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ABSTRACT

For cylindrical shells non-axisymmetrical loading is
generally considered in the form of a periodic Fourier series.
Since each term of the series must satisfy the boundary con-
ditions, the solution is sfmp]ified by the use of stiffness
coefficients. To permit a method of solution closely following
the classical stiffness matrix method expressions for stiffness
influence coefficients for all the harmonics of loading greater
than zero are presented as general algebraic expressions in
closed form. Two sets of expressions were obtained by introducing
approximations into the classical theories. The range of
applicability of these sets is given based on criteria ihvo]ving
the shell parameters and the harmonic number of the edge Toad-
ing considered. A further simplification is possible for
evaluating membrane stresses for very large values of the load-

ing harmonic.

The values of coefficients and the stress resultants
obtained for two examples are compared with those obtained
using Flligge's equations for these shells. It is concluded that
the use of these coefficients constitute a practical procedure

for the solution of these types of problems.
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CHAPTER 1

INTRODUCTION

1.1 PURPOSE OF THE STUDY

An unsymmetrical state of stress is obtained in shells
of revolution such as water tanks, nuclear reactors, pressure
vessels, silos and chimneys by one of these causes:

1. arbitrary loading varying along the directrix as
in the case of wind and seismic actions,

2. the supporting reactions being 'unsymmetrical' or
discontinuous as in the case of a shell supported on isolated
columns, ’

3. the middle surface befng incomplete.

The symmetrical state of stress results from particular cases

of these conditions.

The classical method of analysis for arbitrary loading
is to express the loading as a Fourier series, analyse for each
harmonic separately and then superimpose the effects. The numbér

of terms considered in this series must be sufficient to give the

7desiréd degree of convergence; An example of this procedure is the

éonSideration of wind and seismic loading. With regard to wind
action the normal component py of the equivalent static load is

expressed as

b, = 9, k(o)



where k(¢) is the shape coefficient and g is the basic dynamic
pressure which depends on factors affecting wind pressure distribu-
tion. From studies on cylindrical models in wind tunnels several
investigators have expressed the law of variation k() for smooth

and rough surfaces as a trigonometric series in the form,
= +,
k(¢) = a, + ajcos¢ + a,c0526 + azcos3¢ + azcosde *...

The usual procedure in design is to consider only the first
harmonic a]cos¢ ignoring the higher harmonics. The analysis
is accomplished by the beam theory treating the structure as
a cantilever beam or by the membrane theory of she}]s. This
~procedure is satisfactory only if the edges fully satisfy the
required boundary conditions. According to Hruban (1) for
certain stress resultants such as the bending moments, the
higher harmonics, especially the second one, may rebresent

very significant components.

An example of higher harmonic loading due to intermittent
supporting reactions is the case of a cooling tower supported
on eight columns. Here the reactions when expressed as a

Fourier series will contain the harmonics 8, 16 , 24 etc.

With the advent of the digital computer, structural
analysis may be conveniently done by matrix methods using in-
fluence coefficients. In the literature, the analysis for
symmetrical loading is usually performed using inf]uence co-

efficients which have been given in an explicit manner. For
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unsymmetrical bending there are no corresponding explicit
expressions. Although one can theoretically write the exact
expressions based on a rigorous theory, this procedure involves
the solution of eight simultaneous equations, expressed in

general terms of geometry of the shell surface and the physical
constants. Moreover, the final expressions for 1influence co-
efficients,when written in an explicit manner,will be too unwieldy
to be of practical use. For these reasons the expressions for
jinfluence coefficients have to be established based on approximations.
Therefore thé approximate methods of analysis proposed in the

literature are reviewed in detail in the next section.

The purpose of this study is to investigate the possibility
of establishing these influence coefficients in closed form for

practical use.

1.2 A BRIEF HISTORICAL REVIEW OF SHELL THEORY

The general theory of thin shells was first initiated
by Love (2) in 1890. Fliigge (3) in 1932 presented the basic
equations of the theory in the form mostly used today. Because
of the complicated nature of the rigorous theories proposed by
Love and Fliigge, simplifications were proposed by Finsterwalder (4)
in 1932, Donnell (5) in 1934 and Shorer (6) in 1935. It was not
until after 1940 that Donnell's theory gained wide recognition.
In establishing his equations Dénne]] rigorously discarded the
lesser important terms. The Donnell theory was apparently derived

independently by Von Karman (7) in 1941, Jenkins (8) in 1947 and



Vlassov (9) in 1947.

The problem of unsymmetricaT bending of closed cylinders
was first investigated by Schwerin (10)in 1922 followed by
Miesel (11)in 1930. Hoff (12) in 1954 gave an explicit solution
for Donnell's equations. In 1957 Holand (13) proposed explicit
soiutions using a modified form of Flugge's equations. An
approximate method of analysis with possible simplifications
was given by Flugge (j4) in 1960. Goldenveiser (15) in 1961
made a detailed study of the mathematical aspects of the shell

theory and proposed simplified solutions.

1.3 REVIEW OF EXISTING METHODS OF ANALYSIS

A detailed examination of the more important works
considering unsymmetrical bending of closed circular cylindrical
shells follows. Goldenveiser and Flligge have presented discussions
on the nature of the shell characteristic equations, while Hoff

and Holand have proposed solutions to these equations.

GOLDENVEISER

Making the assumption that a<<1 where a2 = h2/3r2,
Goldenveiser obtains the following eighth order characteristic

equation.

A8 - élmzx6 + [6m4 - (8-—202)m2 + (1-1)2)]A4
2
a

2 ,
mlm? - A2+t - 12 =0 (1-1)

For values of m = 1 , this equation reduces to the following



forms.
Form=1 (1 - u2)>\4 =0
2
e o) =0 (1-2a,b)
2
a
L
For 1<m<a? (1 - UZ)A4 + azm8 =0
SR -202) = 0 (1-3a,b)
a.
-1 : :
Form > a2 (Az - m2)4 + (1 - Uz) Ao (1-4)
aZ
-t
Form >~ a?% (2 - md)* = o (1-5)

Depending on the value of}m each form of these eqations will
have eight complex roots, Ay to xg’ expressed in terms of real and
imaginary parts, x1;X2 and ul,uz,respective1y. EQUATIONS (1-2a) and
(1-3a) are used to obtain the four roots expressed in terms of
Xo» Mo which are small in magnitude and EQUATIONS (1-2b) and
(1-3b) are used to obtain the four roots expressed in terms of
x]:’ My which are large in magnitude. EQUATION (1-4) as well
as EQUATION (1-5) gives all the eight roots expressed in terms

of X1s My and Xos Uos X7 and X9 being the same order of magnitude.

The stresses and displacements at any point in the shell

are expressed in terms of a potential function ¢ as

X

_X : + zy .
[e ?y [C]COSUQY + CZSinuzy] + e [C3cosu2y+C4s1HUZY]

(=]
]

=Xy : +X :
e 1 [Cscosuly + C6s1nu1y] + e 1y[C7cosu1y + C851nu1y1]cosm¢ (1-6)



-1 :
For 1sm<a®the Xp~ solutions are termed the edge

effects' because of their highly damped nature and the X0~

solutions as the 'basic' because of their Tightly damped nature.
-

For mza Z this classification does not apply since the rate of

damping is similar in both the cases.

To consider the boundary conditions for any particular
problem, it is necessary to evaluate the eight constants of in-
tegration C] to C8. Goldenveiser proposes two methods for
evaluating these constants, one applicable for m<:a’%and the other

4
for mza?

1
For m<a © the stress system corresponding to the basic
state and the edge effects can be determined separately using
EQUATIONS (1-2) or (1-3) and then superimposed. According to

this any tangential displacement or force T can be expressed as,
bas edg :

In a similar manner any non tangential displacement or force
can be written as,

bas

d
S = $735(y1,01,C5,C5,C,) *+ S°9(y,C5.C4,C4,C) (1-8)

6°77°°8

In the basic state of stress, tangential forces are large in
comparison with transverse forces and moments. In the edge effect,
the strain in the middle surface of the shell is determined
primarily by the normal deflection and rotation. ‘It therefore |
follows that on the right hand side of EQATION (1-7) the second

term is much smaller compared to the first term. Neglecting



this term, EQUATION (1-7) can be written as,
_ -bas
T=T (y’C]sC23C33C4) (]‘9)

Using this equation the constants C] to C4 can be determined from
a sef of four tangential boundary conditions. Recognising the
highly damped nature of the X] - solutions, EQUATION (1-8) can

be written for the top and bottom edges separately as,

ed

.
I

bas g
S (y3C19C23C35C4) + S (YsC5sCGsOsO) _ (]']Oa:b)

bas( ed

$7%% = 783(y,€1,C,,C45C,) * S

g
2 3 (y’0303C7’C8)
As C] to C4 have been already found, the remaining constants 05 to
C8 can be determined using EQUATIONS (1-10a,b) from a set of

four non tangential boundary conditions.

For m=’a—é'the problem is governed by the single eighth
order EQUATION (1-4) or (1-5). Since both xq and x,-solutions
are highly damped the boundary conditions may be applied in-
dependently of each other at the two edges. The potential function

¢ is expressed as
9 = [e'm [C]cosﬁ]y + Czsinﬁ]y] +

e‘XZ'[CSCOSMZy.+ C6sinﬁ2yi]cos mé (1-11)

There are now only four constants, C]CZ,C5 and C6’ to be determined

from a set of four boundary conditions at the edge where the

loads are applied.



For rn>>a—% that is for very large values of m the
stress system can be subdivided into generalised plane state
of stress and plate bending. The tangential displacements
and forces are given by thg equations of the generalised
plane state of stress. The non tangential displacements
and forces are given by the equation of plate bending. The
equation of equilibrium for the shell element are given by these
two groups of uncoupled equations each leading to a single

characteristic equation of the following form.
02 -m?)? = o (1-12)

Thus for very large values of m the shell element behaves as

if it were developed into a thin plate.

FLUGGE _
The eighth order characteristic equation given by Flligge is

Z8 - 2 (2m2 - u))\6 +[{,1 - u2 + 6m2(m2 - 1)] >\4
k

- 2m2[2m4 - (4 - u)m2 + (2 - v)] A2 4

Y2 - 12 = o (1-13)

For small values of m this equation can be split into

two independent fourth order equations as,



)\4 - 2(2m2 - u)x2 + [] - u2 + 6m2(m,2 - 1)} = 0
5 _

[1 - 02 + 6m2(m2 - 1% A4 - 2m2[2m4 - (4 - u)m2 +
k

2 -0 +nt@-1) = o (1-14a,b)

EQUATION (1-14a) gives the larger roots expressed in

‘terms of X]’,u] and EQUATION (1-14b) gives the smaller roots

expressed in terms of Xps Hos the roots corresponding closely
with those obtained from EQUATION (1-13). The large roots are

of the order k']/4 and the small roots of the order k]/4. From
the table of characteristic coefficients for the displacements

and the stress resultants (TABLE 1, p. 230, vef. 14 ) the states
of stress corresponding to EQUATIONS (1-14a,b) can be determined
separately. In this table, the quantities oj are of the orders
k]/4 and k']/4 for the large and small roots respectively and

Bj of the orders k]/2 and 1. It is seen that for the state of
stress and displacements given by EQUATION (1-14a) the

membrane quantities are very small compared to the bending
quantities and vice versa for the state given by EQUATION (1-14b).
This means that the state of stress corresponding to EQUATION
(1-13) can be found approximately by determining separately the
two states of stress as mentioned above. Therefore EQUATION (1-14a)
satisfy a pair of non tangential boundary conditions MX or w'

or S, or W and EQUATION (1-14b) will satisfy a pair of tangential

boundary conditions N or u and T or v. The boundary conditions
- X X
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corresponding to EQUATION (1-14b) are those considered in the
membrane analysis. Therefore this part of the solution is only
an improved form of the mémbrane solution and the membrane sol-
ution can be used as an approximation for the solution of

EQUATION (1-14b).

For large values of m, the splitting of EQUATION (1-13)
in the above manner is not valid and values of X1 approach X9
and values of M approach Mo Because of the highly damped
nature of both X1 and X2 solutions the effect of far edge
can be neglected, thus requiring the consideration of only

four boundary conditions.
HOFF
Donnell 's characteristic equation is expressed as
241 = o (1-15)

k' :
Using this equation Hoff (12) obtained expressions for the middle

(AZ -m

surface displacements in terms of eight constants which are
evaluated from the boundary conditions. This was accomplished
by finding solutions for the root of the characteristic equation

and the relations among the middle surface displacements.

HOLAND

In an attempt to obtain explicit solutions to the roots
of Fliigge's characteristic equation, Holand modified his equation

in the following form,



™

11

28 - 4mlﬁm2 - 1)A6 +[i_ + 6m2(m2 - 1)] W
ml(m? - 1) mfn® - W+ wtw? - 1% = o (1-16)

The equation can also be written in the form
(Az - m/m2 - 1)4 +1 x4 = 0 (1-17)
kl
The value of the roots as given in(SECTION A.1 of the Appendix)
depend on the parameter g which is defined as 4]E1m/m2 -1
Form=o0orl,

T

The roots are therefore the same for bothm=o0 and m=1.

For small and large values of g, Holand gives approxim-
ate relations for the roots. He further suggests corrections
to the roots obtained from EQUATION (1-17). But for all
p}actica] purposes where the shell is thin, the approximate

solutions are very close to the exact ones.

Holand presents a discussion of the accuracy of the
solution of the different characteristic equations, proposed
by many investigators. If (m2 - 1) is rep]qced by me in
EQUATION (1-17), Donnell's equation is obtained. Neglecting
terms which are of no importance to the design of thin shells,

he obtains simple expressions for his characteristic coefficients.

Explicit expressions for influence coefficients neglecting

the effect of far edge are also obtained by Holand . He
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considers a set of mixed boundary conditions expressed by the
group of edge quantities MX,NX,and vV and w. ﬁor m = 1, he obtains
the solutions in two parts, a polynomial solution and a

damped exponential solution. He concludes that the membrane
theory can be used in place of the polynomial solution.

Explicit expressions for both stresses and displacements are

given for each part of the solution.

1.4 AUTHOR'S CLOSURE TO LITERATURE REVIEW

The differential equations obtained in the general theory
of shells as encountered in the literéture are quite complicated
even when based on a consistent first approximation as in the
sense conceived by Love (2). To obtain solutions it has been
found necessary therefore to introduce simplifications. The
review of literature points out to two types of simplifications.
In the first type, approximate solutions result from a con-
sideration of the states of stress. It is then necessary to
proceed to a classification of the possible states of stress
and for each state of stress, consider which simplifications
or approximations are possible. This does of course result
in a loss of the general character of the theory. The approximate
méthods of Goldenveiser and Fliugge belong to this category.

The second method is based on solutions to approximate
eighth order characteristic egations. Hoff's method based on

Donnell's equation and Holand's simplification of Flligge's



equation belong to the second category.

Only Goldenveiser (15) has done a detailed study of
cylindrical shells with bending resistance under arbitrary
loads. Within the mathematical framework he defines the
region of applicability of his solutions with an estimate
of errors in the roots. He has not made any quantitative

study regarding the error in the final stress resultants.

Fitigge (14) has suggested similar simplifications
but has not presented any specific criteria to decide when

the problems can be split.

By introducing various assumptions different investigators
have obtained simplified characteristic equations. TABLE 1.1
gives a comparison of the different characteristic equatjons.
Fligge's equation is the most accurate one based on a technjcal
theory of shells in that he heé?écts only the fifth and higher
powers of h in the development of his theory. The other
characterfgtic equations are therefore compared with that
of Fliigge.

The difference between the equations of Holand and

6 and Az. For the

4 to 10'7.

Flligge appears in the coefficients of A
usual type of shells k is of the order 10~ As such
- the coefficient of A4 is very large. The terms A6 and AZ are
of Tittle importance. Holands' equation is therefore the best

apprbximation given so far to Fliigge's exact equation.

13
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Morley (16)4makes assumptions which are tantamount to
taking v = 1 in Fliigge's equation , except in the term (1 - uz)/k.
This indicates that the roots are insensitive to variation in .
Morley's computed values of A are only slightly in error.

Bijlaard's (17) equation is accurate for large values of m.

Donnell's equation is widely used because of its simplicity.
In this equation only the higher powers of m are retained. Hoff (18),
Morley (16) and Kempner (19) conclude that the accuracy of Donnell's
equation improves as m increases. However, an investigation by
Colbourne (22) shows that when m increases, the real parts of the
' roots, X1 and x,, approach the exact values but the imaginary parts,
% and u,,do not agree with the exact values. Thus the effect of the
error in the quantities:ul and 1, »0N the final stress resultants,
for high values of m, needs investigation and is discussed in
CHAPTER V. Hoff points out that Donnell's equation should not be

used when m is less than 4. Biezeno and Grammal (Z0) make a further
2

1 -v

approximation to Donnell's equation by neglecting K

compared to 6m*. The solution is then independent of k.

It is seen that the values of the roots in the different

characteristic equations depend on 'm' and 1 - u2 . According

K
to Hoff (16) when 1 - v2 <2500 the shell is relatively thick
T

and the simplifying assumptions made in deriving the basic

equations may invalidate the basic theory. When 1 - u2 >2.5x10

k

7

it represents the thinnest practical shell. - ¢
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A different kind of inaccuracy results due to an
inconsistency in the theory when one uses approximate equations
like that of Donnell or Bijlaard. For m = 1 these equations
do not give the four zero roots. These are essential for rigid
body displacements required from equilibrium considerations. Any
characteristic equations will have the necessary number of zero
roots only if the elasticity relations are chosen in the
proper way. By changing the relations even within the frame-
work of the exact theory of shells one can 1bse the zero

roots and obtain large errors in the final results.

On reviewing the literature it is seen that:

1. approximate solutions even where they exist have not
been thoroughly investigated with regard to their effects on
the final solutions and

2. no explicit expressions exist for stresses and dis-
placements leading to the development of stiffness influence

coefficients.

Therefore, the objectives of the present study can be stated
as follows:

1. to study the effect of variation in the shell
parameters and the harmonic number of the edge Toading on the
behaviour of the shell,

2. to arrive at values of stiffness influence coefficients
for particular values of the shell parameters and harmonic number

of the edge loading, using the exact theory,
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3. to establish approximate closed form expressions for
stiffness influence coefficients for all harmonics of loading
and to establish the range of applicability of these expressions,
4. to solve certain specific problems using these
expressions and to compare the results with those obtained by

the exact theory.



TABLE 1.1

COMPARISON OF CHARACTERISTIC EQUATIONS FOR

FOURIER SERIES REPRESENTATION CIRCUMFERENTIALLY

Flugge

Holand

Morley

Bijlaard

Donnell

‘Donnell

modified

by Biezeno
& Grammel

8 122
K

28 & 2(2m2-u)n8 + [1-02 + eme(m-1) 2%

-2m2[2m4 - (4-u)m2 + (2—u)]>\2 + m4(m2—1

38 = am fn?a1 A0+ 11202 + el (mP-1) WY

k

-4m2(m2-])m /mz—l Az + m4(m2—1)2

A8 -2 (2m2-1)x6 + [1:2? + 6m2(m2-1)]x4
k

-2m2(2m4-3m2+1)>\2 + m4(m2—1)2

38 -2 (2n®n8 + [1-0
R

-2m2 [2m4—8/2X7+u)m2]A2 + m4 (m4—2m2)

28 - 202m® 08+ [10% + em?(md) A
| K

- 2m2(2m4)x2 + m8

A8 - 4m2A6 + 6m4x4 - 4m6>\2 + m8

)2

1)

0

¥ 6me(m2-1) - u(1-0)m?Ia

4
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CHAPTER TII

INFLUENCE COEFFICIENT PROCEDURE

2.1 APPLICATION OF MATRIX METHODS TO STRUCTURAL PROBLEMS

Structural problems which usually consist of an assemblage

of many parts tend to be complex in nature. The true structure

~ must generally be replaced by an idealised approximation or

model suitable for mathematical analysis. Matrix methods using
influence coefficients permit a more detailed idealisation of

structures than was possible by the earlier classical procedures.

Matrix methods can be classified as force methods using
flexibility influence coefficients and displacement methods
using stiffness influence coefficients. Such influence co-
efficients relating forces and displacements reduce the given
problem to a mathematical formulation in terms of a set of
Tinear algebraic equations rather than differential equations.
The solution of a large number of simultaneous equations is no
more a problem with the advent of high speed electronic computers.
Matrix methods have therefore come to be well recognised in
structural analysis. Both force and displacement methods can

be applied to a variety of complicated engineering problems.

The. following hasic principles are applied while setting

up both types of influence coefficients.

18
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1. Equilibrium of forces
2. Compatibility of deformations

3. Constitutive equations

2.2 FLEXIBILITY AND STIFFNESS INFLUENCE COEFFICIENTS

Assume an arbitrary linearly elastic structure supported
against rigid body motion and subjected to forces xl,Xz,....,Xn
acting at nodes 1, 2, ...., n. Let the corresponding displace-
ments be d], d2, ...... R dn' The terms force and displacement
are used here in a general sense. In matrix notation the

relation between the forces and the displacements can be expressed

as,
[dT = [c] [x] (2-1)

where d s the column vector {d;, dy,...., d }and [X] is

another column vector-{x],  CYSRRR Xn}

The square matrix [C] is known as the matrix of flexibility
influence coefficients. The element cij is defined as the dis-
placement at the node i due to unit force applied at the node j-
EQUATION (2-1) represents load-deflection equations : for the
structure., The forces in terms of deflections can be solved

from these equations.

For the same problem, the relations given by EQUATIONS (2-1)

can also be restated as

[x] =11 [d] | (2-2)
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where [K] is known as the matrix of stiffness influence co-
efficients. The element kij js defined as the force at the
node i due to unit displacement at the node j. EQUATIONS (2-2)
represent the equilibrium. conditions for the structure. The
displacements in terms of forces can be solved from these

equations.

Because of the reciprocal theorem both [C] and [K] are

symmetric.

2-3 DIRECT STIFFNESS METHOD

While establishing the flexibility matrix the structure
is assumed to be supported againét rigid body motion, a condition
not necessary for the stiffness matrix. For the latter case

the structure can be free to move as a rigid body when the edge

displacement is applied. The stiffness matrix [K] thus obtained

js called the 'direct stiffness matrix.'

The symmetric direct stiffness matrix [K] is singular.
The elements in any column represent a stress system in equilibrium.
The singular nature of [K] can be removed by imposing boundary
conditions on the problems. The advantage of the direct stiff-
ness matrix method is that for a whole assembly of structural
elements, the total structural stiffness matrix can be easily
formed by superposition of the individual stiffness matrixes,
irrespective of the boundary conditions. The boundary con-

ditions are considered only in the actual solution of the
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system of equations.” This permits the consideration of different
boundary conditions while the total structural stiffness matrix

remains unaltered.

2-4 SOLUTION PROCEDURE FOR DIRECT STIFFNESS METHOD

The total structural stiffness equations are represented
by,

[x] = [x1 [d] (2-3)
where [X] is the total set of nodal forces and [d} , the
corresponding total set of nodal displacements. Let [dai represent.
the unknown nodal displacements and [db] the known nodal displacements

due to the boundary conditions. Correspondingly [X] can be separated as.

the applied loads [xai and the reactions [X,1 . Thus,

ol [ | %] JEd] (2-4)
Pol] %o | Kon| |[%1
[Xa] - [Kaa] [lda] * [Kabj [db] ’ (2-5)
[ [al* [oo] 8] - (2-6)

-~

%]

From EQUATION (2-5)

[da] ) [Kaa]—] [[Xa] - [Kgpd [db]]' | (2-7)

If {ds]is a null matrix corresponding to a set of boundary dis-
placements specified as zero , then

EQUATION (2-7) becomes,

[da] - [Kaa]—] [Xa] ' (2-8)
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Values of the elements 1n[xb],can be found by substituting the
values of the displacements [da] obtained from the EQUATIONS (2-7)
into EQUATION (2-6). If [db] is a null matrix, .
LIk =y kT O] | (2-9)
When all the nodal displacements are known, each structural
element can be assumed to be subjected to an equivalent system
of nodal forces designated by[XeJ, where

[xJ] = (K1 Ldl » | (2-10)
| [K] is the member  stiffness matrix and [d] the actual
7edgéwdi§b1acemehts for the members. The internal forces are
related to[Xé}by a relation directly obtained from the

derivation of the member stiffness matrix.

2-5 APPLICATION OF DIRECT STIFFNESS METHOD TO SHELL PROBLEMS

The procedure that is used in the classical shell analysis
is to consider the general solution which consists of a homo-
geneous part and a particular part. The general solution must
satisfy the specified boundary conditions. Using the stiffness
matrix given by EQUATIONS (2-3) the homogeneous part of the
solution can be written in terms of the unknown -
edge displacements. The particular solution or the membrane::
solution is superimposed on the homogeneous solution. The
resulting general solution is made to satisfy the specified

boundary conditions and the unknown displacements are evaluated.



23

As explained in the previous section, the internal forces
corresponding to the  homogeneous solution '. can be
determined. To get the net values of the disﬁ1acements and
the stress resultants the particular solution is to be
superimposed on the homogeneous solution. The classical
shell analysis therefore does not give the net values of the

edge displacements directly.

An alternative method which is analogous to the slope
deflection procedure for beam elements permits a matrix formulation
to the shell problem. In the local co-ordinate system in which
the final displacements are directly obtained the total
structural stiffness equations for a single shell with no surface
loading is given by

[x} = 1 [a] - (2-11)
In a comp]éte analysis the surface loading also has to be
considered. Let [Xp:] and[d'b]be the edge forces and dis-
placements corresponding to some particular solution. Apply-
ing a displacement system - [dpfl the net force system correspond-

ing to a set of displacements which are zero at the boundary

can be obtainéd.

o] == 1K1 [ar ] + X)) (2-12)

The system [xol'-can be considered as the'initial nodal forces'

corresponding to the surface Toading on the single shell. These
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are the nodal forces corresponding to zero nodal displacements
under the action of the applied Toading. [X'o] can also be
considered as a new particular solution with zero displace-

ments at the edges.

The stiffness equations including consideration of

surface loading can now be written for a single shell element

in the local co-ordinate system as
[x] =il + g1 - (2-13)
For an assembly of shells the total structural stiffness

matrix can be written from the element stiffness matrices,

transformed to global co-ordinates as follows,
x]= [k1rdl + [x,1 - (2-14)

In EQUATIONS (2-13) and (2-14) [d'] and [d] represent the net

nodal displacements.
In a simi]ar manner the net equivalent nodal forces are
given by .
1# _ | 1 1 . .
(%] =tk d] + [x ) (2-15)
From the”équivalent nodal forceé, the internal forces can be

obtained.



CHAPTER ITI

THEORY OF CLOSED CIRCULAR CYLINDERS SUBJECTED TO
ARBITRARY LOADING ALONG THE EDGES

3.1 INTRODUCTION

In this chapter the exact general theory proposed by
Fllgge is out]ined; For the special case of m =A1, the
. general solution given by Fllgge cannot be directly applied
because of the repeated roots of the shell characteristic
. equation. The solution is therefore modified for m = 1. As .
an exact analysis in general terms is tedious, approximate
methods are considered. This requireé a prior study of the
different shell characteristic equations and the nature of

damping of the solutions.

3.2 GENERAL THEORY

The exact theory has been proposed by Fliigge and for
a complete presentation of the development of the theory

reference may be made to pp 208 to 239,CHAPTER 5, ref. 14.

The forces and displacements (FIGURE 3.1) are periodic
- functions of ¢ and hence are expressed as Fourier seriés.

' Any quantity f, either a force or a disp]acement'is expressed
in the general form as

‘ = Tufe] oS

sin

25

me (3-1)
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The constants C} to Eé are evaluated from the boundary conditions

four at each edge. The quantities f] to f8 afe expressed as

follows.

f1 =219 - 3% f5 =-agrg - g%

fa = 20 + 349 fs = 205 = 3%

f3 = a3%3 - "“4“’4 f7 =-3707 - 3%

f4 = 8,0, + a0, | f8 = a8®7 - 3,04 (3-2)

The characteristic functions @1 to @8 are defined as

-X .y +X1y
9 =@ 1 cosuqy op = € cosuyy
_le +X1y
%, =€ sinu]y 26 = e sinu]y
-Xo¥ +Xoy
®3 =€ cosuzy @7 = e Cosu,y
=X, XY
2, =e %2 simy 0 = e 2 simu,y (3-3)

By substituting the displacements expressed as periodic

functions into the three differential equations (EQUATIONS 13a-c,
p 219, ref. 14) Flugge obtaines an eighth order characteristic
equation (EQUATION 1-12). The roots of this equation occur as
pairs of complex conjugate quantities expressed in terms-of

X1s M1 and Xos Moo Values of a and 3, have been presented in

a tabular form: (TABLE 1, p. 230, ref. 14).values of ag and P

can be obtained in turn from ay and a, as shown in TABLE 3.1.

Values of 23,35 27 and ag are obtained using these two tables
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by changing the subscripts of x,u, from 1 to 2 and those of
a,8 from 1 and 2 to 3 and 4 respectively. Knowing the shell
parameters and harmonic number m of the loading the roots can
be obtained from the characteristic equation. Values of a
to ag can be determined from the above tableS. Using these,
values of f] to f8 can be found at any point along the length
of the shell by means of EQUATIONS (3-2) and (3-3). Sub-
stituting these into EQUATION (3-1), the value of any stress
resultant or displacement f at any point along the length
of the shell can be expressed in terms of the arbitrary

| constants C] to C8.

Since in the derivation of EQUATION (3-1) the stress
resultants and other displacements are expressed in terms of
the displacement w it is pertinent to base further discussion

on w. Using TABLE 3.1 the expression for yw can be written as

W =[e_xly[f]cosu]y + fzsinu]y] +

- — . + —
e xZy[C3cosu2y + C4s1nu2y] + e le[C5cosu]y +

sinu]y] + e+X2y[E}cosu2y + C851nﬁ2y]]cos me (3-4)

Ce
There are two cases in which the solutions can be
simplified within the framework of the eXact theory. These

are the semi-infinite cylinder and the case for which m = o.

In a semi-infinite cylinder the solutions containing

the terms e X1¥ and e™2¥ become unbounded as y increases. For
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a long shell if the applied loads are in self equilibrium, loads
at one edge will not produce stresses and displacements at the
other edge. We can therefore disregard the four solutions

corresponding to Eg to Cé. The expression for w can be written as
-r=:-X~y— C.s1 .
v [é 1 [C]cosu]y + C251nu]y] +
e'XZy[Cgcosu]y + E&sinu]y]l cos m¢ (3-5)
The case m = o gives rise to axisymmetric bending

which has been fully covered in literature. This case is

governed by a fourth order differential equation (EQUATION 73a,

p. 273, ref. 14) giving rise to a solution in terms of four

arbitrary constants of integration. The expression for v

can be written as»

W o= e;ﬁy[C]co§ﬂy + Czsiﬁﬁy] +

e¥ay[c3co§ﬁy + C4sidiy] (3-6)
As before, ignoring the interaction of the far edge for a

long shell, in this expression the second term involving e

can be disregarded, thus reducing the number of constants to two.

The case m = 1 requires special treatment in that the
values of Xps My are zero. .As the four roots expressed in terms
of Xo»> o are repeated and zero the part of the general expression
for w given by EQUATION (3-4) is not valid and must be re-

placed by a simple polynomial solution. The complete solution
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then takes the form,

- — - + —
W =[? le[C]cosu1y + C251nu]y] + e X1y[C5COSuTy +

——— =~ | = = 2 =3

C6s1nu]y] +[C3 + C4y + C7y + C8y j]cos mé (3-7)
TABLE 3.2 gives the displacements and stress resultants
corresponding to the polynomial part of the solution. Using

this table, the membrane stresses can be written as,

-— —-- 2 —_ _
N, =D (1-v")[2T; + 6yTg]

—

- - 6D 2\ T
Mg = Nox = 60 (1-0°) Cg o (3-8)

N, =0

¢

This table gives also moments and transverse forces. These
quantities are of the order k and therefore the resulting
stresses are insignificantly small in comparison with those
produced by membrane forces. Thus they can be ignored.
Expressions identical to EQUATIONS (3-8) can also be obtained
from the membrane theory for m = 1. Therefore for a thin
shell the polynomial part of the general solution can be

‘exactly replaced by the membrane solution.

It is seen that for the particular cases of m =0
and a long shell the number of constants to be determined
from the boundary conditions are reduced. In a general case

one has. to evaluate all the eight arbitrary constants. The



evaluation of these constants in general terms using an

exact theory as described above is very tedijous and time
consuming. However values of stress resultants can be
tabulated for particular cases of &/r, h/r, mand v. A

table similar in form to the one given in A.S.C.E. Manual 31
for open cylindrical shells for loads applied at the straight
edges can be obtained. Such tables would have to be very
exhaustive to consider sufficient values of these parameters

to include all practical cases. As an examp]é TABLE 3.3 has
been presented giving values of the stress resultants form =1

and 2, for particular values of the shell parameters.

A solution in closed form in general terms may be
possible if one uses approximate methods to the general shell
problem. This requires a study of the different shell
characteristic equations and the nature of the solutions and

this is considered in the next section.

3.3 STUDY OF CHARACTERISTIC EQUATIONS

Fllgge's exact characteristic equation and Holand's
modified equation are used for an accurate analysis of the shell
problem. Donnell's characteristic equation is widely used
because of its relative simplifity. Two independent fourth
order equations in place of a single eighth order equation have

been proposed by Flligge for Tow values of m. (refer CHAPTER I).

30
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The explicit solutions for the roots of Holand, Donnell and
the split fourth order equations of Fllgge have been given in

APPENDIX A.

Flugge's eighth order characteristic equation is
consfdered exaét. The solutions of the other equations are
therefore compared with those of Fliigge. A value of 0.167
has been adopted for Poisson's ratio v, this being the usual
value for concrete. It has been found that variation in v
does not affect the roots appreciably. Therefore the
qualitative nature of any further discussion in this thesis

is not affected by variation in v.

FIGURES 3.2 and 3.3 show the variation of the quantities
X715 M1 and Xos Mo for various values of r/h. computed using
the exact theory. It is seen from the figures that values of
Xq and X9 approach M and Wy respectively as r/h increases. This

property is more pronounced for Tower values of m.

TABLE (3-4) show a comparison of the roots obtained
from the different characteristic equations. Holand's roots
are found to agree with those of Fliigge for all values of m.
Tﬁe agreement is quite gbod as k becomes very small. Forvalues of
m considered in this table X7» Wy Obtained by Donnell's equation
havé a better agreement with those of Flligge than the ones
given by Holand. For m = 1, Donnell's equation does not give

the zero values of Xo» g which are essential for the problem.
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For lower values of m, values of Xos Mo obtained by Donnell's
equation do not agree with the exact values. However the
agreement improves as m increases, provided m is not very high.
For lower values of m the roots obtained by the split equations
of Flligge agree well with the exact values. The agreement be-
comes better as k becomes sma]]er. For m = 1, values of Xos Hp

are zero indicating a perfect agreement with the exact values.

3.4 STUDY OF THE NATURE OF DAMPING OF THE SOLUTIONS

The nature of approximations to the shell problem depends
on the nature of damping of the solutions. Therefore this aspect

is investigated in detail in this section.

Making the substitutions y=Q-y in the last two terms

of EQUATION (3-4) we get the expression for w as
W'=[;'X1y[ﬁ}cosu]y + Eésinu]y] + e—Xzy[Cécosuzy + Cﬁsinuzy] +
-Xy_l SO I _ "X\_Y_—' =, - _
e [C5cosu]y + 0651nu]y] + e 2 [C7cosu2y + C851nu2y]]cosm¢ (3-9)

where the ponstants=fs to Cé are modified to Cg to Cé to take

into account this transformation.

EQUATION (3-9) now consists of four different components each
representing damped oscillations 1ike the one shown in FIGURE 3.4.
As cospsy is periodic, the period of oscillation f; is given by

the expression,
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.= ar where i = 1,2
i L

As y is nondimensional, the absolute value of this period, Li

can be written as,

L. = 2mr
L. represents the length of the shell over which any edge distur-
i _

bance again reaches a maximum value. The ratio of these maximum

values represents the rate of damping which,referring to FIGURE 3.4

is given by the expression, B 2y
-X.y X'L .
ép_:’z e ! = ¢ 1. = e U1 ‘ (3—]])
A e X UF L)
n+l

For low values of m it is seen from FIGURES 3.2 and 3.4
that uiis approximately equal to X;. Therefore EQUATION (3-11) can

be wriften as,

An 2m

—— = @ = 535.5

Ant1
Thus for low values of m, the rate of damping is independent of the
dimensions of the shell.

For high values of m asu,is always less thanXjthe rate of
2m

damping is greater than e . This means that for all values of m

the rate of damping is very quick,

The purpose of the above study is to determine when a distur-
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bance applied at the near edge may be neglected at the far edge.
EQUATION (3-10) indicates that the period is a function of the

shell dimensions and the harmonic number m. For example TABLE 3.5 gives

values of the periods [1 and Eé for a moderately thick and a
thin shell for two different harmonics.Consider first the

Tow harmoni¢c m = 2. For the thick shell for which h/r = 0,03,
taking 2/r = 1, the X]-solution is quickly damped, but the x,
solution is undamped. However when the length is very large

say &/r= 25, the xz—solution is also damped. For thinner shells

the situation is slightly different. For the thinner éhe]] for
which h = 0.0014 , for all the lengths the x7-solutions are
quickl; damped, but the Xo - solutions are practically un-
damped. For the higher harmonic m = 10 the 1ength_over which
damping occurs is slightly increased for the Xlsolution, but this

length is considerably reduced for the X, solution.

From a study of the roots of the characteristic
equations and the nature of damping of the solution the

following conclusions can be drawn.

1. Holand'$ roots can be expected to give results
which are pretty close to the exact values obtained from Fllgge.

2. As the x.-solution is quickly damped for all

1
values of £/r, h/r and m, slight variation in the values of

X1s M cannot affect the final solutions appreciably.

Incidentally this means that for all values of m, except very high

values Donnell's equation can be used to obtain the solution
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corresponding to X; » Hp-

3. As the xzoso1ution is slowly damped for low values
of m, slight variation in the values of Xps Mo Can affecé
the final solutions appreciably. For low values of m the
values of Xgs Uy are to be evaluated with a higher degree
of accuracy. This means that for low values of m, Donnell's
equation cannot be used to obtain the solution corresponding
to Xps Moo

4. As for low values of m, values of X1s ¥ andxz, My
computed by the split equation of Fliigge are close to the
exact ones, these equations can be expected to give comparable

results.
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TABLE 3.1

CHARACTERISTIC COEFFICIENTS

N N N [aN] [oN] [a\] [aN] (oY [aN] N N [aN] [qV] N [a\]

< [1+3 (13 a_a .._a [5+] < [4=] .._a < (401 (4 «© < <
1

Lumd i — — ~ — — — — Lamd e — - Lend —
[1+1 © [1=] [1+] (1 [4+] [ (4= [1+] s+ [1+] [4~] (13 [4-] <
1 1 1 1 1 1 1 1 1 1

X s x -

- o _ X o X x o X o X o _X >

= = b= = = = = - s F O OE O =E o o wvw




TABLE 3.2
CHARACTERISTIC COEFFICIENTS FOR THE
POLYNOMIAL PART OF THE SOLUTION

x

¥ fo f, T o

w 1 1 y y2 y3

w1l o0 1 2y 3y?

i1 0 -1 -2 _6(2+v)-3y°

v 1 -y 2u-y2 6uy-y3

N5 o o o 0

oD 0 0 2%k [P-(1+k) 16y

NeD 0 0 0 6(1-u2)+3k (2+v)
,0 0 0 o0 6(1-v2)+3k (u-v2)
.0 0 0 o 6(1-v2)+9k (v-u?)
'M; Dk 0 0 2 6uy

Ok 0 0 2(2-0%) 6(2-v2)y

M; Dk 0 0 0 6(1-v)

M Dk 0 o0 0 -6v(1-v)

Q_¢ 0 0 -2v -6uy

q, 0 0 0 6[3-v-v]

S. 0 0 0 6(3-2v)

f = C[C3f3 + Tyfy + Tof + C8f8]
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TABLE 3.4

VALUES OF ROOTS OBTAINED BY FLUGGE, HOLAND

DONNELL AND APPROXIMATE  SOLUTIONS

C e gy
0.8333x1073 Fligge 4.2419  4.0200 0.0 0.0
Holand 4.1325  4.1325 0.0 0.0

Donell 4.2568  4.0152  0.1243  0.1173
Approx* 4.1325 4.1325 0.0 0.0

5 Fligge 7.1238  2.8280  2.9407  1.2513

Holand 7.0880  2.9164  2.9555  1.2161

Donnell 7.1366  2.9082  3.0042  1.2242

Approx. 5.8754  5.8754  2.0845  2.0845

10 Fligge 12.0820  2.3441  7.8966  1.7330

Holand 12,0500  2.4938  7.9178  1.6386

Donnell 12.0750  2.4928  7.9429  1.6397

Approx. 11.0930  11.0930 4.4848  4.4848
0.8333x107° 7 Fligge 13.1030  13.0330 0.0 0.0
Holand 13.0680  13.0680 0.0 0.0

Donnell 13.1060  13.0303 0.0384  0.038
Approx. 13.0680  13.0680 0.0 0.0

5 Fligge 14.0770 = 12.1880 0.9924  0.8635

Holand 14.0610  12.2060 0.9935  0.8623

Donnell 14.0830  12.1900 1.0149  0.8784

Approx. 13.1680  13.1680 0.9301  0.9301

10 Fligge 17.2850  10.4890 4.2010  2.5632

Holand 17.2720  10.5100 4.2041  2.5581

Donnell 17.2930  10.5020 4.2246  2.5657

Approx. 14.4840  14.4880 3.4347  3.4347
0.8333x107 1 Fligge 41.3360  41.3140 0.0 0.0
Holand 41.3250  41.3250 0.0 0.0

Donnell 41.3370  41.3130 0.0121  0.0121
Approx. 41.3250  41.3250 0.0 0.0

5  Fligge 41.6280  41.0250 0.2984  0.2943

Holand 41.6230  41.0300 0.2985  0.2942

Donnell 41.6290  41.0240 0.3047  0.3000

Approx. 41.3280  41.3280 0.2964  0.2964

10 Fligge 42.5660  40.1530 1.2367  1.1671

Holand 42.5610  40.1520 1,2368  1.1670

Donnell 42.5680  40.1520 1.2431  1.1726

Approx. 41.3770 41.3770 1.2023 1.2023

* Approx. Based on split equations of Fligge.

N



PERIODS OF DAMPING

TABLE 3.5
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P m Xi Ul Ll/r X “2 L2/r
0.03 2 7.810 7.292 0.87 0.235 0.223 28.00
0.03 10 13.867 5.134 1.22 6.293 2,383 2.64
0.0014 2 34.982 34.870 0.18 0.050 0.050 126.00
0.0014 10 36.409 33.557 0.19 1.477 1.136 5.50
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CHAPTER IV

INFLUENCE COEFFICIENTS

4.1 INTRODUCTION:

In this chapter, the method of finding the stiffness in-
fluence coefficients for the closed cylindrical shell using
“the exact theory is described. A specific numerical example
has been given to iTlustrate the method. The resulting direct
stiffness matrix contains 64 elements and can be made truely
symmetric by adopting the stiffness matrix sign convention.
However by adopting a slightly different sign convention this

matrix can be reduced such that only 20 elements are different.

Establishing the influence coefficients in general terms
is tedious. Therefore approximate methods are attempted and
these are discussed in detail. It is seen that three types of
approximations are possible depending on the shell geometry and
the harmonic number of the applied edge displacement. A criterion
for the limitation of replacing the basic solution by the membrane

solution has been established.

4,2 METHOD OF FINDING INFLUENCE COEFFICIENTS BY THE EXACT THEORY

For any particular harmonic m the four displacements w', w,
u and v at each of the two edges of a closed cylinder can be
expressed in terms of the eight constants E} to Eé as explained

in CHAPTER III. Unit value of each displacement is applied individually

45
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at each edge while the remainder of the displacements are set as

zero. The resulting equations obtained from EQUATION (3-1) can

be written in matrix notation,with [I] as the unit matrix,as

(6,1 [¢1 = [ (4-1)

The coefficient matrix [C]] of size 8x8 found from the elements f1
to f8 is independent of the boundary conditions. Each column
vector of the matrix [E] consists of the unknown constants C}

to Eé corrésponding to each column vector of [I]. The elements
in each of this column vector represents a set of displacement
boundary conditions for each case of the applied unit edge dis-

placement. In the analysis that follows, the displacements have

been considered in the order w', w, u and v at each edge.

Solving EQUATION (4-1) we get

© = €'l - ElT (4-2)

The direct stiffness matrix can now be determined. The

stress resultants Mx’ S NX and TX considered in this order to

X,
correspond with the order of displacements can be expressed in
terms of the eight constants f} to fé for each case of the
applied edge displacements. The stiffness matrix can be written

as,

-1
Kl = [C10cd (4-3)
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From EQUATION (3-1) in a manner similar to that of [C]] for
displacements, the coefficient matrix [Cz] for the stress
resultants is established, and as such is independent of the

boundary conditions.

The crux of the problem 1ies in evaluating the constants
given by each column vector of [C]. This requires determination
of the inverse of [C;]. EQUATION (4-4) gives the matrix [C,]
in general terms of shell geometry and loading. The inverse
can be readily obtained if specific numerical values are used
for these terms. In the course of the study the inverse of
[C]] was in fact obtained in general terms, but the complexity
of the resulting expressions was such that they were not suit-

able for practical applications.

An example illustrating the application of the exact
theory as outlined above follows. EQUATION (4-5) gives the
stiffness_matrix [K]] for a particular case of Q=2, P=0.03,
u=0.167 and m=2. The matrix was evaluated using a digital computer.
The sign convention adopted is as shown in FIGURE 4.1 which
is based on the sign convention used in the general shell theory
(FIGURE 3.1). Since the parameters Q and P are non dimensional,
to obtain the absolute values of the elements in the stiffness
matrix for absolute values of the edge displacements all the
~elements in the 1st and the 5th rows and all the elements in.

the 1st and the 5th columns are to be multiplied by r.
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It is noted that the stiffness matrix4[K]] in EQUATION (4-5)
is not symmetrical with regard to signs. This resu]ts‘because
of the sign convention used in the general shell theory. A
truly symmetrical stiffness matrix can be obtained by adopting
the usual sign convention for the stiffness method. This sign
convention is given in FIGURE 4.2 and the stiffness matrix
[K2] using this sign convention is given in EQUATION (4-6). In
accordance with this classical stiffness matrix formulation [Kz]

can be written as follows,

A Bl
(%] = ’ (4-7)

B. ¢

o

In the matrix [K2] the numerical values of the elements
of [C] and [BT] are identical to those of [A] and [B] resnectively.
It would be convenient to introduce a sign convention which would
also make the algebraic signs identical so that the matrix can

be written as in EQUATION (4-8)

A B
[Ky] = : | (4-8)

B A

The sign convention for this matrix is given in FIGURE 4.3 and the
matrix [K3] for the above problem written using this sign con-
vention is given in EQUATION (4-9). It is seen that the matrix
[K3] is not only symmetrical but also that it can be formed by

two symmetrical submatrices [A] and [B]. This means that out

of the 64 elements of the matrix [K3] only 20 elements are different.
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As explained earlier it is very difficult to obtain the
stiffness influence coefficients in general terms because of the
difficulty in determining the inverse of [C]]. Since one of
objectives of this study is to obtain general expressions for
stiffness influence coefficients approximate solutions are

considered.

4.3 APPROXIMATE SOLUTIONS

In accordance with Goldenveiser and Fliigge as discussed
in the Titerature review in CHAPTER 1, the approximate solutions
to the problem of higher harmonic loading on the edges of closed

cylinders are as outlined below:

1. The split type solution for low values of m, where
the tangential and non tangential boundary conditions are con-

sidered separately.

2. The general solution for high values of m, where both
the tangential and non tangential boundary conditions at one

edge are considered together neglecting the effect of the far edge.

3. The solution for very high values of m, where the
problem is split into two states of stress corresponding to general-

ised plane stress and plate bending.

There are thus 3 types of approximations possible depending
on the loading harmonic, and stiffness influence coefficients based

on these approximations are presented in this chapter,
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4.4 BASED ON SPLIT TYPE SOLUTION FOR LOW VALUES OF m

The general solution is split into two parts, the edge
effects and the basic state. The edge effects part is governed
by the characteristic equation,
oo - o 1= %+ enm® - D1=0 - (4-10)
k

and the basic state part by the equation,

[ - % + 6nl(? - D - anlon® - (4 - o)
k
2 2

+ (Z-U)]X + m4(m - 1)2

S, . (4-11)

These equations have been presented previously in CHAPTER 1 as
EQUATIONS (1-13a,b). The equations are considered separately in

the following sections.

4.4.1 EDGE EFFECTS SOLUTION

The evaluation of the roots for EQUATION (4-10) is given
in SECTION A.3 of APPENDIX A. Making the assumption that,

1 -0+ 6ml(me - 1) >> (2n° - v) (4-12)
ok .

we obtain o

Xy = w o ‘ (4-13)

Since k is very small and generally of the order 10_4 to 10_7

and as m is also low this assumption is justified.
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The equality given by EQUATION (4-13) Tleads to further
simplifications. Making also the assumption that

2

4)(-' (4-14)

m2

> 1

analytical expressions for E}; &é; E}, Eé have been derived in

SECTION A.5 of APPENDIX A. These terms relate the three displacements
u, v and w and a complete explanation of these terms is presented

on p. 228, Chapter 5, ref. 14, For the latter assumption to be

valid Xy must be much greater than m, a condition that is

satisfied for small values of k.

Values of E}, Eé, E}, Eé have been evaluated for various
values of m and k and presented in TABLE 4.1. The values
labelled Fliigge and.Donne11 in this table are obtained gsing
exact solutions to their respective equations without any approxi
~mations whereas the simplified solutions are based on the split

equations of Flugge with the above two assumptions.

From the table it is seen that the values of Eﬁ, Eé, E}
and Eé found from the simplified solutions agree well with the

exact values provided m and k are very small.

TABLE 4.1 also illustrates that for all values of m and k
values of the parameters &5 and E& obtained from xj,u; based on
VDonnel1'S theory agree well with the exact values of Flugge, in-
.dicating that the Donnell's theory can be used for this part of
of the solution as concluded in SECTION 3.4,
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For the split form of the EQUATION (4-10), the non
tangential boundary conditions corresponding to w' and w are
satisfactory for establishing the influence coefficients for
the edge effects solution. Further if X] = Uy the solution

takes the form,
e - oy _
wo=Ci(e X1Y cos %)+ Cole Y sin XY)
o, oty ~, + .
+ Cs(e X1Y cos g+ Cye X1Y sin x]y) . (4-15)

As shown by the values given in TABLE 3.4,)(1 is generally Targe.
Therefore the last two terms become unbounded as y increases
while the first two terms are highly damped. Because of the
nature of the X]—solutions the last two terms can be neglected
ignoring the effect of the far edge. The solution can now be

written as,
W= (e cos )+ Tp(e XY sin xy) - (4-16)

and g res-

Designating e X1Y cos Xy and e X317 sin Xq¥ as g )

pectively,we can write w andw  as,

1

W= 09y + C9,

w = C]("X]g] = X]gz) + CZ(—X]QZ + X]gi) -



For the boundary conditions w' =1 andw = o at
the top edge the following equations are obtained for the

constants C] and 93

. -

(]
—
]
o
[o )]
=
Q.
o)
N
1}
—

Using a relation similar to EQUATION (3-1) any quantity fs

either a stress resultant or a displacement,can be axpressed as,

f=c [(3T) + a,0y)gy + (3T, - a,C;)g,] -

Substituting values of C} and C, we get,

f= c[f_Z_g] +i]_ 92] : (4-17)
X1 Y;]

Values of 3y and a, for all the displacements and stress
resultants are given in TABLE 4.3. This table is obtained in
the following manner-. Using the simplified expressions of Fllgge
for the stress resultants (see EQUATIONS (12a-f), p. 217, ref. 14),
the table of characteristic coefficients (TABLE 1, p. 230, ref. 14)
has been reduced to a much simpler form as given by TABLE 4.2.

Making the substitution My =X in this table we obtain TABLE 4.3.
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TABLE 4.4 which gives the characteristic coefficients for the
boundary conditions w' =1 and w = o at thé top edge is
obtained by substituting the values of 3 and a, from TABLE 4.3
in EQUATION (4-17). Using TABLE 4.4 explicit expressions for
any displacement or stress resultant f for these boundary

conditions can be written as, ,
‘1; = C(S]g] + 5292) ' (4-18)

For the boundary conditions w' = o0 and w =1 at the

top edge the following equations are obtained for the constants,

X X1 [—CH 0

1 0 i_cz 1
from which

1 ° 1 and C2 =1,

As before any quantity f can be expressed as

f=cllaCy +aCrlgy + (a;Cy - a,0q)g,1

Substituting the values of C] and fé and 3y and a, from TABLE 4.3,

f = c( 5391 * 549, ) (4-19)
In a similar manner TABLE 4.5 giving the characteristic

coefficients for the boundary conditions W“‘ =gand w =1

at the top edge is obtained. Using this table explicit expressions
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for stress resultants and displacements for these boundary

conditions can be written.

From the expressions given in TABLES 4.4 and 4.5, the\
displacements w', w, u and v and the stress resultants Mx’ Sx,
NX and TX at the top edge corresponding to y = o can be obtained.
Both these displacements and stress resultants are quickly
damped because of the nature of the X]-solution. The values

at y = o are obtained by making g9y = 1 and g, = 0 in the

expressions given in TABLES 4.4 and 4.5.

It should be pointed out that as the other boundary
conditions u = o and v = 0 have not been considered these quantities
will appear as non zero displacements at the top edge. The

effect of these displacements is discussed later in SECTION 4.4.3.

The stiffness matrix corresponding to the edge effect
solution can be written from the values at y = 0. As m << X1
in the expressions for Mx and Sx the terms involving m2 can be
neglected compared to X]Z. A symmetric matrix [SM]] is then

obtained as shown below.

WI='I W = 1]
(M1 = K[-ixq 22| M
(4-20)
22 833 5,
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where the constant multipler K in this expression is the shell

flexural stiffness.

4.4.2 BASIC SOLUTION

This solution is obtained from the characteristic
EQUATION (4-11). The X solution of this equation is very slowly
damping. It _is found from investigations by the author that
the final stress resultants are highly sensitive to the values
of X5» Up» &é, &;, Eé and Eﬁ and even small variations in these
values will cause the matrix for the evaluation of the arbitrary
constants from the boundary conditions to be highly i11 conditioned.
This precludes introducing approximations to simplify the ex-
pressions to determine these quantities. Their determination by
the exact theory is tedious. However the values of Xps Uy are
very small and almost zero. If Xos Uy ArE considered as zero
the basic solution given by EQUATION (4-11) reduces to the
following form

w=(D+Cy+ By2 + Ay3) cos mé (4-21)

This solution is identical to the one obtained by the
membrane theory (SECTION A.8 of APPENDIX A), Hence the basic solution

can be replaced by the membrane theory as a good approximation.

The limitation of the assumption that the basic solution
can be replaced by the membrane solution, can be established in

the following manner. The term e Y in the basic solution
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corresponding to EQUATION (4-11), can be written as,

2.2 3.3 4 4 A
Ay AY XY Ay NY YAy
e =14+ -— + + + e

11 2! 3! 41

where Y is such that o<y<1. Taking the polynomial solution

given by EQUATION (4-21) implies the assumption

A4 y4 €

AT

YA Y

<< 1

As YA Y is very small e Y

+ 1.
To obtain the largest error set y = Q.
4 4
A QT
41
It can be seen from EQUATION (4-11) that A = hzkgmz, where the
modulus of h2 is of the order unity. Substituting this value in

the above,

k(m2 - 1)2m4 Qﬁ_ << 1 or
4+

12¢4n << 1 (4-22)

Let us designate the quantity on the Tleft hand side of this
inequality as p. p. sets a limit on replacing the basic solution
by the membrane solution. Form =1, it is seen that p = o0
indicating that the basic solution is exactly replaced by the

membrane solution.
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(4-23)
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Influence coefficients are now determined using the
membrane theory for edge loading as given in SECTION A.8 of
APPENDIX A. The tangential bounéary conditions u and v are.

considered for establishing the influence coefficiehts.

For the boundary conditions u =1 and v = o0 at the
top edge and the corresponding displacements at the bottom
edge set as zero, the EQUATIONS (4-23) are obtained for the
arbitrary constants A,B,C and D. Values of these constants
given in TABLE 4.6 are obtained from the solution of these

equations.

Any displacement or'stress resultant T can be expressed as,

2 3.

f=c(Fy+ Fay + Fy™ + Fpy (4-244)

The expressions for F1_to'F4'given'1n TABLE 4.7 can be obtained by

substituting the values of the constants A,B,C and D into
the approximate stress displacement relations given by EQUATIONS
12a-f, p. 217, ref. 14.

For the other pair of boundary conditions u = o and v =1
at the top edge and the corresponding displacements at the bottom
edge set as zero, EQUATION (4-25) is obtained for the arbitrary

constants, Values of the constants given in TABLE 4.6 were

obtained from the solution of this equation.:
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(4-25)



[SM2]=

ut=1 vt=
-n
b. 12
D. 2
Q
-n -1
2 Q
n Q b. n
1 p, n
2 q
-n 1
2 Q

2 2
Note: b =m Q /3 + 2(1+v)

O —

| S

o=

Nch
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(4-26)
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As before the corresponding displacements and stress

resultants can be expressed as
Foe o c(F +Fy+Fy +Fy ). | (4-24b)
8 7 6 5 ‘
where the values of F] to F4 are given in TABLE 4.8.

In both cases, the membrane stress resultants are obtained
by considering only the constants A and B. The constants C and D
depend only on the inextensional deformation and give rise to
the stress couples. For m = 1, the inextensional deformation
is replaced by rigid body deformations and therefore C and D can

be ignored.

From the expressions given in TABLES 4.7 and 4.8 the
stress resultants fo Sx’ NX and Tx at the top and bottom edges
corresponding to y = o and y = Q respectively can be obtained.
The stiffness matrix corresponding to the basic part can now
be written using these values. A symmetric matrix [SMZ] is

obtained as shown in EQUATION (4-26).

4.4,3 COMPLETE STIFFNESS MATRIX

To obfain a complete stiffness matrix for a shell element
it is necessary to assign in turn to each boundary displacement
a value of unity, while all other displacements are kept zero.
Therefore the elements obtained for the submatrices [ﬁMi] and
[SMZ] in the previous sections cannot be elements in the complete

stiffness matrix since the interaction of the two systems of
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boundary conditions, corresponding to.the.edge. effects and. the
basic state has not been considered so far. fhis results in edge
displacements u and v for the edge effects state and edge dis-

placements w' and w for the basic state that are non-zero.

It is possible to obtain a complete stiffness matrix
based on the split type solution in the following manner. Both
the displacements and stress resultants at the top and bottom
edges of the shell element can be computed corresponding to the
edge effects state by EQUATIONS (4-18) and (4-19). The necessary
coefficients are tabulated in TABLES 4.4 and 4.5. In a similar
manner the displacements and stress resultants at the edges
corresponding to the basic state can be obtained by EQUATIONS
(4-24a) and (4-24b) and the required coefficients are tabulated
iin TABLES 4.7 and 4.8. Using the values of the stress resultants
thus obtained a matrix [SM] can be written. This matrix will be
8% 8 with the first four columns representing the stress resultants
for the displacements applied at the top edge. The elements are
tabulated in TABLE 4.9. The elements in the last four columns
will be numerically equal to the corresponding elements in the
first four columns with appropriate signs in accordance with
Flugge's sign convention. It may be noted that the format of
of [SM] , that is the Tabelling of the rows and columns resembles
that of a stiffness matrix. However, although, the elements of

[ SM] are stress resultants at the edges, [SM] is not the desired
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stiffness matrix since the interaction of the displacements
caused by the two systems has not been cohsidered. To trans-
form [SM] to the desired stiffness matrix it is necessary to
cbrrect the elements by eliminating the non-zero displacements 1in

each system caused by the other system. This is done as follws.

The matrix formed from the elements corresponding to
the boundary conditions leading to the stiffness matrix must be a
unit matrix. In a manner similar to that adopted for writing
a matrix [D] corresponding to the displacements can be written
using EQUATIONS (4-18),(4-19),(4-24a) and (4-24b) and these
elements are tabulated in TABLE 4.10. Any column in this matrix
[D] represents the applied edge displacements and the resulting
edge displacements considered in an order which is consistent with
that of [SM] . To form a stiffness matrix, it is necessary that the
matrix;[D] be converted into a unit matrix. It is noted that all

the terms on the major diagonal already have a value of unity.

The displacements in the first column of the matrix [D]
are obtained from EQUATION (4-18) corfesponding to the edge effects
solution. Therefore the only non-zero elements other than on the
major diagonal will be displacements corresponding to the basic
state. These elements can be made zero by applying equal and opposite
corrective displacements. Stress resultants corresponding to these

displacements can be computed using the expréssions for the basic
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state given in TABLES 4.7 and 4.8. The values are added to the
corresponding elements in the first column of [SM] . This proce-
dure is repeated for the second column. Correction for the third
and fourth columns are due to displacements corresponding to the
edge effects state. The corrections are obtained using TABLES !
4.4 and 4.5 in a similar manner as for the first column. The
corrections dpplied to [EM] due to the membrane displacements in
the first two columns of [D] introduce non-zero bending displace-
ments which will be smaller than the applied displacements.
Similarly non-zero membrane displacements will be introduced

when applying the corrections due to the bending displacements .
in the third and fourth columns of [D] . New corrective displace-
ments can be applied to balance the non zero displacements
resulting from the first cycle of corrections. This procedure

can be repeated until the displacements introduced by applying the
correction are to any desired degree of sma]]hess. After a suffi-
cient number of iterative cycles the elements of [SM] will approach

those of the desired stiffness matrix [SM] .

Fortunately it is not necessary to use this iterative proce-
dure to obtain a stiffness matrix corresponding to the split type
solutions, since explicit solutions can be written for all elements
of the stiffness matrix [SM] in terms of the uncorrected elements

of [§ﬁ] and [D] . These expressions are given in TABLE 4.11 and
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correspond to the sign convention given by Fliigge.

The expressions given in TABLE 4.11 were obtained by
applying the first cycle of corrections algebraically. The result-
ing elements for an extreme range of shell parameters were
compared with the corresponding elements of the stiffness matrix
obtained by Flligges's exact theory, described in SECTION 4.2. It
was noted that in the two sub matrices corresponding to any edge
the diagonal terms, terms corresponding to w' and u and the term Tx
corresponding to w agree sufficiently close with the exact values '
to be used without any furiticr correction. Since the final matrix
is symmetrical all other elements can be written from symmetry. A
numerical examgle for a specific shell geometry and Toading harmonic

is given as Example 5.1 in CHAPTER V.
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4.5 BASED ON THE EIGHTH ORDER CHARACTERISTIC EQUATION FOR

HIGH VALUES OF m

It is ‘clear from the discussion in CHAPTER III that for
high values of m,the general solution based on Donnell's theory
will give sufficiently accurate results. Donnell's eighth

order characteristic equation is given by EQUATION(4-27)

(2 - m)t s Jk- Voo (4.27)

This equation has been already presented in CHAPTER I as

EQUATION (1-15). For high values of m the solution may be
simplified by ignoring the effect of the far edge. The solution
for w can therefore be written in the form given by EQUATION(3-5).

The constants C,to C

1 4are evaluated from the boundary conditions

at one edge.

Because the number of constants is reduced to four the
general brocedure explained in SECTION 4.2 for the exact theory
| of F]Ugge'can be used to establish the influence coefficients.
For the evaluation of the constants the four boundary conditions
corresponding to w', w, u and v at the edge y = o are considered.
A unit value of each of these displacements is applied keeping
the remainder of the displacements as zero. Using EQUATION (3-1)
any quantity f either a displacement or a stress resultant can

be written as

f = c[a1C] + a2C2 + a3C3 + a4C4] (4-28)



[c,1 =

_X2

—

Q|
w
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(4-30)
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Using this equation, the matrix equation for the boundary
conditions can be written in the following form which has

been given earlier as EQUATION (4-1).
[c,1cl = [1] - (4-29)

The coefficient matrix [C]] is given by EQUATION (4-30). Each
column vector of [Ej consists of the constants Cﬁ to fﬁ and
each column vector of [1] represents the displacement boundary
condition for each case of the applied unit edge displacement.
The matrix [C], obtained from the solution of EQUATIONS (4-29)
is given by the EQUATIONS (4-31). The stress displacement
relations on which Donnell's theory is based are jdentical to
the corresponding simplified expressions of Fliigge. Therefore
TABLE 4.2 giving the values of the characteristic coefficients
can be used for Donnell's theory also. Using this tab]é and
EQUATION (4-28) the coefficient matrix [62] as given in

EQUATION (4-32) for the stress resultants Mx’ SX, N_ and TX

X
corresponding to the displacements w', w, u and v is obtained.

The stiffness influence coefficients are obtained by the

following equation.

K1 = [C,JIC] o (4-33)
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The elements in the stiffness matrix [K] and the in-
ternal stress resultants in the shell can be found in the
following manner. The elements in [C] and [CZ] depend only
on the quantities xj My E&, E&. Explicit expressions, for
these derived by Hoff based on Donnell's theory, have been
given in SECTIONS A.2 and A.6 of APPENDIX A. Substituting
these values into EQUATIONS (4-31) and (4-32), [C] and [Cz]
can be obtained. The elements in [K] are found by premultiplying
[C] by [Cz]. The internal stress resultants for any case of
unit applied edge displacement can be found using EQUATION
(4-28). The constants E} to EA in this equation are given by
the particular column vector of [C] corrésponding to the unit
displacement éonsidered. The quantities ay and ay have been
given in TABLE 4.2. Values of as and a, can be obtained from
the same table by changing the subscripts of x and u from 1

to 2 and those of & and B from 1 and 2 to 3 and 4 respectively.

It may be noted that in the above method Donnell's theory
has been used without making any further approximations.
However since the sign convention for the general shell theory
has been used in evaluating the elements of the stiffness matrix,
it will be symmetric except for the signs. A truly symmetric
matrix can be obtained by adopting the stiffness matrix sign

convention. (See FIGURE 4.2).

76
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4.6 BASED ON SPLIT TYPE SOLUTION FOR VERY HIGH VALUES OF m

For very high values of m the shell behaVes as if it
were a thin plate. As a result the membrane stress resultants
Nx and Tx and the corresponding displacements u and v may be
determined by the equations of generalised plane stress and
the bending stress resultants MX and SX and their corresponding
displacements w' and w by the equations of plate bending. These
equations can be obtained from the three simpler differential
equations expressed in - terms of displacements corresponding
to the equations of equilibrium in the three co-ordinate
directions as presented by Fligge (. p. 219, ref. 14.).

This is accomplishéd for plane stress by omitting terms involv-
ing w and the loading in the first two equilibrium equations

and for plate bending by retaining only the terms involving

the derivative of w in the third equilibrium equation.

The shell problem is thus split into two independent
states and the analysis leading to the establishment of influence

coefficients is done by considering these two states separately.

GENERALISED PLANE STRESS

The generalised plane stress equations are given as

(u" + u’) + c](u" + V")

1]
o

(v* + v) + c](u“ + v") (4-34)

i
o

where ¢y = (1+v)
1-v
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Taking the solutions for u and v as u cos m¢ and v sin m¢
respectively, the above equations can be reduced to the following
form,

u" (1+c]) - mzﬁ +meyv

1)
o

(4-35a,b)

I
o

v" - mz(] + c]) v - mciﬁ' =

- — N Ay
The solution for U and v can be written as Ae and Be respectively

Substituting these in the above equation we get the following

characteristic equation.
0 - n?)? = o (4-36)

This equation has four roots which are all numerically equal
to m, two of these being repeated. Therefore the solutions

for u and Vv can be written as,

i1V +my
u=e V[A + A2y] + e V[Ag+ A4YJ

1\ +ny 3
v=e [B] + Bzy] + e [83 + B4y] (4-37)

Since m is very large the second term in these solutions can

be ignored as being unbounded as y increases. Therefore,

u e'my[A] + Azy]

e [B; + Byy] (4-38)

v
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Substituting these into EQUATIONS (4-35a) »

B, = A, - A

5 (2 + < ) and

]
mC'1

82 = A2 ’ (4-39)

There are thus two arbitrary constants of integration A] and A2
which are to be evaluated from the boundary conditions. The
stiffness influence coefficients for the generalised plane stress
state are established by considering the boundary conditions

corresponding to u and v as follows,

1 0 A]u A1v 1 0
= ' (4-40)
1Sy LAy, Ayl Lo 1
2+

The co]umn vector {Alu AZU}-represents the constants A] and A2

for the boundary conditions u = 1 and v = o. The vector

{_A]v AZV} represents the same constants for the boundary conditions
U=o0andV=1. EQUATIONS (4-40) are solved for the constants

A, and A

1 2
placements corresporiding to the prescribed sets of boundary .

. Using EQUATIONS (4-38) and (4-39) the membrane dis-

conditions can be evaluated.
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The membrane stress resultants can now be evaluated
from the corresponding displacements u and v obtained from
EQUATIONS (4-38) for the boundary conditions specified as
above and the stress displacement relations based on general-
ised plane stress theory. These relations can be obtained by
“omitting the terms corresponding to the bending displacement
in the stress displacement equations as given by Flligge
[EQUATIONS 12a-c, p. 217, ref. 14]. The expressions thus

obtained are presented in TABLE 4-12.

From TABLE 4-12 the values of the stress resultants
at y = o can be found. The stiffness matrix (SM3] corresponding

to the membrane displacements u and v can finally be written as,

u=1 v =1
ms |2 | (1-v) Ng (4-41)
[SM3]= , , ’
(1-v) 2 N&¢

where s = D(1-v)
r(3-v)

PLATE BENDING

The differential equation for plate bending is

WV s 2w v =0 o (4-42)

Taking w in the form w cos m¢ this equation is reduced to the form.

—lv 2

W oo-2mw o+ m4ﬁ' = 0 (4-43)
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Introducing w = C eky, we get from the above equation

the following characteristic equation,
02 -md)? =0 . (4-44)

This equation is identically the same as EQUATION (4-36)

and the solution for w is of the form,
— _ -my +my o
Ww=e [C] + Czy] + e [C3 + C4y]
Ignoring the unbounded solution,
W= e"my[c] +Cyl - (4-45)

There are thus two arbitrary constants of integration

C] and C2

The stiffness influence coefficients for the plate bending state

which are to be evaluated from the boundary conditions.

are established by considering the boundary conditions correspond-
ing to w' and w. ‘The following equations are obtained for the

constants

= ' (4-46)
1 0 Czw' C2w 0 1

The column vector {C1w' CZW'} represents the constants C] and

C., for the boundary conditions w' = 1 and w = 0. The vector

2
{Clw C2w} represents the same constants for the boundary
conditions w' = o and w = 1. EQUATIONS (4-46) are solved for

the constants C] and CZ' Using EQUATIONS (4-45) the bending dis-



[SM] =

w=1 u=1
(1+0)n%k 0

2m3K 0

0 25m

0 (1-u)sm

(1-v)sm

2sm

82

(4-48)
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placements corresponding to the prescribed set of boundary conditions

can be evaluated.

The bending stress resultants can now be evaluated froh
the corresponding displacement w obtained from EQUATION (4-45) for
the boundary conditions specified as above and the stress dis-
placement relations based on plate bending theory. These relations
can be obtained from the stress displacement equations as given
by Fligge [ EQUATIONS 12 d-f, p. 217, vref. 14]. The expressions

thus obtained are bresented in TABLE 4.13.

From TABLE 4.13 the values of the stress resultants at
y = o can be found. The stiffness matrix [SM4] corresponding

to the bending displacements w' and w can finally be written as,

w =1 W=
-2 (1+v)m| mK M

[SMa]=

(T+u)m  2m S

S (4.47)

COMPLETE STIFFNESS MATRIX

Using EQUATIONS 4-41 and 4-27 the complete stiffness
matrix considering all the four displacements w', w, u and v
can be written as given in EQUATION 4.48, It is noted that the

matrix thus obtained is truly symmetric.



TABLE 4.1

84
VALUES OF OL] ) 062, 8] 3 82

r/h k m E] o Bl Bo
10 O.8333x]0—3 ] Fligge 0.01240 0.02765 0.00110 0.06334
Donnell 0.01163 0.02797 0.00538 0.06335
Simplified 0.01620 0.02445 0.00085 0.06339
3 Fligge 0.01226 0.06355  0.01337 0.18318
Donnell 0.00580 0.06130 0.01791 0.18182
Simplified 0.03164 0.04297 0.07820 0.16035
5 Fligge 0.03095 " 0.12528 0.03875 0.27316
Donnell 0.02162. 0.12285 0.04307 . 0.27316
Simplified 0.05766 0.03435 0.12199 0.15090
10 Fligge 0.04831 0.29466 0.07583 0.45888
Donnell 0.03582 0.29160 0.07626 0.45762
Simplified 0.04855 0.01888 0.08822 0.07451
100 0.8333x10-5 1 Flugge 0.00615 0.00663 0.00001 0.00634
Ponnell 0.00626 0.00652 0.00000 0.00635
Simplified 0.00613 0.00665 0.00005 0.00634
3 Fligge 0.00512 0.00769 0.00017 0.01902
Donnell 0.00524 0.00759 0.00023 0.01899
Simplified 0.00487 0.00777 0.00104 0.01899
5 Fliigge 0.00325 0.00994 0.00095 0.03158
Donnell 0.00338 0.00985 0.00104 0.03157
Simplified 0.00216 0.00969 (0.00458 0.03123
10 Fllgge 0.00259 0.02090 0.00620 0.06021
Donnell 0.00237 0.02082 0.00634 0.06015
Simplified 0.00931: 0.01288 0.02478 0.05157
1000 0.8333x]0_7 1 Flligge 0.00201 0.00203 0.00000 0.00063
Donnell 0.00202 0.00202 0.00000 0.00063
Simpiified 0.00201  0.00203 0.00000 0.00063
3 Fllgge 0.007198 0.00206 0.00000 0.00190
Donnell 0.00198 0.00206 0.00000 0.00190
Simplified 0.00197  0.00207 0.00001 0.00190
5 Fllgge 0.00194 0.00213 0.00000 0.00317
Donnell 0.00192 0.00212 0.00001 0.00317
Simplified 0.00190 0.00214 0.00004 0.00317
10 Fliigge 0.00161 0.00245 0.00008 0.00634.
Donnell 0.00162 0.00245 0.00008 0.00634
Simplified 0.00152 0.00247 0.00037 0.00632

’ ’
Note : Simplified is based on split equations of Fligge.
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TABLE 4.3

VALUES OF a; AND a, WITH x1 _ w1

f c 2, a, ¢ factor
w 1 ] 0 cos
w' 1 X X1 cos
u 1 E} &é cos
v l E} _ L Eé_ L sin
N¢ D ]+mB] - X1 (OL]"‘OLZ) mBy=UXy (0(2"'0L] ) cos
N, D u~x](ai+&é)+uméi —x](&é—EH)+umEé cos
Ny D(-v)/2 - oy -xq (B4B,)  mmayxg (By=By) sin
T, D(1-v)/2 -ma]—x](81+82) -maz-x1(82-61) sin
- 2 2
M¢ K -m -2ux] cos
v 2 2
Mx K -um —Zx] cos
M¢x K(1-v)/2 2mx] ~2myq sin
Q¢ X m(m2-1) 2mx12 cos
- 2 2 2 2
Q, K/2 ZX](m +2x, ) -ZX](m -2x, ) cos
s, K2 ZX][(Z—U)m2+2x]2] -ZX][(Z—u)mZ—Zx]Z] cos
Note: Nx¢ = N¢x 5 Mx¢ = M¢x



TABLE 4.4

CHARACTERI STIC COEFFICIENTS
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FORw' =1AND w = 0 AT TOP
f c s] 52
W 1 0 1
W 1 -1
N¢ D mBZ/X]'U(az"a] ) (]+m6'| )/X]‘U(a]+052)
NX 5 - (Ez'a'l )+Um—6—2/X] U(]+m—3—] )/X] - (&—] +a.2)
Npy D(1-v)/2 -may/x;-(8,-8;) ~Maq /%7~ (B1+85)
T, D(1-v)/2 -moy/x;-(By-B7) ~Maq/xq-(B1+8,)
- = 2
M, K ~2ux -m-/Xq
ﬁx K -2)(-' —umz/x]
Mo K(1-v)/2 -2m 2m
0 2
Qq; K 2mx] m{m -1)/X]
K2 -2(n-2x,°) 2(n+2x,%) 1y,
5. %2 -2[(2—u)m2-2X]2] 2[(2—u)m2+2x]2]/x]
Note: Ny = N, > M, = M



TABLE 4.5

CHARACTERISTIC COEFFICIENTS

FOR w' =0 AND w = 1 AT TOP

88

f c 53 54

W 1 ] 1

w' 1 0 -2)(,1

u 1 a]+aé 0y =0

N¢ D 1+m(81+62)-2ux]a2 1+m(81-32)-2vx1a]
N¢X D(1-v)/2 —m(a]+a2)-2X]Bz —m(u]—az)-Zx]B]
Tx D(1-v)/2 -m(a]+a2)-2x182 —m(a]—az)-Zx]B]
MoK -m2-2ux] —m2+2ux1

M¢x K(1-uv)/2 0 Amx,q

5¢ K m(m2—1)+2mx]2 m(mz-l)—2mx]2
= 2

q, Ko 8, 3 g

5. K2 8, iy (2-0)n°
Note: ”Nx¢ N¢x ) Mx¢ = M¢x



TABLE 4.6

VALUES OF THE CONSTANTS IN THE

BASIC SOLUTION
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constants Case 1 Um=],V=o at top Case 2 Em ;O,Vm=1 at top
u,=0,v=o at bottom u,=0,v, =0 at bottom
A m_ 1
2G QG
B -[n?Q% + 2(1+v)] -
== .
QG
C 1 0
D 0 1
6 = [mQ% + 2(1+v)]




TABLE 4.7
CHARACTERISTIC COEFFICIENTS FOR u=1 AND v=0,

AT TOP AND u=v=0 AT BOTTOM

~hi

c F F F F

1 2 3 4
W 1 it 12 mlb/2q mP[1+u/2-al  vb/Q
W 1 0 e wlb/q me[1+v/2-a]
o 1 0 me/4  -b/Q a
v 1 nd/12  -bm/2Q  am-m(1+v) 0O
v, 5 0 0 0 0
N, ] 0 0 m2/2 ~b/Q
NX¢} D(1-v)/2 0 0 0 /2
:Nd)X

Note: - a = m202/12 +2 (1+v) », b= m202/3 + 2 (1+v)
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TABLE 4.8
CHARACTERISTIC COEFFICIENTS FOR u=0 AND v=1

AT TOP AND u=v=0 AT BOTTOM

f c Fi Fe s Fg
_ 3 3 .
W 1 -m~/6Q m~/4 (2+v)m/Q my/ 2-am
W 0 n/2q w2 (2+w)n/Q
U 1 0 m/2Q  -m/2 0o
Voo n3/6Q  -m2/4  -2(1+v)/Q  a
N, D | 0 0 0 Q
N‘x D 0 0 m/Q -m/2
NX¢ D(1-v)/2 0 0 0 -2/Q

= N¢X

Note : a = n2Q%/12 + 2 (1) > b =mQ7/3+2 (1+)
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TABLE 4-10

ELEMENTS OF THE MATRIX [D]
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D(i,j) Values D(i,j)

D(1,1) 1

D(3,1) aé/xl

D(4,1) B,/x4

D(2,2) 1

D(3,2) E}—Eé

062 B

D(1,3) _[m2(1+v)/2-al/a

D(2,3) v b/Q a

D(3,3) ]

D(1,4) -(2+v)m/Q a

D(2,4) [um/2 - am]/ a

D(4,4) 1

D(5,3) (%0274 m? (b+1+v/2-b)1/b

D(6,3) 312 + [b/2+(1+v/2-2)1 m°Qry b/Q
D(5,4) -(2+v)m/Q a

D(6,4) m3Q2/12+(2+0)m + my/2 - a ml/ a

Note: Only the left half of the matrix is given.

Values not shown in this half are zero.



TABLE 4.11

ELEMENTS IN THE FINAL MATRIX [SM]
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SM(5,3)=SM(3,5)
SM(5,4)=SM(8,1)
SM(6,2)
SM(6,3)=SM(7,1)
SM(6,4)=5M(8,2)
sM(7,3)
SM(7,4)=5M(8,3)
SM(8,4)

SM(i,3) Values of SM(i,J)
SM(1,1) SM(1,1) - D(3,1).SM(1,3) - D(4,1).-SM(T ,4)
SM(1,2)=SM(2,1) sM(2,1) - D(3,1).SM(2,3) - D(4,1).5M(2,4)
SM(1,3)=SM(3,1) SM(1,3) - D(1,3).SM(1,1) - D(2,3)-SM(1,2)
. M(1,4)=SM(4,1) SM(4,1) - D(3,1).5M(4,3) - D(4,1)-SM(4,4)
SM(2,2) SM(2,2) - D(3,2).SM(2,3) - D(4,2). SM(2,4)
SM(2,3)=SM(3,2) sM(2,3) - D(1,3)-SM(2,1) - D(2,3)- SM(2,2)
SM(2,4)=SM(4,2) sM(4,2) - D(3,2).SM(4,3) - D(4,2). sM(4,4)
sM(3,3) sM(3,3) - D(1,3)-SM(3,1) - D(2,3).5M(3,2)
SM(3,4)=SM(4,3)  SM(3,4) - D(1,3)-SM(4,1) - D(2,3)-S1(4,2)
SM(4,4) sM(4,4) - D(1,4)-SM(4,1) - D(2,4)-SM(4,2)
SM(5,1) 0
SM(5,2)=SM(6,1) 0

sM(5,3) + D(5,3).SM(1,1) - D(6,3).-SM(1,2)
SM(8,1) - D(3,1).5M(8,3) - D(4,1).5M(8,4)
0

SM(6,3) - D(5,3).SM(2,1) + D(6,3)-SM(2,2)
SM(8,2) - D(3,2).SM(8,3) - D(4,2)-SM(8,4)
sM(8,3) - D(5,3).5M(4,1) + D(6,3)-SM(4,2)

( ( (
( ( (
sM(7,3) + D(5,3). SM(3,1) - D(6,3).SM(3,2)
(8, ( (
SM(8,4) - D(5,4)-SM(4,1) + D(6,4)-M(4,2)
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TABLE 4.12
MEMBRANE STRESS RESULTANTS

FOR VERY HIGH VALUES OF m

f Case 1: - U=1, v=0 Case 2: U=0, v=I
N D [(c-m)-mc(1-v)ylg [-crumtmc (1-u)ylg
N, D [v(c-m)+mc(1-v)ylg [ (m-vc)-mc(1-v)ylg
Mo D(1-0)/2 [ (c-m)-2mc ylg [-(c+m)+2mc ylg
)

Note : C = m(1+v)/(3-v) , g = &Y



TABLE 4.13

BENDING STRESS RESULTANTS
FOR VERY HIGH VALUES OF m

f c Case 1: - w'=1 w=0 Case 2: - w'=0, w=l

M, K [-awn’(1-o)ylg [-(1+o)m(1-v)y] n’g

ﬁg X [1-m(1—u)y]ng 2m3g

M, K [-2umen’(1-v)ylg [-(1+0)-m(1-v)yIn’g

g, X 2meg [(1+v)+m(1-0)+m(1-0) (1-m)y If
My K [-(-0)+0-vdydng  (1-odnyg

Note : - g =c ™
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CHAPTER V

CRITERIA FOR THE PROPOSED APPROXIMATE METHODS AND

NUMERICAL EXAMPLES.

5.1 INTRODUCTION

In this chapter criteria for the range of applicability
of the approximate methods for establishing the stiffness in-
fluence coefficients described in CHAPTER IV are presented. The
criteria are based not only on the values of the Toading harmonic
m, but also on the shell geometric parameters k and Q. For ease
of reference the different approximate procedures are classified

as follows,

method 1 : solution based on splitting of the differential

equation for low values of m (SECTION 4.4).

Method 2 : solution based on simplified Donnell's theory

for high values of m (SECTION 4.5).

Method 3 : solution based on equations of generalised

plane stress and plate bending for very high values of m. (SECTION 4.6).

Examples are included to illustrate the regions of
applicability of the above methods. Example 1 considers the analysis
of a steel bin for wind effects which involves low values of m
and Example 2 considers the analysis of a water tank on isolated
supports which involves high and very high values of m. The range
of applicability of Method 3 is discussed in this latter example.

100



5.2 RANGE OF APPLICABILITY OF METHODS 1 AND 2 101

The criteria defining the range of applicability of
Methods 1 and 2 were established by comparing.the final stress
resultants obtained by these mefhods with those obtained using
the exact theory proposed by Flligge. For this purpose a closed
cy]indrica1 shell free at the top and fixed at the bottom was
considered, The shell was analysed for wind effects in which
the loading was taken in the form of a Fourier scries as given

by the following equation,
q = q, + gqC0sd + q,C052¢ + qacos3 + ..

For each harmonic beyond the first term of this series the
analysis was obtained by Fligge's exact theory, Method T with

one cycle correction and Method 2 neglecting the far edge effect.

The effects of variations ih k and Q on the final stress
resultants Mx’ SX, NX and TX at the support are presented graph-
ically. The comparison of the results obtained by the exact
theory and Method 1 are given in FIGURES 5.1 to 5.3 and values
obtained by the exact theory and method 2 are given in FIGURES 5.4
to 5.6.

The figures indicate the following, For a given shell,
as m increases Method 1 becomes less accurate and Method 2
becomes more accurate. However when either the thickness or the
length of the shell is reduced (k or Q is reduced) Method 2
becomes less accurate. The reasons are as follows. Froh SECTION 4.4

it is clear that the splitting of the original eighth order
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characteristic equation for Tow values of m is more justified
when k is very small. Also in Method 1 the basic solution is
replaced by the membrane solution. It can be seen from the
inequality given by EQUATION (4-22) that when values of either

k or Q become smaller, the value of m for which this inequality
is satisfied becomes greater. Therefore for low values of k or
Q the assumptions on which Method 1 is based become more just-
ified and the ‘accuracy -increases. However Method 2 does not
give good results for these conditions as the assumptions on
which this method is based do not permit an accurate evaluation
| of Xo and Mo The value of Xo is véry small and cause slowly
dampéd solutions. For any given value of m, when k is large, X
also becomes large and is evaluated more accurately. In addition,
when Q is large, the damping of the qusolution is faster for
any given value of m and k and the assumption of neglecting the
far edge becomes more justified. Therefore for high values of k

and Q the accuracy of Method 2 increases.

Based on the above discussion regarding the final stress
resultants for any loading harmonic, it is seen that the criteria
in terms of m defining the ranges of validity of Methods 1-and 2
are functions of not only m but also k and Q. These are therefore
established on the basis of the maximum tolerance that can be

permitted in the final stress resultants for any values of k and Q.

From FIGURES 5.1 to 5.3, the values given by Method 1

become much greater than the exact values for higher values of m



103

and the maximum percentage difference is observed in TX. There-
fore the maximum value of m for which Method 1 is valid is found
by specifying a maxihum telerance for the difference iﬁ Tx.

The tolerance arbitrarily specified was 30 percent for the

worst term of Tx‘ It should be noted that this difference of

30 percent specified for Tx corresponds to the difference for
on]y‘a particular loading harmonic and not the difference for

the complete analysis for wind load which is expressed as a
trigonometric polynomial. The following equation has been proposed

by Soare(21) for wind load on a smooth surface.

w=g [-0.804 + 0.140cos.¢ + 1.380cos2¢
W

+ 0.490cos3¢ - 0.318cos4¢] | (5-1)
Where 9, is the basic dynamic pressure. In this equation the
coefficient is maximum for the term for which m = 2 and the
coefficients for higher loading harmonics become increasingly
smaller. Because of this in a complete analysis for wind load
the net difference is expected to be much smaller than the
maximum erkor in any given term. This is i1lustrated later in
EXAMPLE 1, SECTION 5.3 where the maximum difference of 30 percent
occurs for the:term Tx for which m = 3, but the difference
from summing the terms up to and including this term is on]y’
18 percent. The difference for other stress resultants will

of course be smaller.
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Thus the maximum tolerance of 30 percent in a given
term of TX is therefore reasonable and can be accepted. On
this basis, considering the stress resultant Tx the maximum value
of m for which Method 1 is valid is found from FIGURES 5.1 to 5.3.
With these maximum values FIGURE 5.7 is obtained which shows the

relation among the maximum value. of m, k and Q.

The criterion for Method 2 is established as follows.
Referring to FIGURES 5.4 to 5,6 it can be seen that the stress
resultants given by this method are always less than the exact
values for low values of m, the maximum difference being in NX‘
As the values were not conservative the minimum value of m
which gave conservative values of the worst term for the stress
resultant Nx was noted from FIGURES 5.4 to 5.6 for each value
of k and Q. FIGURE 5.8 thus obtained shows the relation among
the minimum value of m, k and Q. A similar figure could be
obtained by permitting non-conservative value of Nx’ say, corres-
ponding to a difference of 10 percent in the worst term Nx'
This would have the effect of changing the criterion increasing

the range of applicability of Method 2.

The criteria for the ranges of validity of Methods 1 and
2 are thus given by FIGURES 5.7 and 5.8. For any given values
of k and Q the maximum and minimum values of m for which, resg
pectively, Methods 1 and 2 are valid can be found using these

figures. The use of these figures is illustrated in EXAMPLE 1
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given in SECTION 5.3.

It is noted from FIGURES 5.4 to 5.6 that Method 2 gives
accurate values as m becomes large. Therefore for high
values of m Method 2 can be expected to give results which are

close to those that can be obtained by the exact theory.

For most shells of dimensions encountered in practice
all of the tefms in the series for wind load can be evaluated
within the tolerance established by the above criteria by either
Method 1 or by Methods 1 ana 2. For certain cases there may
be a particular loading harmonic that does not fall within the
range of applicability of these methods as established by the
above proposed criteria. In these cases Method 1 should be
used. This means that the maximum difference for this term only
will exceed the maximum difference specified for a term on which
the criterion was based, but the result will always be on the
conservative side. The final values of the stress resultants

will be sufficiently accurate for design purposes.

- 5.3 NUMERICAL EXAMPLES

EXAMPLE 1.

This example illustrates the use of Method 1 for the
analysis of a vertical cylindrical steel bin for wind effects.
The structure is assumed to be fully fixed at the bottom and free
at the top. Therefore the boundary conditions are w' =w=u=V =

at the bottom and Mx = SX = Nx = Tx = 0 at the top. The design



data are
Radius r = 25 ft
Thickness h=1/2in
Length & = 125 ft

Poisson's ratiov= 0.3

The wind load is taken in the form of a Fourier séries
along the directrix as given by EQUATION (5-1). The particular
solution for the surface loading due to wind may be obtained
by considering sufficient terms of the load expressed as a
Fourier series along the generator of the shell. However in
this example as is usual in the analysis of shell structures
the membrane solution has been taken as a close approximation
for the particular solution. The homogeneous solution which
accounts for the edge effects is determined from the stiffness

matrix established by Method 1.

A complete analysis for the stresses in the structure
requires that each term of the Fourier series for the loading
along the diréctrix be evaluated separately. The first step
is to determine the number of terms in this series for which

Method 1 is applicable. This is done as follows,

P = 2- = 0.0016667
_ X _
0=% =5
2
k =2 - 0.23148x1076

106



[sM]=

0.8337E-06

0.1335E-06

0.1690E-05

.2669E-07 - 0.8411E-06

0.5297E-04

-0.4196E-05

-0.1059E-03

0.0
0.0
0.0

0.0

0.0

0.0
~-0.1096E-02

-0.1524E-03

0.0

0.0

0.4289E~03

-0.1524E-03

0.0

-0.1524E-03

-0.3049E-04

I
I
0.0 |
|
|
|

|
, |
0.0 }
0.1524E-03 |

I
0. 3049E-04 |

107

(5-2)



(Dl=

" 0. 100E01 0.0 0.3579E 01 =-0.8415E-01!
0.0 0.1000E 01  0.1972E 00 —0.1973E-01|
~0.1532E-03 0.9528E-02  0.1000E 01 0.0

~0.7368E-04 0.2309E-02 0.0 0.1000E (1
0.0 0.0 ~0.4207E 00 -0.8415E-01
0.0 0.0 ~0.7721E-01 -0.2744E~01
0.0 0.0 0.0 0.0 |
0.0 0.0 0.0 0.0 :
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Referring to FIGURE 5.7, for these values of k and Q,

This means that Method 1 is valid for evaluating all stress
resultants for which m is equal to 3 or less within the criterion
used to obtain FIGURE 5.7. This can also be demonstrated by
checking the value of p given by EQUATION (4-21) and reproduced

here for reference,

p = m4(m2—1) P2Q4 << 1
12(41)

Since,with the values of P and Q in this example,p is equal to
0.0039 which is much smaller than 1,the assumptions on which

Method 1 is based,are valid and Method 1 can be used.

To illustrate the use of the stiffness matrix, detailed
calculations are shown for the termm = 2 only. The terms for

m=1 and 3 are evaluated in a similar manner.

The stiffness matrix for m = 2 is established using the
procedure explained in SECTIONS 4.4. From EQUATIONS (A-3) and
(A-5) values of X1 and E} s Eé,'E} and Eé are evaluated. Sub-
stituting these values in the expressions given in TABLES 4.9

and 4.10 the matrix [SM] and the matrix of unbalanced displacements{D]



{0.2670E—07

0.8387E-06  -0.7132E-07 .1665E—05|

0.8387E-06 0.5297E-04  -0.7433E-05 .1043E—03!

-0.7132E-07 -0.7433E-05 0;1097E~02 .1378E—03l
0.1665E-05 0.1043E-03  0.1378E-03 .2362E-03|

0.0 0.0 £0.7657E-07 .2559E—O7l

0.0 0.0 -0.4443E-05 +1523E-05 |

-0.7657E-07 ~0.4444E-05  0.4294E-03 .1437E—03|
=0.2559E-07 -0.1523E-05  0.1437E-03 .2749E-04 |

110~
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0.1439E-03

0.2664E-07 0.8378E-06 -0.7124E-07 0.1649E-05
0.8378E-06  0.5287E-04 -0.7424E-05  0.1042E-03
-0.7125E-07 -0.7424E—05 0.1097E-02  0.1380E-03
0.1649E-05 0.1042E-03  0.1380E-03  0.2360E-03
- 0,1348E-10  0.7858E-09 -0.7649E-07 ~0.2386E-07
0.7858E-09 ' 0.4573E-07 -0.4440E-05 -0.1431E-05
-0.7649E-07 -0.4440E-05 0.4300E-03 0.1439E-03
-0.2386E-07 -0.1431E-05 0.2466E-04

111

(5-5)
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are evaluated. These values are given in EQUATION> (5-2) and
(5-3). The elements in these matrices are in accordance with
the sign convention used in the general shell theory and as
given by FIGURE 4.1. Only half the portion of the matrices [gﬁ]
and [D] are given as the correction to be applied to EEM] involve
the elements in these halves only. The correction is applied
as described in SECTION (4.4.3). The corrected matrix is
written using the sign convention shown in EQUATION (5-4). Again
only half of the final stiffness matrix [SM] is shown in
EQUATION (5-4) as the other half can be written using EQUATION (4-8).
It is séen that [SM] agrees very well with the stiffness matrix

[K3] given in EQUATION (5-5), obtained by the exact theory.

Once the stiffness matrix [SM] is established for a
particular harmonic m there are two procedures as described in
CHAPTER 2 to obtain a final solution. The first procedure is to
use the classical procedure by writing the homogeneous solution
and the particular solution and superimposing these. The unknown
disp]acemeﬁts in the homogeneous solution are evaluated by making
thergenera1 solution satisfy the specified boundary conditions.

In this problem there are eight boundary conditions, four expressed
in terms of force at the top edge and the remaining four expressed
in terms of displacements at the bottom edge. The four homo-
geneous displacements at the bottom edge must be equal and opposite
to the displacements given by the particular solution to satisfy

the displacement boundary conditions at the bottom edge. Therefore



these four quantities can be evaluated directly. There are now
only four unknown homogeneous displacements at the top and these
are evaluated by inverting a 4x4 matrix written by using the
upper half portion of the stiffness matrix [SM] and the four

force boundary conditions at the top.

If one were to use the alternative stiffness matrix
procedure explained in CHAPTER 11 the initial forces [X'é] as
given by EQUATION (2-12) must be found. In this equation the

113

stiffness matrix [SM] must be substituted for [K]. The quantities

Ld'ﬁ] and[X'b] are the edge displacements and forces obtained
from the particular solution or the membrane solution. Using
EQUATION (2-13) the unknown displacements given by the vector
[d'] is found. The elements in the vector [X'] are the applied
forces, four of which are known to be zero at the top. In the
vector [d'] the four elements at the bottom are known to be

zero and thus there are only four unknowns to be found by in-
verting a §x4 matrix as before. The advantage in using this
method is that it permits the evaluation of the net displacements

at the edges directly.

‘However in this example the complete analysis was done
using the former classical approach. TABLE 5.1 gives the values
of the stress resultants at the bottom of the shell both by
Method 1 and the exact theory. The ana]ysié for the fourth

harmonic was also done by Method 1 even though this harmonic
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was outside the range of validity established for Method 1.

The results given are for unit value of the basic dynamic pressure
9y (see EQUATION (5-1)). It is seen from this table that

even though the error in Tx is 30 percent corresponding to the
value of m = 3, in the complete analysis the error in Tx is

only 18 percent and further this is on the conservative side.

The errors in Fhe other stress resultants are less. This means
that Method 1 can be used for harmonics beyond the maximum

value of m obtained using the criterion for the range of validity
for this method. waever the magnitude of error in the final
stress resultants depends on the relative magnitudes of the Fourier

coefficients in the series expressing the load.
EXAMPLE 2

To illustrate the application of Methods 2 and 3 a
circular tank supported on 6 columns is analysed. It is assumed
that the tank has been first analysed by the ordinary theory
of symmetrically loaded tanks on the assumption of a continuous
support along the circumference. The scope of the calculation
shown below is to find the additional stresses caused by the

discontinuity due to the supports being isolated.

The design data are:

Length L = 39 ft
Thickness h = 5.9 ins
Radius r = 32.8 ft
Column width = ar = 4.3 ft

X
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nr = 34.3 ft
3
0.25

Co]umn distance

Poisson's ratio v

Nx from the symmetrical load analysis is distributed
uniformly along the bottom edge. The total load is 33.6 ar kips/ft.
A self equilibrating System of NX distributed as shown in
.FIGURE 5.9 is applied to the bottom edge to eliminate the value
of Nx between Eo]umns. The load on the column is assumed to be
constant over the column width. This edge load NX is assumed

as the Fourier series

N, = - 268.821_ sin nm cos m¢
0 n 8

where m = 6n.

The other boundary conditions are:

The influence from the upper edge is neglected.

The stiffness matrix can be evaluated for each harmonic
using either Method 2 or 3 using the procedure explained in
SECTIONS (4-5) and (4-6). For illustration, EQUATION (5-6a) and
(5-6b) give the stiffness matrices obtained by Method 2 and
Method 3 respectively for m = 6.EQUATION (5-7a) and (5-7b) give
the corresponding quantities for m = 120. It is seen that for
the very high value of m (m = 120) the bending terms correspond-
ing to the applied bending displacements and the membrane terms

corresponding to the applied membrane displacements obtained by



K] =

[K] =

0.5713E-05
0.5743E-04
0.7657E-04

0.2423E-03

'0.8600E-05
0.1350E-04
0.0

0.0

0.5143E-04
0.1215E-02
0.7308E-03
0.6516E-02

. 1350E-04
.1296E-03
.0

o O O O

.0

0.7657E-04
0.7308E-01
0.4182E-01
0.1315E-01

0.0
0.0
0.5236E-01
0.1963E-01

0.2423E-01]
0.1315E-01
0.1315E-01

0.4185E-01

0.0
0.0
.1964 £-01

o O

.5236 E-01
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(5-6a)

(5-6b)



[K] =

[K] =

[ 0.7200E-04
0.5400E-02
0.6818E-05

-0.8817E-05

[ 0.7200E-04

0.0

0.0

0.5400E-02"

0.5400E-02
0.1037E-01
0.1091E-02
0.7909E-02

.5400E-02
.1037E-01
.0
.0

o o O

o O O o

.6818E-05
.1091E-02
.1047E 01
.3927E 00

.0
.0
.1047E 01
.3927E 00

0.1818E-04]
0.7909E-02"
0.3927E-00

0.1047E 014

.0
.0

o O O

.3927E-00

0.1047E 01
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(5-7a)

(5-7b)



Method 3 agree very well with those by Method 2. The agreement

is not good for the lower value of m = 6.

The shell is fully analysed considering the first 20
terms to study the nature of convergence of the final stress
resultants. Because of the uncoupled nature of the stiffness
matrix in Method 3 only the boundary conditions corresponding to
Nxo and v, are to be considered when using this method for this

problem and as such this method gives values of only Nx’ Nx¢

and N¢.

TABLE 5.2 gives the values of the stress resultants at
the support after considering 20 terms. It is seen that the
values of the membrane stress resultants at the support obtained

by Method 3 agree exactly with the results of Method 2.

FIGURES 5.10 and 5.11 i]]ustrate the convergence of the
stress resultants MX and Nx at the support and at a distance of
#/8 from the support. The values were obtained by Method 2.

The convergence of Mx is very rapid and the value of MX can be
obtained by considering the first 3 or 4 terms, but the con-

vergence of Nx is sTow and that of Nx¢ very slow so that mdre

than 20 terms are required. At £/8 from the support however

the convergence of both NX and Nx¢ also are very fast and only

4 to 5 terms are required.

FIGURE 5.12 shows the variation of the stress resultants
along the Tength of the shell, these values being obtained by

considering 20 terms in the series. It is seen that Mx and NX

118
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'become damped at a faster rate than Nx¢ . The maximum value of
Nx¢ 6ccurs at a distance of %/6from the support at which Tocation
fortunately as indicated by FIGURE 5,11 the convergence of Nx¢

is also rapid. Therefore this maximum value can be obtained

by considering only a few terms in the Fourier series.

Even though Donnell's theory does not g*ve correct values
of ﬂland up ( refer to page 14) for very high values of m, Method 2
which is Based on Donnell's theory was found fo give final results
within an accuracy of 1 to 2 percent when compared with the exact
results obtained by Flligge's theory . This indicates that Donnell's |
theory can be used in place of the exact theory for problems of
this nature. From Figure 5.12 it is seen that the membrane stress
resultants obtained by Method 3 agree well with the results obtained
by Method 2. Thcrefore similar prob]eﬁs can be completely analysed
by Method 3 for the membrane stress resultants. The advantage of
this method is that only a 2x2 matrix must be considered. The
bending stress resultants are obtained by Method 2 considering the

first 3 or 4 terms in the series depending on the desired convergence.
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TABLE 5.1
COMPARISON OF STRESS RESULTANTS
BY EXACT THEORY AND METHOD 1.

Exact Theory Method 1
m MX Sk NX Tx Mx SX Nx TX
0 -0.24 -0.66 O 0 -0.25 -0.66 O 0
1 0.23 0.54 44 -12 0.23 0.54 44 -12
2 7.60 18.00 1720 -307 7.60 18.00 1700 -350
3 5.60 13.30 1300 -97 5.50 13.00 1253 -126
4 -4,50 -10.00 -1047 0 -5.00 -12.00 -1107 0

Total . .8.69 21.70. 1917 . -416 . 7.98 . 19.00 .1890. . -494 ..

Difference expressed in percentage -7 -12 ?] . +18.

- = ag0
Note: Values of MX,SX and Nx at ¢ = 0 and Nx¢ at ¢= 45
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TABLE 5.2

VALUES OF STRESS RESULTANTS
AT THE SUPPORT

Mx at ¢=0 Nx at ¢=0 qu‘; at ¢=15° N¢ at ¢=0°
kips.ft/ft kips /ft kips/ft kips/ft
Method 2 ~3.00 -118.2 -5.6 -29.95

Method 3 0 -118.2 _5.6 -29.95
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CHAPTER VI

SUMMARY AND CONCLUSIONS
6.1 SUMMARY

The objectives of this study are:
1. to obtain usable closed form expressions for stiffness in-
fluence coefficients for closed circular cylinders for all

harmonics of edge loading greater than zero and,
2. to establish the ranges of validity of these expressions.

Explicit expressions for influence coefficients based
on the exact theory are very unwieldy and their evaluation is
tedious. Therefore approximate solutions discussed in 1it-
erature were considered. Influence coefficients were developed

based on the following three approximate methods.

Method 1 is based on the split equations of Flugge
for low values of m and the solutions obtained are termed as
the 'edge gffects' and the'basic state.' The latter is re-
placed by the membrane solution withfn certain Timitations. The
'edge effects' solution considers MX and SX and the boundary
conditions corresponding to w' and w whereas the membrane solution
considers Nx and TX and the boundary conditions corresponding

to u and v. The stiffness matrices obtained are combined to get

132



the matrix [SM]. A method of successive correction has been
proposed to consider the interaction of the above two stress
systems and obtain the final stiffness matrix [SM]. Only

one cycle of correction is required to obtain [SM] from [SM].

Method 2 is based on Donnell's theory neglecting the

effects of the far edge for high values of m.

Method 3 is based on the split type stress systems,
the generalised plane stress and the plate bending for very

high values of m.

In these three methods explicit expressions were
developed for all elements in the stiffness matrices. Criteria
have been established for the ranges of va]idity for these
methods. These are based on establishing a Timiting value of
m corresponding to a maximum specified tolerance of the most
critical term of the most sensitive stress resultant for that
method. Examples illustrating the application of these stiff-

ness matrices to obtain final stress resultants are given.
6.2 CONCLUSIONS

1. The solution of closed cylindrical shells subjected
to non-axisymmetric loading may be conveniently analysed by the

method of stiffness influence coefficients. Within the T1imit-

ations presented it is possible to develop simplified expressions

for the stiffness influence coefficients in closed form suitable
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for practical use.

2. Expressions for the roots of the sp]if equations
proposed by Fliigge for the characteristic equation for
cylindrical shells can be simplified by equating the real and
imaginary parts (i.e. X17H1o X2=u2)- The roots so obtained
are in close agreement with the exact values for lcw vaTues

of m.

3. Values of the roots expressed in terms of X715 My evaluated
by Donnell's theory agree well with the exact ones for low and high
of m. This means that Donnell's theory also can be used to

obtain the edge effects solution in Method 1.

4, For.low values of m the roots based on the parameters

Xp» My are sufficiently small to be considered as zero. This
results in permitting the replacement of the basic solution by

the membrane solution in Method 1. The maximum value of m is
dependent on the shell geometry and increases as the shell becomes

thinner and shorter.

5. For high values of m,the stress resultants can be
evaluated using Donnell's theory and neglecting the effect of

the far edge. (Method 2). The minimum value of m also depends

~on the shell geometry and decreases as the shell becomes thicker

and Tonger.

6. Based on a maximum specified error in the final stress

resultant criteria can be developed to establish values of m
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for any given shell geometry to define the range of validity of

Methods 1 and 2.

7. For most shells of dimensions encountered in practice within
reasonable limits of the maximum specified error the criteria

will uniquely specify the method for evaluating the stiffness
influence coefficients. However if extremely small va]des are
specified for.the maximum error it is possible to obtain a

few values of m which are between the limits of validity established
for Methods 1 and 2. For these values of m Method 1 should be

used, since this gives conservative values of the stress resultants

for these harmonics.

8. In the analysis of cylindrical shells on isolated
supports involving very high values of m,the membrane stress
resultants converge very slowly and the bending stress resultants
converge very quickly. The solution for the membrane stress
resultants which involves a large number of terms of the series

can be simplified by using the split solutions of Method 3.
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A2

Al HOLAND' S CHARACTERISTIC EQUATION

For a complete presentation of the theory refer

refer to Holand (13).

The eighth order characteristic equation according to
Holand is
A8 - 4m m2-1 A6 + [1 + 6m2(m2—1)] A4
kl
-4m2(m2—1)] m /mz—l A2+t (mz—l)2 = 0 . A1

where k' = h2
12(1-v2)r2

The roots for this equation arelexpressed as »

4 —_—
] 1 2 . 5
A1,2,5,6 =+ /2 [ O f‘//“'e teti (1 +j[1+e -e)]
4 e ety
. 1 iJ/h?w 2 o T2
A3,4,7,8 =+ /2 aK" [1 T+e“+e+i(l 1+ €)]

where, e =4 k' m /mz - 1. ,A:Z

A.2 DONNELL'S CHARACTERISTIC EQUATION

I+

1+

Donnell's equation is given in the form,

4
2 2) 1A

(A® - m o = 0 A.3

This equation can be obtained from Holand's equation by making

m2 - 1= m2. The roots are expressed as,

47— ~ _
Mo256 " ‘/zJ/ T [1://;1 belre ri(l+/fie 2o e,




A3

1 24 1 1 1+ 2, + (1 1 + 2 Y] (A.4)
23.4,7,8~ 12 [ 7 (1 - €0 T Eo T TN S0 " o) "
2

4 k' m"

where ¢
0

A.3 SPLIT EQUATIONS OF FLUGGE

The eighth order characteristic equation derived by Fligge
has been split into two fourth order characteristic equations in
the following form.

4 2

A -2(2m2-u)A2+[] - v +6m2(m2-1)] = 0
k

2

[1-v 2
k

+ 6m2(m2 - ])]A4 -2m2 [2m4 - (4 -uv)m” + (2 - U)]AZ = o0-(A-5a,b)
The large roots X] 9 5.6 Are given by the first equation and the

small roots A3,4,7,8 by the second equation.

EQUATION (A-5a) is of the form,

A4 + bxz +¢c=0 4 where,

b= -2(2n% - v) and c = 1 - v> + 6me(m® - 1) -
X

A2 = [-g- s121b? - 4]
2 2 . .
As 4c > b®, (b" - 4c¢) is negative ,

AT = [q] + iqz], where ,

a7 = - %— and g, =L]/2]_/(4c - b2) .



A4

> >
o —
- -
(=)} N
1 1]
I+ I+
—— —
> >~
— o—
-+ ]
—de —dy
= h =4
— O
S St?
-

=
>
(D
=3
(9]
-
>
o~
it
m—r
ol
f—
+
O
N
+
O
——

1
1 2 2 2 -
Ty [/q] t -q]]/
c >> g— as k is small and m is low. Therefore ignoring q; com-

pared to /qlz + q22 ?

1
X1 =[]/2][1 ; o2+ 6m2(m2 - 1] /4
1
My =[1/2][Lﬁ"u‘2 +emt(m® - 1)1 7% - (A-6a,b)

It is seen that,

X'I = U] . (A—7)
In a similar manner we get ,

-~ 11
Xp =[1/2] m4(m2 ) ])2 /4

?
(1= v2) + 6n°(m% - 1)
k -4

- 11
u =['72] |t ® - 1)? A (A-8a,b)

(1 - v2) + 6m°(m> - 1)

Lk .




It is seen that,
X2=U2'

A.4 EVALUATION OF aj AND Bj USING THE EXACT THEORY

The derivation of analytical expressions for E& and
E& using EQUATIONS(25-a,b), p. 227. ref.14 is very tedious.
For particular cases they can be determined numerically. The

procedure is outlined below.

The above equations can be reduced to the form,

(AZ + s])A + SZAB + (s3x - kx3)C =0

2

+ mZ)B + (m+ s

2y ¢ = .
spAA + (5,2 A7) =0 o (A-9a,b)

where the following substitution have been made.

s;= - (1= o (1 + k)
5

s, = (1 + v)m

2
S3= V- k(1 é u)m2
S = - (1 - v) (1 + 3k)
2
Sg = - (3 - v) km

2



Ab

Taking any root Aj in the form a - ib, and substituting in these

equations, we get,

(x1 + ixz)A + (x3 + ix4)B + (x5 + ix6)C~= 0

(x5 + ixg)A + (x5 + ixg)B + (xg + ix;0) C = 0 _ (A-10a,b)
where,

X = a2 - b2 * s,

X5 = 2a1b]

3. 7 33

X4 = szb]

Xg = S337 - k[ai(a]2 - b]2) - 2a]b]2]
Xs = Sgby - k[2aPby + (a;® - b, )b ]
X7 = s4(an|2 - b]2) + m2

Xg = 254a]b]

Xq = m+ sS(a]2 - b]2)

X190 = 2S5hy

EQUATIONS (A-10a,b) can further be reduced to the form ,

A+ (z, + izz)B + (z3 + 124)0 0

!

A+ (z5 + 126)B + (z7 + 128)C (A-11a,b)

i
o
“»



where,

as

A=

(x]x5 +x2x6)

(x]2 + x22)

-(x%5 = %%)

(x12 + xzz)

(37 = *4%g)

(x32 + x42)

- (%%, = X3%g)

(x32 t X )

(x3x9 + x4x10)

2 2
(X3 + X4 )

-(xg%g = xg%14)

? 2
(x3" + %, )

A7

Solving EQUATIONS (A-1la,b) we can express A and B in terms

ajC and

B = .C .-
BJ

where aj and Bj are as follows,

- (z] + 122)(c] +ic2) + (z3 + iz4)(c3 + ic4)

(c] + icz)

(c3 + ic4)

(c3 + ic4)

The following substitution have been made in the above,

%



€2 R T
C3 = 2y - 25
C4 = 22 - Z6
C5 = "C-IZ-I + C222 - C323 + C4Z4
C6 = _C]ZZ - CZZ] - C3Z4 - C4Z3

o5 and Sj are complex numbers. The real and imaginary pérts of

these can be written as follows,

Re[aj] = (c3c5 + Cﬁfﬂ)
(e + ¢,%)
Im[aj] = —(c4c5 - c3c6)
(e + ¢;°)
RQ[BJ] = I C2Cq)
2 2
(c3” + ¢47)
Im[sj] = -(c]c4 - c2c3)
2 2
(c3” *+¢47)

From these quantities values of Gps Gos O3y Oy and B> B B3>
Eﬁ in terms of which o5 and Bj are expressed for all the eight

roots can be found (see p. 228, ref. 14).

A8
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A.5 EVALUATION OF &3, E3 FOR THE ROOTS EXPRESSED IN TERMS OF

X121y FOR THE- SPLIT EQUATIONS OF FLUGGE
The following assumptions have been made.
1. X] = ¥ (see SECTION A.3)

2. k<< andb

3. 1 <<y’ (see SECTION 4.4.1)

m2

Analytical expressions for the root X - iu], derived using the
above assumptions and the procedure outlined in SECTION A.4 have

been given below.

v+ + k)] m

a] = m
2x-|2m2 ZX]
o= o+ mraxhT  n
727 21
‘ZX] m
B = [(2+ ) + dkgt ] n
7 2y
m 1
Ez = = [ (2 + U) X]Z - 4kX'|2 ] _En_i
= 2y,
m X1

A.6 EVALUATION OF E&, E3 USING DONNELL's THEORY

For a complete description of the method of derivation the



reader is referred to Hoff (12). Only the final expressions

are given here.

- — 2 -1
o0 = 2 foug - Moy
.- X'lz + 1112.1
- -
- 1 2
O = 2| vxy F My
L 7 2
X] + U'I B
_ 3
B-I = —x.lu]m
P
k 2(x] + u]2)2
B= m_[2+v-nt0q" - u?) ]
2k 2 IR
X1 "
;3 = 2‘1}12 [ U]JZ - mzuz]
7 7
| S
— 2
= - 7|V T WXy
t+
X2 2
_— 3
B3 = = Xgup M
>, 7)
k (X2 + Uz
By= M [2+u-m2(x2-vu'2)_
47 2 2 17
(x 2 4 u 2)
2 2

A10



A.7 MEMBRANE SOLUTION FOR SURFACE LOADING

For a complete presentation of the theory proposed by
Fliigge refer to pp 107 to 132, chapter 3, ref 14. In this ref-
»ekence Flugge has given EQUATIONS (4) for the stress resultants
and EQUATIONS (22) for the .displacements in the dimensional
form using the sign convention shown in FIGURE 3.1. The co-
ordinates are measured from the centre of the shell as shown
in FIGURE A.1. Taking the surface load in the form bm = gy COSMé,

P,"P=0 and making the substitution y = x, p=h, and Q=% the

¢
r r r
above equations have been reduced to the following form in terms

of the non dimensional parameters y and

N¢ = Iy
Nx¢ = m %ny
N - 2102 5.2
Nx - g__‘(o _4y )qm
_ .‘ . I" _1
EP u = ,m2(3Q§i4,x2) - vyJ q
PV = -(Q%-4y°) [(502 4y2) e + 2 u] naq
384 5
Py o= (Q%-ay?) [(50%-ay®n® + Vsa w? 4 1] Q.
384
— 2 2y 2] 2 2 2| 2
= -8y [ (5Q"-4y") m~+'/4 +(Q-4}1)me,q
€ v [ 352 384 m

To get the absolute values of the stress resultants N;, N%¢ and N;

and the displacements u,V and W, these expressions are to be

All



multiplied by the radius r.

A.8 FOURTER SOLUTION FOR EDGE LOADING BY MEMBRANE THEORY

For a detailed description of the method refer to
section 3.2.2.3, chapter 3, ref 14. In this reference Fliigge
has given the homogeneous solutions for the displacements given
by EQUATIONS (25) and (26) in the dimensional form. Making the
same substitutions as explained in SECTION A.7 these equations

can be reduced to the following non dimensional form,
2

Pu A

PV = Alm%yS - 2(1+o)my] + Buy? + Cmy + D
5 ? '

EP w = —A[m?y3 - (2+v)my] - B[@?yz + u] —szy - mD
6 7

EPw = ALm%y? - (2+u)n] - Bidy - Cm
7

To get the absolute values of the displacements u, v and w these

expressions are to be multiplied by r.

Al2
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