnterleave with a transactlon of type TP2 or type
) ‘

—

TP3. , L . .
‘2. Transactions of type TP2 can interleave. o -
3. Transactions of tyne TP3 can interleave.

‘4. A transaction of type ‘TP2 cannot interleave with another transaction of type
' . TP3. ‘ N L
| . _ \\ o / o o

: ‘i
. The elements of CS(TP l) are: called mter’leavmg descriptors. Note that if the mt,erleav-

lng descriptors of a cert,aln type are empl,y, then the transactions of that type cannét
. 3
. i
_intérleave at all. : ] @

N

L2. The locking mechanism

B S
= o

® 4 s



Garcm—Mg\ma (Gar83] has descrnbed a locking mechanism that producas only
{ B
semantlcally conslstent sclldules 'SeveraI}tsumptlons have been introduced to sim-
\
' phly the mechamsm Before outllnmg the basnc features of thls mechamam, we mtro-
‘ i )

)

duce the followmg deﬁmﬂnons , o . )

. N - - ‘
Definition I.4: A type TPl is said to be local type, if for every transaction T, with

‘  ~=YT) = TP1, T, consisis oqu. of one step. Otherwise, TP1 is nonlocal t.'ype. .

i

Definition 1.5: A transaction T, is said to be local transaction, if t(T)) is local type.
] c . LT +
Otherwise, T, is nonlocal transaction. C

(The,above definitions must not imply that every single step transaction is local).

Definition 1.8: A»irané/action T, is said to be compatible with a transaction Ty, iff there
is an interleaving desc'xv'ipltor b in CS(t(T,)) such that 4T, € h.

)

. The following assumptions are assumed to hold true.

A -
h

.A?s'umption.‘l.lz The compatibility sets are assumed to be >sound, i.é;, the compatibil-

ity sets must satisfy the following conditions. - , -

(1) There is-ho CS(TP1) such that g,h ¢ CS(TPI1) and gc h (i.e.‘,‘there are no red‘unw

‘dant descriptors). - . ,

(2) h E‘CS(TP_‘I) and TP2 ¢ h, then h € CS(TP2) (i.e., the descriptors are mutually

“ consistent).
Assumption 1.2: 1f h € CS(TP1) and h » @, then TP1 € h. This actually means that if

transaction T, can interleave with another transaction of different type than t(T)), then
. . ,

T, can also interleave with any other transaction of the 'same type.

8, . o~

Auumptlon La:1fa transactlon T, is compatlble wnh a transactlon Ty, then transac-

tion TJ is compatlble with T,.. . ‘ - .

¢
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Assumption L4: If TP1is nonlocal type, then ICS(TPI)I -1 That is, the compatibil-
ity set ofa nonlocal type contajas oily one mterleavmg descnptor (Local types do not

have thls resﬁc’tlon) I

\}g.t \’\.}

The above assumptions divides the nonlocal types inﬁq, a set bf d" g
. ~ P vty
. l'q. ,d “ N

called equivaient classes. Two types TP1 and TP2 belong’ to the same cLyd

I/

¢

class iff CS(TP1)=CS(TR2). (Note that there is one class for the types whpse con;pati— ‘

bility sets-contajn only the empty dt;scriptor). If (T) and Y(T,) belong t;\\the samey

cquival.ent.cilass, then T, 3nd T, can interleave arbitrarily. Otherwis;e, T, an;i T can‘not:

interlcave. | | \‘ |
' ’ o

‘L2.1. Fypes of locks

\, e

~. —
\~—~—\__., s

The lockmg mechanism proposed in [Gar83] utilizes two types of locks, called local "
and global locks. Local logks are used by the mechanism to ensure that each step is
executed as atomic action. Similarly, global locks are used by the mechPism to

. ‘ 5

) - )
-—emsuré that the interleaving of the atomic steps cannot violate consistency.

. F .
Each transaction must first obtain a glabal lock, on an entity x and then a local

lock on x'b‘cfore accessing (i.t?., reading or writing) xA. -The local locks obtained during
th‘e executi&n of each gfteﬁ in the transaction will be released lwhen the step finighes.
Associated with each élobal lock on an entit,y x is an interleaving set. denoted ID(x).
ID(x) represents the types of all transacuons that are currently holding global lock on
x. The global Iock on x can only be released when all these transactmns terminate.

-

' 1.2.2. Locking by nonlocal transactions

EH

, Before a nonlocal transaction T, accesses ‘an entity x, it first checks whether x is

cm:_;enfly\lockgd.' If x is unlocked, then T, will obtain a global lock on x and will set
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ID(x)= CS'(t.(Tt)) (indicating that x can also be locked by ‘ny other transaction that is
-t compatible with T). Otherw’ise, i.e., if x is cqrrently:'locked, then T, checks the inter-

leaving set ID(x). If le(x)-C§(t(|Tl)), tken T, can inteﬂenv; (i.e., \;ill' be granted a glo-

bal lock on x), otherwise, T, has to waitl

T, willtalso-need to obtain a loos! lock on x before accessing x, but this lock will

‘not Be‘ granted if there isfready a loeal lock on x (that is not compatible with the lock
y - '

of T). o | A ’
1.2.3. Locking by local transactions _ /‘*\
° : [ ) . -

A local transaction may have more t‘han one interleaving 'd_eacript:or and, therefore,
can choose its interleaving during eﬁecution‘(No‘te that a local transaction has.only
one step which must be e;(ecut;d atomically). Locking by local trans;ctibns can' be
de:;cribed as follows. Let T, be a local tra‘txgactioﬁ and: let t(T)=TP1 and

© CS(TP1)={{TP1,TP2}.{TP1,TP3}}. Tr;nsaction 'I‘lI must decide which of the two inter-
lea\'ings;({TPl;TP2} or {TP‘l ,TP3}j it will’partigip::té in, This decision‘wilil be deferred

until T, encounters the first globally locked entity x. If le(x)- {'I‘-Fl\',"l‘i"é}‘,\then T

w

3

chooses {TP1,TP2} as its own interleaving (i.e., if later it encounters an entity y such

that ID(y)={TP1,TP2}, it must wait). Similarly, if ID(x)={TP1,TP3}, then T, chooses

“{TP1,TP3} as its own interleaving.

Before T, encounters any. interleaving, it sets on every entity x to be globally

locked by T, the ID(x)=®. When a decision is reached, all these descriptors (®) are set

to the decided interleaving set. The meaning of setting an ID(x)=® by T, is that T.;

will not allow any other (local or nonlocal) transaction to interleave on x.

Theorem 1.1: Every schedule produced by the ldcking mechanism degcribed previ-v

P

ously is a semantically consistent schedule [Gar83].
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: - \ ,
1.3. Transaction fallure - ; :
» . » L] . N o \
. A‘ R s ‘ ’ .

.. .

Garcla-Mohna [Gar83] has proposed the ‘concept of countersteggfor handlmg tran-
sactjon failure. In order to undo tb\ effect of a certain atep Sy 8 counter sgep cu muatv
be executed. Similarly, to undo the effect of the whole transaction T, we must undo

~ \ *

the effect of each Step in T, ’



