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ABSTRACT

Kristiansson’s' controller design and evaluation method characterizes a control
system by dividing its frequency response into four regions. Within each
frequency region a criterion is defined as a measure of one of the system’s
properties — performance, robustness, and control activity. Constraining three of
the four criteria at desired levels, controller parameters that optimize the fourth
criterion are calculated so that an optimal balance of the control system’s

properties is attained.

This thesis presents the application of Kristiansson’s’ technique to the design,
evaluation, simulation and experimental implementation of optimal PI/PID-based
control systems for real and hypothetical processes. The experimental evaluation

is carried out on two pilot-scale processes and an industrial control loop.
The salient points made from the application of the evaluation technique are:

= With the use of either first or second order low-pass filtering, derivative (D)
control can be safely incorporated into a Pl control system, hence a PID
controller. Compared with the traditional Pl controller, the PID controller
can significantly improve output performance without excessive control

activity;

= For processes having significant time-delay dominance, there’s substantial
improvement in closed-loop performance when a PID controller is utilized,

instead of the PI controller; and

= For processes with larger time delays, the PID controller can perform

better or equal to the Smith-augmented Pl controller.

! Kristiansson, B. (2000). Evaluation and Tuning of PID Controllers. Licentiate Thesis, Dept of Signals and Systems,
Chalmers University of Technology, Géteborg, Sweden
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CHAPTER 1

INTRODUCTION

1.1 THE PID CONTROLLER: HISTORICAL OVERVIEW

Commercial application of the Proportional-Integral-Derivative (PID) controller for
industrial activities has been on-going for nearly seventy years. According to [6],
the first commercial PID controller — the Fulscope pneumatic controller — was
introduced by Taylor Instrument Companies in 1939. Also in 1939, the Foxboro
Instrument Company introduced the Stabilog 30 pneumatic controller, which
operated on the basis of the PID control algorithm as well. In 1950, the Transet
Tri-act controller [26] was introduced. It was a serial PID controller, and became
a standard form. In 1959, Foxboro presented the Confrosol, which was the first
widely-accepted electronic PID controller.

Prior to the 1930s, academic and professional institutions paid little attention to
the theoretical research and development of process controllers, as development
had been driven only by industrial needs and lacked a mathematically-supported
foundation. The first synthesis of important ideas from several sources on PID
controller design came in 1934 with Harold Hazen's paper [27] on
servomechanisms, in which an examination of the control actions used in
industrial instruments was included. By that time, many engineers working in
instrument companies and process industries were also trying to build a body of
theoretical knowledge that would assist them with future controller design
problems. Grebe et al [28] at Dow Chemical Company, USA, and lvanoff [29] in
the UK, initiated this effort by publishing papers in 1933 and 1934 respectively.
Later, papers on automatic control were published in the Transactions of
American Society of Mechanical Engineers (ASME).

In 1940, one of the three central issues for the development of control
engineering was establishing appropriate settings for PID controller design
parameters. The issue was addressed in 1942 by Ziegler and Nichols [30], who
presented two methods for finding suitable parameter settings. Attention paid to
the development of PID control has grown tremendously since the early 1940s.
There are currently numerous publications on PID tuning techniques. In [7], a
survey of published papers on control theory, spanning a century, can be found.
In that survey, PID tuning methods are divided into six groups:

a) Ziegler-Nichols Tuning Technique: This technique originated in the work of
Ziegler and Nichols in 1942 [30]. It is still being used widely for control
loops in industry.

b) Frequency Domain_Tuning Technigues: These consist of a variety of
frequency domain-based techniques that use information about the
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desired phase and gain margins of the closed loop, as well as other
system frequency response parameters.

c) Relay-Based Tuning Technigues: This technique was introduced in 1984
by Astrom and Hagglund in [39]. Since then, it has undergone several
modifications.

d) Optimization-Based Tuning Technigues: The techniques in this group are
based on the optimization of pre-defined performance criteria, the most
common being integral criteria.

e) Internal Model Control Tuning: These techniques are based on the
Internal Model Control algorithm developed by Morari and his co-workers
[40, 41].

f) Other Tuning Methods: These include tuning techniques based on the
identification of the transient response parameters of the second-order
plus time delay process, PID tuning based on gain scheduling, PID tuning
based on the dominant pole placement method, etc.

Other rich sources of PID tuning techniques are [31, 32]. Also, PID control theory
is discussed at an introductory level in [4, 14].

1.2 CURRENT TRENDS AND ISSUES IN PID CONTROL

According to [5], most PID controllers in industry operate as regulators (i.e., they
reject external disturbances to process variables), making regulatory
performance of the controllers of primary importance. Load disturbances are
often the most common disturbances in process control [33]. Consequently,
several design methods focus on load disturbances. Other major functions of the
PID controller in industrial processes are:

» Set point tracking

= Attenuation of sensor noise

» Robustness to model uncertainty
» Stabilization

There are approximately three million regulatory controllers in continuous
process industrial facilities (based on data from Industrial Information Resources
[11]), with typically between five hundred and five thousand regulatory controllers
in each industry. Based on a survey of over eleven thousand controllers in the
refining, chemical and pulp and paper industries, 97% of regulatory controllers
utilize a PID feedback control algorithm. A minimum of three reasons are given
for the predominance of the PID algorithm:

1) The PID algorithm works well in the majority of applications.

2) The PID algorithm is easy to understand. Numerous publications
exist on PID implementation and tuning, and a number of software
packages are available to facilitate PID tuning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3) The PID algorithm is pre-programmed in every control system.
Implementing a non-PID feedback control algorithm involves
programming custom logic and could take as much as one hundred
times the effort of implementing a PID algorithm, not counting the
intangible lifecycle costs such as documentation, support, and
troubleshooting.

Another control algorithm now in widespread use is the Model Predictive Control
(MPC) [42]). According to [34], there are between two thousand and three
thousand multivariable model predictive control (MPC) applications in use
worldwide. When MPC is implemented, its manipulated variables are typically the
set points of existing PID controllers.

Several current trends [11] suggest the gap between desired and actual
controller performance in industries is widening:

1) When manufacturing sites are large enough to warrant dedicated control
engineers, their time is increasingly being diluted across implementing and
maintaining advanced control technologies, display building, process
historian support, and traditional PID controller maintenance.
Consequently, there is inadequate time for controller performance
analyses.

2) Process control application engineers often lack process control
troubleshooting experience.

3) Studies have shown that only about one third of industrial controllers
provide an acceptable level of performance [36, 37]. Furthermore, this
performance has not improved significantly in the last few years, even
though many academic performance measures have been developed in
that time [38].

A performance survey of twenty six thousand PID controllers [11] conducted in
2000 in a wide variety of continuous process industries classified the
performance of each controller into the categories listed below. The classification
was based on an algorithm combining a minimum variance benchmark [38] and
an oscillation metric tuned for each measurement type (flow, pressure, level, etc).
The classifications were also refined through extensive validation and industry
feedback to reflect controller performance relative to practical expectations for
each measurement type:

» Excellent or Acceptable (16% in each class): These refer to controliers
with minor performance deviations.

» Fair or Poor (22% and 10% respectively): These refer to controllers with
unacceptably sluggish or oscillatory responses.

=  Open Loop (36%): This refers to controllers operating in the manual mode
(i.e., process variables are held close to set points by the interventions of
the operators manipulating the processes) or the output is saturated for
more than 30% of the time span of the dataset.
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In addition to the performance discrepancies noted above, [18, 19] list factors
that could limit the achievable performance of a control system as:

= Process Dynamics
= Nonlinearities
=  Uncertainties
= Disturbances

Another cause of the performance discrepancies is poor controller tuning, which
arises from changes in process dynamics or the nature of the disturbances.
Other causes include wear, malfunction, or failure of hardware in the control
systems.

As a method of closing the desired vs. actual controller performance gap, [11]
describes the Process Control Monitoring System (PCMS). The purpose of the
PCMS is to provide plant control engineers with enhanced capabilities to identify
problems for many controllers while minimizing additional effort and expense.
The PCMS collects control loop data, computes performance assessment
metrics, performs analyses, and presents the metrics in a form suitable for the
control engineer to make decisions and take appropriate action on the control
loop. There are three broad domains for the performance assessment metrics,
one of which is the Engineering Metric (examples include dynamic model
accuracy and minimum variance benchmarks). This metric helps to diagnose
engineering deficiencies within the controller.

Hence, the feedback methodology for improving controller performance using
PCMS would be: Minimize the deviation between current controller performance
and the overall industrial/business objectives by implementing a PCMS, which
empowers the control engineer with current process and control loop information
obtained from metrics computation and analyses, and enables him to take the
necessary corrective action.

Another issue in the industrial application of PID control is the non-usage of the
derivative (D) part of the system, thus causing widespread usage of Proportional-
Integral (Pl) control. Derivative control is not commonly used in industrial control
loops because it amplifies and transfers noise (i.e., high frequency random
fluctuations in sensor measurement of process variables) to the control signal
sent from the controller to the actuator. The derivative control signal is
mathematically a multiple of the derivative of the process output. If the process
output has an erratic trend, its derivative would also be erratic on a more severe
scale. Thus, poor tuning of the D controller leads to excessive control activity and
high variability in the response of the controlled process. According to [37], about
97% of the control loops in a typical Canadian paper mill use PI control.

A great amount of investigative effort has gone into Pl and PID controllers, and
many useful design ideas have been presented over the years (as summarized
in [7, 31, 32]). However, none of the presented design methods has been widely
accepted. A likely reason given in [13] is that the ultimate tuning method has not
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yet been found, or perhaps one does not exist because the variety of situations
where PID controllers are used is diverse. Therefore, an assortment of tuning
methods is probably required.

1.3 EVALUATION OF CONTROL SYSTEMS

Evaluation of a linear control system involves the quantitative assessment of its
properties, the most important of which are performance and robustness (i.e.,
stability, control activity, robustness to model uncertainties). In most cases,
improvement of the properties of a control system in one aspect will bring
deterioration in another. According to [25], for a correct comparison of various
control systems, their properties must be equally restricted except for the
property being compared.

A control system evaluation method proposed by Kristiansson [13] defines four
evaluation criteria related to the vital performance and robustness characteristics
of a control system in the frequency domain. The evaluation method has been
applied in simulation to closed loops of benchmark process model examples in
[8], with Pl and PID controller structures used extensively. Some of the
noteworthy features shown by these controllers from the application of the
evaluation technique are:

1) With the augmentation of a first or second order low-pass filter, the
derivative (D) controller can be implemented along with the Pl controller,
i.e., a PID controller with a filter, to give good control performance with
moderate control activity;

2) There is an upper limit to the obtainable performance of a Pl control
system. That limit can be surpassed by the PID control system; and

3) In controlling a process with significant time delay, greater improvement in
closed loop performance is obtainable if a Pl controller is augmented with
a D controller than if it is augmented with a Smith predictor [21, 22, 283,
24).

1.4 MOTIVATION
The points discussed thus far lead to the following conclusions:

1) Despite the number of alternate control algorithms with superior
performance capabilities generated by research activities, PID control still
has roles to play in industrial control loops. Hence, every effort and result
relevant to improving the PID design method would always be applicable;

2) According to [11], if PCMS were implemented in industry, the process
control engineer would find his decisions and actions progressively
influenced by the business objective set points, rather than the individual
performance level of his control loops alone. Hence, he would rely on
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PCMS balance of detailed individual controller diagnostic metrics and
overall business and operational metrics to chart the appropriate course of
action. This approach suggests that measures for evaluating the various
properties of a control loop (i.e., performance, robustness, and control
activity) would eventually be required in computing the diagnostic metrics.
Therefore, a systematic closed-loop evaluation method would be useful.

3) Research innovations in process control still have a long way to go before
they can have a significant impact on industry-wide controller performance
due to their generally inadequate implementation in industry. Hence, one
area of focus for the academic community could be to work more closely
with the industrial community and be more demonstrative of the benefits of
new developments in control algorithms.

4) The overwhelming implementation of Pl controllers compared with PID
controllers in industry suggests there is significant potential for
performance improvement of the control systems by just crossing the
derivative control gap alone.

An example of the benefits of improving industrial control system performance
can be found in the Industrial Information Resources report [11]. The report
reveals that major US process industries spend about thirty billion dollars
annually on energy and over one hundred billion dollars on facility maintenance.
According to the report, even a 1% improvement in either energy efficiency or
improved controller maintenance direction represents hundreds of millions of
dollars in savings to process industries. Control loops not operating at optimal
performance levels invariably increase energy consumption at the actuators,
cause equipment wear, deviate from process operating conditions — which in turn
give off-quality products and reduce production yield. These factors incur excess
production costs in the form of product recycling, raw material loss, excess
energy usage, loop hardware maintenance and repairs, and production
downtime.

1.5 THESIS OVERVIEW

The scope of this thesis is based on Kristiansson’s controller evaluation
technique [13]. The features of Pl and PID control systems highlighted by the
technique were investigated only in simulation and for hypothetical process
models. It would be desirable to verify the evaluation results experimentally using
industrial processes or at least their pilot-scale versions.

It is reasonable to expect that experimental work on a real controlled process
would be in the open loop (e.g., system identification) and the closed loop (e.g.,
controller implementation) modes. Hence, one of the objectives of this research
is to obtain linear, time invariant, dynamic models for the processes employed.
The models will be used for designing a range of Pl and PID controllers using an
optimization-based technique of the evaluation method. Closed loops consisting
of the models and designed controllers will be implemented both in the simulation
and real-time experimentation.
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The criteria for evaluating the control systems’ characteristics will be applied to
the closed loops as tools for comparing the Pl and PID controllers. Because the
properties of major interest to plant operators and control engineers are the
closed loops’ performance and control activity, substantial emphasis will be
placed on them in the controller comparisons.

The role of time delay in the achievable performance of control loops is a salient
matter in industry. The implementation of an inappropriate control structure on a
process with a significant time delay could give poor closed-loop performance.
Hence, when comparing various control structures, it would be quite informative
to examine the way they perform for processes in which time delay has varying
degrees of dominance. In this thesis, the comparisons of control structures
implemented on the real processes with varying time delays are restricted to Pl
and PID controllers.

In view of the fact that one of the motivating points for this research is the
apparent gap between academia and industry concerning the application of
innovations in controller design, it would be desirable to reproduce the results of
the intended comparisons mentioned above using measures that are either
already well-known to control engineers or can be easily understood. Measures
used industrially are typically based on the response data for the process
variables, manipulated variables, set point signals, etc, as they are readily
available. Hence, the research will also consider control system comparisons that
use evaluation criteria based on the sampled process data of the closed loops
and not necessarily the process and controller models.

The point made in [25] on the greater benefit of adding derivative action to a PI
controller, in contrast to augmenting it with a Smith predictor, will also be
investigated using the models for the real processes plus the processes
themselves.

Pilot-scale processes, which utilize the same physical principles (e.g., heat
transfer, fluid flow, etc) as in industrial processes, are available in the Computer
Process Control Laboratory for the experimental aspect of this research. A
computer interface to the processes gives the flexibility of performing a wide
variety of system identification experiments and implementing any control
algorithm on the processes.
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CHAPTER 2

CHARACTERISATION OF A CONTROL SYSTEM'S
PROPERTIES

2.1 INTRODUCTION

The main exogenous and response variables of a Single-Input-Single-Output
(SISO) closed loop will be discussed in this chapter, as will the common transfer
functions, or the sensitivity transfer functions, of the system. The typical
frequency response profile of each transfer function will be illustrated with
examples, using simple process transfer functions and controllers.

The closed loop evaluation criteria proposed in [25], which are H. norm-based
functions of the sensitivity transfer functions, will be discussed in detail. Each
criterion will be illustrated in the frequency domain, using the afore-mentioned
process transfer functions and controllers.

Finally, the applicability of the evaluation criteria to controller design will be
discussed.

2.2 THE SENSITIVITY TRANSFER FUNCTIONS
Figure 2.1 depicts the block diagram of a typical SISO closed-loop.

d(t) ———m{ Ggy(s)

+ e(t) o u(t) +

r(t K(s) G(s) = y(1)

* w(t)

Figure 2.1:  Schematic diagram of a Single-Input-Single-Output (SISO) closed loop.

The external (or exogenous) variables are:
=  Set point signal, r(t)
» Process disturbance, d(t)
= Measurement noise, w(t)

The output variables are:
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= Process output, y(t)
= Control signal, u(t)
= Error signal, e(t)

The relevant transfer functions are:
» The process, G(s)
» The disturbance, G4(s)
* The controller, K(s)

The sensitivity transfer functions relate the external signals to the output signals.
The transfer functions of interest are:

» The Sensitivity Function

» The Complementary Sensitivity Function
» The Disturbance Sensitivity Function

» The Control Sensitivity Function

Sensitivity Function
This function is defined as:

S(s )=“1_
1+G(s)K(s) (2.1)
=Ger
Where G, is the transfer function between the error signal and the set point

signal.

Complementary Sensitivity Function
This function is defined as:

() = SISK(S)
1+ G(s)K(s) (2.2)
= Gyr = Gyw = —Gew

where:
Gy = transfer function between the set point signal and the process
output.
G,w = transfer function between the measurement noise and the process
output.
Gew = transfer function between the measurement noise and the error
signal.

S(s) and T{(s) are the closed-loop transfer functions for disturbances and set point
changes. They both provide measures of how sensitive the closed-loop system is
to changes in the process. Also,
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S(s)+T(s)=1 (2.3)

If the controller includes integral action, offset is eliminated for set point changes
and sustained disturbances, such that at low frequencies, |T(jw)] — 1 and [S(jw)|
— 0, where | T(jw)| and |S(jw)| are gain magnitudes of T{(s) and S(s) respectively.
The maximum values of the gain magnitudes provide useful measures of closed-
loop robustness, which will be discussed in later in this chapter.

Disturbance Sensitivity Function
This function is defined as:

S (s) =%
T G(s)K(s) (2.4)

:Gyd

where:
G,q = transfer function between the disturbance and the process output.

For effective rejection of low frequency disturbances, the closed-loop should
have a low maximum value of |G,,| in the low frequency region.

The PID controller evaluation method in [25] is based on the assumption that the
disturbance enters the process at the control signal so that both inputs have the
same dynamic effect on the process output. Typical examples given are load
forces and moments in mechanical systems and fluctuating concentrations in
fluid systems. Hence, G4(s) = G(s) so that (2.4) becomes:

S, (s)= Gy(s) ~ G(s) (2.5)
' 1+G(s)K(s) 1+G(s)K(s) '

(2.5) will subsequently be used as the disturbance sensitivity function.

Control Sensitivity Function
This function is defined as:

K(s)
S (s)=—t2)
()= 65 K(s) (2.6)

= Gur = Guw

where:
G = transfer function between the set point signal and the control
signal.
Guw = transfer function between the measurement noise and the control
signal.

10
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For effective attenuation of measurement noise transfer to the control signal,
|Guwl should be low in the high frequency region.

Example 2.1 calculates the four sensitivity transfer functions, and illustrates their
frequency response using arbitrary process and controller transfer functions:

Example 2.1: Table 2.1 shows five process transfer functions and the respective
PID controllers (with first order filtering of the derivative part) used to control them
in closed loops:

Table 2.1: Process and Controller Parameters for Sensitivity Transfer Functions

PROCESS CONTROLLER
1] e 35536 14— 4 04231 )
10511 326025 | 1100707
-2
o| € | o303f14 1, 06933 j
108 +1 44316s 1+0.1316s
-3
al & | q1om60(14 1 09974s
105 +1 5.3719s | 14019605
4
4l &7 | 16009141 133158
10s+1 6.1505s 1+0.2593s
5
5| €7 | 14308141, 16899
051 68131s | 1403194

Each process transfer function contains a time-delay term, which must be
converted to polynomial form using the Padé approximation [14] in order to
compute the sensitivity transfer functions. For simplicity, the 1/1 approximation is
used. Table 2.2 shows the four transfer functions for all the processes.

Table 2.2: Computation of Sensitivity Transfer Functions

-8
G(s €
(s) 10s +1
1 0.4231s
K 3.5536] 1+ +
(s) ( 326025 1+ 0.07013)
4 3 2
S(s) O.Zs +11.58° +21.1s° + 2s
0.7s* +9.7s% +21s?2 + 825 + 2.2
3 2
T(s) —41.83 - 2).13 +6.2s+22
0.7s* +9.7s% +21s? +82s + 2.2

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~0.7s% —10.1s* —1.85% + 40.3s% + 4s
758 +111.95°% + 415.7s* +542.55° + 235.45% + 62.1s + 4.4

1.2s% +22.7s% +79.55* +92.8s° + 30.3s? + 2.2s

Su(s)

S,(s
ufS) 0.055% +1.45° +11.25* +21.65° +8.352 + 2.25
-2s
G(s €
(s 10s +1
1 06933s
K 23931 1+ +
(s) ( 443165 1+0.13163J
4 3 2
S(s) 14.3s +131.5s +121.1s +8
1.35% +9.55% +10.652 + 2.95+0.5
3 2
T(s) —28° —0.58° +28+0.5

1.3s* +9.55° +10.65% +2.95+0.5

~1.38° —10.1s* - 0.3 +10.1s% + s
Su(S) | 13.2s% +109.2s5 + 211.95* +155.85% + 48,2152 +8.75 + 0.5

2.65% +25.85% + 50.9s* + 35.65° +8.55% + 0.5

S.(s
u(s) 0.2s% +2.65% +10.9s* +11s® + 352 +0.5s
-38
G(s ©
(s) 10s +1
1 0.9974s
K 19160 1+ +
(s) ( 53719s 1+ 0.19603)
S(s) 2s* +11.58° +7.8s%2 +0.7s
2s* +9.2s% +7.3s% +1.65+0.2
Ts) ~23s% ~0.46s% +5+0.2
2s* +9.2s% +7.3s2 +1.65+0.2
Su(s) —~28% -10.2s% —0.1s° + 4.5s? +0.4s
"1 19,655 +107.28% +145.35 +78.75% +19.85% +2.95 + 0.2
Su() 4.55% +30.2s% +41.45* +21.1s° +4.1s2 +0.2s
! 0.4s% +3.8s° +10.7s% +7.75% +1.7s2 +0.25

12
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G e—4s
S
) 10s +1
1 1.3315s
16299 1+ +
K(s) ( 615055 1+0.2593sj
2.65* +11.6s° +6.1s% +0.5s
S(S) 4 3 2
268" +9s° +57s° +1.1s+0.1
~268% ~04s% +0.65+0.1
T(s) 7 3 7
268" +9s8° +578° +1.1s+0.1
—26s°-10.3s* ~0.4s° + 2.652 +0.3s
Su(s) 6 5 4 3 2
25.9s° +105.25° +112.35" +49.7s° +10.7s8* +1.3s+ 0.1
6.75° +34.45° +36.2s* +14.85% + 2.55% +0.1s
Su(s) 6 5 4 3 2
0.78° +4.95° +10.58" +6s” +1.1s* +0.1s
-5s
e
G(s
) 10s +1
1 1.6899s
1.4308| 1 +
K(s) [+6.8131s 1+0.3194s]
4 3 2
S(s) 3.33 +11.36s +5.21s +0.4s
328" +8.7s8" +4.8s° +0.85+0.1
3 2
T(s) —42.93 —30.3s +20.4s+0.1
3.28" +8.78° +4.85° +0.85+0.1
—~3.28% ~10.35% - 0.583 +1.75%2 +0.16s
Su(s) 6 5 4 3 2
31.9s° +103.2s° +92.78% +35.35° +6.75* +0.7s +0.03
9.1s6 + 38.1s% + 32.85% +11.3s3 +1.7s2 +0.1s
Su(s) 6 5 4 3 2
8% +68° +10.3s% +58° +0.85° +0.75s+ 0.1

Figures 2.2(a) to 2.2(d) depict the frequency response plots of the sensitivity
transfer functions for the closed loops of all the processes.

13
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Figure 2.2(b): Frequency response of complementary sensitivity functions.
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Figure 2.2(c) shows that the disturbance sensitivity gain initially increases with
frequency in the low frequency region to a peak and subsequently drops. For
good disturbance rejection, this peak should be kept as low as possible; the
performance criterion in Kristiansson’s evaluation method is based on it.

Figure 2.2(d) shows the control sensitivity gain increasing with frequency and
converging at an upper asymptote. The asymptote shows that the most
significant transfer of measurement noise to the control signal occurs at high
frequencies. Hence, for effective attenuation of noise in the control signal, the
high frequency asymptote should be kept as low as possible. The mid-to-high
and high frequency robustness criteria in the evaluation method are based on
this asymptote.

The controller, K(s), can be strictly proper or just proper. When integral action is
included, it has the asymptotic properties:

Ksi— s§s—0

K(s)—> (2.7)
& § >
Sm

When K{(s) is just proper, the roll-off m is zero, K(s)—>k, as s > «. The high
frequency gain, k., and the integral gain, k;, are both non-zero constants.

2.3 EVALUATION CRITERIA° FOR CONTROL SYSTEM’S
PROPERTIES

As typified by the Bode Sensitivity Integral Theorem, which shows that the
suppression of the sensitivity function’s gain in one frequency region would lead
to gain enhancements in other regions, improvements of the properties of a
control system in one respect would cause deteriorations in the other. For each
property of a control system, the demands on it vary along the frequency scale.
An example can be seen in the frequency response of T(jw) in Figure 2.2(b).
Because it is the closed-loop transfer function, it is desirable to keep its gain high
in the low frequency region for enhanced closed-loop response performance. In
the high frequency region, however, it must be kept low for closed-loop
robustness purposes. For other sensitivity transfer functions, the demands in the
low, mid-, and high frequency regions differ. Therefore, in describing the
properties of a control system in the frequency domain, at least one descriptive
quantity is required in each frequency region.

A control system can be characterized by its performance and its robustness. To
evaluate these properties in the frequency domain, [25] divides the frequency
response of the open loop transfer function L(jw) into four regions as shown in
Figure 2.3.

16
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Figure 2.3: Division of frequency response of open loop transfer function into four regions.

in the low frequency (LF) band, the aim is to obtain a high loop gain in order to
obtain efficient compensation of load disturbances and accurate tracking of
varying set point signals, as well as robustness against process dynamics
uncertainties. J, is the proposed LF criterion, which evaluates the control
system’s ability to compensate low frequency load disturbances; thus, J, is the
performance criterion. Another performance criterion suitable for closed-loop
servo objectives is J,.

In the mid frequency (MF) band, which is in the vicinity of the gain and phase
cross-over frequencies, the stability margins of the control system are evaluated.
In this case, the general stability criterion is the Generalized Maximum
Sensitivity, GMs.

In the mid-to-high frequency (MHF) band, just above the bandwidth, the property
of evaluation interest is the control activity. The control activity criterion defined
in this frequency band is J,. For a just proper (not strictly proper) controller, J,
can also be seen as a measure of the high-frequency robustness and of the
ability of the control system to reduce high-frequency sensor noise.

The high frequency (HF) criterion is Jyr, and it is applicable only to control
systems having strictly proper controllers. It measures their high frequency
robustness and high frequency noise attenuation ability in the same way as J,
measures these properties in the mid-to-high frequency band. Jyr measures the
extent to which high frequency measurement noise can be damped without
having any significant effect on the low frequency properties of the control
system.

17
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2.3.1 PERFORMANCE CRITERIA - J,, J,
The main objectives of a controller [4] are listed below:

= Damping load disturbances

= Following a reference signal

» Stabilization

» Reducing the influence of uncertainties and nonlinearities
= Attenuation of sensor noise

The most common objective is damping load disturbances [33], in which case the
most relevant sensitivity transfer function is the disturbance sensitivity function
S.(s) from (2.5). For controllers with integral action and according to (2.7), as
o — 0 (low frequency), G(jw)K(jw)>> 1:

o Glje) 1 e
SuJe)=Clle) =4 ki)~ Kljo) ~ K 28)

Hence, the influence of the low frequency load disturbance on the process output
is attenuated by a factor of 1/;, such that the smaller its value, the smaller the
influence of the disturbance on the output. [25] shows, as corroborated by [4],
how for a closed loop with robust design and small undershoot in a load
disturbance step response:

IAE = ﬁe{t)|dt ~|IE| = % (2.9)

where /AE is the integral of the absolute magnitude of the error signal and /E is
the integral of the error signal. IAE is a common disturbance rejection
performance index [4, 14, 43].

According to (2.8), 1/ is approximately equal to (jw)™'S, and is an applicable

measure of the ability of a closed loop to attenuate load disturbances.
Kristiansson therefore defines the performance criterion J, as:

Jv =WGyal, =IW,S, 1, =max¥, (je)S, (jo) (2.10)

where W,(s) = s

The graphic interpretation of (2.10) is that J, is the gain peak of the disturbance
sensitivity function S, weighted by (jw)” in the frequency domain. In addition,
being an H_-norm-based criterion, it can be used for multiple-input-muitiple-

output (MIMO) systems.

Using the processes and controllers from Example 2.1 in Section 2.2, the
performance criterion J, is illustrated.

18
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Example 2.2: Figure 2.4 shows the (jw)’-weighted disturbance sensitivity
frequency response of the closed-loops for the processes and controllers in
Example 2.1, J, is indicated for each closed-loop:

-------------- RS EC S (s s i S S s e
: : : : : Process 1
ooeemmmeeme e nen e el ] ———Process 2 | .|

H H , .......... Process 3
| mr—— Process 4
- Process 5 [

...........................

S 2 IS A RSRRRRFIVLLIEEL - ovr v VRO ot MU, N AP,

2

=

% "‘"‘"""“‘"’“““""'“""“‘*"‘"*“"""‘“"'_::':j::;_':;::—"—ﬁ'
g ———— e — = — = T H

c

=

10’
A
Frequency {radsisec}
Figure 2.4: Frequency response of (jw)'-weighted disturbance sensitivity functions showing

the J, point of each closed loop.

When the main task of a control system is to follow a varying set point input, the
relevant transfer function is Ge(S) which, from (2.1), is the sensitivity function
S(s). As w — 0, L(jw) >> 1. [25] defines the servo performance criterion as:

Jr = ||WrGer ”00 =||W,S“w = mlewr (ja))S(ja))I (2.11)

where W(s) = s,

Now, asw — 0, W (jw)S(jw) — G(jw)/k. Thus J, unlike J,, is plant-dependent,
which makes it unsuitable as a performance criterion. In addition, [25] shows how
a controller designed using (2.11) could have zeros that cancel plant poles and
therefore concludes that J, should be used as a general performance criterion,
especially since a low value of J, normally implies a low value of J,.

2.3.2 MID-FREQUENCY ROBUSTNESS CRITERION - GV

The stability margin of the closed-loop is the most important factor in the mid-
frequency band. A control system is stable if the Nyquist plot of its open loop
transfer function L(jw) does not encircle the point (-1,0); it must have a loop gain
magnitude less than 1 at its crossover frequency, which is in the mid-frequency
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region. The farther the Nyquist plot is from the point (-1,0), the higher the mid-
frequency robustness of the closed loop, so that the minimum distance of the
Nyquist plot from the critical point could serve as a measure of this closed-loop
property. This minimum distance is the inverse of the maximum sensitivity

function, |S(s)|, of the closed loop. Thus the minimum distance is maximized
when the maximum value of the sensitivity function is minimized.

Based on the above description, a popular mid-frequency robustness criterion in
[14] is:

1
. ———— <Mg
minl1 + G(jw)K( jw)|
w

Ists)l,, = 2.12)

Where Ms is the maximum acceptable value of [S(s)|_. Typical values of Ms [4]

fall between 1.4 and 2.0. When the value of Mg is specified, lower limits of the
gain margin, Gn,, and the phase margin, ¢, are defined.

G, 2 Ms
Mg —1

, 1
>2sin~1| ——
“m [ZMS]

A typical demand on the phase margin of 45° must be met by Ms = 1.3. Such a
low value of Ms leads to a sluggish system. Alternatively, retaining the value of
Ms and placing a constraint on the maximum of the complementary sensitivity

function |T]_ can meet this demand:

(2.13)

Il <M7 (2.14)
Noting that [14]:
o > 2sin1| —— (2.15)
oM,

According to (2.15), setting Mr = 1.3 would give ¢, 2 45°. Recommended values
of My [3] fall between 1.2 and 2.0. However, it has been noted [41, 44] that Mt is
insufficient as a mid-frequency evaluation criterion. Hence, [25] combines the
criteria based on S and T in (2.12) and (2.14) to obtain a general criterion, GMs,
which serves as an applicable measure of both the control system’s mid-
frequency properties and phase margin requirement.

GMs =max(|s|_,<|T]..) (2.16)
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where a =Mg /My . A similar criterion is formulated by [44].

Equality between at least one of the norms and its respective restriction implies
GMs = Ms. Therefore, combining the constraints on the two norms ensures an
acceptable phase margin, due to M7, and a minimum distance from the Nyquist
plot to the critical point in (-1, 0), due to Ms.

2.3.3 CONTROL ACTIVITY CRITERION - J,

The general preference in the design of control loops in industry is to keep
control activity as small as possible. However, since the control signal is the
energy with which the controller achieves its objectives, increasing its
aggressiveness enhances the achievement of those objectives. The converse
also holds true. Hence, the control engineer tries to find the most advantageous
trade-off between the demands on performance, i.e., J,, and the demands on
control activity. According to (2.6), the control sensitivity function S, is the
transfer function from the measurement noise to the control signal.

[25] defines the control activity criterion J, as:

Ju =[Cunlo =ISull, = maxiK(je)S(jeo) (2.17)

The graphical interpretation of (2.17) is that J, is the peak of the frequency
response of the control sensitivity function and is therefore the maximum of S,. At
frequencies above the closed-loop bandwidth, the frequency response of S,
differs depending on the controller structure used. Using Process 3 from
Example 2.1, K(jw)S(jw) is plotted for its closed-loop using a Pl controller and
two PID controllers: one with a first order low-pass filter, the other with a second
order low-pass filter.

Example 2.3: Table 2.3 shows the transfer function for Process 3 with the Pl and
PID controllers used in the closed-loop:

Table 2.3: Transfer Functions for Process 3 with Pl and PID Controllers

e—3s
PROCESS
10s +1
Pl CONTROLLER 1.51(1 + 61?)

PID CONTROLLER 1 0.9974s
(with 1 order low-pass filter) 1'9160(1 " 5.3719s - 1+ 0.19603)
PID CONTROLLER 0.36 1+557s +6.41s2

(with 2™ order low-pass filter) " Us(1+0.16s +0.04s?)
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Figure 2.5 shows the frequency response plots for the three closed-loops, with
the J, point shown in each case.

T T TTTrTTT i T TTTTEY ¥ IR REE] ¥ [ A R H T PTTHRY 7 [ AR N
h 5o s st . [ B ‘ oo e ' et : © s h S e

PID {with 2nd order filter)
~—— PID {with 1st order filter)
— —Pl

Magnitude {abs)

10°
Frequency (radsisec)

Figure 2.5: Frequency response of control sensitivity functions for closed loops using
Process 3 with Pl and PID (with 1% and 2™ order low-pass filters) controllers,
showing the J, points for each closed loop.

In Figure 2.5, the control signal gain of the loop with the 1% order filtered PID
controller increases, within the mid-to-high frequency band, up to an asymptotic
limit, where J, is located. There is a peak in the gain of the loop with the 2" order
filtered PID controller just above the closed-loop bandwidth, beyond which the
gain drops progressively. The differing high-frequency profiles of the two closed
loops explains the higher noise attenuation in the control signal achieved in a
closed loop using a strictly proper PID controller vis-a-vis the just proper PID
controller; hence the benefit of adding the extra low-pass filter. The closed loop
with the P! controller, however, has a significantly lower peak than the two PID
controllers and lower high frequency asymptote, the difference being due to the
missing lead action in the PI controller. This shows why the Pl controller
generates lower control action than the PID controller and why it is preferable for
many control loops in industry. However, as will be discussed in subsequent
chapters, the limited control activity of the Pl controller in turn has a limiting effect
on the performance of its closed loop.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.4 HIGH FREQUENCY ROBUSTNESS CRITERION - Jyr

In the high frequency band, the just proper and strictly proper PID controllers
behave differently. One way has been shown in Example 2.3, where the control
signal gain profiles differ as @ — « . [25] mentions two relevant requirements of a

closed loop in this frequency range:

= Adequate robustness of the closed loop against model uncertainties,
such as un-modeled resonance and varying time delays

. Good attenuation of high frequency measurement noise transfer to
the process output

To attain these two closed-loop features in the high frequency region, [25] shows
the complementary sensitivity function T(s) as the relevant closed-loop transfer
function, so that the lower the magnitude of T(s), the higher the attenuation of the
measurement noise transfer and the more robust the closed loop is to model
uncertainties.

Now, as @ — », |L(jw)| << 1, so that at high frequency,

o Uje) o Ky
T(/@)————1+L(jw) ~L(jw)=G(jo)K(jw)~ ()" G(jw), (2.18)

where for a just proper controller, m = 0 and m > O for a strictly proper controller.

The high frequency approximation of T(jw) in (2.18) shows that performance and
robustness in this frequency range are dependent on k. (from (2.7)) and the
process G(jw). To make (2.18) approximately independent of the process, T(jw)
is divided by G(jw) so that as @ — «,

(2.19)

T(ja)):K i0)S(iw)=S. ~ ©
Gljo) (jo)S(jw)=S, ™

which is dependent on k.. alone. Hence, k. should be given a value as low as
possible to improve closed-loop performance and robustness properties at high
frequencies.

Based on (2.19), Kristiansson defines the high frequency robustness and
performance criterion, Jur, as:
sM —

JyF = ; = mgxla)’”K( jw)S( jw)’ = mgxla)’"Su (ja))‘ (2.20)

The motivation for weighting S, with s” is that s"S,(jw)— k., as @ — «, so that
the comparison between k.. and Jur, i.e., between high frequency peak and high
frequency asymptote, would help in determining whether the roll-off of ]Su( ja))l is

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inadequate or excessive. If the roll-off is inadequate, the controller can be
augmented with an extra low-pass filter and made strictly proper (m > 0).
However, [25] points out that if the roll-off is excessive, it could lead to the build-
up of a resonance peak in T(jw) just after the crossover frequency, which could
lead to the degradation of the low frequency properties of the closed loop. With a

second order filter, the roll-off of |Su ( ja;)] can be adjusted by varying the filter's

damping ratio, ¢;, which will be discussed in Chapter 3: the lower its value, the
higher the roll-off and vice versa. Hence, Jur can be used as a measure of how
much additional roll-off can be included in a system without deterioration of its
low frequency properties.

For a just proper controller, i.e., m = 0, (2.20) reduces to (2.17), so that Jyr = J..
Therefore, in the case of the closed loop using a just proper first order filtered
PID controller, J, serves the same evaluative purpose as Jur, making the first
three criteria groups discussed above adequate for evaluating the various
properties of this closed loop.

Using Process 3 in five closed loops, all with second order filtered PID controllers
whose filter damping ratios vary from 0.21 to 0.93, the frequency response of
s™S,(jw) and T(jw) are plotted for each closed loop, as shown in Figure 2.6. Jyr
is indicated in each case. All the closed loops have J, =5and GMs < 1.7.

s - WEIGHTED CONTROL SENSITIVITY FUNCTION

L damping ratio = 0.21 {--
[7| — — damping ratio =0.33
damping ratio = 058
damping ratio=0.76 Tt
damping ratio=093 et

Magnitude {abs)

Frequency {rad/sec)

COMPLEMENTARY SENSITIVITY FUNCTION

T !‘l(ll! f ! !!

!l!lz
FE H

. : - mid to-hlgh frequency
-} —— damping ratio =0.21 * gain increasing

| — — damping ratio = 0.33
N Ry damping ratio =0.58 o

.| === damping ratio=0.76 | . FOBNUUNU SRR S SO N S B A 0 2,

—— damping ratio = 0.93 ;

Magnitude {ahs)

...........

Frequency {rad/sec)

Figure 2.6: Frequency response of s"S,(jw) and T{(jw) for closed loops using Process 3 with
PID controllers (2™ order low-pass filters and varying damping ratios), showing

the Jur points for each closed loop and the Kk, asymptote.
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The above figure shows that for a high damping ratio, s"S,(jw) has a high
frequency peak that is approximately equal to k. Therefore, Jyr = k, . The roll-
off of Sy(jw) in this case may or may not be considered inadequate. Hence, the
controller filter's damping ratio could be reduced for extra roll-off. However, the
figure shows the effect of reducing the filter's damping ratio, Jur becomes more
significant compared to k, to the extent that it is twice the value of the asymptote
for a damping ratio of 0.21. In the plot of T(jw), the gain is increasing, between
mid-frequency and mid-to-high frequency regions, as the damping ratio is
decreasing. The gain increase with decrease in damping ratio leads to the build-
up of a resonance peak, which is considered inimical to the closed loop’s high
frequency robustness and low frequency performance.

It has thus been shown that the closer the Jur value of a strictly proper control
system to its k,, value, the wider the flexibility for increasing the roll-off of its high
frequency controller gain and the less significant the effect of the filter
augmentation on the system’s low frequency characteristics. To strike a good
balance between sufficient roll-off and good performance (both in the low and
high frequencies), [25] recommends controller filter damping ratios of 0.4 to 0.5.

2.3.5 APPLICABILITY OF CRITERIA TO EVALUATION OF CONTROL
SYSTEMS

When designing a controller, the design parameters must be specified. All the
design parameters for a controller can collectively form a tuning vector p. In the
PID controller, for example, p contains the controller gain, integral time constant,
derivative time constant, and derivative filter constant. Using the four groups of
evaluation criteria discussed in the preceding sections, an objective method of
evaluating a control system in terms of its performance, robustness, or control
activity can be formulated. This involves keeping three of the four criteria
constant, or upper bound, and varying the elements of p until the fourth criterion
has been favourably optimized. The method can be formulated as a constrained
optimization procedure with p as the optimization variable vector.

For example, to design a controller whose closed-loop low frequency
performance is optimized while keeping the stability and control activity
constrained, the optimization problem can be formulated as:

min{J, (p):GMg <Mg,J, <C,,Jur <Chr}, (2.21)
P

where Ms, C,, and Cyr are arbitrarily chosen constraints.

Throughout this thesis, any controller designed by solving (2.21) is referred to as
an optimal controller. Other features of the evaluation method in [25] are its
applicability to comparing different controller structures, comparing different
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tuning methods used on the same controller structure, as well as studying the
trade-off between any two properties in an individual controller.

The main purpose of this research is to design, simulate and experimentally
implement optimal Pl and PID controllers by solving (2.21) and secondly to study
the performance-control activity trade-off for these control systems.
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CHAPTER 3

DESIGN OF OPTIMAL Pl AND PID CONTROLLERS

3.1 INTRODUCTION

Optimal PID and Pl controllers can be designed using the evaluation criteria
presented in Chapter 2. The design is based on the solution of a constrained
optimization formulation, in which the low frequency performance criterion is
optimized while specified constraints are imposed on the mid, mid-to-high, and
high frequency robustness criteria of the control system.

In this chapter, the reformulation of the Pl and PID controllers will first be
discussed and the new design parameters are presented. Next, the design
formulation for the optimal controllers will be discussed, with numerical examples
presented for illustration.

The closed-loop response of the designed optimal controllers will be simulated
and plotted to provide insight into the optimization design’s controller tuning
quality.

3.2 REFORMULATION OF THE PID CONTROLLER

The classical PID and PI controllers with the one-degree-of-freedom structure
have the respective transfer functions:

K(s)=kc(1+i+rdsj
7;8

I

K(s)=kc(1+—1—J
S

Tj

(3.1)

where:
k. is the proportional gain
z; is the integral time constant
74 is the derivative time constant

The PID controller's transfer function has the flaw of not being proper, and
therefore unrealizable. To make the structure proper, the derivative part is
augmented with a low-pass filter, which is a transfer function with a steady gain
of one and is usually of first order with time constant z; . It could also be of higher

order. Hence, the filtered PID controller is formulated as:
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K(s)=k0(1+i+ A J (3.2)
7;S 758+1

The filter imposes a bound on the high frequency gain of the controller, which
makes it applicable for the attenuation of high frequency measurement noise.
According to [10], the derivative filter time constant z; is typically chosen as

t; =74 /N, where N is in the range of 2 — 10. For Proportional-Derivative (PD)

controllers, typical values of N fall between 5 and 20 [14], with 10 being the
common choice. Kristiansson has shown in [13] that optimal PID controllers
designed by solving (2.21) always have complex zeros and therefore
reformulates the PID controller in (3.2) as:

(3.3)

s(1+sz/p)

Hence, the new controller parameters are k;(already defined in (2.7)),7,¢, 5.
(3.3) ensures that any PID controller having ¢ < 1 would have complex zeros.
For an optimal PI controller, =1, g = 1. Therefore:

K(s):ki(1+2§zs+z-zszj

K(s)=k; (”T’s) (3.4)

From (3.3), the controller high frequency gain, k., defined in (2.7), is given as:
k, =kizf (3.5)

For PID controllers used in some processes, measurement noise can be a
considerable problem, e.g., level control in flow processes. With these systems,
the roll-off of the controller's high-frequency gain offered by a first order low-pass
filter might not be adequate for satisfactory noise attenuation. [13] proposes
exchanging the PID controller's first order filter for a second order filter and
formulates the controller structure as:

1+ 275+ 1252

K(s)=k; (3.6)

2
T T
1+2{; —S+—82
B p?
(3.6) gives a PID controller with complex zeros and possibly complex poles. &7 is

the damping ratio of the filter poles, which was briefly discussed in Chapter 2.
Varying ¢; has an effect on the roll-off of the control sensitivity function S, (jw)

and hence on the control activity. The lower the ratio, the more effective the roll-
off will be and, correspondingly, the lower the control activity. Using the process
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and second order filtered PID controller in Example 2.3, the control sensitivity
function is plotted for values of {; ranging from 0.21 to 0.93 as shown in Figure

3.1.

However, an adverse effect occurs as the damping ratio is progressively
reduced. For low values of (;, a resonance peak is building up in the
complementary sensitivity function T(jw), also shown in Figure 3.1, which is not

good for high frequency robustness or low frequency performance. The
resonance peak occurs at frequencies above the phase crossover frequency. For
an optimal balance of high frequency robustness and sufficient roll-off in the
control sensitivity transfer function, [13] recommends ¢; be set at 0.4 or 0.5 in

the optimization procedure.

COMPLEMENTARY SENSITIVITY FUNCTION

B A S A S | T N T T i R S R
10° Sttty i Ty DU OF SRSIPIRINS WEOTIL U SO SO S P 8 S AUDRVORS NSO S
it A S S S A S S - mid4o-high frequency -
_______________________________________________________ .. gain increasing |
= H ' ‘ . H
2 - dampingratio=0.21 | i i e R N e 4
Py — —damping ratio =0.33
E N dampingratio=058( | : i i 4 &b
E - damping ratio =0.76
4 damping ratio =0.93
= L TSI TSN DUV JORS U U 0 6 SURUUUOUURHUNS IUSUNVS SUORD VO NOE V0 0 O N -
10'1 ................. -
107 10" 10
Frequency ({rad/sec}
Figure 3.1: Frequency response of T{jw) for closed loops using Process 3 with PID

controllers (2" order low-pass filters and varying damping ratios), showing the
build-up of a gain peak in the mid-to-high frequency region.

It must be noted that the controller high frequency gain k,, for the PID controller
with a second order filter has an expression different from (3.5).

k, =k, B* (3.7)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL
PID CONTROLLERS WITH FIRST ORDER LOW-PASS FILTERS

Designing an optimal controller, whether PID (with first or second order filter) or
Pl, involves the solution of (2.21). In this section, an optimal PID controller with a
first order filter will be designed, thus Jur = J,. In addition, [13] shows how for a
PID controller with a first order filter, such as (3.3), the high frequency controller
gain, k,, is approximately equal to J,. Also, (3.5) relates the control activity
criterion to the controller parameters, so that specifying a value for J, (via k)

constrains one of the controller parameters, which reduces the number of
optimization variables and reduces the time taken for (2.21) to converge at
optimal values. [13] recommends a GMs bound of 1.7; this value ensures that the
control system’s gain margin is at least 2.4 and the phase margin is at least 45°.
Consequently, a GMs constraint of 1.7 is used throughout this thesis. (2.21) can
then be re-stated as:

min{J, (p) :GMg <1.7,k, <C,} (3.8)
P

Once a constraint on k, has been specified, (3.8) can be solved for
,D=[k,-,T,§,,3]-

Example 3.1 illustrates the design of an optimal PID controller with the pre-
specification of GMs and J,..

Example 3.1: Consider the process:
e—3s
10s +1

An optimal PID controller, with first order filtering, that meets the criteria:
GMg <1.7 and J, =10 will be designed for the process.

(3.8) thus becomes:

min{d, (p):GMg < 1.7k, =10} (3.9)
P

The MATLAB Optimization Toolbox is used to solve (3.9) and will be used for all
the constrained optimization functions formulated in this thesis. In order to
compute the relevant sensitivity transfer functions in the objective functions, it is
necessary to compute the Padé approximation of the time delay terms coming
from the plant models. For the solution of all constrained optimizations in this
thesis, the 4/4 Padé approximation of the time delay terms will be computed.
Alternatively, the frequency response of the sensitivity transfer functions could be
computed with the non-approximated delays in the transfer functions.
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The optimal PID controller, with minimum J, and which satisfies (3.9), is obtained
with the following parameters:

Table 3.1: Parameters for Optimal PID Controller

g—3s
Gts) 10s +1
ke, 10
Jv 2.6302
Ju 9.9998
ki 0.39503
T 2.787
1.0769
B 9.0832
GMs 1.7

Figure 3.2 shows the frequency response plots of the s™'-weighted disturbance
and control sensitivity functions for the optimized PID controller.

{(1/s)-WEIGHTED DISTURBANCE SENSITIVITY FUNCTION

Magnitude (abs)

10°
Frequency (rads/sec)

CONTROL SENSITIVITY FUNCTION

Magnitude {(abs)

e A 0 S S A B 4

10* 10" hig
Frequency (radsisec)
Figure 3.2: Frequency response of (1/s)-weighted disturbance sensitivity function and

complementary sensitivity function using optimal PID controller; showing the J,
and J, peaks respectively.
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The closed loop is implemented in simulation using SIMULINK. Figure 3.3 shows
the block diagram of the closed loop used for the simulation.

Figure 3.4 shows the closed loop’s response to a step in the set point signal and
the process input disturbance.

Bl i
E \ﬁ Quti In1 Out1 ‘;} PV |
Set Point InZ
[-H Process fariable
Optimal Process
Controller
Disturbance
Figure 3.3: SIMULINK block diagram for simulation of closed loop response using optimal
controller.

Time (secs)

SET POINT SIGNAL

Time (secs)
PROCESS INPUT DISTURBANCE

T S N U SO
e S e
0 4 i o —— ——  —  — e — —— -
0 20 40 60 80 100 120 140 160 180 200
Time (secs)
Figure 3.4 Closed-loop response of optimal PID controller to steps in set point signal and

disturbance.

The process’ disturbance response is satisfactory, but there is a significant
overshoot in the set point tracking. This is to be expected because the PID
controller designed is a J,-optimal controller, which favours disturbance rejection.
To improve the set point tracking performance of the closed loop, a J-optimal
controller could be designed. However, as discussed in the previous chapter, J;
is plant dependent, making it less suitable than J, as a performance criterion.
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Alternatively, [25] recommends use of the J,-optimal controller along with a pre-
filter for the set point signal. Figure 3.5 shows the closed-loop block diagram with
the addition of a pre-filter. Figure 3.6 shows the closed-loop response using the
same process and controller as in Figure 3.4, as well as a first order set point

pre-filter with the transfer function

S+
]
—_— ____'.{4._ >—_——_—b‘ln1
, Bs+1 r'y Outt In1 Out1 > PV
Set Point Fre-Filter In2
r.. Process Variable
Optimal Process
Controlier
Disturbance
Figure 3.5: SIMULINK block diagram for simulation of closed-loop response using optimal

PID controller and set point pre-filter.
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Time {sacs)
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T T |l T T T I
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7| S—  E— S— S— SRR SUSRS SO SR N S— -
) — —— —— — —— i  —  —— e — | .
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Time (secs)
PROCESS INPUT DISTURBANCE
| [ [ T T I T T
s S SN ; :
e T
0 f 1 f i S —— . ik | b -
0 20 40 60 80 100 120 140 160 180 200
Time (secs)
Figure 3.6: Closed-loop response of first order filtered optimal PID controller to steps in set

point signal and disturbance with the use of set point pre-filter.

There is less overshoot with the use of the pre-filter for the set point signal, as
can be seen in Figure 3.6. At the same time, the closed-loop response to the set
point is slightly more sluggish than the unfiltered signal. The sluggish response
becomes significant as the time constant of the pre-filter is increased, which
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concomitantly suppresses the overshoot. Hence, in designing a set point pre-
filter, a reasonable trade-off must be struck between the damping of the
overshoot and the reduction in the tracking response speed of the closed loop.

3.4 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL
Pl CONTROLLERS

The optimal Pl controller is of the structure depicted in (3.4). Again, (2.21) is
solved and, just as in the design of the optimal PID controller with a first order
filter, Jur = J,. However, unlike the PID controller, the high frequency controller
gain, k., is not approximately equal to J,. This can be seen in Figure 2.5, in

which the control sensitivity gain increases to a peak (corresponding to J,)
slightly below the crossover frequency and then drops to the high frequency
asymptote (k,, ). Thus, J, would be constrained in (2.21), not k., as was done for
the PID controller. Also, GMs would be bounded by a value of 1.7. In addition,
gand g are both set to 1 for this controller, so that k; and z are the

optimization variables in the tuning vector p. Hence, p =[k;,z].

Example 3.2 illustrates the design of an optimal Pl controller with the pre-
specification of GMs and J,.

Example 3.2: Consider the process:
e—3s
10s+1

An optimal PI controller that meets the criteria: GMg <1.7 and J, =15 will be
designed for the process.

(2.21) becomes:
min{J, (p) :GMg <1.7,J, =1.5} (3.10)
P

The J,-optimal controller designed has the following parameters:
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Table 3.2: Parameters for Optimal Pl Controller

g3
Gls) 10s+1
ke, 1.5
Jv 7.8794
Ju 1.5
K 0.12691
T 6.8942
1
B 1
GMs 1.3576

Figure 3.7 shows the frequency response plots of the s”-weighted disturbance
and control sensitivity functions for the optimized P1 controller.
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Figure 3.7: Frequency response of (1/s)-weighted disturbance sensitivity function and

complementary sensitivity function using optimal Pl controller, showing the J,, and
J, peaks respectively.
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The closed-loop simulation response is shown in Figure 3.8. A set point pre-filter
is not included in the closed loop.

PROCESS VARIABLE

Time (secs)
SET POINT SIGNAL
T T T T 1 I 1 T |
[ E— :
(1 T S SO ................................................................................................ -
1) ansm—" ——— s Ca oo i | iy | s | jormmomeee- n
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L] S S SRS SRRSO S, ;
Nl ——L A it - i itk
L + + 1  — ——  ——  —— — ooz -
0 20 40 60 80 100 120 140 160 180 200
Time {secs)
Figure 3.8: Closed-loop response of optimal Pl controller to steps in set point signal and

disturbance.

In Figure 3.7, the dissimilarity between k, and J, is shown, which is
characteristic of the optimal Pl controller. The GMs value obtained is less than
the constraint, indicating that the optimal Pl controller is quite robust. In Figure
3.8, the closed-loop’s set point response has a small overshoot, compared with
the optimal PID’s response in Figure 3.4, despite not using a pre-filter. However,
the rejection of the step disturbance is slow. The optimal Pl controller has a
smaller integral gain k; than the optimal PID, due to the difference in the J,
constraints imposed on the two controliers, and therefore has lower control
action. Thus, the disturbance rejection performance of the optimal PI controller
could be improved by increasing the value of its J, constraint.

3.5 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL
PID CONTROLLERS WITH SECOND ORDER LOW-PASS
FILTERS

The optimal PID controller with a second order filter is of the structure depicted in
(3.8). Again, (2.21) is solved, but here Jur # J,, SO that a separate constraint for
Jur would have to be specified. The high frequency gain of this controller is

Koo S where

generally not asymptotic. With a second order filter it takes the form
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k., is given by (3.7). In addition, (3.6) suggests an extra parameter, namely the
filter's damping ratio ¢;, should be included in the tuning vector p. Hence,
p=[ki,7,¢,B,5¢]. Again, GMs will be bounded by a value of 1.7. Therefore, the

optimization of J,, for the design of the strictly proper PID, requires more
parameters than the Pl and just proper PID controllers; thus, the computational
duration before the optimization converges is longer. To enhance the design
procedure’s convergence, and perhaps shorten the computational duration, the
optimized values of the parameters of a just proper PID, having the same J, and
GMs values as the strictly proper PID, will be chosen as the initial values for p.

&¢ will be given an initial value of 0.4 based on the recommendation in [25].

Example 3.3 illustrates the design of an optimal PID controller with a second
order low-pass filter. GMs, J,, and Jyr are pre-specified.

Example 3.3: Consider the process:
g3
10s+1

An optimal PID controller, with second order filtering, that meets the criteria:
GMS £17, Ju =5, JHF S11

(2.21) becomes:

min{J, (p) :GMg <1.7,J, =5,Jyr <11} (3.11)
Y2

The J,~optimal controller obtained has the parameters presented in Table 3.3

Table 3.3: Parameters for Optimal PID Controller with Second Order Low-pass Filter

g3
Gls) 10s+1
ky 7.0958
Jv 3.1563
Ju 5
JuF 11
k; 0.3303
T 2.7835
1.1099
Gt 0.444
B 4.6347
GMs 1.7
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Figure 3.9 shows the frequency response plots of the s’-weighted disturbance
and control sensitivity functions for the second order filtered optimized PID
controller. Figure 3.10 shows the closed-loop response of the controller to steps
in the set point and the disturbance.
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Figure 3.9: Frequency response of (1/s)-weighted disturbance sensitivity function and

complementary sensitivity function using optimal PID controller with a second
order filter, showing the J, and J,, peaks respectively.
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Figure 3.10: Closed-loop response of second order filtered optimal PID controller to steps in
set point signal and disturbance.
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CHAPTER 4

THE QUADRUPLE-TANK PROCESS

4.1 INTRODUCTION

The Quadruple-Tank Process serves as a laboratory-scale example of an
interacting, multivariable process that can be controlled in a multiloop
configuration. Pl or PID controllers are usually used in multiloops; the controller
tuning techniques in such configurations differ from the SISO control loop tuning
methods due to loop interactions, which aren’t taken into consideration in the
latter methods. A popular multiloop controller design approach is to tune the
controller for each loop as though all the loops were non-interacting, i.e., to
assume the multiloop consists of decoupled SISO closed loops Each loop’s
PI/PID controller is tuned using typical SISO PID design methods. The loops in
the multiloop are then closed and their controllers are de-tuned by trial and error
to accommodate loop interactions, until the multiloop’s performance becomes
acceptable.

The main objective of this chapter is to present the design, simulation and
implementation of PID controllers for the multiloop of the Quadruple-Tank
Process using the control system evaluation method in [25], which has already
been discussed and applied to SISO loop controller design in previous chapters.
Because the evaluation method requires process models for the controller design
procedure, the chapter will initially focus on the open-loop identification of linear,
time-invariant models from sampled data of the process’ response to pre-
designed excitation signals. The computed models will form multivariable
process matrices, the phase dynamics of which will also be discussed.

The Relative Gain Array method will be applied to the Quadruple-Tank’s
multiloop to determine which controller input/process output pairing is appropriate
for the process’ open-loop dynamics.

Finally, the multiloop’s PID controllers, designed by applying a combination of a
multiloop controller tuning method and solving the optimization procedure in
(2.21), will be implemented experimentally and through simulation.

41.1 PROCESS DESCRIPTION

The Quadruple-Tank system consists of four equally-sized transparent tanks that
have orifices. The system also has two water pumps and split-valves, which
determine the distribution of flow into the tanks. The schematic diagram in Figure
4.1 illustrates the set-up of the four-tank system, showing the pumps, split valves
and the inter-connection of the four tanks. A computer interface, consisting of
the Emerson's Delta V hybrid DCS and MATLAB OPC DA Toolbox, facilitates the
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performance of various experiments on the four-tank system, ranging from

process identification to controller implementation.

Yur Yur
—- K

split
valve

(vc)

B I
I

water ) 471 Vir
pump — 0

e [

split

water

pump

—@_T(XR)

water reservoir

Figure 4.1: Process schematic of Quadruple-Tank Process.
yu. = upper left tank water level
Yur =  upper right tank water level
yu = lower left tank water level (process output 1)
yir = lower right tank water level (process output 2)
xg = left pump discharge rate (process input 1)
Xxr =  right pump discharge rate (process input 2)
y, = left split valve ratio
Yr =  right split valve ratio

The two pumps draw water from the reservoir. Depending on the fractional
settings of the split valves, y; and yr (which are usually adjusted at the beginning
of an experiment and held fixed throughout), the flow from each pump is split
between the closer lower tank and an upper tank diagonally above the lower tank
as shown by the solid arrows. In addition to the apportioned flow from the pump,
each lower tank also receives water flowing out from the tank vertically above it
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as shown by the dashed arrows. The outflows from the lower tanks are
discharged to the water reservoir. Thus, the process is cyclic. The input variables
are the pump discharge rates, u; and ug, and the output variables are the water
levels in the lower left and right tanks, h;; and h;r respectively. Based on the
physical dynamics of the process, the water level in each lower tank is a function
of the flow input from both pumps and the split valve settings.

MATLAB OPC DA Client makes it possible to construct the input sequences for
left and right pump discharge rates, feed them to the system, and record the
input and output data. The Delta V DCS provides the interface between the OPC
DA Client and the physical system.

Assuming the influence of the pump dynamics on the discharge rates is
negligible, mass balances and the Torricellian Law can be used to formulate the
linear, time-invariant, multivariable transfer function of the system’s input to
output variables as:

hi uy
hir UR
i K IL-Le—nLL,LS K fLe_TdLL,Rs ] 4.1)
G(S) _ Z'LLS+1 (Z'LLS+1)(TULS+1)
K tRe_-’:ﬁLR,Ls K 5Re_TdLR,Rs
_(T[_RS+1)(TURS+1) Z'LRS+1 i
where:
hi = deviational height of water level in tank i, i.e. y; — yjo;
subscripti={LL, LR, UL, UR}
u; = deviational discharge flow-rate of pump j
Vo = nominal value of variable v; v = {uy, ur, h.i, hir, hut, hur}
U =  Xj— Xjo, subscriptj={L, R}
K / = level gain for tank / from pump j; subscript i = {LL, LR, UL,
URY}; superscript j = {L, R}
7, = time constant for tank /
Tss =  response time delay of tank /i to pump j
y; =  split fraction of flow from pump j
Ci = coefficient of discharge for the orifice of tank J

According to [1],
Kl = f(?’j:hio)

1
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i = K hi, C;, tank i dimensions)

4.1.2 MULTIVARIABLE ZERO

According to [1], the zeros of the transfer matrix in (4.1) are the zeros of the
numerator polynomial of the rational function:

R L Ty +T LT aT
det[G(s)]: KK e (T +Tar e )8 ) KI'_?LKLRe (Turi+Tar)s
(Z'LLS+1)(TLRS+1) (TLLS+1)(Z'LRS+1)(‘L'URS+1)(Z'ULS+1)

4.2)

Typically, for quadruple-tank processes,
T; >> Tgj; subscript i = {LL, LR, UL, UR}, superscriptj = {L, R};

Thus, the process is time-constant dominated so that the time delay terms can
be dropped from the function, and it becomes:

KR KL KR KL
det[G(s)]z LRLL _ LL"'LR
(TLLS+1)(TLRS+1) (Z'LLS+1)(TLRS+1)(TURS+1XTULS+1)

R kL I I 1 KLLKIER
=K K ty S+ Nryps+1)-| ——=—
LRLL (fis+1) (s +1eu ) KfRK’L-L

i=ULURLLLR

(4.3)

The zeros of the numerator polynomial of (4.3) are the two zeros of the quadratic
equation:

Ryl
(z, 8 +1Nryrs + 1)—(KLKL&J =0 (4.4)

Ryt
KirK

4.1.3 MINIMUM PHASE DYNAMICS

According to [1], G(s) follows minimum phase dynamics if the two zeros from
(4.4) both lie on the left half plane. This condition is met if:

KRKL
(fUL +Tyr )2 > (TUL +Tyr )2 - 4(TULTUR {1 - Kl;?L KLLR ]
wrhu
= 1 ——KﬁKLLR >0
KKL,

R L Rl
= KKy > KK
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= KfR(7R)KLLL(7L)>Kﬁ(7R)KLLR(7L) (4.5)

4.1.4 NON-MINIMUM PHASE DYNAMICS

G(s) follows non-minimum phase dynamics if one of the zeros from (4.4) lies on
the right half plane. The process follows such dynamics if:

Ryl
(TUL + Tur )2 < (TUL T Tur )2 - 4(TUL i) 1- K_;LQL"&LB‘
KizKy

= KFR(?’R)KLLL(7L)<KZ(?’R)KLLR(VL) (4.6)

Assuming the coefficients of discharge are 1 so that the Torricellian law becomes
the Bernoulli law, the minimum phase condition in (4.5) can be restated as:

1<y, +7:<2 (4.72)
Also, the non-minimum phase condition in (4.6) can be restated as:
O<y, +ys <1 (4.7b)

Thus, the split valve settings determine whether the process is minimum phase
or non-minimum phase. Because the transfer function matrix in the minimum
phase is diagonally dominant, it is intuitively preferable to control the lower left
tank level, h;;, using the left pump flow rate, u;, and similarly preferable for the
lower right tank level and right pump flow rate. With the transfer function matrix in
the non-minimum phase being anti-diagonally dominant, input-output pairing
rules converse to the minimum phase’s are preferable. The Relative Gain Array
Method [45] will be later applied to the transfer function matrices of the two
phases to confirm the input-output pairing rules.

For this identification experiment, two pairs of split valve settings are chosen
such that a model for each phase can be computed.

4.2 PROCESS IDENTIFICATION
4.2.1 EXCITATION EXPERIMENT

An excitation experiment is performed on the Quadruple-Tank Process to obtain
the relationship between the inputs (pump flow rates) and the outputs (tank water
levels). The following steps are performed:

i. The split fractions of the left and right pump flows are set in
accordance with the desired level of interaction between the two flows
on the lower tanks. The choice of interaction levels for the excitation
experiments will be discussed in the next section.
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i. Positive and negative step tests of various magnitudes are performed
to determine a linear range around the nominal point of each lower
tank level.

iii. From the step test results, the excitation frequency ranges of interest
are determined and Random Binary Sequence (RBS) input sequences
are designed accordingly.

iv. The RBS input signals are applied to one pump at a time, while the
other pump is kept at a constant nominal discharge rate, so the level
response of both tanks to each pump input can be sampled separately.

V. Using the sampled data of the level responses, discrete-time models
are computed using the pem function in MATLAB.

Applying the idproc function — also in MATLAB - converts the discrete-time
models into continuous-time models while imposing the model structures in
4.1).

4.2.2 STEP TEST RESULTS AND EXCITATION SIGNAL DESIGNS

Several step test magnitudes were performed. However, good signal-to-noise
ratios and approximately linear level dynamics were obtained with perturbations
of £ 1 L/min, and using nominal input flowrates of 18 L/min and 18 L/min
respectively for the left (split valve set at 73%:27% split) and right (split valve set
at 72%:28% split) pumps for the minimum phase experiments; and 13 L/min and
12 L/min respectively for the left (split valve set at 28%:72% split) and right (split
valve set at 30%:70% split) pumps for the non-minimum phase experiments.
Step test results for the lower left tank level are shown in Figure 4.2. Sampling
period, ts, was 1 second for the excitation experiments. The level response data
were thereafter down-sampled to 10 seconds for the model computations.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I N A
(S 1S U SO S SO

-

500

026}
0.25 1 --mmmemeeeea

{w) 13487 3ue L ya]

700

600

400

Time (secs)

0

= w
™ =
o -
o 2
22 &3
s L=
Q

2x g3
e oo
I3

OF QO =
as =Z-=

3 2
T T T .“.g.ﬂl [ 4 ...... P 3T F =
. 1 ' ' | H : H =
. | | H ' ! ' H : H H
: ; ' ' H : ' : ! ! {
H H H H H H . H H H H H H
m m H o H H H H H 1 H H H
S DO FON SN S 48 : : : : : : ; : ;
m m H H H H H H o ' H H o
H i bt et sl Sl tadeiede TS et dnhiad [ttt Sh il el 18
: ; ! ; : : 1 | f )
! ! ' : : : ; H H H H H
| i j i ; ' ) H H , i ] H
“ : ' i 1 i : H [ 1 1 ! |
v \ | | 1 ' H H ) H ' H H
H H ! ! H H ! ! : ! ! :
: ! ' ' : H H ! H : : H
| H H H H H H m H H H
: : ' ! o H ' ! o
i ! ' o ae | FS [ doeen Seeoandd 8
ebeanen et d ] 4 4 ! : ] :
: : : 8 : @ : : : : =
) H : ' H ' , :
H ! ' ! : H ! ! :
) H H H ) H H H H H H H
H H H H H H H H H ‘ B H
; H : H : : : ! : H ; '
TR R e ; o o
: : [ . . R e B o [EEEPEE SN beeeen R RN o =
t v 1 . I * v ] ~ ’ ] . v ~
o - T A T & : oo
...................... R =+ H H H H H 1 H . '
m ." m w0 H H H H H \ h H H
h H \ h H H H H H H H H
: H ' : ] ! H H H ' ! H
H H H \ : h i H = H H H H o
: ! L L e KN Ry becean PR S S = S SO AV SN S M SR 48
' H H H H H H H © H . H H «
m m m H H m H H H
O { i A
R N R B =S I H @ ' H ‘ H
e S m N . L
oo 2 : ilg e R W O S S s
H H H ~ H H @ 1 h H H o
' " ' a . . v . . .
oo 2 _ £ _ o
! ; ' E H e : ' ! H
: : : = : : : ; :
) H H H H ' H H H
H H H H H H h | H
: ! ! H -
S U U S S ds _ : S R S Aty SLEES ek
: ! ! =3 i i H 1 i H =
H H ' H H | H H H
H H H H H H H H H
H H H H H H . ) H
H H H H H H | ' o
v r 1 tocacadcoao | PP PR, L J— ama
P m ! m P 8
RO SN SO SN ds ; H H : H : !
: : : ] : ) H H H ' ' H
H H H H H H H ) H H H
i H | H H H H 1 H H
h H H H H H H H H H
' ! : : : i [ S AR R N S -8
H H H H H 1 H H H H V ~
; : : ; : : : i : ; :
! : ' : : ; i ; 1 H H
: ! ' H : : ; : H H ;
: ; : o ; : : : ; : :
¥ 3 i R =] ) 1 H H H H H H
: : - : : : : CH I T I S s
m m H H H H H H H H -
' \ ' v H ' H H H
i 1 ' H H H ' H H H
' H H H H H H H H H H H
T ! 1 ) H ' 1 H H H
i : H i i 1 i i idg [ ] — i .
o o« ~ © w0 - ) w <+ ) ™ w o~ w0y
b = 2 5 S T S = - ~ - ™ - o v -
@ ~ « =1 =1 - - - -~
(Ui ajes-mol4 W) [8sa queL Y8 = (unum) agel-mo| 4
o
sfieyosiqg duind ye To & 2 afi)eyssig duingd 1By
0w ® -
5 @
2z =%
Be S
e Z=
1
I
i
1
1

Time {secs)

Level responses of the lower left tanks to positive (solid) and negative (dashed)

Figure 4.2:

minimum (b) phases.

step inputs in the minimum (a) and non

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The step response data were used to compute parameter estimates for first order
model approximations to determine the appropriate Nyquist frequency ranges to
specify for the Random Binary Sequences (RBS), to be used for exciting the
system. Dynamic data obtained from these tests are presented in Table 4.1.

Table 4.1: 1% Order Approximation Constants from the Step Tests

Process Dynamics Gain (m-min/L) | Time constant (sec) | Time delay (sec)
Minimum Phase 0.0274 157.2 6.6
Non-Minimum Phase 0.0255 231 39

Using the approximate time constants from Table 4.1, the following Nyquist
frequency bands of interest were determined: 0 - 0.05 (minimum phase) and O -
0.01 (non-minimum phase). A smaller Nyquist frequency band was used for the
non-minimum phase excitation because of its higher time constant, which meant
more time was required for the level response to attain steady state.
Consequently, an input signal of lower frequency was designed with sampling
time of 1 sec.

Table 4.2: RBS Inputs used for Process Dynamics Identification (sampling rate = 1 sec)

Process Dynamics | Nyquist Frequency band | Levels (L/min) | # of input points
Minimum Phase 010 0.05 1.0 18071
Non-Minimum Phase 0to0 0.01 +1.0 24861

4.2.3 LEVEL RESPONSES AND MODEL COMPUTATION

The left and right pumps were sequentially excited with the designed RBS
signals for both phases. Figures 4.3(a), 4.3(b), 4.4(a), and 4.4(b) show the level
responses of the lower left and right tank levels to the excitations, as well as the
input signals, for the minimum phase and non-minimum phase dynamics.
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Figure 4.3: Minimum phase responses of the lower tank levels to RBS excitation
applied to (a) left Pump, and (b) right pumps.
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Figure 4.4: Non-minimum phase responses of the lower tank levels to RBS excitation inputs

applied to (a) left pump, and (b) right pumps.
4.2.3.1 MINIMUM PHASE COMPONENT MODELS

a) Left Pump to Lower Left Tank Model - G, (1,1)

e—Tds
Model Structure:
s+1

K = 25.944 mm-min/L
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r = 155 secs
Tq = 5.0004 secs
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Figure 4.5(a): Validation of continuous-time model for component transfer function Gnn(7,1).

b) Left Pump to Lower Right Tank Model -G, (2,1)

Ke T

T11'2232 + (2'1 +7, )S +1

Model Structure:

K = 11.478 mm-min/L
7, = 117.55 secs

7, = 117.55 secs
Te¢ = 10.274 secs
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Figure 4.5(b):  Validation of continuous-time model for component transfer function Gn;,(2, 7).

c) Right Pump to Lower Left Tank Model - G ;;, (1,2)

Ke —T48

Model Structure: ——
7°8° + 2145 +1

= 12.932 mm-min/L
T = 127.33 secs

C = 1.0204 secs
Ts = 15.921 secs
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Figure 4.5(c):  Validation of continuous-time model for component transfer function G,;,(7,2).

d) Right Pump to Lower Right Tank Mode! - G, (2,2)

-T;8

Model Structure:
s+1

23.933 mm-min/L
7 = 145.05 secs
5.8182 secs

N
i
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Figure 4.5(d):  Validation of continuous-time model for component transfer function G.;,(2,2).

4.23.2 NON-MINIMUM PHASE COMPONENT MODELS

a) Left Pump to Lower Left Tank Model - G ,opmin (1.1)

-Tgs

Ke

Model Structure:
' s+1

K
T
Tq

10.061 mm-min/L
200.56 secs
4.1318 secs
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Figure 4.6(a):

b) Left Pump to Lower Right Tank Mode! - G min (2,1)

Ke—Tds
712'232 + (T1 + 1'2)3 +1

Model Structure:

31.044 mm-min/L

153.3 secs

K =

T1

144 .19 secs
33.517 secs

12

Td =

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

30

=
o

Level {mm)
o

Detrended Tank

-10

Figure 4.6(b):

_______________________________________________________________________________

__________________________________________

T
Measured Output |-
---------- myrul Fit: 93.26%

19 2

Time (secs) % 10%

Validation of continuous-time model for component transfer function G,onmin(2,7).

c) Right Pump to Lower Left Tank Mode! - G 0nmin (1,2)

Model Structure:

Ke_Tds
T12'282 +(T1 +12)S+1

28.596 mm-min/L

K =

741 = 150.86 secs

72 = 150.86 secs

Ts = 24.116 secs
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Figure 4.6(c): Validation of continuous-time model for component transfer function Gponmin(7,2).

d) Right Pump to Lower Right Tank Mode! - G ,,min (2,2)

—Ty8

Model Structure:
s+1

9.2785 mm-min/L
124.24 secs
9.2746 secs

K
T
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Figure 4.6(d): Validation of continuous-time model for component transfer function G gnmin(2,2).

Thus, (4.1) for the minimum phase can be written as:

i 95.944¢~50004s 12.932¢~15.921s
1555 +1 (16212.9352 + 259.865 +1)
Gpin(S) = (4.8a)
11.478¢~10-274s 23933¢~982s
(13818.00255% + 23515 +1) 145055 +1 |
The non-minimum phase’s model is:
10.061e~41318s 2859624125
200565 +1 (227587452 + 301725 +1)
Gronmin(8) = (4.8b)
31.044¢~33917s 9.2785¢=9-275s
(22104.3352 + 297495 +1) 124.245 +1

4.3 INPUT-OUTPUT PAIRING USING THE RELATIVE GAIN ARRAY
METHOD

Because the objective of computing the minimum and non-minimum phase
models of the Quadruple-Tank Process is to design decentralized optimal Pl and
PID controllers for the process, it is important to determine how to pair the
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manipulated (input) and controlled (output) variables for minimal process
interactions and acceptable closed-loop performance. Intuitively, the elements of
the process matrix for the minimum phase suggest that the lower left tank water
level should be controlled using the left pump, since the transfer function
between the two variables has a larger gain than the transfer function between
the tank level and the other pump. The same explanation applies to the lower
right tank water level and the right pump. For the non-minimum phase process,
on the other hand, it is apparently preferable to control the lower left tank water
level using the right pump and vice versa for the lower right tank water level.

The Relative Gain Array (RGA) Method, presented by Bristol in [45], provides a
systematic approach for the analysis of multivariable process control problems,
based on the concept of a relative gain, and provides insight into the process
interaction measure and the most effective pairing of the controlled and
manipulated variables. For a process with n controlled variables and n
manipulated variables, the relative gain 4; between a controlled variable y; and a

manipulated variable u;is defined to be the dimensionless ratio of the two steady-
state gains:

~_{0yi/eu;)s _ open-loop gain (4.9)
" (dy;féu;), closed - loop gain '

fori=1,2,..,nandj=1,2, ..., n.

For a 2 x 2 transfer function matrix such as (4.8a) and (4.8b), with two
manipulated variables and two controller variables, the relative gains can be
calculated by using the steady-state form of the process model [14]:

Yy Ky Kip | | Uy
= . (4.10)

2] Ky Ky | | U2

where Kj; denotes the steady-state gain between y; and u;, for a stable process:

s—0

e[ Yi(s)
K = Ilm[uj(s)J (4.11)

[14] derives the expressions for A; (i, j = 1, 2) in terms of the steady-state gains:
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1
Aor = KoKy

1
K11Ka2
Agg =g =1- Ay (4.12)
Ay =4

Thus, the RGA for the 2 x 2 process can be expressed as

A 1-2
A= (4.13)

where A= 4y.

From (4.12), A depends on the relative magnitudes of the diagonal and anti-
diagonal elements of the steady-state matrix in (4.10), which in turn depends on
how the input and output variables have been paired.

[45] recommends that the input-output pairing for the 2 x 2 process should have
an RGA, like (4.13), in which A is as close to one as possible. The implication of
this recommendation to (4.12) is that the product Ky:K22 should be made as large
as possible compared to K;,K>s. Therefore, (4.10) should be made as diagonally
dominant as possible.

From (4.8a) and (4.8b), the steady-state matrices of the models can be
expressed as

25944 12932
Grin(0) =
11478 23.933
10.061 28.596
Gronmin(0) =
31.044 9.2785

(4.14)

From (4.12) and (4.14), the RGA matrices — in the form of (4.13), for the
minimum and non-minimum phase models, using the h;;-u. / hir-ur and the hy,;-
ur/ h.r-u; pairings — are computed as shown in Table 4.3.
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Table 4.3: RGAs for all Input-Output Pairings of the Minimum and Non-Minimum Phase Models

RGA RGA

PROCESS MODEL (hLL'uL/hLR'uR PAIR'NG) (hLL'UR/hLR'UL PA'RING)

1314 -0.314] [-0.314 1314 ]

MINIMUM PHASE

0314 1314 1314 -0.314]

[-0118 1118 ] 1118 -0.118]
NON-MINIMUM PHASE

| 1118 -0.118] 0118 1118 |

From Table 4.a, A is closer to one for the minimum phase model, if the left pump
is paired with the lower left tank water level and the right pump with the lower
right tank level, than the converse pairing. For the non-minimum phase model,
the right pump can control the lower left tank level more effectively than the left
pump. Thus, the recommended pairings by RGA analysis agree with the intuitive
selections.

In the next section, the decentralised optimal Pl and PID controllers will be
designed and implemented.

44 MULTILOOP CONTROL DESIGN

The multiple-input/multiple-output (MIMO) transfer function matrices in (4.8a) and
(4.8b) have process interactions, but the RGA matrices in Table 4.3 show that
the process matrices are significantly diagonal or anti-diagonal. Thus, either
multiloop or multivariable control schemes [14] can be applied to controlling the
processes.

Multiloop (also known as decentralized) PID control systems are often used to
control interacting MIMO processes. They consist of single-input/single-output
(SISO) PID controllers acting in a multiloop fashion. Figure 4.7 shows a typical
multiloop system for a 2 x 2 process like (4.8a) and (4.8b).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



——————— e = — = —
P S
- -
- -
- -
- -
- -
-

di(t) \\
)
'/
+ L’
———< (1)
2x2 | __.---"
----------- Y
- - -RROCESS |
~~~~~ = Yo(1)
+ Mo
\\
‘I
dx(t) )
—.-"" LOOP 2

~ao -
- -
- -
- o
-~ - -
indiall P ——————

Figure 4.7: Multiloop control block diagram for a typical 2 x 2 MIMO process.

where:
r{t) = setpoint signalto Loopi;i=1,2
ei(t) = error signal in Loop i
ui(t) = control signal in Loop i

di(t) = process input disturbance to Loop i
yi(t) = process output at Loop i
Ci = SISO controller (Pl or PID) utilized in Loop i

Decentralized control is commonly implemented in MIMO systems because of its
relative simplicity, and because it is potentially robust to sensor and control
actuator failure. In a multiloop system, after a control structure is fixed, control
performance is determined mainly by tuning each single-loop PID controller.
Another advantage of multiloop controllers is that loop failure tolerance of the
resulting control system can be easily checked. [46] lists and briefly discusses
the main types of tuning methods for multiloop PID control systems:

» Detuning methods

» Sequential loop closing methods

= |terative or trial-and-error methods

= Simultaneous equation solving or optimization methods
» |ndependent methods

The sequential loop closing method will now be discussed. In this method, each
controller in the multiloop is designed in sequence, i.e., a MIMO process is
treated as a sequence of SISO systems. This approach is applicable to [25]'s
control system design procedure because the procedure is formulated essentially
for SISO processes. The sequential loop closing method involves closing the
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loops in the multiloop one after the other. A controller is designed for a selected
loop using a single loop tuning method and the loop is closed. Another controller
is tuned for the next loop while the first loop remains closed, and it too is then
closed and so on. This method differs from detuning methods in that it takes into
consideration the loop interactions in the sequence of SISO processes.
According to [46, 47, 48, 49, 50, 51], the sequential loop closing method has
been used in designing controllers for quite a number of multiloop control
systems in recent years.

A method proposed by Shen and Yu [17] is a multivariable autotuning procedure,
which is based on the sequential identification and the modified Ziegler-Nichols
controller design method. The method is an iterative form of the sequential loop
closing method; it is illustrated using a 2 x 2 process in a multiloop structure
similar to Figure 4.7. Assuming the manipulated and controlled variables have
been paired by the RGA method, Loop 1 is closed using a relay as shown in
Figure 4.8(a), while Loop 2 is left open.

_________________________ LOOP 1
~~~~~~ ~. (closed)

~

e Y1(1)
2x2 T
MiMo __L_---
FRROGESS - f-~—oL_
v yz(t)
) LOOP 2
(open)
LOOP 1

e -
———— -
o -
- -
- -~ -
- -~
- ~

—_--1L0O0P 2
(closed)
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LOOP 1
(closed)

~

e —— -~ ——
- -~ -
- -
- -~
-

-
——
———y

Figure 4.8: Sequential tuning procedure for a 2 x 2 multiloop.

The relay-feedback test [39] is performed, and controller C; is designed from the
ultimate gain K, and the ultimate frequency w,. Next, a relay-feedback test is
performed on Loop 2, while Loop 1 remains closed with C; as shown in Figure
4.8(b), and the controller C, is designed for Loop 2. Then Loop 2 is closed with
C, and another experiment is performed on Loop 1, as shown in Figure 4.8(c), to
obtain new controller constants for C;. The procedures in Figure 4.8(b) and
Figure 4.8(c) are iteratively followed until the parameters for C; and C; converge.
Because the MIMO process is treated as a sequence of SISO processes, the
method has the advantage of simplicity. Figures 4.8(b) and Figure 4.8(c) can be
simplified into the SISO closed-loops in 4.9(a) and Figure 4.9(b) respectively:

(a) dift)
RELAY
ri(t . - '_ ui(t) u g11,cL = V()
+ et) —' +
(b)
+ eyl us(t) +
rat) - - _"_- : n 92201 ya(t)
RELAY
d(t)
Figure 4.9: Simplification of 2 x 2 multiloop into a sequence of 2 SISO closed loops.
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where:

gr1oL =911[1 _Juln hz] (4.15)
911922
92201 =922(7——g12921 h1) (4.16)
911922
= Il (4.17)
1+941C4
920,
=_Jec"L 418
27 14950, ( )

Hence, C; and C, can be designed iteratively from gs1c. and gozci, using
suitable controller tuning methods for single loops. In investigating the
convergence property of the iterative sequential tuning procedure, Monte Carlo
experiments were performed on 2 x 2 multiloops in [17], using randomly
generated first-order plus dead time transfer functions. All cases considered met
the specified convergence criterion.

4.5 DESIGN OF MULTILOOP OPTIMAL PID CONTROLLERS FOR
QUADRUPLE TANK PROCESS

In the design of optimal PID controllers for the multiloop in Figure 4.7, a tuning
procedure similar to the iterative sequential loop closing procedure in [17] is
considered. However, instead of applying Astrom and Hagglund’s autotuning
method in [39] to design Cs and C;, Kristiansson’s optimal PID design procedure
[25] is used. Thus, (2.21) is solved for the controllers iteratively until their
parameters converge.

4.5.1 MINIMUM PHASE MULTILOOP

The RGA matrices in Table 4.3 suggest an h;-u, / hg-ur pairing for the quadruple-
tank’s minimum phase multiloop. Thus, Figures 4.9(a) and 4.9(b) are modified to
Figures 4.10(a) and 4.10(b) respectively.

Gmin(s) in (4.8a) can be expressed as
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M 25'9446—5.00043 12.93% —15.921s
1555 +1 (162129352 + 259.865 + 1)
Gmin(s) =
11.478¢10.274s 23933582
| (13818.002552 + 23515 + 1) 145065 +1 | (4.19)

min min
G1 1 G12

min min
GZ1 G22

Figure 4.10: Simplification of minimum phase multiloop into 2 SISO closed loops.

where;

r(t), ra(t)

set point signals to lower left and right tank level closed
loops (Loops 1 and 2) respectively

C.,Crk = PID controllers manipulating left and right pumps
respectively
€L, er error signals in Loops 1 and 2 respectively
d, dr = process input disturbance to Loops 1 and 2 respectively
(4.15) to (4.18) are expressed in terms of (4.19) as
) ) G;ginGénjn
1”17”& - Gﬂm - min > min hR (4'20)
Gfi"Gz;
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) ) GgmGgF
Goe =63 | 1-—5—=mh (4.21)

GmmGg?
GﬂmCL
L Tvepic, (4.22)
11 VL
GmmCR
2 ¥R

The iterative sequential loop closing method of designing PID controllers for the
Quadruple-Tank Process’ multiloop, using Kristiansson’s single loop optimal
controller design method [25], is itemized in the following steps:

Step 1.1: Specify constraints on GMs, J, (or k.) and Jue (for the optimal PID
controller with a second order filter) for Loops 1 and 2.

Step 1.2: Solve (2.21), with the constraints specified in Step 1.1, for Loop 1 in
Figure 4.10(a), with the modification of using Gﬂi” as the process model

instead of Gﬂ"&. Set the optimal parameters in p as the initial

parameters for controller C;.

Step 1.3: Solve (2.21), with the constraints specified in Step 1.1, for Loop 2 in

Figure 4.10(b) and using Gg’Z"’bL as the process model. Set the optimal

parameters in p as the parameters for controller Cg.
Step 1.4: Solve (2.21) for Loop 1 in Figure 4.10(a) and using G1”1’i’(’3L as the

process model. Set the optimal parameters in p as the parameters for
controller C,.

Step 1.5: Follow Steps 1.3 and 1.4 iteratively until the parameters for C; and Cg
converge.

C. and Cr are both designed as optimal PID controllers with first and second
order filters. For the just proper optimal PID controllers, (2.21) is formulated as

mind, (p):GMg <1.7.ky, =6},  p=[k;,7.¢, B] (4.24)
P

Table 4.4 presents the results of the iterative procedure, while Table 4.5 presents
the final parameters of multiloop controllers after the iteration converges.
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Table 4.4: Tuning of Just Proper Optimal PID Controllers for the Minimum Phase Model of the
Quadruple-Tank Process using the lterative Sequential Loop Closing Method

G, Cr
ITERATION NO.
ki T ¢ B ki T 4 B
0 0.024819 | 8.7595 | 1.5418 | 27.599
1 0.025148 | 8.807 | 1.5251 | 27.091 | 0.020548 | 9.8264 | 1.4997 | 29.716
2 0.025148 | 8.807 | 1.5251 | 27.091 0.02055 | 9.8262 | 1.4996 | 29.714
3 0.025148 | 8.807 | 1.5251 | 27.091 0.02055 | 9.8262 | 1.4996 | 29.714

Table 4.5: Final Parameters for Just Proper Optimal PID Controllers for the Minimum Phase
Model of the Quadruple-Tank Process

PARAMETERS C Cr
k. 6 6
Jv 39.765 48.663
Ju 5.9999 5.9999
k; 0.025148 | 0.02055
T 8.807 9.8262
¢ 1.5251 1.4996
p 27.091 29.714
GMs 1.7 1.7

For the strictly proper optimal PID controllers, (2.21) is formulated as:

min{d, (p):GMg <1.7,J, =6,Jur <25  p=[k;,7.¢, <5, Bl (4.25)
pP

Table 4.6 shows the results of the iterative procedure, while Table 4.7 shows the
final parameters of multiloop controllers when the iteration converges.

Table 4.6: Tuning of Strictly Proper Optimal PID Controllers for the Minimum Phase Model of
the Quadruple-Tank Process using the Ilterative Sequential Loop-Closing Method

C. Cr

TERATION| r e & B k; z 4 4i 14

NO.

0 0.024899 | 8.5477 | 1.5878 | 0.41318 | 28.881
1 0.025061 | 8.7347 | 1.5389 | 0.45561 | 27.848 | 0.020496 | 9.765 [ 1.5095 | 0.47007 | 31.017
2 0.025061 | 8.7347 | 1.5389 | 0.45561 | 27.848 | 0.020495 | 9.7651 | 1.5095 | 0.47007 | 31.018
3 0.025061 | 8.7347 | 1.5389 | 0.45561 [ 27.848 | 0.020495 | 9.7651 | 1.5095 | 0.47007 | 31.018
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Table 4.7: Final Parameters for Strictly Proper Optimal PID Controllers for the Minimum Phase
Model of the Quadruple-Tank Process

PARAMETERS C Cr
Ky 19.434 19.719
Jv 39.903 48.792
Jy 6 6
Jnr 25 25
ki 0.025061 | 0.020495
T 8.7347 9.7651
1.5389 1.5095
Sy 0.45561 | 0.47007
B 27.848 31.018
GMs 1.7 1.7

The tuned optimal controllers are implemented on the multiloop of the minimum
phase of the Quadruple-Tank Process, in simulation and experimentally. Steps in
the set point of the lower left and right tank levels, r. and rg, are introduced, one
after the other, to the multiloop, as well as steps in the load disturbance to the left
and right pump discharge rates, d; and dr. The simulations are performed using
SIMULINK (Figure 4.11). Set point pre-filters are used in the multiloop to reduce
the excessive overshoots typical of J,~optimal PID controllers.

Left Tank
Level Set Point

__[—} hiL
Lower Left Tank Level

In1Outl

1

20s+1

Left Tank
Set Point Prefilter

eft Pump
PID

Pairing
Matrix
In10utt Quadrupe-Tank

1 Process
22s+1 ;
Right Tank Right Pump

Set Point Prefilter PID

hLR

Lowwet Right Tank Lavel

Right Tank

Left Pump
Level Set Point

Disturbance

Right Pump
Disturbance

Figure 4.11:  SIMULINK block diagram for simulation of quadruple-tank multiloop.
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Figures 4.12(a) and (b) show the level responses of the simulated minimum
phase multiloop, using the just proper optimal PID controllers along with the set
point and disturbance steps. The control signal sent to each pump is also shown.
The level responses for the multiloop using strictly proper optimal PID controllers
are shown in Figures 4.13(a) and (b). Figures 4.14(a) and (b) and 4.15(a) and (b)
show the level responses of the experimental implementation of the just proper
and strictly proper optimal PID controllers, respectively, on the quadruple-tank
process in the laboratory. The split valves of the process have been adjusted so
that it follows the minimum phase dynamics similar to (4.8a). The set point pre-
filters used for the simulations were also used in the experimental
implementation of the controllers.
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Figure 4.12: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input
disturbance for simulated multiloop of minimum phase of Quadruple-Tank
Process, using just proper PID controllers.
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Figure 4.13: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input
disturbance for simulated multiloop of minimum phase of Quadruple-Tank
Process, using strictly proper PID controllers.
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Figure 4.14:  Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input
disturbance for experimentally implemented multiloop of minimum phase of
Quadruple-Tank Process, using just proper PiD controllers.
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Figure 4.15:  Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input
disturbance for experimentally implemented multiloop of minimum phase of
Quadruple-Tank Process, using strictly proper PID controllers.
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4.5.2 NON-MINIMUM PHASE MULTILOOP

For the non-minimum phase multiloop of the quadruple-tank process, the hy -ugr/
hir-u; pairing will be used. Figures 4.9(a) and 4.9(b) are modified to Figures
4.16(a) and 4.16(b) respectively.

- -
-—— -
- -
- -
- -~

(a) dr() b
’ N
J/ \ LOOP 3
I !
\ ’
\ = uR(t) + i /
ri(?) L Cr - Gl /7* hy(t)
( ) /*‘F”’e t u(t -+ : \\\\\
I’R(t) /' R() CL L() " ngrg}jm L\?.. hLR(t)
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Figure 4.16:  Simplification of non-minimum phase multiloop into 2 SISO closed loops.

Gronmin(S) in (4.8b) can be expressed as

10061413185 28.5966 24125
200565 +1 (227587452 + 301725 +1)
Gronmin(8) =
3104433517 9.0785¢ 9275
(221043357 +297 495 +1) 124245 +1 | (4.26)

[ ~nonmin  (nonmin
G1 1 G12

Gg?nmin G ggnmin
(4.15) to (4.18) are expressed in terms of (4.26) as

. . G nonmin G nonmin

Gfgr&nm - G1ngnmln 1 11 : 22 : hR (427)

) Gnonmm nonmin
12 21
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21

) ) G nonmin G nonmin
Gronmin. _ 3 nonmin [1 _ 11 22 hL (4.28)

21,CL G ;120n min G g;m min
non min
L= 1f1énonmfn:z (4.29)
12 R
nonmin
Gy "Gy (4.30)

" 146pming,
The iterative sequential loop-closing method, using Kristiansson’s single loop
optimal controller design method, is itemized in the following steps:

Step 2.1: Specify constraints on GMs, J, (or k.) and Jue (for the optimal PID
controller with a second order filter) for Loops 3 and 4.

Step 2.2: Solve (2.21), with the constraints specified in Step 2.1, for Loop 3 in

Figure 4.16(a), with the modification of using G/¥"™ as the process

model instead of G,”z’(’;’[’i". Set the optimal parameters in p as the initial
parameters for controller Cg.

Step 2.3: Solve (2.21), with the constraints specified in Step 2.1, for Loop 4 in
Figure 4.16(b) and using Ga7¢;" as the process model. Set the optimal
parameters in p as the parameters for controller C,.

nonmin

Step 2.4: Solve (2.21) for Loop 3 in Figure 4.16(a) and using Gj,¢" as the

process model. Set the optimal parameters in p as the parameters for
controller Cg.

Step 2.5: Follow Steps 2.3 and 2.4 iteratively until the parameters for C; and Crg
converge.

C. and Cr are designed both as optimal PID controllers with first and second
order filters. For the just proper optimal PID controllers, (2.21) is formulated as

min{d, (p):GMg <1.7,k,, =6} p=[ki,7,¢, Bl (4.31)
P

Table 4.8 presents the results of the iterative procedure, while Table 4.9 presents
the final parameters of multiloop controllers when the iteration converges.
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Table 4.8: Tuning of Just Proper Optimal PID Controllers for the Non-Minimum Phase Model of

the Quadruple-Tank Process using the Iterative Sequential Loop-Closing Method

ITERATION NO “ <
' ki 4 4 B ki 4 4 B
0 0.009238 143.47 0.78769 4.5268
1 0.01389 128.11 0.94801 3.3717 0.008839 151.74 0.73799 4.4736
2 0.016318 12347 | 0.81585 | 2.9781 0.009027 154.51 0.73691 4.3016
3 0.016114 123.72 | 0.82846 | 3.0094 0.008999 154.37 0.73592 4.3192
4 0.016177 123.62 | 0.82502 3.0002 0.009006 154.44 0.73601 4.3138
5 0.016164 123.62 | 0.82583 | 3.0026 0.009005 154.44 0.73592 4.3141
6 0.016168 123.62 | 0.82563 3.002 0.009006 154 .44 0.73594 4.314
7 0.016167 12362 | 0.82567 3.0021 0.009005 154 .44 0.73594 4314
8 0.016167 123.62 | 0.82566 | 3.0021 0.009005 154.44 0.73594 4.3141
9 0.016167 123.62 | 0.82566 3.0021 0.009005 154.44 0.73594 4.3141
Table 4.9: Final Parameters for Just Proper Optimal PID Controllers for the Non-Minimum
Phase Model of the Quadruple-Tank Process
PARAMETERS C. Cr

K. 6 6

Jv 71.47 122.66

Ju 6.0786 6

k; 0.016167 | 0.009005

T 123.62 154.44

0.82566 0.73594
Y/ 3.0021 4.3141
GMs 1.7 1.7

For the strictly proper optimal PID controllers, (2.21) is formulated as:

p=lki,z.¢. &5, Bl

min{J, (p):GMg <1.7,J, =6,Jyr <0.25};
P

(4.32)

Table 4.10 shows the results of the iterative procedure, while Table 4.11 shows
the final parameters of multiloop controllers after the iteration converges.
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Table 4.10: Tuning of Strictly Proper Optimal PID Controllers for the Non-Minimum Phase Model
of the Quadruple-Tank Process using the lterative Sequential Loop-Closing Method

C. Cr
o | ki | 7 ¢ &t B k; t [ ¢ ] ¢ | B
0 0.0003299 122.37 0.872 0.478 4,735
1 0.0003673| 138.35 0.84317 0.650 4.836 0.0003157 131.98 0.860 0.484 4.874
2 0.0003704| 134.86 0.85703 0.631 4.803 0.0003018 135.82 0.814 0.497 5.027
3 0.0003692( 134.95 0.85504 0.630 4810 0.0003039 136.4 0.814 0.502 5.023
4 0.0003693| 135.05 0.85482 0.631 4810 0.0003043 136.22 0.815 0.502 5.018
5 0.0003693]| 135.04 0.85486 0.631 4.810 0.0003040 136.24 0.815 0.502 5.019
] 0.0003693) 135.03 0.85488 0.631 4810 0.0003041 136.24 0.815 0.502 5.019
7 0.0003693| 135.03 0.8549 0.631 4810 0.0003042 136.23 0.815 0.502 5.019
8 0.0003693| 135.03 0.8549 0.631 4.810 0.0003042 136.23 0.815 0.502 5.019

Table 4.11: Final Parameters for Strictly Proper Optimal PID Controllers for the Non-Minimum

Phase Model of the Quadruple-Tank Process

PARAMETERS C Cr
ke, 0.24606 0.22524
Jy 96.939 119.44
Ju 6 6
JHF 0.25 0.25
k; 0.0003693 | 0.0003042
T 135.03 136.23
0.8549 0.815
C 0.631 0.502
p 4.810 5.019
GMs 1.7 1.7

The tuned optimal controllers are implemented on the non-minimum phase of the
quadruple-tank process multiloop, both in simulation and experimentally. Steps in
the set point of the lower left and right tank levels, r. and rg, are introduced, one
after the other, to the multiloop. This is also done for the load disturbance to the
left and right pump discharge rates, d; and dr. The simulations are performed
using SIMULINK. Set point pre-filters are used in the multiloop to reduce the
excessive overshoots typical of J,~optimal PID controllers.

Figures 4.17(a) and (b) show the level responses of the simulated non-minimum
phase multiloop, using the just proper optimal PID controllers along with the set
point and disturbance steps. The control signal sent to each pump is also shown.
The level responses for the multiloop using strictly proper optimal PID controllers
are shown in Figures 4.18(a) and 4.18(b). Figures 4.19(a), 4.19(b), 4.20(a) and
4.20(b) show the level responses of the experimental implementation of the just
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proper and strictly proper optimal PID controllers, respectively, on the quadruple-
tank process in the laboratory. The split valves of the process have been
adjusted so that it follows the non-minimum phase dynamics similar to (4.8b).
The same set point pre-filters used for the simulations were used in the

experimental implementation of the controllers.
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Figure 4.17:  Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input
disturbance for simulated multiloop of non-minimum phase of Quadruple-Tank
Process, using just proper PID controllers.
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Figure 4.18:  Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input
disturbance for simulated multiloop of non-minimum phase of Quadruple-Tank
Process, using strictly proper PID controllers.
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Figure 4.19: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input
disturbance for experimentally implemented multiloop of minimum phase of
Quadruple-Tank Process, using just proper PID controllers.
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Figure 4.20: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input
disturbance for experimentally implemented multiloop of minimum phase of
Quadruple-Tank Process, using strictly proper PID controllers.
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The level responses of the multiloops appear satisfactory, both in simulation and
experimentally. All responses attain their set points, without oscillations and
sluggish offset damping. In some cases, however, one of the two tank levels
appears to significantly overshoot its final value before settling, compared to the
other tank’s level response. This problem could be solved by either adjusting the
Juy or k,, constraints on the controller designs in (4.24), (4.25), (4.31) and (4.32).
Identical constraint values were chosen by default for the two loops, which is not
compulsory for the design, the values could differ. Also, the set point pre-filter
constants could be adjusted.

Overall, the optimal controllers designed for the multiloops give satisfactory
disturbance rejection performance. Assessment of the closed-loop performance
of the optimal controllers, in both set point tracking and disturbance rejection, is
an area that will be extensively examined in subsequent chapters.
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CHAPTER 5

TRADE-OFFS BETWEEN PROPERTIES |IN
OPTIMAL CONTROL SYSTEMS

5.1 INTRODUCTION

The control system evaluation criteria have been applied to the design of optimal
Pl and PID controllers for the multiloops of the minimum and non-minimum
phases of the Quadruple-Tank Process. The controllers were designed by
solving (2.21), i.e., finding controller parameters, which optimized the closed-loop
performance criterion and at the same time conformed to the constraints
imposed on the control activity and stability criteria. Because the control system
evaluation criteria [25] allow the control engineer to study inter-relationships
amongst the closed-loop characteristics, the relationship between two important
properties — performance and control activity — will be considered.

Assessing closed-loop performance is of interest to the engineer in the process
industry because it is analogous to profitability, while control activity is analogous
to the operating cost incurred to achieve profitability. Therefore, the performance-
control activity relationship of several control systems with optimal Pl and PID
controllers will be computed and examined in this chapter. The profiles will be
computed by solving (2.21), but in this case the constraint on the control activity
criterion, J,, will have a range of values, with the performance criterion, J,,
optimized for each value. The first control system to be considered will be the
closed loop of a simple, hypothetical process with a first order plus dead time
(FOPDT) transfer function. Next, J,-J, profiles of the multiloops for the
Quadruple-Tank Process will be computed.

Other evaluation criteria, based on the time domain characteristics of the control
systems, will be considered for suitability as comprehensible substitutes of J,, and
Jy, respectively. Thus, the profiles for the multiloops will be computed using the
time domain-based criteria and compared with the J,~J, profiles for similarity.

Finally, the performance-control activity profiles for closed loops of processes
with varying degrees of dead time dominance will be examined. The objective of
this procedure is to determine the influence of time delay on the closed-loop
characteristics of optimal Pl controllers vis-a-vis optimal PID controllers.

5.2 J»~J, PROFILES FOR SISO OPTIMAL PI/PID CONTROL
SYSTEMS

The J,-J, profile for simple SISO closed-loops, with optimal Pl and PID
controllers, is studied using Process 1 from Example 2.1, i.e.,
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-$§

e

G(s) = 0541

For the optimal PI controller, (2.21) is expressed as

min{J, (p):GMg <1.7,J,, € C} (5.1)
P

C is a vector of values for J,; for the above SISO process, C consists of elements
ranging from 4 to 9.5. For each value of J, in C, the parameters for a J,-optimal
Pl controlier are computed.

For the optimal PID controller with a first order low-pass filter, (2.21) is expressed
as

min{J, (p):GMg <1.7,k,, € Q} (5.2)
P

Q is a vector of values for k, ; for Process 1, the elements of Q vary from 8.4 to

30. Figure 5.1 shows the J,~J, profiles for the closed loops for Process 1 using
optimal Pl and just proper optimal PID controllers, designed by solving (5.1) and
(5.2) respectively. The controller and evaluation parameters for all the controllers
are listed in Tables A.1 and A.2 in Appendix A.

16 T P T [ .
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e e R O . e :
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Figure 5.1: Ji~Jy profiles for closed loops for Process 1 using optimal Pl and optimal (just

proper) PID controllers. GMs < 1.7.
For closed loops with optimal Pl controllers, J, decreases exponentially as the
value of J, is increased. J, attains a minimum point with Optimal Pl Controller 10
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at J, = 8.5, beyond which it increases progressively. Figure 5.1 suggests that the
low frequency disturbance rejection performance of the closed loop with an
optimal PI controller improves up to a limit as the permissible control activity is
increased, and rapidly deteriorates as the control activity is increased beyond this
limit. On the other hand, the J, for the optimal PID controller decreases
exponentially to an asymptotic limit as J, is increased. Thus increasing control
activity improves its disturbance rejection performance, but does not degrade it.
However, the optimal PID control loop’s marginal performance improvement
decreases, making the increase in control activity eventually ineffective and
uneconomical. The profiles for the optimal Pl and PID controllers depicted in
Figure 5.1 are consistent with those reported in [13, 25].

To obtain insight into the implications of the above J,-J, profiles to the time
domain behaviour of the closed loop, its rejection response to a step disturbance
in the process input, using some selected controllers from Figure 5.1, are

simulated.

Process Yariable

~&—Optimal P11 |}
—+—Optimal PI4 -~
=+ Optimal P10 | __:
——Optimal P15 | 3
—a—Optimal PID 1 -4
—6—Qptimal PID 10 | __;

&~ Qptimal P11
& Oplimal Pl 4 |...
=== Optimal P{ 10
=~ Optimal PI15 |4
—&— Oplimal PID 1
& Optimal PID 10 (&

Time (secs)

Figure 5.2: Load disturbance step response of Process 1 with selected optimal controllers
from Figure 5.1.
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Amongst the selected optimal controllers, Optimal Pl Controller 1's step response
has the highest overshoot, lowest undershoot, and the longest settling time, thus
giving the lowest step response performance, which is consistent with its J,
location in Figure 5.1. Its control signal has the slowest response and longest
settling time, thus leading to the observed trend in the closed-loop’s step
response. The control signal’s trend suggests low controller gain, which explains
the low value of the control activity criterion J,.

Closed-loops with Optimal Pl Controllers 4 and 10 have progressively smaller J,
values than Controller 1, as well as lower overshoots, higher undershoots and
shorter settling times. Overall, their step response performances are better than
Controller 1’s. Their control signals have steeper responses and shorter settling
times, suggesting higher controller gains (shown by their higher J, values).
Optimal Pl Controller 15’s closed-loop has a slightly smaller overshoot than
Controllers 10’s. Hence the smallest overshoot amongst the selected optimal PI
controllers, but the longest settling time due to a sluggish damping of the process
output’'s offset. The small overshoot suggests higher controller gain than the
other PI controllers’, which is shown by its J, value. However, the sluggish offset
damping suggests low integral action, i.e., high integral time. Thus, amongst the
selected PI controllers, Optimal Pl Controller 10’s closed loop gives the best step
disturbance response performance, which corroborates its position as a minimum
point in the J,~J, profile for optimal Pl controllers in Figure 5.1.

The closed-loop responses for Optical PID Controllers 1 and 10 have smaller
overshoots than the optimal Pl controllers discussed above, as well as shorter
settling times. Their control signals have steeper responses and also shorter
settling times, meaning higher controller gains as shown by their J, values. The
closed-loop step responses and control outputs of Optimal Pl Controller 10 and
Optimal PID Controller 1 appear to be nearly identical, which is to be expected
from the closeness of their (J,, J,) coordinates in Figure 5.1.

To obtain clearer insight into the characteristics of the control signals in Figure
5.2, the parameters p =[k;,z,{,] of the optimal controllers are expressed in

terms of the traditional PID controller structure, i.e., [kc,z',-,z'd,r,] from (3.2), which

are used to calculate the gains of the three components of the controller. Figure
5.3 shows the optimal PI and PID controllers’ proportional gain (k. ), integral gain

(l% ), and derivative gain (k,z,).
i

Although the profile for the optimal PID controller appears to be disjointed from
the optimal PI controller’s, [25] shows that it is possible for the optimal PID
controller’'s performance curve to connect to the optimal PI's at its minimum-J,
point.
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Figure 5.3:

The proportional gain of the optimal PI controller increases almost linearly with
Ju. Its integral gain also increases with J, up to Controller 10, which has the
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minimum J, for the optimal PI controllers, and decreases thereafter. The optimal
Pl controller has no derivative gain. Hence, the improving closed-loop
performance with increasing control activity between Optimal Pl Controllers 1
and 10 is due to the combined effect of increasing proportional and integral
gains. There is a progressive deficiency in integral action for Optimal PI
Controllers 11 to 15, although the proportional gain is increasing. This explains
the sluggish settling of the step response of the closed loop with Controller 15,
which was observed in Figure 5.2, combined with the relatively small overshoot.
Also, lack of derivative action contributes to the exponential deterioration of
closed-loop performance as J, increases beyond 8.5. The optimizer's
computation of controller parameters, which increase proportional gain with J,, at
the expense of decreasing integral gain, ensures all the optimal Pl controllers
meet the mid-frequency robustness constraint GMs < 1.7.

For the optimal PID controllers, both proportional and integral action increase
asymptotically. There is an initial drop in the derivative action as J, increases,
after which it also increases to an asymptotic limit. The asymptotic profiles of the
three gains explain the corresponding asymptote in the J,~J, profile of the optimal
PID controllers. Consequently, although the increase in the permissible control
action of the optimal PID controller buys non-deteriorating performance
improvement, the diminishing returns on performance, due to the asymptote,
eventually makes the increase uneconomical.

From the design and simulation of optimal controllers for the simple SISO
process above, it can be concluded that if the stability (mid-frequency
robustness) criterion of its closed loop is constrained, increasing the control
activity limit of the closed loop leads to an improved disturbance rejection
performance when either an optimal Pl or PID controller is used. However, in the
case of the optimal PI, the performance improvement with control activity has an
upper limit, beyond which it deteriorates. With the optimal PID controller,
performance also improves to an upper limit but does not deteriorate. The J,~J,
profiles for the two groups of controllers show that optimal PID controllers can
give better closed loop performance than the optimal Pl controllers, and
demonstrate the advantage of including the derivative (D) control portion with a
P1 controller in the closed loop.

The above investigation of the J,~J,, profiles has been restricted to a stable SISO
process transfer function with one pole, no zero and a small time delay. In
contrast, Kristiansson presents profiles in [13] for optimal Pl and PID controllers
used to control SISO processes with transfer functions having a wide variety of
structures, including high order and non-minimum phase structures. The results
show that there is usually a corresponding minimum in the J,/J, graph when a PI
controller is used in the closed loop, a point made in [3]. The results also show
clear improvements in closed-loop performance when derivative control is
utilized. For an optimal Pl controller controlling a process with a first-order plus
delay model, [15] shows how the minimum J, can be calculated analytically. For
non-minimum phase systems controlled by optimal PID controllers, [16]
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demonstrates theoretically that a lower limit for J,, corresponding to the
asymptote, does exist.

5.3 J,~J, PROFILES FOR QUADRUPLE-TANK MULTILOOP

In the last section, an important feature observed in the J,-J, profiles was that if
the GMs criterion of a SISO optimal Pl closed loop is constrained, increasing its
control action criterion, J,,, improves its step response performance up to a limit,
beyond which its performance deteriorates. If an optimal PID controller is used in
the closed loop, its step response performance, generally better than the optimal
PI's, improves with increasing control action up to an asymptotic, non-
deteriorating limit. Hence, derivative control plays a significant role in enhancing
closed-loop performance.

Although the profiles investigated were for SISO closed loops, the J,~J, graphs
for the multiloops of the minimum and non-minimum phase models of the
Quadruple-Tank Process would also be examined. The basis for investigating the
J~J, relationships for the multiloops comes from the concept of the iterative
sequential loop closing method [17] discussed in Chapter 4, which allows a
multiloop to be represented by a sequence of SISO closed loops. For example,
the multiloop for the minimum phase dynamics of the quadruple-tank process
can be expressed as decoupled SISO closed-loops Loop 1 and Loop 2 as shown
in Figures 4.10(a) and 4.10(b) respectively. Hence, the J,~J, graphs are plotted
separately for Loop 1, Loop 2, as well as Loop 3 and Loop 4 (Figures 4.16(a) and
4.16(b) respectively).

Computing the J,~J, profiles for the four closed-loops requires the design of a
range of optimal Pl and PID controllers for the minimum and non-minimum phase
multiloops. Steps 1.1 to 1.5 and 2.1 to 2.5 in Chapter 4 are followed to design
the multiloops’ optimal Pl and PID controllers; for the just proper optimal PID,
(4.31) is modified to (5.2) with Q consisting of elements ranging from 0.9 to 4.5.
For the optimal PI, (4.31) is modified to

min{d, (p):GMg <1.7,J, eW};  p=Ik; 7] (5.3)
P

W's values range from 0.1 to 0.8. The parameters for the optimal controllers
designed for the minimum and non-minimum phase multiloops can be found in
Tables A.3 to A.10 of Appendix A. Figures 5.4 to 5.7 show the J,~-J, profiles for
the four loops mentioned above.

The performance-control action characteristics for the four loops are similar to
Figure 5.1, thus providing the same comparative assessment on the closed-loop
performance of optimal Pl and PID controllers. In the multiloop for the two
phases of the Quadruple-Tank Process, optimal PID controllers can give
improved performance in the level responses of the two lower tanks, compared
to optimal Pl controllers.
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Figure 5.4: Ji~J, profiles for Loop 1 of the minimum phase multiloop of the Quadruple-Tank
Process using optimal Pl and optimal (just proper) PID controllers. GMs< 1.7.
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Figure 5.5: J~J, profiles for Loop 2 of the minimum phase multiloop of the Quadruple-Tank
Process using optimal Pl and optimal (just proper) PID controllers. GMs < 1.7.
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Figure 5.6: J~J,, profiles for Loop 3 of the non-minimum phase multiloop of the Quadruple-
Tank Process using optimal Pl and optimal (just proper) PID controllers. GMs <
1.7.
]
350 |- —3¢— Optimal PID |
~~ Optimal Pl

150 T T E --------------------------------------------------------------------------------------------------------------------- —]
100 ------------
| i
80, 2 3
Figure 5.7: Jv-J, profiles for Loop 4 of the non-minimum phase multiloop of the Quadruple-
Tank Process using optimal Pl and optimal (just proper) PID controllers. GMg <
1.7.
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5.4 TIME DOMAIN EVALUATION CRITERIA

Jy and J, are criteria for evaluating a closed loop’s control activity and low
frequency disturbance rejection performance respectively. Their mathematical
definitions in (2.17) and (2.10) respectively imply that transfer functions for both
the process and the controller are required to compute them. In industry, process
models are not always available. Where they are available, variations in process
dynamics may render existing models invalid and make their regular updating
necessary. Thus, computations of the two criteria for industrial control loops may
not always be accurate: closed-loop evaluations and controller comparisons may
be misleading. Furthermore, with (2.17) and (2.10) being frequency domain-
based criteria, physically relating them to controller aggressiveness and loop
performance may not be straightforward to a plant operator. On the other hand,
the insights provided by the J,-J, graphs in Figure 5.1 and 5.4, concerning
closed-loop properties would be useful in assisting process engineers and
operators tune control loops.

Thus, it would be desirable to represent the observed performance-control action
characteristics for closed loops of optimal Pl and PID controllers, described by
the J,~J, profiles, using criteria that can be physically related to the loop
properties being evaluated and easily comprehended. It would also be
convenient to be able to compute these criteria using process information readily
available to the plant operator, such as sampled time domain data for the closed
loop’s process output and the control signal.

In Chapter 2, J, was shown to be approximately equal to 1/k;, the inverse of the
PID controller’s integral gain, which is equal to the integral of the error signal, /E.
For small undershoots in load step disturbance, IE was shown to be
approximately equal to /AE, the integral of the absolute error. /AE is considered
the most common SISO closed-loop performance index. Another well-known
index for SISO closed loops is the integral of the squared error, ISE. They are
defined in [4, 14] as:

IAE = |le(t)ot (5.4)
ISE=|e(t)?ot (5.5)
o

For closed loops with disturbance rejection control objectives, r(t) = 0. Therefore
e(t)=-y(t)
le(t) =1y(t)
e(t)? = y(t)
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If process data are sampled for duration, t; that is sufficiently long to capture the
closed loop’s settling response at the attainment of steady state, then for
disturbance rejection, (5.4) and (5.5) respectively become

IAE ~ J‘ly(t et (5.6)

ISE ~ j‘y(t)zdt (5.7)

Thus, IAE and ISE are measures that could be applied to evaluate closed-loop
performance in the same way as J,. Moreover, they can be easily calculated from
the sampled data for the process output, y(t).

The above time-domain performance measures are for SISO closed loops. It
would be of interest to measure the performance of a multiloop using a time
domain criterion. A 2 x 2 multiloop performance criterion is proposed in this
thesis for the Quadruple-Tank Process is NORM][e., eg], defined as:

f

NORMIe. (1 )en(tr)]= | (o0 t)? +er(t)?). 5.:8)

t=0

where e, and e are the error signals for Loops 1 and 2 (or Loops 3 and 4)
respectively. Again, for disturbance rejection, (5.8) can be written in terms of the
process output, instead of the error signals. For the Quadruple-Tank Process, h;
and hg are its multiloop’s process outputs. (5.8) then becomes:

&

NORM s 1) en (1 )]= > " (bu(t)? + ha(t)?) (5.9)

t=0

As the performance of a closed loop/multiloop improves, the values of the
aforementioned time domain performance measures are expected to decrease,
just like J,, but otherwise increase.

The control activity criterion, J,, is based on the control sensitivity function, S,,
which is the transfer function between sensor noise, w(f), and the control signal,
u(t). Its value increases as the gain of the transfer function increases. As an
illustration, consider a SISO closed loop, whose controller parameters can be
altered so that its J, value varies. If the process output, y(t), of the closed-loop
response is corrupted by the same stochastic sensor noise signal each time the
controller parameters are altered, it is expected that the degree of stochasticity,
or volatility, of the loop’s control signal, due to S,, would increase as the J, value
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of the loop increases. For stochastic systems, [43] mentions the variance of the
control signal, u(t), as a likely measure of control activity. However, a time
domain criterion proposed in this thesis for measuring control activity of a
disturbance rejection closed loop is the variance of the differenced control signal,
VARJ[Au]. The differenced signal, Au, is obtained from the control signal through
the relationship:

Au(t)=u(t)-u(t-1); t=12,..1 (5.10)

Differencing the control signal calculates the trend in which the control signal’s
value changes from one sampling instance to another. Calculating the variance
of the differenced signal measures the overall amplitude of value changes in the
control signal, thus measuring the volatility of the signal. Therefore, it is expected
that a control signal significantly affected by sensor noise, or by a stochastic
disturbance like coloured noise, would possess an equally significant degree of
volatility, and hence a high variance for its differenced signal.

For a SISO closed loop tracking a set point signal, the proposed measure for
control activity is the Median of Absolute Deviation (MAD) of the differenced
control signal, which is discussed in [55]. It is defined as:

MAD[Au]= MEDIANL U {au(t)-MEDIAN[A(t )]}] (5.11)

For the Quadruple-Tank Process’ multiloop, a time domain evaluation criterion
proposed for the combined control activity of its controllers is VAR[Au;, Aug],
given by:

VAR[Au, ,Aug |=VAR[Au, +Aug] (5.12)

5.5 TIME DOMAIN PERFORMANCE-CONTROL ACTIVITY
EVALUATION CRITERIA FOR QUADRUPLE-TANK
MULTILOOP

Having discussed several time domain evaluation criteria for measuring the
performance and control action of a control system, the next step is to apply
these criteria to the multiloop of the Quadruple-Tank Process and compare their
performance-control activity profiles with those given by J, and J, in Figures 5.4
to 5.7. Because these criteria rely on process data for their computation, it
becomes necessary to implement the multiloop using the controllers designed in
Section 5.3, and obtain data for the system’s response for each pair of controllers
implemented. Controller implementation is carried in simulation, via SIMULINK,
and experimentally on the Quadruple-Tank Process in the laboratory. The
following loop excitation experiments are performed and response data sampled:

Excitation 5.1: Set point step in r, introduced to Loop 1, while keeping rs and
disturbance inputs d, and dr at their nominal values.
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Excitation 5.2:

Excitation 5.3:

Excitation 5.4:

Excitation 5.5:

Excitation 5.6:

Excitation 5.7:

Excitation 5.8:

Excitation 5.9:

Excitation 5.10:

Set point step in r. introduced to Loop 3, while keeping rr and
disturbance inputs d; and dr at their nominal values.

Step in disturbance d, introduced to Loop 1, while keeping dr and
set point inputs r; and rg at their nominal values.

Step in disturbance dr introduced to Loop 3, while keeping d; and
set point inputs r; and rg at their nominal values.

Set point step in rg introduced to Loop 2, while keeping r. and
disturbance inputs d; and dr at their nominal values.

Set point step in rg introduced to Loop 4, while keeping r, and
disturbance inputs d; and dr at their nominal values.

Step in disturbance dr introduced to Loop 2, while keeping d; and
set point inputs r_ and rk at their nominal values.

Step in disturbance d, introduced to Loop 4, while keeping d; and
set point inputs r; and r at their nominal values.

Steps in disturbances d;, and dr introduced to multiloop of
minimum phase process, while keeping set point inputs r, and rg
at their nominal values.

Steps in disturbances d; and dg introduced to multiloop of non-
minimum phase process, while keeping set point inputs r, and rg
at their nominal values.

Figures 5.8 to 5.21 show the performance-control activity profiles for the above
excitation experiments, computed using the time domain evaluation criteria.

Figure 5.8:
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ISE[y]-MADI[Au] profiles for Excitation 5.5 implemented in simulation.
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Figure 5.9: ISE[y}-MAD[AuU] profiles for Excitation 5.1 implemented in simulation.
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Figure 5.10: ISETy]-VAR]Au] profiles for Excitation 5.7 implemented in simulation.
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Figure 5.11: ISE[y}-VAR[Au] profiles for Excitation 5.3 implemented in simulation.
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Figure 5.12: ISEy]-MADI[Au] profiles for Excitation 5.2 implemented in simulation.
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Figure 5.13: ISE[y]-VARJAU] profiles for Excitation 5.4 implemented in simulation.

180 ] ! I | 1 ! v u
! | H H ; ; By Optimal Pl

: : : : : : —3¥¢— Optimal PID
L R oo e s e =

170

165

150

145

140

S N— -

i i
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.04
MADI[diff[u]]

Figure 5.14: ISETy]-MADIAu] profiles for Excitation 5.6 implemented in simulation.
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Figure 5.15: ISE]y]-VAR[Au] profiles for Excitation 5.8 implemented in simulation.
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Figure 5.16: NORMe,, egr]-VAR[Au, + Aug] profiles for Excitation 5.9 implemented in
simulation.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13 .
: ~~g3— Optimal P
; ; ; —¥— Optimal PID
0 S R — -
L T R T TP L e T ]
e
=
3,
E
5 D T I T TTIT P NPT ~
=
[
o
4
10
0 5 10 15
Var[difffuL]+difffur]] x10°
Figure 5.17: NORM[e,, egr]-VAR[Au, + Aug] profiles for Excitation 5.10 implemented in
simulation.
T 1
046 ~& OPTIMAL PI —
~¥— OPTIMAL PID
—E— OPTIMAL PID + LOW PASS FILTER | |

0.44

042

04

038

0.34

0.32----mm-- I SR Y O T IS —
CLOSED-LOOP ¢ :
] E S S
L S 0 SO SO MO —
i | i i i
0.005 0.01 0.015 0.02 0.025 0.03

Var[difffu]]

Figure 5.18: ISEy]-VAR[Au] profiles for Excitation 5.3 implemented experimentally on
Quadruple-Tank Process.
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Response of selected closed loops (in Figure 5.17) from Excitation 5.3

implemented experimentally on Quadruple-Tank Process.

Figure 5.19:
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Figure 5.20: ISE[y]-VAR[Au] profiles for Excitation 5.7 implemented experimentally on
Quadruple-Tank Process.

Based the experimental implementation of the optimal controllers, the process
output, control signal and differenced control signal are shown in Figures 5.19
and 5.21 for the closed loops of the optimal Pl controller (whose closed loop has
the smallest /SE[y] value), a selected optimal PID controller with a first order
filter, and an optimal PID controller with a second order filter.

The performance-control activity plots, obtained using the time domain-based
evaluation criteria, show the same profiles obtained with J, and J, in Figures 5.4
to 5.7. The optimal PID controllers generally give better closed-loop performance
than the optimal Pl controllers. However, as shown by the VAR[AU] values in
those figures, the price to be paid by the PID controllers for improved
performance is greater control activity. The optimal PID controllers with second
order filters generate less control activity than the PID controllers with first order
filters. There is, however, a slight deterioration in performance. Thus, the second
order-filtered PID controllers improve the performance of the Pl controllers and
generate control activity less aggressive than the first order-filtered PID

controllers.

The time domain criteria also show, in agreement with the J,-J, profiles, that the
performance of the optimal PID controller is asymptotic, i.e., performance
improvement with increasing control activity is progressively marginal until no
significant improvement is achievable.
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Response of selected closed loops (in Figure 5.19) from Excitation 5.7

implemented experimentally on Quadruple-Tank Process.

Figure 5.21:
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The tank level responses from the simulation of Closed Loops A, B, C, D, E, and
F showed similar behaviour to the experimental time trends in 5.19 and 5.21 and
supported the performance comparisons shown in Figures 5.18 and 5.20
respectively, i.e. inclusion of derivative control improves the closed-loop
performance of the Pl controller and careful filtering of its control signal makes it
as moderate as the plain Pl controller’s.

5.6 TRADE-OFFS FOR PROCESSES WITH VARIOUS TIME DELAY-
TIME CONSTANT RATIOS

An attractive feature of the control system evaluation method [25] is that the
performance criteria of various control systems can be compared while other
property criteria are constrained equally for all the systems. If these systems use
the same controller structure but different processes, then it is possible to gain
some insight to how process dynamics influence closed-loop performance.
Process dynamics is one of the factors that limit the achievable performance of a
control system [5, 18, 19].

The influence of a process’ time delay on the closed-loop’s performance is of
major interest, as quite a number of industrial processes have significant dead
times due to the presence of distance velocity lags, recycle loops, and the
analysis time associated with composition measurement. The presence of
process time delay limits the performance of a conventional feedback control
system. In terms of a feedback loop’s frequency response, time delay adversely
affects the system’s stability by adding phase lag to the loop. Consequently, the
controller gain must be reduced below the value that can be used if no time delay
were present, and the response of the closed loop would be sluggish compared
to that of the delay-free process. Many processes can be represented by a first-
order-plus-dead-time (FOPTD) model:

Ke%
$+1

G(s)=

A typical measure of the dominance of the time delay in a process is the
fractional dead time, also known as the normalized dead time [4], defined as

%_H. In this thesis, % i.e., the time delay-time constant ratio, is used. In this

section, the J,~J, profiles for feedback loops of simple, hypothetical processes
with small to moderate time delay-time constant ratios, and using optimal Pl and
PID controllers, are computed to study the benefits of derivative action as the
ratio increases. Table 5.1 shows the transfer functions for the processes. Their
time delay-time constant ratios vary from 0.1 to 0.4, but their gains and time
constants are unaltered. Figure 5.22 shows the J,-J, profiles of the closed loops
for the processes controlled by optimal Pl and PID controllers.
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Table 5.1: Transfer Functions and Time Delay-Time Constant Ratios of Simple Processes

PROCESS MODEL | TIME DELAY — TIME CONSTANT RATIO
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Figure 5.22:  J,~J, profiles of closed loops for processes in Table 5.1 using optimal Pl and
optimal (just proper) PID controllers. GMg < 1.7.

The J,~J, profiles in Figure 5.22 show the already-discussed performance
improvement derivative control brings to a Pl-controlled closed loop. Additionally,
they show that the performance of closed loops using either Pl or PID controllers
generally deteriorates as the process’ time delay dominance increases. Thus, for
processes that are highly time delay-dominated, the PID control algorithm might
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not be adequate for meeting control objectives, in which case other algorithms
and control schemes should be considered.

Another interesting feature of the profiles in Figure 5.22 is that as the time delay
dominance in a process increases, the performance gap between the optimal
PID closed loop’s J, asymptote and the minimum-J, point of the optimal Pl closed
loop increases. Thus, even though the PID structure is not the best control
system for processes with large time delays, inclusion of derivative control makes
a significant difference in the performance of the Pl controller. This improvement
is due to the predictive property of the derivative controller, which is able to
estimate future, un-sampled values of the process output via linear extrapolation
and generate the corrective control action based on the estimate before the
actual output is sampled. However, for most processes, linear extrapolations do
not provide accurate predictions of future outputs [5], thus requiring other
techniques for improved predictions. At the same time, generating control action
for a future process output measurement, based on a linearly-extrapolated
prediction, is of greater benefit than control action based on the actual, but
delayed, measurement. Moreover, the mid-frequency constraint of GMs < 1.7,
imposed on all closed loops in Figure 5.22, implies that the controllers optimized
for the processes with greater time delays must have smaller controller gains to
retain closed loop stability. The reduction in controller gains, as shown by the
decreasing J, values of the PI controllers, with minimum J, values in Figure 5.22,
implies reduced controller aggressiveness, which in turn implies reduced
performance capability. Thus, the closed loop performance of the Pl controller
deteriorates significantly as the process’ time delay increases, and its
performance gap from the PID closed loop also increases.

The time domain evaluation criteria applied to the loops of the Quadruple-Tank
Process are also applied to the closed loops of the processes in Table 5.1, the
objective being to see whether the performance-control activity profiles in Figure
5.22 can also be represented by these criteria. In this case, two forms of
disturbance would be introduced to the closed loops: a step in the disturbance at
the process input, and an integrated white noise signal added to the process
output. An integrated white noise signal is obtained by sending a Gaussian white

noise signal through an integrating filter % Figure 5.23 shows the block

diagram for generating an integrated noise signal and the time plots of the
unfiltered and filtered signals. Figures 5.24 and 5.25 show the SIMULINK block
diagrams for the closed loops excited by step and integrated white noise
disturbances respectively.
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Figure 5.23:  Generation of integrated noise disturbance from Gaussian white noise signal.
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Figure 5.24: SIMULINK block diagram for closed loop with step disturbance introduced at
process input.
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Figure 5.25:  SIMULINK block diagram for closed loop with integrated white noise disturbance

introduced at process output.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To plot the performance-control activity profiles for the closed loops of the
processes using the time domain evaluation criteria, the following excitation
experiments are performed on the SIMULINK closed loops and response data
sampled:

Excitation 5.10: Step in process input disturbance, d, while keeping other
exogenous variables at nominal values.

Excitation 5.11: Integrated white noise disturbance introduced to process output,
while keeping set point, r, and input disturbance, d, at nominal
values.

Excitation 5.12: Step in set point, r, while keeping other exogenous variables at
nominal values.

Figures 5.26 to 5.28 show the performance-control activity profiles for the above
excitation experiments, computed using the time domain evaluation criteria.

—~- Optimal PI; 0.1 ratio
—&- Qptimal P}; 0.2 ratio |__|
%~ Optimal Pl; 0.3 ratio

& Qptimal Pl; 0.4 ratio

-+ Optimal PID; 0.1 ratio
-3 Optimal PID; 0.2 ratio
-4 Optimal PID; 0.3 ratio
~B Optimal PID; 0.4 ratio

Var[difffu]] 4
Figure 5.26: ISE]y]- VAR[AU] profiles for Excitation 5.10 implemented in simulation.
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ISETy]-MADI[Au] profiles for Excitation 5.12 implemented in simulation.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1z
x10°



The profiles in Figures 5.26 to 5.28 are consistent with those in Figure 5.22. The
Pl controller’s closed-loop performance is highly restricted for processes with
significant time delays. On the other hand, the asymptotic profile of the PID
controller shows a progressively widening performance gap from the PI
controller. Hence, for closed loops of dead time-dominated processes, in which
the control structure options are restricted to Pl or PID controllers, performance
benefits are obtainable by implementing the PID controllers instead of the PI
controllers. First or second order filtering of the PID control signal can be applied
to reduce its aggressiveness, if found to be excessive. Since the above
conclusion has been drawn from closed-loop simulations and using hypothetical
process transfer functions, it would be desirable to validate it on a real process
having adjustable dead time dominance features. Such a process will be
discussed in the next chapter.
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CHAPTER 6

THE HEATED TANK PROCESS

6.1 INTRODUCTION

In Chapter 5, closed-loop simulations of processes with various degrees of time
delay dominance showed that time delay imposes limitations on the performance
of optimal Pl and PID controllers, and moreover that the performance gap
between optimal Pl and PID controllers widens as the delay dominance becomes
more significant. Thus, the simulations showed that for time delay dominated
control systems, in which controller choice is restricted to either the Pl or PID
structure, the derivative action of the PID controller gives it an advantage over
the PI controller in terms of its potential for performance improvement. The next
step is to experimentally confirm the simulation results through a pilot-scale
process.

The Heated Tank Process will be considered for the experimental investigation. It
has a process output sensor configuration that allows the time delay dominance
of its dynamics to be alterable; this feature will be discussed in the next section.
Thus, one of the research objectives to be addressed in this chapter is the
implementation of open-loop excitation experiments on the Heated Tank Process
and identification of linear, time-invariant, continuous-time models, having
various values of the time delay-time constant ratio, from the sampled response
data. The other objective is the design of optimal Pl and PID controllers for the
models, by solving (2.21), and implementation of their closed loops in simulation
and experimentation. The performance-control activity profiles for the closed
loops will be computed using the J,-J, criteria, as well as the time domain
evaluation criteria discussed in Chapter 5.

6.2 PROCESS DESCRIPTION

The Heated Tank system consists of a transparent glass tank. The system has a
cold-water inlet, which introduces water into the tank from the utilities line. The
system has a heating coil located inside the tank, near its base. Steam flowing
through this coil from the utilities line heats the water in the tank. The tank has
two outlet lines, each with a valve that controls the flow-rate of water exiting the
tank. The first outlet line enables the direct discharge of water from the tank,
while the second line allows the flow of the exiting water into a winding pipe;
thermocouples are inserted at various points along the pipe’s length to measure
the water temperature. A computer interface, consisting of the Emerson's Delta V
hybrid DCS and MATLAB OPC DA Toolbox, facilitates the implementation of
various experiments on the heated tank system, ranging from process
identification to controller implementation. Three controllers in the Delta V system
control the flow of the steam and cold-water into the tank:
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a) The Cold-Water Flow Controller (FIC-104), which facilitates the manual or
automatic control of cold-water flow into the tank;

b) The Steam Controller (FIC-105), for the manual or automatic control of
steam flow through the heating coil in the tank; and

c) The Water Level Controller (LIC-101), which regulates the water level in
the tank around a set point.

The diagram in Figure 6.1 illustrates the set-up of the heated tank system,
showing the tank, flow outlet lines and valves, the steam coil, plus the flow and
level controllers.

Water Level Controller
Steam

LIC-101
@ _________________ ’. Flow Controller
g FIC-105

Cold Water
prom s @ Flow Controller @ ------------ :
: . FIC-104 . |
v ¥
3% Y

Cold Water Line Steam Line

; @} §§‘D L————» Steam Discharge

- .
Water Discharge Thermocouple 1

(1) —
Thermocouple 2
(15) o
>
C ) Thermocouple 3
(73)
Water Discharge
Figure 6.1: Process schematic of the Heated Tank Process.

The cold-water controller introduces water into the tank, which exits the tank via
the outlet lines. Due to the flow resistance at the outlets, the water is retained in
the tank, thereby causing its level to rise until a constant level is attained. Next,
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the steam controller sends steam through the coil and heats the water in the
tank. The thermocouples on the winding pipe measure the temperature of the
exiting water at various distances from the tank. The farther the thermocouple’s
distance from the tank outlet, the longer the delay in its measurement of the
water temperature. The cold-water controller can be cascaded with the level
controller, so that the configuration keeps the water level in the tank constant at a
chosen set point.

MATLAB OPC DA Client makes it possible to construct the input sequences for
the steam flow rates, introduce them to the system and record the input and
output data. The Delta V DCS provides the interface between the OPC DA client
and the physical system.

The following assumptions are made about the process conditions:

a) There is thorough mixing of cold and heated water in the tank, so that
the water temperature is homogenous;

b) Heat loss/gain along the winding pipe is negligible;

c) The water level in the tank is kept constant by the level controller;

d) The closed-loop dynamics of the steam controller is negligible;

e) Convective heat transfer within the exiting water, while flowing between
the tank and the thermocouples, is negligible.

The energy balance of the process can be used to formulate the linear, time-
invariant, univariate transfer function of the system’s input-to-output variables as:

Ti(s)=G(s)-us(s)

G,(s):k’e Tdls (6.1)
7;8+1
where:

T, = Deviational temperature of exiting water, measured at
thermocouple ; 1=1,2, 3

us =  Deviational steam flow-rate

Te# = Transport delay of temperature measurements at
thermocouple /

7, =  Time constant of temperature response at thermocouple /

ki = Gain of temperature response at thermocouple /

ki is a function of the steam’s latent heat of vapourization, specific heat capacity,
water density, and the cold-water flow rate. 7, is a function of the volume of water
in the tank and the cold-water flow rate.

(6.1) is a first-order, linear model, whose parameters will be estimated using
sampled temperature response data from excitation experiments.
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6.3 PROCESS IDENTIFICATION
6.3.1 EXCITATION EXPERIMENT

An excitation experiment is implemented on the Heated Tank Process to obtain
the relationship between the input (steam flow set point) and the outputs
(temperature measurements at Thermocouples 1, 2, and 3). The following steps
are performed:

a) The cold-water controller is cascaded with the level controller; the water
level set point value is chosen as 0.17m. The system is then allowed to
attain steady level.

b) The steam controller is set to the AUTOMATIC mode and the nominal
steam flow rate set point is chosen as 11 kg/hr.

c) Positive and negative step tests of various magnitudes are performed to
determine a linear range around the nominal point.

d) From the step test results, the frequency ranges of interest are
determined and Random Binary Sequence (RBS) input sequences are
designed accordingly.

e) The RBS input signals are introduced to the steam controller via the
MATLAB OPC.

fy The process’ temperature response at each thermocouple
(Thermocouples 1, 2, and 3) is sampled using the MATLAB OPC.

6.3.2 STEP TEST RESULTS AND EXCITATION SIGNAL DESIGNS

Several step magnitudes were tested. Good signal-to-noise ratios and
approximately linear level dynamics were obtained with perturbations of £ 3
kg/hr, nominal input steam flow-rate of 11 kg/hr, and sampling the temperature
response from Thermocouple 1 with 65° and 15° respectively, for the valve
positions of water outlet valves 1 and 2. Step test results for water temperature
are shown in Figure 6.2. Sampling period, ts, was 1 second for the excitation
experiments. The temperature-response data were thereafter down-sampled to 5
seconds for the model computations.
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STEP TESTS FOR HEATED TANK PROCESS

(] w W w
=] L] = o

Water Temperature {deg C}

N
[2:]

Steam Flow-rate (kg/hr)

1
a 200 400 600 800 1000 1200
Time (secs)

Figure 6.2: Water temperature response of Heated Tank Process to positive and negative
step changes in the steam flow rate.

The step-response data were used to compute parameter estimates for first
order model approximations to design the Random Binary Sequences (RBS) for
exciting the system. Parameter estimates obtained from these tests are
presented in Table 6.1.

Table 6.1: 1% Order Approximation Constants from the Step Tests

Gain (°C-hr/kg) | Time constant (sec) | Time delay (sec)
1.5 40 11

6.3.3 TEMPERATURE RESPONSES AND MODEL COMPUTATION

The steam controller was excited with the designed RBS set point signal for the
thermocouples. Figures 6.3(a) — (d) show the temperature responses of
Thermocouples 1, 2 and 3 to the excitation, as well as the input signal.
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Figure 6.3(a): Water temperature response measurement at Thermocouple 1.
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Figure 6.3(b): Water temperature response measurement at Thermocouple 2.
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Figure 6.3(c): Water temperature response measurement at Thermocouple 3.

Using the pem and idproc functions in MATLAB, for continuous-time model
identification, and imposing the model structures in (6.1) on the identification
functions, the transfer functions for the temperature measurements at the

thermocouples were computed.

Figure 6.4 shows the division of the excitation data into the training data sets and
the validation data sets.
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Measured and simulated mode! output - Thermocouple 1
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Validation of continuous-time model for transfer function at Thermocouple 1.

Figure 6.5(a):

6.3.3.2 THERMOCOUPLE 2 MODEL
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Measured and simulated model output - Themnocouple 2
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Validation of continuous-time model for transfer function at Thermocouple 2.

Figure 6.5(b):

6.3.3.3 THERMOCOUPLE 3 MODEL
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Figure 6.5(c): Validation of continuous-time model for transfer function at Thermocouple 3.

Table 6.2 summarizes the model identification results for the thermocouples.

Table 6.2: Process Models for Temperature Measurements of Heated Tank Process

SENSOR PROCESS MODEL TIME DELAY — TIME CONSTANT RATIO

170217781

Thermocouple 1 G1(S) = m 0.1366
—48.93s

Thermocouple 2 | G,(S) = -1(—77;—3593—7;-13 0.6695
—68.562s

Thermocouple 3 | G3(5)= 1'—7(%—8;—61—;1—)— 0.8454
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The models obtained for the three thermocouples show that the transport delay
of temperature measurement at a thermocouple increases with the
thermocouple’s distance from the tank. It can also be observed that the process
gain and time constant increase with the time delay. This observation can be
attributed to convective heat transfer dynamics occurring within the exiting water
in the spiral pipe as it flows between successive thermocouples.

6.4 DESIGN OF OPTIMAL Pl AND PID CONTROLLERS

The consecutively increasing time delay-time constant ratios of the transfer
functions in Table 6.2 provide a practical example of processes approximately
similar to those in Table 5.1, and therefore enable the experimental evaluation of
the performance differences between closed loops with optimal Pl and PID
controllers as process time delay increases. To design the optimal Pl and PID
controllers for a range of J, constraints, (5.1) and (5.2) are respectively solved for
the transfer functions.

The parameters for the designed optimal controllers can be found in Tables A.11
to A.16 of Appendix A. Next, the J,~J, profiles for the closed loops are plotted, as
well as the ISE[y]-VAR[Au] profiles for closed loops perturbed by steps in load
disturbance at the process inputs and integrated noise signals added to process
outputs.

6.5 OPTIMAL PI AND PID PERFORMANCE-CONTROL ACTION
PROFILES

Figure 6.6 shows the J,-J, plots for the closed loops of the processes Gq(s),
Gofs), and Gjs(s), using optimal Pl and PID controllers. Figures 6.7(a) and 6.7(b)
show the ISE[y]-VAR[Au] profiles for simulated closed loops with input step and
integrated white noise disturbances respectively. Figure 6.7(c) shows the ISE[y]-
MADJ[Au] profiles for the simulated closed loops with steps in their set point
signals.
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Figure 6.7(a): ISE[y]-VAR[Au] profiles from simulation of Heated Tank closed loops perturbed

by input step disturbances.
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by step in set point signal.
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Figures 6.7(a), 6.7(b), and 6.7(c) show that the capability of the optimal Pi
controller becomes more restricted as the system’s time delay increases; the
profiles also show that the potential improvement derivative action offers to the Pl
controller increases with the system’s time delay. To obtain clearer insight into
the improvement offered to the closed loop by using a PID controller, the
disturbance responses of the loop to the input step, integrated white noise, and
set point step signals, using the minimum-J, Pl controllers and some selected
PID controllers for each temperature model, are plotted in Figures 6.8(a), 6.8(b),
and 6.8(c).
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Figure 6.8(a):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thennocouple 1 Temperatire (PI)

Vafdifflu] =043

Conrol npu

A1 .................. J ......... I.
v | : : -
§ J ' i A §
E y B fft 5 f‘hl .
b »Mwﬁ .
0 200 400 600 800 1000 0 0 400 60 B0 1000 0 20 400 600 800 100
Thermocouple 1 Temperature {PID) Cotrol it Vit = 137715
61 -------- 1‘ --------- : --------- r ........ -: ......... : ’: . .
o b
;nafw :e\,m u%ﬂ#ugﬁmfm fas;«u 5,
0 M 400 500 888 wnn
ThennocaupleZTempemture(Pl)
§ e 47{;{‘ -------------------------------- . f
f m!w it m,y “‘»’%v Mﬁ : )
; = i ch
I 0 400 BBU 80 1000
Thermacouple 2 Temperature {PID}
81 ........ 1;‘ ........ Ip ........ .: ......... :. ........ .: z
f | ! i !,,:
gﬂ oo ﬁw’; ”‘«rm‘f"ﬂ%a‘ -j:‘:“i“..%.ﬁ.}yﬁ.\; ?
& L L i : :
Fom W @ W W

T3 (deg )

3 L T— ’:ﬁ ........ :5 ......... E .: s
a ‘ t .' i' t i ;
| EA ff.\r.*.mﬂm.ﬂ!.? ...... W i
» I l \M' 1 :
|. | 1 ] w

§ A 400 600 B0 1000

Time (se4s)
White Noise Signal
1

LR T 2Ty

Time {3e¢5}
fitegrated White Noise Signal {Disturbance)

0 SivhAWIR i |
Y |1 1
0 0 A0 A0 40 0 80 0 80 W0 100 0 100 20 30 40 00 B0 YO B0 900 1000
Time {36t} Time {saes}
Figure 6.8(b): Temperature response of simulated ciosed loops to integrated white noise

disturbance using minimum-J, PI controllers and selected PID controllers.
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using minimum-J, Pl controllers and selected PID controllers.

Figure 6.8(c):
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Figures 6.8(a), 6.8(b), and 6.8(c) show that, in simulation, the regulatory and
servo performance of the closed loops with PID controllers are better than the Pl
controllers’ as the process’ time delay increases. One explanation for the
increasing performance gap that derivative action creates is the restriction on the
control activity of the Pl controllers as time delay increases, as shown in Figures
6.6, 6.7(a), 6.7(b), and 6.7(c). This restriction is necessary so that the optimal PI
controllers do not violate their mid-frequency robustness demand, specified by
GMs. However, the cost to be paid by the PID controller for improved
performance is greater control action, as shown by the VAR[Au] and MADJAu]
values of control input plots above. The closed loop for Thermocouple 3, for
example, generates control action with variance about 60 times greater if a PID
controller is used, in comparison to the Pl controller.

The PID controller used on Thermocouple 3’s closed loop is augmented with an
extra low-pass filter (strictly proper controller) by solving the optimization function
similar to (3.11). The GMs and J, constraints are held equal to those for the
selected just proper PID controller implemented above and a constraint on Jur is
imposed. Figure 6.9 shows the location of the strictly proper PID controller in the
ISE[y]-VAR[Au] profiles for Thermocouple 3's closed loop with input step
disturbances, as well as the minimum-J, Pl controller and selected just proper
PID controller. Figure 6.10 shows the disturbance response of the three closed

loops.
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x ¥ minimum-Jv Pi Controtler
66 — --------------- -------------- --------------- --------------- ------- + Strictly Proper PID Controller |----—
O Just Proper PID Controller
T e e T s
T e S R
= ; ;
w
@

H
0 s S S T S DTCRRSEEY LR -
H
N v 1 v . . . 1

A e e R R

' H H H . : H H
! H \ H H ‘ H : H H
: : : : : H H ; . H
H ‘ H H H h H ‘ . H
[ TR, f TR | ST fracencmmeaans drmmeenacnanaand] R S frermeammaacann R, .
40 R ‘,- lr ! -} ¥ r ? -: ——— -: ......... —
H } H f H H H H |
" : . H H H H H H :
' : : : H H H : H f
H . H H : H H : f H
' 1 H . ' H : H
: : : i H H f H '
3 H :

sl i i i i i i i i i
0 0.02 004 0.06 0.08 0.1 0.12 0.14 0.16 0.8 02
Var[difffu]]
Figure 6.9: ISE[y]-VAR[Au] profiles for input step disturbance rejection from simulation of
Thermocouple 3 closed loops using minimum-J, optimal PI, selected just proper
and strictly proper PID controllers.
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-frequency robustness, i.e.,

Time {3ecs}

disturbance using minimum-J, Pl controller, selected just proper and strictly

Temperature response of Thermocouple 3’s simulated closed loops to input step
proper PID controllers.

Thermocouple 3 Temperature (Just Proper PID}

Thernocouple 3 Temperature {Strictly Proper PID)

(D Gap) L {2 Bapler (D Ban) g

Figures 6.9 and 6.10 clearly demonstrate the advantage of the strictly proper PID

controller over the shortcomings of the Pl and just proper PID controllers, in the
areas of performance and control action respectively. The strictly proper PID
controller has a smaller control action variance than the just proper Pl controller
and yet its closed loop has a smaller overshoot and shorter settling time, and

thus better performance. A property of the closed loops for the three controllers

worth discussing is their mid
Figure 6.11 shows the bode plot for the three closed loops, highlighting their

respective gain and phase margins.

Figure 6.10:
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Figure 6.11: Bode diagram of Thermocouple 3's closed loops using minimum-J, Pl controller,

selected just proper and strictly proper PID controllers.

All three controllers surpass the gain and phase margin minimum requirements
of 24 and 45° respectively, as imposed by GMs < 1.7. As expected, the
minimum-J, Pl controller’s loop is the most robust of the three, followed by the
just proper PID controller’s. The strictly proper PID controller’s loop is slightly less
robust than the just proper PID’s loop, but also exceeds the imposed mid-
frequency robustness requirement. Thus, the benefit of improved performance
and tolerable control action provided by the strictly proper PID controller’'s closed
loop, compared with the PI's closed loop, far outweighs its robustness cost.

The closed-loop performance comparisons of the Pl and PID controllers have
thus far been examined in simulation, using the transfer functions for the Heated
Tank Process. However, some of the controllers were also experimentally
implemented in the real process’ closed loop. The performance-control action
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profiles were computed for the responses of the selected controllers to input step
and integrated white noise disturbances, as well as set point signal steps. Figure
6.12 shows the time domain performance-control action profiles for the closed
loops controlled by optimal Pl and PID controllers, in response to an integrated
white noise disturbance. Figures 6.13(a) to 6.13(c) show the closed loop
responses of selected controllers to the disturbance input. Figure 6.14 shows the
time domain performance-control action profiles for the closed loops controlled
by optimal Pl and PID controllers, in response to a step in the process input load
disturbance. Figures 6.15(a) to 6.15(c) show the closed-loop responses of some
selected controllers to the disturbance input. Figure 6.16 shows the time domain
performance-control action profiles for the closed loops controlled by optimal Pl
and PID controllers, in response to a step in the set point signal. Figures 6.17(a)
to 6.17(c) show the closed loop responses of selected controllers to the step

input.
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Figure 6.12: ISE[y]-VAR[Au] profiles from experimental implementation of thermocouple
closed loops perturbed by integrated white noise disturbances.
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Figure 6.13(b). Temperature response of Thermocouple 2's experimentally implemented closed
loops P1102 and PID102 to integrated white noise disturbance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

Closed Loop PID103

600

e Clpsed Loop PI03

I
500

|
;
|

0

Tre s

I
0

IIIII

=
— =
(]

l
100

[—-]
-—

(D Bap) sameaaduus |
pPapuesayagg

me {secs)

Ti

[—1
[—] =
[ P
= —
|||||||||| = [ L
=3 =
||||||||| = - . 5 [ e
= = =
= ——— _—
|m o ——— =
[=] = ~
| | .= =2 = - - — H
> = = == T
= 3 = -
= e b=
= = = =
-{ <2 =2 Bl = H
| 45 ] o2 — o
: ===
i = =
SERREEEEEE m 3 = ---- —
m = —
F¥-~-----1----7 =2 ----F e — - — — - —]
m -—— [—] — [}
=
E = ¥
HEY =T
Hd \W
R
s 3
I S U S A= L ____t____ .M ......... _
b Lr—1 H - H
m m
|||||||||| H.ﬁltl(ipi' = = F----= NSRS S
iF s = =
S = =
i &> =
|l (== |- - 1% _____:i- 1= sl ..¥ 18|
= HiY = = = =3
= P = n
= i o 3 s
[~ e -4
B E =N EEEE ST o a Lo o .m H
m a o3 m -5 m
- -
[ 4 = w =
H KN = = .
le:lllllMlllﬂH 11111 1= = T T m ||||||||| ]
. .y H 3
H L H ~
: "> H B
A S R | — B SR R R ]
: 5 : p
: H ! 2
H I H H
1 z 1 1 i
= = = = — =] == o~
(A B M) a3yel-Ano] 4
eays

700

600

300

MWW oM W o W 0 @ M W
Time {secs)

100

700

- B

=
||||||||||| I s
-—
—
[ 7]
>
LT
o>
L,
>
=
[—J
||||||||||| — &S
L]
[ —
Y 1=
—— =
[ ]
<>
a>
o>
2.
=
=
|||||||||||||| — =
=
[——]
L—1
=

{2 Bap) sanyesaduwua )
pPapuaLgac]

Figure 6.13(c): Temperature response of Thermocouple 3’s experimentally implemented closed

loops P1103 and PID103 to integrated white noise disturbance.
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Figure 6.14:  ISE[y]-VAR[Au] profiles from experimental implementation of thermocouple
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Figure 6.15(a): Temperature response of Thermocouple 1's experimentally implemented closed

loops P1201 and PID201 to process input step disturbance.
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Figure 6.15(b): Temperature response of Thermocouple 2's experimentally implemented closed
loops P1202 and PID202 to process input step disturbance.
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Figure 6.15(c): Temperature response of Thermocouple 3's experimentally implemented closed

loops PI203 and PID203 to process input step disturbance.
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Figure 6.17(a): Temperature response of Thermocouple 1’s experimentally implemented closed
loops P1301 and PID301 to set point step.
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Figure 6.17(b). Temperature response of Thermocouple 2’s experimentally implemented closed

loops PI302 and PID302 to set point step.
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Figure 6.17(c): Temperature response of Thermocouple 3's experimentally implemented closed
loops PI1303 and PID303 to set point step.
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The above figures show that for the three exogenous inputs considered, the PID
controller's closed-loop performance is superior to the Pl controller's for
Thermocouples 2 and 3. However, for Thermocouple 1, which has a small time
delay-time constant ratio, the Pl controller performs almost equivalently with the
PID controller. The figures demonstrate the increasing benefit the PID controller
has over the Pl controller with increasing time delay.

6.6 ECONOMIC BENEFITS OF OPTIMAL PID CONTROLLERS

Quite a number of controlled variables in industrial processes have control
performance functions that directly or indirectly relate them to product yield, and
thus income. Some of these control performance functions are inverse, non-
linear relationships, so that the lower the mean value of the controlled variable,
the higher the product yield (income). Craig and Koch [52] describe an industrial
process having such a performance function — the Froth Flotation Process. The
process is widely used in the concentration of mineral-bearing ores; it is usually
the first step in the recovery of pyrite, the platinum group metals, copper, etc. The
typical objective in this process is to maximize mineral recovery, since this
determines the achievable income from the process. The controlled variable is
the pulp level in the flotation cell, which determines the froth depth, and thus the
recovered mineral concentrate’s grade. Due to the dynamic nature of the
process, the froth depth (grade) has an inverse, non-linear relationship with the
mineral recovery. Therefore, product grade bears the cost for improved product
recovery. Since the product grade is indirectly the controlied variable in this
process, it would be expected that a minimum value constraint be imposed on it,
so that product quality is not significantly sacrificed for product recovery. Thus, a
secondary objective in the pulp level control of this process would be to ensure
the product grade does not fall below a minimum value; that is, the pulp level in
the flotation cell should not fall below a lower limit.

Craig and Koch [52] mathematically show how it is possible to improve product
recovery in the flotation process by simply reducing the variability of the
controlled variable, i.e., product grade, which is quantified by its standard
deviation, g, from the control set point, without violating the imposed grade
constraint. This approach is generally applicable to processes with control
performance functions that are linear with constraints, or non-linear with or
without constraints. Reducing the variability of the controlled variable can be
achieved by improving the loop performance of the controller utilized in the
process. Because the utilized controller is likely to be of the PID structure,
appropriate controller tuning or design can reduce variability. Variability reduction
of the controlled variable around a set point makes it possible to move the set
point, or the variable’s mean value, to a more optimal position. In the Froth
Flotation Process, for example, improved control of the concentrate grade allows
its set point to be moved closer to the lower limit without violating it. Moving the
set point closer to the limit leads to an increase in mineral recovery. Schubert et
al. [53] point out that improved pulp level control could lead to an increase in
recovery of about 1%. Another example of how improved control loop
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performance can lead to economic benefits comes from [11], mentioned in
Chapter 1, in which the Industrial Information Resources report reveals that
major US process industries spend about thirty billion dollars annually on energy
and over one hundred billion dollars on facility maintenance. According to the
report, even a 1% improvement in either energy efficiency or improved controller
maintenance direction represents hundreds of millions of dollars in savings to
process industries.

The process description above provides an illustration of how controller closed-
loop performance can be linked to a process’ economic productivity, via the
flexibility of moving the controlled variable’s set point. To study this flexibility in
detail, a hypothetical process, Process X, will be considered. The following
assumptions are made about the process:

1) It has a controlled variable, yx, which has the same non-linear control
performance relationship, as the product grade in the Froth Flotation
Process, with an income-related variable;

2) yx is the lower limit for yx, hence yx 2 yx:;

3) Process X is controlled by either of two control systems — Control System
1 or Control System 2;

4) yx1and yx. are the responses of yx, under the control of Control Systems
1 and 2 respectively; and

5) The set points for yx under the control of Control System 1 and 2 are
Yxsp1 and yxspz respectively;

6) yxsand yx; are stochastic and are sampled for a sufficiently long duration,
so that the variations around the respective set points yxsps and yxsp2 are
approximately normally distributed with standard deviations os and o
respectively and mean values approximately equal to yxspr and yxsez
respectively.

According to [54], if the control systems are stable, or “in statistical control”, then
more than 99% of the data points in yxs and yx. are expected to respectively lie
within the intervals:

Yxspt =301 < Yx1 < Yxspt + 30y

Yxsp2 =302 < Yxa < Yxspa + 307
Because yx1, yx2 2 yx., then in the worst case,

Yxsp1—301=Yx (6.2a)

Yxsp2 =30, =Yx (6.2b)
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= Yxsp1 =307 = Yxspz — 307 (6.2¢c)
= Yxsp1 ~Yxsp2 = 301 — 307, (6.2d)

If Control System 1 leads to a greater variation in yx than Control System 2, so
that o; > 0y, (6.2) implies that yxsps > yxspz2. Thus, in order for the two systems
not to violate the linear constraint yx;, yxsps must be raised higher than yxsp».
Based on the non-linear control performance function, Control System 2 can be
implemented at a target set point closer to the lower limit, and can therefore
increase product yield relative to Control System 1. Figure 6.18 shows the
distribution profiles of yx; and yxz, as well the relative positions of their mean
points, yxspr and yxspz, With respect to the constraint yx;.

CONTROL SYSTEM 2

CONTROL SYSTEM 1

e 307 —

-t—— 307 —i~]

Yxsp1 yxsp2 yxL

>

CONTROL IMPROVEMENT
MOVES SET POINT CLOSER
TO CONSTRAINT

Figure 6.18: Movement of set point of controlled process variable towards constraint due to its
reduced variation, brought about by controller performance improvement.

Now, for the Heated Tank Process, the controlled variable is the water
temperature measured at each thermocouple. Figures 6.12, 6.13(b), and 6.13(c)
have shown that the optimal PID controller can give smaller variations in the
regulatory responses of temperatures than the optimal Pl controller. As an
illustration, let the Heated Tank Process be considered part of a hypothetical
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integrated process, like Process X, in which the water temperature has an
inverse, non-linear performance relationship with an economically beneficial
variable. An example of such an integrated process could be a catalyzed
chemical reaction, which is heated in a water bath. The nature of the reaction
could be such that it ceases below a minimum temperature and consequently
must be operated above that temperature. Therefore, the temperature of the
water in the bath must in turn always be above a lower limit. On the other hand,
the higher the temperature of the water bath above the lower limit, the greater the
heat losses via convection and radiation since both processes are directly related
to the source’s temperature. Therefore, an economically beneficial variable for
this process could be the heat savings from operating the chemical process at
temperatures as close to the lower limit as possible, while the controlled variable
is the temperature of the water bath, i.e. the Heated Tank Process. Figure 6.19
shows the hypothetical temperature control performance function for the
integrated process.

A

HEAT SAVINGS

-

WATER TEMPERATURE

Figure 6.19:  Temperature control performance function for integrated process.

Thus, the integrated process can be likened to Process X with Control System 1
being an optimal Pl controller (Closed Loop Pl402 in Figure 6.12). Control
System 2 could be a just proper optimal PID controller (Closed Loop PID402) or
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a strictly proper optimal PID controller. The control objective is to regulate the
water temperature around a set point temperature such that at no instance does
it fall below a lower limit. With the optimal PID controller’s closed loop giving
smaller variations than the optimal Pl, it would be expected that the former
control system’s set point can be moved closer to a lower limit, without the actual
temperature falling below this limit. Simulation and experimental examples are
considered below to test this hypothesis. In each case, the assumptions made on
Process X above, regarding the normality of the temperature responses, are
assumed to be valid for this process.

Example 6.1: Closed loops of an optimal Pl controller, an optimal just proper
PID controller, and an optimal strictly proper PID controller are implemented in
simulation, one after the other, for the Heated Tank Process. The control
objective is to regulate the water temperature in response to an integrated white
noise disturbance, so that it does not fall below 11°C, while keeping the set point
temperature as close to this lower limit as possible.

Figure 6.20 shows the time trend of the integrated white noise disturbance sent
added to each closed loop.
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Figure 6.20: Integrated white noise disturbance sent to Heated Tank SIMULINK closed loop.
Table 6.3 shows the standard deviations, gp;, Opip, and oppr of the closed-loop
temperature responses of the Pl and the just and strictly proper PID controllers
respectively, to the disturbance in Figure 6.20.
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Table 6.3: Standard Deviations of Closed-Loop Temperature Responses of Optimal Controllers

CONTROLLER STANDARD DEVIATION
Optimal PI 6.1533
Just proper optimal PID 5.0100
Strictly proper optimal PID 5.2500

From (6.2a) and (6.2b), the recommended temperature set points, y £, y&P, and

yEIPF respectively for the closed loops are:

Pl _
Yop =YL +30p

y&P =y +30pp (6.3)

PIDF

Ysp =YL +30ppF

where y, is the lower limit temperature, 11°C.

Table 6.4 shows the recommended set point temperatures for the three closed
loops, based on (6.3). Figure 6.21 shows the ISE[y]-VAR[Au] profiles for the
three closed loops. Figure 6.22 shows the temperature responses for the three
loops using these set point temperatures, as well as the steam flow trend, its
differenced trend (control activity), plus as their variances for each loop.

Table 6.4: Recommended Set Point Temperatures for Closed Loops of Optimal Controllers

RECOMMENDE TURE
CONTROLLER CO gETPC';JTE?ﬂg')ERA U
Optimal PI 29.46
Just proper optimal PID 26.03
Strictly proper optimal PID 26.75
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Figure 6.21: ISE[y]-VAR[AU] profiles for simulated closed loops of optimal controllers.
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CLOSED-LOOP TEMPERATURE RESPONSE
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Figure 6.22; Simulated closed-loop temperature responses of optimal controllers to integrated
white noise disturbance.
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Figures 6.21 and 6.22 both show the reduced variation in the water temperature
when controlled by the PID controllers, relative to the PI controller. All closed
loops satisfy the control objective of regulating water temperature so that it does
not fall below 11°C; the PID controllers are implemented at lower set points than
the PI controller and can therefore give greater heat savings. The price to be paid
by reduced variation in the controlled variable is increased variation in the PID
control signal, as shown by the higher variance of the steam flow trend and its
differenced trend. The strictly proper PID controller is able to strike a fair balance
of giving lower temperature variation than the Pl controller without an excessive
increase in VAR[Au] typical of the just proper PID controller.

Example 6.2: Closed loops of an optimal Pl controller, an optimal just proper
PID controller, and an optimal strictly proper PID controller are experimentally
implemented, one after the other, on the Heated Tank Process. The control
objective is to regulate the water temperature in response to an integrated white
noise disturbance, so that it does not fall below 28°C, while keeping the set point
temperature as close to this lower limit as possible.

Table 6.5 shows the standard deviations and recommended set point
temperatures for the three closed loops, based on (6.3). Figure 6.23 shows the
time trend of the integrated white noise disturbance sent to each closed loop.
Figure 6.24 shows the ISE[y]-VAR[Au] profiles for the three closed loops. Figure
6.25 shows the temperature responses for the three loops using these set point
temperatures, as well as the steam flow trend, its differenced trend (control
activity), plus their variances for each loop.

Table 6.5: Standard Deviations and Recommended Set Point Temperatures for Experimentally
Implemented Closed Loops of Optimal Controllers

RECOMMENDED

CONTROLLER STANDARD TEMPERATURE SETPOINT
DEVIATION o)
Optimal Pl 11667 31.5

Just proper optimal
per 1.000 31
Strictly proper
i) 1.0667 31.2
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Figure 6.23: Integrated white noise disturbance sent to Heated Tank closed loop.
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Figure 6.24: ISE[y]-VAR[Au] profiles for experimentally implemented closed loops of optimal
controllers.
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Figure 6.25: Experimentally implemented closed-loop temperature responses of optimal

controllers to integrated white noise disturbance.
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Figure 6.25 supports the simulation results shown in Figure 6.22. Hence, the
optimal PID controller can deliver process variable response with smaller
variation than the optimal P! controller, thus enabling the variable’s set point to
be placed closer to its constraint without violating it. This can lead to increases in
economically significant process outputs. The price to be paid for this benefit is
the increased variation in the control signal, which can be reduced significantly
by utilizing a strictly proper PID controller.

In summary, this section has shown not only the potential technical benefits the
PID controller has above the Pl controller, but also how these benefits can be
translated into economic benefits for the process industry.
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CHAPTER 7

OPTIMAL PID CONTROLLERS AND SMITH
PREDICTORS

7.1 INTRODUCTION

In Chapter 5, the presence of time delays in processes was shown to limit the
performance of conventional feedback control systems. Systems with time delays
can be controlled to some degree with PID control. However, the traditional
tuning rules often give very poor results. Although derivative action is useful for
lag-dominant processes, it is of limited value for systems that are delay-dominant
[5, 20]. The reason for this is that prediction of the process output based on linear
extrapolation is not effective. It is much better to make predictions based on
inputs that have been fed into the system, but which have not yet shown up in
the output.

To improve the performance of control systems containing significant time
delays, the Smith Predictor technique [21, 22, 23, 24] is an effective control
strategy for providing time delay compensation. Figure 7.1 shows the block
diagram of a feedback loop augmented with a Smith predictor.

d(t) ——m G(s)
G'c’(,s)—-\\

Y K(s) - G(s) |—m —>- y(1)
i
l'
- -®
‘G (1—e%)
AN -
/\ *
G=G"(e%)
Figure 7.1: Block diagram of a SISO closed loop augmented with a Smith Predictor.

G’ is the delay-free form of the modeled transfer function G for the process G,

so that G=G (e % ). G, is a composite controller consisting of controller K and
the Smith predictor.
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The objective of this chapter is to examine the performance comparisons of
closed loops containing the Smith predictor, and those containing the plain Pl or
PID controllers, especially for processes with significant time delay dominance.

Traditionally, K is a controller, Pl or PID, designed for G, i.e., the delay-free
process, using typical tuning methods for SISO transfer functions [7]. Hence,

optimal Pl and PID controllers can be designed for G” by solving (2.21) with the
appropriate constraints. In [13], a proposed approach to designing K is to solve

A
(2.21) for K ", i.e., the composite controller, instead of K itself, and for G instead

of G*. The performance of a controller incorporating the Smith predictor for set-
point changes has been found to be better than a conventional Pl controller
based on an integral-squared-error criterion [14]. However, the Smith predictor’s
performance may not be superior for all types of disturbances.

The sensitivity transfer functions for a closed loop having a Smith predictor are:

Sensitivity Function: S(s)=G, = 1=K(G =6) (7.1)
1+KG
" . KG
Complementary Sensitivity Function: T(s)=G, = T KG (7.2)
+
A A A . _ _@
Disturbance Sensitivity Function: G(s)S(s)=G,y = G+G’1<G ,gs e®) (7.3)
+
Control Sensitivity Function: K(s)S(s)= T KG (7.4)
+

(7.1) to (7.4) are based on the assumption that the modeled process time delay
¢ is equal to the actual time delay &. If there is a significant mismatch in the two

time delays, (7.2) and (7.3) respectively become:

Complementary Sensitivity Function:

KG
T(8)=Cr = T ke T KG e B (1—a 1) (7-5)

Disturbance Sensitivity Function:

A _ GrGKG'(1-e*)
SloI0) =8 = T kG S KG e B (1 =0 0% (7.6)
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7.2 LIMITATIONS OF CLOSED LOOPS WITH SMITH PREDICTORS

Although the Smith predictor generally enhances the performance of the closed
loop in which it is included, there are costs on others properties of the closed
loop that limit the benefits of the Smith predictor augmentation. For traditional
Smith predictor systems in which the PID controller is designed for the delay-free

process transfer function G*, it has been found [13] that their J, values are
typically lower than for Smith-augmented control systems designed by optimizing
the disturbance sensitivity function for the entire structure, and for control
systems using just PID controllers. However, the traditional Smith/PID system
has a considerably smaller gain margin than other control systems. Above the
phase crossover frequency, the loop gain attains very high values and in some
frequency intervals, the phase angle shifts in the positive direction. Hence, its
robustness is deteriorated. When the entire control structure is optimized, using
the same constraints on GMs as in (2.21), the resulting loop gain is still large at
high frequencies, with J, higher than the traditional Smith controller’s, but lower
than the optimal PID control system’s. lts robustness is also unacceptable. For
moderate delays, there are some benefits attainable by including a PID controller
in a Smith predictor structure and optimizing (2.21) for the composite controller,
compared to a PID controller without a Smith structure. It has also been
observed [13] that an optimal PID controller (without a Smith predictor) can give
better performance than the Pl controller with or without the Smith predictor. To
illustrate the observed features of the aforementioned Smith predictor-

augmented closed loops, the following control systems are designed for the
—6s

A
hypothetical modeled transfer function G = , which has a time delay-time

10s+1

constant ratio of 0.6. The design of all the control systems is based on the
assumption of insignificant mismatch of the modeled and actual time delays, i.e.,
p=0:

a) Traditional Smith/PID controller (Control System A) — designed by

solving (2.21) for the s™'-weighted form of (2.4), using delay-free G
as the process transfer function;

b) Optimized Smith/PID controller (Control System B) — designed by
solving (2.21) for the s”-weighted form of (7.3) with the definition of
GMs in (2.16) retained;

c) Optimized Smith/PI controller (Control System C) — designed by
solving (2.21) for the s'-weighted form of (7.3) with the definition of
GMs in (2.16) retained;

d) Optimized PID controller (Control System D) — designed by solving

(2.21) for the s'-weighted form of (2.4), using G as the process
transfer function; and
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Optimized Pl controller (Control System E) — designed by solving

(2.21) for the s'-weighted form of (2.4), using G as the process
transfer function.

e)

For Control Systems A, B, and D, the constraints GMs < 1.7 and J, = 10.2 are
used, while the constraints on J, and k., which give optimal Pl controllers with
minimum J, values, are used for Control Systems C and E, with the GMs
constraint retained. Figures 7.2 to 7.6 show the frequency responses of the five
control systems, their performance-control action plots, and their closed-loop

responses.
. H 1R H i T 0] —~ e e
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Figure 7.2: Bode plots for Control Systems A, B, C, D, and E.
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Figure 7.3: Nyquist plots for Control Systems A, B, C, D, and E.
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Figure 7.4: J,~J, plots for Control Systems A, B, C, D, and E.
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Figure 7.5: Closed-loop responses of Control Systems A, B, C, D, and E to set point step.

~—— Control System A; ISE=0.2546 |
---------- Control System C; ISE=0.3661
~——— Control System E; ISE=05706 | —
— — Control System B; ISE =0.2976
~-~-Control SystemD; ISE=0.3314 |

Process Output

=

8
8
£
=
205
[=]

0

o
Time (secs)
Figure 7.6: Closed-loop responses of Control Systems A, B, C, D, and E to disturbance step.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figures 7.2 and 7.3 show the loop gain of Control System A (the traditional
Smith/PID controller) developing resonance peaks above the phase crossover
frequency, with one of the peaks causing an anti-clockwise encirclement of the
point (-1, 0) on the Nyquist plot, thus making the system prone to instability. The
unstable tendency of this system is shown in Figure 7.5, in which its set point
response, though having the shortest rise time amongst all the control systems,
has an oscillatory behaviour. Its disturbance rejection performance, as shown in
Figure 7.6, is however the best amongst the systems, hence its position as the
lowest on the J, scale in Figure 7.4, as well as its low ISE[y] values as shown in
Figures 7.5 and 7.6. Besides the high loop gain of Control System A above its
phase crossover frequency, there is also an increase in its phase leading to a
phase maximum and a second gain crossover frequency. The effect the growing
loop gain has on the control system is high sensitivity to negative uncertainties in
the process time delay 6 [25] and thus low robustness to model parametric
variations. According to [13], the combination of the post-crossover loop gain

resonance peaks and the increase in phase angle is due to the factor (1—e~%)

present in the denominator of the composite controller’s transfer function. This
factor is not taken into account in the design of Control System A because the
procedure computes parameters for a closed loop consisting of a plain PID
controller and a delay-free process.

Control System B’s loop gain also has resonance peaks above its phase
crossover frequency, which however are not severe enough to cause either an
encirclement of point (-1, 0) on the Nyquist plot or a positive increase in its
phase. Its high-frequency loop gain rises above 1, as shown in Figure 7.3,
making its robustness to model uncertainties low. In Figure 7.5, it has the second
shortest rise time, after Control System A, but the relatively low damping of its set
point response briefly introduces oscillations, which eventually die down. Control
System B’s disturbance rejection performance is lower than Control System A’s
as shown in Figures 7.4 and 7.6. The price paid for the slight improvement in the
high frequency robustness of Control System B is the deterioration in closed-loop
performance.

It is useful to note that Control System D does not generate high loop gains
beyond the phase crossover frequency and is therefore robust to model
uncertainties, unlike Control Systems A and B.

It is also useful to note that Control System C (Optimized Smith/Pl Controller),
like Control System D, does not generate excessive loop gains at mid to high
frequencies, unlike its PID counterpart. It offers better performance in set point
tracking and disturbance rejection than the non-augmented optimal Pl controller
(Control System E). Thus it demonstrates that the Smith augmentation of a
closed loop with a Pl controller does enhance the performance of the controller
for a process with significant time delay. The closed loops of the Optimized
Smith/Pl Controller (Control System C) and the plain Optimal PID Controller
(Control System D) behave differently for set point tracking and disturbance
rejection, as shown by their /SE values in Figures 7.5 and 7.6 respectively.
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Control System C’s set point tracking performance is slightly better than Control
System D’s, but slightly worse for disturbance rejection.

7.3 CONSTRAINT ON MID-TO-HIGH FREQUENCY LOOP GAINS
OF SMITH PREDICTOR SYSTEMS

Although Control System B has better robustness properties above the phase
crossover frequency relative to Control System A, it also exhibits unhealthy high
loop gains in this frequency range, as shown by Figures 7.2 and 7.3. The reason

is that the constraints imposed on |S|  and |T]_ in (2.12) and (2.14) respectively

place demands on the mid-frequency behaviour of L(s) and not its frequency
response above the phase crossover region. For the typical closed-loop
incorporating just the PID (or PI) controller, and not a Smith predictor, as well as
the Optimized Smith/Pl control system, (2.12) and (2.14) are adequate to
constrain both the mid-frequency and high frequency properties of the system.
However, for a PID control system incorporating a Smith predictor, such as
Control System B, (2.12) and (2.14) are inadequate, and an additional constraint
is required in (2.16). The additional constraint [13] is defined as:

. 1 2
L(ja))—— <— 0)2&)180L (77)

max
@ m G, m G,

where mg, is the minimum gain margin for the Smith-augmented control system,
which has been chosen to be 3, and wyg, is its phase crossover frequency. The

geometrical interpretation of (7.7) is a circle on the Nyquist diagram, known as
the M, circle, with a radius of 2/mg, (i.e., 2/3) and its centre at the point

(1/mgp .0 ), as shown in Figure 7.7.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



; i i
32 -1 033 o 033 1
Re

Figure 7.7: The M, circle for restricting the loop gain of a Smith-Augmented control system
above the crossover frequency.
The M, circle ensures that loop gain |L(jw)| does not exceed 1 for all frequencies

above wqgy . The additional constraint in (7.7) along with (2.12) and (2.14) lead

to the formulation of a mid-frequency criterion, GMs. [13], more comprehensive
than GMs in (2.16):

, 1
L(.lw)—m—
Gn

GMsy =mex 5], » maxW, (jo) (7.8)

where y =0.5mg Mg and W, (jw) is a weighting function defined as

0 O < 401
W (jo)—>

1 @ 2 Wygp;

With the mid-frequency constraint GMs,, an optimal PID control system
augmented with a Smith predictor, and having moderate loop gains at
frequencies above wyg; , can be designed:

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f)  Optimized Smith/PID controller (Control System F) — designed by
solving (2.21) for the s'-weighted form of (7.3) with GMs, taking the

place of GMs and setting mg,, =3 and retaining Mg =1.7,J, =10.2.

Figures 7.8 to 7.11 show the frequency responses of Control System F, as well
as Control Systems B and D, their performance-control action plots, and their

closed-loop responses.
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Figure 7.8: Bode plots for Control Systems B, D, and F.
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Figure 7.9(b):

J,~J, plots for Control Systems B, D, and F.
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Figure 7.11: Closed-loop responses of Control Systems B, D, and F to disturbance step.
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In Figure 7.8, the GMs, constraint ensures the loop gain of Control System F
does not exceed 1 beyond the phase crossover frequency. This is confirmed by
the Nyquist plot in Figure 7.9(a), in which the Control System F’s loop gain is
restricted within the circumference of the M, circle, thus ensuring sufficient
robustness to model uncertainties. Control System B’s loop gain, on the other
hand, moves outside the circle. The ISE[y] values in Figures 7.10 and 7.11 show
that Control System B’s set point tracking and disturbance rejection performance
exceeds those for Control System F. Thus, performance pays the price for the
improved high frequency robustness of Control System F. However, it gives
better closed-loop response than Control System D and therefore shows that
Smith predictor augmentation does bring benefits to the PID-controlled closed
loop for processes with significant time delays.

For disturbance rejection, it is useful to note from ISE[y] values in Figures 7.6
and 7.11 that the performance improvement going from Control System C to
Control System D is more significant than going from Control System D to
Control System F, all of which are better than Control System E. Hence, adding
derivative control to the plain Pl controller gives greater performance
improvement than augmenting the Pl controller with a Smith predictor. In
contrast, the inclusion of the Smith predictor with the derivative control-
augmented Pl controller (i.e., PID controller) gives marginal improvement. The
greatest performance gap amongst the aforementioned control systems exists
between the Smith-augmented Pl controller and the plain optimal PID controller.

7.4 PERFORMANCE COMPARISONS OF OPTIMAL PID AND
SMITH PREDICTOR-AUGMENTED LOOPS

In the previous section, several control systems were designed for an arbitrary
process with a significant time delay-time constant ratio. The simulation resuits
showed that although the closed-loop response of a Smith-augmented PID
control system, in which the PID controller was designed using the traditional
approach, gave the best performance, it developed significant loop gains at
frequencies above the phase crossover frequency and thus was insufficiently
robust to model time delay uncertainties. It was found that designing the PID
controller by optimizing the transfer function for the entire Smith-augmented
closed loop, and imposing a constraint on the high frequency loop gain of the
system, gave a closed loop whose response was not as superior as the
traditional Smith/PID system, but was more robust to model uncertainties. The
closed-loop performance of the optimal Smith/PID system was in turn found to be
superior to the optimal Smith/PI's and the non-augmented optimal PID’s.

For processes with large time delays, it is more common to use the Pl than the
PID controller [13], with or without Smith predictor-augmentation. However, the
results from the previous section have shown that the three acceptable options
for controlling such processes, while allowing for closed-loop robustness to
model uncertainties, are the aforementioned control systems. It would be useful
to study the performance of the three options for processes with various time
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delay-time constant ratios. A concise summary [25] of the behaviour of the three
systems for various time delay scenarios is that for both moderate and large time
delays, augmenting a PI controller with a Smith predictor gives less improvement
in performance than if it were augmented with derivative control. On the other
hand, for a PID controller, the introduction of a Smith predictor implies some
improvement for a process with moderate delay. However, when the delay is
large, performance improvement is sacrificed to sustain the robustness demand
on the control system placed by GMs;, thus making the benefit of including the
Smith predictor in the PID control system for a largely delay-dominant process
questionable.

To experimentally investigate the advantages and disadvantages of the three
control systems, each would be designed for the temperature response models
for the thermocouples of the Heated Tank Process, discussed in Chapter 6
(Table 6.2). Because the temperature models have varying degrees of time delay
dominance, they provide the physical basis to study the closed-loop performance
of the controls systems for processes with varying time delay-time constant
ratios, and would help in providing some insight into the issue of the benefits of
the Smith predictor to Pl and PID controllers. Controllers similar to Control
Systems C, D, E and F (i.e., optimal Pl and PID controllers with and without
Smith predictors) were designed for Thermocouples 1, 2, and 3 of the Heated
Tank Process, and implemented both experimentally and in simulation. Figures
7.12 to 7.16 show the performance-control activity profiles for the control systems
using various pairs of evaluation criteria. GMs (and GMg;) < 1.7.

] T T T T T T T T
i : : ; i -—<— optimal P}, time delay ratic 0.137, wiout Sm. Predct.
- optimal Pl, time delay ratio 0.669, w/out Sm. Predct.
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—<— optimal PID, time delay ratio 0.137, wfout Sm, Predct.
—¥— optimal PID, time delay ratio 0.669, wfout Sm. Predct.
—+— optimal PID, time delay ratio 0.846, wfout Sm. Predct.
‘‘‘‘‘‘ &~ optimal P, time delay ratio 0.137, with Sm. Predct.
—— optimal PID, time delay ratio 0.137, with Sm. Predct.
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Figure 7.12: Ji-J, profiles for optimal Pl and PID control systems, with and without Smith
Predictors, for Thermocouples 1 (0.137), 2 (0.669), and 3 (0.846).
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Figure 7.13: Simulated ISE[y]-VAR[Au] profiles for optimal Pl and PID control systems, with/
without Smith Predictors, for Thermocouples 1, 2, and 3 using integrated noise
disturbance.
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Figure 7.14:  Simulated ISE[y]-VAR[Au] profiles for optimal Pl and PID control systems, with/
without Smith Predictors, for Thermocouples 1, 2, and 3 using step disturbance.
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loops P1401 and PID401 to integrated white noise disturbance.
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Figure 7.17(b): Temperature responses of Thermocouple 2's experimentally implemented closed

loops P1402 and PID402 to integrated white noise disturbance.
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Figures 7.12 to 7.15 show that for significant process time delays, the un-
augmented Pl controller’s closed loop profile is highly restricted — both in terms of
control activity and performance. Augmenting the Pl controller with a Smith
predictor widens its control activity range and leads to modest performance
improvement. Figures 7.13, 7.14, and 7.16 clearly show that for step and
integrated noise disturbance rejection, augmenting the Pl controller with
derivative control gives it better closed loop performance than augmenting it with
a Smith predictor. Figures 7.17(b), and 7.17(c) compare the closed-loop time
trends for the two types of augmentation to the PI controller, and demonstrate the
regulatory superiority of the PID controller to the Smith-augmented PI controller
where the process time delay is significant. Figure 7.17(a) shows that where the
time delay isn’t dominant, the Smith-augmented PI controllers have more or less
the same closed-loop performance rating as the PID controller. Indeed, the
performance-control activity profiles all show that for Thermocouple 1’s
temperature response, it might be pointless to augment the Pl controller with
either the Smith predictor or derivative control, since it can perform satisfactorily
on its own in this case.

Figures 7.12, 7.13, 7.14, and 7.16 all show the performance improvement that
the Smith predictor brings to the Pl controller is marginal relative to derivative
control's contribution where the process time delay is large. Hence, for
disturbance rejection, augmenting the Pl controller with derivative control, i.e., a
PID controller, is more beneficial than augmenting the controller with a Smith
predictor. On the other hand, Figure 7.15 shows that for the closed-loop set point
tracking performance of a process with a large time delay, augmenting the Pl
controller with a Smith predictor brings significant improvement, while upgrading
from a Smith predictor to a derivative controller gives only slight improvement.
Hence, it can be argued that the Smith-augmentation covers most of the benefits
offered by derivative control, and thus a case can be made for the utilization of
the Smith predictor. However, since the PID controller closed loop has the
comparatively lower ISE[y] limit and offers greater performance improvement for
disturbance rejection, as well as a simpler structure for implementation, the
overall conclusion is that derivative control is probably more beneficial to the PI
controller than the Smith predictor.

All the performance-control activity profiles, i.e., Figures 7.12 to 7.16, show that
even though the Smith-augmentation of the PID controller allows it to give the
best closed-loop performance amongst the various control structures discussed,
the improvement it brings to the un-augmented PID controller is marginal. Thus,
implementing the PID controller, with or without the Smith predictor, gives better
closed-loop performance than the Pl controller, with or without the Smith
predictor. The control engineer could choose between implementing a plain PID
controller for a dead time dominant process, or a Smith-augmented PID
controller. However, for closed-loop structural simplicity, and for processes in
which the transfer function might either not be easily obtainable or whose
parameters fall into a wide interval of uncertainty, it might be prudent to
implement the un-augmented PID controller.
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Another aspect of Smith-augmented controller implementation for which there is
some interest is the robustness of the closed loops to model uncertainties. The
reason for this interest is that because the Smith-augmented Pl and PID
controllers require process models for their implementation, unlike the plain PI
and PID controllers, it is necessary to assess the closed-loop performance of
these systems where there are variations in model parameters. The most
common parametric variation to which Smith-augmented closed loops are
sensitive is the process time delay uncertainty. Recall that the sensitivity transfer
functions for Smith-augmented closed loops in (7.1) to (7.4) were derived based
on the assumption that the modeled process time delay, ¢, was equal to the

actual time delay, 6. For traditional Smith-augmented closed loops, it has been
shown that, due to the excessively high loop gains at high frequencies, variations
in @ from the modeled value could lead to poor closed-loop performance or even
unstable response. The mid-frequency robustness criterion, GMs;, in (7.8) was
introduced to restrict the Smith-augmented closed loop’s high frequency loop
gain, and enhance the system’s robustness to time delay uncertainty. The Smith-
augmented closed loops implemented in this section were designed with a
constraint imposed on GMs,, thereby making them robust.

A practical approach to assessing the time delay uncertainty robustness of the
Smith-augmented Pl and PID closed loops is to implement the controllers on the
thermocouple temperatures for which they were designed, and other
thermocouple temperatures. Consequently, the Smith-augmented Pl and PID
controllers designed for Thermocouple 2 would be implemented on
Thermocouple 1's temperature, as well as Thermocouple 2’s temperature and
Thermocouple 3’s. It should be noted that Thermocouple 1’'s temperature has the
least time delay, while Thermocouple 3's temperature has the longest time delay.

6 > ¢ (under-delayed) — closed-loop performance deteriorates
6 < ¢ (over-delayed) — closed-loop performance improves

Thus, implementation of Thermocouple 2’s Smith-augmented Pl and PID
controllers on Thermocouple 1's temperature is expected to enhance loop
performance, while implementation of Thermocouple 2’s controllers on
Thermocouple 3's temperature is expected to reduce performance. Hence, these
performance profile shifts, relative to the profile for the loop in which =4, i.e.,

correctly delayed, for the Smith-augmented Pl and PID closed loops would be
compared with the performance profile shifts encountered in the un-augmented
PID closed loop. The expectation for this experiment is that the farther the
performance profiles for the under-delayed Smith-augmented closed loops are
from the profiles for the correctly-delayed loops, relative to the performance
profile distortions for the un-augmented PID closed loop, the less robust are the
Smith-augmented closed loops to time-delay variations.

Figure 7.18 shows the performance-control activity profiles for the simulated
Smith-augmented PI, PID, as well as un-augmented PID closed loops, in which
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Thermocouple 2’s controllers were implemented for its temperature, as well as
the temperatures for Thermocouples 1 and 3.

Figure 7.19 shows the profiles for the laboratory implementation of the afore-
mentioned simulated closed loops.

The exogenous signal sent to the loops was the integrated white noise

disturbance.
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Figure 7.18:  Simulation assessment of the time delay uncertainty robustness of the Smith-
augmented Pl and PID control loops, with respect to the un-augmented PID
control loop.
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Figure 7.19: Experimental assessment of the time delay uncertainty robustness of the Smith-

augmented Pl and PID control loops, with respect to the un-augmented PID
control loop.

Figures 7.18 and 7.19 show the profiles of all three groups of closed loops, for
the under-delayed models, having approximately the same degree of
performance displacement from the profiles of the correctly-delayed models. The
same observation is made for the profiles of the over-delayed models. Thus, the
closed loops of the Smith-augmented PI and PID controllers can be said to be as
robust as the un-augmented PID closed loop to process time delay variations.
This result illustrates the benefit of designing the Smith-augmented Pl and PID
controllers using GMs, from (7.8) as the mid-frequency robustness criterion, and
imposing an appropriate constraint on this criterion.

In summary, Kristiansson’s [25] control system evaluation method has been
applied to Smith-augmented control systems, demonstrating that the traditional
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approach to designing the Pl and PID controllers for such systems, as commonly
described in literature, leads to a closed loop with significant loop gains at high
frequency, thereby making the closed loop highly sensitive to variations in
process time delays. To solve the problem of the high-frequency loop gain, an
evaluation criterion, GMs,, which restricts the loop gain in this frequency range,
was introduced and incorporated into the optimal controller design formulation.
Smith-augmented closed loops of optimal Pl and PID controllers, designed by
solving this modified design formulation, were implemented both in simulation
and experimentally. The implementation results showed that for processes with
small time delays, it was worthwhile to stay with the PI controller, as its closed
loop performance compared well with other control structures. However, as time
delay increased, both the Smith-augmented and un-augmented closed loops of
the PID controller performed better than similar versions of the Pl controller, with
the Smith-augmented PID closed loop performing slightly better than the un-
augmented PID closed loop. Various considerations of the advantages and
disadvantages of utilizing either of the two control structures led to the conclusion
that it might be more parsimonious to implement the un-augmented PID
controller structure for processes with significant time delays, rather than the
Smith-augmented PID controller. Practical time-delay uncertainty robustness
analysis of the Smith-augmented PI and PID closed loops showed they were as
robust as the un-augmented PID closed loop to the variations in the model

parameter.
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CHAPTER 8

INDUSTRIAL APPLICATION: PETRO-CANADA
ISO-STRIPPER BOTTOMS TEMPERATURE LOOP

8.1 INTRODUCTION

The control system evaluation/design procedure, proposed in [25], has been
applied to pilot-scale processes — the Quadruple-Tank Process and the Heated
Tank Process - as discussed in previous chapters. In this chapter, the application
of the procedure to an industrial control loop, the Petro-Canada Isostripper
Bottoms Temperature Control Loop, will be presented.

The process/control objective of the loop will be briefly discussed, followed by the
evaluation of the loop using Kristiansson'’s criteria in [25]. Using the GMs value of
the loop as a constraint, optimal P, just proper, and strictly proper PID controllers
will be designed for the temperature control loop. The closed loop evaluations of
these three controllers will be compared with those of the current controller in the

loop.

Finally, the closed loop time trends of the control systems, both from simulation
and real-time implementation, and their comparisons will be presented.

8.2 PROCESS DESCRIPTION

The primary purpose of the Isostripper Tower at the Petro-Canada Edmonton
Refinery is to control the Reid Vapour Pressure (RVP) of the alkylate (blending
component of gasoline) at a target defined by the Refinery Planning Group.
Lighter material in the C3 to C4 range is separated from the alkylate and sent in
the overheads of the tower to eventually be recycled back into the process. The
RVP controller cascades down to the temperature control loop, 12TC-3, to
regulate the tower bottoms temperature and consequently the RVP of the
alkylate. This temperature is controlled by manipulating the outlet steam flow
from the bottom reboiler. Closing this valve, or reducing steam, will lower the
tower temperature and raise the RVP. The process variable (PV) and the control
variable (OP) are the bottoms temperature and steam flow rate, respectively.
This tower is affected significantly by upstream swings in the process. Typical
disturbances include variations in the tower feed rate, composition and
temperature. Figure 8.1 is the process diagram of the isostripper tower.
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8.3 EVALUATION OF BOTTOMS TEMPERATURE CONTROL LOOP

d(®)
u(t +
) —— | K(s) ® - G(s) -y
+
’ wY)
Figure 8.2: Simple block diagram of the bottoms temperature control loop.

The bottoms temperature control loop is assumed to have a block diagram
similar to Figure 8.2, the variables are similar to those defined in Section 2.2.

From open-loop identification experiments, the transfer function for the
temperature response to the steam flow perturbations has been calculated as:

053807205
277202 + 8465 +1

(time constants and delay in secs) (8.1)

G(s)

The transfer function of the PID controller (i.e. the Petro-Canada PID), currently
being implemented in the loop, and its tuning parameters are:

K(s) = K{”%}[%J

K, =1.4,T, =1170secs, T, = 78secs, o = 0.1

(8.2)

The Petro-Canada Refinery utilizes the Honeywell TDC Distributed Control
System (DCS), which implements the PID loops. Because of the configuration of
the DCS, the value of « has been set at 0.1. This restriction imposes a modified
control activity constraint in the optimization formulation in (2.21) for the just
proper optimal PID, i.e., a=0.1. The constraint substitutes those normally
specified for J, and Jyr.

Application of Kristiansson’s criteria to evaluate the temperature loop computes
the results in Table 8.1:
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Table 8.1: Evaluation Results of Isostripper Bottoms Temperature Control Loop

CRITERION CALCULATED VALUE
Jy 835.7143
GM; 1.18 (Ms = 1.18, My =1.0)
Jy 14.0
Jur 14.0

According to Table 8.1, the values Ms = 1.18 and Mr = 1.0 imply gain and phase
margins of 6.5 and 60° respectively. According to [2, 3], typical values of Ms
range from 1.4 to 2.0, while recommended values of My range between 1.2 and
2.0. The designed optimal controllers that have been described in earlier
chapters have Ms and Mr values of 1.7 and 1.3, respectively, based on the
recommendation in [25]. Thus, the bottoms temperature control loop is
significantly robust in the mid-frequency range. There exists the flexibility to
slightly reduce the stability margins of the current temperature loop without
jeopardizing loop stability, therefore obtaining some regulatory performance
improvement.

8.4 DESIGN AND SIMULATION OF OPTIMAL PI AND PID
CONTROLLERS

The constrained optimization formulation in (2.21) is solved for the bottoms
temperature control loop to design an optimal Pl controller and two optimal PID
controllers — one PID with first order filtering (1°-PID) and the other with second
order filtering (2°-PID). For the optimal Pl and 1°-PID controllers, their transfer
functions can easily be expressed in the form of (8.2) so that values for K, T,
and T, are obtainable. For 2°-PID, the controller transfer function in (3.6) is used.

To ensure equal stability margins in the design of the optimal controllers, the
Petro-Canada control loop’s GMs value is used as the respective constraint in
(2.21). Thus, for the 1°-PID loop, (2.21) becomes

min{J, (p): GMg <1.18,c = 0.1} (8.3)
p
For the 2°-PID controller, J, and Jur are set lower than the Petro-Canada control
loop’s values. (2.21) becomes
min{JV (p):GMg <1.18,J, =12.82,J =1.2} (8.4)
P
For the design of the optimal PI controller, no constraint is placed on J, or Jur.
Solving the optimization formulation, unconstrained with respect to J, and Jur,

calculates controller parameters whose closed loop attains the lower limit on J..
Therefore, (2.21) becomes
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min{J, (p):GMg <1.18} (8.5)
P
Table 8.2 presents the results for (8.3), (8.4) and (8.5):

Table 8.2: Parameters for Designed Optimal Controllers (P, 1°-PID, 2°-PID)

OPTIMAL PI} 1°-PID | 2°-PID
ke 1.0938 1.2813
T; (mins)| 10.9227 | 8.5333
T> (mins) 0 2.7231
a any 0.100
ki 0.0026
7 (secs) 250.25
g 1.3815
- 0.488
B 19.763
Jv 591.16 402.12 | 384.06
GMs 1.18 1.18 1.18
Ju 1.9114 12.82 12.82
Jue 1.9114 12.82 1.2

Table 8.2 shows the two optimal PID controllers having lower J, values than the
Petro-Canada PID controller in (8.2), while giving the same stability margins.
Therefore, the optimal controllers can give better closed-loop performance.
Figure 8.3 shows performance-control activity (J,~J,) profiles for the closed loops
of the four controllers.
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Figure 8.3: J~J, profiles for the closed loops of the four controllers.

Figure 8.3 shows that the current Petro-Canada PID loop has high control
activity, which implies higher sensitivity to high frequency sensor noise and lower
robustness to model uncertainties. To obtain some insight into the performance
variation amongst the four controllers’ loops, their dynamic responses to steps in
the set point and load disturbance (applied at process input) are simulated in
SIMULINK. Gaussian noise signal is added to the process output as sensor
noise in each closed loop. The performance-control activity profiles — using
ISE[y(t)] and VAR[Au(t) (or MAD[Au(t)]) as alternative performance and control
activity criteria respectively — are plotted in Figures 8.4 and 8.5. Figures 8.6 and
8.7 show the corresponding time trends of the closed loop responses to steps in
the load disturbance (at process input) and set point.
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STEP DISTURBANCE ISE - VAR[dIiff[u]] PLOTS FOR PI/PID CONTROL SYSTEMS,;
MS =1.18, MT = 1.0
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Figure 8.4: ISE[y]-VAR[Au] profiles for step disturbance rejection of the four closed loops.

STEP SETPOINT ISE - MAD[difffu]] PLOTS FOR PI/PID CONTROL SYSTEMS;
MS =1.18, MT =1.0
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Figure 8.5: ISE[yFMAD[Au] profiles for step set point tracking responses of the four closed
loops.
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Figures 8.4 and 8.5 support the profiles in Figure 8.3 with respect to the optimal
Pl, optimal PID and Petro-Canada PID controllers. Thus, the optimal PID
controllers can give better loop performance with lower control activity than the
Petro-Canada PID. As explained, the restriction on « sets the value of J, and
does not provide the flexibility to reduce it to a desirable level, hence the
proximity in the J, values of the 1°-PID and Petro-Canada PID loop. The 1°-PID
loop has a slightly lower J, value than the Petro-Canada PID loop as confirmed
by their VAR[Au(t)] and MADJ[Au(t)] values. Therefore, improved loop
performance is achieved with lower (though only slightly) control activity.

The profiles also show the performance superiority of the PID controller over the
Pl controller and demonstrate the benefit of including derivative control in the
closed loop. According to the VAR[Au(t)] values for the closed loops of the Pl and
1°-PID controllers, the latter generates greater control activity, which is the price
paid for superior performance. However, the 2°-PID’s loop shows it can give
performance comparable to the 1°-PID’s and yet generate control activity
comparable to the Pl controller’s.

The dynamic interpretation of the performance differences amongst the four
controllers can be seen in Figures 8.6 and 8.7. From the step disturbance
rejection responses in Figure 8.6, the optimal 1°- and 2°-PID controllers have the
smallest overshoots and settling times. The Petro-Canada PID’s overshoot is
slightly higher than those of the optimal PID controllers. There is significant
damping of its closed-loop response, thus leading to the loop’s longer settling
time. The PI controller has the highest overshoot but a shorter settling time than
the Petro-Canada PID loop. Additionally, the differenced control signals of the
four signals indicate that the Petro-Canada PID is the most aggressive controller,
and the 2°-PID’s control signal is as moderate as the PI controller’s.

According to the set point tracking responses in Figure 8.7, the Petro-Canada
PID loop’s initial response is as fast as the optimal PID controllers’, but the heavy
damping of the loop’s response makes it sluggish and significantly increases its
seftling time. The optimal PID controllers, on the other hand, have the shortest
rise and settling times.

8.5 IMPLEMENTATION OF OPTIMAL Pl AND PID CONTROLLERS

The optimal 1°-PID, optimal Pl and Petro-Canada PID controllers were
consecutively implemented in the bottoms temperature loop, each for at least an
hour (3600 secs). The performance objective of the loop is to minimize the
variability of the bottoms temperature (PV) about a set point temperature (SP) of
374.75°F. As described, the typical disturbances influencing this loop are
variations in the tower feed rate, composition and temperature. It is difficult to
implement each controller in the industrial loop for precisely the same duration.
Thus, the length of the sampled closed-loop data for each controller varies, so
that applying the ISE[y(t)] as the performance measure will lead to inconsistent
loop comparisons.
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To ensure the loop performance comparisons are reasonably consistent, the
Mean Square Error, MSE, is the performance measure applied to the industrial
implementation of the three controllers. The MSE of the closed loop error signal
is defined as:

N
1 . .
MSE = m E [SP(i)-PV(i)F (8.6)
i=1

where:
N = sample size of PV (or SP)

Figure 8.8 shows the closed-loop responses of the three controllers, Figure 8.9
shows their MSE-VAR[Au(t)] plots.
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Figure 8.9: MSE-VAR[Au] profiles for isostripper bottoms temperature closed-loop
responses, using the Petro-Canada PID, optimal Pl and 1°-PID controllers.

Figures 8.8 and 8.9 support the simulated comparisons in Figures 8.4 and 8.5,
thus providing an industry-based corroboration that the inclusion of derivative
control in a PI controller improves the controller’s loop performance. The optimal
1°-PID controller reduces the variability of the isostripper bottoms temperature
about its setpoint more effectively than the Petro-Canada’s PID controller.
Additionally, the optimal PID controller generates slightly less control activity than
the Petro-Canada PI controller as shown by their VAR[Au(t)] values in Figures
8.8.

In conclusion, Kristiansson’s control system evaluation criteria have been applied
to an industrial control loop. The criteria have shown how much insight the
simultaneous evaluation of the various properties of a control loop provides,
compared to the evaluation of just one property. The application of the criteria to
the Petro-Canada isostripper bottoms temperature control loop has shown that
the loop has very high stability margins, which could be reduced to improve loop
performance. It has also shown that appropriate re-tuning of the PID controller,
via the criteria, improves the controller's performance without necessarily
increasing its aggressiveness.
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CHAPTER 9

CONCLUSIONS

9.1 SUMMARY

In Chapter 1, a brief history of the development of the PID controller over a
period of nearly eighty years was presented. Current issues encountered in its
industrial application and the growing research interest shown by the academic
community were discussed. Salient points made in the discussion were the
relevance of the PID control algorithm to process industries despite the evolution
of advanced control algorithms, and the importance of systematic procedures for
evaluating the closed-loop properties of control systems.

In Chapter 2, the four criteria — J,, Ju,, GMs, and Jyr — proposed by Kristiansson in
[13], to evaluate the performance, stability and control activity of a Single-Input-
Single-Output (SISO) closed loop, were presented. The criteria were graphically
illustrated using numerical examples. The formulation of a constrained
optimization function for the design of SISO optimal Pl and PID controllers was
briefly described.

In Chapter 3, the design of optimal Pl and PID controllers, accomplished by the
solution of the constrained optimization function introduced in Chapter 2, was
presented in detail using numerical examples. The closed loops of the designhed
controllers were implemented in simulation. Although the design methodology
was formulated for load disturbance rejection, it was shown that the closed loops
could also perform servo tasks if they were augmented with set point pre-filters.

In Chapter 4, the design methodology discussed in Chapter 3 was applied to a
pilot-scale process — the Quadruple Tank Process. The two dynamic phases of
the process — the minimum and non-minimum phases — were discussed. Just
proper and strictly proper PID controllers were designed for the two phases of the
process using a modified version of Shen and Yu's sequential loop tuning
method [17] that incorporated the optimal controller design technique. The
optimal PID controllers were implemented in the multiloop framework for the
minimum and non-minimum phases in simulation and experimentally.

In Chapter 5, the evaluation criteria were used to compute the loop performance-
control activity (J,~J,) profiles of control loops utilizing optimal Pl and PID
controllers. The profiles showed that the loop performance of an optimal PI
controller had a limit, which could be surpassed by the optimal PID controller.
The cost of the optimal PID controller’s improved performance was higher control
activity. The profile comparisons of the two controllers’ closed loops showed the
performance benefit derivative action brought to a closed loop. Time domain-
based evaluation criteria were also used to compute the performance-control
activity profiles of control loops. The profiles exhibited the same characteristics
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for the optimal controllers as shown by the J,~J, profiles, and thus corroborated
the superiority of the PID controller over the PI controller. Closed-loop
implementations of PID controllers with second order filters showed that the
controller’s performance improvement relative to the Pl controller could be
obtained without its control activity being excessive. The performance-control
activity profiles also showed that as the time-delay dominance in a process
increased, the closed-loop performance capability of the optimal Pl controller
became restricted. With the inclusion of derivative control, the restriction could be
surpassed.

In Chapter 6, the design methodology discussed in Chapter 3 was applied to
another pilot-scale process — the Heated Tank Process. The process’ relevant
feature was the adjustability in time delay of its temperature measurement. The
variable delay in measurement provided an experimental basis for corroborating
the closed-loop simulation results for time delay-dominant processes obtained in
Chapter 5. The experimental and simulation results were similar. The economic
benefit of the optimal PID’s performance superiority over the Pl controller's was
discussed. It was shown that due to the improvement offered by the optimal PID
controller, it could reduce a process output’s variability more effectively than the
optimal PI controller. Potential economic improvements in the process were
linked to the reduction in the output’s variability.

In Chapter 7, performance comparisons of closed loops augmented with the
Smith predictor and those utilizing the plain optimal Pl or PID controllers were
examined. A constrained optimization procedure proposed by Kristiansson [13]
for designing robust optimal controllers augmented with the Smith predictor was
applied to the Heated Tank Process. The controller implementation results
showed that for processes with small time delays, it was worthwhile to stay with
the plain PI controller without augmenting it with a Smith predictor or derivative
control. For processes with higher time delay dominance, both the Smith-
augmented and un-augmented closed loops of the PID controller performed
better than the Smith-augmented PI controller. The Smith-augmented PID closed
loop gave marginally improved performance than the un-augmented PID closed
loop. Based on preference for closed-loop structural simplicity, the un-augmented
PID controller could be implemented for processes with significant time delays
instead of the Smith-augmented PID controller.

In Chapter 8, the control system evaluation criteria were applied to an industrial
control loop — an Isostripper bottoms temperature control loop at Petro-Canada’s
Edmonton refinery. Optimal Pl and PID controllers were designed and
implemented in this loop. The performance comparisons of the optimal
controllers and Petro-Canada controller were presented.
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9.2 CONTRIBUTIONS OF THESIS
The key contributions of this thesis are as follows:

= The application of Kristiansson’s controller evaluation method [13] to the
design of SISO and Multi-Input-Multi-Output (MIMO) PID-based control
systems for pilot-scale and industrial processes, and the implementation
of the designed control systems in simulation and real time; and

= The utilization of alternative evaluation criteria based on sampled data of
closed loop variables to compute performance-control activity profiles. A
few of the criteria were proposed in this thesis and others were obtained
from literature. The characteristics of the profiles for optimal Pl and PID
control systems were similar to those of the J,-J, profiles presented in [13]
and in this thesis.

9.3 RECOMMENDATIONS FOR FUTURE WORK

The results obtained during the course of this work suggest possible directions
for future work. They are summarized below:

= Kristiansson’s evaluation criteria have been applied to the design of
optimal controllers for SISO closed loops and decentralized systems with
strongly diagonal and non-diagonal process transfer matrices. The
application of the criteria should be extended to multivariable controi
systems because there are numerous MIMO industrial processes for
which decentralized or SISO control may not perform satisfactorily.
These processes utilize multivariable control systems, e.g., Model
Predictive Control (MPC).

= The criteria require process and controller transfer functions for their
computation. However, transfer functions are not easily obtainable for
some industrial processes. Although alternative criteria that use process
data have been applied in this thesis, their application has been restricted
to closed-loop evaluation and not controller design. Thus, the four criteria
are still required for optimal controller design. A useful direction for
future work would be to develop techniques for computing
Kristiansson’s criteria using just process data, without requiring
process transfer functions. In [13] and [25], Kristiansson provides
empirical tuning rules, which calculate optimal Pl and PID controller
parameters for processes, using minimal process information. However,
the tuning rules have been formulated only for Pl and PID closed loops
having GMs < 1.7.
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APPENDIX A

CONTROLLER AND EVALUATION PARAMETERS FOR
OPTIMAL CONTROL SYSTEMS

Tables A.1 to A.16 list the parameters of the optimal Pl and just proper PID
controllers designed for the simple process model considered in Chapter 5, the
sequential loops [17] of the minimum and non-minimum phases of the
Quadruple-Tank Process, and the closed loops of the Heated Tank Process’
thermocouples. The tables also list the J, and J, values for plotting the
performance-control activity profiles and the constraints on GMs and k. For the

optimal Pl and just proper PID controllers, Jye = J,.
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Table A.1; Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for

Process 1

Ju Jo ki T C| g k- GM;s Ms Mr

4 1.5681 0.64526 | 3.9874 1 1 2.5729 1.6369 1.3716 1.2517
4.5 1.3694 0.7404 3.8073 1 1 2.8189 1.6807 1.4181 1.2853

5 1.2208 0.82501 3.7646 1 1 3.1059 1.7 1.4582 1.3
5.5 1.1192 0.8937 3.8143 1 1 3.4089 1.7 1.4939 1.3

6 1.0483 0.95393 | 3.8616 1 1 3.6837 1.7 1.5297 1.3
6.5 0.99268 1.0074 3.9091 1 1 3.9379 1.7 1.5651 1.3

7 0.94781 1.0551 3.9588 1 1 4.1767 1.7 1.6 1.3
7.5 0.91114 1.0975 4.0121 1 1 4.4034 1.7 1.6346 1.3

8 0.88108 1.135 4.0708 1 1 4.6202 1.7 1.6688 1.3
8.5 0.86731 1.153 4.2006 1 1 4.8432 1.7 1.7 1.2912

9 1.0625 0.94114 | 5.5444 1 1 5.2181 1.7 1.7 1.171
9.1 1.1273 0.88709 | 5.9622 1 1 5.289 1.7 1.7 1.1465
9.2 1.2063 0.82896 | 6.4645 1 1 5.3588 1.7 1.7 1.1221
9.3 1.3043 0.76672 | 7.0789 1 1 5.4275 1.7 1.7 1.0982
9.4 1.4279 0.70032 | 7.8467 1 1 5.4952 1.7 1.7 1.0751
9.5 1.5883 0.62962 | 8.8337 1 1 5.5619 1.7 1.7 1.0532

Table A.2: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Process 1

Ju Jo ki T G B ke GM;s Ms | Mr
8.4498 0.8004 1.2743 3.973 0.93181 0.96789 4.9 1.7 1691 | 13
8.6255 | 0.78633 | 1.2979 3.7236 | 0.92375 1.0346 5 1.7 1.7 1.3
04939 | 0.72662 | 1.3844 | 2.2689 1.0053 1.9102 6 1.7 1.7 13
10.741 | 0.66413 | 1.5068 1.7477 1.1341 3.0378 8 1.7 1.7 13
11.598 | 0.62663 | 1.5959 1.5739 1.1962 3.9811 10 1.7 1.7 1.3
13.053 | 0.60117 | 1.6634 1.4833 1.2329 4.8635 12 1.7 1.7 1.3
15.123 0.5825 1.7167 1.4234 1.2617 5.7293 14 1.7 1.7 1.3
17.112 | 0.56816 | 1.7601 1.385 1.2787 6.5635 16 1.7 1.7 1.3
19.008 | 0.55676 | 1.7961 1.357 1.2913 7.3851 18 1.7 1.7 1.3
20.813 | 0.54746 | 1.8266 1.3363 1.2998 8.1935 20 1.7 1.7 1.3
22.523 | 0.53972 | 1.8528 1.32 1.3064 8.9951 22 1.7 1.7 1.3
24141 0.53317 | 1.8756 1.3069 1.3116 9.7914 24 1.7 1.7 1.3
25.996 | 0.52755 | 1.8956 1.2967 1.3147 10.578 26 1.7 1.7 1.3
27.995 | 0.52267 | 1.9132 1.2877 1.3178 11.365 28 1.7 1.7 1.3
29.994 0.5184 1.929 1.2803 1.3201 12.147 30 1.7 1.7 1.3
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Table A.3: Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for Loop
1 of the Minimum Phase Quadruple-Tank Process

K- GM:;s Ms Mr
0.084682 1.458 1.1476 1.1149
0.11755 1.5763 1.1956 1.2054
0.15506 1.6485 1.2358 1.2606
0.1958 1.7 1.282 1.3
0.24794 1.7 1.3283 1.3
0.29923 1.7 1.3904 1.3

=)

]u Iv ki T
0.12027 |677.91 1 0.001475| 57.406
0.16933 | 408.01 {0.002445] 48.08

0.2224 |[274.93 10.003638 | 42.628
0.28179 | 197.28 [ 0.005069 | 38.628
0.3508 | 151.76 | 0.006589 | 37.627
0.4321 [123.06 | 0.008126 | 36.823

0.52495 | 103.76 ] 0.009637 | 36.292 0.34976 1.7 1.46 1.3
0.62824 | 90.186 [0.011088 | 36.08 0.40006 1.7 1.5358 1.3
0.74187 [80.538 | 0.012416 | 36.267 0.4503 1.7 1.6171 1.3

0.45373 1.7 1.6228 1.3
0.45792 1.7 1.6299 1.3

0.75 79.998 | 0.0125 | 36.298
0.76 79.367 [ 0.012601 | 36.339

_L_L_\_\_L_\_\_\_\_\_LA_\_LA_L_L_\_L_;.A_;J\(

e e el e e N N e N e = I N ™S Qi Sy UGy PENU PUEU DA PN JEEW PECW FEC FEEU N

0.77 78.738 | 0.0127 | 36.382 0.46207 1.7 1.6369 1.3
0.78 78.13210.012799 | 36.424 0.46618 1.7 1.6439 1.3
0.79 77.549 1 0.012895 | 36.468 0.47026 1.7 1.651 1.3
0.8 76.986 | 0.012989 | 36.515 0.47431 1.7 1.658 1.3
0.82 75.923 1 0.013171} 36.619 0.48233 1.7 1.6719 1.3
0.84 74.94 0.013344 | 36.738 0.49023 1.7 1.6858 1.3
0.86 74.037 1 0.013507 ] 36.873 0.49804 1.7 1.6897 1.3
0.86287 | 74.8 [0.013369] 37.393 0.49991 1.7 1.7 1.294
0.87718 | 80.335 ] 0.012448 | 40.963 0.5099 1.7 1.7 1.2572
0.878 80.7 10.012392{ 41.195 0.51047 1.7 1.7 1.2551
0.88 81.614 | 0.012253 | 41.774 0.51185 1.7 1.7 1.2499
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Table A.4: Controller and Closed Loop Evaluation Parameters of Optimal P1 Controllers for Loop
2 of the Minimum Phase Quadruple-Tank Process

I« Jo ki t ¢ | B k- GMs Ms Mr
0.12027 1698.47 | 0.001432 58.085 1 1 0.083161 1.4633 1.1647 1.119
0.16933 | 425.33 | 0.002351 49.268 1 1 0.11584 1.5811 1.2156 1.2091

0.2224 |288.72 | 0.003465 43.972 1 1 0.15234 1.6556 1.2612 1.2661
0.28179 | 210.14 | 0.004759 40.674 1 1 0.19356 17 1.3097 1.3
0.3508 | 164.64 | 0.006074 39.993 1 1 0.24292 1.7 1.3636 1.3
0.4321 |135.73 | 0.007368 39.514 1 1 0.29112 1.7 1432 1.3
0.52495 | 116.09 | 0.008614 39.335 1 1 0.33884 1.7 1.5085 1.3
0.62824 | 102.37 | 0.009768 39.552 1 1 0.38635 1.7 1.5916 1.3
0.74187 | 93.02 0.01075 40.35 1 1 0.43378 1.7 1.6805 1.3
0.75 92.524 | 0.010808 40.435 1 1 0.43702 1.7 1.6867 1.3
0.76 91.943 | 0.010876 40.544 1 1 0.44097 1.7 1.6943 1.3
0.77 92.669 | 0.010791 41.305 1 1 0.44573 1.7 1.7 1.2928
0.78 97.688 | 0.010237 4423 1 1 0.45277 1.7 1.7 1.2646
0.79 103.89 | 0.009626 47.757 1 1 0.45969 17 1.7 1.2361
0.8 111.64 | 0.008957 52.082 1 1 0.46651 1.7 1.7 1.2075
0.82 134.35 | 0.007443 64.468 1 1 0.47985 1.7 1.7 1.1508
0.84 175.87 | 0.005686 86.669 1 1 0.49281 1.7 1.7 1.097
0.86 271.97 | 0.003677 137.45 1 1 0.50539 1.7 1.7 1.0497
0.86287 | 296.98 | 0.003367 1560.62 1 1 0.50716 1.7 1.7 1.0436
0.87718 | 574.39 | 0.001741 296.32 1 1 0.51589 1.7 1.7 1.0156
0.878 |608.37 | 0.001644 314.15 1 1 0.51638 1.7 1.7 1.0142
0.88 712.01 | 0.001405 368.53 1 1 0.51758 1.7 1.7 1.0106
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Table A.5: Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for Loop
3 of the Non-Minimum Phase Quadruple-Tank Process

]u ]v ki T C ﬁ ke GM:s Ms Mr
1.15 355.64 [0.002812 | 227.59 1 1 0.63994 1.3387 1.3387 1
1.2 339.24 10.002948 | 219.71 1 1 0.64765 1.3581 1.3581 1
1.3 311.53 | 0.00321 | 207.48 1 1 0.666 1.397 1.397 1
14 288.92 10.003461 | 199.07 1 1 0.68902 1.4352 1.4352 1.0018
1.5 270.07_10.003703 | 192.22 1 1 0.71174 1.4732 1.4732 1.0256
1.6 254.09 |0.003936| 187.4 1 1 0.73754 1.51 1.51 1.0542
1.7 240.34 10.004161 ] 183.4 1 1 0.76308 1.5463 1.5463 1.0851
1.8 228.38 10.004379| 179.7 1 1 0.78687 1.5825 1.5825 1.1179
1.9 217.87 | 0.00459 | 177.84 1 1 0.81625 1.6164 1.6164 1.1487
2 208.66 10.004792 | 179.96 1 1 0.86246 1.6438 1.6438 1.1713
2.1 200.55 ]0.004986| 181.81 1 1 0.90652 1.6706 1.6706 1.1942
2.2 193.34 |0.005172 | 183.46 1 1 0.9489 1.697 1.697 1.2172
23 188.7 0.0053 197.73 1 1 1.0479 1.7 1.7 1.2077
24 186.18 | 0.005371] 2135 1 1 1.1467 1.7 1.7 1.1941
2.5 185.13 ] 0.005402 | 229.36 1 1 1.2389 1.7 1.7 1.1816
2.6 185.22 | 0.005399 | 245.54 1 1 1.3257 1.7 1.7 1.1708
2.8 187.99 10.005319| 279.68 1 1 1.4877 1.7 1.7 1.1548
3 193.61 10.005165| 317.32 1 1 1.6389 1.7 1.7 1.1464
3.2 201.76 | 0.004956 | 359.71 1 1 1.7828 1.7 1.7 1.1443
34 212.47 10.004707 | 408.24 1 1 1.9214 1.7 1.7 1.1469
3.6 225.98 10.004425( 464.59 1 1 2.0559 1.7 1.7 1.1531
3.8 242.76 10.004119( 530.99 1 1 2.1873 1.7 1.7 1.1617
4 263.59 ]10.003794 | 610.51 1 1 2.3161 1.7 1.7 1.1719
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Table A.6: Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for Loop
4 of the Non-Minimum Phase Quadruple-Tank Process

I Jo ki T ¢ | B ke GMs | Ms Mr
1.15 363.7 0.00275 224.62 1 1 0.6176 1.374 1.374 1
1.2 347.47 0.002878 216.64 1 1 0.62347 1.3951 1.3951 1
1.3 320.05 0.003125 204.81 1 1 0.63993 1.4371 1.4371 1
1.4 297.68 0.003359 196.44 1 1 0.6599 1.4788 1.4788 1.0034
1.5 279.02 0.003584 190.11 1 1 0.68136 1.52 1.52 1.0296
1.6 263.18 0.0038 184.67 1 1 0.70169 1.5611 1.5611 1.0627
1.7 249.55 0.004007 181.16 1 1 0.72592 1.6006 1.6006 1.0966
1.8 237.69 0.004207 177.95 1 1 0.74866 1.6401 1.6401 1.1322
1.9 227.34 0.004399 179.2 1 1 0.78822 1.6734 1.6734 1.1601
2 218.56 0.004575 184.39 1 1 0.84364 1.7 1.7 1.179
2.1 214.28 0.004667 206.48 1 1 0.9636 1.7 1.7 1.1578
2.2 213.35 0.004687 228.15 1 1 1.0694 1.7 1.7 1.1381
2.3 214.75 0.004657 250.18 1 1 1.165 1.7 1.7 1.1213
2.4 217.97 0.004588 273.23 1 1 1.2535 1.7 1.7 1.1078
2.5 222.82 0.004488 297.9 1 1 1.337 1.7 1.7 1.0976
2.6 229.25 0.004362 324.73 1 1 1.4165 1.7 1.7 1.0903
2.8 247.22 0.004045 387.43 1 1 1.5672 1.7 1.7 1.0826
3 273.68 0.003654 467.88 1 1 1.7096 1.7 1.7 1.0812
3.2 312.68 0.003198 577.22 1 1 1.846 1.7 1.7 1.0835
3.4 372.85 0.002682 737.41 1 1 1.9777 1.7 1.7 1.0879
3.6 475.05 0.002105 1000.3 1 1 2.1056 1.7 1.7 1.0928
3.8 684.19 0.001462 1525.9 1 1 2.2302 1.7 1.7 1.0972
4 1351.4 0.00074 3178.3 1 1 2.3518 1.7 1.7 1.1001

Table A.7: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Loop 1 of the Minimum Phase Quadruple-Tank Process

Ju Jo ki T g B k- | GMs | Ms Mr
0.79278| 70.134 0.014612 33.314 | 0.90155 | 0.98609 | 0.48 1.7 1.642 1.3
0.8398 | 67.153 0.015299 32.313 | 0.89285 | 1.0114 0.5 1.7 1.6732 1.3
1.0475 | 59.246 0.016879 15.668 1.079 2.6469 0.7 1.7 1.7 1.3
1.0956 | 57.005 0.017542 13.329 1.2311 3.4128 0.798 1.7 1.7 1.3
1.0964 | 56.961 0.017556 13.299 1.2333 3.4266 0.8 1.7 1.7 1.3
1.1381 | 54.976 0.01819 12.194 1.3139 4.0577 0.9 1.7 1.7 1.3
1.1742 | 53.341 0.018747 11.531 1.3636 4.6258 1 1.7 1.7 1.3
1.5 48.276 0.020714 10.146 1.4635 7.137 1.5 1.7 1.7 1.3

2 45.62 0.02192 9.6433 1.4936 9.4615 2 1.7 1.7 1.3
2.5 43.962 0.022747 9.378 1.5063 11.719 2.5 1.7 1.7 1.3
3 42.822 0.023352 9.2156 1.5118 13.94 3 1.7 1.7 1.3
3.5 41.988 0.023816 9.1043 1.5147 16.142 3.5 1.7 1.7 1.3
4 41.349 0.024184 9.0213 1.5168 18.334 4 1.7 1.7 1.3
4.5 40.844 0.024483 8.9606 1.5173 20.512 4.5 1.7 1.7 1.3
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Table A.8: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Loop 2 of the Minimum Phase Quadruple-Tank Process

Ju Jo ki T C B k- | GMs | Ms Mr
0.80489| 77.282 | 0.013127 | 27.188 | 0.90208 | 1.3449 0.48 1.7 1.7 1.3
0.82565| 76.296 | 0.013198 | 24.146 [ 0.92754 1.569 0.5 1.7 1.7 1.3
0.96896( 70.217 | 0.014242 14.974 1.2098 3.2824 0.7 1.7 1.7 1.3

1.0105 | 67.525 | 0.014809 13.571 1.2991 3.9706 | 0.798 1.7 1.7 1.3
1.0111 | 67.476 0.01482 13.545 1.3011 3.9852 0.8 1.7 1.7 1.3
1.0475 | 65.282 0.015318 12.76 1.3522 | 4.6046 0.9 1.7 1.7 1.3
1.0784 | 63.498 0.015749 12.233 1.3875 5.1906 1 1.7 1.7 1.3
1.5 57.966 | 0.017252 11.048 1.4599 7.8698 1.5 1.7 1.7 1.3
2 55.049 0.018166 10.59 1.482 10.397 2 1.7 1.7 1.3
2.5 53.227 0.018787 10.338 1.4922 12.872 2.5 1.7 1.7 1.3

3 51.973 | 0.019241 10.184 1.4963 15.311 3 1.7 1.7 1.3

35 51.056 0.019586 10.079 1.498 17.729 35 1.7 1.7 1.3

4 50.354 0.01986 9.9997 1.4994 | 20.142 4 1.7 1.7 1.3

4.5 49.799 0.020081 9.9407 1.4998 22.543 4.5 1.7 1.7 1.3

Table A.9: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID

Controllers for Loop 3 of the Non-Minimum Phase Quadruple-Tank Process

Ju Jo ki T G B k- | GMs | Ms Mr
3.4875{ 111.88 0.008938 154.69 | 0.97175 | 1.4465 2 1.7 1.7 1.2994
41754 | 94.933 0.010676 138.99 | 0.94294 | 2.0218 3 1.7 1.7 1.2394
4.8361 | 84.465 0.012264 133.34 | 0.91411 2.446 4 1.7 1.7 1.2391
5458 | 77.138 0.013936 128.59 0.8814 2.7901 5 1.7 1.7 1.259
6.0797 | 71.469 0.01617 123.64 | 0.82544 | 3.0012 6 1.7 1.7 1.3

8 63.485 0.018408 120.59 | 0.80647 | 3.6038 8 1.7 1.7 1.3

9 60.595 0.019375 119.6 0.79808 | 3.8838 9 1.7 1.7 1.3

Table A.10: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Loop 4 of the Non-Minimum Phase Quadruple-Tank Process

Ju Jo ki T C B k- | GMs | Ms Mr
3.0699 | 145.68 0.007054 196.61 | 0.84084 | 1.4422 2 1.7 1.7 1.2601
3.4889 | 132.94 0.007957 177.31 ] 0.77799 | 2.1266 3 1.7 1.7 1.2182
4.0004 | 127.39 0.008477 165.88 | 0.75261 | 2.8448 4 1.7 1.7 1.2061

5 124.53 0.008791 158.71 | 0.74163 | 3.5837 5 1.7 1.7 1.2122

6 122.66 0.009006 154.46 | 0.73579 | 4.3132 6 1.7 1.7 1.2209

8 122.94 0.009065 145.94 | 0.74134 | 6.0469 8 1.7 1.7 1.2351

9 123.26 0.009057 142.84 | 0.74662 | 6.9568 9 1.7 1.7 1.2419
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Table A.11:  Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for
Closed Loop of Thermocouple 1 in Heated Tank Process
Ju Jo ki T C B k- | GMs | Ms Mr

1.058 | 101.54 0.012757 5.4873 1 1 0.07 1.7 [1.6315 1.3
1.0657 | 98.87 0.013088 | 6.1126 1 1 0.08 1.7 [1.6245 1.3
1.0734 | 96.323 0.013419 | 6.7069 1 1 0.09 1.7 |1.6176 1.3
1.0811 | 93.887 0.013751 7.2722 1 1 0.1 1.7 1.611 1.3
1.1199 | 83.157 0.015418 9.7289 1 1 0.15 1.7 11.5807 1.3
1.1591 | 74.375 0.017096 11.699 1 1 0.2 1.7 | 1.5546 1.3
1.1988 | 67.072 0.018784 13.309 1 1 0.25 1.7 11.5321 1.3
1.2391 | 60.916 0.020481 14.647 1 1 0.3 1.7 115128 1.3
1.2799 | 55.666 0.022186 15.776 1 1 0.35 1.7 |1.4962 1.3
1.3213 | 51.145 0.023897 16.738 1 1 0.4 1.7 1.482 1.3
1.3634 | 47.217 0.025614 17.568 1 1 0.45 1.7 1.47 1.3
1.4062 | 43.778 0.027335 18.292 1 1 0.5 1.7 ]1.4599 1.3
1.4498 | 40.748 0.029059 18.927 1 1 0.55 1.7 ]1.4516 1.3
1.4943 | 38.061 0.030785 19.49 1 1 0.6 1.7 1.445 1.3
1.5396 | 35.665 0.032511 19.993 1 1 0.65 1.7 11.4399 1.3
1.5859 | 33.519 0.034238 | 20.445 1 1 0.7 1.7 11.4362 1.3
1.6333 | 31.588 0.035962 | 20.855 1 1 0.75 1.7 11.4339 1.3
1.6819 | 29.844 0.037684 | 21.229 1 1 0.8 1.7 |1.4329 1.3
1.7317 | 28.262 0.039402 | 21.572 1 1 0.85 1.7 [ 1.4331 1.3
1.783 | 26.824 0.041115 21.89 1 1 0.9 1.7 ]11.4345 1.3
1.8358 | 25.512 0.042821 22.185 1 1 0.95 1.7 1.437 1.3
1.8902 | 24.313 0.04452 22.462 1 1 1 1.7 ]1.4407 1.3
2.5629 | 16.565 0.06076 24.687 1 1 1.5 1.7 ] 1.5311 1.3
3.5531 | 13.476 0.074206 | 26.952 1 1 2 1.7 11.6872 1.3
3.7114 1 13.885 0.072021 29.158 1 1 21 1.7 1.7 1.2613
3.8365 | 15.243 0.065602 33.535 1 1 2.2 1.7 1.7 1.1945
3.9702 | 17.639 0.056693 | 40.569 1 1 2.3 1.7 1.7 1.1216
4.1119 | 22.302 0.044838 53.526 1 1 2.4 1.7 1.7 1.0477
4.2618 | 33.96 0.029447 | 84.899 1 1 2.5 1.7 1.7 1
4.4211 | 103.16 0.009694 | 268.21 1 1 2.6 1.7 1.7 1
44376 | 134.49 0.007436 | 351.01 1 1 2.61 1.7 1.7 1
4.4543 | 195.25 | 0.005122 511.55 1 1 2.62 1.7 1.7 1
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Table A.12: Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for
Closed Loop of Thermocouple 2 in Heated Tank Process
Ju Jo ki T 4 B k- GMs | Ms Mr
0.60864 | 270.11 | 0.003702 74.444 1 1 0.27561 | 1.3481 | 1.3481 1
0.7 189.27 | 0.005284 60.439 1 1 0.31933 | 1.5278 | 1.5276 1
0.77996 | 171.72 | 0.005823 56.87 1 1 0.33118 | 1.6005 | 1.6005 1.028
0.78525 | 170.72 [ 0.005858 56.619 1 1 0.33165 | 1.6053 | 1.6053 | 1.0318
0.79043 | 169.75 | 0.005891 56.517 1 1 0.33294 | 1.61 1.61 1.0349
0.79549 | 168.82 | 0.005923 56.297 1 1 0.33346 | 1.6146 | 1.6146 | 1.0387
0.81903 | 164.69 | 0.006072 55.538 1 1 0.33722 | 1.6361 | 1.6361 1.0557
0.8397 161.3 0.0062 54.942 1 1 0.34063 | 1.6549 | 1.6549 | 1.0712
0.85773 | 158.5 | 0.006309 54.444 1 1 0.3435 | 1.6713 | 1.6713 | 1.0852
0.87387 | 156.11 | 0.006406 54.115 1 1 0.34665 | 1.6857 | 1.6857 | 1.0975
0.88989 | 153.84 0.0065 53.848 1 1 0.35002 1.7 1.7 1.1096
0.90908 | 153.17 | 0.006529 61.267 1 1 0.4 1.7 1.7 1.0748
0.93524 | 156.09 | 0.006407 70.24 1 1 0.45 1.7 1.7 1.0317
0.97065 | 163.82 | 0.006104 81.909 1 1 0.5 1.7 1.7 1
1.0152 | 178.94 | 0.005589 98.408 1 1 0.54996 1.7 1.7 1
1.0681 | 20769 | 0.004815 124.61 1 1 0.6 1.7 1.7 1
1.1286 | 268.1 0.00373 174.26 1 1 0.64997 1.7 1.7 1
1.1417 | 288.38 | 0.003468 190.34 1 1 0.66002 1.7 1.7 1
1155 | 313.33 [ 0.003192 209.92 1 1 0.66998 1.7 1.7 1
1.1687 | 345.21 | 0.002897 234.74 1 1 0.67998 1.7 1.7 1
1.1828 | 387.21 | 0.002583 267.18 1 1 0.69003 1.7 1.7 1
1.1971 | 443.87 | 0.002253 310.7 1 1 0.69997 1.7 1.7 1
1.2119 | 526.34 0.0019 373.7 1 1 0.71 1.7 1.7 1
Table A.13: Controller and Closed Loop Evaluation Parameters of Optimal Pl Controllers for
Closed Loop of Thermocouple 3 in Heated Tank Process
Ju Jo ki T C B k- GMs | Ms Mr
0.6035 |344.64 | 0.002902 | 60.645 1 1 0.17597 | 1.3876 | 1.3876 1
0.7 238.11 | 0.0042 69.889 1 1 0.29351 | 1.6124 [ 1.6124 1
0.74025 | 227.09 | 0.004404 | 67.637 1 1 0.29784 | 1.654 | 1.654 | 1.0222
0.74403 | 226.13 | 0.004422 67.444 1 1 0.29825 [ 1.6579 | 1.6579 | 1.0251
0.74765 | 225.23 | 0.00444 67.27 1 1 0.29868 | 1.6617 | 1.6617 | 1.0279
0.7511 | 224.37 | 0.004457 | 67.116 1 1 0.29913 | 1.6652 | 1.6652 | 1.0306
0.76571 | 220.87 | 0.004528 | 66.48 1 1 0.301 |1.6804 | 1.6804 | 1.0425
0.77575 | 218.55 | 0.004576 66.128 1 1 0.30257 {1.6908 | 1.6908 | 1.0507
0.78132 | 217.3 | 0.004602 65.841 1 1 0.303 | 1.6966 | 1.6966 | 1.0558
0.79105 |218.87 | 0.004569 | 76.602 1 1 0.34999 | 1.7 1.7 1.0111
0.80973 | 230.02 | 0.004348 92.006 1 1 0.39999 1.7 1.7 1
0.84306 |256.38 | 0.003901 | 115.37 1 1 0.44999 | 1.7 1.7 1
0.88924 |316.81 | 0.003156 158.41 1 1 0.5 1.7 1.7 1
0.94733 | 499.9 0.002 274.94 1 1 0.55 1.7 1.7 1
0.97433 725 0.001379 | 413.25 1 1 0.57 1.7 1.7 1
0.98881 | 975.67 | 0.001025 565.89 1 1 0.58 1.7 1.7 1
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Table A.14: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Closed Loop of Thermocouple 1 in Heated Tank Process
Ju Jo ki T C B k- GMs | Ms Mr
3.4784 | 13.056 | 0.077591 28.109 | 0.95961 0.917 2 1.7 1.67 1.3
4.3343 |10.833 [ 0.092809 13.424 1.0692 2.408 3 1.7 1.7 1.3
4.8099 | 9.981 0.10046 11.465 1.1488 3.4729 4 1.7 1.7 1.3
54254 | 9.472 0.10578 10.668 1.1868 4.4309 5 1.7 1.7 1.3
10.106 | 8.4045( 0.11911 9.4947 1.2434 8.8427 10 1.7 1.7 1.3
14.469 [8.0159 | 0.12487 9.1873 1.255 13.076 15 1.7 1.7 1.3
18.94 [7.8112| 0.12813 9.0441 1.2593 17.259 20 1.7 1.7 1.3
23.183 |7.6844 | 0.13025 8.9655 1.2602 21.408 25 1.7 1.7 1.3
2718 75978 | 0.13174 8.9105 1.2615 25.557 30 1.7 1.7 1.3
30.922 | 7.535 0.13284 8.8731 1.262 29.695 35 1.7 1.7 1.3
34.409 |7.4872| 0.13369 8.8461 1.2621 33.824 40 1.7 1.7 1.3
37.644 |7.4498 | 0.13436 8.8255 1.262 37.949 45 1.7 1.7 1.3
40.634 |7.4195]| 0.13491 8.8088 1.262 42.073 50 1.7 1.7 1.3
43.394 |[7.3946 | 0.13537 8.797 1.2616 46.185 55 1.7 1.7 1.3
Table A.15: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Closed Loop of Thermocouple 2 in Heated Tank Process
Ju Jo ki T C B k- GMs | Ms Mr
0.87314 | 161.12 | 0.006207 99.748 1.3009 | 0.48457 0.3 1.7 1.7 1.1285
0.90987 | 146.94 | 0.00686 56.238 | 0.95654 | 1.0368 0.4 1.7 1.7 1.1158
1.1222 | 112.43 | 0.009307 47.487 | 0.82089 | 2.2626 1 1.7 1.7 1.1448
2 95.95 | 0.011188 43.65 0.79058 | 4.0952 2 1.7 1.7 1.1817
2.9998 189.233 | 0.012182 42.311 | 0.78073 | 5.8203 3 1.7 1.7 1.2005
3.9995 85498 | 0.012813 | 41.625 | 0.77533 | 7.5002 4 1.7 1.7 1.2118
4.999 |83.097 | 0.013251 41.218 | 0.77164 | 9.1544 5 1.7 1.7 1.2191
9.9918 |77.829 | 0.014337 40.402 | 0.76199 | 17.264 10 1.7 1.7 1.236
14.972 ] 75.896 | 0.014781 40.117 | 0.75824 | 25297 15 1.7 1.7 1.2425
19.935 |74.888 | 0.015021 39.977 | 0.75618 | 33.305 20 1.7 1.7 1.2457
24.873 |74.269| 0.015186 39.886 | 0.75437 | 41.274 25 1.7 1.7 1.2484
29.781 |73.849 | 0.015292 39.837 | 0.75327 | 49.246 30 1.7 1.7 1.2497
34.654 |73.546 | 0.015358 39.797 | 0.75311 | 57.263 35 1.7 1.7 1.2502
39.486 [73.317| 0.01543 39.755 | 0.75216 | 65.207 40 1.7 1.7 1.2518
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Table A.16: Controller and Closed Loop Evaluation Parameters of Just Proper Optimal PID
Controllers for Closed Loop of Thermocouple 3 in Heated Tank Process

Ju Jo ki T 4 B k- GMs | Ms Mr
1.9999 |[141.25] 0.007632 52.62 0.76688 | 4.9801 2 1.7 1.7 1.1473
2.9998 |134.36 | 0.008109 51.482 | 0.75819 | 7.1862 3 1.7 1.7 1.1603
3.9994 | 130.6 | 0.008394 50.923 [ 0.75343 | 9.3578 4 1.7 1.7 1.1677
4.9989 |128.23| 0.008586 50.584 [ 0.75034 | 11.512 5 1.7 1.7 1.1726
9.9909 |123.14{ 0.009025 | 49.896 | 0.74392 | 22.206 10 1.7 1.7 1.1834
14.969 [121.32 ]| 0.009197 | 49.682 | 0.74099 | 32.828 15 1.7 1.7 1.1875
19.927 |120.39 | 0.009291 49.566 | 0.73932 | 43.429 20 1.7 1.7 1.19
24.857 |119.82 | 0.009347 49.52 0.73812 54.01 25 1.7 1.7 1.191
29.754 |119.43 | 0.009383 49.492 | 0.73751 | 64.605 30 1.7 1.7 1.1914
44.181 [118.78 | 0.00945 49.388 ] 0.73674 | 96.421 45 1.7 1.7 1.1935
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APPENDIX B

MATLAB CODES FOR DESIGN OF OPTIMAL
CONTROLLERS

The following MATLAB codes solve the constrained optimization formulation in (2.21) to design
optimal Pl and PID controllers for the Quadruple-Tank Process. Optimal Pl and PID controllers
were designed for other plant models by making appropriate modifications to the codes.
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kiterator.m

% Xiterator.m implements the iterative sequential lcop-closing methoed

1994) and Kristiansson's 1loop evalw ia to computbe

rameters minimum~Jv PID controll leoiloop of
Quadruple~Tan

% code calls kanada opt.m
global PARAMS1
global PARAMS2
global params

kil=0.0123;taul=143.0857;zetal=0.8069;betal=3.4078;
ki2=0.0092;tau2=143.5109; zeta2=0.7874;beta2=4.5247;
term=1;

params=[ki2 tau2 zeta2 beta2;kil taul zetal betall;

while term==1;

plantnum=2001; % 2001 refers o the
plant model in Loop 1

run kanada_opt % golves the
constrained optimization formulation

2 minimumn-

Ate)
—
O
o
6]

QO
o]
1}

Jv PID controller for plant 2001

plantnum=2002; %
plarnt model in Loop 2

run kanada_opt % solves the
constrained optimization formulation

o the

% to design & minimum-
Jv PID contzoller for plant 2001

clc
["ki0 = " num2str (PARAMS2 (1)) ' ' 'taul = ' num2str (PARAMS2(2)) * !
'zetal = ' num2str (PARAMS2(3)) ' ' 'betal = ' num2str (PARAMS2(4))]

['ki2 = ' num2str (params(l,1)) ' ' 'tauvZ = ' num2str(params(1,2)) '
' 'zeta2 = ' numZstr(params(1,3)) ' ' 'betal = ' num2str(params(1,4))]
["k10 = ' num2str (PARAMS1(1)) ' ' 'taul = ' num2str (PARAMS1(2)) * !
'zetal = ' num2str(PARAMS1(3)) ' ' 'betal = ' num2str (PARAMS1 (4))]
¥

['kil = ' num2str(params(2,1)) ' ' ‘'taul = ' num2str(params(2,2))
' 'zetal = ' num2str(params(2,3)) ' ' 'betal = ' num2str(params(2,4))

1
term=input ('Continue Iteration? (1 / Q) ")

end
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kanada opt.m

°ﬁreated it 2004 Sepfombev 0% in Edmontorn by Birgitta Xristiansson
T63 and Ld are measured values for

: and de /
is f le minimi Jv, while ki (Ju) is givcn and
or a proper PID controller {l:st ordn

corresponds to Ju

Starting values must be given

functions: kanadaproc.m, kan_ixlf.m,

[ngp,dgp, kappa, wpip,nr,T63,Ld, kappal50,wl50,K1f, Tp,L ordn,w]=kanadaproc
(plantnum); %takes in the plant model and the : of a2 simple
analyses of that model

format compact
w=logspace (-8, 3,25000) ;
£=[0:0.02:2000];

maxs=1.7; maxt=1.3; Swmaxt=mazs*1.3/1.7; minam=3.0; Fvalues
for GMS: max [S], max |T] {and 1 Gy

% maxt petween 1.2 and 2.0; maxs is between

o
o
¢t

if ordn==
order plant

kinf=6; % ¥inf
is high-fre PID controller gain

ki= 0 008 % sets
sta i

zeta= l 1; % sels
starting value for zeta

tau—15' %
starting value for tau

n
D
: ]

-

elseif ordn== % ond
order plant

kinf=6;

ki=0.0090;

zeta=0.7878;

tau=142;

elseif ordn==3 % 3rd
order plant
kinf=6;
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if kinf>25, kinf=25, end
ki=0.0059;
zeta=0.9153;
tau=140.9720;

end

beta=kinf/ (tau*ki)

global INDEXPAR
global WOMEGA

global NGPROCESS
global DGPROCESS

INDEXPAR(1)=kinf;
INDEXPAR (2) =wpip;

WOMEGA=w;
NGPROCESS=ngp:
DGPROCESS=dgp;

x0=[ki, zeta, taul; % gets
the initial values of ki, zeta, and tau

options = optimset ('LargeScale’, 'off', 'MaxFunEvals’, 350, '"TolX',le-

10, "TolCon',1e-10);

[x,Jv,EXITFLAG]=fmincon('kan ixl1f',x0,[1,[1,(1,[1,[0,0,01,[1, 'constrain
s', options) %optimizes Jv

ki=x(1);
zeta=x(2);
tau=x(3);
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kanadaproc.m

% kanadaprcc.m computes the polynomial form of the plant's transfer

L00

% function

in 2004 September 02 in Edmonton by Birgitta Kristiansson
kanada opht.m

% code calls kanaproc.m to ccmpute some frequency domain-based
s for the

3 nr refers to plant medel number, e.g. 2001 for Loop 1 in the

% Quadruple-Tank's multiloop

function
[ngp,dgp, kappa,wpip,nr,T63,Ld, kappal50,wl50,K1f, Tp, L, ordn, wl=kanadaproc
(plantnum) ;

nr=plantnum;
plantnum
w=logspace (-8,2,12000) ;

Tp=1;
K1lf=1;
L=0;

global PARAMS1
global PARAMS2
global params

kiz2=params (1,1);tau2=params(1,2);zeta2=params (1, 3) ;beta2=params (1,4);
kil=params(2,1) ;taul=params(2,2);zetal=params (2, 3) ;betal=params (2, 4);

if nr==01,
Tp=1;
Kif=1;
L=0.001;
[npade, dpade]l=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 11):
ordn=1;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax] =kanaproc (ngp, dgp,w,nr) ;

elseif nr==03,
Tp=10;
Klf=1;
L=0.3*Tp;
[npade, dpade]l=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [ (Tp) 1]);
ordn=1;
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[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==400,

Tpl=41.875;Tp2=42.349;

K1f=1.643;

L=(0.4/0.669)*31.1;

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [ (Tpl*Tp2) (Tpl+Tp2) 11);
ordn=2;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp,w,nxr) ;

elseif nr==401,
Tp=57.19;
K1f=1.702;
L=7.81;
[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 11):
ordn=1;

[wbp,wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==402,

Tpl=41.875;Tp2=42.349;

K1f=1.643;

1L=31.1;

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [ (Tpl*Tp2) (Tpl+Tp2) 11);
ordn=2;

{wbp, wpip, kappa, 763, Ld, kappal50,wl50, ymax]l=kanaproc (ngp,dgp, w,nxr) ;

elseif nr==403,

Tpl=47.233;Tp2=45.707;

K1f=1.657;

1L=48.4;

[npade, dpadel=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [ (Tpl*Tp2) (Tpl+Tp2) 1]);
ordn=2;

[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp, w,nxr) ;

elseif nr==02,

Tp=input ('Tp? Y):

K1lf=1;

IL=input ('L? Yy,

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp"2 2*Tp 1]):;
ordn=2;
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[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==111,

Tp=154.7;

K1£f=24.37;

1=6.28;

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 1]);
ordn=1;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp,w,nr) ;

elseif nr==112,

Tp=120;

K1£f=11.15;

L=8.7;

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp"2 2*Tp 11]);
ordn=2;

[wbp,wpip, kappa,T63,1d, kappal50,wl50, ymax]=kanaproc (ngp, dgp,w,nr) ;

elseif nr==121,

Tp=114;

K1f=11.13;

L=1;

[npade,dpadel=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp*2 2*Tp 11]);
ordn=2;

[wbp,wpip, kappa, T63,1d, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==122,

Tp=157.8;

K1f=24.57;

L=7.12;

[npade, dpade] =pade (L, 1);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 11);
ordn=1;

[wbp,wpip, kappa, T63,1Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==211,

Tp=232.5;

K1£f=10.13;

L=7.32;

[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 1]);
ordn=1;
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[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp,w,nr) ;

elseif nr==212,
Tp=155;
K1f=1;
1L=49.3;
[npade, dpade]=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [24056 310.2 1]);
ordn=2;
[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=
kanaproc (ngp, dgp, w,nr) ;

elseif nr==221,

Tp=162;

K1f=1;

L=33;

[npade, dpade]l=pade (L, 4):
ngp=Klf*npade;
dgp=conv (dpade, [Tp"2 2*Tp 11);
ordn=2;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==222,

Tp=193.8;

K1f=8.772;

1L=13.9;

[npade, dpadel=pade (L, 4);
ngp=Klf*npade;
dgp=conv (dpade, [Tp 11);
ordn=1;

[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp, w,nnr) ;

elseif nr==1001,

[np,dpl=pade (6.28,2); ngpll=24.37*np; dgpll=conv(dp, [154.7 11);
Gl1l=tf (ngpll, dgpll);

[np,dpl=pade (8.70,2); ngpl2=11.15*np; dgpl2=conv(dp, [14340
250.8 1]); Gl1l2=tf(ngpl2,dgpl2);

[np,dpl=pade (1.00,2); ngp21=11.13*np; dgp2l=conv(dp, [13070
231.2 11); G21l=tf (ngp2l,dgp2l);

[np,dpl=pade (7.12,2); ngp22=24.57*np; dgp22=conv(dp, [157.8 11);
G22=tf (ngp22,dgp22) ;

nf2=0.0205*[9.8262"2 2*1.4996*9.8262 1]; df2=[9.8262/29.7141 1
01; F2=tf(nf2,df2);

dl221=conv{dgpl2,dgp2l) ;dl122=conv (dgpll,dgp22) ;nl221=conv (ngpl2, ngp2l)
nf222=conv(nf2,ngp22);nf222=[0,nf222];df222=conv(df2,dgp22);
nf21221=conv (nf2,nl1221);t2=conv([0,nf21221],d1122);t2=[0,0,t2];
sd=size (df222)
sn=size (nf222)
st2=size (t2)
ngpl=conv(ngpll,dl221);size (ngpl)
ngp2=conv (ngpl, (df222+nf222)) ;np2=size (ngp2)
ngp=conv (ngpl, (df222+nf222))-t2;
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d111221=conv (dgpll, d1221);
dgp=conv (d111221, (df222+nf222));
ordn=3;

[wbp, wpip, kappa,T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp, w,nr) ;

elseif nr==1002,

[np,dpl=pade(6.28,2); ngpll=24.37*np; dgpll=conv(dp,[154.7 1]);
Gll=tf (ngpll, dgpll);

[np,dpl=pade (8.70,2); ngpl2=11.15*np; dgpl2=conv(dp,[14340
250.8 1]1); Gl2=tf(ngpl2,dgpl2);

[np,dpl=pade (1.00,2); ngp2l=11.13*np; dgp2l=conv(dp, [13070
231.2 11); G21=tf(ngp2l,dgp2l):;

[np,dpl=pade (7.12,2); ngp22=24.57*np; dgp22=conv(dp, [157.8 1]);
G22=tf (ngp22,dgp22) ;

nfl1=0.0251*[8.8070"2 2*1.5251*8.8070 1}; df1=[8.8070/27.0910 1
0]1; Fl=tf(nfl,dfl);

d1221=conv (dgpl2,dgp2l) ;dl122=conv (dgpll,dgp22);nl221=conv (ngpl2, ngp2l)
nflll=conv(nfl,ngpll);nfl11=[0,nfl11];dflll=conv(dfl,dgpll);
nfll221=conv(nfl,nl221);t2=conv([0,nfl11221],d1122);t2=[0,0,t2];
ngpl=conv (ngp22,d1221);
ngp2=conv (ngpl, (df111+nfl111));
ngp=conv (ngpl, (df111+nf111))-t2;
d221221=conv (dgp22,d1221) ;
dgp=conv (d221221, (df111+nfl111));
ordn=3;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

elseif nr==2001,

PARAMS2 (1) =ki2; PARAMS2 (2)=tau2; PARAMS2 (3)=zeta2; PARAMS2 (4) =beta?2;
[np,dpl=pade(7.32,2); nli=0.3446*np; dll=conv(dp, [232.5 11);
[np,dpl=pade (49.3,2); nl2=1*np; dl2=conv(dp, [24056 310.2 11);
[np,dpl=pade (33.00,2); n2l=1*np; d2l=conv(dp, [26244 324 1]);
[np,dpl=pade (13.9,2); n22=0.3046*np; d22=conv(dp,[193.8 11]);
nfl=kil*[(taul”2) (2*zetal*taul) 1]; dfl={(taul/betal) 1 0];
nl2d21d22dl11dfl=conv(nl2,d21)
nl2d21d22dl11dfl=conv(d22,n12d21d22d11df1l);
nl2d21d22d11dfl=conv(dil,nl12d21d22d11dfl);
nl2d21d22dl11dfl=conv(dfl,nl12d21d22d11df1l);

nl2n21d22dllnfl=conv(nl2,n21);

nl2n21d22dl1lnfl=conv(d22,nl12n21d22d11nfl);
nl2n21d22dllnfl=conv(dll,nl2n21d22d1l1nfl);
nil2n21d22dllnfl=conv(nfl,nl2n21d22d11nfl);

n22nl11dl2d21infi=conv(n22,nll);

n22n11dil2d21infl=conv(dl2,n22n11d12d21infl);
n22n11dl12d2infl=conv(d21,n22n11d12d21nfl);
n22n11dl12d21nfl=conv(nfl,n22n11d12d21nfl);

nfln21d11d12d22=conv(nfl,n2l);
nfln21d11d12d22=conv(dil, nfln21d11d12d22);
nfln21d11d12d22=conv(dl2,nfln21d11d12d22);
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nfln21d11d12d22=conv(d22,nfln21d11412d22) ;

df1d21d11d12d22=conv
df1d21d11d12d22=conv
df1d21d11di2d22=conv
df1d21d11d12d22=conv

dfl,d21);

dl1l,df1d21d11d12d22);
dl2z,df1d21d11d12d22);
d22,d£f1d21d11d412422) ;

—_— e~~~

ngp=[zeros(1l,2) nl2n21d22d11nfl]+nl2d21d22d11dfli-

n22n11di12d21nfl;
dgp=[zeros(1,2) nfln21d11d12d22]+df1d421d11d12d22;

ordn=3;

[wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp, w,nr) ;

elseif nr==2002,

PARAMS1 (1)=kil; PARAMS1 (2)=taul; PARAMS] (3)=zetal; PARAMSI1 (4) =betal;
[np,dpl=pade (7.32,2); nll=0.3446*np; dll=conv(dp, [232.5 11]);
[np,dpl=pade (49.3,2); nl2=1*np; dl2=conv(dp, [24056 310.2 11);

[np,dpl=pade (33.00,2); n2l=1*np; d2l=conv(dp, [26244 324 11);

)

]

[np,dpl=pade (13.9,2); n22=0.3046*np; d22=conv(dp, [193.8 11);
nf2=ki2* [ (tau2”2) (2*zetal2*tau2) 1]; df2=[(tau2/zeta2) 1 0
n21d12d22d11df2=conv (n21,d12)
n21d12d22d11df2=conv (d22,n21d12d22d11d£2);
n21d12d22d11df2=conv(d11,n21d12d22d11df2);
n21d12d22d11df2=conv (df2,n21d12d22d11df2);
nl2n21d22dl1lnf2=conv(nl2,n2l);
nl2n21d22dl1lnf2=conv(d22,nl12n21d22d11nf2) ;
nl2n21d22dl1lnf2=conv(dll,nl2n21d22d11nf2);
nl2n21d22dlinf2=conv (nf2,nl12n21d22d11nf2);
n22nl11di2d21inf2=conv(n22,nll);
n22n11di2d21nf2=conv (d12,n22n11d12d21nf2);
n22n11d12d21nf2=conv(d21,n22n11d12d21nf2) ;
n22n11d12d21nf2=conv (nf2,n22n11d12d21nf2) ;
nf2nl2dl11d21d22=conv (nf2,nl2);
nf2n12d11d21d22=conv(dl1l,nf2ni12d11d21d22);

(

(

Iz

nf2n12d11d21d22=conv (d21,nf2n12411d421d22) ;
nf2n12d11d21d22=conv (d22,nf2n12d11d421d22);
df2d21d11d12d22=conv (df2,d21);
df2d21d11di2d22=conv (d1l,df2d21d11d12d22);
df2d21d11dl12d22=conv (dl2,df2d21d11d12d22);
df2d21d11d12d22=conv (d22,d£2d21d11d12d22) ;
ngp=[zeros (1,2) nl2n21d22d11nf2]+n21d12d22d11df2-
n22n11d12d21nf2;
dgp=[zeros(1,2) nf2nl2dl11d21d22]+df2d21d11d12d22;

ordn=3;

[wbp, wpip, kappa, T63,Ld, kappal50,wl50, ymax]=kanaproc (ngp,dgp,w,nr) ;

end
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kanaproc.m

% kanaproc.m computes some characteristic parameters for the plant

model

% Created in d 3 in Edwonton by Birgitta Kristiansson

function [wbp, wpip, kappa, T63, Ld, kappal50,wl50, ymax]=kanaproc (ngp, dgp,w, n
r);

tsteg=0.02;
t=[0:tsteg:500];

lamp, fas]=bode (ngp, dgp,w) ;
ampl=amp (1)
Klf=amp (1)

ind=find (amp< (1/sqrt(2)));

wbp=w (ind (1) };

if (max(fas)>-180) & (min(fas)<-180),
ind=find (fas<=-180) ;
wpip=w(ind (1)) ;
kappa=amp (ind (1)) /amp (1) ;

else
wpip=1000;
kappa=100;

end

stegp=step (ngp,dgp, t);

i1=1;
while stegp(il)<0.63*stegp (length(t))
il=1i1+1;
end;
T63=t (il);
i2=1;
while stegp(i2)<0.05*stegp (length(t))
12=12+1;
end;
Ld=t (i2);

ymax =max (stegp);

if (max(fas)>-80) & (min(fas)<-150),
ind=find(fas<=-150);
wlb0=w(ind (1)) ;
kappal50=amp (ind (1)) /amp (1) ;
else
wl50=1000;
kappal50=100;
end
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kan ixif.m

1f.m defines the oblective function and uses

the constrained optimization formulation

s0 ¢

4

function Jv=kan ixlf (x)

global INDEXPAR;
global WOMEGA;

global NGPROCESS;
global DGPROCESS;

kinf=INDEXPAR (1) ;
wpip=INDEXPAR (2) ;

w=WOMEGA;

ngp=NGPROCESS;
dgp=DGPROCESS;

[ampp, fip]=bode (ngp, dgp, w) ;

ki=x(1);
zeta=x(2);
tau=x(3):;

beta=kinf/ (tau*ki);

[ngr,dgr]=kreg (ki, tau,beta, zeta) ;
controllerx
[nl,dl]=kkrets (ngr,dgr, ngp,dgp,w) ;
loop

[ampl, fil]=bode (nl,dl,w) ;

[ns,ds, samp, ms, maxs_w,wmaxs w]=kkansl(nl,dl,w);
sensitivity function

[ngs,dgs]=kdistsen (ngp,dgp,ns,ds,w);
s-waighted disturbance sensitivity function
nix=ngs;

dix=conv ([l 0],dgs);

[ixamp, ixfas]=bode (nix,dix,w) ;

[Jv,wind]=max (ixamp) ;

wmax=w (wind) ;
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constrains.m

function. The

% constrainis

% Created in 2004 Se - 09 in Edn by Birgitta Kristiansson
% gives the constrall or the opti

5 called by kane

5 code calls kkansl.m, kkompl.m and kreg.m

function|[g,geql=constrains (x)

geg=[];

maxs=1.7; maxt=1.3; SZmaxt=mazs*1.3/1.7;

lam=3; Flam= minimum
limit for gain margin

tsteg=0.02;

t=[0:tsteg:1500];

global INDEXPAR;
global WOMEGA;

global NGPROCESS;
global DGPROCESS;

kinf=INDEXPAR (1) ;
wpip=INDEXPAR (2) ;

w=WOMEGA;

ngp=NGPROCESS;
dgp=DGPROCESS;

[ampp, fip]l=bode (ngp,dgp,w) ;

ki=x(1);

zeta=x(2);
tau=x(3);
beta=kinf/ (tau*ki);

[ngr,dgr]l=kreg(ki,tau,beta,zeta);

[nl,dl]=kkrets (ngr,dgr,ngp,dgp,w) ;
[ampl, fil]=bode (nl,dl,w);

[ns,ds, samp,ms, maxs_w,wmaxs w]=kkansl (nl,dl,w);
[nt,dt, tamp,mt, wb]=kkompl (nl,dl, w);

g(l)=ms-maxs; % imposes the constraint
max|Si <= M3
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2 imposes the constraint
g(2)=mt-maxt; 5 LIE ?

max|T| <= MT

g=[g(l) g(2)1];

225
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kreg.m

e

& Modified in September 2004 in Edmonton by Birgitta Xristiansson

ntroller with a ist orxder filter, given the
a,zeta, tau
y kan ixlf.m and constrains.m

paran
% code

function [ngr,dgr]=kreg(ki,tau,beta,zeta);

ngr=ki*[tau”2 2*zeta*tau 1];
dgr=conv ([l 0], [tau/beta 1]);
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kkrets.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

.m cre
- - and the
% code is called by

roll

function [nl,dl]l=kkrets(ngr,dgr,ngp,dgp,w);

nl=conv(ngr, ngp);

dl=conv (dgr, dgp)
Inl=length(nl);ldl=length(dl);
if 1nl>1dl, dl=[zeros(l,1lnl-1dl),dl];
elseif 1d1>1nl, nl=[zeros(l,1dl-1nl),nl];
end

loopl=tf (nl,dl);

[ampl, fil]=bode (loopl,w) ;

index=find (£il<=-180);
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kkansl.m

% Modified in September 4004 in Edmeonton by Birgitta Xristiansson

ensitivity funciion and the 1/s-weighted

L ¢creates the se
©

fanction giv

3

function [ns,ds,samp,ms,maxs w,wmaxs w]=kansl (nl,dl,w);

1nl=length(nl);

ldl=length (dl);

ns=dl;
ds=nl+dl;

[samp, sfas]=bode (ns,ds,w);

[ms, sind]=max (samp) ;
dsr=conv ([l 0],ds);
[s_w,s wfas]=bode(ns,dsr,w);
[maxs w, swi]=max(s_w);
wmaxs_w=w (swi(l));
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kkompl.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

> complementary sensitivity functicon T and the

is called by kan ixlf.m and constrains.m

function [nt,dt, tamp,mt,wb]=kkompl (nl,dl,w);
nt=nl;
dt=dl+nl;
[tamp, tfas]=bode (nt,dt,w) ;

[mt, tind]=max (tamp) ;

indwb=find (tamp< (1/sqrt (2)));
wb=w (indwb (1)) ; bandwith for the closed loop
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kdisten.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson
% kdisten.m creates the disturbance sensitivity function = Gvy

function{ngs, dgs,gsampl=kdisten (ngp,dgp,ns,ds,w);

ngs=conv {ngp, ns) ;
dgs=conv (dgp, ds) ;
[gsamp, gsfas]=bode (ngs, dgs, w) ;
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kdisten.m

% Modified in September 4004 in Edmonton by Birgitta Xristiansson
% kdisten.m creates the disturbance sensitivity funciion = Gvy
function[ngs, dgs,gsamp]=kdisten (ngp,dgp,ns,ds,w);

ngs=conv (ngp, ns) ;

dgs=conv (dgp, ds) ;
[gsamp, gsfas]=bode (ngs,dgs,w) ;
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