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ABSTRACT

Kristiansson’s1 controller design and evaluation method characterizes a control 

system by dividing its frequency response into four regions. Within each 

frequency region a criterion is defined as a measure of one of the system’s 

properties -  performance, robustness, and control activity. Constraining three of 

the four criteria at desired levels, controller parameters that optimize the fourth 

criterion are calculated so that an optimal balance of the control system’s 

properties is attained.

This thesis presents the application of Kristiansson’s1 technique to the design, 

evaluation, simulation and experimental implementation of optimal PI/PID-based 

control systems for real and hypothetical processes. The experimental evaluation 

is carried out on two pilot-scale processes and an industrial control loop.

The salient points made from the application of the evaluation technique are:

■ With the use of either first or second order low-pass filtering, derivative (D) 

control can be safely incorporated into a PI control system, hence a PID 

controller. Compared with the traditional PI controller, the PID controller 

can significantly improve output performance without excessive control 

activity;

■ For processes having significant time-delay dominance, there’s substantial 

improvement in closed-loop performance when a PID controller is utilized, 

instead of the PI controller; and

■ For processes with larger time delays, the PID controller can perform 

better or equal to the Smith-augmented PI controller.

1 Kristiansson, B. (2000). Evaluation and Tuning of PID Controllers. Licentiate Thesis, Dept of Signals and Systems, 
Chalmers University of Technology, Goteborg, Sweden
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CHAPTER 1

INTRODUCTION

1.1 THE PID CONTROLLER: HISTORICAL OVERVIEW

Commercial application of the Proportional-lntegral-Derivative (PID) controller for 
industrial activities has been on-going for nearly seventy years. According to [6], 
the first commercial PID controller -  the Fulscope pneumatic controller -  was 
introduced by Taylor Instrument Companies in 1939. Also in 1939, the Foxboro 
Instrument Company introduced the Stabilog 30 pneumatic controller, which 
operated on the basis of the PID control algorithm as well. In 1950, the Transet 
Tri-act controller [26] was introduced. It was a serial PID controller, and became 
a standard form. In 1959, Foxboro presented the Controsol, which was the first 
widely-accepted electronic PID controller.

Prior to the 1930s, academic and professional institutions paid little attention to 
the theoretical research and development of process controllers, as development 
had been driven only by industrial needs and lacked a mathematically-supported 
foundation. The first synthesis of important ideas from several sources on PID 
controller design came in 1934 with Harold Hazen’s paper [27] on 
servomechanisms, in which an examination of the control actions used in 
industrial instruments was included. By that time, many engineers working in 
instrument companies and process industries were also trying to build a body of 
theoretical knowledge that would assist them with future controller design 
problems. Grebe et al [28] at Dow Chemical Company, USA, and Ivanoff [29] in 
the UK, initiated this effort by publishing papers in 1933 and 1934 respectively. 
Later, papers on automatic control were published in the Transactions of 
American Society of Mechanical Engineers (ASME).

In 1940, one of the three central issues for the development of control 
engineering was establishing appropriate settings for PID controller design 
parameters. The issue was addressed in 1942 by Ziegler and Nichols [30], who 
presented two methods for finding suitable parameter settings. Attention paid to 
the development of PID control has grown tremendously since the early 1940s. 
There are currently numerous publications on PID tuning techniques. In [7], a 
survey of published papers on control theory, spanning a century, can be found. 
In that survey, PID tuning methods are divided into six groups:

a) Zieqler-Nichols Tuning Technique: This technique originated in the work of 
Ziegler and Nichols in 1942 [30]. It is still being used widely for control 
loops in industry.

b) Frequency Domain Tuning Techniques: These consist of a variety of 
frequency domain-based techniques that use information about the

1
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desired phase and gain margins of the closed loop, as well as other 
system frequency response parameters.

c) Relay-Based Tuning Techniques: This technique was introduced in 1984 
by Astrom and Hagglund in [39]. Since then, it has undergone several 
modifications.

d) Optimization-Based Tuning Techniques: The techniques in this group are 
based on the optimization of pre-defined performance criteria, the most 
common being integral criteria.

e) Internal Model Control Tuning: These techniques are based on the 
Internal Model Control algorithm developed by Morari and his co-workers 
[40,41],

f) Other Tuning Methods: These include tuning techniques based on the 
identification of the transient response parameters of the second-order 
plus time delay process, PID tuning based on gain scheduling, PID tuning 
based on the dominant pole placement method, etc.

Other rich sources of PID tuning techniques are [31, 32]. Also, PID control theory 
is discussed at an introductory level in [4, 14].

1.2 CURRENT TRENDS AND ISSUES IN PID CONTROL

According to [5], most PID controllers in industry operate as regulators (i.e., they 
reject external disturbances to process variables), making regulatory 
performance of the controllers of primary importance. Load disturbances are 
often the most common disturbances in process control [33]. Consequently, 
several design methods focus on load disturbances. Other major functions of the 
PID controller in industrial processes are:

■ Set point tracking
■ Attenuation of sensor noise
■ Robustness to model uncertainty
■ Stabilization

There are approximately three million regulatory controllers in continuous 
process industrial facilities (based on data from Industrial Information Resources 
[11]), with typically between five hundred and five thousand regulatory controllers
in each industry. Based on a survey of over eleven thousand controllers in the
refining, chemical and pulp and paper industries, 97% of regulatory controllers 
utilize a PID feedback control algorithm. A minimum of three reasons are given 
for the predominance of the PID algorithm:

1) The PID algorithm works well in the majority of applications.
2) The PID algorithm is easy to understand. Numerous publications 

exist on PID implementation and tuning, and a number of software 
packages are available to facilitate PID tuning.

2
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3) The PID algorithm is pre-programmed in every control system. 
Implementing a non-PID feedback control algorithm involves 
programming custom logic and could take as much as one hundred 
times the effort of implementing a PID algorithm, not counting the 
intangible lifecycle costs such as documentation, support, and 
troubleshooting.

Another control algorithm now in widespread use is the Model Predictive Control 
(MPC) [42]. According to [34], there are between two thousand and three 
thousand multivariable model predictive control (MPC) applications in use 
worldwide. When MPC is implemented, its manipulated variables are typically the 
set points of existing PID controllers.

Several current trends [11] suggest the gap between desired and actual 
controller performance in industries is widening:

1) When manufacturing sites are large enough to warrant dedicated control 
engineers, their time is increasingly being diluted across implementing and 
maintaining advanced control technologies, display building, process 
historian support, and traditional PID controller maintenance. 
Consequently, there is inadequate time for controller performance 
analyses.

2) Process control application engineers often lack process control 
troubleshooting experience.

3) Studies have shown that only about one third of industrial controllers 
provide an acceptable level of performance [36, 37]. Furthermore, this 
performance has not improved significantly in the last few years, even 
though many academic performance measures have been developed in 
that time [38].

A performance survey of twenty six thousand PID controllers [11] conducted in 
2000 in a wide variety of continuous process industries classified the 
performance of each controller into the categories listed below. The classification 
was based on an algorithm combining a minimum variance benchmark [38] and 
an oscillation metric tuned for each measurement type (flow, pressure, level, etc). 
The classifications were also refined through extensive validation and industry 
feedback to reflect controller performance relative to practical expectations for 
each measurement type:

■ Excellent or Acceptable (16% in each class): These refer to controllers 
with minor performance deviations.

■ Fair or Poor (22% and 10% respectively): These refer to controllers with 
unacceptably sluggish or oscillatory responses.

■ Open Loop (36%): This refers to controllers operating in the manual mode 
(i.e., process variables are held close to set points by the interventions of 
the operators manipulating the processes) or the output is saturated for 
more than 30% of the time span of the dataset.

3
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In addition to the performance discrepancies noted above, [18, 19] list factors 
that could limit the achievable performance of a control system as:

■ Process Dynamics
■ Nonlinearities
■ Uncertainties
■ Disturbances

Another cause of the performance discrepancies is poor controller tuning, which 
arises from changes in process dynamics or the nature of the disturbances. 
Other causes include wear, malfunction, or failure of hardware in the control 
systems.

As a method of closing the desired vs. actual controller performance gap, [11] 
describes the Process Control Monitoring System (PCMS). The purpose of the 
PCMS is to provide plant control engineers with enhanced capabilities to identify 
problems for many controllers while minimizing additional effort and expense. 
The PCMS collects control loop data, computes performance assessment 
metrics, performs analyses, and presents the metrics in a form suitable for the 
control engineer to make decisions and take appropriate action on the control 
loop. There are three broad domains for the performance assessment metrics, 
one of which is the Engineering Metric (examples include dynamic model 
accuracy and minimum variance benchmarks). This metric helps to diagnose 
engineering deficiencies within the controller.

Hence, the feedback methodology for improving controller performance using 
PCMS would be: Minimize the deviation between current controller performance 
and the overall industrial/business objectives by implementing a PCMS, which 
empowers the control engineer with current process and control loop information 
obtained from metrics computation and analyses, and enables him to take the 
necessary corrective action.

Another issue in the industrial application of PID control is the non-usage of the 
derivative (D) part of the system, thus causing widespread usage of Proportional- 
Integral (PI) control. Derivative control is not commonly used in industrial control 
loops because it amplifies and transfers noise (i.e., high frequency random 
fluctuations in sensor measurement of process variables) to the control signal 
sent from the controller to the actuator. The derivative control signal is 
mathematically a multiple of the derivative of the process output. If the process 
output has an erratic trend, its derivative would also be erratic on a more severe 
scale. Thus, poor tuning of the D controller leads to excessive control activity and 
high variability in the response of the controlled process. According to [37], about 
97% of the control loops in a typical Canadian paper mill use PI control.

A great amount of investigative effort has gone into PI and PID controllers, and 
many useful design ideas have been presented over the years (as summarized 
in [7, 31, 32]). However, none of the presented design methods has been widely 
accepted. A likely reason given in [13] is that the ultimate tuning method has not

4
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yet been found, or perhaps one does not exist because the variety of situations 
where PID controllers are used is diverse. Therefore, an assortment of tuning 
methods is probably required.

1.3 EVALUATION OF CONTROL SYSTEMS

Evaluation of a linear control system involves the quantitative assessment of its 
properties, the most important of which are performance and robustness (i.e., 
stability, control activity, robustness to model uncertainties). In most cases, 
improvement of the properties of a control system in one aspect will bring 
deterioration in another. According to [25], for a correct comparison of various 
control systems, their properties must be equally restricted except for the 
property being compared.

A control system evaluation method proposed by Kristiansson [13] defines four 
evaluation criteria related to the vital performance and robustness characteristics 
of a control system in the frequency domain. The evaluation method has been 
applied in simulation to closed loops of benchmark process model examples in 
[8], with PI and PID controller structures used extensively. Some of the 
noteworthy features shown by these controllers from the application of the 
evaluation technique are:

1) With the augmentation of a first or second order low-pass filter, the 
derivative (D) controller can be implemented along with the PI controller, 
i.e., a PID controller with a filter, to give good control performance with 
moderate control activity;

2) There is an upper limit to the obtainable performance of a PI control 
system. That limit can be surpassed by the PID control system; and

3) In controlling a process with significant time delay, greater improvement in 
closed loop performance is obtainable if a PI controller is augmented with 
a D controller than if it is augmented with a Smith predictor [21, 22, 23, 
24].

1.4 MOTIVATION

The points discussed thus far lead to the following conclusions:

1) Despite the number of alternate control algorithms with superior 
performance capabilities generated by research activities, PID control still 
has roles to play in industrial control loops. Hence, every effort and result 
relevant to improving the PID design method would always be applicable;

2) According to [11], if PCMS were implemented in industry, the process 
control engineer would find his decisions and actions progressively 
influenced by the business objective set points, rather than the individual 
performance level of his control loops alone. Hence, he would rely on

5
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PCMS balance of detailed individual controller diagnostic metrics and 
overall business and operational metrics to chart the appropriate course of 
action. This approach suggests that measures for evaluating the various 
properties of a control loop (i.e., performance, robustness, and control 
activity) would eventually be required in computing the diagnostic metrics. 
Therefore, a systematic closed-loop evaluation method would be useful.

3) Research innovations in process control still have a long way to go before 
they can have a significant impact on industry-wide controller performance 
due to their generally inadequate implementation in industry. Hence, one 
area of focus for the academic community could be to work more closely 
with the industrial community and be more demonstrative of the benefits of 
new developments in control algorithms.

4) The overwhelming implementation of PI controllers compared with PID 
controllers in industry suggests there is significant potential for 
performance improvement of the control systems by just crossing the 
derivative control gap alone.

An example of the benefits of improving industrial control system performance 
can be found in the Industrial Information Resources report [11]. The report 
reveals that major US process industries spend about thirty billion dollars 
annually on energy and over one hundred billion dollars on facility maintenance. 
According to the report, even a 1% improvement in either energy efficiency or 
improved controller maintenance direction represents hundreds of millions of 
dollars in savings to process industries. Control loops not operating at optimal 
performance levels invariably increase energy consumption at the actuators, 
cause equipment wear, deviate from process operating conditions -  which in turn 
give off-quality products and reduce production yield. These factors incur excess 
production costs in the form of product recycling, raw material loss, excess 
energy usage, loop hardware maintenance and repairs, and production 
downtime.

1.5 THESIS OVERVIEW

The scope of this thesis is based on Kristiansson’s controller evaluation 
technique [13]. The features of PI and PID control systems highlighted by the 
technique were investigated only in simulation and for hypothetical process 
models. It would be desirable to verify the evaluation results experimentally using 
industrial processes or at least their pilot-scale versions.

It is reasonable to expect that experimental work on a real controlled process 
would be in the open loop (e.g., system identification) and the closed loop (e.g., 
controller implementation) modes. Hence, one of the objectives of this research 
is to obtain linear, time invariant, dynamic models for the processes employed. 
The models will be used for designing a range of PI and PID controllers using an 
optimization-based technique of the evaluation method. Closed loops consisting 
of the models and designed controllers will be implemented both in the simulation 
and real-time experimentation.

6
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The criteria for evaluating the control systems’ characteristics will be applied to 
the closed loops as tools for comparing the PI and PID controllers. Because the 
properties of major interest to plant operators and control engineers are the 
closed loops’ performance and control activity, substantial emphasis will be 
placed on them in the controller comparisons.

The role of time delay in the achievable performance of control loops is a salient 
matter in industry. The implementation of an inappropriate control structure on a 
process with a significant time delay could give poor closed-loop performance. 
Hence, when comparing various control structures, it would be quite informative 
to examine the way they perform for processes in which time delay has varying 
degrees of dominance. In this thesis, the comparisons of control structures 
implemented on the real processes with varying time delays are restricted to PI 
and PID controllers.

In view of the fact that one of the motivating points for this research is the 
apparent gap between academia and industry concerning the application of 
innovations in controller design, it would be desirable to reproduce the results of 
the intended comparisons mentioned above using measures that are either 
already well-known to control engineers or can be easily understood. Measures 
used industrially are typically based on the response data for the process 
variables, manipulated variables, set point signals, etc, as they are readily 
available. Hence, the research will also consider control system comparisons that 
use evaluation criteria based on the sampled process data of the closed loops 
and not necessarily the process and controller models.

The point made in [25] on the greater benefit of adding derivative action to a PI 
controller, in contrast to augmenting it with a Smith predictor, will also be 
investigated using the models for the real processes plus the processes 
themselves.

Pilot-scale processes, which utilize the same physical principles (e.g., heat 
transfer, fluid flow, etc) as in industrial processes, are available in the Computer 
Process Control Laboratory for the experimental aspect of this research. A 
computer interface to the processes gives the flexibility of performing a wide 
variety of system identification experiments and implementing any control 
algorithm on the processes.

7
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CHAPTER 2

CHARACTERISATION OF A CONTROL SYSTEM’S 
PROPERTIES

2.1 INTRODUCTION

The main exogenous and response variables of a Single-lnput-Single-Output 
(SISO) closed loop will be discussed in this chapter, as will the common transfer 
functions, or the sensitivity transfer functions, of the system. The typical 
frequency response profile of each transfer function will be illustrated with 
examples, using simple process transfer functions and controllers.

The closed loop evaluation criteria proposed in [25], which are norm-based 
functions of the sensitivity transfer functions, will be discussed in detail. Each 
criterion will be illustrated in the frequency domain, using the afore-mentioned 
process transfer functions and controllers.

Finally, the applicability of the evaluation criteria to controller design will be 
discussed.

2.2 THE SENSITIVITY TRANSFER FUNCTIONS

Figure 2.1 depicts the block diagram of a typical SISO closed-loop.

d(t)

eft) u(t)
—►<£> -y(t)*K >

I

w(t)

K(s) G(s)

Figure 2.1: Schematic diagram of a Single-lnput-Single-Output (SISO) closed loop.

The external (or exogenous) variables are:
■ Set point signal, r(t)
■ Process disturbance, d(t)
■ Measurement noise, w(t)

The output variables are:

8
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■ Process output, y(t)
■ Control signal, u(t)
■ Error signal, e(t)

The relevant transfer functions are:
■ The process, G(s)
■ The disturbance, Gd(s)
■ The controller, K(s)

The sensitivity transfer functions relate the external signals to the output signals. 
The transfer functions of interest are:

■ The Sensitivity Function
■ The Complementary Sensitivity Function
■ The Disturbance Sensitivity Function
■ The Control Sensitivity Function

Sensitivity Function 
This function is defined as:

SfsJ = ---------------
1 + G(s)K(s) (2 .1 )

=  G er

Where Ger is the transfer function between the error signal and the set point 
signal.

Complementary Sensitivity Function 
This function is defined as:

G(s)K(s)T(s) =
1 + G(s)K(s) (2.2)

where:
G yr G yw G ew

Gyr = transfer function between the set point signal and the process 
output.

Gyw = transfer function between the measurement noise and the process 
output.

Gew = transfer function between the measurement noise and the error 
signal.

S(s) and T(s) are the closed-loop transfer functions for disturbances and set point 
changes. They both provide measures of how sensitive the closed-loop system is 
to changes in the process. Also,

9
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S(s) + T(s) = 1 (2.3)

If the controller includes integral action, offset is eliminated for set point changes 
and sustained disturbances, such that at low frequencies, \T{juj)\ —> 1 and |S(/'cu)| 
—> 0, where \T(joj)\ and \S(Ja>)\ are gain magnitudes of T(s) and S{s) respectively. 
The maximum values of the gain magnitudes provide useful measures of closed- 
loop robustness, which will be discussed in later in this chapter.

Disturbance Sensitivity Function 
This function is defined as:

S ( * ) -  Gd(s)
v[ 1 + G(s)K(s) (2.4)

=  G yd

where:
Gyd = transfer function between the disturbance and the process output.

For effective rejection of low frequency disturbances, the closed-loop should 
have a low maximum value of \Gyd\ in the low frequency region.

The PID controller evaluation method in [25] is based on the assumption that the 
disturbance enters the process at the control signal so that both inputs have the 
same dynamic effect on the process output. Typical examples given are load 
forces and moments in mechanical systems and fluctuating concentrations in 
fluid systems. Hence, Gd(s) *  G(s) so that (2.4) becomes:

o  ( « )  - G d ( s )  G ( s )  ( 2  5 )

v{ } 1 + G(s)K(s) ~ 1 + G(s)K(s) {

(2.5) will subsequently be used as the disturbance sensitivity function.

Control Sensitivity Function 
This function is defined as:

S . W -  K(s>1 + G(s)K(s) (2 .6 )

where:

=  P  =z C^ur ^uw

Gur = transfer function between the set point signal and the control 
signal.

Guw = transfer function between the measurement noise and the control 
signal.

10
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For effective attenuation of measurement noise transfer to the control signal, 
\GUW\ should be low in the high frequency region.

Example 2.1 calculates the four sensitivity transfer functions, and illustrates their 
frequency response using arbitrary process and controller transfer functions:

Example 2.1: Table 2.1 shows five process transfer functions and the respective 
PID controllers (with first order filtering of the derivative part) used to control them 
in closed loops:

Table 2.1: Process and Controller Parameters for Sensitivity Transfer Functions

PROCESS CONTROLLER

1
e-s 3.5536(, 1 0.4231s N7 I I

10s+ 1 ’ 3.2602s 1 + 0.0701s,

2
e~2s 2.3931(, 1 0.6933s "7 I I

10s+ 1 ^  ’ 4.4316s 1 + 0.1316s,

3
e ~3s

1.9160( 1 0.9974s )
7 I ■ „ . j.......

10s+ 1 ^  ' 5.3719s 1 + 0.1960s)

4 e~4s 1.6299 1 1.3315s )7 j j __
10s+ 1  ̂ 6.1505s 1 + 0.2593s)

5 e~5s 1.4308f „ 1 1.6899s )7 j |
10s+ 1 i,' ‘ 6.8131s 1 + 0.3194s)

Each process transfer function contains a time-delay term, which must be 
converted to polynomial form using the Pade approximation [14] in order to 
compute the sensitivity transfer functions. For simplicity, the 1/1 approximation is 
used. Table 2.2 shows the four transfer functions for all the processes.

Table 2.2: Computation of Sensitivity Transfer Functions

G(s) e~s 
10s+ 1

K(s) 3.5536( 1 ( 0.4231s > 
t  + 3.2602s ' 1 + 0.0701s)

S(s) 0.7s4 +11.5s3 + 21.1s2 + 2s 
0.7 s4 + 9.7 s3 + 21s2 + 8.2s+ 2.2

T(s) -1.8s3 -0.1s2 + 6.2s+ 2.2 
0.7 s4 + 9.7 s3 + 21s2 + 8.2s+ 2.2

11
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Sv(s) -0.7s5-10.1s4 -1.8s3 + 40.3s2 + 4s
7s6 +111.9s5 +415.7s4 + 542.5s3 +235.4s2 +62.1s + 4.4

Su(s) 1.2s6 + 22.7s5 + 79.5s4 + 92.8s3 + 30.3s2 + 2.2s 
0.05s6 + 1.4s5 +11.2s4 +21.6s3 +8.3s2 +2.2s

G(s) e~2s 
10s+ 1

K(s) 2 m { u  1 + om33s )
{ 4.4316s 1 + 0.1316s)

S(s) 1.3s4 +11.5s3 +11.1s2 +s 
1.3s4 + 9.5s3 + 10.6s2 + 2.9s+ 0.5

T(s) -2s3 -0.5s2 + 2s+ 0.5 
1.3s4 + 9.5s3 + 10.6s2 + 2.9s+ 0.5

Sv(s)
-1.3s5 -10.1s4 -0.3s3 + 10.1s2 +s

13.2s6 + 109.2s5 + 211.9s4 + 155.8s3 + 48.21s2 + 8.7 s + 0.5

Su(s) 2.6s6 + 25.8s5 + 50.9s4 + 35.6s3 + 8.5s2 + 0.5s 
0.2s6 + 2.6s5 + 10.9s4 +11s3 +3s2 +0.5s

G(s) e~3s 
10s+ 1

K(s) 1 °-9974s ) 1.9160 1 + ---------+ -------------
t  5.3719s 1 + 0.1960s)

S(s) 2s4 + 11.5s3 + 7.8s2 + 0.7 s 
2s4 + 9.2s3 + 7.3s2 + 1.6s+ 0.2

T(s) -2.3s3 -0.46s2+ s + 0.2 
2s4 + 9.2s3 +7.3s2 + 1.6s+ 0.2

Sv(s) -2s5 -10.2s4 -0.1s3 + 4.5s2 + 0.4s
19.6s6 +107.2s5 + 145.3s4 +78.7s3 +19.8s2 + 2.9s+ 0.2

Su(s) 4.5s6 + 30.2s5 + 41.4s4+21.1s3 +4.1s2 +0.2s 
0.4s6 +3.8s5 + 10.7 s4 +7.7 s3 +1.7 s2 +0.2s
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G(s) e~4s 
10s+ 1

K(s) 1 1'3315S } 1.6299 1 + 'I- ..............
^ 61505s 1 + 0.2593s)

S(s) 2.6s4 + 11.6s3 + 6.1s2 + 0.5s 
2.6s4 + 9s3 + 5.7s2 + 1.1s + 0.1

T(s) -2.6s3 -0.4s2 + 0.6s+ 0.1 
2.6s4 + 9s3 + 5.7s2 + 1.1s + 0.1

Sv(s) -2.6s5 -10.3s4 -0.4s3 + 2.6s2 +0.3s
25.9s6 + 105.2s5 + 112.3s4 + 49.7s3 + 10.7s2 + 1.3s+ 0.1

Su(s) 6.7s6 + 34.4s5 + 36.2s4 + 14.8s3 + 2.5s2 +0.1s 
0.7s6 + 4.9s5 + 10.5s4 +6s3 +1.1s2 +0.1s

G(s) e 5s 
10s+ 1

K(s) 4 junof4 1 16899s )1.4308 1 + i
t  6.8131s 1 + 0.3194s)

S(s) 3.2s4 +11.6s3 + 5.1s2 + 0.4s 
3.2s4 + 8.7 s3 + 4.8s2 + 0.8s + 0.1

T(s) -2.9s3 -0.3s2 + 0.4s+ 0.1 
3.2s4 + 8.7 s3 + 4.8s2 + 0.8s+ 0.1

Sv(s)
-3.2s5 -10.3s4 -0.5s3 + 1.7s2 + 0.16s

31.9s6 + 103.2s5 + 92.7s4 +35.3s3 + 6.7s2 + 0.7s + 0.03

Su(s)
9.1s6 + 38.1s5 + 32.8s4 +11.3s3 +1.7s2+0.1s 

s6 +6s5 + 10.3s4 +5s3 +0.8s2 + 0.7 s+ 0.1

Figures 2.2(a) to 2.2(d) depict the frequency response plots of the sensitivity 
transfer functions for the closed loops of all the processes.
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Figure 2.2(a): Frequency response of sensitivity functions.
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Figure 2.2(b): Frequency response of complementary sensitivity functions.
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Figure 2.2(c): Frequency response of disturbance sensitivity functions.
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Figure 2.2(d): Frequency response of control sensitivity functions.
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Figure 2.2(c) shows that the disturbance sensitivity gain initially increases with 
frequency in the low frequency region to a peak and subsequently drops. For 
good disturbance rejection, this peak should be kept as low as possible; the 
performance criterion in Kristiansson’s evaluation method is based on it.

Figure 2.2(d) shows the control sensitivity gain increasing with frequency and 
converging at an upper asymptote. The asymptote shows that the most 
significant transfer of measurement noise to the control signal occurs at high 
frequencies. Hence, for effective attenuation of noise in the control signal, the 
high frequency asymptote should be kept as low as possible. The mid-to-high 
and high frequency robustness criteria in the evaluation method are based on 
this asymptote.

The controller, K(s), can be strictly proper or just proper. When integral action is 
included, it has the asymptotic properties:

*(*)->

k; s~*0

(2.7)

■ 00

When K(s) is just proper, the roll-off m is zero, as oo. The high
frequency gain, kx , and the integral gain, kt , are both non-zero constants.

2.3 EVALUATION CRITERIA FOR CONTROL SYSTEM’S 
PROPERTIES

As typified by the Bode Sensitivity Integral Theorem, which shows that the 
suppression of the sensitivity function’s gain in one frequency region would lead 
to gain enhancements in other regions, improvements of the properties of a 
control system in one respect would cause deteriorations in the other. For each 
property of a control system, the demands on it vary along the frequency scale. 
An example can be seen in the frequency response of T(joj) in Figure 2.2(b). 
Because it is the closed-loop transfer function, it is desirable to keep its gain high 
in the low frequency region for enhanced closed-loop response performance. In 
the high frequency region, however, it must be kept low for closed-loop 
robustness purposes. For other sensitivity transfer functions, the demands in the 
low, mid-, and high frequency regions differ. Therefore, in describing the 
properties of a control system in the frequency domain, at least one descriptive 
quantity is required in each frequency region.

A control system can be characterized by its performance and its robustness. To 
evaluate these properties in the frequency domain, [25] divides the frequency 
response of the open loop transfer function LQuj) into four regions as shown in 
Figure 2.3.

16
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MF MHF HF

Figure 2.3: Division o f frequency response o f open loop transfer function into fo u r reg ions.

In the low frequency (LF) band, the aim is to obtain a high loop gain in order to 
obtain efficient compensation of load disturbances and accurate tracking of 
varying set point signals, as well as robustness against process dynamics 
uncertainties. Jv is the proposed LF criterion, which evaluates the control 
system’s ability to compensate low frequency load disturbances; thus, Jv is the 
performance criterion. Another performance criterion suitable for closed-loop 
servo objectives is Jr.

In the mid frequency (MF) band, which is in the vicinity of the gain and phase 
cross-over frequencies, the stability margins of the control system are evaluated. 
In this case, the general stability criterion is the Generalized Maximum 
Sensitivity, GMs-

In the mid-to-high frequency (MHF) band, just above the bandwidth, the property 
of evaluation interest is the control activity. The control activity criterion defined 
in this frequency band is Ju. For a just proper (not strictly proper) controller, Ju 
can also be seen as a measure of the high-frequency robustness and of the 
ability of the control system to reduce high-frequency sensor noise.

The high frequency (HF) criterion is Jhf , and it is applicable only to control 
systems having strictly proper controllers. It measures their high frequency 
robustness and high frequency noise attenuation ability in the same way as Ju 
measures these properties in the mid-to-high frequency band. J hf  measures the 
extent to which high frequency measurement noise can be damped without 
having any significant effect on the low frequency properties of the control 
system.

17
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2.3.1 PERFORMANCE CRITERIA -  Jv, Jr

The main objectives of a controller [4] are listed below:

■ Damping load disturbances
■ Following a reference signal
■ Stabilization
■ Reducing the influence of uncertainties and nonlinearities
■ Attenuation of sensor noise

The most common objective is damping load disturbances [33], in which case the 
most relevant sensitivity transfer function is the disturbance sensitivity function 
Sv(s) from (2.5). For controllers with integral action and according to (2.7), as 
co^O  (low frequency), G(\co)K(jco)» 1:

G(jco) ^ 1 ^ jco
1 + G( jco )K(jco) K ( jco ) kj

s v (jco) = Gyd (jco) = — " — 77-7  *  177— , * 7 ^  ( 2 -8 )

Hence, the influence of the low frequency load disturbance on the process output 
is attenuated by a factor of 1/kh such that the smaller its value, the smaller the 
influence of the disturbance on the output. [25] shows, as corroborated by [4], 
how for a closed loop with robust design and small undershoot in a load 
disturbance step response:

M E =|eW |d(»|/E | = ^  (2.9)

where IAE  is the integral of the absolute magnitude of the error signal and IE  is 
the integral of the error signal. IAE is a common disturbance rejection 
performance index [4, 14, 43].

According to (2.8), 1/k, is approximately equal to (jco)~1Sv and is an applicable 
measure of the ability of a closed loop to attenuate load disturbances. 
Kristiansson therefore defines the performance criterion Jv as:

Jv - WvGyd = K s* L  = a v is .  O i l  (2 .io )co u "oo 10
-where Wv(s) = s

The graphic interpretation of (2.10) is that Jv is the gain peak of the disturbance 
sensitivity function Sv weighted by (ju))'1 in the frequency domain. In addition, 
being an -norm-based criterion, it can be used for multiple-input-multiple- 
output (MIMO) systems.

Using the processes and controllers from Example 2.1 in Section 2.2, the 
performance criterion Jv is illustrated.

18
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Example 2.2: Figure 2.4 shows the (/cuj'^-weighted disturbance sensitivity 
frequency response of the closed-loops for the processes and controllers in 
Example 2.1, Jv is indicated for each closed-loop:

■ t  r
Process 1

 -i..........

Process 4

Jv

  i....
;

'"T
10'

- ■>—

10'
Frequency (rads/sec)

Figure 2.4: Frequency response o f (ycuj^-weighted disturbance sensitiv ity functions show ing
the Jv point o f each closed loop.

When the main task of a control system is to follow a varying set point input, the 
relevant transfer function is Ger(s) which, from (2.1), is the sensitivity function 
S(s). As a> ->  0 , L(juj) »  1. [25] defines the servo performance criterion as:

J r  H K Ge r L  H K SL  =  ( 2 - 1 1 )
CO

where Wr(s) =  s'1.

Now, as oo->Q, Wr(juj)S(jto) —► GQuS)/k\. Thus Jr, unlike Jv, is plant-dependent, 
which makes it unsuitable as a performance criterion. In addition, [25] shows how 
a controller designed using (2 .1 1 ) could have zeros that cancel plant poles and 
therefore concludes that Jv should be used as a general performance criterion, 
especially since a low value of Jv normally implies a low value of Jr.

2.3.2 MID-FREQUENCY ROBUSTNESS CRITERION -  GMS

The stability margin of the closed-loop is the most important factor in the mid­
frequency band. A control system is stable if the Nyquist plot of its open loop 
transfer function L(jco) does not encircle the point (-1,0); it must have a loop gain 
magnitude less than 1 at its crossover frequency, which is in the mid-frequency
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region. The farther the Nyquist plot is from the point (-1,0), the higher the mid­
frequency robustness of the closed loop, so that the minimum distance of the 
Nyquist plot from the critical point could serve as a measure of this closed-loop 
property. This minimum distance is the inverse of the maximum sensitivity 
function, ||S(s| of the closed loop. Thus the minimum distance is maximized
when the maximum value of the sensitivity function is minimized.

Based on the above description, a popular mid-frequency robustness criterion in 
[14] is:

||S(s| = — :--------------------   r < M s (2.12)
11 'llo° min\l + G(jco)K(jo))\ s v

6)

Where Ms is the maximum acceptable value of Typical values of Ms [4]
fall between 1.4 and 2.0. When the value of Ms is specified, lower limits of the 
gain margin, Gm, and the phase margin, <pm, are defined.

Ms
Ms -1

f  1 ) (2'13)<Pm ^ 2 sin~1 —
\2Ms J

A typical demand on the phase margin of 45° must be met by Ms < 1.3. Such a 
low value of Ms leads to a sluggish system. Alternatively, retaining the value of 
Ms and placing a constraint on the maximum of the complementary sensitivity 
function ||T|| can meet this demand:

< M T (2.14)

Noting that [14]:

(Pm -  2 sin~1
'  1 A 

\ 2 ^ T  j

(2.15)

According to (2.15), setting Mr -  1.3 would give <pm £ 45°. Recommended values 
of Mr [3] fall between 1.2 and 2.0. However, it has been noted [41, 44] that M r  is 
insufficient as a mid-frequency evaluation criterion. Hence, [25] combines the 
criteria based on S and Tin (2 .1 2 ) and (2.14) to obtain a general criterion, GMs, 
which serves as an applicable measure of both the control system’s mid­
frequency properties and phase margin requirement.

GMS =ma4s|L,«||r||J (2.16)
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where a = M s/M T . A similar criterion is formulated by [44].

Equality between at least one of the norms and its respective restriction implies 
GMs = Ms. Therefore, combining the constraints on the two norms ensures an 
acceptable phase margin, due to Mr, and a minimum distance from the Nyquist 
plot to the critical point in (-1, 0), due to Ms.

2.3.3 CONTROL ACTIVITY CRITERION -  Ju

The general preference in the design of control loops in industry is to keep 
control activity as small as possible. However, since the control signal is the 
energy with which the controller achieves its objectives, increasing its 
aggressiveness enhances the achievement of those objectives. The converse 
also holds true. Hence, the control engineer tries to find the most advantageous 
trade-off between the demands on performance, i.e., Jv, and the demands on 
control activity. According to (2.6), the control sensitivity function Su is the 
transfer function from the measurement noise to the control signal.

[25] defines the control activity criterion Ju as:

^  =IIG« IL  = N L  (2.17)
CO

The graphical interpretation of (2.17) is that Ju is the peak of the frequency 
response of the control sensitivity function and is therefore the maximum of Su. At 
frequencies above the closed-loop bandwidth, the frequency response of Su 
differs depending on the controller structure used. Using Process 3 from 
Example 2.1, K(ju))S(juj) is plotted for its closed-loop using a PI controller and 
two PID controllers: one with a first order low-pass filter, the other with a second 
order low-pass filter.

Example 2.3: Table 2.3 shows the transfer function for Process 3 with the PI and 
PID controllers used in the closed-loop:

Table 2.3: Transfer Functions for Process 3 with PI and PID Controllers

PROCESS e 3s 
10s + 1

PI CONTROLLER (  1 } 1.51 1 +
 ̂ 6.5s

PID CONTROLLER 
(with 1 st order low-pass filter)

1.9160
V

1 0.9974s }
7 I I
''5.3719s 1 + 0.1960s J

PID CONTROLLER 
(with 2 nd order low-pass filter)

0.36(  1 + 5.57s + 6.41s2 "I
[s(1 +0.16s + 0.04s2) J
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Figure 2.5 shows the frequency response plots for the three closed-loops, with 
the Ju point shown in each case.

2nd order filter) 

1st order filter)

 PI
.1 ;-----10

! -I--:'

i l i - i  I . . . . 1 4 - U U U .

i i i i i i  
d-hHH--

■ • r r  { —

,010l ■rrrin .....

.3-3 '.'2 .1-1
10'10* 10 ' iox10 10 '

Frequency (rads/sec)

Figure 2.5: Frequency response of control sensitivity functions for closed loops using
Process 3 with PI and PID (with 1st and 2nd order low-pass filters) controllers, 
showing the Ju points for each closed loop.

In Figure 2.5, the control signal gain of the loop with the 1st order filtered PID 
controller increases, within the mid-to-high frequency band, up to an asymptotic 
limit, where Ju is located. There is a peak in the gain of the loop with the 2nd order 
filtered PID controller just above the closed-loop bandwidth, beyond which the 
gain drops progressively. The differing high-frequency profiles of the two closed 
loops explains the higher noise attenuation in the control signal achieved in a 
closed loop using a strictly proper PID controller vis-a-vis the just proper PID 
controller; hence the benefit of adding the extra low-pass filter. The closed loop 
with the PI controller, however, has a significantly lower peak than the two PID 
controllers and lower high frequency asymptote, the difference being due to the 
missing lead action in the PI controller. This shows why the PI controller 
generates lower control action than the PID controller and why it is preferable for 
many control loops in industry. However, as will be discussed in subsequent 
chapters, the limited control activity of the PI controller in turn has a limiting effect 
on the performance of its closed loop.
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2.3.4 HIGH FREQUENCY ROBUSTNESS CRITERION -  JHF

In the high frequency band, the just proper and strictly proper PID controllers 
behave differently. One way has been shown in Example 2.3, where the control 
signal gain profiles differ as ao-^oo. [25] mentions two relevant requirements of a 
closed loop in this frequency range:

■ Adequate robustness of the closed loop against model uncertainties, 
such as un-modeled resonance and varying time delays

■ Good attenuation of high frequency measurement noise transfer to 
the process output

To attain these two closed-loop features in the high frequency region, [25] shows 
the complementary sensitivity function T(s) as the relevant closed-loop transfer 
function, so that the lower the magnitude of T(s), the higher the attenuation of the 
measurement noise transfer and the more robust the closed loop is to model 
uncertainties.

Now, as co -» oo, «  1, so that at high frequency,

“  m<») = G fW K M  -  7 ^ -  G(i<o) , (2.18)
1 + L(jeo) (jo )m

where for a just proper controller, m = 0  and m > 0  for a strictly proper controller.

The high frequency approximation of T(juj) in (2.18) shows that performance and 
robustness in this frequency range are dependent on k«, (from (2.7)) and the 
process G(ju)). To make (2.18) approximately independent of the process, T(ju>) 
is divided by G(ju)) so that as co-+ o o ,

I M  = K(j<o)S(ja,) = (2.19)
g(sco) o r

which is dependent on alone. Hence, /c» should be given a value as low as 
possible to improve closed-loop performance and robustness properties at high 
frequencies.

Based on (2.19), Kristiansson defines the high frequency robustness and 
performance criterion, Jhf , as:

JHF =||sm —I = maxcomK(ja))S(}co) =maxcomSu(jco) (2.20)
G 00 CO CO

The motivation for weighting Su with sm is that smSu(ju))-* /f«, as co —»oo, so that 
the comparison between and J h f , i.e., between high frequency peak and high 
frequency asymptote, would help in determining whether the roll-off of \Su(ja>)\ is
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inadequate or excessive. If the roll-off is inadequate, the controller can be 
augmented with an extra low-pass filter and made strictly proper (m > 0 ). 
However, [25] points out that if the roll-off is excessive, it could lead to the build­
up of a resonance peak in T(j(o) just after the crossover frequency, which could 
lead to the degradation of the low frequency properties of the closed loop. With a 
second order filter, the roll-off of \Su(jco)\ can be adjusted by varying the filter’s
damping ratio, gf , which will be discussed in Chapter 3: the lower its value, the 
higher the roll-off and vice versa. Hence, J h f  can be used as a measure of how 
much additional roll-off can be included in a system without deterioration of its 
low frequency properties.

For a just proper controller, i.e., m = 0 , (2 .2 0 ) reduces to (2.17), so that Jhf = Ju- 
Therefore, in the case of the closed loop using a just proper first order filtered 
PID controller, Ju serves the same evaluative purpose as Jhf, making the first 
three criteria groups discussed above adequate for evaluating the various 
properties of this closed loop.

Using Process 3 in five closed loops, all with second order filtered PID controllers 
whose filter damping ratios vary from 0.21 to 0.93, the frequency response of 
smSu(j(ji}) and TQuS) are plotted for each closed loop, as shown in Figure 2.6. Jhf 
is indicated in each case. All the closed loops have Ju = 5 and GMS ^  1.7.

s - WEIGHTED CONTROL SENSITIVITY FUNCTION

 damping ratio = 0.21
 damping ratio = 0.33
 damping ratio ■ 0.58
 damping ratio = 0.76
 damping ratio = 0.93

»" 10 .s

£ 10< to

k - in f in ity  :

Frequency (rad/sec)

COMPLEMENTARY SENSITIVITY FUNCTION
I I ! ! ! I I I ! I i I I I j I I I I '

: :

-------- damping ratio = 0.21
-------- damping ratio => 0.33
......... damping ratio = 0.58
--------damping ratio = 0.76
--------damping ratio = 0.93

; mid-to-high frequency -

;

\  i \  i i

\  i  ;

I I I ! ! I I I ! ..... ..... I ........ ..... i__I__ 1 1 1  i \  i \  \ \  'V s .  i
-> -1 4

10 "  10 10
Frequency (rad/sec)

Figure 2.6: Frequency response of smSu(ju)) and T(ju>) for closed loops using Process 3 with
PID controllers (2nd order low-pass filters and varying damping ratios), showing 
the JHf points for each closed loop and the asymptote.
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The above figure shows that for a high damping ratio, smSu(joj) has a high 
frequency peak that is approximately equal to k Therefore, JHF « kx . The roll­
off of Su(ju)) in this case may or may not be considered inadequate. Hence, the 
controller filter’s damping ratio could be reduced for extra roll-off. However, the 
figure shows the effect of reducing the filter’s damping ratio, J h f  becomes more 
significant compared to kx to the extent that it is twice the value of the asymptote 
for a damping ratio of 0.21. In the plot of T(Jio), the gain is increasing, between 
mid-frequency and mid-to-high frequency regions, as the damping ratio is 
decreasing. The gain increase with decrease in damping ratio leads to the build­
up of a resonance peak, which is considered inimical to the closed loop’s high 
frequency robustness and low frequency performance.

It has thus been shown that the closer the J h f  value of a strictly proper control 
system to its kx value, the wider the flexibility for increasing the roll-off of its high 
frequency controller gain and the less significant the effect of the filter 
augmentation on the system’s low frequency characteristics. To strike a good 
balance between sufficient roll-off and good performance (both in the low and 
high frequencies), [25] recommends controller filter damping ratios of 0.4 to 0.5.

2.3.5 APPLICABILITY OF CRITERIA TO EVALUATION OF CONTROL 
SYSTEMS

When designing a controller, the design parameters must be specified. All the 
design parameters for a controller can collectively form a tuning vector p . In the 
PID controller, for example, p  contains the controller gain, integral time constant, 
derivative time constant, and derivative filter constant. Using the four groups of 
evaluation criteria discussed in the preceding sections, an objective method of 
evaluating a control system in terms of its performance, robustness, or control 
activity can be formulated. This involves keeping three of the four criteria 
constant, or upper bound, and varying the elements of p  until the fourth criterion 
has been favourably optimized. The method can be formulated as a constrained 
optimization procedure with p  as the optimization variable vector.

For example, to design a controller whose closed-loop low frequency 
performance is optimized while keeping the stability and control activity 
constrained, the optimization problem can be formulated as:

min{Jv(p):GM$ <Ms,Ju <Cu,Jpp ^CpF}, (2.21)
p

where Ms, C u, and C h f  are arbitrarily chosen constraints.

Throughout this thesis, any controller designed by solving (2.21) is referred to as 
an optimal controller. Other features of the evaluation method in [25] are its 
applicability to comparing different controller structures, comparing different

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tuning methods used on the same controller structure, as well as studying the 
trade-off between any two properties in an individual controller.

The main purpose of this research is to design, simulate and experimentally 
implement optimal PI and PID controllers by solving (2.21) and secondly to study 
the performance-control activity trade-off for these control systems.
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CHAPTER 3

DESIGN OF OPTIMAL PI AND PID CONTROLLERS

3.1 INTRODUCTION

Optimal PID and PI controllers can be designed using the evaluation criteria 
presented in Chapter 2. The design is based on the solution of a constrained 
optimization formulation, in which the low frequency performance criterion is 
optimized while specified constraints are imposed on the mid, mid-to-high, and 
high frequency robustness criteria of the control system.

In this chapter, the reformulation of the PI and PID controllers will first be 
discussed and the new design parameters are presented. Next, the design 
formulation for the optimal controllers will be discussed, with numerical examples 
presented for illustration.

The closed-loop response of the designed optimal controllers will be simulated 
and plotted to provide insight into the optimization design’s controller tuning 
quality.

3.2 REFORMULATION OF THE PID CONTROLLER

The classical PID and PI controllers with the one-degree-of-freedom structure 
have the respective transfer functions:

K(s) = kc 

K(s) = kc

1H------ 1- TfjS
\  T i s

(3.1)
'  O
1 +  —

. TisJ

where:
kc is the proportional gain 
Tj is the integral time constant 
rd is the derivative time constant

The PID controller’s transfer function has the flaw of not being proper, and 
therefore unrealizable. To make the structure proper, the derivative part is 
augmented with a low-pass filter, which is a transfer function with a steady gain 
of one and is usually of first order with time constant t f . It could also be of higher 
order. Hence, the filtered PID controller is formulated as:
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The filter imposes a bound on the high frequency gain of the controller, which 
makes it applicable for the attenuation of high frequency measurement noise. 
According to [10], the derivative filter time constant r f is typically chosen as 
r f = rd/N , where N is in the range of 2 -  10. For Proportional-Derivative (PD)
controllers, typical values of N fall between 5 and 20 [14], with 10 being the 
common choice. Kristiansson has shown in [13] that optimal PID controllers 
designed by solving (2 .2 1 ) always have complex zeros and therefore 
reformulates the PID controller in (3.2) as:

K(s) = kj 1 +  2 £ z s  +  t 2s 2 n 

s(1 +  st/ jS)
(3.3)

Hence, the new controller parameters are k,(already defined in (2.7)),r,£ ,p . 
(3.3) ensures that any PID controller having £ < 1 would have complex zeros. 
For an optimal PI controller, = 1, /? = 1. Therefore:

K(s) = k,
1 + ts (3.4)

v s y

From (3.3), the controller high frequency gain, kx , defined in (2.7), is given as:

K* = ¥ P  (3.5)

For PID controllers used in some processes, measurement noise can be a 
considerable problem, e.g., level control in flow processes. With these systems, 
the roll-off of the controller’s high-frequency gain offered by a first order low-pass 
filter might not be adequate for satisfactory noise attenuation. [13] proposes 
exchanging the PID controller’s first order filter for a second order filter and 
formulates the controller structure as:

K(s) = kj 1 +  2 £ zs  +  t 2s 2

T T 21 + 2£f —s + — s
P  P

(3.6)

(3.6) gives a PID controller with complex zeros and possibly complex poles. is 
the damping ratio of the filter poles, which was briefly discussed in Chapter 2. 
Varying has an effect on the roll-off of the control sensitivity function Su(jco)
and hence on the control activity. The lower the ratio, the more effective the roll­
off will be and, correspondingly, the lower the control activity. Using the process
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and second order filtered PID controller in Example 2.3, the control sensitivity 
function is plotted for values of ranging from 0.21 to 0.93 as shown in Figure 
3.1.

However, an adverse effect occurs as the damping ratio is progressively 
reduced. For low values of £>, a resonance peak is building up in the 
complementary sensitivity function T(jco), also shown in Figure 3.1, which is not 
good for high frequency robustness or low frequency performance. The 
resonance peak occurs at frequencies above the phase crossover frequency. For 
an optimal balance of high frequency robustness and sufficient roll-off in the 
control sensitivity transfer function, [13] recommends gf be set at 0.4 or 0.5 in 
the optimization procedure.

COMPLEMENTARY SENSITIVITY FUNCTION

10

-A - mid-to-high frequency  
(T gain increasing

 damping ratio = 0.21
 damping ratio = 0.33
 damping ratio = 0.58
 damping ratio = 0.76

• 1 damping ratio = 0.93D)

■1
10'

-1 o
10 10' 10

Frequency (rad/sec)
Figure 3.1: Frequency response of T(jw) for closed loops using Process 3 with PID

controllers (2nd order low-pass filters and varying damping ratios), showing the 
build-up of a gain peak in the mid-to-high frequency region.

It must be noted that the controller high frequency gain for the PID controller 
with a second order filter has an expression different from (3.5).

(3.7)
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3.3 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL 
PID CONTROLLERS WITH FIRST ORDER LOW-PASS FILTERS

Designing an optimal controller, whether PID (with first or second order filter) or 
PI, involves the solution of (2.21). In this section, an optimal PID controller with a 
first order filter will be designed, thus Jhf = Ju■ In addition, [13] shows how for a 
PID controller with a first order filter, such as (3.3), the high frequency controller 
gain, k^, is approximately equal to Ju. Also, (3.5) relates the control activity 
criterion to the controller parameters, so that specifying a value for Ju (via k^) 
constrains one of the controller parameters, which reduces the number of 
optimization variables and reduces the time taken for (2 .2 1 ) to converge at 
optimal values. [13] recommends a GMs bound of 1.7; this value ensures that the 
control system’s gain margin is at least 2.4 and the phase margin is at least 45°. 
Consequently, a GMs constraint of 1.7 is used throughout this thesis. (2.21) can 
then be re-stated as:

min{jv (p) : GMS < 1.7, kx < Cu} (3.8)
p

Once a constraint on km has been specified, (3.8) can be solved for 
P  =  [ k j , T , C , p ]  ■

Example 3.1 illustrates the design of an optimal PID controller with the pre­
specification of GMs and Ju.

Example 3.1: Consider the process:

1 0 s +  1

An optimal PID controller, with first order filtering, that meets the criteria: 
GMS <1.7 and =10 will be designed for the process.

(3.8) thus becomes:

min{jv (p ) : GMS < 1.7, k „  = 10} (3.9)
p

The MATLAB Optimization Toolbox is used to solve (3.9) and will be used for all 
the constrained optimization functions formulated in this thesis. In order to 
compute the relevant sensitivity transfer functions in the objective functions, it is 
necessary to compute the Pade approximation of the time delay terms coming 
from the plant models. For the solution of all constrained optimizations in this 
thesis, the 4/4 Pade approximation of the time delay terms will be computed. 
Alternatively, the frequency response of the sensitivity transfer functions could be 
computed with the non-approximated delays in the transfer functions.
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The optimal PID controller, with minimum Jv and which satisfies (3.9), is obtained 
with the following parameters:

Table 3.1: Parameters for Optimal PID Controller

G(s) e
10s + 1

koo 1 0

Jv 2.6302

Ju 9.9998
ki 0.39503
T 2.787

£ 1.0769

P 9.0832

GMs 1.7

Figure 3.2 shows the frequency response plots of the s'1-weighted disturbance 
and control sensitivity functions for the optimized PID controller.

(1/S)-WEIGHTED DISTURBANCE SENSITIVITY FUNCTION

10°
.4

Jv = 2.63
......  i ................... }■..............1

10'3 «r2 10 ' '

Frequency (rads/sec) 

CONTROL SENSITIVITY FUNCTION

1 0 '

I
I

10°

Figure 3.:
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Frequency response of (1/s)-weighted disturbance sensitivity function and 
complementary sensitivity function using optimal PID controller; showing the Jv 
and Ju peaks respectively.
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The closed loop is implemented in simulation using SIMULINK. Figure 3.3 shows 
the block diagram of the closed loop used for the simulation.

Figure 3.4 shows the closed loop’s response to a step in the set point signal and 
the process input disturbance.

Figure 3.3:

S e t P o in t

ProcessO ptim al
Controller

Disturbance

P VIn i Out 1

Ini

In2

Outl

SIMULINK block diagram for simulation of closed loop response using optimal 
controller.

1 -

0.5

0.5

Figure 3.4:

20
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Time (secs)

SET POINT SIGNAL

21
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Time (secs)

PROCESS INPUT DISTURBANCE

140

T
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120 140

160

160

180

180

200

200

Closed-loop response of optimal PID controller to steps in set point signal and 
disturbance.

The process’ disturbance response is satisfactory, but there is a significant 
overshoot in the set point tracking. This is to be expected because the PID 
controller designed is a ^optimal controller, which favours disturbance rejection. 
To improve the set point tracking performance of the closed loop, a ^optim al 
controller could be designed. However, as discussed in the previous chapter, Jr 
is plant dependent, making it less suitable than Jv as a performance criterion.
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Alternatively, [25] recommends use of the J„-optimal controller along with a pre­
filter for the set point signal. Figure 3.5 shows the closed-loop block diagram with 
the addition of a pre-filter. Figure 3.6 shows the closed-loop response using the 
same process and controller as in Figure 3.4, as well as a first order set point

1
pre-filter with the transfer function .

6s + 1

1

6sf1
►€>-

O ptim al
Controller

Process V a ria b le

Disturbance

Figure 3.5: SIMULINK block diagram for simulation of closed-loop response using optimal
PID controller and set point pre-filter.

PROCESS VARIABLE

0.5

20 40 180 2000 60 80 100 120 140 160
Time (secs)

SET POINT SIGNAL

1

0.5

0
1800 20 40 60 80 100 120 140 160 200

Time (secs)

PROCESS INPUT DISTURBANCE

0.5  •

20 40 60 80 100 
Time (secs)

120 140 160 180 200

Figure 3.6: Closed-loop response of first order filtered optimal PID controller to steps in set
point signal and disturbance with the use of set point pre-filter.

There is less overshoot with the use of the pre-filter for the set point signal, as 
can be seen in Figure 3.6. At the same time, the closed-loop response to the set 
point is slightly more sluggish than the unfiltered signal. The sluggish response 
becomes significant as the time constant of the pre-filter is increased, which
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concomitantly suppresses the overshoot. Hence, in designing a set point pre­
filter, a reasonable trade-off must be struck between the damping of the 
overshoot and the reduction in the tracking response speed of the closed loop.

3.4 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL 
PI CONTROLLERS

The optimal PI controller is of the structure depicted in (3.4). Again, (2.21) is 
solved and, just as in the design of the optimal PID controller with a first order 
filter, Jh f  = Ju- However, unlike the PID controller, the high frequency controller 
gain, k^, is not approximately equal to J u. This can be seen in Figure 2.5, in 
which the control sensitivity gain increases to a peak (corresponding to Ju) 
slightly below the crossover frequency and then drops to the high frequency 
asymptote (kaD). Thus, Ju would be constrained in (2.21), not k^ as was done for 
the PID controller. Also, GMs would be bounded by a value of 1.7. In addition, 
^  and p  are both set to 1 for this controller, so that kt and t  are the 
optimization variables in the tuning vector p. Hence, p = [khT ].

Example 3.2 illustrates the design of an optimal PI controller with the pre­
specification of GMs and Ju.

Example 3.2: Consider the process:

1 0s +  1

An optimal PI controller that meets the criteria: GMS <1.7 and Ju =1.5 will be 
designed for the process.

(2 .2 1 ) becomes:

min{Jv (p): GMS < 1.7, Ju =1.5} (3.10)
p

The .^optimal controller designed has the following parameters:
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Table 3.2: Parameters for Optimal PI Controller

G(s)
e ŝ

10s+1

1.5

Jv 7.8794
Ju 1.5
ki 0.12691
T 6.8942

£ 1

f i 1

GMS 1.3576

Figure 3.7 shows the frequency response plots of the s'^-weighted disturbance 
and control sensitivity functions for the optimized PI controller.

(1/s)-WEIGHTED DISTURBANCE SENSITIVITY FUNCTION
10

- r - ' r ....... .

... IJ —.-ar„

Caw2

-3
10'J10' 10'

Frequency (rads/sec) 

CONTROL SENSITIVITY FUNCTION

?

-k-infinity=0.875

,•0.1  ( —■-1 — r —  -  -

,i ,2
10'' 10° 10'10

Frequency (rads/sec)

Figure 3.7: Frequency response of (1/s)-weighted disturbance sensitivity function and
complementary sensitivity function using optimal PI controller, showing the J v and 
Ju peaks respectively.
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The closed-loop simulation response is shown in Figure 3.8. A set point pre-filter 
is not included in the closed loop.

1.5

1

0.5

0

1

0.5

0

1

0.5

0

Figure 3.8: Closed-loop response of optimal PI controller to steps in set point signal and
disturbance.

In Figure 3.7, the dissimilarity between k and J u is shown, which is 
characteristic of the optimal PI controller. The G M S value obtained is less than 
the constraint, indicating that the optimal PI controller is quite robust. In Figure 
3.8, the closed-loop’s set point response has a small overshoot, compared with 
the optimal PID’s response in Figure 3.4, despite not using a pre-filter. However, 
the rejection of the step disturbance is slow. The optimal PI controller has a 
smaller integral gain k, than the optimal PID, due to the difference in the J u 
constraints imposed on the two controllers, and therefore has lower control 
action. Thus, the disturbance rejection performance of the optimal PI controller 
could be improved by increasing the value of its Ju constraint.

3.5 CONSTRAINED OPTIMIZATION FORMULATION FOR OPTIMAL 
PID CONTROLLERS WITH SECOND ORDER LOW-PASS 
FILTERS

The optimal PID controller with a second order filter is of the structure depicted in
(3.6). Again, (2 .2 1 ) is solved, but here J h f  ? Ju, so that a separate constraint for 
J h f  would have to be specified. The high frequency gain of this controller is

generally not asymptotic. With a second order filter it takes the form , where
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18020 60 80 100 120 140 180 20040
Time (secs)

SET POINT SIGNAL
T

20 40 60 00 120100 
Time (secs)

PROCESS INPUT DISTURBANCE

140

T T

160 190 200

20 40 60 80 100 
Time (secs)

120 140 180 180 200

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



k^ is given by (3.7). In addition, (3.6) suggests an extra parameter, namely the 
filter’s damping ratio gf , should be included in the tuning vector p . Hence, 
p = [kj,T,£,j3,£f ] .  Again, GMs will be bounded by a value of 1.7. Therefore, the 
optimization of Jv, for the design of the strictly proper PID, requires more 
parameters than the PI and just proper PID controllers; thus, the computational 
duration before the optimization converges is longer. To enhance the design 
procedure’s convergence, and perhaps shorten the computational duration, the 
optimized values of the parameters of a just proper PID, having the same Ju and 
GMs values as the strictly proper PID, will be chosen as the initial values for p .

will be given an initial value of 0.4 based on the recommendation in [25].

Example 3.3 illustrates the design of an optimal PID controller with a second 
order low-pass filter. GMs, Ju, and Jhf are pre-specified.

Example 3.3: Consider the process:

e -3$

10s+ 1

An optimal PID controller, with second order filtering, that meets the criteria:
GMS <1.7, Ju =5, <11.

(2 .2 1 ) becomes:

min{Jv(p):GMs <1.7,Ju =5,JHF <11} (3.11)
p

The Jv-optimal controller obtained has the parameters presented in Table 3.3 
Table 3.3: Parameters for Optimal PID Controller with Second Order Low-pass Filter

G(s) e ŝ
10s+ 1

^00 7.0958

Jv 3.1563
Ju 5

Jhf 11

ki 0.3303
T 2.7835

e 1.1099

Ci 0.444

f i 4.6347

GMS 1.7
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Figure 3.9 shows the frequency response plots of the s'*-weighted disturbance 
and control sensitivity functions for the second order filtered optimized PID 
controller. Figure 3.10 shows the closed-loop response of the controller to steps 
in the set point and the disturbance.

(1/s)-WEIGHTED DISTURBANCE SENSITIVITY FUNCTION

I
J v  = 3 .1 5 6

Frequency (rads/sec)

CONTROL SENSITIVITY FUNCTION

Frequency (radsfsec)

Figure 3.9: Frequency response of (1/s)-weighted disturbance sensitivity function and
complementary sensitivity function using optimal PID controller with a second 
order filter, showing the Jv and Ju peaks respectively.
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Figure 3.10: Closed-loop response o f second order filtered optimal PID contro lle r to steps
set point signal and disturbance.
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CHAPTER 4

THE QUADRUPLE-TANK PROCESS

4.1 INTRODUCTION

The Quadruple-Tank Process serves as a laboratory-scale example of an 
interacting, multivariable process that can be controlled in a multiloop 
configuration. PI or PID controllers are usually used in multiloops; the controller 
tuning techniques in such configurations differ from the SISO control loop tuning 
methods due to loop interactions, which aren’t taken into consideration in the 
latter methods. A popular multiloop controller design approach is to tune the 
controller for each loop as though all the loops were non-interacting, i.e., to 
assume the multiloop consists of decoupled SISO closed loops Each loop’s 
PI/PID controller is tuned using typical SISO PID design methods. The loops in 
the multiloop are then closed and their controllers are de-tuned by trial and error 
to accommodate loop interactions, until the multiloop’s performance becomes 
acceptable.

The main objective of this chapter is to present the design, simulation and 
implementation of PID controllers for the multiloop of the Quadruple-Tank 
Process using the control system evaluation method in [25], which has already 
been discussed and applied to SISO loop controller design in previous chapters. 
Because the evaluation method requires process models for the controller design 
procedure, the chapter will initially focus on the open-loop identification of linear, 
time-invariant models from sampled data of the process’ response to pre­
designed excitation signals. The computed models will form multivariable 
process matrices, the phase dynamics of which will also be discussed.

The Relative Gain Array method will be applied to the Quadruple-Tank’s 
multiloop to determine which controller input/process output pairing is appropriate 
for the process’ open-loop dynamics.

Finally, the multiloop’s PID controllers, designed by applying a combination of a 
multiloop controller tuning method and solving the optimization procedure in
(2 .2 1 ), will be implemented experimentally and through simulation.

4.1.1 PROCESS DESCRIPTION

The Quadruple-Tank system consists of four equally-sized transparent tanks that 
have orifices. The system also has two water pumps and split-valves, which 
determine the distribution of flow into the tanks. The schematic diagram in Figure
4.1 illustrates the set-up of the four-tank system, showing the pumps, split valves 
and the inter-connection of the four tanks. A computer interface, consisting of 
the Emerson's Delta V hybrid DCS and MATLAB OPC DA Toolbox, facilitates the
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performance of various experiments on the four-tank system, ranging from 
process identification to controller implementation.

s p l i t  X *valve
( n )

water
pump

valve

water 
pump

~ Q - * ( x k )

water reservoir

Figure 4.1: Process schematic of Quadruple-Tank Process.

Y u l  = upper left tank water level
Y u r  = upper right tank water level
yu_ = lower left tank water level (process output 1 )
yi_R = lower right tank water level (process output 2)
Xl = left pump discharge rate (process input 1 )
xR = right pump discharge rate (process input 2 ) 
yL = left split valve ratio 
yR = right split valve ratio

The two pumps draw water from the reservoir. Depending on the fractional 
settings of the split valves, yL and yR (which are usually adjusted at the beginning 
of an experiment and held fixed throughout), the flow from each pump is split 
between the closer lower tank and an upper tank diagonally above the lower tank
as shown by the solid arrows. In addition to the apportioned flow from the pump,
each lower tank also receives water flowing out from the tank vertically above it
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as shown by the dashed arrows. The outflows from the lower tanks are 
discharged to the water reservoir. Thus, the process is cyclic. The input variables 
are the pump discharge rates, ul and Ur, and the output variables are the water 
levels in the lower left and right tanks, hLL and hLR respectively. Based on the 
physical dynamics of the process, the water level in each lower tank is a function 
of the flow input from both pumps and the split valve settings.

MATLAB OPC DA Client makes it possible to construct the input sequences for 
left and right pump discharge rates, feed them to the system, and record the 
input and output data. The Delta V DCS provides the interface between the OPC 
DA Client and the physical system.

Assuming the influence of the pump dynamics on the discharge rates is 
negligible, mass balances and the Torricellian Law can be used to formulate the 
linear, time-invariant, multivariable transfer function of the system’s input to 
output variables as:

~hLL V
= G(S)-

„hLR_ .UR.

G(s) =

K  I- a  Tdl1,LS
* LL&

Tn_S + 1

‘ LR(K(-ne TdLRiS

K^e t^ rS 

(TLLS + 1XTULS + 1)

f t
((R 0 ZfLR,rs

(tl r s +  i X t u r s +  1) t l r s +  1

(4.1)

where:
hi

U i

v0 = 
Uj = 
Kj =

T  i 

Tdij
yj
Q

According to [1], 

K/ =

deviational height of water level in tank /', i.e. yy -  yyo;
subscript / = {LL, LR, UL, UR}
deviational discharge flow-rate of pump j
nominal value of variable v; v = {ul, ur , hLL, hLR, hm, huR}
Xj -  Xp, subscript j  = {L, R}

level gain for tank / from pump y; subscript / = {LL, LR, UL,
UR}] superscript j  = {L, R}
time constant for tank /
response time delay of tank /' to pump j
split fraction of flow from pump j
coefficient of discharge for the orifice of tank i

f(y j  >h jo)
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T/ = f(hio, Ci, tank / dimensions)

4.1.2 MULTIVARIABLE ZERO

According to [1], the zeros of the transfer matrix in (4.1) are the zeros of the 
numerator polynomial of the rational function:

r i K/pKjr.e (W +W )s  
det[G(sj\ = ■ LR LL

t (R  K^- G vdLR.L ~̂ "dLL,R
L L L R (4.2)

(tLLs + 1XtLRs + 1) (TLLs + lXTLRs + l)(rURs + l)(TULs + l)

Typically, for quadruple-tank processes,

t / »  Tdif, subscript /' = {LL, LR, UL, UR}, superscript j  = {L, R};

Thus, the process is time-constant dominated so that the time delay terms can 
be dropped from the function, and it becomes:

det[G(s)] >
KR Kl  LR LL Kr  Kl  LL LR

( t l l s  +  1 \ t L r S  +  1 )  ( t l l s  +  1 X t l r s  +  1 \ t u r s  +  1 \ t u l s  + 1 )

(4.3)

= Kr  Kl  LR LL n
i=UL,UR,LL,LR

'  1 '  
TjS + 1 (TULS +  1X TURS +  1)-

( Kr KL  ̂LL LR
KR k l\  LR LLj

The zeros of the numerator polynomial of (4.3) are the two zeros of the quadratic 
equation:

( t u l s  +  1 \ t u r s  + 1 )

f  is R  is L  ^
LL LR

k r k l
\  LR LL

= 0 (4.4)

4.1.3 MINIMUM PHASE DYNAMICS

According to [1], G(s) follows minimum phase dynamics if the two zeros from
(4.4) both lie on the left half plane. This condition is met if:

(% . +  T UR ) 2 >  ( T UL +  *U R  f  -  4 ( t u l T u r  { 1  -

V LR LL J

k r k l
=>

Kr  I S R I S L
LR LL >  LL LR
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=* K 5 ,(r*K (rL )> K Z (rR K (rL) (4.5)

4.1.4 NON-MINIMUM PHASE DYNAMICS

G(s) follows non-minimum phase dynamics if one of the zeros from (4.4) lies on 
the right half plane. The process follows such dynamics if:

Assuming the coefficients of discharge are 1 so that the Torricellian law becomes 
the Bernoulli law, the minimum phase condition in (4.5) can be restated as:

Thus, the split valve settings determine whether the process is minimum phase 
or non-minimum phase. Because the transfer function matrix in the minimum 
phase is diagonally dominant, it is intuitively preferable to control the lower left 
tank level, ha, using the left pump flow rate, Ul, and similarly preferable for the 
lower right tank level and right pump flow rate. With the transfer function matrix in 
the non-minimum phase being anti-diagonally dominant, input-output pairing 
rules converse to the minimum phase’s are preferable. The Relative Gain Array 
Method [45] will be later applied to the transfer function matrices of the two 
phases to confirm the input-output pairing rules.

For this identification experiment, two pairs of split valve settings are chosen 
such that a model for each phase can be computed.

4.2 PROCESS IDENTIFICATION

4.2.1 EXCITATION EXPERIMENT

An excitation experiment is performed on the Quadruple-Tank Process to obtain 
the relationship between the inputs (pump flow rates) and the outputs (tank water 
levels). The following steps are performed:

i. The split fractions of the left and right pump flows are set in 
accordance with the desired level of interaction between the two flows 
on the lower tanks. The choice of interaction levels for the excitation 
experiments will be discussed in the next section.

(*k + t u r  ) 2  <  ( t u l  +  t u r  y  -  4 ( t u l t u r  j  1  -
\ hiqhii

(4.6)

1 < / l  + 7 r  < 2

Also, the non-minimum phase condition in (4.6) can be restated as:

0  <  Y l + Y r  < 1

(4.7a)

(4.7b)
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ii. Positive and negative step tests of various magnitudes are performed 
to determine a linear range around the nominal point of each lower 
tank level.

iii. From the step test results, the excitation frequency ranges of interest 
are determined and Random Binary Sequence (RBS) input sequences 
are designed accordingly.

iv. The RBS input signals are applied to one pump at a time, while the 
other pump is kept at a constant nominal discharge rate, so the level 
response of both tanks to each pump input can be sampled separately.

v. Using the sampled data of the level responses, discrete-time models 
are computed using the pem function in MATLAB.

Applying the idproc function -  also in MATLAB -  converts the discrete-time 
models into continuous-time models while imposing the model structures in 
(4.1).

4.2.2 STEP TEST RESULTS AND EXCITATION SIGNAL DESIGNS

Several step test magnitudes were performed. However, good signal-to-noise 
ratios and approximately linear level dynamics were obtained with perturbations 
of ± 1 L/min, and using nominal input flowrates of 18 L/min and 18 L/min 
respectively for the left (split valve set at 73%:27% split) and right (split valve set 
at 72%:28% split) pumps for the minimum phase experiments; and 13 L/min and 
12 L/min respectively for the left (split valve set at 28%:72% split) and right (split 
valve set at 30%:70% split) pumps for the non-minimum phase experiments. 
Step test results for the lower left tank level are shown in Figure 4.2. Sampling 
period, ts, was 1 second for the excitation experiments. The level response data 
were thereafter down-sampled to 10 seconds for the model computations.
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Figure 4.2: Level responses of the lower left tanks to positive (solid) and negative (dashed)
step inputs in the minimum (a) and non-minimum (b) phases.
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The step response data were used to compute parameter estimates for first order 
model approximations to determine the appropriate Nyquist frequency ranges to 
specify fo r the Random Binary Sequences (RBS), to be used for exciting the 
system. Dynamic data obtained from these tests are presented in Table 4.1.

Table 4.1: 1st Order Approximation Constants from the Step Tests

Process Dynamics Gain (m-min/L) Time constant (sec) Time d e lay  (sec)
Minimum Phase 0.0274 157.2 6.6
Non-Minimum Phase 0.0255 231 39

Using the approximate time constants from Table 4.1, the following Nyquist 
frequency bands of interest were determined: 0 - 0.05 (minimum phase) and 0 - 
0.01 (non-minimum phase). A smaller Nyquist frequency band was used for the 
non-minimum phase excitation because of its higher time constant, which meant 
more time was required for the level response to attain steady state. 
Consequently, an input signal of lower frequency was designed with sampling 
time of 1 sec.

Table 4.2: RBS Inputs used for Process Dynamics Identification (sampling rate = 1 sec)

Process Dynamics Nyquist Frequency band Levels (L/min) # o f in p u t points
Minimum Phase 0 to 0.05 ±1.0 18071
Non-Minimum Phase Oto 0.01 ±1.0 24861

4.2.3 LEVEL RESPONSES AND MODEL COMPUTATION

The left and right pumps were sequentially excited with the designed RBS 
signals for both phases. Figures 4.3(a), 4.3(b), 4.4(a), and 4.4(b) show the level 
responses of the lower left and right tank levels to the excitations, as well as the 
input signals, for the minimum phase and non-minimum phase dynamics.
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Figure 4.3: Minimum phase responses of the lower tank levels to RBS excitation inputs 
applied to (a) left Pump, and (b) right pumps.
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Figure 4.4: Non-minimum phase responses of the lower tank levels to RBS excitation inputs
applied to (a) left pump, and (b) right pumps.

4.2.3.1 MINIMUM PHASE COMPONENT MODELS

a) Left Pump to Lower Left Tank Model - Gmin (1,1)

Model Structure: Ke~TdS
TS +  1

K = 25.944 mm-min/L
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t  = 155 secs 
Td = 5.0004 secs

 Measured Output
 m ylul Fit: 9 3 3 9 %

-10

-20

1.2 1.3 1.4 1.5 1.6 1.7
Time (secs)

Figure 4.5(a): Validation of continuous-time model for component transfer function Gmin(1 ,1).

b) Left Pump to Lower Right Tank Model - Gmjn (2,1)

Model Structure: ----- -̂---------------------
f j f j  + (T’j + T 2 )S + 1

K = 11.478 mm-min/L 
Tf = 117.55 secs 
r 2 = 117.55 secs 

Td = 10.274 secs
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 Measured O utput
 m yrul Fit: 88 .64%

-10

1.2 1.3 1.81.4 1.5 1.7
.4Time (secs) x 10

Figure 4.5(b): Validation of continuous-time model for component transfer function Gmin(2 ,1).

c) Right Pump to Lower Left Tank Model - Gmin (1,2)

Ke~TdS
Model Structure: ------------

r  s + 2 t £ s  +  1

K = 12.932 mm-min/L
t  = 127.33 secs
C = 1.0204 secs
Td = 15.921 secs
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Figure 4.5(c): Validation of continuous-time model for component transfer function Gmin(1,2).

d) Right Pump to Lower Right Tank Model - Gmin (2,2)

Ke~TtsModel Structure: --------
TS +  1

K = 23.933 mm-min/L 
t  = 145.05 secs 
Td = 5.8182secs
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Figure 4.5(d): Validation of continuous-time model for component transfer function Gmin(2,2).

4.2.3.2 NON-MINIMUM PHASE COMPONENT MODELS

a) Left Pump to Lower Left Tank Model - Gnonmjn (1,1)

Ke~T“s
Model Structure: -------

TS +  1

K -  10.061 mm-min/L 
t  = 200.56 secs 
Td = 4.1318 secs
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Figure 4.6(a): Validation of continuous-time model for component transfer function G  n o n m in ( 1 , 1 ) .

b) Left Pump to Lower Right Tank Model - Gnonmin (2,1)

Model Structure:
Ke~'<>- L s

T-jT2S + (t-j + T2 Js + 1

K = 31.044 mm-min/L 
t  1 = 153.3 secs 
t 2 = 144.19 secs 
Td = 33.517 secs
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Figure 4.6(b): Validation of continuous-time model for component transfer function G nonmjn(2 ,1 ) .

c) Right Pump to Lower Left Tank Model - Gnonmin (1,2)

Model Structure: Ke~h-Tris

T‘fT2§̂  + f

K = 28.596 mm-min/L 
t  1 = 150.86 secs 
t 2 = 150.86 secs 
Td = 24.116 secs
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Figure 4.6(c): Validation of continuous-time model for component transfer function Gnonmin(1,2 ) .

d) Right Pump to Lower Right Tank Model - Gnonmin (2,2)

Ke~TdSModel Structure: -------
rs + 1

K = 9.2785 mm-min/L 
t  = 124.24 secs 
Td = 9.2746 secs
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Figure 4.6(d): Validation of continuous-time model for component transfer function G  non  m in ( 2 , 2 ) .

Thus, (4.1) for the minimum phase can be written as:

25.944e~5 0004s

Gmin(s) :
155s+ 1

11.478e~10-274s 
(13818.0025s2 + 235.1s+ l)

12.932e~15-921s 
(16212.93s2 + 259.86s+ 1)

23.933e~5-82s 
145.05s+ 1

(4.8a)

The non-minimum phase’s model is:

10.061e-41318s

-’nonmin(S) =
200.56s+ 1

31.044e~33-517s 
(22104.33s2 + 297.49s+7)

28.596e~24-12s 
(22758.74s2 + 301.72s+ l)

9.2785e~9275s 
124.24s+ 1

(4.8b)

4.3 INPUT-OUTPUT PAIRING USING THE RELATIVE GAIN ARRAY  
METHOD

Because the objective of computing the minimum and non-minimum phase 
models of the Quadruple-Tank Process is to design decentralized optimal PI and 
PID controllers for the process, it is important to determine how to pair the
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manipulated (input) and controlled (output) variables for minimal process 
interactions and acceptable closed-loop performance. Intuitively, the elements of 
the process matrix for the minimum phase suggest that the lower left tank water 
level should be controlled using the left pump, since the transfer function 
between the two variables has a larger gain than the transfer function between 
the tank level and the other pump. The same explanation applies to the lower 
right tank water level and the right pump. For the non-minimum phase process, 
on the other hand, it is apparently preferable to control the lower left tank water 
level using the right pump and vice versa for the lower right tank water level.

The Relative Gain Array (RGA) Method, presented by Bristol in [45], provides a 
systematic approach for the analysis of multivariable process control problems, 
based on the concept of a relative gain, and provides insight into the process 
interaction measure and the most effective pairing of the controlled and 
manipulated variables. For a process with n controlled variables and n 
manipulated variables, the relative gain Ay between a controlled variable y, and a
manipulated variable Uj is defined to be the dimensionless ratio of the two steady- 
state gains:

Ajj -

(dyi/dUj)u open - loop gain
(dyj /dUj )y closed - loop gain

(4.9)

for i = 1,2, n and j  =1,2, ..., n.

For a 2 * 2 transfer function matrix such as (4.8a) and (4.8b), with two 
manipulated variables and two controller variables, the relative gains can be 
calculated by using the steady-state form of the process model [14]:

V k12- V

y  2 _ K21 k22_ y 2.

(4.10)

where K,j denotes the steady-state gain between y, and uj, for a stable process:

K„ = limij ŝ>0
r Yi(s)^

ui($l
(4.11)

[14] derives the expressions for Xj, (/', j  = 1, 2) in terms of the steady-state gains:
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KnK22

Â2 ~ A*21 ~  ̂ 1̂1
X22 = A11

(4.12)

Thus, the RGA for the 2 x 2 process can be expressed as

" A 1-A

A =

1-A A

(4.13)

where A = A11.

From (4.12), A depends on the relative magnitudes of the diagonal and anti­
diagonal elements of the steady-state matrix in (4.10), which in turn depends on 
how the input and output variables have been paired.

[45] recommends that the input-output pairing for the 2 x 2 process should have 
an RGA, like (4.13), in which A is as close to one as possible. The implication of 
this recommendation to (4.12) is that the product K11K22 should be made as large 
as possible compared to K12K21. Therefore, (4.10) should be made as diagonally 
dominant as possible.

From (4.8a) and (4.8b), the steady-state matrices of the models can be 
expressed as

From (4.12) and (4.14), the RGA matrices -  in the form of (4.13), for the 
minimum and non-minimum phase models, using the Iill-lil/  hi_R-UR and the hu_- 
UR/hLR-uL pairings -  are computed as shown in Table 4.3.

25.944 12.932

11.478 23.933
(4.14)

10.061 28.596

31.044 9.2785
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Table 4.3: RGAs for all Input-Output Pairings of the Minimum and Non-Minimum Phase Models

P R O C E S S  M O D E L
R G A

(hLL-uL/h LR-uR PAIRING)
R G A

(hLL-uR/h LR-uL PAIRING)

'1.314 -0.314 '-0.314 1.314'
MINIMUM PHASE

-0.314 1.314 1.314 -0.314

'-0.118 1.118' '1.118 -0.118
NON-MINIMUM PHASE

1.118 -0.118 -0.118 1.118

From Table 4.a, A is closer to one for the minimum phase model, if the left pump 
is paired with the lower left tank water level and the right pump with the lower 
right tank level, than the converse pairing. For the non-minimum phase model, 
the right pump can control the lower left tank level more effectively than the left 
pump. Thus, the recommended pairings by RGA analysis agree with the intuitive 
selections.

In the next section, the decentralised optimal PI and PID controllers will be 
designed and implemented.

4 .4  M U L T IL O O P  C O N T R O L  D E S IG N

The multiple-input/multiple-output (MIMO) transfer function matrices in (4.8a) and 
(4.8b) have process interactions, but the RGA matrices in Table 4.3 show that 
the process matrices are significantly diagonal or anti-diagonal. Thus, either 
multiloop or multivariable control schemes [14] can be applied to controlling the 
processes.

Multiloop (also known as decentralized) PID control systems are often used to 
control interacting MIMO processes. They consist of single-input/single-output 
(SISO) PID controllers acting in a multiloop fashion. Figure 4.7 shows a typical 
multiloop system for a 2 x 2 process like (4.8a) and (4.8b).
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LOOP 1

LOOP 2

Figure 4.7: Multiloop control block diagram for a typical 2 x 2  MIMO process.

where:
n(t) = set point signal to Loop /'; / = 1,2
erft) = error signal in Loop /
Uj(t) = control signal in Loop /'
di(t) = process input disturbance to Loop /
yi(t) = process output at Loop /'
Cj = SISO controller (PI or PID) utilized in Loop /'

Decentralized control is commonly implemented in MIMO systems because of its 
relative simplicity, and because it is potentially robust to sensor and control 
actuator failure. In a multiloop system, after a control structure is fixed, control 
performance is determined mainly by tuning each single-loop PID controller. 
Another advantage of multiloop controllers is that loop failure tolerance of the 
resulting control system can be easily checked. [46] lists and briefly discusses 
the main types of tuning methods for multiloop PID control systems:

■ Detuning methods
■ Sequential loop closing methods
■ Iterative or trial-and-error methods
■ Simultaneous equation solving or optimization methods
■ Independent methods

The sequential loop closing method will now be discussed. In this method, each 
controller in the multiloop is designed in sequence, i.e., a MIMO process is 
treated as a sequence of SISO systems. This approach is applicable to [25]’s 
control system design procedure because the procedure is formulated essentially 
for SISO processes. The sequential loop closing method involves closing the
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loops in the multiloop one after the other. A controller is designed for a selected 
loop using a single loop tuning method and the loop is closed. Another controller 
is tuned for the next loop while the first loop remains closed, and it too is then 
closed and so on. This method differs from detuning methods in that it takes into 
consideration the loop interactions in the sequence of SISO processes. 
According to [46, 47, 48, 49, 50, 51], the sequential loop closing method has 
been used in designing controllers for quite a number of multiloop control 
systems in recent years.

A method proposed by Shen and Yu [17] is a multivariable autotuning procedure, 
which is based on the sequential identification and the modified Ziegler-Nichols 
controller design method. The method is an iterative form of the sequential loop 
closing method; it is illustrated using a 2  * 2  process in a multiloop structure 
similar to Figure 4.7. Assuming the manipulated and controlled variables have 
been paired by the RGA method, Loop 1 is closed using a relay as shown in 
Figure 4.8(a), while Loop 2 is left open.

L O O P  1 
(c lo se d )

R E L A Y

n(t)

L O O P  2
(open )

( b )
LOOP 1 

~ ~ _ (c losed)

y i( t )Ul(t) ?+

3 =
R E L A Y

Y2(t)

, - ' ! O O P  2 
(c losed)
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(C) LOOP 1 
(closed)

yi(t)

R E L A Y

£ 2 x 2

P W JC E S .S

r2(t) y2(t)

. - ' T - O O P  2 
(c losed)

Figure 4.8: Sequential tuning procedure for a 2 x 2 multiloop.

The relay-feedback test [39] is performed, and controller Ci is designed from the 
ultimate gain Ku and the ultimate frequency cuu. Next, a relay-feedback test is 
performed on Loop 2, while Loop 1 remains closed with C? as shown in Figure 
4.8(b), and the controller C2 is designed for Loop 2. Then Loop 2 is closed with 
C2 and another experiment is performed on Loop 1, as shown in Figure 4.8(c), to 
obtain new controller constants for C*. The procedures in Figure 4.8(b) and 
Figure 4.8(c) are iteratively followed until the parameters for Ci and C2 converge. 
Because the MIMO process is treated as a sequence of SISO processes, the 
method has the advantage of simplicity. Figures 4.8(b) and Figure 4.8(c) can be 
simplified into the SISO closed-loops in 4.9(a) and Figure 4.9(b) respectively:

(a)
RELAY

RELAY

Figure 4.9: Simplification of 2 x 2 multiloop into a sequence of 2 SISO closed loops.
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where:

911922 J

\
(4.15)

912921 (4.16)

h l= ^ i iC i_  
1 + 911̂ 1

_ g22̂ 2 (4.18)

(4.17)

Hence, Ci and C2 can be designed iteratively from gn,cL and g22,cu using 
suitable controller tuning methods for single loops. In investigating the 
convergence property of the iterative sequential tuning procedure, Monte Carlo 
experiments were performed on 2 * 2 multiloops in [17], using randomly 
generated first-order plus dead time transfer functions. All cases considered met 
the specified convergence criterion.

4.5 DESIGN OF MULTILOOP OPTIMAL PID CONTROLLERS FOR  
QUADRUPLE TANK PROCESS

In the design of optimal PID controllers for the multiloop in Figure 4.7, a tuning 
procedure similar to the iterative sequential loop closing procedure in [17] is 
considered. However, instead of applying Astrom and Hagglund’s autotuning 
method in [39] to design Ci and C2 , Kristiansson’s optimal PID design procedure 
[25] is used. Thus, (2.21) is solved for the controllers iteratively until their 
parameters converge.

4.5.1 MINIMUM PHASE MULTILOOP
The RGA matrices in Table 4.3 suggest an hfUi/hR-UR pairing for the quadruple- 
tank’s minimum phase multiloop. Thus, Figures 4.9(a) and 4.9(b) are modified to 
Figures 4.10(a) and 4.10(b) respectively.

Gmin(s) in (4.8a) can be expressed as
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Gmin(s) =

25.944e~5 0004s 
155s + 1

11.478e~10-274s 
(13818.0025s2 + 235.1s + l)

rmin r-min 
u11 12

r-min rmm\j2i u 22

12.932e~15921s 
(16212.93s2 + 259.86s+ l)

23.933e~582s 
145.05s+ 1 (4.19)

(a)

(b)

LOOP 1

*<>

/  LOOP 2

11,CL

22,CL

Figure 4.10: Simplification of minimum phase multiloop into 2 SISO closed loops,

where:
ri_(t), rR(t) = set point signals to lower left and right tank level closed

loops (Loops 1 and 2) respectively 
C l , C r  = PID controllers manipulating left and right pumps

respectively
e/., eR = error signals in Loops 1 and 2 respectively
dL, dR = process input disturbance to Loops 1 and 2 respectively

(4.15) to (4.18) are expressed in terms of (4.19) as

nmin _ r-min 
11,CL ~  °11

r G™G™ A
1— 12. 21. hRrmmrmm n  

V  ^11 ° 2 2  J
(4.20)
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(4.21)

6™ C,
(4.22)

(4.23)

The iterative sequential loop closing method of designing PID controllers for the 
Quadruple-Tank Process’ multiloop, using Kristiansson’s single loop optimal 
controller design method [25], is itemized in the following steps:

Step 1.1: Specify constraints on G M S, Ju (or k„) and JHf  (for the  optimal PID 
controller with a second order filter) for Loops 1 and 2.

Step 1.2: Solve (2.21), with the constraints specified in Step 1.1, fo r Loop 1 in

Step 1.3: Solve (2.21), with the constraints specified in Step 1.1, fo r Loop 2 in

Step 1.4: Solve (2.21) for Loop 1 in Figure 4.10(a) and using as the

process model. Set the optimal parameters in p  as the param eters fo r 
controller CL.

Step 1.5: Follow Steps 1.3 and 1.4 iteratively until the parameters fo r CL and C R 
converge.

CL and C r  are both designed as optimal PID controllers with first and second 
order filters. For the just proper optimal PID controllers, (2.21) is formulated as

Table 4.4 presents the results of the iterative procedure, while Table 4.5 presents 
the final parameters of multiloop controllers after the iteration converges.

Figure 4.10(a), with the modification of using G™  as the process m odel 

instead o f Set the optimal parameters in p  as the in itia l

parameters for controller Cl-

Figure 4.10(b) and using G ™ ^ as the process model. S e t the optim a l 

parameters in p  as the parameters for controller CR.

m in {jv ( p ) ; G M S < 1 .7 ,k o0= 6 } ;  p  =  [ k , , t , p ] (4.24)
p
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Table 4.4: Tuning of Just Proper Optimal PID Controllers for the Minimum Phase Model o f the
Quadruple-Tank Process using the Iterative Sequential Loop Closing Method

ITERATION NO.
c L C r

*/ T C P ki T C P

0 0.024819 8.7595 1.5418 27.599
1 0.025148 8.807 1.5251 27.091 0.020548 9.8264 1.4997 29.716
2 0.025148 8.807 1.5251 27.091 0.02055 9.8262 1.4996 29.714
3 0.025148 8.807 1.5251 27.091 0.02055 9.8262 1.4996 29.714

Table 4.5: Final Parameters for Just Proper Optimal PID Controllers for the Minimum Phase 
Model of the Quadruple-Tank Process

PARAMETERS CL c R

k oo 6 6

Jv 39.765 48.663

Ju 5.9999 5.9999

k. 0.025148 0.02055
T 8.807 9.8262

£ 1.5251 1.4996

P 27.091 29.714

GMS 1.7 1.7

For the strictly proper optimal PID controllers, (2.21) is formulated as:

min{Jv(p) :GM$ <1.7,Ju =6,J^p <25); p =  [ k j , T , £ , £ f , f i \  (4-25)
p

Table 4.6 shows the results of the iterative procedure, while Table 4.7 shows the 
final parameters of multiloop controllers when the iteration converges.

Table 4.6: Tuning of Strictly Proper Optimal PID Controllers for the Minimum Phase Model of 
the Quadruple-Tank Process using the Iterative Sequential Loop-Closing Method

CL CR
I T E R A T I O N

N O . ki T c Ct P ki T C Cf P

0 0 . 0 2 4 8 9 9 8 . 5 4 7 7 1 . 5 8 7 8 0 . 4 1 3 1 8 2 8 . 8 8 1
1 0 . 0 2 5 0 6 1 8 . 7 3 4 7 1 . 5 3 8 9 0 . 4 5 5 6 1 2 7 . 8 4 8 0 . 0 2 0 4 9 6 9 . 7 6 5 1 . 5 0 9 5 0 . 4 7 0 0 7 3 1 . 0 1 7
2 0 . 0 2 5 0 6 1 8 . 7 3 4 7 1 . 5 3 8 9 0 . 4 5 5 6 1 r 2 7 . 8 4 8 0 . 0 2 0 4 9 5 9 . 7 6 5 1 1 . 5 0 9 5 0 . 4 7 0 0 7 3 1 . 0 1 8
3 0 . 0 2 5 0 6 1 8 . 7 3 4 7 1 . 5 3 8 9 0 . 4 5 5 6 1 2 7 . 8 4 8 0 . 0 2 0 4 9 5 9 . 7 6 5 1 1 . 5 0 9 5 0 . 4 7 0 0 7 3 1 . 0 1 8
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Table 4.7: Final Parameters for Strictly Proper Optimal PID Controllers for the Minimum Phase
Model of the Quadruple-Tank Process

PARAMETERS CL C r

koo 19.434 19.719

Jv 39.903 48.792

Ju 6 6

J hf 25 25

ki 0.025061 0.020495
T 8.7347 9.7651

£ 1.5389 1.5095

0.45561 0.47007

p 27.848 31.018

GMS 1.7 1.7

The tuned optimal controllers are implemented on the multiloop of the minimum 
phase of the Quadruple-Tank Process, in simulation and experimentally. Steps in 
the set point of the lower left and right tank levels, r\_ and 7r, are introduced, one 
after the other, to the multiloop, as well as steps in the load disturbance to the left 
and right pump discharge rates, (Jl and c /r .  The simulations are performed using 
SIMULINK (Figure 4.11). Set point pre-filters are used in the multiloop to reduce 
the excessive overshoots typical of Jv-optimal PID controllers.

Left Tank 
Level Set Point

Left Pump 
PIDLeft Tank 

Set Point P tefiIter

Failing
Matrix

Right Pump 
PID

Right Tank 
Set P oint P iefilter

Lower R igh t T a n k  L evel

R ight Tank 
Level Set Point

Left Pump 
Disturbance

R ight Pump 
Disturbance

h L L

hLR
22s+1

Ini Out 1

In lO utl

Figure 4.11: SIMULINK block diagram for simulation of quadruple-tank multiloop.
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Figures 4.12(a) and (b) show the level responses of the simulated minimum 
phase multiloop, using the just proper optimal PID controllers along with the set 
point and disturbance steps. The control signal sent to each pump is also shown. 
The level responses for the multiloop using strictly proper optimal PID controllers 
are shown in Figures 4.13(a) and (b). Figures 4.14(a) and (b) and 4.15(a) and (b) 
show the level responses of the experimental implementation of the just proper 
and strictly proper optimal PID controllers, respectively, on the quadruple-tank 
process in the laboratory. The split valves of the process have been adjusted so 
that it follows the minimum phase dynamics similar to (4.8a). The set point pre­
filters used for the simulations were also used in the experimental 
implementation of the controllers.
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Figure 4.12: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input 
disturbance for simulated multiloop of minimum phase of Quadruple-Tank 
Process, using just proper PID controllers.
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Figure 4.13: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input 
disturbance for simulated multiloop of minimum phase of Quadruple-Tank 
Process, using strictly proper PID controllers.
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Figure 4.14: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input 
disturbance for experimentally implemented multiloop of minimum phase of 
Quadruple-Tank Process, using just proper PID controllers.
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Figure 4.15: Level responses of left and right tanks to steps in (a) left tank level set point and
left pump input disturbance, and (b) right tank level set point and right pump input 
disturbance for experimentally implemented multiloop of minimum phase of 
Quadruple-Tank Process, using strictly proper PID controllers.
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4.5.2 NON-MINIMUM PHASE MULTILOOP

For the non-minimum phase multiloop of the quadruple-tank process, the ha-UR/ 
hi_R-UL pairing will be used. Figures 4.9(a) and 4.9(b) are modified to Figures 
4.16(a) and 4.16(b) respectively.

(a)

(b)

LOOP 3

*6 -

/  LOOP 4

Gnonmin04 n

Figure 4.16: Simplification of non-minimum phase multiloop into 2 SISO closed loops.

Gnonmin(s) in (4.8b) can be expressed as

10.061e~41318s 28.596e~2412s
200.56s+ 1 (22758.74s2 + 30172s + l)

31.044e~33-517s 9.2785e~9 275s
'non mm(S) =

(22104.33s2 +297.49s+ 1) 124.24s+ 1 (4.26)
(2 non mm gnonmin 
°11 12

nnonmin nnonmin 
21 22

(4.15) to (4.18) are expressed in terms of (4.26) as

Gnonmin __ gnonm in  
12,CL -  ^12 1-

Gnonm innnonm in ^
11 2̂2 ft

Gnonmin gnonm in f
12 21

(4.27)
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Gnonmin _ gnonm in  
21, CL ~  V  21

f  gnonmin gnonmin ^
1 - G« G* — hL

Gnonmin s 'non  mm L 
12 u21

(4.28)

r\n onm in r*b12
L 1 + G“ CR

r*nonminr*
hR = b« ° L-  (4.30)
R 1 + Gn2°nmmCL

The iterative sequential loop-closing method, using Kristiansson’s single loop 
optimal controller design method, is itemized in the following steps:

Step 2.1: Specify constraints on GMS, Ju (or /c») and JHf  (for the optimal PID 
controller with a second order filter) for Loops 3 and 4.

Step 2.2: Solve (2.21), with the constraints specified in Step 2.1, for Loop 3 in 
Figure 4.16(a), with the modification of using G™nmin as the process 
model instead of 6 ™c™n • Set the optimal parameters in p  as the initial 
parameters for controller CR.

Step 2.3: Solve (2.21), with the constraints specified in Step 2.1, for Loop 4 in 
Figure 4.16(b) and using G™"™ as the process model. Set the optimal 
parameters in p as the parameters for controller CL.

Step 2.4: Solve (2.21) for Loop 3 in Figure 4.16(a) and using as the
process model. Set the optimal parameters in p as the parameters for 
controller CR.

Step 2.5: Follow Steps 2.3 and 2.4 iteratively until the parameters for CL and CR 
converge.

C l and C r  are designed both as optimal PID controllers with first and second 
order filters. For the just proper optimal PID controllers, (2.21) is formulated as

min{Jv(p):GMs <1.7,kx = 6 }; p = [kj,T,£,p] (4.31)
p

Table 4.8 presents the results of the iterative procedure, while Table 4.9 presents 
the final parameters of multiloop controllers when the iteration converges.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.8: Tuning of Just Proper Optimal PID Controllers for the Non-Minimum Phase Model of
the Quadruple-Tank Process using the Iterative Sequential Loop-Closing Method

ITERATION NO.
CL Cr

ki T C f i k i t S f i

0 0.009238 143.47 0.78769 4.5268
1 0.01389 128.11 0.94801 3.3717 0.008839 151.74 0.73799 4.4736
2 0.016318 123.47 0.81585 2.9781 0.009027 154.51 0.73691 4.3016
3 0.016114 123.72 0.82846 3.0094 0.008999 154.37 0.73592 4.3192
4 0.016177 123.62 0.82502 3.0002 0.009006 154.44 0.73601 4.3138
5 0.016164 123.62 0.82583 3.0026 0.009005 154.44 0.73592 4.3141
6 0.016168 123.62 0.82563 3.002 0.009006 154.44 0.73594 4.314
7 0.016167 123.62 0.82567 3.0021 0.009005 154.44 0.73594 4.314
8 0.016167 123.62 0.82566 3.0021 0.009005 154.44 0.73594 4.3141

9 0.016167 123.62 0.82566 3.0021 0.009005 154.44 0.73594 4.3141

Table 4.9: Final Parameters for Just Proper Optimal PID Controllers for the Non-Minimum
Phase Model of the Quadruple-Tank Process

PARAMETERS CL c R

koo 6 6

Jv 71.47 122.66

Ju 6.0786 6

k i 0.016167 0.009005

T 123.62 154.44

c 0.82566 0.73594

p 3.0021 4.3141

GMs 1.7 1.7

For the strictly proper optimal PID controllers, (2.21) is formulated as:

min{Jv(p):GMs <1.7,Ju =6,JHF <0.25}; p = [kh T ^ ^ f ,^ ]  (4.32)
p

Table 4.10 shows the results of the iterative procedure, while Table 4.11 shows 
the final parameters of multiloop controllers after the iteration converges.
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Table 4.10: Tuning of Strictly Proper Optimal PID Controllers for the Non-Minimum Phase M odel
o f the Quadruple-Tank Process using the Iterative Sequential Loop-Closing Method

I T E R A T I O N
N O .

CL CR

ki r c Cl P ki T c Cf P
0 0 . 0 0 0 3 2 9 9 1 2 2 . 3 7 0 . 8 7 2 0 . 4 7 8 4 . 7 3 5
1 0 . 0 0 0 3 6 7 3 1 3 8 . 3 5 0 . 8 4 3 1 7 0 . 6 5 0 4 . 8 3 6 0 . 0 0 0 3 1 5 7 1 3 1 . 9 8 0 . 8 6 0 0 . 4 8 4 4 . 8 7 4
2 0 . 0 0 0 3 7 0 4 1 3 4 . 8 6 0 . 8 5 7 0 3 0 . 6 3 1 4 . 8 0 3 0 . 0 0 0 3 0 1 8 1 3 5 . 8 2 0 . 8 1 4 0 . 4 9 7 5 . 0 2 7
3 0 . 0 0 0 3 6 9 2 1 3 4 . 9 5 0 . 8 5 5 0 4 0 . 6 3 0 4 . 8 1 0 0 . 0 0 0 3 0 3 9 1 3 6 . 4 0 . 8 1 4 0 . 5 0 2 5 . 0 2 3
4 0 . 0 0 0 3 6 9 3 1 3 5 . 0 5 0 . 8 5 4 8 2 0 . 6 3 1 4 . 8 1 0 0 . 0 0 0 3 0 4 3 1 3 6 . 2 2 0 . 8 1 5 0 . 5 0 2 5 . 0 1 8
5 0 . 0 0 0 3 6 9 3 1 3 5 . 0 4 0 . 8 5 4 8 6 0 . 6 3 1 4 . 8 1 0 0 . 0 0 0 3 0 4 0 1 3 6 . 2 4 0 . 8 1 5 0 . 5 0 2 5 . 0 1 9
6 0 . 0 0 0 3 6 9 3 1 3 5 . 0 3 0 . 8 5 4 8 8 0 . 6 3 1 4 . 8 1 0 0 . 0 0 0 3 0 4 1 1 3 6 . 2 4 0 . 8 1 5 0 . 5 0 2 5 . 0 1 9
7 0 . 0 0 0 3 6 9 3 1 3 5 . 0 3 0 . 8 5 4 9 0 . 6 3 1 4 . 8 1 0 0 . 0 0 0 3 0 4 2 1 3 6 . 2 3 0 . 8 1 5 0 . 5 0 2 5 . 0 1 9
8 0 . 0 0 0 3 6 9 3 1 3 5 . 0 3 0 . 8 5 4 9 0 . 6 3 1 4 . 8 1 0 0 . 0 0 0 3 0 4 2 1 3 6 . 2 3 0 . 8 1 5 0 . 5 0 2 5 . 0 1 9

Table 4.11: Final Parameters for Strictly Proper Optimal PID Controllers for the Non-Minimum 
Phase Model of the Quadruple-Tank Process

PARAMETERS CL Cr

^00 0.24606 0.22524

Jv 96.939 119.44

Ju 6 6

J hf 0.25 0.25

k i 0.0003693 0.0003042

T 135.03 136.23

£ 0.8549 0.815

Cf 0.631 0.502

p 4.810 5.019

GMS 1.7 1.7

The tuned optimal controllers are implemented on the non-minimum phase of the 
quadruple-tank process multiloop, both in simulation and experimentally. Steps in 
the set point of the lower left and right tank levels, n. and tr, are introduced, one 
after the other, to the multiloop. This is also done for the load disturbance to the 
left and right pump discharge rates, of/, and c/ r . The simulations are performed 
using SIMULINK. Set point pre-filters are used in the multiloop to reduce the 
excessive overshoots typical of J^-optimal PID controllers.

Figures 4.17(a) and (b) show the level responses of the simulated non-minimum 
phase multiloop, using the just proper optimal PID controllers along with the set 
point and disturbance steps. The control signal sent to each pump is also shown. 
The level responses for the multiloop using strictly proper optimal PID controllers 
are shown in Figures 4.18(a) and 4.18(b). Figures 4.19(a), 4.19(b), 4.20(a) and 
4.20(b) show the level responses of the experimental implementation of the just
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proper and strictly proper optimal PID controllers, respectively, on the quadruple- 
tank process in the laboratory. The split valves of the process have been 
adjusted so that it follows the non-minimum phase dynamics similar to (4.8b). 
The same set point pre-filters used for the simulations were used in the 
experimental implementation of the controllers.
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Figure 4.17: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input 
disturbance for simulated multiloop of non-minimum phase of Quadruple-Tank 
Process, using just proper PID controllers.
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Figure 4.18: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input 
disturbance for simulated multiloop of non-minimum phase of Quadruple-Tank 
Process, using strictly proper PID controllers.
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Figure 4.19: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input 
disturbance for experimentally implemented multiloop of minimum phase of 
Quadruple-Tank Process, using just proper PID controllers.
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Figure 4.20: Level responses of left and right tanks to steps in (a) left tank level set point and
right pump input disturbance, and (b) right tank level set point and left pump input 
disturbance for experimentally implemented multiloop of minimum phase of 
Quadruple-Tank Process, using strictly proper PID controllers.
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The level responses of the multiloops appear satisfactory, both in simulation and 
experimentally. All responses attain their set points, without oscillations and 
sluggish offset damping. In some cases, however, one of the two tank levels 
appears to significantly overshoot its final value before settling, compared to the 
other tank’s level response. This problem could be solved by either adjusting the 
Ju or kx constraints on the controller designs in (4.24), (4.25), (4.31) and (4.32). 
Identical constraint values were chosen by default for the two loops, which is not 
compulsory for the design, the values could differ. Also, the set point pre-filter 
constants could be adjusted.

Overall, the optimal controllers designed for the multiloops give satisfactory 
disturbance rejection performance. Assessment of the closed-loop performance 
of the optimal controllers, in both set point tracking and disturbance rejection, is 
an area that will be extensively examined in subsequent chapters.
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CHAPTER 5

TRADE-OFFS BETWEEN PROPERTIES IN 
OPTIMAL CONTROL SYSTEMS

5.1 INTRODUCTION

The control system evaluation criteria have been applied to the design of optimal 
PI and PID controllers for the multiloops of the minimum and non-minimum 
phases of the Quadruple-Tank Process. The controllers were designed by 
solving (2 .2 1 ), i.e., finding controller parameters, which optimized the closed-loop 
performance criterion and at the same time conformed to the constraints 
imposed on the control activity and stability criteria. Because the control system 
evaluation criteria [25] allow the control engineer to study inter-relationships 
amongst the closed-loop characteristics, the relationship between two important 
properties -  performance and control activity -  will be considered.

Assessing closed-loop performance is of interest to the engineer in the process 
industry because it is analogous to profitability, while control activity is analogous 
to the operating cost incurred to achieve profitability. Therefore, the performance- 
control activity relationship of several control systems with optimal PI and PID 
controllers will be computed and examined in this chapter. The profiles will be 
computed by solving (2 .2 1 ), but in this case the constraint on the control activity 
criterion, Ju, will have a range of values, with the performance criterion, Jv, 
optimized for each value. The first control system to be considered will be the 
closed loop of a simple, hypothetical process with a first order plus dead time 
(FOPDT) transfer function. Next, Jv-Ju profiles of the multiloops for the 
Quadruple-Tank Process will be computed.

Other evaluation criteria, based on the time domain characteristics of the control 
systems, will be considered for suitability as comprehensible substitutes of Jv and 
Ju respectively. Thus, the profiles for the multiloops will be computed using the 
time domain-based criteria and compared with the Jv-Ju profiles for similarity.

Finally, the performance-control activity profiles for closed loops of processes 
with varying degrees of dead time dominance will be examined. The objective of 
this procedure is to determine the influence of time delay on the closed-loop 
characteristics of optimal PI controllers vis-a-vis optimal PID controllers.

5.2 Jv-Ju PROFILES FOR SISO OPTIMAL PI/PID CONTROL 
SYSTEMS

The Jv-Ju profile for simple SISO closed-loops, with optimal PI and PID 
controllers, is studied using Process 1 from Example 2.1, i.e.,
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■L-S
G(s) =

1 0 s +  1

For the optimal PI controller, (2.21) is expressed as

min{Jv(p) :GM$ £1.7, Ju eC}
IO

(5.1)

C is a vector of values for Ju; for the above SISO process, C consists of elements 
ranging from 4 to 9.5. For each value of Ju in C, the parameters for a Jyoptimal 
PI controller are computed.

For the optimal PID controller with a first order low-pass filter, (2.21) is expressed 
as

min{Jv (p) :GMS <1.7,kx eQ} 
p

(5.2)

Q is a vector of values for ; for Process 1, the elements of Q vary from 8.4 to 
30. Figure 5.1 shows the Jv-Ju profiles for the closed loops for Process 1 using 
optimal PI and just proper optimal PID controllers, designed by solving (5.1) and 
(5.2) respectively. The controller and evaluation parameters for all the controllers 
are listed in Tables A.1 and A.2 in Appendix A.

1.6
Optimal PI
Optimal P ID  (Just Proper)

1.6

©15
1.4

1.2

>—}

0.9

0.8

0.7

0.6

10 15 20 25 305
Ju

Figure 5.1: Jv-Ju profiles for closed loops for Process 1 using optimal PI and optimal (just
proper) PID controllers. G/Ws < 1.7.

For closed loops with optimal PI controllers, Jv decreases exponentially as the 
value of is increased. Jv attains a minimum point with Optimal PI Controller 10
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at Ju = 8.5, beyond which it increases progressively. Figure 5.1 suggests that the 
low frequency disturbance rejection performance of the closed loop with an 
optimal PI controller improves up to a limit as the permissible control activity is 
increased, and rapidly deteriorates as the control activity is increased beyond this 
limit. On the other hand, the Jv for the optimal PID controller decreases 
exponentially to an asymptotic limit as Ju is increased. Thus increasing control 
activity improves its disturbance rejection performance, but does not degrade it. 
However, the optimal PID control loop’s marginal performance improvement 
decreases, making the increase in control activity eventually ineffective and 
uneconomical. The profiles for the optimal PI and PID controllers depicted in 
Figure 5.1 are consistent with those reported in [13, 25].

To obtain insight into the implications of the above J^Ju profiles to the time 
domain behaviour of the closed loop, its rejection response to a step disturbance 
in the process input, using some selected controllers from Figure 5.1, are 
simulated.

Process Variable
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b —  O ptim al P 11 
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-*— Optimal P110
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Figure 5.2: Load disturbance step response of Process 1 with selected optimal controllers
from Figure 5.1.
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Amongst the selected optimal controllers, Optimal PI Controller 1’s step response 
has the highest overshoot, lowest undershoot, and the longest settling time, thus 
giving the lowest step response performance, which is consistent with its Jv 
location in Figure 5.1. Its control signal has the slowest response and longest 
settling time, thus leading to the observed trend in the closed-loop’s step 
response. The control signal’s trend suggests low controller gain, which explains 
the low value of the control activity criterion Ju.

Closed-loops with Optimal PI Controllers 4 and 10 have progressively smaller Jv 
values than Controller 1, as well as lower overshoots, higher undershoots and 
shorter settling times. Overall, their step response performances are better than 
Controller 1’s. Their control signals have steeper responses and shorter settling 
times, suggesting higher controller gains (shown by their higher Ju values). 
Optimal PI Controller 15’s closed-loop has a slightly smaller overshoot than 
Controllers 10’s. Hence the smallest overshoot amongst the selected optimal PI 
controllers, but the longest settling time due to a sluggish damping of the process 
output’s offset. The small overshoot suggests higher controller gain than the 
other PI controllers’, which is shown by its Ju value. However, the sluggish offset 
damping suggests low integral action, i.e., high integral time. Thus, amongst the 
selected PI controllers, Optimal PI Controller 10’s closed loop gives the best step 
disturbance response performance, which corroborates its position as a minimum 
point in the J^-Ju profile for optimal PI controllers in Figure 5.1.

The closed-loop responses for Optical PID Controllers 1 and 10 have smaller 
overshoots than the optimal PI controllers discussed above, as well as shorter 
settling times. Their control signals have steeper responses and also shorter 
settling times, meaning higher controller gains as shown by their Ju values. The 
closed-loop step responses and control outputs of Optimal PI Controller 10 and 
Optimal PID Controller 1 appear to be nearly identical, which is to be expected 
from the closeness of their (Ju, Jv) coordinates in Figure 5.1.

To obtain clearer insight into the characteristics of the control signals in Figure 
5.2, the parameters p = [ki,T,£,j3] of the optimal controllers are expressed in 
terms of the traditional PID controller structure, i.e., [ k c , T j , T d , T f ]  from (3.2), which 
are used to calculate the gains of the three components of the controller. Figure
5.3 shows the optimal PI and PID controllers’ proportional gain (kc), integral gain

( ^ / ), and derivative gain ( k cr d ).

Although the profile for the optimal PID controller appears to be disjointed from 
the optimal PI controller’s, [25] shows that it is possible for the optimal PID 
controller’s performance curve to connect to the optimal Pi’s at its minimum-Jv, 
point.
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Ju-Jv Profile
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Figure 5.3: Proportional, integral and derivative gains of optimal PI and PID controllers for

Process 1.

The proportional gain of the optimal PI controller increases almost linearly with 
Ju. Its integral gain also increases with Ju up to Controller 10, which has the
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minimum Jv for the optimal PI controllers, and decreases thereafter. The optimal 
PI controller has no derivative gain. Hence, the improving closed-loop 
performance with increasing control activity between Optimal PI Controllers 1 
and 1 0  is due to the combined effect of increasing proportional and integral 
gains. There is a progressive deficiency in integral action for Optimal PI 
Controllers 11 to 15, although the proportional gain is increasing. This explains 
the sluggish settling of the step response of the closed loop with Controller 15, 
which was observed in Figure 5.2, combined with the relatively small overshoot. 
Also, lack of derivative action contributes to the exponential deterioration of 
closed-loop performance as Ju increases beyond 8.5. The optimizer’s 
computation of controller parameters, which increase proportional gain with Ju, at 
the expense of decreasing integral gain, ensures all the optimal PI controllers 
meet the mid-frequency robustness constraint GMs ^ 1.7.

For the optimal PID controllers, both proportional and integral action increase 
asymptotically. There is an initial drop in the derivative action as Ju increases, 
after which it also increases to an asymptotic limit. The asymptotic profiles of the 
three gains explain the corresponding asymptote in the Jv-Ju profile o f the optimal 
PID controllers. Consequently, although the increase in the permissible control 
action of the optimal PID controller buys non-deteriorating performance 
improvement, the diminishing returns on performance, due to the asymptote, 
eventually makes the increase uneconomical.

From the design and simulation of optimal controllers for the simple SISO 
process above, it can be concluded that if the stability (mid-frequency 
robustness) criterion of its closed loop is constrained, increasing the control 
activity limit of the closed loop leads to an improved disturbance rejection 
performance when either an optimal PI or PID controller is used. However, in the 
case of the optimal PI, the performance improvement with control activity has an 
upper limit, beyond which it deteriorates. With the optimal PID controller, 
performance also improves to an upper limit but does not deteriorate. The Jv~Ju 
profiles for the two groups of controllers show that optimal PID controllers can 
give better closed loop performance than the optimal PI controllers, and 
demonstrate the advantage of including the derivative (D) control portion with a 
PI controller in the closed loop.

The above investigation of the J^-Ju profiles has been restricted to a stable SISO 
process transfer function with one pole, no zero and a small time delay. In 
contrast, Kristiansson presents profiles in [13] for optimal PI and PID controllers 
used to control SISO processes with transfer functions having a wide variety of 
structures, including high order and non-minimum phase structures. The results 
show that there is usually a corresponding minimum in the JJJU graph when a PI 
controller is used in the closed loop, a point made in [3]. The results also show 
clear improvements in closed-loop performance when derivative control is 
utilized. For an optimal PI controller controlling a process with a first-order plus 
delay model, [15] shows how the minimum Jv can be calculated analytically. For 
non-minimum phase systems controlled by optimal PID controllers, [16]
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demonstrates theoretically that a lower limit for Jv, corresponding to the 
asymptote, does exist.

5.3 Jy-Ju PROFILES FOR QUADRUPLE-TANK MULTILOOP

In the last section, an important feature observed in the J^JU profiles was that if 
the GMs criterion of a SISO optimal PI closed loop is constrained, increasing its 
control action criterion, Ju, improves its step response performance up to a limit, 
beyond which its performance deteriorates. If an optimal PID controller is used in 
the closed loop, its step response performance, generally better than the optimal 
Pi’s, improves with increasing control action up to an asymptotic, non­
deteriorating limit. Hence, derivative control plays a significant role in enhancing 
closed-loop performance.

Although the profiles investigated were for SISO closed loops, the Jy-Ju graphs 
for the multiloops of the minimum and non-minimum phase models of the 
Quadruple-Tank Process would also be examined. The basis for investigating the 
Jv-Ju relationships for the multiloops comes from the concept of the iterative 
sequential loop closing method [17] discussed in Chapter 4, which allows a 
multiloop to be represented by a sequence of SISO closed loops. For example, 
the multiloop for the minimum phase dynamics of the quadruple-tank process 
can be expressed as decoupled SISO closed-loops Loop 1 and Loop 2 as shown 
in Figures 4.10(a) and 4.10(b) respectively. Hence, the Jv-Ju graphs are plotted 
separately for Loop 1, Loop 2, as well as Loop 3 and Loop 4 (Figures 4.16(a) and 
4.16(b) respectively).

Computing the Jy-Ju profiles for the four closed-loops requires the design of a 
range of optimal PI and PID controllers for the minimum and non-minimum phase 
multiloops. Steps 1.1 to 1.5 and 2.1 to 2.5 in Chapter 4 are followed to design 
the multiloops’ optimal PI and PID controllers; for the just proper optimal PID, 
(4.31) is modified to (5.2) with Q consisting of elements ranging from 0.9 to 4.5. 
For the optimal PI, (4.31) is modified to

min{jv(p) :GMS <1.7,Ju eW}- p = [ k „ T \  (5.3)
p

Ws values range from 0.1 to 0.8. The parameters for the optimal controllers 
designed for the minimum and non-minimum phase multiloops can be found in 
Tables A.3 to A. 10 of Appendix A. Figures 5.4 to 5.7 show the Jy-Ju profiles for 
the four loops mentioned above.

The performance-control action characteristics for the four loops are similar to 
Figure 5.1, thus providing the same comparative assessment on the closed-loop 
performance of optimal PI and PID controllers. In the multiloop for the two 
phases of the Quadruple-Tank Process, optimal PID controllers can give 
improved performance in the level responses of the two lower tanks, compared 
to optimal PI controllers.
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Figure 5.4: Jv-Ju profiles for Loop 1 of the minimum phase multiloop of the Quadruple-Tank
Process using optimal PI and optimal (just proper) PID controllers. GM S ^ 1.7.
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Figure 5.5: J^-Ju profiles for Loop 2 of the minimum phase multiloop of the Quadruple-Tank
Process using optimal PI and optimal (just proper) PID controllers. GMS ^ 1.7.
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Figure 5.6: J^Ju profiles for Loop 3 of the non-minimum phase multiloop of the Quadruple-
Tank Process using optimal PI and optimal (just proper) PID controllers. G M S ^ 
1.7.
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Figure 5.7: Jv-Ju profiles for Loop 4 of the non-minimum phase multiloop of the Quadruple-
Tank Process using optimal PI and optimal O'ust proper) PID controllers. G M S ^ 
1.7.
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5.4 T IM E DOMAIN EVALUATION CRITERIA

Ju and Jv are criteria for evaluating a closed loop’s control activity and low 
frequency disturbance rejection performance respectively. Their mathematical 
definitions in (2.17) and (2.10) respectively imply that transfer functions for both 
the process and the controller are required to compute them. In industry, process 
models are not always available. Where they are available, variations in process 
dynamics may render existing models invalid and make their regular updating 
necessary. Thus, computations of the two criteria for industrial control loops may 
not always be accurate: closed-loop evaluations and controller comparisons may 
be misleading. Furthermore, with (2.17) and (2.10) being frequency domain- 
based criteria, physically relating them to controller aggressiveness and loop 
performance may not be straightforward to a plant operator. On the other hand, 
the insights provided by the Jv-Ju graphs in Figure 5.1 and 5.4, concerning 
closed-loop properties would be useful in assisting process engineers and 
operators tune control loops.

Thus, it would be desirable to represent the observed performance-control action 
characteristics for closed loops of optimal PI and PID controllers, described by 
the Jv-Ju profiles, using criteria that can be physically related to the loop 
properties being evaluated and easily comprehended. It would also be 
convenient to be able to compute these criteria using process information readily 
available to the plant operator, such as sampled time domain data for the closed 
loop’s process output and the control signal.

In Chapter 2, Jv was shown to be approximately equal to 1/k-,, the inverse of the 
PID controller’s integral gain, which is equal to the integral of the error signal, IE. 
For small undershoots in load step disturbance, IE was shown to be 
approximately equal to IAE, the integral of the absolute error. IAE is considered 
the most common SISO closed-loop performance index. Another well-known 
index for SISO closed loops is the integral of the squared error, ISE. They are 
defined in [4, 14] as:

For closed loops with disturbance rejection control objectives, r(t) = 0. Therefore

(5.4)

(5.5)

e(t) = -y(t) 

\e(t)\ = \y(t)\ 

e(t)2 =y(t)2
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If process data are sampled for duration, fc that is sufficiently long to capture the 
closed loop’s settling response at the attainment of steady state, then for 
disturbance rejection, (5.4) and (5.5) respectively become

(5.7)

(5.6)

Thus, IAE and ISE are measures that could be applied to evaluate closed-loop 
performance in the same way as Jv. Moreover, they can be easily calculated from 
the sampled data for the process output, y(t).

The above time-domain performance measures are for SISO closed loops. It 
would be of interest to measure the performance of a multiloop using a time 
domain criterion. A 2 x 2 multiloop performance criterion is proposed in this 
thesis for the Quadruple-Tank Process is NORM[eu eR], defined as:

where eL and eR are the error signals for Loops 1 and 2 (or Loops 3 and 4) 
respectively. Again, for disturbance rejection, (5.8) can be written in terms of the 
process output, instead of the error signals. For the Quadruple-Tank Process, hi. 
and hR are its multiloop’s process outputs. (5.8) then becomes:

As the performance of a closed loop/multiloop improves, the values of the 
aforementioned time domain performance measures are expected to decrease, 
just like Jv, but otherwise increase.

The control activity criterion, Ju, is based on the control sensitivity function, Su, 
which is the transfer function between sensor noise, w(t), and the control signal, 
u(t). Its value increases as the gain of the transfer function increases. As an 
illustration, consider a SISO closed loop, whose controller parameters can be 
altered so that its Ju value varies. If the process output, y(t), of the closed-loop 
response is corrupted by the same stochastic sensor noise signal each time the 
controller parameters are altered, it is expected that the degree of stochasticity, 
or volatility, of the loop’s control signal, due to Su, would increase as the Ju value

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NORM[eL(tf),eR(tf )]= V ( e L(t)2+eR(t)2) (5.8)

(5.9)
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of the loop increases. For stochastic systems, [43] mentions the variance of the 
control signal, u(t), as a likely measure of control activity. However, a time 
domain criterion proposed in this thesis for measuring control activity of a 
disturbance rejection closed loop is the variance of the differenced control signal, 
VAR[Au]. The differenced signal, Au, is obtained from the control signal through 
the relationship:

Au(t) = u(t)-u(t-1); t = 1,2,...,tf (5.10)

Differencing the control signal calculates the trend in which the control signal’s 
value changes from one sampling instance to another. Calculating the variance 
of the differenced signal measures the overall amplitude of value changes in the 
control signal, thus measuring the volatility of the signal. Therefore, it is expected 
that a control signal significantly affected by sensor noise, or by a stochastic 
disturbance like coloured noise, would possess an equally significant degree of 
volatility, and hence a high variance for its differenced signal.

For a SISO closed loop tracking a set point signal, the proposed measure for 
control activity is the Median of Absolute Deviation (MAD) of the differenced 
control signal, which is discussed in [55]. It is defined as:

MAD[Au] = MEDIAN^ \\Au(t) -  MEDIAN[Au(t)]}] (5.11)

For the Quadruple-Tank Process’ multiloop, a time domain evaluation criterion 
proposed for the combined control activity of its controllers is V A R [A ul , A u r ], 
given by:

VAR[Aul,Aur ] = VAR[Aul +Aur ] (5.12)

5.5 TIME DOMAIN PERFORMANCE-CONTROL ACTIVITY 
EVALUATION CRITERIA FOR QUADRUPLE-TANK  
MULTILOOP

Having discussed several time domain evaluation criteria for measuring the 
performance and control action of a control system, the next step is to apply 
these criteria to the multiloop of the Quadruple-Tank Process and compare their 
performance-control activity profiles with those given by Jv and Ju in Figures 5.4 
to 5.7. Because these criteria rely on process data for their computation, it 
becomes necessary to implement the multiloop using the controllers designed in 
Section 5.3, and obtain data for the system’s response for each pair of controllers 
implemented. Controller implementation is carried in simulation, via SIMULINK, 
and experimentally on the Quadruple-Tank Process in the laboratory. The 
following loop excitation experiments are performed and response data sampled:

Excitation 5.1: Set point step in rL introduced to Loop 1, while keeping rR and
disturbance inputs dL and dR at their nominal values.
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Excitation 5.2: Set point step in rL introduced to Loop 3, while keeping rR and
disturbance inputs dL and dR at their nominal values.

Excitation 5.3: 

Excitation 5.4: 

Excitation 5.5: 

Excitation 5.6: 

Excitation 5.7: 

Excitation 5.8: 

Excitation 5.9:

Excitation 5.10:

Step in disturbance dL introduced to Loop 1, while keeping dR and 
set point inputs rL and rR at their nominal values.

Step in disturbance dR introduced to Loop 3, while keeping dL and 
set point inputs rL and rR at the ir nominal values.

Set point step in rR introduced to Loop 2, while keeping rL and 
disturbance inputs dL and dR at their nominal values.

Set point step in rR introduced to Loop 4, while keeping rL and 
disturbance inputs dL and dR at their nominal values.

Step in disturbance dR introduced to Loop 2, while keeping dL and 
set point inputs rL and rR at their nominal values.

Step in disturbance dL introduced to Loop 4, while keeping dL and 
set point inputs rL and rR at their nominal values.

Steps in disturbances dL and dR introduced to multiloop o f 
minimum phase process, while keeping set point inputs rL and rR 
at their nominal values.

Steps in disturbances dL and dR introduced to m ultiloop o f non ­
minimum phase process, while keeping set point inputs rL and rR 
at their nominal values.

Figures 5.8 to 5.21 show the performance-control activity profiles for the above 
excitation experiments, computed using the time domain evaluation criteria.
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Figure 5.8: ISE\y]-MAD[Au] profiles fo r Excitation 5.5 implemented in s im u la tion .
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Figure 5.9: ISE\y]-MAD[Au] profiles for Excitation 5.1 implemented in simulation.
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Figure 5.10: ISE\y]-VAR[Au] profiles for Excitation 5.7 implemented in simulation.
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Figure 5.11: ISE\y]-VAR[Au] profiles for Excitation 5.3 implemented in simulation.
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Figure 5.12: ISE\y]-MAD[Au] profiles for Excitation 5.2 implemented in simulation.
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Figure 5.13: ISE\y]-VAR[Au] profiles for Excitation 5.4 implemented in simulation.
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Figure 5.14: ISE[y]-MAD[Au] profiles for Excitation 5.6 implemented in simulation.
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Figure 5.15: ISE\y]-VAR[Au] profiles for Excitation 5.8 implemented in simulation.

0.95
— 3|£— Optimal P ID  
— B — Optimal PI

0.9

0.85

0.8

CC 0.75

0.7

O  0.65

0.6

0.55

0.5

0.45
0.004 0.006 0.008 0.01 0.014 0.016 0.0180.002 0.02

Var[d ifF [uL] + d iff[uR ]]

Figure 5.16: NORM[eL, eR]-VAR[AuL + AuR] profiles for Excitation 5.9 implemented in
simulation.

1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Optimal PI 
Optimal PID

fc0)
S
a .oz

Var[dlff[uL]+diff[uR]] -3
x 10’

Figure 5.17: NORM[eb eR]-VAR[AuL + AuR] profiles for Excitation 5.10 implemented in
simulation.
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Figure 5.18: ISE[y]-VAR[Au] profiles for Excitation 5.3 implemented experimentally on
Quadruple-Tank Process.

1 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r -i 0.08 
r

— CLOSEDLOOPC

 CLOSED LOOP A
 CLOSED LOOP B

100 120 140

III1 1 1 \
1 1 1 1 1 I1 \1

i i i i

Control Signal
i---------1------ii iiji

i
i
i
jiiii

1 11 I 1 1 1 \1 1

hllrtlrj )wt 1 M ,
J 1 1 1 *1 J 1

i 11. .

In
i

1 1 ,Jf t 1
i W  ■ 1 i i*i ■ ■i i i i i i i ii .. .j---------1--------- 1---------

0 
0

51
“ j  17 
Q-

E | 1U
1

16
150 200 250

Differenced Control Signal

150 200 250
Time (secs)

Time (secs)

Control SignalControl Signal

‘.........................l . + v . - f l - ' .............;j v ,-j ..........

: i :
1 U  ' ‘ ‘ ' i  , l f ’ '

16.5

Differenced Control Signal
IT t.   r-j—*-* jt, ijSMi i  )! J J ■!»' , i

M m ,
]! : ; :■ §

  j:-

Variance=0.0211

~ i —
i
i
i

.. .  , r  ------- !--------------------- ,,

Differenced Control Signal
i
i
i i

1  | i  .
’ A  1  f t  1 1 1 ,  i l  t  ■  f l a l H I  L l i i

150 200 250
Time (secs)

Variance=0.0034

Figure 5.19: Response of selected closed loops (in Figure 5.17) from Excitation 5.3
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Figure 5.20: ISE\y]-VAR[Au] profiles for Excitation 5.7 implemented experimentally on
Quadruple-Tank Process.

Based the experimental implementation of the optimal controllers, the process 
output, control signal and differenced control signal are shown in Figures 5.19 
and 5.21 for the closed loops of the optimal PI controller (whose closed loop has 
the smallest ISE\y] value), a selected optimal PID controller with a first order 
filter, and an optimal PID controller with a second order filter.

The performance-control activity plots, obtained using the time domain-based 
evaluation criteria, show the same profiles obtained with Jv and Ju in Figures 5.4 
to 5.7. The optimal PID controllers generally give better closed-loop performance 
than the optimal PI controllers. However, as shown by the VAR[Au] values in 
those figures, the price to be paid by the PID controllers for improved 
performance is greater control activity. The optimal PID controllers with second 
order filters generate less control activity than the PID controllers with first order 
filters. There is, however, a slight deterioration in performance. Thus, the second 
order-filtered PID controllers improve the performance of the PI controllers and 
generate control activity less aggressive than the first order-filtered PID 
controllers.

The time domain criteria also show, in agreement with the Jv-Ju profiles, that the 
performance of the optimal PID controller is asymptotic, i.e., performance 
improvement with increasing control activity is progressively marginal until no 
significant improvement is achievable.
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Figure 5.21: Response of selected closed loops (in Figure 5.19) from Excitation 5.7
implemented experimentally on Quadruple-Tank Process.
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The tank level responses from the simulation of Closed Loops A, B, C, D, E, and 
F showed similar behaviour to the experimental time trends in 5.19 and 5.21 and 
supported the performance comparisons shown in Figures 5.18 and 5.20 
respectively, i.e. inclusion of derivative control improves the closed-loop 
performance of the PI controller and careful filtering of its control signal makes it 
as moderate as the plain PI controller’s.

5.6 TRADE-OFFS FOR PROCESSES WITH VARIOUS TIME DELAY­
TIME CONSTANT RATIOS

An attractive feature of the control system evaluation method [25] is that the 
performance criteria of various control systems can be compared while other 
property criteria are constrained equally for all the systems. If these systems use 
the same controller structure but different processes, then it is possible to gain 
some insight to how process dynamics influence closed-loop performance. 
Process dynamics is one of the factors that limit the achievable performance of a 
control system [5, 18, 19].

The influence of a process’ time delay on the closed-loop’s performance is of 
major interest, as quite a number of industrial processes have significant dead 
times due to the presence of distance velocity lags, recycle loops, and the 
analysis time associated with composition measurement. The presence of 
process time delay limits the performance of a conventional feedback control 
system. In terms of a feedback loop’s frequency response, time delay adversely 
affects the system’s stability by adding phase lag to the loop. Consequently, the 
controller gain must be reduced below the value that can be used if no time delay 
were present, and the response of the closed loop would be sluggish compared 
to that of the delay-free process. Many processes can be represented by a first- 
order-plus-dead-time (FOPTD) model:

A typical measure of the dominance of the time delay in a process is the 
fractional dead time, also known as the normalized dead time [4], defined as
% + r - ,n this thesis, i.e., the time delay-time constant ratio, is used. In this
section, the J^JU profiles for feedback loops of simple, hypothetical processes 
with small to moderate time delay-time constant ratios, and using optimal PI and 
PID controllers, are computed to study the benefits of derivative action as the 
ratio increases. Table 5.1 shows the transfer functions for the processes. Their 
time delay-time constant ratios vary from 0.1 to 0.4, but their gains and time 
constants are unaltered. Figure 5.22 shows the JvJu profiles of the closed loops 
for the processes controlled by optimal PI and PID controllers.
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Table 5.1: Transfer Functions and Time Delay-Time Constant Ratios of Simple Processes

PROCESS MODEL TIME DELAY -  TIME CONSTANT RATIO

24.37e~15A7s 
154.7s+ 1

0 .1

24.37e~30-94s 
154.7 s+ 1

0 . 2

24.37e~46A1s 
154.7s+ 1

0.3

24.37e~61-88s 
154.7s+ 1

0.4

4000
—i— Optimal PI -0.1 ratio 
—®— Optimal PI -0.2 ratio 
— Optimal PI -0.3 ratio 
—B— Optimal PI -0.4 ratio 
- + -  Optimal PID -0.1 ratio 
■■■■»■■■ Optimal PID -0.2 ratio 

Optimal PID -0.3 ratio 
"D " Optimal PID -0.4 ratio

3500
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>
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

Figure 5.22: J^Ju profiles of closed loops for processes in Table 5.1 using optimal PI and
optimal (just proper) PID controllers. GMS ^ 1.7.

The Jv-Ju profiles in Figure 5.22 show the already-discussed performance 
improvement derivative control brings to a Pl-controlled closed loop. Additionally, 
they show that the performance of closed loops using either PI or PID controllers 
generally deteriorates as the process’ time delay dominance increases. Thus, for 
processes that are highly time delay-dominated, the PID control algorithm might
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not be adequate for meeting control objectives, in which case other algorithms 
and control schemes should be considered.

Another interesting feature of the profiles in Figure 5.22 is that as the time delay 
dominance in a process increases, the performance gap between the optimal 
PID closed loop’s Jv asymptote and the minimum-Jy point of the optimal PI closed 
loop increases. Thus, even though the PID structure is not the best control 
system for processes with large time delays, inclusion of derivative control makes 
a significant difference in the performance of the PI controller. This improvement 
is due to the predictive property of the derivative controller, which is able to 
estimate future, un-sampled values of the process output via linear extrapolation 
and generate the corrective control action based on the estimate before the 
actual output is sampled. However, for most processes, linear extrapolations do 
not provide accurate predictions of future outputs [5], thus requiring other 
techniques for improved predictions. At the same time, generating control action 
for a future process output measurement, based on a linearly-extrapolated 
prediction, is of greater benefit than control action based on the actual, but 
delayed, measurement. Moreover, the mid-frequency constraint of GMS ^ 1.7, 
imposed on all closed loops in Figure 5.22, implies that the controllers optimized 
for the processes with greater time delays must have smaller controller gains to 
retain closed loop stability. The reduction in controller gains, as shown by the 
decreasing Ju values of the PI controllers, with minimum Rvalues in Figure 5.22, 
implies reduced controller aggressiveness, which in turn implies reduced 
performance capability. Thus, the closed loop performance of the PI controller 
deteriorates significantly as the process’ time delay increases, and its 
performance gap from the PID closed loop also increases.

The time domain evaluation criteria applied to the loops of the Quadruple-Tank 
Process are also applied to the closed loops of the processes in Table 5.1, the 
objective being to see whether the performance-control activity profiles in Figure 
5.22 can also be represented by these criteria. In this case, two forms of 
disturbance would be introduced to the closed loops: a step in the disturbance at 
the process input, and an integrated white noise signal added to the process 
output. An integrated white noise signal is obtained by sending a Gaussian white
noise signal through an integrating filter y § . Figure 5.23 shows the block

diagram for generating an integrated noise signal and the time plots of the 
unfiltered and filtered signals. Figures 5.24 and 5.25 show the SIMULINK block 
diagrams for the closed loops excited by step and integrated white noise 
disturbances respectively.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■H 6oo Iw  tow~iao
Tilt#?***]

 m  no mo So two lioo

UNFILTERED 
GAUSSIAN 

WHITE NOISE 
SIGNAL

Figure 5.23: Generation of integrated noise disturbance from Gaussian white noise signal.

INTEGRATING INTEGRATED
FILTER WHITE NOISE

SIGNAL

Set point signal
Set point 

Pre-Filter

Clock Time

Figure 5.24: SIMULINK block diagram for closed loop with step disturbance introduced at
process input.

[T f]

S e t po int signal

1

8 s H

S et point 
Pre-Filter

0 "
Clock

Figure 5.25:

Tim e

Ini

Gutl in in m.. . . . . . . . . . . . . . w
ln'2

O ptim al
Controller

Process

f f l
Unfiltered W hite  Integrating

Noise S ignal Filter

P ro o ess V ariab le

SIMULINK block diagram for closed loop with integrated white noise disturbance 
introduced at process output.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To plot the performance-control activity profiles for the closed loops of the 
processes using the time domain evaluation criteria, the following excitation 
experiments are performed on the SIMULINK closed loops and response data 
sampled:

Excitation 5.10: Step in process input disturbance, d, while keeping o th e r 
exogenous variables at nominal values.

Excitation 5.11: Integrated white noise disturbance introduced to process output, 
while keeping set point, r, and input disturbance, d, at nom ina l 
values.

Excitation 5.12: Step in set point, r, while keeping other exogenous variables at 
nominal values.

Figures 5.26 to 5.28 show the performance-control activity profiles for the above 
excitation experiments, computed using the time domain evaluation criteria.

— I—  Optimal PI; 0.1 ratio 
O— Optimal PI; 0.2 ratio  

— * —  Optimal PI; 0.3 ratio  
Optimal PI; 0.4 ratio  

-+ • • •  Optimal PID; 0.1 ratio  
-■ O -  Optimal PID; 0.2 ratio  

Optimal PID; 0.3 ratio  
—B -  Optimal PID; 0.4 ratio

■Sr
— 30

0.5 10 1.5

x 10

Figure 5.26: ISE\y]-VAR[Au] profiles for Excitation 5.10 implemented in simulation.
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Figure 5.28: ISE[y]-MAD[Au] profiles for Excitation 5.12 implemented in simulation.
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The profiles in Figures 5.26 to 5.28 are consistent with those in Figure 5.22. The 
PI controller’s closed-loop performance is highly restricted for processes with 
significant time delays. On the other hand, the asymptotic profile of the PID 
controller shows a progressively widening performance gap from the PI 
controller. Hence, for closed loops of dead time-dominated processes, in which 
the control structure options are restricted to PI or PID controllers, performance 
benefits are obtainable by implementing the PID controllers instead of the PI 
controllers. First or second order filtering of the PID control signal can be applied 
to reduce its aggressiveness, if found to be excessive. Since the above 
conclusion has been drawn from closed-loop simulations and using hypothetical 
process transfer functions, it would be desirable to validate it on a real process 
having adjustable dead time dominance features. Such a process will be 
discussed in the next chapter.
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CHAPTER 6

THE HEATED TANK PROCESS

6.1 INTRODUCTION

In Chapter 5, closed-loop simulations of processes with various degrees of time 
delay dominance showed that time delay imposes limitations on the performance 
of optimal PI and PID controllers, and moreover that the performance gap 
between optimal PI and PID controllers widens as the delay dominance becomes 
more significant. Thus, the simulations showed that for time delay dominated 
control systems, in which controller choice is restricted to either the PI or PID 
structure, the derivative action of the PID controller gives it an advantage over 
the PI controller in terms of its potential for performance improvement. The next 
step is to experimentally confirm the simulation results through a pilot-scale 
process.

The Heated Tank Process will be considered for the experimental investigation. It 
has a process output sensor configuration that allows the time delay dominance 
of its dynamics to be alterable; this feature will be discussed in the next section. 
Thus, one of the research objectives to be addressed in this chapter is the 
implementation of open-loop excitation experiments on the Heated Tank Process 
and identification of linear, time-invariant, continuous-time models, having 
various values of the time delay-time constant ratio, from the sampled response 
data. The other objective is the design of optimal PI and PID controllers for the 
models, by solving (2 .2 1 ), and implementation of their closed loops in simulation 
and experimentation. The performance-control activity profiles for the closed 
loops will be computed using the Jv-Ju criteria, as well as the time domain 
evaluation criteria discussed in Chapter 5.

6.2 PROCESS DESCRIPTION

The Heated Tank system consists of a transparent glass tank. The system has a 
cold-water inlet, which introduces water into the tank from the utilities line. The 
system has a heating coil located inside the tank, near its base. Steam flowing 
through this coil from the utilities line heats the water in the tank. The tank has 
two outlet lines, each with a valve that controls the flow-rate of water exiting the 
tank. The first outlet line enables the direct discharge of water from the tank, 
while the second line allows the flow of the exiting water into a winding pipe; 
thermocouples are inserted at various points along the pipe’s length to measure 
the water temperature. A computer interface, consisting of the Emerson's Delta V 
hybrid DCS and MATLAB OPC DA Toolbox, facilitates the implementation of 
various experiments on the heated tank system, ranging from process 
identification to controller implementation. Three controllers in the Delta V system 
control the flow of the steam and cold-water into the tank:
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a) The Cold-Water Flow Controller (FIC-104), which facilitates the manual or 
automatic control of cold-water flow into the tank;

b) The Steam Controller (FIC-105), for the manual or automatic control of 
steam flow through the heating coil in the tank; and

c) The Water Level Controller (LIC-101), which regulates the water level in 
the tank around a set point.

The diagram in Figure 6.1 illustrates the set-up of the heated tank system, 
showing the tank, flow outlet lines and valves, the steam coil, plus the flow and 
level controllers.

Water Level Controller
Steam 

Flow Controller 
FIC-105

LIC-101
LIC

Cold Water 
FIC) Flow Controller 
^  FIC-104

FIC

FT FT

Cold Water Line Steam Line

LT

>  Steam Discharge
Water Discharge Thermocouple 1 

(T O
Thermocouple 2 

(T O  C

Thermocouple 3
(T O

Water Discharge
Figure 6.1: Process schematic of the Heated Tank Process.

The cold-water controller introduces water into the tank, which exits the tank via 
the outlet lines. Due to the flow resistance at the outlets, the water is retained in 
the tank, thereby causing its level to rise until a constant level is attained. Next,
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the steam controller sends steam through the coil and heats the water in the 
tank. The thermocouples on the winding pipe measure the temperature of the 
exiting water at various distances from the tank. The farther the thermocouple’s 
distance from the tank outlet, the longer the delay in its measurement of the 
water temperature. The cold-water controller can be cascaded with the level 
controller, so that the configuration keeps the water level in the tank constant at a 
chosen set point.

MATLAB OPC DA Client makes it possible to construct the input sequences for 
the steam flow rates, introduce them to the system and record the input and 
output data. The Delta V DCS provides the interface between the OPC DA client 
and the physical system.

The following assumptions are made about the process conditions:

a) There is thorough mixing of cold and heated water in the tank, so that 
the water temperature is homogenous;

b) Heat loss/gain along the winding pipe is negligible;
c) The water level in the tank is kept constant by the level controller;
d) The closed-loop dynamics of the steam controller is negligible;
e) Convective heat transfer within the exiting water, while flowing between 

the tank and the thermocouples, is negligible.

The energy balance of the process can be used to formulate the linear, time- 
invariant, univariate transfer function of the system’s input-to-output variables as:

Ti(s) = G,(s)-us(s)

k,e-Tdls (6 -1 )
G,(s) = -

TjS + 1

where:
Ti = Deviational temperature of exiting water, measured at

thermocouple I; 1= 1,2,3  
us = Deviational steam flow-rate
Tdi = Transport delay of temperature measurements at

thermocouple I
t / = Time constant of temperature response at thermocouple I
ki = Gain of temperature response at thermocouple I

kj is a function of the steam’s latent heat of vapourization, specific heat capacity, 
water density, and the cold-water flow rate, t/ is a function of the volume of water 
in the tank and the cold-water flow rate.

(6 .1 ) is a first-order, linear model, whose parameters will be estimated using 
sampled temperature response data from excitation experiments.
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6.3 PROCESS IDENTIFICATION

6.3.1 EXCITATION EXPERIMENT

An excitation experiment is implemented on the Heated Tank Process to obtain 
the relationship between the input (steam flow set point) and the outputs 
(temperature measurements at Thermocouples 1, 2, and 3). The following steps 
are performed:

a) The cold-water controller is cascaded with the level controller; the water 
level set point value is chosen as 0.17m. The system is then allowed to 
attain steady level.

b) The steam controller is set to the AUTOMATIC mode and the nominal 
steam flow rate set point is chosen as 1 1  kg/hr.

c) Positive and negative step tests of various magnitudes are performed to 
determine a linear range around the nominal point.

d) From the step test results, the frequency ranges of interest are 
determined and Random Binary Sequence (RBS) input sequences are 
designed accordingly.

e) The RBS input signals are introduced to the steam controller via the 
MATLAB OPC.

f) The process’ temperature response at each thermocouple 
(Thermocouples 1, 2, and 3) is sampled using the MATLAB OPC.

6.3.2 STEP TEST RESULTS AND EXCITATION SIGNAL DESIGNS

Several step magnitudes were tested. Good signal-to-noise ratios and 
approximately linear level dynamics were obtained with perturbations of ± 3 
kg/hr, nominal input steam flow-rate of 11 kg/hr, and sampling the temperature 
response from Thermocouple 1 with 65° and 15°, respectively, for the valve 
positions of water outlet valves 1 and 2. Step test results for water temperature 
are shown in Figure 6.2. Sampling period, ts, was 1 second for the excitation 
experiments. The temperature-response data were thereafter down-sampled to 5 
seconds for the model computations.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



STEP TESTS FOR HEATED TANK PROCESS
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Figure 6.2: Water temperature response of Heated Tank Process to positive and negative
step changes in the steam flow rate.

The step-response data were used to compute parameter estimates for first 
order model approximations to design the Random Binary Sequences (RBS) for 
exciting the system. Parameter estimates obtained from these tests are 
presented in Table 6.1.

Table 6.1: 1 Order Approximation Constants from the Step Tests

Gain (°C-hr/kg) Time constant (sec) Time delay (sec)
1.5 40 11

6.3.3 TEMPERATURE RESPONSES AND MODEL COMPUTATION

The steam controller was excited with the designed RBS set point signal for the 
thermocouples. Figures 6.3(a) -  (d) show the temperature responses of 
Thermocouples 1, 2 and 3 to the excitation, as well as the input signal.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TEMPERATURE

a 3

6000 7000 80001000 2000 3000 4000 50000

STEAM FLOW  EXCITATION INPUT
4

3 

2
£  -tr- 
<3 f f l  i  
$  ®  1 e *8 * 0
!J  -1
$  u.a 3

-3

4
2000

Tim e (secs)

Figure 6.3(a): Water temperature response measurement at Thermocouple 1.
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Figure 6.3(b): Water temperature response measurement at Thermocouple 2.
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Figure 6.3(c): Water temperature response measurement at Thermocouple 3.

Using the pern and idproc functions in MATLAB, for continuous-time model 
identification, and imposing the model structures in (6 .1 ) on the identification 
functions, the transfer functions for the temperature measurements at the 
thermocouples were computed.

Figure 6.4 shows the division of the excitation data into the training data sets and 
the validation data sets.
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Figure 6.4: Training and validation datasets for temperature measurements at
thermocouples.

6.3.3.1 THERMOCOUPLE 1 MODEL

Model Structure: Ke-r„s

ZS +  1
K = 1 .7021  °C-hr/kg 
r  =  5 7 .1 9 2  secs 
Td = 7 .81  secs
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Figure 6.5(a): Validation of continuous-time model for transfer function at Thermocouple 1.

6.3.3.2 THERMOCOUPLE 2 MODEL

KeTdSModel Structure: -------
rs + 1

K = 1.719 °C-hr/kg 
t = 73.087 secs 
Td = 48.93 secs
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Measured and simulated model output ■ Thermocouple 2
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Figure 6.5(b): Validation of continuous-time model for transfer function at Thermocouple 2.

6.3.3.3 THERMOCOUPLE 3 MODEL

Ke~T“sModel Structure: -------
?s + 1

K = 1.738 °C-hr/kg 
t  = 81.1 secs 
Td = 68.562 secs
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Measured and simulated model output - Thermocouple 3
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Figure 6.5(c): Validation of continuous-time model for transfer function at Thermocouple 3.

Table 6.2 summarizes the model identification results for the thermocouples. 

Table 6.2: Process Models for Temperature Measurements of Heated Tank Process

SENSOR PROCESS MODEL TIME DELAY -  TIME CONSTANT RATIO

Thermocouple 1
1.7021e-L81s 

1 (57.192s+ 1)
0.1366

Thermocouple 2
_ _ 1.719e~48-93s 
2 (73.087s+ 1)

0.6695

Thermocouple 3
n , , 1.738e-68562s 

(81.1s+ 1)
0.8454
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The models obtained for the three thermocouples show that the transport delay 
of temperature measurement at a thermocouple increases with the 
thermocouple’s distance from the tank. It can also be observed that the process 
gain and time constant increase with the time delay. This observation can be 
attributed to convective heat transfer dynamics occurring within the exiting water 
in the spiral pipe as it flows between successive thermocouples.

6.4 DESIGN OF OPTIMAL PI AND PID CONTROLLERS

The consecutively increasing time delay-time constant ratios of the transfer 
functions in Table 6.2 provide a practical example of processes approximately 
similar to those in Table 5.1, and therefore enable the experimental evaluation of 
the performance differences between closed loops with optimal PI and PID 
controllers as process time delay increases. To design the optimal PI and PID 
controllers for a range of Ju constraints, (5.1) and (5.2) are respectively solved for 
the transfer functions.

The parameters for the designed optimal controllers can be found in Tables A .11 
to A. 16 of Appendix A. Next, the J^-Ju profiles for the closed loops are plotted, as 
well as the ISE[y]-VAR[Au] profiles for closed loops perturbed by steps in load 
disturbance at the process inputs and integrated noise signals added to process 
outputs.

6.5 OPTIMAL PI AND PID PERFORMANCE-CONTROL ACTION 
PROFILES

Figure 6 . 6  shows the Js-Ju plots for the closed loops of the processes G^s), 
G2 (s), and G3(s), using optimal PI and PID controllers. Figures 6.7(a) and 6.7(b) 
show the ISE[y]-VAR[Au] profiles for simulated closed loops with input step and 
integrated white noise disturbances respectively. Figure 6.7(c) shows the ISE[y]~ 
MAD[Au] profiles for the simulated closed loops with steps in their set point 
signals.
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Figure 6.6: J v J u profiles o f closed loops for Heated Tank Process.
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Figure 6.7(a): ISE[y]-VAR[Au] profiles from simulation o f Heated Tank closed loops pertu rbed
by input step disturbances.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600
—e — Optimal PI; Time D e lay  Ratio: 0.137  
—B — Optimal PI; Time D e lay  Ratio: 0.669  
—Ife— Optimal PI; Time D e lay  Ratio: 0.846  
—X -  Optimal PID; Time D e lay  Ratio: 0 .137  
— |—  Optimal PID; Time D e lay  Ratio: 0 .669  
—A -- Optimal PID; Time D e lay  Ratio: 0 .846

450

400

350

300

200

150

100

0.05 0.1 0.15 0.25 0.3 0.35 0.4

Figure 6.7(b): ISE[y]-VAR[Au] profiles from simulation of Heated Tank closed loops perturbed
by integrated white noise disturbances.
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Figure 6.7(c): ISE[y]-MAD[Au] profiles from simulation of Heated Tank closed loops perturbed
by step in set point signal.
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Figures 6.7(a), 6.7(b), and 6.7(c) show that the capability of the optimal PI 
controller becomes more restricted as the system’s time delay increases; the 
profiles also show that the potential improvement derivative action offers to the PI 
controller increases with the system’s time delay. To obtain clearer insight into 
the improvement offered to the closed loop by using a PID controller, the 
disturbance responses of the loop to the input step, integrated white noise, and 
set point step signals, using the minimum-Jv, PI controllers and some selected 
PID controllers for each temperature model, are plotted in Figures 6 .8 (a), 6 .8 (b), 
and 6 .8 (c).
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Figure 6.8(a): Temperature response of simulated closed loops to input step disturbance using
minimum-J,, PI controllers and selected PID controllers.
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Figure 6.8(b): Temperature response of simulated closed loops to integrated white noise
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Figure 6.8(c): Temperature response of simulated closed loops to steps in set point signals
using minimum-J„ PI controllers and selected PID controllers.
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Figures 6 .8 (a), 6 .8 (b), and 6 .8 (c) show that, in simulation, the regulatory and 
servo performance of the closed loops with PID controllers are better than the PI 
controllers’ as the process’ time delay increases. One explanation for the 
increasing performance gap that derivative action creates is the restriction on the 
control activity of the PI controllers as time delay increases, as shown in Figures 
6 .6 , 6.7(a), 6.7(b), and 6.7(c). This restriction is necessary so that the optimal PI 
controllers do not violate their mid-frequency robustness demand, specified by 
GMs. However, the cost to be paid by the PID controller for improved 
performance is greater control action, as shown by the VAR[Au] and MAD[Au] 
values of control input plots above. The closed loop for Thermocouple 3, for 
example, generates control action with variance about 60 times greater if a PID 
controller is used, in comparison to the PI controller.

The PID controller used on Thermocouple 3’s closed loop is augmented with an 
extra low-pass filter (strictly proper controller) by solving the optimization function 
similar to (3.11). The GMs and Ju constraints are held equal to those for the 
selected just proper PID controller implemented above and a constraint on JHF is 
imposed. Figure 6.9 shows the location of the strictly proper PID controller in the 
ISE[y]-VAR[Au] profiles for Thermocouple 3’s closed loop with input step 
disturbances, as well as the minimum-Jv PI controller and selected just proper 
PID controller. Figure 6.10 shows the disturbance response of the three closed 
loops.
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Figure 6.9: ISE[y]-VAR[Au] profiles for input step disturbance rejection from simulation of
Thermocouple 3 closed loops using minimum-J,, optimal PI, selected just proper 
and strictly proper PID controllers.
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Figure 6.10: Temperature response of Thermocouple 3’s simulated closed loops to input step
disturbance using minimum-Ji, PI controller, selected just proper and strictly 
proper PID controllers.

Figures 6.9 and 6.10 clearly demonstrate the advantage of the strictly proper PID 
controller over the shortcomings of the PI and just proper PID controllers, in the 
areas of performance and control action respectively. The strictly proper PID 
controller has a smaller control action variance than the just proper PI controller 
and yet its closed loop has a smaller overshoot and shorter settling time, and 
thus better performance. A property of the closed loops for the three controllers 
worth discussing is their mid-frequency robustness, i.e., their stability margins. 
Figure 6.11 shows the bode plot for the three closed loops, highlighting their 
respective gain and phase margins.
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Figure 6.11: Bode diagram of Thermocouple 3’s closed loops using minimum-J, PI controller,
selected just proper and strictly proper PID controllers.

All three controllers surpass the gain and phase margin minimum requirements 
of 2.4 and 45° respectively, as imposed by GMs ^ 1.7. As expected, the 
minimum-Jv PI controller’s loop is the most robust of the three, followed by the 
just proper PID controller’s. The strictly proper PID controller’s loop is slightly less 
robust than the just proper PID’s loop, but also exceeds the imposed mid­
frequency robustness requirement. Thus, the benefit of improved performance 
and tolerable control action provided by the strictly proper PID controller’s closed 
loop, compared with the Pi’s closed loop, far outweighs its robustness cost.

The closed-loop performance comparisons of the PI and PID controllers have 
thus far been examined in simulation, using the transfer functions for the Heated 
Tank Process. However, some of the controllers were also experimentally 
implemented in the real process’ closed loop. The performance-control action
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profiles were computed for the responses of the selected controllers to input step 
and integrated white noise disturbances, as well as set point signal steps. Figure 
6 .1 2  shows the time domain performance-control action profiles for the closed 
loops controlled by optimal PI and PID controllers, in response to an integrated 
white noise disturbance. Figures 6.13(a) to 6.13(c) show the closed loop 
responses of selected controllers to the disturbance input. Figure 6.14 shows the 
time domain performance-control action profiles for the closed loops controlled 
by optimal PI and PID controllers, in response to a step in the process input load 
disturbance. Figures 6.15(a) to 6.15(c) show the closed-loop responses of some 
selected controllers to the disturbance input. Figure 6.16 shows the time domain 
performance-control action profiles for the closed loops controlled by optimal PI 
and PID controllers, in response to a step in the set point signal. Figures 6.17(a) 
to 6.17(c) show the closed loop responses of selected controllers to the step 
input.

5000
optimal PI, time delay ratio 0.137 

~+ ~  optimal PI, time delay ratio 0.669 
-HE}-- optimal PID, time delay ratio 0.137 
~§- optimal PID, time delay ratio 0.669 
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0 0.05 0.1 0.15 0 2 025 0.3
Var[diff[uJ]

Figure 6.12: ISE[y]-VAR[Au] profiles from experimental implementation of thermocouple
closed loops perturbed by integrated white noise disturbances.
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The above figures show that for the three exogenous inputs considered, the PID 
controller’s closed-loop performance is superior to the PI controller’s for 
Thermocouples 2 and 3. However, for Thermocouple 1, which has a small time 
delay-time constant ratio, the PI controller performs almost equivalently with the 
PID controller. The figures demonstrate the increasing benefit the PID controller 
has over the PI controller with increasing time delay.

6.6 ECONOMIC BENEFITS OF OPTIMAL PID CONTROLLERS

Quite a number of controlled variables in industrial processes have control 
performance functions that directly or indirectly relate them to product yield, and 
thus income. Some of these control performance functions are inverse, non­
linear relationships, so that the lower the mean value of the controlled variable, 
the higher the product yield (income). Craig and Koch [52] describe an industrial 
process having such a performance function -  the Froth Flotation Process. The 
process is widely used in the concentration of mineral-bearing ores; it is usually 
the first step in the recovery of pyrite, the platinum group metals, copper, etc. The 
typical objective in this process is to maximize mineral recovery, since this 
determines the achievable income from the process. The controlled variable is 
the pulp level in the flotation cell, which determines the froth depth, and thus the 
recovered mineral concentrate’s grade. Due to the dynamic nature of the 
process, the froth depth (grade) has an inverse, non-linear relationship with the 
mineral recovery. Therefore, product grade bears the cost for improved product 
recovery. Since the product grade is indirectly the controlled variable in this 
process, it would be expected that a minimum value constraint be imposed on it, 
so that product quality is not significantly sacrificed for product recovery. Thus, a 
secondary objective in the pulp level control of this process would be to ensure 
the product grade does not fall below a minimum value; that is, the pulp level in 
the flotation cell should not fall below a lower limit.

Craig and Koch [52] mathematically show how it is possible to improve product 
recovery in the flotation process by simply reducing the variability of the 
controlled variable, i.e., product grade, which is quantified by its standard 
deviation, a, from the control set point, without violating the imposed grade 
constraint. This approach is generally applicable to processes with control 
performance functions that are linear with constraints, or non-linear with or 
without constraints. Reducing the variability of the controlled variable can be 
achieved by improving the loop performance of the controller utilized in the 
process. Because the utilized controller is likely to be of the PID structure, 
appropriate controller tuning or design can reduce variability. Variability reduction 
of the controlled variable around a set point makes it possible to move the set 
point, or the variable’s mean value, to a more optimal position. In the Froth 
Flotation Process, for example, improved control of the concentrate grade allows 
its set point to be moved closer to the lower limit without violating it. Moving the 
set point closer to the limit leads to an increase in mineral recovery. Schubert et 
al. [53] point out that improved pulp level control could lead to an increase in 
recovery of about 1%. Another example of how improved control loop
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performance can lead to economic benefits comes from [1 1 ], mentioned in 
Chapter 1, in which the Industrial Information Resources report reveals that 
major US process industries spend about thirty billion dollars annually on energy 
and over one hundred billion dollars on facility maintenance. According to the 
report, even a 1 % improvement in either energy efficiency or improved controller 
maintenance direction represents hundreds of millions of dollars in savings to 
process industries.

The process description above provides an illustration of how controller closed- 
loop performance can be linked to a process’ economic productivity, via the 
flexibility of moving the controlled variable’s set point. To study this flexibility in 
detail, a hypothetical process, Process X, will be considered. The following 
assumptions are made about the process:

1) It has a controlled variable, yx, which has the same non-linear control 
performance relationship, as the product grade in the Froth Flotation 
Process, with an income-related variable;

2) Yxl is the lower limit for yx, hence yx ̂  Yxl,

3) Process X is controlled by either of two control systems -  Control System 
1 or Control System 2;

4) yxi and yx2 are the responses of yx, under the control of Control Systems 
1 and 2  respectively; and

5) The set points for yx under the control of Control System 1 and 2 are 
yxspi and yXsP2 respectively;

6 ) yxi and yx2 are stochastic and are sampled for a sufficiently long duration, 
so that the variations around the respective set points yxspi and yxsp2  are 
approximately normally distributed with standard deviations 0 1  and 0 2  

respectively and mean values approximately equal to yxspi and yxsP2 

respectively.

According to [54], if the control systems are stable, or “in statistical control”, then 
more than 99% of the data points in yxi and yx2 are expected to respectively lie 
within the intervals:

Yx s p i ~  -  Y x i -  Yx s p i +

YXSP2 ~  3 g 2 -  YX2 -  YXSP2 + %a 2 

Because yXi, yx2 ^ Yxl, then in the worst case,

Yx s p i -  Yxl (6 .2 a)

Yxsp2 -3 < j 2 -  Yxl (6 .2 b )
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=> Yxspi ~ ^ a i -  Yxsp2 ~ ^ g 2 (6.2c)

=> Yxspi ~ Y xsp2 -  S o* -3 < j 2 (6 .2d)

If Control System 1 leads to a greater variation in yx than Control System 2, so 
that Oi > 0 2 , (6.2) implies that yxspi > yxsP2■ Thus, in order for the two systems 
not to violate the linear constraint y x u  Y xsp i must be raised higher than y x s P 2 - 
Based on the non-linear control performance function, Control System 2 can be 
implemented at a target set point closer to the lower limit, and can therefore 
increase product yield relative to Control System 1. Figure 6.18 shows the 
distribution profiles of yxi and yX2 , as well the relative positions of their mean 
points, yXspi and yXsp2 , with respect to the constraint yXi.

C O N T R O L  S Y S T E M  2

C O N T R O L  S Y S T E M  1

CONTROL IMPROVEMENT 
MOVES SET POINT CLOSER 
TO CONSTRAINT

Figure 6.18: Movement of set point of controlled process variable towards constraint due to  its
reduced variation, brought about by controller performance improvement.

Now, for the Heated Tank Process, the controlled variable is the water 
temperature measured at each thermocouple. Figures 6.12, 6.13(b), and 6.13(c) 
have shown that the optimal PID controller can give smaller variations in the 
regulatory responses of temperatures than the optimal PI controller. As an 
illustration, let the Heated Tank Process be considered part of a hypothetical
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integrated process, like Process X, in which the water temperature has an 
inverse, non-linear performance relationship with an economically beneficial 
variable. An example of such an integrated process could be a catalyzed 
chemical reaction, which is heated in a water bath. The nature of the reaction 
could be such that it ceases below a minimum temperature and consequently 
must be operated above that temperature. Therefore, the temperature of the 
water in the bath must in turn always be above a lower limit. On the other hand, 
the higher the temperature of the water bath above the lower limit, the greater the 
heat losses via convection and radiation since both processes are directly related 
to the source’s temperature. Therefore, an economically beneficial variable for 
this process could be the heat savings from operating the chemical process at 
temperatures as close to the lower limit as possible, while the controlled variable 
is the temperature of the water bath, i.e. the Heated Tank Process. Figure 6.19 
shows the hypothetical temperature control performance function for the 
integrated process.

WATER TEMPERATURE

Figure 6.19: Temperature control performance function for integrated process.

Thus, the integrated process can be likened to Process X with Control System 1 
being an optimal PI controller (Closed Loop PI402 in Figure 6.12). Control 
System 2 could be a just proper optimal PID controller (Closed Loop PID402) or
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a strictly proper optimal PID controller. The control objective is to regulate the 
water temperature around a set point temperature such that at no instance does 
it fall below a lower limit. With the optimal PID controller’s closed loop giving 
smaller variations than the optimal PI, it would be expected that the former 
control system’s set point can be moved closer to a lower limit, without the actual 
temperature falling below this limit. Simulation and experimental examples are 
considered below to test this hypothesis. In each case, the assumptions made on 
Process X above, regarding the normality of the temperature responses, are 
assumed to be valid for this process.

Example 6.1: Closed loops of an optimal PI controller, an optimal just proper 
PID controller, and an optimal strictly proper PID controller are implemented in 
simulation, one after the other, for the Heated Tank Process. The control 
objective is to regulate the water temperature in response to an integrated white 
noise disturbance, so that it does not fall below 11°C, while keeping the set point 
temperature as close to this lower limit as possible.

Figure 6.20 shows the time trend of the integrated white noise disturbance sent 
added to each closed loop.

20

-20

■o

Q j6Q

-80

-100 3000500 1000 1500 2000 2500 350
Time (secs)

Figure 6.20: Integrated white noise disturbance sent to Heated Tank SIMULINK closed loop.

Table 6.3 shows the standard deviations, opi, opid, and Opidf of the closed-loop 
temperature responses of the PI and the just and strictly proper PID controllers 
respectively, to the disturbance in Figure 6.20.
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Table 6.3: Standard Deviations of Closed-Loop Temperature Responses of O ptimal Controllers

CONTROLLER STANDARD DEVIATION
Optimal PI 6.1533

Just proper optimal PID 5.0100
Strictly proper optimal PID 5.2500

From (6.2a) and (6.2b), the recommended temperature set points, y^p , y^D, and 

y^DF respectively for the closed loops are:

Ysp =  Y l +3<?pi

Ysp = Yl +3&PID (6-3)

YSPF = Yl + 3(TpiDF 

where y\_ is the lower limit temperature, 11 °C.

Table 6.4 shows the recommended set point temperatures for the three closed 
loops, based on (6.3). Figure 6.21 shows the ISE[y]-VAR[Au] profiles for the 
three closed loops. Figure 6.22 shows the temperature responses for the three 
loops using these set point temperatures, as well as the steam flow trend, its 
differenced trend (control activity), plus as their variances for each loop.

Table 6.4: Recommended Set Point Temperatures for Closed Loops of Optimal Controllers

CONTROLLER RECOMMENDED TEMPERATURE 
SETPOINT (°C)

Optimal PI 29.46
Just proper optimal PID 26.03

Strictly proper optimal PID 26.75
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Figures 6.21 and 6.22 both show the reduced variation in the water temperature 
when controlled by the PID controllers, relative to the PI controller. All closed 
loops satisfy the control objective of regulating water temperature so that it does 
not fall below 11°C; the PID controllers are implemented at lower set points than 
the PI controller and can therefore give greater heat savings. The price to be paid 
by reduced variation in the controlled variable is increased variation in the PID 
control signal, as shown by the higher variance of the steam flow trend and its 
differenced trend. The strictly proper PID controller is able to strike a fair balance 
of giving lower temperature variation than the PI controller without an excessive 
increase in VAR[Au] typical of the just proper PID controller.

Example 6.2: Closed loops of an optimal PI controller, an optimal just proper 
PID controller, and an optimal strictly proper PID controller are experimentally 
implemented, one after the other, on the Heated Tank Process. The control 
objective is to regulate the water temperature in response to an integrated white 
noise disturbance, so that it does not fall below 28°C, while keeping the set point 
temperature as close to this lower limit as possible.

Table 6.5 shows the standard deviations and recommended set point 
temperatures for the three closed loops, based on (6.3). Figure 6.23 shows the 
time trend of the integrated white noise disturbance sent to each closed loop. 
Figure 6.24 shows the ISE[y]-VAR[Au] profiles for the three closed loops. Figure 
6.25 shows the temperature responses for the three loops using these set point 
temperatures, as well as the steam flow trend, its differenced trend (control 
activity), plus their variances for each loop.

Table 6.5: Standard Deviations and Recommended Set Point Temperatures for Experimentally 
Implemented Closed Loops of Optimal Controllers

CONTROLLER STANDARD
DEVIATION

RECOMMENDED 
TEMPERATURE SETPOINT 

(°C)
Optimal PI 1.1667 31.5

Just proper optimal 
PID 1 .0 0 0 31

Strictly proper 
optimal PID 1.0667 31.2
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Figure 6.23: Integrated white noise disturbance sent to Heated Tank closed loop.
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Figure 6.24: ISE[y]-VAR[Au] profiles for experimentally implemented closed loops of optimal
controllers.
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Figure 6.25 supports the simulation results shown in Figure 6.22. Hence, the 
optimal PID controller can deliver process variable response with smaller 
variation than the optimal PI controller, thus enabling the variable’s set point to 
be placed closer to its constraint without violating it. This can lead to increases in 
economically significant process outputs. The price to be paid for this benefit is 
the increased variation in the control signal, which can be reduced significantly 
by utilizing a strictly proper PID controller.

In summary, this section has shown not only the potential technical benefits the 
PID controller has above the PI controller, but also how these benefits can be 
translated into economic benefits for the process industry.
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CHAPTER 7

OPTIMAL PID CONTROLLERS AND SMITH 
PREDICTORS

7 .1  IN T R O D U C T IO N

In Chapter 5, the presence of time delays in processes was shown to limit the 
performance of conventional feedback control systems. Systems with time delays 
can be controlled to some degree with PID control. However, the traditional 
tuning rules often give very poor results. Although derivative action is useful for 
lag-dominant processes, it is of limited value for systems that are delay-dominant 
[5, 20]. The reason for this is that prediction of the process output based on linear 
extrapolation is not effective. It is much better to make predictions based on 
inputs that have been fed into the system, but which have not yet shown up in 
the output.

To improve the performance of control systems containing significant time 
delays, the Smith Predictor technique [21, 22, 23, 24] is an effective control 
strategy for providing time delay compensation. Figure 7.1 shows the block 
diagram of a feedback loop augmented with a Smith predictor.

d(t)

*y(t)*<>

G = G*(e~‘

K(s)

G(s)

G'(1 -  e0s)

Figure 7.1: Block diagram of a SISO closed loop augmented with a Smith Predictor.

A

G* is the delay-free form of the modeled transfer function G for the process G,
A

so that G = G*(e~fo). G'c is a composite controller consisting of controller K  and 
the Smith predictor.
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The objective of this chapter is to examine the performance comparisons of 
closed loops containing the Smith predictor, and those containing the plain PI or 
PID controllers, especially for processes with significant time delay dominance.

Traditionally, K is a controller, PI or PID, designed for G‘ , i.e., the delay-free 
process, using typical tuning methods for SISO transfer functions [7]. Hence, 
optimal PI and PID controllers can be designed for G* by solving (2.21) with the 
appropriate constraints. In [13], a proposed approach to designing K  is to solve

A

(2.21) for K‘ , i.e., the composite controller, instead of K itself, and for G instead 
of G*. The performance of a controller incorporating the Smith predictor for set- 
point changes has been found to be better than a conventional PI controller 
based on an integral-squared-error criterion [14]. However, the Smith predictor’s 
performance may not be superior for all types of disturbances.

The sensitivity transfer functions for a closed loop having a Smith predictor are:

A

Sensitivity Function: S(s) = Ger = — ^  (7.1)
1 + KG

A

KGComplementary Sensitivity Function: T(s) = Gyr = -—— r  (7.2)

A  A

Disturbance Sensitivity Function: G(s)S(s) = Gyd = ^+GKG (1 e— ) (7 .3 )
1 + KG

Control Sensitivity Function: K(s)S(s) =  r  (7.4)
1 + KG

(7.1) to (7.4) are based on the assumption that the modeled process time delay 
(/> is equal to the actual time delay 9. If there is a significant mismatch in the two 
time delays, (7.2) and (7.3) respectively become:

Complementary Sensitivity Function:

A

KG
T(s) -  Gyr -  1 + KG- +KG‘e-a,(1_ e-{t-o)s)

Disturbance Sensitivity Function:

_ n _ G+GKG (1 - e~^) I-?G(s)S(s) — Gyd — , , . . (7.6)
y 1 + KG +KG e"65(1 - e~^~e>s)
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7 .2 L IM IT A T IO N S  O F  C L O S E D  L O O P S  W IT H  S M IT H  P R E D I C T O R S

Although the Smith predictor generally enhances the performance of the closed 
loop in which it is included, there are costs on others properties of the closed 
loop that limit the benefits of the Smith predictor augmentation. For traditional 
Smith predictor systems in which the PID controller is designed for the delay-free 
process transfer function G*, it has been found [13] that their Jv values are 
typically lower than for Smith-augmented control systems designed by optimizing 
the disturbance sensitivity function for the entire structure, and for control 
systems using just PID controllers. However, the traditional Smith/PID system 
has a considerably smaller gain margin than other control systems. Above the 
phase crossover frequency, the loop gain attains very high values and in some 
frequency intervals, the phase angle shifts in the positive direction. Hence, its 
robustness is deteriorated. When the entire control structure is optimized, using 
the same constraints on GMs as in (2 .2 1 ), the resulting loop gain is still large at 
high frequencies, with Jv higher than the traditional Smith controller’s, but lower 
than the optimal PID control system’s. Its robustness is also unacceptable. For 
moderate delays, there are some benefits attainable by including a PID controller 
in a Smith predictor structure and optimizing (2.21) for the composite controller, 
compared to a PID controller without a Smith structure. It has also been 
observed [13] that an optimal PID controller (without a Smith predictor) can give 
better performance than the PI controller with or without the Smith predictor. To 
illustrate the observed features of the aforementioned Smith predictor- 
augmented closed loops, the following control systems are designed for the

a e- 6s
hypothetical modeled transfer function G = -------- , which has a time delay-time

10s+1
constant ratio of 0.6. The design of all the control systems is based on the 
assumption of insignificant mismatch of the modeled and actual time delays, i.e.,

a) Traditional Smith/PID controller (Control System A) -  designed by 
solving (2.21) for the s'1-weighted form of (2.4), using delay-free G* 
as the process transfer function;

b) Optimized Smith/PID controller (Control System B) -  designed by 
solving (2.21) for the s"1-weighted form of (7.3) with the definition of 
GMs in (2.16) retained;

c) Optimized Smith/PI controller (Control System C) -  designed by 
solving (2.21) for the s"1-weighted form of (7.3) with the definition of 
GMs in (2.16) retained;

d) Optimized PID controller (Control System D) -  designed by solving

(2.21) for the s -weighted form of (2.4), using G as the process 
transfer function; and
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e) Optimized PI controller (Control System E) -  designed by solving
A

(2.21) for the s'1-weighted form of (2.4), using G as the process 
transfer function.

For Control Systems A, B, and D, the constraints GMs £1-7 and Ju = 10.2 are 
used, while the constraints on Ju and kx , which give optimal PI controllers with 
minimum Jv values, are used for Control Systems C and E, with the GMs 
constraint retained. Figures 7.2 to 7.6 show the frequency responses of the five 
control systems, their performance-control action plots, and their closed-loop 
responses.

System A

c
<5
0

0.01 0.10.01

System A

 Control System D
 Control System E

L r —

-150

5? -180

£  ,250

Frequency (radsfsec)

Figure 7.2: Bode plots for Control Systems A, B, C, D, and E.
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Figure 7.3: Nyquist plots for Control Systems A, B, C, D, and E.
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Figure 7.4: Jv-Ju plots for Control Systems A, B, C, D, and E.
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Figure 7.5: Closed-loop responses of Control Systems A, B, C, D, and E to set point step.
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Figure 7.6: Closed-loop responses of Control Systems A, B, C, D, and E to disturbance step.
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Figures 7.2 and 7.3 show the loop gain of Control System A (the traditional 
Smith/PID controller) developing resonance peaks above the phase crossover 
frequency, with one of the peaks causing an anti-clockwise encirclement of the 
point (-1, 0) on the Nyquist plot, thus making the system prone to instability. The 
unstable tendency of this system is shown in Figure 7.5, in which its set point 
response, though having the shortest rise time amongst all the control systems, 
has an oscillatory behaviour. Its disturbance rejection performance, as shown in 
Figure 7.6, is however the best amongst the systems, hence its position as the 
lowest on the Jv scale in Figure 7.4, as well as its low ISE[y] values as shown in 
Figures 7.5 and 7.6. Besides the high loop gain of Control System A above its 
phase crossover frequency, there is also an increase in its phase leading to a 
phase maximum and a second gain crossover frequency. The effect the growing 
loop gain has on the control system is high sensitivity to negative uncertainties in 
the process time delay 6 [25] and thus low robustness to model parametric 
variations. According to [13], the combination of the post-crossover loop gain 
resonance peaks and the increase in phase angle is due to the factor (1-e~^) 
present in the denominator of the composite controller’s transfer function. This 
factor is not taken into account in the design of Control System A because the 
procedure computes parameters for a closed loop consisting of a plain PID 
controller and a delay-free process.

Control System B’s loop gain also has resonance peaks above its phase 
crossover frequency, which however are not severe enough to cause either an 
encirclement of point (-1, 0) on the Nyquist plot or a positive increase in its 
phase. Its high-frequency loop gain rises above 1, as shown in Figure 7.3, 
making its robustness to model uncertainties low. In Figure 7.5, it has the second 
shortest rise time, after Control System A, but the relatively low damping of its set 
point response briefly introduces oscillations, which eventually die down. Control 
System B’s disturbance rejection performance is lower than Control System A’s 
as shown in Figures 7.4 and 7.6. The price paid for the slight improvement in the 
high frequency robustness of Control System B is the deterioration in closed-loop 
performance.

It is useful to note that Control System D does not generate high loop gains 
beyond the phase crossover frequency and is therefore robust to model 
uncertainties, unlike Control Systems A and B.

It is also useful to note that Control System C (Optimized Smith/PI Controller), 
like Control System D, does not generate excessive loop gains at mid to high 
frequencies, unlike its PID counterpart. It offers better performance in set point 
tracking and disturbance rejection than the non-augmented optimal PI controller 
(Control System E). Thus it demonstrates that the Smith augmentation of a 
closed loop with a PI controller does enhance the performance of the controller 
for a process with significant time delay. The closed loops of the Optimized 
Smith/PI Controller (Control System C) and the plain Optimal PID Controller 
(Control System D) behave differently for set point tracking and disturbance 
rejection, as shown by their ISE values in Figures 7.5 and 7.6 respectively.
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Control System C’s set point tracking performance is slightly better than Control 
System D’s, but slightly worse for disturbance rejection.

7 .3  C O N S T R A IN T  O N  M ID - T O - H IG H  F R E Q U E N C Y  L O O P  G A I N S  
O F  S M IT H  P R E D IC T O R  S Y S T E M S

Although Control System B has better robustness properties above the phase 
crossover frequency relative to Control System A, it also exhibits unhealthy high 
loop gains in this frequency range, as shown by Figures 7.2 and 7.3. The reason 
is that the constraints imposed on ||S|| and ||T|| in (2 .1 2 ) and (2.14) respectively
place demands on the mid-frequency behaviour of L(s) and not its frequency 
response above the phase crossover region. For the typical closed-loop 
incorporating just the PID (or PI) controller, and not a Smith predictor, as well as 
the Optimized Smith/PI control system, (2.12) and (2.14) are adequate to 
constrain both the mid-frequency and high frequency properties of the system. 
However, for a PID control system incorporating a Smith predictor, such as 
Control System B, (2.12) and (2.14) are inadequate, and an additional constraint 
is required in (2.16). The additional constraint [13] is defined as:

max
CO mGm

2
<   to > g>i8o (7.7)

mGm

where mGm is the minimum gain margin for the Smith-augmented control system, 
which has been chosen to be 3, and a>180L is its phase crossover frequency. The 
geometrical interpretation of (7.7) is a circle on the Nyquist diagram, known as 
the Ml circle, with a radius of 2/mGm (i.e., 2/3) and its centre at the point 
(1/mGm,0), as shown in Figure 7.7.
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Figure 7.7: The ML circle for restricting the loop gain of a Smith-Augmented control system 
above the crossover frequency.

The M l  circle ensures that loop gain \ L ( j a > ) \  does not exceed 1 for all frequencies 
above co180L. The additional constraint in (7.7) along with (2.12) and (2.14) lead
to the formulation of a mid-frequency criterion, G M s l  [13], more comprehensive 
than G M s  in (2.16):

GMsl =max ,a\\r\\,rmaxWL(j6)) L ( j c o )  —
1

mGm
(7.8)

where y  = 0.5mGmMs and W lQoj) is a weighting function defined as

f0 o)<co180L

WL(ja>) —»

1 ^  G>180L

With the mid-frequency constraint G M s l , an optimal PID control system 
augmented with a Smith predictor, and having moderate loop gains at 
frequencies above o)180L, can be designed:
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f) Optimized Smith/PID controller (Control System F) -  designed by 
solving (2 .2 1 ) for the s'1-weighted form of (7.3) with GMsl taking the 
place of GMs and setting mGm =3 and retaining Ms =1.7,JU =10.2.

Figures 7.8 to 7.11 show the frequency responses of Control System F, as well 
as Control Systems B and D, their performance-control action plots, and their 
closed-loop responses.

 Control System B
 Control System D
 Control System F

ctoo

0.01
0.01

t— i—rT T TT
Control System B 
Control System D 
Control System F

-150

,1.0■1■2 101010'10' Frequency (rads/sec)

Figure 7.8: Bode plots for Control Systems B, D, and F.
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Figure 7.9(b): Jv-Ju plots for Control Systems B, D, and F.
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Figure 7.10: Closed-loop responses of Control Systems B, D, and F to set point step.
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Figure 7.11: Closed-loop responses of Control Systems B, D, and F to disturbance step.
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In Figure 7.8, the GMSl constraint ensures the loop gain of Control System F 
does not exceed 1 beyond the phase crossover frequency. This is confirmed by 
the Nyquist plot in Figure 7.9(a), in which the Control System F’s loop gain is 
restricted within the circumference of the Ml circle, thus ensuring sufficient 
robustness to model uncertainties. Control System B’s loop gain, on the other 
hand, moves outside the circle. The ISE[y] values in Figures 7.10 and 7.11 show 
that Control System B’s set point tracking and disturbance rejection performance 
exceeds those for Control System F. Thus, performance pays the price for the 
improved high frequency robustness of Control System F. However, it gives 
better closed-loop response than Control System D and therefore shows that 
Smith predictor augmentation does bring benefits to the PID-controlled closed 
loop for processes with significant time delays.

For disturbance rejection, it is useful to note from ISE[y] values in Figures 7.6 
and 7.11 that the performance improvement going from Control System C to 
Control System D is more significant than going from Control System D to 
Control System F, all of which are better than Control System E. Hence, adding 
derivative control to the plain PI controller gives greater performance 
improvement than augmenting the PI controller with a Smith predictor. In 
contrast, the inclusion of the Smith predictor with the derivative control- 
augmented PI controller (i.e., PID controller) gives marginal improvement. The 
greatest performance gap amongst the aforementioned control systems exists 
between the Smith-augmented PI controller and the plain optimal PID controller.

7 .4  P E R F O R M A N C E  C O M P A R IS O N S  O F  O P T I M A L  P ID  A N D  
S M IT H  P R E D IC T O R - A U G M E N T E D  L O O P S

In the previous section, several control systems were designed for an arbitrary 
process with a significant time delay-time constant ratio. The simulation results 
showed that although the closed-loop response of a Smith-augmented PID 
control system, in which the PID controller was designed using the traditional 
approach, gave the best performance, it developed significant loop gains at 
frequencies above the phase crossover frequency and thus was insufficiently 
robust to model time delay uncertainties. It was found that designing the PID 
controller by optimizing the transfer function for the entire Smith-augmented 
closed loop, and imposing a constraint on the high frequency loop gain of the 
system, gave a closed loop whose response was not as superior as the 
traditional Smith/PID system, but was more robust to model uncertainties. The 
closed-loop performance of the optimal Smith/PID system was in turn found to be 
superior to the optimal Smith/PI’s and the non-augmented optimal PID’s.

For processes with large time delays, it is more common to use the PI than the 
PID controller [13], with or without Smith predictor-augmentation. However, the 
results from the previous section have shown that the three acceptable options 
for controlling such processes, while allowing for closed-loop robustness to 
model uncertainties, are the aforementioned control systems. It would be useful 
to study the performance of the three options for processes with various time
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delay-time constant ratios. A concise summary [25] of the behaviour of the three 
systems for various time delay scenarios is that for both moderate and large time 
delays, augmenting a PI controller with a Smith predictor gives less improvement 
in performance than if it were augmented with derivative control. On the other 
hand, for a PID controller, the introduction of a Smith predictor implies some 
improvement for a process with moderate delay. However, when the delay is 
large, performance improvement is sacrificed to sustain the robustness demand 
on the control system placed by G M s l , thus making the benefit of including the 
Smith predictor in the PID control system for a largely delay-dominant process 
questionable.

To experimentally investigate the advantages and disadvantages of the three 
control systems, each would be designed for the temperature response models 
for the thermocouples of the Heated Tank Process, discussed in Chapter 6  

(Table 6.2). Because the temperature models have varying degrees of time delay 
dominance, they provide the physical basis to study the closed-loop performance 
of the controls systems for processes with varying time delay-time constant 
ratios, and would help in providing some insight into the issue of the benefits of 
the Smith predictor to PI and PID controllers. Controllers similar to Control 
Systems C, D, E and F (i.e., optimal PI and PID controllers with and without 
Smith predictors) were designed for Thermocouples 1, 2, and 3 of the Heated 
Tank Process, and implemented both experimentally and in simulation. Figures 
7.12 to 7.16 show the performance-control activity profiles for the control systems 
using various pairs of evaluation criteria. GMS (and GMSL) ^ 1.7.

300
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100
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Figure 7.12: Jv-Ju profiles for optimal PI and PID control systems, with and without Smith
Predictors, for Thermocouples 1 (0.137), 2 (0.669), and 3 (0.846).
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Figure 7.13: Simulated ISE[y]-VAR[Au] profiles for optimal PI and PID control systems, with/
without Smith Predictors, for Thermocouples 1, 2, and 3 using integrated noise 
disturbance.
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Figure 7.14: Simulated ISE[y]-VAR[Au] profiles for optimal PI and PID control systems, w ith/ 
without Smith Predictors, for Thermocouples 1, 2, and 3 using step disturbance.
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Figure 7.15: Simulated ISE[y]-MAD[Au] profiles for optimal PI and PID control systems, with/ 
without Smith Predictors, for Thermocouples 1, 2, and 3 using step in set point 
signal.
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Figure 7.16: ISE[y]-VAR[Au] profiles for optimal PI and PID control systems, with/without
Smith Predictors, for experimentally implemented closed loops of Thermocouples 
1, 2, and 3 with integrated white noise disturbance. Selected controllers are 
labelled.
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Figures 7.12 to 7.15 show that for significant process time delays, the un­
augmented PI controller’s closed loop profile is highly restricted -  both in terms of 
control activity and performance. Augmenting the PI controller with a Smith 
predictor widens its control activity range and leads to modest performance 
improvement. Figures 7.13, 7.14, and 7.16 clearly show that for step and 
integrated noise disturbance rejection, augmenting the PI controller with 
derivative control gives it better closed loop performance than augmenting it with 
a Smith predictor. Figures 7.17(b), and 7.17(c) compare the closed-loop time 
trends for the two types of augmentation to the PI controller, and demonstrate the 
regulatory superiority of the PID controller to the Smith-augmented PI controller 
where the process time delay is significant. Figure 7.17(a) shows that where the 
time delay isn’t dominant, the Smith-augmented PI controllers have more or less 
the same closed-loop performance rating as the PID controller. Indeed, the 
performance-control activity profiles all show that for Thermocouple 1’s 
temperature response, it might be pointless to augment the PI controller with 
either the Smith predictor or derivative control, since it can perform satisfactorily 
on its own in this case.

Figures 7.12, 7.13, 7.14, and 7.16 all show the performance improvement that 
the Smith predictor brings to the PI controller is marginal relative to derivative 
control’s contribution where the process time delay is large. Hence, for 
disturbance rejection, augmenting the PI controller with derivative control, i.e., a 
PID controller, is more beneficial than augmenting the controller with a Smith 
predictor. On the other hand, Figure 7.15 shows that for the closed-loop set point 
tracking performance of a process with a large time delay, augmenting the PI 
controller with a Smith predictor brings significant improvement, while upgrading 
from a Smith predictor to a derivative controller gives only slight improvement. 
Hence, it can be argued that the Smith-augmentation covers most of the benefits 
offered by derivative control, and thus a case can be made for the utilization of 
the Smith predictor. However, since the PID controller closed loop has the 
comparatively lower ISE[y] limit and offers greater performance improvement for 
disturbance rejection, as well as a simpler structure for implementation, the 
overall conclusion is that derivative control is probably more beneficial to the PI 
controller than the Smith predictor.

All the performance-control activity profiles, i.e., Figures 7.12 to 7.16, show that 
even though the Smith-augmentation of the PID controller allows it to give the 
best closed-loop performance amongst the various control structures discussed, 
the improvement it brings to the un-augmented PID controller is marginal. Thus, 
implementing the PID controller, with or without the Smith predictor, gives better 
closed-loop performance than the PI controller, with or without the Smith 
predictor. The control engineer could choose between implementing a plain PID 
controller for a dead time dominant process, or a Smith-augmented PID 
controller. However, for closed-loop structural simplicity, and for processes in 
which the transfer function might either not be easily obtainable or whose 
parameters fall into a wide interval of uncertainty, it might be prudent to 
implement the un-augmented PID controller.
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Another aspect of Smith-augmented controller implementation for which there is 
some interest is the robustness of the closed loops to model uncertainties. The 
reason for this interest is that because the Smith-augmented PI and PID 
controllers require process models for their implementation, unlike the plain PI 
and PID controllers, it is necessary to assess the closed-loop performance of 
these systems where there are variations in model parameters. The most 
common parametric variation to which Smith-augmented closed loops are 
sensitive is the process time delay uncertainty. Recall that the sensitivity transfer 
functions for Smith-augmented closed loops in (7.1) to (7.4) were derived based 
on the assumption that the modeled process time delay, <f>, was equal to the 
actual time delay, 6. For traditional Smith-augmented closed loops, it has been 
shown that, due to the excessively high loop gains at high frequencies, variations 
in 0 from the modeled value could lead to poor closed-loop performance or even 
unstable response. The mid-frequency robustness criterion, G M sl , in (7.8) was 
introduced to restrict the Smith-augmented closed loop’s high frequency loop 
gain, and enhance the system’s robustness to time delay uncertainty. The Smith- 
augmented closed loops implemented in this section were designed with a 
constraint imposed on G M SL, thereby making them robust.

A practical approach to assessing the time delay uncertainty robustness of the 
Smith-augmented PI and PID closed loops is to implement the controllers on the 
thermocouple temperatures for which they were designed, and other 
thermocouple temperatures. Consequently, the Smith-augmented PI and PID 
controllers designed for Thermocouple 2 would be implemented on 
Thermocouple 1’s temperature, as well as Thermocouple 2’s temperature and 
Thermocouple 3’s. It should be noted that Thermocouple 1’s temperature has the 
least time delay, while Thermocouple 3’s temperature has the longest time delay.

0 > <j> (under-delayed) —► closed-loop performance deteriorates

0<<j> (over-delayed) —> closed-loop performance improves

Thus, implementation of Thermocouple 2’s Smith-augmented PI and PID 
controllers on Thermocouple 1’s temperature is expected to enhance loop 
performance, while implementation of Thermocouple 2’s controllers on 
Thermocouple 3’s temperature is expected to reduce performance. Hence, these 
performance profile shifts, relative to the profile for the loop in which 6 = $, i.e., 
correctly delayed, for the Smith-augmented PI and PID closed loops would be 
compared with the performance profile shifts encountered in the un-augmented 
PID closed loop. The expectation for this experiment is that the farther the 
performance profiles for the under-delayed Smith-augmented closed loops are 
from the profiles for the correctly-delayed loops, relative to the performance 
profile distortions for the un-augmented PID closed loop, the less robust are the 
Smith-augmented closed loops to time-delay variations.

Figure 7.18 shows the performance-control activity profiles for the simulated 
Smith-augmented PI, PID, as well as un-augmented PID closed loops, in which
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Thermocouple 2’s controllers were implemented for its temperature, as well as 
the temperatures for Thermocouples 1 and 3.

Figure 7.19 shows the profiles for the laboratory implementation of the afore­
mentioned simulated closed loops.

The exogenous signal sent to the loops was the integrated white noise 
disturbance.
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Figures 7.18 and 7.19 show the profiles of all three groups of closed loops, for 
the under-delayed models, having approximately the same degree of 
performance displacement from the profiles of the correctly-delayed models. The 
same observation is made for the profiles of the over-delayed models. Thus, the 
closed loops of the Smith-augmented PI and PID controllers can be said to be as 
robust as the un-augmented PID closed loop to process time delay variations. 
This result illustrates the benefit of designing the Smith-augmented PI and PID 
controllers using GMSl from (7.8) as the mid-frequency robustness criterion, and 
imposing an appropriate constraint on this criterion.

In summary, Kristiansson’s [25] control system evaluation method has been 
applied to Smith-augmented control systems, demonstrating that the traditional
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approach to designing the PI and PID controllers for such systems, as commonly 
described in literature, leads to a closed loop with significant loop gains at high 
frequency, thereby making the closed loop highly sensitive to variations in 
process time delays. To solve the problem of the high-frequency loop gain, an 
evaluation criterion, GMsl, which restricts the loop gain in this frequency range, 
was introduced and incorporated into the optimal controller design formulation. 
Smith-augmented closed loops of optimal PI and PID controllers, designed by 
solving this modified design formulation, were implemented both in simulation 
and experimentally. The implementation results showed that for processes with 
small time delays, it was worthwhile to stay with the PI controller, as its closed 
loop performance compared well with other control structures. However, as time 
delay increased, both the Smith-augmented and un-augmented closed loops of 
the PID controller performed better than similar versions of the PI controller, with 
the Smith-augmented PID closed loop performing slightly better than the un- 
augmented PID closed loop. Various considerations of the advantages and 
disadvantages of utilizing either of the two control structures led to the conclusion 
that it might be more parsimonious to implement the un-augmented PID 
controller structure for processes with significant time delays, rather than the 
Smith-augmented PID controller. Practical time-delay uncertainty robustness 
analysis of the Smith-augmented PI and PID closed loops showed they were as 
robust as the un-augmented PID closed loop to the variations in the model 
parameter.
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CHAPTER 8

INDUSTRIAL APPLICATION: PETRO-CANADA
ISO-STRIPPER BOTTOMS TEMPERATURE LOOP

8.1 INTRODUCTION

The control system evaluation/design procedure, proposed in [25], has been 
applied to pilot-scale processes -  the Quadruple-Tank Process and the Heated 
Tank Process - as discussed in previous chapters. In this chapter, the application 
of the procedure to an industrial control loop, the Petro-Canada Isostripper 
Bottoms Temperature Control Loop, will be presented.

The process/control objective of the loop will be briefly discussed, followed by the 
evaluation of the loop using Kristiansson’s criteria in [25]. Using the GMS value of 
the loop as a constraint, optimal PI, just proper, and strictly proper PID controllers 
will be designed for the temperature control loop. The closed loop evaluations of 
these three controllers will be compared with those of the current controller in the 
loop.

Finally, the closed loop time trends of the control systems, both from simulation 
and real-time implementation, and their comparisons will be presented.

8.2 PROCESS DESCRIPTION

The primary purpose of the Isostripper Tower at the Petro-Canada Edmonton 
Refinery is to control the Reid Vapour Pressure (RVP) of the alkylate (blending 
component of gasoline) at a target defined by the Refinery Planning Group. 
Lighter material in the C3 to C4 range is separated from the alkylate and sent in 
the overheads of the tower to eventually be recycled back into the process. The 
RVP controller cascades down to the temperature control loop, 12TC-3, to 
regulate the tower bottoms temperature and consequently the RVP of the 
alkylate. This temperature is controlled by manipulating the outlet steam flow 
from the bottom reboiler. Closing this valve, or reducing steam, will lower the 
tower temperature and raise the RVP. The process variable (PV) and the control 
variable (OP) are the bottoms temperature and steam flow rate, respectively. 
This tower is affected significantly by upstream swings in the process. Typical 
disturbances include variations in the tower feed rate, composition and 
temperature. Figure 8.1 is the process diagram of the isostripper tower.
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e - j

BOTTOMS TEM PERATURE  
LOOP (12TC-3)

Figure 8.1: P & I diagram o f the Petro-Canada Edmonton Refinery Isostripper Tow er w ith  the
dashed circle showing the bottoms tem perature control loop.
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8.3 EVALUATION OF BOTTOMS TEMPERATURE CONTROL LOOP

d(t).

r(t). -*K> K(s) G(s) ~y(t)

-----------------------------------------------------CHi------- *<*)

Figure 8.2: Simple block diagram o f the bottoms temperature control loop.

The bottoms temperature control loop is assumed to have a block diagram 
similar to Figure 8.2, the variables are similar to those defined in Section 2.2.

From open-loop identification experiments, the transfer function for the 
temperature response to the steam flow perturbations has been calculated as:

G(sJ = 0.538e~240s 
27720s2 + 846s + 1

(time constants and delay in secs) (8 .1)

The transfer function of the PID controller (i.e. the Petro-Canada PID), currently 
being implemented in the loop, and its tuning parameters are:

K(s) = Kc 1 + —  
TiSj

(r2s+f)
iJaT'^s + 1)_

Kc =1.4, T1 =1170secs,T2 = 78secs,a = 0.1

(8 .2)

The Petro-Canada Refinery utilizes the Honeywell TDC Distributed Control 
System (DCS), which implements the PID loops. Because of the configuration of 
the DCS, the value of a has been set at 0.1. This restriction imposes a modified 
control activity constraint in the optimization formulation in (2 .2 1 ) for the just 
proper optimal PID, i.e., a = 0.1. The constraint substitutes those normally 
specified for Ju and JHf-

Application of Kristiansson’s criteria to evaluate the temperature loop computes 
the results in Table 8.1:
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T a b le  8 .1 : Evaluation Results of Isostripper Bottom s T em p era tu re  Control Loop

CRITERION CALCULATED VALUE
Jv 835.7143

GMS 1.18 (Ms = 1.18, Mr = 1.0)

Ju 14.0

Jhf 14.0

According to Table 8.1, the values Ms = 1.18 and Mr -  1.0 imply gain and phase 
margins of 6.5 and 60° respectively. According to [2, 3], typical values of Ms 
range from 1.4 to 2.0, while recommended values of Mr range between 1.2 and 
2.0. The designed optimal controllers that have been described in earlier 
chapters have Ms and Mr values of 1.7 and 1.3, respectively, based on the 
recommendation in [25]. Thus, the bottoms temperature control loop is 
significantly robust in the mid-frequency range. There exists the flexibility to 
slightly reduce the stability margins of the current temperature loop without 
jeopardizing loop stability, therefore obtaining some regulatory performance 
improvement.

8.4 DESIGN AND SIMULATION OF OPTIMAL PI AND PID 
CONTROLLERS

The constrained optimization formulation in (2.21) is solved for the bottoms 
temperature control loop to design an optimal PI controller and two optimal PID 
controllers -  one PID with first order filtering (1°-PID) and the other with second 
order filtering (2°-PID). For the optimal PI and 1°-PID controllers, their transfer 
functions can easily be expressed in the form of (8.2) so that values for Kc, T1t 
and T2 are obtainable. For 2°-PID, the controller transfer function in (3.6) is used.

To ensure equal stability margins in the design of the optimal controllers, the 
Petro-Canada control loop’s GMs value is used as the respective constraint in 
(2.21). Thus, for the 1°-PID loop, (2.21) becomes

min{Jv(p): GMS <1.18,a = 0.1} (8.3)
p

For the 2°-PID controller, Ju and Jhf are set lower than the Petro-Canada control 
loop’s values. (2 .2 1 ) becomes

min{Jv(p) :GMS <1.18, Ju =12.82, JHF =1.2} (8.4)
p

For the design of the optimal PI controller, no constraint is placed on Ju or Jhf- 
Solving the optimization formulation, unconstrained with respect to Ju and Jhf, 
calculates controller parameters whose closed loop attains the lower limit on Jv. 
Therefore, (2.21) becomes
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min{jv(p):GMs <1.18} (8.5)
p

Table 8.2 presents the results for (8.3), (8.4) and (8.5):

Table 8.2: Parameters fo r Designed Optimal Controllers (PI, 1°-PID, 2°-PID)

OPTIMAL PI 1°-PID 2°-PID
kc 1.0938 1.2813

Ti (mins) 10.9227 8.5333
T2 (mins) 0 2.7231

a any 0 . 1 0 0

ki 0.0026
t  (secs) 250.25

1.3815

Cf 0.488

p 19.763
Jv 591.16 402.12 384.06

GMS 1.18 1.18 1.18
Ju 1.9114 12.82 12.82
Jhf 1.9114 12.82 1 . 2

Table 8.2 shows the two optimal PID controllers having lower Jv values than the 
Petro-Canada PID controller in (8.2), while giving the same stability margins. 
Therefore, the optimal controllers can give better closed-loop performance. 
Figure 8.3 shows performance-control activity (JvJu) profiles for the closed loops 
of the four controllers.
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Jv - Ju PLOTS FOR PI/PID CONTROL SYSTEMS; MS = 1.18, M T = 1.0
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Figure 8.3: Jv-Ju profiles fo r the closed loops o f the four controllers.

Figure 8.3 shows that the current Petro-Canada PID loop has high control 
activity, which implies higher sensitivity to high frequency sensor noise and lower 
robustness to model uncertainties. To obtain some insight into the performance 
variation amongst the four controllers’ loops, their dynamic responses to steps in 
the set point and load disturbance (applied at process input) are simulated in 
SIMULINK. Gaussian noise signal is added to the process output as sensor 
noise in each closed loop. The performance-control activity profiles -  using 
ISE[y(t)] and VAR[Au(t) (or MAD[Au(t)]) as alternative performance and control 
activity criteria respectively -  are plotted in Figures 8.4 and 8.5. Figures 8 . 6  and 
8.7 show the corresponding time trends of the closed loop responses to steps in 
the load disturbance (at process input) and set point.

186

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



150

1 4 0

1 3 0

120

>:110 
LU

-  100

9 0

8 0

7 0

6 0

STEP DISTURBANCE ISE - VAR[diff[u]] PLOTS FOR PI/PID CONTROL SYSTEMS;
MS = 1.18, MT = 1.0

X

□

+
Petro-Canada's PID  

X  Optimal PI 

O Optimal P ID  + 1o Filter 

□  Optimal P ID  + 2o Filter

8 10 
VAR[diff[u]]

12 14 16
x  1 0

1 8
4

Figure 8.4: ISE[y]-VAR[Au] profiles fo r step disturbance rejection o f the four c losed loops.

8 0 0

7 5 0

7 0 0

STEP SETPOINT ISE - MAD[diff[u]] PLOTS FOR PI/PID CONTROL SYSTEMS;
MS = 1.18, MT = 1.0

I I I I ' ■ I I

X +
i i

Petro-Canada's PID

X Optimal PI

Optimal PID  + 1o Filter

[ ]  Optimal PID  + 2o Filter

o
-

□
i i i i i i i i

[> j
U i  6 5 0
to

6 0 0

5 5 0

5 0 0 .

Figure 8.5:

4  5
MAD[diff[u]] x  1 0 ;

ISE[y]-M AD[Au] profiles fo r step set point tracking responses o f th e  four c lo se d  
loops.

187

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



INPUT STEP DISTURBANCE RESPONSE
ID + 1o Filter . . . .
Optimal PID+2o Filter

*0.3
v

1 2 0,2 

j i

\ r  

° i .

Petro-Canada PID

1000 2000 3000 4000 0000 10000(000 9000

lime (secs)

CONTROL SIGNAL

iS

h
t l

P-C PID
■0,5

0 2000 4000 (000 0000 10000

0 OPT. 1o PID

-0.5

100 (000 0000 10000 o 2000 DO (000 9000 10000

0

45

-1

OPT. 2o PID

DIFFERENCED CONTROL SIGNAL
0.1

-0.1
-i 1-------1------- 1 »

-0.1

0 2000 4000 (000 0000 10000 0 2000 4000 (000 0000 10000 0 2000 4000 (000 8000 10000 I *  10000

Time (secs) Time (secs) Time (secs) Time (secs)

INPUT DISTURBANCE

0!
s

1100 2000 3000 5000 (000 9000 100000000

Time (secs)
Figure 8.6: Step disturbance rejection responses o f the four closed loops.

1 8 8

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



SETPOINT STEP RESPONSE

Optimal PI
+ 1o Filter

■^Optimal PID+2o Filter
non 2 0 1 3000 9000 10000100 5000 0000

II
| eis
08

Time (secs)

CONTROL SIGNAL

OPT. 1o PIDP-C PID OPT. PI

100 0000 8000 10000 0 2000 100 (000 0000 10000 2000 100 0000 8000 10000 0 2080 100 0008 8000 10000

DIFFERENCED CONTROL SIGNAL

0 2000 100 0000 8000 10000 0 2000 100 (000 

Time (secs) Time (secs)
10 10000 0 2000 100 0008 

Time (secs)
SETPOINT

10000 0 2000 100 (000 8000 10000 

Time (secs)

1.5

l = i  1
m  
i!t«
0 ® w

o
0 1000 2000 3000 100 5000 6000 7000

Time (secs)
Figure 8.7: Step set point tracking responses o f the four closed loops.

8000 9000 10000

1 8 9

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.

^



Figures 8.4 and 8.5 support the profiles in Figure 8.3 with respect to the optimal 
PI, optimal PID and Petro-Canada PID controllers. Thus, the optimal PID 
controllers can give better loop performance with lower control activity than the 
Petro-Canada PID. As explained, the restriction on a sets the value of Ju and 
does not provide the flexibility to reduce it to a desirable level, hence the 
proximity in the Ju values of the 1°-PID and Petro-Canada PID loop. The 1°-PID 
loop has a slightly lower Ju value than the Petro-Canada PID loop as confirmed 
by their VAR[Au(t)] and MAD[Au(t)] values. Therefore, improved loop 
performance is achieved with lower (though only slightly) control activity.

The profiles also show the performance superiority of the PID controller over the 
PI controller and demonstrate the benefit of including derivative control in the 
closed loop. According to the VAR[Au(t)] values for the closed loops of the PI and 
1°-PID controllers, the latter generates greater control activity, which is the price 
paid for superior performance. However, the 2°-PID’s loop shows it can give 
performance comparable to the 1°-PID’s and yet generate control activity 
comparable to the PI controller’s.

The dynamic interpretation of the performance differences amongst the four 
controllers can be seen in Figures 8 . 6  and 8.7. From the step disturbance 
rejection responses in Figure 8 .6 , the optimal 1°- and 2°-PID controllers have the 
smallest overshoots and settling times. The Petro-Canada PID’s overshoot is 
slightly higher than those of the optimal PID controllers. There is significant 
damping of its closed-loop response, thus leading to the loop’s longer settling 
time. The PI controller has the highest overshoot but a shorter settling time than 
the Petro-Canada PID loop. Additionally, the differenced control signals of the 
four signals indicate that the Petro-Canada PID is the most aggressive controller, 
and the 2°-PID’s control signal is as moderate as the PI controller’s.

According to the set point tracking responses in Figure 8.7, the Petro-Canada 
PID loop’s initial response is as fast as the optimal PID controllers’, but the heavy 
damping of the loop’s response makes it sluggish and significantly increases its 
settling time. The optimal PID controllers, on the other hand, have the shortest 
rise and settling times.

8.5 IMPLEMENTATION OF OPTIMAL PI AND PID CONTROLLERS

The optimal 1°-PID, optimal PI and Petro-Canada PID controllers were 
consecutively implemented in the bottoms temperature loop, each for at least an 
hour (3600 secs). The performance objective of the loop is to minimize the 
variability of the bottoms temperature (PV) about a set point temperature (SP) of 
374.75°F. As described, the typical disturbances influencing this loop are 
variations in the tower feed rate, composition and temperature. It is difficult to 
implement each controller in the industrial loop for precisely the same duration. 
Thus, the length of the sampled closed-loop data for each controller varies, so 
that applying the ISE[y(t)]  as the performance measure will lead to inconsistent 
loop comparisons.
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To ensure the loop performance comparisons are reasonably consistent, the 
Mean Square Error, MSE, is the performance measure applied to the industrial 
implementation of the three controllers. The MSE of the closed loop error signal 
is defined as:

N

MS£ = ̂ ^ lS P ( i) - P V ( i l f  (8 .6 )
i=1

where:
N = sample size of PV (or SP)

Figure 8 . 8  shows the closed-loop responses of the three controllers, Figure 8.9 
shows their MSE-VAR[Au(t)]  plots.
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Figures 8 . 8  and 8.9 support the simulated comparisons in Figures 8.4 and 8.5, 
thus providing an industry-based corroboration that the inclusion of derivative 
control in a PI controller improves the controller’s loop performance. The optimal 
1°-PID controller reduces the variability of the isostripper bottoms temperature 
about its setpoint more effectively than the Petro-Canada’s PID controller. 
Additionally, the optimal PID controller generates slightly less control activity than 
the Petro-Canada PI controller as shown by their VAR[Au(t)] values in Figures 
8.8.

In conclusion, Kristiansson’s control system evaluation criteria have been applied 
to an industrial control loop. The criteria have shown how much insight the 
simultaneous evaluation of the various properties of a control loop provides, 
compared to the evaluation of just one property. The application of the criteria to 
the Petro-Canada isostripper bottoms temperature control loop has shown that 
the loop has very high stability margins, which could be reduced to improve loop 
performance. It has also shown that appropriate re-tuning of the PID controller, 
via the criteria, improves the controller’s performance without necessarily 
increasing its aggressiveness.
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CHAPTER 9

CONCLUSIONS

9.1 SUMMARY

In Chapter 1, a brief history of the development of the PID controller over a 
period of nearly eighty years was presented. Current issues encountered in its 
industrial application and the growing research interest shown by the academic 
community were discussed. Salient points made in the discussion were the 
relevance of the PID control algorithm to process industries despite the evolution 
of advanced control algorithms, and the importance of systematic procedures for 
evaluating the closed-loop properties of control systems.

In Chapter 2, the four criteria -  Jv, Ju, GMs, and Jhf -  proposed by Kristiansson in
[13], to evaluate the performance, stability and control activity of a Single-lnput- 
Single-Output (SISO) closed loop, were presented. The criteria were graphically 
illustrated using numerical examples. The formulation of a constrained 
optimization function for the design of SISO optimal PI and PID controllers was 
briefly described.

In Chapter 3, the design of optimal PI and PID controllers, accomplished by the 
solution of the constrained optimization function introduced in Chapter 2, was 
presented in detail using numerical examples. The closed loops of the designed 
controllers were implemented in simulation. Although the design methodology 
was formulated for load disturbance rejection, it was shown that the closed loops 
could also perform servo tasks if they were augmented with set point pre-filters.

In Chapter 4, the design methodology discussed in Chapter 3 was applied to a 
pilot-scale process -  the Quadruple Tank Process. The two dynamic phases of 
the process -  the minimum and non-minimum phases -  were discussed. Just 
proper and strictly proper PID controllers were designed for the two phases of the 
process using a modified version of Shen and Yu’s sequential loop tuning 
method [17] that incorporated the optimal controller design technique. The 
optimal PID controllers were implemented in the multiloop framework for the 
minimum and non-minimum phases in simulation and experimentally.

In Chapter 5, the evaluation criteria were used to compute the loop performance- 
control activity {JvJu) profiles of control loops utilizing optimal PI and PID 
controllers. The profiles showed that the loop performance of an optimal PI 
controller had a limit, which could be surpassed by the optimal PID controller. 
The cost of the optimal PID controller’s improved performance was higher control 
activity. The profile comparisons of the two controllers’ closed loops showed the 
performance benefit derivative action brought to a closed loop. Time domain- 
based evaluation criteria were also used to compute the performance-control 
activity profiles of control loops. The profiles exhibited the same characteristics
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for the optimal controllers as shown by the Jv-Ju profiles, and thus corroborated 
the superiority of the PID controller over the PI controller. Closed-loop 
implementations of PID controllers with second order filters showed that the 
controller’s performance improvement relative to the PI controller could be 
obtained without its control activity being excessive. The performance-control 
activity profiles also showed that as the time-delay dominance in a process 
increased, the closed-loop performance capability of the optimal PI controller 
became restricted. With the inclusion of derivative control, the restriction could be 
surpassed.

In Chapter 6 , the design methodology discussed in Chapter 3 was applied to 
another pilot-scale process -  the Heated Tank Process. The process’ relevant 
feature was the adjustability in time delay of its temperature measurement. The 
variable delay in measurement provided an experimental basis for corroborating 
the closed-loop simulation results for time delay-dominant processes obtained in 
Chapter 5. The experimental and simulation results were similar. The economic 
benefit of the optimal PID’s performance superiority over the PI controller’s was 
discussed. It was shown that due to the improvement offered by the optimal PID 
controller, it could reduce a process output’s variability more effectively than the 
optimal PI controller. Potential economic improvements in the process were 
linked to the reduction in the output’s variability.

In Chapter 7, performance comparisons of closed loops augmented with the 
Smith predictor and those utilizing the plain optimal PI or PID controllers were 
examined. A constrained optimization procedure proposed by Kristiansson [13] 
for designing robust optimal controllers augmented with the Smith predictor was 
applied to the Heated Tank Process. The controller implementation results 
showed that for processes with small time delays, it was worthwhile to stay with 
the plain PI controller without augmenting it with a Smith predictor or derivative 
control. For processes with higher time delay dominance, both the Smith- 
augmented and un-augmented closed loops of the PID controller performed 
better than the Smith-augmented PI controller. The Smith-augmented PID closed 
loop gave marginally improved performance than the un-augmented PID closed 
loop. Based on preference for closed-loop structural simplicity, the un-augmented 
PID controller could be implemented for processes with significant time delays 
instead of the Smith-augmented PID controller.

In Chapter 8 , the control system evaluation criteria were applied to an industrial 
control loop -  an Isostripper bottoms temperature control loop at Petro-Canada’s 
Edmonton refinery. Optimal PI and PID controllers were designed and 
implemented in this loop. The performance comparisons of the optimal 
controllers and Petro-Canada controller were presented.
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9.2 CONTRIBUTIONS OF THESIS

The key contributions of this thesis are as follows:

■ The application of Kristiansson’s controller evaluation method [13] to the 
design of SISO and Multi-lnput-Multi-Output (MIMO) PID-based control 
systems for pilot-scale and industrial processes, and the implementation 
of the designed control systems in simulation and real time; and

■ The utilization of alternative evaluation criteria based on sampled data of 
closed loop variables to compute performance-control activity profiles. A 
few of the criteria were proposed in this thesis and others were obtained 
from literature. The characteristics of the profiles for optimal PI and PID 
control systems were similar to those of the Jv-Ju profiles presented in [13] 
and in this thesis.

9.3 RECOMMENDATIONS FOR FUTURE WORK

The results obtained during the course of this work suggest possible directions 
for future work. They are summarized below:

■ Kristiansson’s evaluation criteria have been applied to the design of 
optimal controllers for SISO closed loops and decentralized systems with 
strongly diagonal and non-diagonal process transfer matrices. The 
application of the criteria should be extended to multivariable control 
systems because there are numerous MIMO industrial processes for 
which decentralized or SISO control may not perform satisfactorily. 
These processes utilize multivariable control systems, e.g., Model 
Predictive Control (MPC).

■ The criteria require process and controller transfer functions for their 
computation. However, transfer functions are not easily obtainable for 
some industrial processes. Although alternative criteria that use process 
data have been applied in this thesis, their application has been restricted 
to closed-loop evaluation and not controller design. Thus, the four criteria 
are still required for optimal controller design. A useful direction for 
future work would be to develop techniques for computing 
Kristiansson’s criteria using just process data, without requiring 
process transfer functions. In [13] and [25], Kristiansson provides 
empirical tuning rules, which calculate optimal PI and PID controller 
parameters for processes, using minimal process information. However, 
the tuning rules have been formulated only for PI and PID closed loops 
having GMs ^ 1 -7.
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APPENDIX A

CONTROLLER AND EVALUATION PARAMETERS FOR 
OPTIMAL CONTROL SYSTEMS

Tables A.1 to A. 16 list the parameters of the optimal PI and just proper PID 
controllers designed for the simple process model considered in Chapter 5, the 
sequential loops [17] of the minimum and non-minimum phases of the 
Quadruple-Tank Process, and the closed loops of the Heated Tank Process’ 
thermocouples. The tables also list the Jv and Ju values for plotting the 
performance-control activity profiles and the constraints on GMs and k ^ . For the 
optimal PI and just proper PID controllers, JHF = Ju.
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T ab le  A .1 : C o n tro lle r  and Closed Loop Evaluation P aram eters  of O ptim al P I C o n tro lle rs  for
P ro c e s s  1

b h ki T C P k~ GMs Ms M t

4 1 . 5 6 8 1 0 . 6 4 5 2 6 3 . 9 8 7 4 1 1 2 . 5 7 2 9 1 . 6 3 6 9 1 . 3 7 1 6 1 . 2 5 1 7

4 . 5 1 . 3 6 9 4 0 . 7 4 0 4 3 . 8 0 7 3 1 1 2 . 8 1 8 9 1 . 6 8 0 7 1 . 4 1 8 1 1 . 2 8 5 3

5 1 . 2 2 0 8 0 . 8 2 5 0 1 3 . 7 6 4 6 1 1 3 . 1 0 5 9 1 .7 1 . 4 5 8 2 1 . 3

5 . 5 1 . 1 1 9 2 0 . 8 9 3 7 3 . 8 1 4 3 1 1 3 . 4 0 8 9 1 .7 1 . 4 9 3 9 1 . 3

6 1 . 0 4 8 3 0 . 9 5 3 9 3 3 . 8 6 1 6 1 1 3 . 6 8 3 7 1 .7 1 . 5 2 9 7 1 . 3

6 . 5 0 . 9 9 2 6 8 1 . 0 0 7 4 3 . 9 0 9 1 1 1 3 . 9 3 7 9 1 .7 1 . 5 6 5 1 1 . 3

7 0 . 9 4 7 8 1 1 .0 5 5 1 3 . 9 5 8 8 1 1 4 . 1 7 6 7 1 .7 1 .6 1 . 3

7 . 5 0 . 9 1 1 1 4 1 . 0 9 7 5 4 . 0 1 2 1 1 1 4 . 4 0 3 4 1 .7 1 . 6 3 4 6 1 . 3

8 0 . 8 8 1 0 8 1 . 1 3 5 4 . 0 7 0 8 1 1 4 . 6 2 0 2 1 . 7 1 . 6 6 8 8 1 . 3

8 . 5 0 . 8 6 7 3 1 1 . 1 5 3 4 . 2 0 0 6 1 1 4 . 8 4 3 2 1 .7 1 .7 1 . 2 9 1 2

9 1 . 0 6 2 5 0 . 9 4 1 1 4 5 . 5 4 4 4 1 1 5 . 2 1 8 1 1 .7 1 .7 1 . 1 7 1

9 .1 1 . 1 2 7 3 0 . 8 8 7 0 9 5 . 9 6 2 2 1 1 5 . 2 8 9 1 .7 1 . 7 1 . 1 4 6 5

9 . 2 1 . 2 0 6 3 0 . 8 2 8 9 6 6 . 4 6 4 5 1 1 5 . 3 5 8 8 1 . 7 1 .7 1 . 1 2 2 1

9 . 3 1 . 3 0 4 3 0 . 7 6 6 7 2 7 . 0 7 8 9 1 1 5 . 4 2 7 5 1 .7 1 .7 1 . 0 9 8 2

9 . 4 1 . 4 2 7 9 0 . 7 0 0 3 2 7 . 8 4 6 7 1 1 5 . 4 9 5 2 1 . 7 1 .7 1 . 0 7 5 1

9 . 5 1 . 5 8 8 3 0 . 6 2 9 6 2 8 . 8 3 3 7 1 1 5 . 5 6 1 9 1 . 7 1 .7 1 . 0 5 3 2

Table A.2: C ontro ller and Closed Loop Evaluation Param eters o f Just Proper O ptim al PID 
C ontrollers for Process 1

/ « h ki T 5 P /c™ GMs M s M r

8 . 4 4 9 8 0 . 8 0 0 4 1 . 2 7 4 3 3 . 9 7 3 0 . 9 3 1 8 1 0 . 9 6 7 8 9 4 . 9 1 .7 1 . 6 9 1 1 .3

8 . 6 2 5 5 0 . 7 8 6 3 3 1 . 2 9 7 9 3 . 7 2 3 6 0 . 9 2 3 7 5 1 . 0 3 4 6 5 1 .7 1 . 7 1 .3

9 . 4 9 3 9 0 . 7 2 6 6 2 1 . 3 8 4 4 2 . 2 6 8 9 1 . 0 0 5 3 1 . 9 1 0 2 6 1 .7 1 . 7 1 .3

1 0 . 7 4 1 0 . 6 6 4 1 3 1 . 5 0 6 8 1 . 7 4 7 7 1 . 1 3 4 1 3 . 0 3 7 8 8 1 .7 1 . 7 1 .3

1 1 . 5 9 8 0 . 6 2 6 6 3 1 . 5 9 5 9 1 . 5 7 3 9 1 . 1 9 6 2 3 . 9 8 1 1 1 0 1 .7 1 . 7 1 .3

1 3 . 0 5 3 0 . 6 0 1 1 7 1 . 6 6 3 4 1 . 4 8 3 3 1 . 2 3 2 9 4 . 8 6 3 5 1 2 1 .7 1 . 7 1 .3

1 5 . 1 2 3 0 . 5 8 2 5 1 . 7 1 6 7 1 . 4 2 3 4 1 . 2 6 1 7 5 . 7 2 9 3 1 4 1 .7 1 . 7 1 .3

1 7 . 1 1 2 0 . 5 6 8 1 6 1 . 7 6 0 1 1 . 3 8 5 1 . 2 7 8 7 6 . 5 6 3 5 1 6 1 .7 1 . 7 1 .3

1 9 . 0 0 8 0 . 5 5 6 7 6 1 . 7 9 6 1 1 . 3 5 7 1 . 2 9 1 3 7 . 3 8 5 1 1 8 1 .7 1 . 7 1 .3

2 0 . 8 1 3 0 . 5 4 7 4 6 1 . 8 2 6 6 1 . 3 3 6 3 1 . 2 9 9 8 8 . 1 9 3 5 2 0 1 . 7 1 . 7 1 .3

2 2 . 5 2 3 0 . 5 3 9 7 2 1 . 8 5 2 8 1 .3 2 1 . 3 0 6 4 8 . 9 9 5 1 2 2 1 .7 1 . 7 1 .3

2 4 . 1 4 1 0 . 5 3 3 1 7 1 . 8 7 5 6 1 . 3 0 6 9 1 . 3 1 1 6 9 . 7 9 1 4 2 4 1 . 7 1 . 7 1 .3

2 5 . 9 9 6 0 . 5 2 7 5 5 1 . 8 9 5 6 1 . 2 9 6 7 1 . 3 1 4 7 1 0 . 5 7 8 2 6 1 .7 1 . 7 1 .3

2 7 . 9 9 5 0 . 5 2 2 6 7 1 . 9 1 3 2 1 . 2 8 7 7 1 . 3 1 7 8 1 1 . 3 6 5 2 8 1 .7 1 . 7 1 .3

2 9 . 9 9 4 0 . 5 1 8 4 1 . 9 2 9 1 . 2 8 0 3 1 . 3 2 0 1 1 2 . 1 4 7 3 0 1 .7 1 . 7 1 .3

202

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



T ab le  A .3 : C o n tro ller and C losed Loop Evaluation P aram ete rs  o f O ptim al P I C o n tro lle rs  for Loop
1 o f th e  M inim um  P h ase  Q u a d ru p le -T an k  P rocess

h h ki T C jS f c - GMs M s M t

0 . 1 2 0 2 7 6 7 7 . 9 1 0 . 0 0 1 4 7 5 5 7 . 4 0 6 1 1 0 . 0 8 4 6 8 2 1 . 4 5 8 1 . 1 4 7 6 1 . 1 1 4 9

0 . 1 6 9 3 3 4 0 9 . 0 1 0 . 0 0 2 4 4 5 4 8 . 0 8 1 1 0 . 1 1 7 5 5 1 . 5 7 6 3 1 . 1 9 5 6 1 . 2 0 5 4

0 . 2 2 2 4 2 7 4 . 9 3 0 . 0 0 3 6 3 8 4 2 . 6 2 8 1 1 0 . 1 5 5 0 6 1 . 6 4 8 5 1 . 2 3 5 8 1 . 2 6 0 6

0 . 2 8 1 7 9 1 9 7 . 2 8 0 . 0 0 5 0 6 9 3 8 . 6 2 8 1 1 0 . 1 9 5 8 1 . 7 1 . 2 8 2 1 .3

0 . 3 5 0 8 1 5 1 . 7 6 0 . 0 0 6 5 8 9 3 7 . 6 2 7 1 1 0 . 2 4 7 9 4 1 . 7 1 . 3 2 8 3 1 .3

0 . 4 3 2 1 1 2 3 . 0 6 0 . 0 0 8 1 2 6 3 6 . 8 2 3 1 1 0 . 2 9 9 2 3 1 . 7 1 . 3 9 0 4 1 .3

0 . 5 2 4 9 5 1 0 3 . 7 6 0 . 0 0 9 6 3 7 3 6 . 2 9 2 1 1 0 . 3 4 9 7 6 1 . 7 1 . 4 6 1 .3

0 . 6 2 8 2 4 9 0 . 1 8 6 0 . 0 1 1 0 8 8 3 6 . 0 8 1 1 0 . 4 0 0 0 6 1 . 7 1 . 5 3 5 8 1 .3

0 . 7 4 1 8 7 8 0 . 5 3 8 0 . 0 1 2 4 1 6 3 6 . 2 6 7 1 1 0 . 4 5 0 3 1 . 7 1 . 6 1 7 1 1 .3

0 . 7 5 7 9 . 9 9 8 0 . 0 1 2 5 3 6 . 2 9 8 1 1 0 . 4 5 3 7 3 1 . 7 1 . 6 2 2 8 1 .3

0 . 7 6 7 9 . 3 5 7 0 . 0 1 2 6 0 1 3 6 . 3 3 9 1 1 0 . 4 5 7 9 2 1 . 7 1 . 6 2 9 9 1 .3

0 . 7 7 7 8 . 7 3 8 0 . 0 1 2 7 3 6 . 3 8 2 1 1 0 . 4 6 2 0 7 1 .7 1 . 6 3 6 9 1 .3

0 . 7 8 7 8 . 1 3 2 0 . 0 1 2 7 9 9 3 6 . 4 2 4 1 1 0 . 4 6 6 1 8 1 . 7 1 . 6 4 3 9 1 .3

0 . 7 9 7 7 . 5 4 9 0 . 0 1 2 8 9 5 3 6 . 4 6 8 1 1 0 . 4 7 0 2 6 1 .7 1 . 6 5 1 1 .3

0 . 8 7 6 . 9 8 6 0 . 0 1 2 9 8 9 3 6 . 5 1 5 1 1 0 . 4 7 4 3 1 1 . 7 1 . 6 5 8 1 .3

0 . 8 2 7 5 . 9 2 3 0 . 0 1 3 1 7 1 3 6 . 6 1 9 1 1 0 . 4 8 2 3 3 1 . 7 1 . 6 7 1 9 1 .3

0 . 8 4 7 4 . 9 4 0 . 0 1 3 3 4 4 3 6 . 7 3 8 1 1 0 . 4 9 0 2 3 1 . 7 1 . 6 8 5 8 1 .3

0 . 8 6 7 4 . 0 3 7 0 . 0 1 3 5 0 7 3 6 . 8 7 3 1 1 0 . 4 9 8 0 4 1 . 7 1 . 6 9 9 7 1 .3

0 . 8 6 2 8 7 7 4 . 8 0 . 0 1 3 3 6 9 3 7 . 3 9 3 1 1 0 . 4 9 9 9 1 1 . 7 1 . 7 1 . 2 9 4

0 . 8 7 7 1 8 8 0 . 3 3 5 0 . 0 1 2 4 4 8 4 0 . 9 6 3 1 1 0 . 5 0 9 9 1 . 7 1 . 7 1 . 2 5 7 2

0 . 8 7 8 8 0 . 7 0 . 0 1 2 3 9 2 4 1 . 1 9 5 1 1 0 . 5 1 0 4 7 1 . 7 1 .2 5 5 1

0 . 8 8 8 1 . 6 1 4 0 . 0 1 2 2 5 3 4 1 . 7 7 4 1 1 0 . 5 1 1 8 5 1 . 7 1 . 2 4 9 9
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T ab le  A .4: C o n tro lle r  and Closed Loop Evaluation P aram eters  o f O ptim al PI C o n tro lle rs  for Loop
2  o f  th e  M inim um  P hase Q uadrup le -T an k Process

b Jv ki r C P /c™ GMs M s M r

0 . 1 2 0 2 7 6 9 8 . 4 7 0 . 0 0 1 4 3 2 5 8 . 0 8 5 1 1 0 . 0 8 3 1 6 1 1 . 4 6 3 3 1 . 1 6 4 7 1 . 1 1 9

0 . 1 6 9 3 3 4 2 5 . 3 3 0 . 0 0 2 3 5 1 4 9 . 2 6 8 1 1 0 . 1 1 5 8 4 1 .5 8 1 1 1 . 2 1 5 6 1 .2 0 9 1

0 . 2 2 2 4 2 8 8 . 7 2 0 . 0 0 3 4 6 5 4 3 . 9 7 2 1 1 0 . 1 5 2 3 4 1 . 6 5 5 6 1 . 2 6 1 2 1 . 2 6 6 1

0 . 2 8 1 7 9 2 1 0 . 1 4 0 . 0 0 4 7 5 9 4 0 . 6 7 4 1 1 0 . 1 9 3 5 6 1 .7 1 . 3 0 9 7 1 .3

0 . 3 5 0 8 1 6 4 . 6 4 0 . 0 0 6 0 7 4 3 9 . 9 9 3 1 1 0 . 2 4 2 9 2 1 .7 1 . 3 6 3 6 1 .3

0 . 4 3 2 1 1 3 5 . 7 3 0 . 0 0 7 3 6 8 3 9 . 5 1 4 1 1 0 . 2 9 1 1 2 1 .7 1 . 4 3 2 1 . 3

0 . 5 2 4 9 5 1 1 6 . 0 9 0 . 0 0 8 6 1 4 3 9 . 3 3 5 1 1 0 . 3 3 8 8 4 1 .7 1 . 5 0 8 5 1 .3

0 . 6 2 8 2 4 1 0 2 . 3 7 0 . 0 0 9 7 6 8 3 9 . 5 5 2 1 1 0 . 3 8 6 3 5 1 .7 1 . 5 9 1 6 1 .3

0 . 7 4 1 8 7 9 3 . 0 2 0 . 0 1 0 7 5 4 0 . 3 5 1 1 0 . 4 3 3 7 8 1 .7 1 . 6 8 0 5 1 .3

0 . 7 5 9 2 . 5 2 4 0 . 0 1 0 8 0 8 4 0 . 4 3 5 1 1 0 . 4 3 7 0 2 1 .7 1 . 6 8 6 7 1 .3

0 . 7 6 9 1 . 9 4 3 0 . 0 1 0 8 7 6 4 0 . 5 4 4 1 1 0 . 4 4 0 9 7 1 . 7 1 . 6 9 4 3 1 .3

0 . 7 7 9 2 . 6 6 9 0 . 0 1 0 7 9 1 4 1 . 3 0 5 1 1 0 . 4 4 5 7 3 1 . 7 1 . 7 1 . 2 9 2 8

0 . 7 8 9 7 . 6 8 8 0 . 0 1 0 2 3 7 4 4 . 2 3 1 1 0 . 4 5 2 7 7 1 . 7 1 .7 1 . 2 6 4 6

0 . 7 9 1 0 3 . 8 9 0 . 0 0 9 6 2 6 4 7 . 7 5 7 1 1 0 . 4 5 9 6 9 1 . 7 1 . 7 1 .2 3 6 1

0 . 8 1 1 1 . 6 4 0 . 0 0 8 9 5 7 5 2 . 0 8 2 1 1 0 . 4 6 6 5 1 1 . 7 1 . 7 1 . 2 0 7 5

0 . 8 2 1 3 4 . 3 5 0 . 0 0 7 4 4 3 6 4 . 4 6 8 1 1 0 . 4 7 9 8 5 1 . 7 1 . 7 1 . 1 5 0 8

0 . 8 4 1 7 5 . 8 7 0 . 0 0 5 6 8 6 8 6 . 6 6 9 1 1 0 . 4 9 2 8 1 1 . 7 1 . 7 1 . 0 9 7

0 . 8 6 2 7 1 . 9 7 0 . 0 0 3 6 7 7 1 3 7 . 4 5 1 1 0 . 5 0 5 3 9 1 . 7 1 . 7 1 . 0 4 9 7

0 . 8 6 2 8 7 2 9 6 . 9 8 0 . 0 0 3 3 6 7 1 5 0 . 6 2 1 1 0 . 5 0 7 1 6 1 . 7 1 . 7 1 . 0 4 3 6

0 . 8 7 7 1 8 5 7 4 . 3 9 0 . 0 0 1 7 4 1 2 9 6 . 3 2 1 1 0 . 5 1 5 8 9 1 . 7 1 . 7 1 . 0 1 5 6

0 . 8 7 8 6 0 8 . 3 7 0 . 0 0 1 6 4 4 3 1 4 . 1 5 1 1 0 . 5 1 6 3 8 1 . 7 1 . 7 1 . 0 1 4 2

0 . 8 8 7 1 2 . 0 1 0 . 0 0 1 4 0 5 3 6 8 . 5 3 1 1 0 . 5 1 7 5 8 1 . 7 1 . 7 1 . 0 1 0 6
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T a b le  A .5: Contro ller and C losed Loop E valuation P aram ete rs  o f O ptim al PI C o n tro lle rs  for Loop
3 of the N on-M in im um  P h as e  Q u a d ru p le -T a n k  Process

h Jv ki T C P / c ° ° GMs M s M r

1 . 1 5 3 5 5 . 6 4 0 . 0 0 2 8 1 2 2 2 7 . 5 9 1 1 0 . 6 3 9 9 4 1 . 3 3 8 7 1 . 3 3 8 7 1

1 .2 3 3 9 . 2 4 0 . 0 0 2 9 4 8 2 1 9 . 7 1 1 1 0 . 6 4 7 6 5 1 . 3 5 8 1 1 . 3 5 8 1 1

1 .3 3 1 1 . 5 3 0 . 0 0 3 2 1 2 0 7 . 4 8 1 1 0 . 6 6 6 1 . 3 9 7 1 . 3 9 7 1

1 .4 2 8 8 . 9 2 0 . 0 0 3 4 6 1 1 9 9 . 0 7 1 1 0 . 6 8 9 0 2 1 . 4 3 5 2 1 . 4 3 5 2 1 . 0 0 1 8

1 .5 2 7 0 . 0 7 0 . 0 0 3 7 0 3 1 9 2 . 2 2 1 1 0 . 7 1 1 7 4 1 . 4 7 3 2 1 . 4 7 3 2 1 . 0 2 5 6

1 .6 2 5 4 . 0 9 0 . 0 0 3 9 3 6 1 8 7 . 4 1 1 0 . 7 3 7 5 4 1 .5 1 1 .5 1 1 . 0 5 4 2

1 .7 2 4 0 . 3 4 0 . 0 0 4 1 6 1 1 8 3 . 4 1 1 0 . 7 6 3 0 8 1 . 5 4 6 3 1 . 5 4 6 3 1 .0 8 5 1

1 .8 2 2 8 . 3 8 0 . 0 0 4 3 7 9 1 7 9 . 7 1 1 0 . 7 8 6 8 7 1 . 5 8 2 5 1 . 5 8 2 5 1 . 1 1 7 9

1 . 9 2 1 7 . 8 7 0 . 0 0 4 5 9 1 7 7 . 8 4 1 1 0 . 8 1 6 2 5 1 . 6 1 6 4 1 . 6 1 6 4 1 . 1 4 8 7

2 2 0 8 . 6 6 0 . 0 0 4 7 9 2 1 7 9 . 9 6 1 1 0 . 8 6 2 4 6 1 . 6 4 3 8 1 . 6 4 3 8 1 . 1 7 1 3

2 .1 2 0 0 . 5 5 0 . 0 0 4 9 8 6 1 8 1 . 8 1 1 1 0 . 9 0 6 5 2 1 . 6 7 0 6 1 . 6 7 0 6 1 . 1 9 4 2

2 . 2 1 9 3 . 3 4 0 . 0 0 5 1 7 2 1 8 3 . 4 6 1 1 0 . 9 4 8 9 1 . 6 9 7 1 . 6 9 7 1 . 2 1 7 2

2 . 3 1 8 8 . 7 0 . 0 0 5 3 1 9 7 . 7 3 1 1 1 . 0 4 7 9 1 . 7 1 .7 1 . 2 0 7 7

2 . 4 1 8 6 . 1 8 0 . 0 0 5 3 7 1 2 1 3 . 5 1 1 1 . 1 4 6 7 1 .7 1 .7 1 .1 9 4 1

2 . 5 1 8 5 . 1 3 0 . 0 0 5 4 0 2 2 2 9 . 3 6 1 1 1 . 2 3 8 9 1 . 7 1 .7 1 . 1 8 1 6

2 . 6 1 8 5 . 2 2 0 . 0 0 5 3 9 9 2 4 5 . 5 4 1 1 1 . 3 2 5 7 1 . 7 1 . 7 1 . 1 7 0 8

2 . 8 1 8 7 . 9 9 0 . 0 0 5 3 1 9 2 7 9 . 6 8 1 1 1 . 4 8 7 7 1 . 7 1 . 7 1 . 1 5 4 8

3 1 9 3 . 6 1 0 . 0 0 5 1 6 5 3 1 7 . 3 2 1 1 1 . 6 3 8 9 1 . 7 1 . 7 1 . 1 4 6 4

3 . 2 2 0 1 . 7 6 0 . 0 0 4 9 5 6 3 5 9 . 7 1 1 1 1 . 7 8 2 8 1 . 7 1 . 7 1 . 1 4 4 3

3 . 4 2 1 2 . 4 7 0 . 0 0 4 7 0 7 4 0 8 . 2 4 1 1 1 . 9 2 1 4 1 . 7 1 . 7 1 . 1 4 6 9

3 . 6 2 2 5 . 9 8 0 . 0 0 4 4 2 5 4 6 4 . 5 9 1 1 2 . 0 5 5 9 1 . 7 1 . 7 1 .1 5 3 1

3 . 8 2 4 2 . 7 6 0 . 0 0 4 1 1 9 5 3 0 . 9 9 1 1 2 . 1 8 7 3 1 . 7 1 . 7 1 . 1 6 1 7

4 2 6 3 . 5 9 0 . 0 0 3 7 9 4 6 1 0 . 5 1 1 1 2 . 3 1 6 1 1 . 7 1 . 1 7 1 9
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T a b le  A .6 : C o n tro ller and C losed Loop Evaluation P aram eters  o f O ptim al P I C o n tro lle rs  for Loop
4  o f the N on-M in im um  P h ase  Q u ad ru p le -T an k  Process

h h h T C k ° ° GMs M s M t

1 . 1 5 3 6 3 . 7 0 . 0 0 2 7 5 2 2 4 . 6 2 1 1 0 . 6 1 7 6 1 . 3 7 4 1 . 3 7 4 1
1 . 2 3 4 7 . 4 7 0 . 0 0 2 8 7 8 2 1 6 . 6 4 1 1 0 . 6 2 3 4 7 1 . 3 9 5 1 1 . 3 9 5 1 1
1 . 3 3 2 0 . 0 5 0 . 0 0 3 1 2 5 2 0 4 . 8 1 1 1 0 . 6 3 9 9 3 1 . 4 3 7 1 1 . 4 3 7 1 1
1 . 4 2 9 7 . 6 8 0 . 0 0 3 3 5 9 1 9 6 . 4 4 1 1 0 . 6 5 9 9 1 . 4 7 8 8 1 . 4 7 8 8 1 . 0 0 3 4
1 . 5 2 7 9 . 0 2 0 . 0 0 3 5 8 4 1 9 0 . 1 1 1 1 0 . 6 8 1 3 6 1 . 5 2 1 . 5 2 1 . 0 2 9 6
1 . 6 2 6 3 . 1 8 0 . 0 0 3 8 1 8 4 . 6 7 1 1 0 . 7 0 1 6 9 1 . 5 6 1 1 1 . 5 6 1 1 1 . 0 6 2 7
1 . 7 2 4 9 . 5 5 0 . 0 0 4 0 0 7 1 8 1 . 1 6 1 1 0 . 7 2 5 9 2 1 . 6 0 0 6 1 . 6 0 0 6 1 . 0 9 6 6
1 . 8 2 3 7 . 6 9 0 . 0 0 4 2 0 7 1 7 7 . 9 5 1 1 0 . 7 4 8 6 6 1 . 6 4 0 1 1 . 6 4 0 1 1 . 1 3 2 2
1 . 9 2 2 7 . 3 4 0 . 0 0 4 3 9 9 1 7 9 . 2 1 1 0 . 7 8 8 2 2 1 . 6 7 3 4 1 . 6 7 3 4 1 . 1 6 0 1

2 2 1 8 . 5 6 0 . 0 0 4 5 7 5 1 8 4 . 3 9 1 1 0 . 8 4 3 6 4 1 . 7 1 . 7 1 . 1 7 9
2 . 1 2 1 4 . 2 8 0 . 0 0 4 6 6 7 2 0 6 . 4 8 1 1 0 . 9 6 3 6 1 . 7 1 . 7 1 . 1 5 7 8
2 . 2 2 1 3 . 3 5 0 . 0 0 4 6 8 7 2 2 8 . 1 5 1 1 1 . 0 6 9 4 1 . 7 1 . 7 1 . 1 3 8 1
2 . 3 2 1 4 . 7 5 0 . 0 0 4 6 5 7 2 5 0 . 1 8 1 1 1 . 1 6 5 1 . 7 1 . 7 1 . 1 2 1 3
2 . 4 2 1 7 . 9 7 0 . 0 0 4 5 8 8 2 7 3 . 2 3 1 1 1 . 2 5 3 5 1 . 7 1 . 7 1 . 1 0 7 8
2 . 5 2 2 2 . 8 2 0 . 0 0 4 4 8 8 2 9 7 . 9 1 1 1 . 3 3 7 1 . 7 1 . 7 1 . 0 9 7 6
2 . 6 2 2 9 . 2 5 0 . 0 0 4 3 6 2 3 2 4 . 7 3 1 1 1 . 4 1 6 5 1 . 7 1 . 7 1 . 0 9 0 3
2 . 8 2 4 7 . 2 2 0 . 0 0 4 0 4 5 3 8 7 . 4 3 1 1 1 . 5 6 7 2 1 . 7 1 . 7 1 . 0 8 2 6

3 2 7 3 . 6 8 0 . 0 0 3 6 5 4 4 6 7 . 8 8 1 1 1 . 7 0 9 6 1 . 7 1 . 7 1 . 0 8 1 2
3 . 2 3 1 2 . 6 8 0 . 0 0 3 1 9 8 5 7 7 . 2 2 1 1 1 . 8 4 6 1 . 7 1 . 7 1 . 0 8 3 5
3 . 4 3 7 2 . 8 5 0 . 0 0 2 6 8 2 7 3 7 . 4 1 1 1 1 . 9 7 7 7 1 . 7 1 . 7 1 . 0 8 7 9
3 . 6 4 7 5 . 0 5 0 . 0 0 2 1 0 5 1 0 0 0 . 3 1 1 2 . 1 0 5 6 1 . 7 1 . 7 1 . 0 9 2 8
3 . 8 6 8 4 . 1 9 0 . 0 0 1 4 6 2 1 5 2 5 . 9 1 1 2 . 2 3 0 2 1 . 7 1 . 7 1 . 0 9 7 2

4 1 3 5 1 . 4 0 . 0 0 0 7 4 3 1 7 8 . 3 1 1 2 . 3 5 1 8 1 . 7 1 . 7 1 . 1 0 0 1

Table A.7: Controller and Closed Loop Evaluation Parameters o f Just Proper O ptim al PID 
Controllers for Loop 1 o f the M inimum Phase Quadruple-Tank Process

/ « h k i T 5 P k°° GMs M s M r

0 . 7 9 2 7 8 7 0 . 1 3 4 0 . 0 1 4 6 1 2 3 3 . 3 1 4 0 . 9 0 1 5 5 0 . 9 8 6 0 9 0 . 4 8 1 .7 1 . 6 4 2 1 .3

0 . 8 3 9 8 6 7 . 1 5 3 0 . 0 1 5 2 9 9 3 2 . 3 1 3 0 . 8 9 2 8 5 1 . 0 1 1 4 0 . 5 1 . 7 1 . 6 7 3 2 1 .3

1 . 0 4 7 5 5 9 . 2 4 6 0 . 0 1 6 8 7 9 1 5 . 6 6 8 1 . 0 7 9 2 . 6 4 6 9 0 . 7 1 . 7 1 . 7 1 .3

1 . 0 9 5 6 5 7 . 0 0 5 0 . 0 1 7 5 4 2 1 3 . 3 2 9 1 . 2 3 1 1 3 . 4 1 2 8 0 . 7 9 8 1 . 7 1 . 7 1 .3

1 . 0 9 6 4 5 6 . 9 6 1 0 . 0 1 7 5 5 6 1 3 . 2 9 9 1 . 2 3 3 3 3 . 4 2 6 6 0 . 8 1 .7 1 . 7 1 .3

1 . 1 3 8 1 5 4 . 9 7 6 0 . 0 1 8 1 9 1 2 . 1 9 4 1 . 3 1 3 9 4 . 0 5 7 7 0 . 9 1 . 7 1 . 7 1 .3

1 . 1 7 4 2 5 3 . 3 4 1 0 . 0 1 8 7 4 7 1 1 . 5 3 1 1 . 3 6 3 6 4 . 6 2 5 8 1 1 . 7 1 . 7 1 .3

1 . 5 4 8 . 2 7 6 0 . 0 2 0 7 1 4 1 0 . 1 4 6 1 . 4 6 3 5 7 . 1 3 7 1 . 5 1 .7 1 . 7 1 .3

2 4 5 . 6 2 0 . 0 2 1 9 2 9 . 6 4 3 3 1 . 4 9 3 6 9 . 4 6 1 5 2 1 .7 1 . 7 1 .3

2 . 5 4 3 . 9 6 2 0 . 0 2 2 7 4 7 9 . 3 7 8 1 . 5 0 6 3 1 1 . 7 1 9 2 . 5 1 .7 1 . 7 1 .3

3 4 2 . 8 2 2 0 . 0 2 3 3 5 2 9 . 2 1 5 6 1 . 5 1 1 8 1 3 . 9 4 3 1 .7 1 . 7 1 .3

3 . 5 4 1 . 9 8 8 0 . 0 2 3 8 1 6 9 . 1 0 4 3 1 . 5 1 4 7 1 6 . 1 4 2 3 . 5 1 .7 1 . 7 1 .3

4 4 1 . 3 4 9 0 . 0 2 4 1 8 4 9 . 0 2 1 3 1 . 5 1 6 8 1 8 . 3 3 4 4 1 .7 1 . 7 1 .3

4 . 5 4 0 . 8 4 4 0 . 0 2 4 4 8 3 8 . 9 6 0 6 1 . 5 1 7 3 2 0 . 5 1 2 4 . 5 1 .7 1 . 7 1 .3
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T a b le  A .8: C o n tro ller and C losed Loop Evaluation P aram eters  o f Just P ro p er O p tim a l P ID
C ontro llers  for Loop 2  of the M inim um  P h a s e  Q uadrup le -T an k  Process

b h ki T C P k°° GMs Ms Mr
0 . 8 0 4 8 9 7 7 . 2 8 2 0 . 0 1 3 1 2 7 2 7 . 1 8 8 0 . 9 0 2 0 8 1 . 3 4 4 9 0 . 4 8 1 .7 1 .3

0 . 8 2 5 6 5 7 6 . 2 9 6 0 . 0 1 3 1 9 8 2 4 . 1 4 6 0 . 9 2 7 5 4 1 . 5 6 9 0 . 5 1 .7 1 .7 1 .3

0 . 9 6 8 9 6 7 0 . 2 1 7 0 . 0 1 4 2 4 2 1 4 . 9 7 4 1 . 2 0 9 8 3 . 2 8 2 4 0 . 7 1 .7 1 . 7 1 .3
1 . 0 1 0 5 6 7 . 5 2 5 0 . 0 1 4 8 0 9 1 3 . 5 7 1 1 . 2 9 9 1 3 . 9 7 0 6 0 . 7 9 8 1 .7 1 . 7 1 .3
1 . 0 1 1 1 6 7 . 4 7 6 0 . 0 1 4 8 2 1 3 . 5 4 5 1 . 3 0 1 1 3 . 9 8 5 2 0 . 8 1 .7 1 .7 1 .3

1 . 0 4 7 5 6 5 . 2 8 2 0 . 0 1 5 3 1 8 1 2 . 7 6 1 . 3 5 2 2 4 . 6 0 4 6 0 . 9 1 .7 1 . 7 1 .3

1 . 0 7 8 4 6 3 . 4 9 8 0 . 0 1 5 7 4 9 1 2 . 2 3 3 1 . 3 8 7 5 5 . 1 9 0 6 1 1 .7 1 . 7 1 .3

1 . 5 5 7 . 9 6 6 0 . 0 1 7 2 5 2 1 1 . 0 4 8 1 . 4 5 9 9 7 . 8 6 9 8 1 .5 1 .7 1 . 7 1 .3
2 5 5 . 0 4 9 0 . 0 1 8 1 6 6 1 0 . 5 9 1 . 4 8 2 1 0 . 3 9 7 2 1 .7 1 .7 1 .3

2 . 5 5 3 . 2 2 7 0 . 0 1 8 7 8 7 1 0 . 3 3 8 1 . 4 9 2 2 1 2 . 8 7 2 2 . 5 1 .7 1 . 7 1 .3

3 5 1 . 9 7 3 0 . 0 1 9 2 4 1 1 0 . 1 8 4 1 . 4 9 6 3 1 5 . 3 1 1 3 1 . 7 1 . 7 1 .3

3 . 5 5 1 . 0 5 6 0 . 0 1 9 5 8 6 1 0 . 0 7 9 1 . 4 9 8 1 7 . 7 2 9 3 . 5 1 .7 1 . 7 1 .3

4 5 0 . 3 5 4 0 . 0 1 9 8 6 9 . 9 9 9 7 1 . 4 9 9 4 2 0 . 1 4 2 4 1 . 7 1 . 7 1 .3
4 . 5 4 9 . 7 9 9 0 . 0 2 0 0 8 1 9 . 9 4 0 7 1 . 4 9 9 8 2 2 . 5 4 3 4 . 5 1 . 7 1 . 7 1 .3

Table A.9: Controller and Closed Loop Evaluation Parameters o f Just Proper O ptim al PID 
Controllers for Loop 3 o f the Non-M inimum Phase Quadruple-Tank Process

h Jv h T C P k°° GMs Ms Mr
3 . 4 8 7 5 1 1 1 . 8 8 0 . 0 0 8 9 3 8 1 5 4 . 6 9 0 . 9 7 1 7 5 1 . 4 4 6 5 2 1 . 7 1 . 7 1 . 2 9 9 4

4 . 1 7 5 4 9 4 . 9 3 3 0 . 0 1 0 6 7 6 1 3 8 . 9 9 0 . 9 4 2 9 4 2 . 0 2 1 8 3 1 . 7 1 . 7 1 . 2 3 9 4

4 . 8 3 6 1 8 4 . 4 6 5 0 . 0 1 2 2 6 4 1 3 3 . 3 4 0 . 9 1 4 1 1 2 . 4 4 6 4 1 .7 1 . 7 1 .2 3 9 1

5 . 4 5 8 7 7 . 1 3 8 0 . 0 1 3 9 3 6 1 2 8 . 5 9 0 . 8 8 1 4 2 . 7 9 0 1 5 1 .7 1 . 7 1 .2 5 9

6 . 0 7 9 7 7 1 . 4 6 9 0 . 0 1 6 1 7 1 2 3 . 6 4 0 . 8 2 5 4 4 3 . 0 0 1 2 6 1 .7 1 . 7 1 .3
8 6 3 . 4 8 5 0 . 0 1 8 4 0 8 1 2 0 . 5 9 0 . 8 0 6 4 7 3 . 6 0 3 8 8 1 .7 1 . 7 1 .3

9 6 0 . 5 9 5 0 . 0 1 9 3 7 5 1 1 9 . 6 0 . 7 9 8 0 8 3 . 8 8 3 8 9 1 .7 1 . 7 1 .3

Table A. 10: Controller and Closed Loop Evaluation Parameters o f Just Proper O ptim al PID
Controllers fo r Loop 4 o f the Non-M inimum Phase Quadruple-Tank P rocess

J« b h T C P k°° GMs Ms Mr
3 . 0 6 9 9 1 4 5 . 6 8 0 . 0 0 7 0 5 4 1 9 6 . 6 1 0 . 8 4 0 8 4 1 . 4 4 2 2 2 1 .7 1 .7 1 .2 6 0 1

3 . 4 8 8 9 1 3 2 . 9 4 0 . 0 0 7 9 5 7 1 7 7 . 3 1 0 . 7 7 7 9 9 2 . 1 2 6 6 3 1 .7 1 . 7 1 . 2 1 8 2
4 . 0 0 0 4 1 2 7 . 3 9 0 . 0 0 8 4 7 7 1 6 5 . 8 8 0 . 7 5 2 6 1 2 . 8 4 4 8 4 1 .7 1 . 7 1 .2 0 6 1

5 1 2 4 . 5 3 0 . 0 0 8 7 9 1 1 5 8 . 7 1 0 . 7 4 1 6 3 3 . 5 8 3 7 5 1 .7 1 . 7 1 . 2 1 2 2

6 1 2 2 . 6 6 0 . 0 0 9 0 0 6 1 5 4 . 4 6 0 . 7 3 5 7 9 4 . 3 1 3 2 6 1 . 7 1 . 7 1 . 2 2 0 9
8 1 2 2 . 9 4 0 . 0 0 9 0 6 5 1 4 5 . 9 4 0 . 7 4 1 3 4 6 . 0 4 6 9 8 1 . 7 1 . 7 1 .2 3 5 1

9 1 2 3 . 2 6 0 . 0 0 9 0 5 7 1 4 2 . 8 4 0 . 7 4 6 6 2 6 . 9 5 6 8 9 1 . 7 1 . 7 1 . 2 4 1 9
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T a b le  A .1 1: C ontro ller and C losed Loop Evaluation  P aram eters  o f O ptim al P I C o n tro lle rs  for
C losed  Loop o f Therm ocouple  1 in H eated  T a n k  Process

b h h T C P GMs Ms Mr
1 . 0 5 8 1 0 1 . 5 4 0 . 0 1 2 7 5 7 5 . 4 8 7 3 1 1 0 . 0 7 1 .7 1 . 6 3 1 5 1 .3

1 . 0 6 5 7 9 8 . 8 7 0 . 0 1 3 0 8 8 6 . 1 1 2 6 1 1 0 . 0 8 1 .7 1 . 6 2 4 5 1 .3

1 . 0 7 3 4 9 6 . 3 2 3 0 . 0 1 3 4 1 9 6 . 7 0 6 9 1 1 0 . 0 9 1 .7 1 . 6 1 7 6 1 .3

1 . 0 8 1 1 9 3 . 8 8 7 0 . 0 1 3 7 5 1 7 . 2 7 2 2 1 1 0 .1 1 .7 1 .6 1 1 1 .3

1 . 1 1 9 9 8 3 . 1 5 7 0 . 0 1 5 4 1 8 9 . 7 2 8 9 1 1 0 . 1 5 1 .7 1 . 5 8 0 7 1 .3

1 . 1 5 9 1 7 4 . 3 7 5 0 . 0 1 7 0 9 6 1 1 . 6 9 9 1 1 0 . 2 1 .7 1 . 5 5 4 6 1 .3

1 . 1 9 8 8 6 7 . 0 7 2 0 . 0 1 8 7 8 4 1 3 . 3 0 9 1 1 0 . 2 5 1 .7 1 . 5 3 2 1 1 .3

1 . 2 3 9 1 6 0 . 9 1 6 0 . 0 2 0 4 8 1 1 4 . 6 4 7 1 1 0 . 3 1 .7 1 . 5 1 2 8 1 .3

1 . 2 7 9 9 5 5 . 6 6 6 0 . 0 2 2 1 8 6 1 5 . 7 7 6 1 1 0 . 3 5 1 .7 1 . 4 9 6 2 1 .3

1 . 3 2 1 3 5 1 . 1 4 5 0 . 0 2 3 8 9 7 1 6 . 7 3 8 1 1 0 . 4 1 .7 1 . 4 8 2 1 .3

1 . 3 6 3 4 4 7 . 2 1 7 0 . 0 2 5 6 1 4 1 7 . 5 6 8 1 1 0 . 4 5 1 .7 1 . 4 7 1 .3

1 . 4 0 6 2 4 3 . 7 7 8 0 . 0 2 7 3 3 5 1 8 . 2 9 2 1 1 0 . 5 1 .7 1 . 4 5 9 9 1 .3

1 . 4 4 9 8 4 0 . 7 4 8 0 . 0 2 9 0 5 9 1 8 . 9 2 7 1 1 0 . 5 5 1 .7 1 . 4 5 1 6 1 .3

1 . 4 9 4 3 3 8 . 0 6 1 0 . 0 3 0 7 8 5 1 9 . 4 9 1 1 0 . 6 1 .7 1 . 4 4 5 1 .3

1 . 5 3 9 6 3 5 . 6 6 5 0 . 0 3 2 5 1 1 1 9 . 9 9 3 1 1 0 . 6 5 1 .7 1 . 4 3 9 9 1 .3

1 . 5 8 5 9 3 3 . 5 1 9 0 . 0 3 4 2 3 8 2 0 . 4 4 5 1 1 0 . 7 1 .7 1 . 4 3 6 2 1 .3

1 . 6 3 3 3 3 1 . 5 8 8 0 . 0 3 5 9 6 2 2 0 . 8 5 5 1 1 0 . 7 5 1 .7 1 . 4 3 3 9 1 .3

1 . 6 8 1 9 2 9 . 8 4 4 0 . 0 3 7 6 8 4 2 1 . 2 2 9 1 1 0 . 8 1 .7 1 . 4 3 2 9 1 .3

1 . 7 3 1 7 2 8 . 2 6 2 0 . 0 3 9 4 0 2 2 1 . 5 7 2 1 1 0 . 8 5 1 .7 1 . 4 3 3 1 1 .3

1 . 7 8 3 2 6 . 8 2 4 0 . 0 4 1 1 1 5 2 1 . 8 9 1 1 0 . 9 1 .7 1 . 4 3 4 5 1 .3

1 . 8 3 5 8 2 5 . 5 1 2 0 . 0 4 2 8 2 1 2 2 . 1 8 5 1 1 0 . 9 5 1 . 7 1 . 4 3 7 1 .3

1 . 8 9 0 2 2 4 . 3 1 3 0 . 0 4 4 5 2 2 2 . 4 6 2 1 1 1 1 . 7 1 . 4 4 0 7 1 .3

2 . 5 6 2 9 1 6 . 5 6 5 0 . 0 6 0 7 6 2 4 . 6 8 7 1 1 1 .5 1 .7 1 . 5 3 1 1 1 .3

3 . 5 5 3 1 1 3 . 4 7 6 0 . 0 7 4 2 0 6 2 6 . 9 5 2 1 1 2 1 .7 1 . 6 8 7 2 1 .3

3 . 7 1 1 4 1 3 . 8 8 5 0 . 0 7 2 0 2 1 2 9 . 1 5 8 1 1 2 .1 1 . 7 1 . 7 1 . 2 6 1 3

3 . 8 3 6 5 1 5 . 2 4 3 0 . 0 6 5 6 0 2 3 3 . 5 3 5 1 1 2 . 2 1 . 7 1 . 7 1 . 1 9 4 5

3 . 9 7 0 2 1 7 . 6 3 9 0 . 0 5 6 6 9 3 4 0 . 5 6 9 1 1 2 . 3 1 .7 1 . 7 1 . 1 2 1 6

4 . 1 1 1 9 2 2 . 3 0 2 0 . 0 4 4 8 3 8 5 3 . 5 2 6 1 1 2 . 4 1 .7 1 . 7 1 . 0 4 7 7

4 . 2 6 1 8 3 3 . 9 6 0 . 0 2 9 4 4 7 8 4 . 8 9 9 1 1 2 . 5 1 . 7 1 . 7 1

4 . 4 2 1 1 1 0 3 . 1 6 0 . 0 0 9 6 9 4 2 6 8 . 2 1 1 1 2 . 6 1 . 7 1 . 7 1

4 . 4 3 7 6 1 3 4 . 4 9 0 . 0 0 7 4 3 6 3 5 1 . 0 1 1 1 2 .6 1 1 .7 1 . 7 1

4 . 4 5 4 3 1 9 5 . 2 5 0 . 0 0 5 1 2 2 5 1 1 . 5 5 1 1 2 . 6 2 1 .7 1 . 7 1
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T a b le  A . 12: C ontro ller and C losed Loop Evaluation P aram eters  o f O ptim al PI C o n tro lle rs  for
C losed  Loop of Therm ocouple 2  in H e ate d  T an k  Process

h h h T G P f c ~ G M s Ms M t

0 . 6 0 8 6 4 2 7 0 . 1 1 0 . 0 0 3 7 0 2 7 4 . 4 4 4 1 1 0 . 2 7 5 6 1 1 . 3 4 8 1 1 . 3 4 8 1 1
0 . 7 1 8 9 . 2 7 0 . 0 0 5 2 8 4 6 0 . 4 3 9 1 1 0 . 3 1 9 3 3 1 . 5 2 7 6 1 . 5 2 7 6 1

0 . 7 7 9 9 6 1 7 1 . 7 2 0 . 0 0 5 8 2 3 5 6 . 8 7 1 1 0 . 3 3 1 1 8 1 . 6 0 0 5 1 . 6 0 0 5 1 . 0 2 8
0 . 7 8 5 2 5 1 7 0 . 7 2 0 . 0 0 5 8 5 8 5 6 . 6 1 9 1 1 0 . 3 3 1 6 5 1 . 6 0 5 3 1 . 6 0 5 3 1 . 0 3 1 8
0 . 7 9 0 4 3 1 6 9 . 7 5 0 . 0 0 5 8 9 1 5 6 . 5 1 7 1 1 0 . 3 3 2 9 4 1 . 6 1 1 . 6 1 1 . 0 3 4 9
0 . 7 9 5 4 9 1 6 8 . 8 2 0 . 0 0 5 9 2 3 5 6 . 2 9 7 1 1 0 . 3 3 3 4 6 1 . 6 1 4 6 1 . 6 1 4 6 1 . 0 3 8 7
0 . 8 1 9 0 3 1 6 4 . 6 9 0 . 0 0 6 0 7 2 5 5 . 5 3 8 1 1 0 . 3 3 7 2 2 1 . 6 3 6 1 1 . 6 3 6 1 1 . 0 5 5 7

0 . 8 3 9 7 1 6 1 . 3 0 . 0 0 6 2 5 4 . 9 4 2 1 1 0 . 3 4 0 6 3 1 . 6 5 4 9 1 . 6 5 4 9 1 . 0 7 1 2
0 . 8 5 7 7 3 1 5 8 . 5 0 . 0 0 6 3 0 9 5 4 . 4 4 4 1 1 0 . 3 4 3 5 1 . 6 7 1 3 1 . 6 7 1 3 1 . 0 8 5 2
0 . 8 7 3 8 7 1 5 6 . 1 1 0 . 0 0 6 4 0 6 5 4 . 1 1 5 1 1 0 . 3 4 6 6 5 1 . 6 8 5 7 1 . 6 8 5 7 1 . 0 9 7 5
0 . 8 8 9 8 9 1 5 3 . 8 4 0 . 0 0 6 5 5 3 . 8 4 8 1 1 0 . 3 5 0 0 2 1 . 7 1 . 7 1 . 1 0 9 6
0 . 9 0 9 0 6 1 5 3 . 1 7 0 . 0 0 6 5 2 9 6 1 . 2 6 7 1 1 0 . 4 1 . 7 1 . 7 1 . 0 7 4 8
0 . 9 3 5 2 4 1 5 6 . 0 9 0 . 0 0 6 4 0 7 7 0 . 2 4 1 1 0 . 4 5 1 . 7 1 . 7 1 . 0 3 1 7
0 . 9 7 0 6 5 1 6 3 . 8 2 0 . 0 0 6 1 0 4 8 1 . 9 0 9 1 1 0 . 5 1 . 7 1 . 7 1

1 . 0 1 5 2 1 7 8 . 9 4 0 . 0 0 5 5 8 9 9 8 . 4 0 8 1 1 0 . 5 4 9 9 6 1 . 7 1 . 7 1
1 . 0 6 8 1 2 0 7 . 6 9 0 . 0 0 4 8 1 5 1 2 4 . 6 1 1 1 0 . 6 1 . 7 1 . 7 1
1 . 1 2 8 6 2 6 8 . 1 0 . 0 0 3 7 3 1 7 4 . 2 6 1 1 0 . 6 4 9 9 7 1 . 7 1 . 7 1
1 . 1 4 1 7 2 8 8 . 3 8 0 . 0 0 3 4 6 8 1 9 0 . 3 4 1 1 0 . 6 6 0 0 2 1 . 7 1 . 7 1

1 . 1 5 5 3 1 3 . 3 3 0 . 0 0 3 1 9 2 2 0 9 . 9 2 1 1 0 . 6 6 9 9 8 1 . 7 1 . 7 1
1 . 1 6 8 7 3 4 5 . 2 1 0 . 0 0 2 8 9 7 2 3 4 . 7 4 1 1 0 . 6 7 9 9 8 1 . 7 1 . 7 1
1 . 1 8 2 8 3 8 7 . 2 1 0 . 0 0 2 5 8 3 2 6 7 . 1 8 1 1 0 . 6 9 0 0 3 1 . 7 1 . 7 1
1 . 1 9 7 1 4 4 3 . 8 7 0 . 0 0 2 2 5 3 3 1 0 . 7 1 1 0 . 6 9 9 9 7 1 . 7 1 . 7 1
1 . 2 1 1 9 5 2 6 . 3 4 0 . 0 0 1 9 3 7 3 . 7 1 1 0 . 7 1 1 . 7 1 . 7 1

Table A.13: Controller and Closed Loop Evaluation Parameters o f Optimal PI C ontro lle rs fo r
C losed Loop o f Thermocouple 3 in Heated Tank Process

/ « / ’ ki T G 0 fcoo G M s M s M r

0 . 6 0 3 5 3 4 4 . 6 4 0 . 0 0 2 9 0 2 6 0 . 6 4 5 1 1 0 . 1 7 5 9 7 1 . 3 8 7 6 1 . 3 8 7 6 1

0 . 7 2 3 8 . 1 1 0 . 0 0 4 2 6 9 . 8 8 9 1 1 0 . 2 9 3 5 1 1 . 6 1 2 4 1 . 6 1 2 4 1

0 . 7 4 0 2 5 2 2 7 . 0 9 0 . 0 0 4 4 0 4 6 7 . 6 3 7 1 1 0 . 2 9 7 8 4 1 . 6 5 4 1 . 6 5 4 1 . 0 2 2 2

0 . 7 4 4 0 3 2 2 6 . 1 3 0 . 0 0 4 4 2 2 6 7 . 4 4 4 1 1 0 . 2 9 8 2 5 1 . 6 5 7 9 1 . 6 5 7 9 1 .0 2 5 1

0 . 7 4 7 6 5 2 2 5 . 2 3 0 . 0 0 4 4 4 6 7 . 2 7 1 1 0 . 2 9 8 6 8 1 . 6 6 1 7 1 . 6 6 1 7 1 . 0 2 7 9

0 . 7 5 1 1 2 2 4 . 3 7 0 . 0 0 4 4 5 7 6 7 . 1 1 6 1 1 0 . 2 9 9 1 3 1 . 6 6 5 2 1 . 6 6 5 2 1 . 0 3 0 6

0 . 7 6 5 7 1 2 2 0 . 8 7 0 . 0 0 4 5 2 8 6 6 . 4 8 1 1 0 . 3 0 1 1 . 6 8 0 4 1 . 6 8 0 4 1 . 0 4 2 5

0 . 7 7 5 7 5 2 1 8 . 5 5 0 . 0 0 4 5 7 6 6 6 . 1 2 8 1 1 0 . 3 0 2 5 7 1 . 6 9 0 8 1 . 6 9 0 8 1 . 0 5 0 7

0 . 7 8 1 3 2 2 1 7 . 3 0 . 0 0 4 6 0 2 6 5 . 8 4 1 1 1 0 . 3 0 3 1 . 6 9 6 6 1 . 6 9 6 6 1 . 0 5 5 8

0 . 7 9 1 0 5 2 1 8 . 8 7 0 . 0 0 4 5 6 9 7 6 . 6 0 2 1 1 0 . 3 4 9 9 9 1 .7 1 . 7 1 . 0 1 1 1
0 . 8 0 9 7 3 2 3 0 . 0 2 0 . 0 0 4 3 4 8 9 2 . 0 0 6 1 1 0 . 3 9 9 9 9 1 .7 1 . 7 1

0 . 8 4 3 0 6 2 5 6 . 3 8 0 . 0 0 3 9 0 1 1 1 5 . 3 7 1 1 0 . 4 4 9 9 9 1 .7 1 . 7 1

0 . 8 8 9 2 4 3 1 6 . 8 1 0 . 0 0 3 1 5 6 1 5 8 . 4 1 1 1 0 . 5 1 . 7 1 . 7 1

0 . 9 4 7 3 3 4 9 9 . 9 0 . 0 0 2 2 7 4 . 9 4 1 1 0 . 5 5 1 .7 1 . 7 1

0 . 9 7 4 3 3 7 2 5 0 . 0 0 1 3 7 9 4 1 3 . 2 5 1 1 0 . 5 7 1 .7 1 . 7 1

0 . 9 8 8 8 1 9 7 5 . 6 7 0 . 0 0 1 0 2 5 5 6 5 . 8 9 1 1 0 . 5 8 1 .7 1 . 7 1
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T a b le  A .14 : C ontro ller and C losed Loop Evaluation P aram eters  o f Just P ro p er O p tim a l P ID
Contro llers for C losed Loop o f T h erm o co u p le  1 in H eated  T an k  P ro cess

b h ki T C P k°° GMs Ms Mr
3 . 4 7 8 4 1 3 . 0 5 6 0 . 0 7 7 5 9 1 2 8 . 1 0 9 0 . 9 5 9 6 1 0 . 9 1 7 2 1 .7 1 . 6 7 1 .3

4 . 3 3 4 3 1 0 . 8 3 3 0 . 0 9 2 8 0 9 1 3 . 4 2 4 1 . 0 6 9 2 2 . 4 0 8 3 1 .7 1 . 7 1 .3

4 . 8 0 9 9 9 . 9 8 1 0 . 1 0 0 4 6 1 1 . 4 6 5 1 . 1 4 8 8 3 . 4 7 2 9 4 1 .7 1 . 7 1 .3

5 . 4 2 5 4 9 . 4 7 2 0 . 1 0 5 7 8 1 0 . 6 6 8 1 . 1 8 6 8 4 . 4 3 0 9 5 1 .7 1 . 7 1 .3

1 0 . 1 0 6 8 . 4 0 4 5 0 . 1 1 9 1 1 9 . 4 9 4 7 1 . 2 4 3 4 8 . 8 4 2 7 1 0 1 . 7 1 . 7 1 .3

1 4 . 4 6 9 8 . 0 1 5 9 0 . 1 2 4 8 7 9 . 1 8 7 3 1 . 2 5 5 1 3 . 0 7 6 1 5 1 . 7 1 . 7 1 .3

1 8 . 9 4 7 . 8 1 1 2 0 . 1 2 8 1 3 9 . 0 4 4 1 1 . 2 5 9 3 1 7 . 2 5 9 2 0 1 .7 1 . 7 1 .3

2 3 . 1 8 3 7 . 6 8 4 4 0 . 1 3 0 2 5 8 . 9 6 5 5 1 . 2 6 0 2 2 1 . 4 0 8 2 5 1 .7 1 . 7 1 .3

2 7 . 1 8 7 . 5 9 7 8 0 . 1 3 1 7 4 8 . 9 1 0 5 1 . 2 6 1 5 2 5 . 5 5 7 3 0 1 .7 1 . 7 1 .3

3 0 . 9 2 2 7 . 5 3 5 0 . 1 3 2 8 4 8 . 8 7 3 1 1 . 2 6 2 2 9 . 6 9 5 3 5 1 .7 1 . 7 1 .3

3 4 . 4 0 9 7 . 4 8 7 2 0 . 1 3 3 6 9 8 . 8 4 6 1 1 . 2 6 2 1 3 3 . 8 2 4 4 0 1 . 7 1 . 7 1 .3

3 7 . 6 4 4 7 . 4 4 9 8 0 . 1 3 4 3 6 8 . 8 2 5 5 1 . 2 6 2 3 7 . 9 4 9 4 5 1 .7 1 . 7 1 .3

4 0 . 6 3 4 7 . 4 1 9 5 0 . 1 3 4 9 1 8 . 8 0 8 8 1 . 2 6 2 4 2 . 0 7 3 5 0 1 . 7 1 . 7 1 .3

4 3 . 3 9 4 7 . 3 9 4 6 0 . 1 3 5 3 7 8 . 7 9 7 1 . 2 6 1 6 4 6 . 1 8 5 5 5 1 .7 1 . 7 1 .3

Table A. 15: Controller and Closed Loop Evaluation Parameters o f Just Proper O p tim a l PID
Controllers for Closed Loop o f Thermocouple 2 in Heated Tank Process

b b h T C P k°° GMs M s Mr
0 . 8 7 3 1 4 1 6 1 . 1 2 0 . 0 0 6 2 0 7 9 9 . 7 4 8 1 . 3 0 0 9 0 . 4 8 4 5 7 0 . 3 1 . 7 1 . 7 1 . 1 2 8 5

0 . 9 0 9 8 7 1 4 6 . 9 4 0 . 0 0 6 8 6 5 6 . 2 3 8 0 . 9 5 6 5 4 1 . 0 3 6 8 0 . 4 1 . 7 1 . 7 1 . 1 1 5 8

1 . 1 2 2 2 1 1 2 . 4 3 0 . 0 0 9 3 0 7 4 7 . 4 8 7 0 . 8 2 0 8 9 2 . 2 6 2 6 1 1 . 7 1 . 7 1 . 1 4 4 8

2 9 5 . 9 5 0 . 0 1 1 1 8 8 4 3 . 6 5 0 . 7 9 0 5 8 4 . 0 9 5 2 2 1 .7 1 . 7 1 . 1 8 1 7

2 . 9 9 9 8 8 9 . 2 3 3 0 . 0 1 2 1 8 2 4 2 . 3 1 1 0 . 7 8 0 7 3 5 . 8 2 0 3 3 1 .7 1 . 7 1 . 2 0 0 5

3 . 9 9 9 5 8 5 . 4 9 8 0 . 0 1 2 8 1 3 4 1 . 6 2 5 0 . 7 7 5 3 3 7 . 5 0 0 2 4 1 .7 1 . 7 1 . 2 1 1 8

4 . 9 9 9 8 3 . 0 9 7 0 . 0 1 3 2 5 1 4 1 . 2 1 8 0 . 7 7 1 6 4 9 . 1 5 4 4 5 1 .7 1 . 7 1 .2 1 9 1

9 . 9 9 1 8 7 7 . 8 2 9 0 . 0 1 4 3 3 7 4 0 . 4 0 2 0 . 7 6 1 9 9 1 7 . 2 6 4 1 0 1 .7 1 . 7 1 . 2 3 6

1 4 . 9 7 2 7 5 . 8 9 6 0 . 0 1 4 7 8 1 4 0 . 1 1 7 0 . 7 5 8 2 4 2 5 . 2 9 7 1 5 1 .7 1 . 7 1 . 2 4 2 5

1 9 . 9 3 5 7 4 . 8 8 8 0 . 0 1 5 0 2 1 3 9 . 9 7 7 0 . 7 5 6 1 8 3 3 . 3 0 5 2 0 1 .7 1 . 7 1 . 2 4 5 7

2 4 . 8 7 3 7 4 . 2 6 9 0 . 0 1 5 1 8 6 3 9 . 8 8 6 0 . 7 5 4 3 7 4 1 . 2 7 4 2 5 1 .7 1 . 7 1 . 2 4 8 4

2 9 . 7 8 1 7 3 . 8 4 9 0 . 0 1 5 2 9 2 3 9 . 8 3 7 0 . 7 5 3 2 7 4 9 . 2 4 6 3 0 1 .7 1 . 7 1 . 2 4 9 7

3 4 . 6 5 4 7 3 . 5 4 6 0 . 0 1 5 3 5 8 3 9 . 7 9 7 0 . 7 5 3 1 1 5 7 . 2 6 3 3 5 1 . 7 1 . 2 5 0 2

3 9 . 4 8 6 7 3 . 3 1 7 0 . 0 1 5 4 3 3 9 . 7 5 5 0 . 7 5 2 1 6 6 5 . 2 0 7 4 0 1 . 7 1 . 2 5 1 8
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T a b le  A . 16: Contro ller and C losed Loop E valuation  P aram eters  o f Just P ro p er O p tim a l P ID
Controllers for C losed Loop o f T herm o co u p le  3  in H eated  T an k P ro cess

h h ki T P GMs M s M r

1 . 9 9 9 9 1 4 1 . 2 5 0 . 0 0 7 6 3 2 5 2 . 6 2 0 . 7 6 6 8 8 4 . 9 8 0 1 2 1 .7 1 . 7 1 . 1 4 7 3
2 . 9 9 9 8 1 3 4 . 3 6 0 . 0 0 8 1 0 9 5 1 . 4 8 2 0 . 7 5 8 1 9 7 . 1 8 6 2 3 1 .7 1 . 7 1 . 1 6 0 3
3 . 9 9 9 4 1 3 0 . 6 0 . 0 0 8 3 9 4 5 0 . 9 2 3 0 . 7 5 3 4 3 9 . 3 5 7 8 4 1 .7 1 .7 1 . 1 6 7 7

4 . 9 9 8 9 1 2 8 . 2 3 0 . 0 0 8 5 8 6 5 0 . 5 8 4 0 . 7 5 0 3 4 1 1 . 5 1 2 5 1 .7 1 . 7 1 . 1 7 2 6

9 . 9 9 0 9 1 2 3 . 1 4 0 . 0 0 9 0 2 5 4 9 . 8 9 6 0 . 7 4 3 9 2 2 2 . 2 0 6 1 0 1 .7 1 . 7 1 . 1 8 3 4

1 4 . 9 6 9 1 2 1 . 3 2 0 . 0 0 9 1 9 7 4 9 . 6 8 2 0 . 7 4 0 9 9 3 2 . 8 2 8 1 5 1 .7 1 . 7 1 . 1 8 7 5

1 9 . 9 2 7 1 2 0 . 3 9 0 . 0 0 9 2 9 1 4 9 . 5 6 6 0 . 7 3 9 3 2 4 3 . 4 2 9 2 0 1 .7 1 . 7 1 . 1 9

2 4 . 8 5 7 1 1 9 . 8 2 0 . 0 0 9 3 4 7 4 9 . 5 2 0 . 7 3 8 1 2 5 4 . 0 1 2 5 1 .7 1 . 7 1 .1 9 1
2 9 . 7 5 4 1 1 9 . 4 3 0 . 0 0 9 3 8 3 4 9 . 4 9 2 0 . 7 3 7 5 1 6 4 . 6 0 5 3 0 1 .7 1 . 7 1 . 1 9 1 4

4 4 . 1 8 1 1 1 8 . 7 8 0 . 0 0 9 4 5 4 9 . 3 8 8 0 . 7 3 6 7 4 9 6 . 4 2 1 4 5 1 .7 1 . 7 1 . 1 9 3 5
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APPENDIX B

MATLAB CODES FOR DESIGN OF OPTIMAL 
CONTROLLERS

The follow ing MATLAB codes solve the constrained optim ization formulation in (2.21) to  design 
optimal PI and PID controllers fo r the Quadruple-Tank Process. Optimal PI and PID contro llers 
were designed fo r other plant models by making appropriate modifications to the codes.
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kiterator.m

% kiterator.m implements the iterative sequential loop-closing method
(Shen
% & Yu, 1994} and Kristiansson’s loop evaluation criteria to compute 
the
% parameters for the minimum-Jv PID controllers in the multiloop of the 
% Quadruple-Tank Process

% code calls kanada opt.in

global PARAMS1 
global PARAMS2 
global params

ki1=0.0123;taul=143.0857;zetal=0.80 69;betal=3.407 8; 
ki2=0.0092;tau2=143.5109;zeta2=0.7874;beta2=4.5247; 
term=l;
params=[ki2 tau2 zeta2 beta2;kil taul zetal betal]; 

while term==l;
plantnum=2001; % 2001 refers to the
plant model, in Loop 1
run kanada_opt % solves the
constrained optimization formulation

% to design a minimum-
Jv PID controller for plant 2001
plantnum=2002; % 2002 refers to the
plant model in Loop 2
run kanada_opt % solves the
con s t rained opt i mi z a ti on fo rmuIa t i on

% to design a minimum-
Jv PID controller for plant 2001

clc
['kiO = 1 num2str(PARAMS2(1)) ' ' 'tauO = ' num2str(PARAMS2(2)) ' 1
'zetaO = ' num2str(PARAMS2(3)) ' ' 'betaO = ' num2str(PARAMS2(4) ) ]

['ki2 = ' num2str(params(1,1)) ' 1 'tau2 = ' num2str(params (1, 2))
' 'zeta2 = ' num2str(params(1, 3) ) ' ' 'beta2 = ' num2str(params (1, 4))]
['kiO = 1 num2str(PARAMS1(1)) ' ' 'tauO = ' num2str(PARAMS1(2)) ' '
'zetaO = ' num2str(PARAMS1(3)) ' ' 'betaO = ' num2str(PARAMS1(4) ) ]

['kil = ' num2str(params(2,1)) ' ' 'taul = ' num2str(params (2, 2)) 
'zetal = ' num2str(params(2, 3)) ' ' 'betal = ' num2str(params(2,4))]I I a

term=input ('Continue Iteration? (1 ./ 0) ');

end
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kanada opt.m

%Created in 2004 September 09 in Edmonton by Birgitta Kristiansson 
%Tp and L are given values, T63 and Ld are measured values for 
(e k v i v a 1 e n t} t i me c o n s t a n t a n d de 1 a y .
% This file minimizes Jv, while kinf (Ju} is given and GMs is fixed 
% for a proper PID controller (1:st ordn filter) with a possibly 
complex zero.
% kinf = ki*tau*beta corresponds to Ju 
% invariable: kinf
% parameters ki,zeta, tau are optimized. Starting values must be given 
% outvariables: ki, zeta, tau and beta

% code calls the following functions: kanadaproc.m, kan_ixlf.m, and 
% constrains.m

[ngp,dgp,kappa,wpip,nr,T63,Ld,kappal50,wl50,Klf,Tp,L,ordn, w]=kanadaproc 
(plantnum) ; %takes in the plant model and the results of a. simple 
analyses of that model

format compact 
w=logspace (-8,3,25000); 
t=[0:0.02:2000];

maxs=l.7; maxt=l.3; %maxt=maxs*1.3/1.7; minam=3.0; %value£
for GMS: max |S|, max | T ] (and ruin Gm)

% maxt is between 1.2 and 2.0; maxs is between
1.4 and 2.0

if ordn==l % 1st
order plant

kinf=6; % kinf
is high-frequency PID controller gain

k i = 0 . 0 0 8 ;  % sets
starting value for ki

zeta=l.l; % sets
starting value for zeta

tau=15; % sets
starting value for tau

elseif ordn==2 % 2nd
order plant 

kinf=6; 
ki=0.0090; 
zeta=0.7878; 
tau=142;

elseif ordn==3 % 3rd
order plant 

kinf=6;
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if kinf>25, kinf=25, end 
ki=0.0059; 
zeta=0.9153; 
tau=140.9720; 

end

beta=kinf/(tau*ki)

global INDEXPAR 
global WOMEGA 
global NGPROCESS 
global DGPROCESS

INDEXPAR(1)=kinf ; 
INDEXPAR(2)=wpip;

WOMEGA=w;
NGPROCESS=ngp;
DGPROCESS=dgp;

x0=[ki,zeta,tau]; % sets
the initial values of ki, zeta, and tau

options = optimset('LargeScale','off','MaxFunEvals',350,'TolX',le- 
10,'TolCon1,le-10);
[x, Jv, EXITFLAG] =fmincon (' kan__ixlf ' , xO, [ ] , [ ] , [ ] , [ ] , [0,0,0], [ ] , ' constrain 
s', options) %optirnizes Jv

ki=x (1); 
zeta=x(2); 
tau=x(3);
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kanadaproc.m

% kanadaproc.m computes the polynomial form of the plant's transfer
% function

% Created in 2004 September 03 in Edmonton by Birgitta Kristiansson 
% called by kanada opt.m

% code calls kanaproc.m to compute some frequency domain-based 
parameters for the 
% model

% nr refers to plant model number, e.g. 2001 for Loop 1 in the
% Quadruple-Tank's multiloop

function
[ngp,dgp,kappa,wpip,nr, T63, Ld, kappal50, wl50,Klf,Tp, L,ordn, w]=kanadaproc 
(plantnum);

nr=plantnum;
plantnum
w=logspace (-8, 2, 12000);

Tp=l;
Klf=l;
L=0;

global PARAMS1 
global PARAMS2 
global params

ki2=params (1,1);tau2=params(1,2) ; zeta2=params(1,3);beta2=params(1,4); 
kil=params (2,1);taul=params(2,2);zetal=params(2,3);betal=params (2,4) ;

if nr==01,
Tp=l;
Klf=l;
L=0.001;

[npade,dpade]=pade(L, 4); 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;

[wbp,wpip,kappa,T63,Ld,kappa150,wl50,ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==03,
Tp=l0;

Klf=l;
L=0.3*Tp;

[npade,dpade]=pade(L, 4) ; 
ngp=Klf*npade; 
dgp=conv(dpade, [ (Tp) 1]) ; 
ordn=l;
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[wbp,wpip, kappa,T63,Ld,kappa!50, w!50, ymax]=kanaproc(ngp, dgp,w, n r )

elseif nr==400,
Tp1=41.875;Tp2=42.349;
Klf=l.643;
L = (0.4/0.669)*31.1;
[npade,dpade]=pade(L, 4) ; 
ngp=Klf*npade;
dgp=conv(dpade, [ (Tpl*Tp2) (Tpl+Tp2) 1]); 
ordn=2;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==401,
Tp=57.19;

Klf=l.702;
L=7.81;

[npade,dpade]=pade(L, 4); 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==402,
Tpl=41.875;Tp2=42.34 9;
Klf=1.643;
L=31.1;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade, [ (Tpl*Tp2) (Tpl+Tp2) 1]); 
ordn=2;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==403,
Tpl=4 7.233;Tp2=45.707;
Klf=l.657;
L=48.4;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade, [ (Tpl*Tp2) (Tpl+Tp2) 1]); 
ordn=2;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==02,
Tp=input('Tp? ');
Klf=l;
L=input('L? ');
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade,[TpA2 2*Tp 1]); 
ordn=2;
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[wbp,wpip,kappa,T63,Ld,kappa!50,w!50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==lll,
Tp=154.7;
Klf=24.37;
L=6.28;
[npade,dpade]=pade(L, 4) ; 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==112,
Tp=120;
Klf=l1.15;
L=8.7;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade,[TpA2 2*Tp 1]); 
ordn=2;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==121,
Tp=114;
Klf=ll.13;
L=l;
[npade,dpade]=pade(L, 4) ; 
ngp=Klf*npade;
dgp=conv(dpade,[TpA2 2*Tp 1]); 
ordn=2;

[wbp,wpip,kappa, T63, Ld,kappal50, wl50, ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==122,
Tp=157.8;
Klf=24.57;

L=7.12;
[npade,dpade]=pade(L, 1); 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr)

elseif nr==211,
Tp=232.5;
Klf=10.13;
L=7.32;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;
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[wbp, wpip,kappa,T63,Ld, kappa!50, w!50, ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==212,
Tp=155;
Klf=l;
L=4 9 .3;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade,[24 056 310.2 1]); 
ordn=2;
[wbp,wpip,kappa,T63, Ld,kappal50,wl50,ymax] = 

kanaproc(ngp,dgp,w,nr);

elseif nr==221,
Tp=162;
Klf=l;
L=33;
[npade,dpade]=pade(L, 4); 
ngp=Klf*npade;
dgp=conv(dpade, [TpA2 2*Tp 1]); 
ordn=2;

[wbp, wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==222,
Tp=l93.8;
Klf=8.772;
L=13.9;
[npade,dpade]=pade(L, 4) ; 
ngp=Klf*npade; 
dgp=conv(dpade,[Tp 1]); 
ordn=l;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp, dgp,w,nr) ; 

elseif nr==1001,
[np,dp]=pade(6.28,2); ngpll=24.37*np; dgpll=conv(dp, [154.7 1] ) ; 

Gll=tf(ngpll,dgpll) ;
[np,dp]=pade(8.70,2); ngpl2=ll.15*np; dgpl2=conv(dp,[14340

250.8 1]); G12=tf(ngpl2,dgpl2);
[np,dp]=pade(1.00,2); ngp21=ll.13*np; dgp21=conv(dp,[13070

231.2 1]); G21=tf(ngp21,dgp21) ;
[np,dp]=pade(7.12,2); ngp22=24.57*np; dgp22=conv(dp, [157.8 1] ) ; 

G22=tf(ngp22,dgp22);
nf2=0.0205*[9.8262A2 2*1.4 996*9.82 62 1]; df2=[9 . 8262/29. 7141 1 

0]; F2=tf(nf2,df2);

dl221=conv(dgp12,dgp21);dll22=conv(dgpll, dgp22);nl221=conv(ngpl2, ngp21) 
nf222=conv(nf2, ngp22);nf222=[0,nf222];df222=conv(df2,dgp22) ; 
nf21221=conv(nf2,nl221) ; t2=conv([0,nf21221] ,dll22) ; t2=[0,0,t2] ; 
sd=size(df222) 
sn=size(nf222) 
st2=size(t2)
ngpl=conv(ngpll,dl221);size (ngpl) 
ngp2=conv(ngpl, (df222+nf222));np2=size(ngp2) 
ngp=conv(ngpl, (df222+nf222))-t2;
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dlll221=conv(dgpll,dl221); 
dgp=conv(dll1221,(df222+nf222)); 
ordn=3;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==1002,
[np,dp]=pade(6.28,2); ngpll=24.37*np; dgpll=conv(dp, [154 . 7 1]); 

Gll=tf(ngpll,dgpll);
[np,dp]=pade(8.70,2); ngpl2=ll.15*np; dgpl2=conv(dp,[14340

250.8 1]); G12=tf(ngpl2,dgpl2);
[np,dp]=pade(1.00,2); ngp21=ll.13*np; dgp21=conv(dp,[13070

231.2 1]); G21=tf(ngp21,dgp21);
[np,dp]=pade(7.12, 2) ; ngp22=24.57*np; dgp22=conv(dp, [157.8 1]); 

G22=tf(ngp22,dgp22);
nfl=0.0251*[8.8070A2 2*1.5251*8.8070 1]; dfl=[8.8070/27 . 0910 1

0]; Fl=tf(nf1,df1);

dl221=conv(dgp12,dgp21);dll22=conv(dgpll,dgp22);nl221=conv(ngpl2 , ngp21) 
nflll=conv(nf1,ngpll);nflll=[0,nflll];dflll=conv(df1,dgpll) ; 
nf11221=conv(nfl,nl221) ; t2=conv([0,nfll221] ,dll22) ; t2=[0, 0,t2]; 
ngpl=conv(ngp22,dl221); 
ngp2=conv(ngpl,(dflll+nf111)); 
ngp=conv(ngpl,(dflll+nf111))-t2; 
d221221=conv(dgp22,dl221); 
dgp=conv(d221221,(dflll+nf111)); 
ordn=3;

[wbp,wpip,kappa,T63,Ld,kappal50, wl50,ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==2001,

PARAMS2(1)=ki2;PARAMS2(2)=tau2;PARAMS2(3)=zeta2;PARAMS2(4)=beta2;
[np,dp]=pade(7.32,2); nll=0.3446*np; dll=conv(dp, [232 . 5 1]); 
[np,dp]=pade(49.3,2); nl2=l*np; dl2=conv(dp,[24056 310.2 1]); 
[np,dp]=pade(33.00, 2); n21=l*np; d21=conv(dp, [26244 324 1]); 
[np,dp]=pade(13.9,2) ; n22=0.3046*np; d22=conv(dp, [193 . 8 1]); 
nfl=kil*[(taulA2) (2*zetal*taul) 1]; dfl=[(taul/betal) 1 0]; 
nl2d21d22dlldfl=conv(nl2,d21) 
nl2d21d22dlldfl=conv(d22, nl2d21d22dlldf1); 
nl2d21d22dlldfl=conv(dll,nl2d21d22dlldfl); 
n12d21d22dlldfl=conv(dfl, nl2d21d22dlldfl);

nl2n21d22dllnfl=conv(nl2,n21); 
nl2n21d22dllnfl=conv(d22,nl2n21d22dllnfl) 
nl2n21d22dllnfl=conv(dll, nl2n21d22dllnf1) 
nl2n21d22dllnfl=conv(nfl,nl2n21d22dllnfl)

n22nlldl2d21nfl=conv(n22,nil); 
n22nlldl2d21nfl=conv(dl2, n22nlldl2d21nfl) 
n22nlldl2d21nfl=conv(d21, n22nlldl2d21nf1) 
n22nlldl2d21nfl=conv(nfl,n22nlldl2d21nfl)

nfln21dlldl2d22=conv(nfl,n21); 
nfln21dlldl2d22=conv(dll, nfIn21dlldl2d22); 
nfln21dlldl2d22=conv(dl2, nfIn21dlldl2d22);
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nfln21dlldl2d22=conv(d22,nfln21dlldl2d22);

dfld21dlldl2d22=conv(dfl,d21); 
dfld21dlldl2d22=conv(dll, dfId21dlldl2d22); 
dfld21dlldl2d22=conv(dl2, dfId21dlldl2d22); 
dfld21dlldl2d22=conv(d22, dfId21dlldl2d22);

ngp=[zeros(1,2) nl2n21d22dllnfl]+nl2d21d22dlldf1- 
n22nlldl2d21nfl;

dgp=[zeros(1,2) nfIn21dlldl2d22]+dfId21dlldl2d22;

ordn=3;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr) ;

elseif nr==2002,

PARAMS1(1)=kil;PARAMS1(2)=taul;PARAMS1(3)=zetal;PARAMS1 (4)=betal;
[np,dp]=pade(7.32,2) ; nll=0.3446*np; dll=conv(dp, [232.5 1]) 
[np,dp]=pade(49.3,2); nl2=l*np; dl2=conv(dp,[24056 310.2 1] 
[np,dp]=pade(33.00,2); n21=l*np; d21=conv(dp,[26244 324 1]) 
[np,dp]=pade(13.9, 2) ; n22=0.3046*np; d22=conv(dp, [193.8 1]) 
nf2=ki2*[(tau2A2) (2*zeta2*tau2) 1]; df2=[(tau2/zeta2) 1 0] 
n21dl2d22dlldf2=conv(n21,dl2) 
n21dl2d22dlldf2=conv(d22, n21dl2d22dlldf2); 
n21dl2d22dlldf2=conv(dll, n21dl2d22dlldf2); 
n21dl2d22dlldf2=conv(df2, n21dl2d22dlldf2); 
nl2n21d22dllnf2=conv(nl2, n21); 
nl2n21d22dllnf2=conv(d22, nl2n21d22dllnf2); 
nl2n21d22dllnf2=conv(dll,nl2n21d22dllnf2); 
nl2n21d22dllnf2=conv(nf2, nl2n21d22dllnf2) ; 
n22nlldl2d21nf2=conv(n22,nil); 
n22nlldl2d21nf2=conv(dl2,n22nlldl2d21nf2) ; 
n22nlldl2d21nf2=conv(d21,n22nlldl2d21nf2); 
n22nlldl2d21nf2=conv(nf2, n22nlldl2d21nf2); 
nf2nl2dlld21d22=conv(nf2, nl2); 
nf2nl2dlld21d22=conv(dll, nf2nl2dlld21d22); 
nf2nl2dlld21d22=conv(d21, nf2nl2dlld21d22); 
nf2nl2dlld21d22=conv(d22, nf2nl2dlld21d22) ; 
df2d21dlldl2d22=conv(df2, d21); 
df2d21dlldl2d22=conv(dll, df2d21dlldl2d22); 
df2d21dlldl2d22=conv(dl2,df2d21dlldl2d22); 
df2d21dlldl2d22=conv(d22, df2d21dlldl2d22); 
ngp=[zeros(1,2) nl2n21d22dllnf2]+n21dl2d22dlldf2-

n22nlldl2d21nf2;
dgp=[zeros(1,2) nf2nl2dlld21d22]+df2d21dlldl2d22;

ordn=3;

[wbp,wpip,kappa,T63,Ld,kappal50,wl50,ymax]=kanaproc(ngp,dgp,w,nr) ; 

end
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kanaproc.m

% kanaproc.m computes some characteristic parameters for the plant 
model

% Created in 2004 September 03 in Edmonton by Birgitta Kristiansson 
% function that analyses current plant.
% called by kanadaproc.m

function[wbp,wpip,kappa,T63,Ld, kappal50, wl50,ymax]=kanaproc(ngp, dgp, w, n 
r) ;

tsteg=0.02; 
t= [ 0:tsteg:500];

[amp,fas]=bode(ngp,dgp, w); 
ampl=amp(1)
Klf=amp(1)

ind=find(amp<(1/sqrt(2) ) ) ; 
wbp=w(ind(1));
if (max(fas)>-180) & (min(fas)<-180), 

ind=find(fas<=-180); 
wpip=w(ind(1)); 
kappa=amp(ind(1))/amp(1) ;

else
wpip=1000; 
kappa=100;

end

stegp=step(ngp,dgp,t); 
il=l;

while stegp(il)<0.63*stegp(length(t)) 
il=il+l;

end;
T63=t (il); 
i2=l;

while stegp(i2)<0.05*stegp(length (t)) 
i2=i2+l;

end;
Ld=t(i 2);
ymax =max(stegp);

if (max(fas)>-80) & (min(fas)<-150), 
ind=find(fas<=-150); 
wl50=w(ind(1)); 
kappal50=amp(ind(1))/amp(1);

else
wl50=1000;
kappal50=100;

end
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kan ixlf.m

% kan_ixlf.m  defines the objective function and uses the fmincon 
function
% to solve the constrained optimization formulation

% Created in 2004 September 04 in Edmonton by Birgitta Kristianssc-n 
% function to optimize Jv (Jr)
% called by kanada_opt

% code calls kreg.m, kkansl.m, kdistsen.m 

function Jv=kan ixlf(x)

global INDEXPAR; 
global WOMEGA; 
global NGPROCESS; 
global DGPROCESS;

kinf=INDEXPAR(1) ; 
wpip=INDEXPAR(2);

w=WOMEGA;
ngp=NGPROCESS;
dgp=DGPROCESS;
[ampp,fip]=bode(ngp,dgp,w);

ki=x(1); 
zeta=x (2); 
tau=x(3);

beta=kinf/(tau*ki);

[ngr,dgr]=kreg(ki, tau, beta, zeta); % creates the
controller
[nl,dl]=kkrets(ngr, dgr, ngp, dgp, w) ; % creates the

[ampl,fil]=bode(nl, dl, w) ;

[ns,ds,samp,ms, maxs_w,wmaxs_w]=kkansl (nl, dl, w) ;
sensitivity function

% creates the

[ngs,dgs]=kdistsen(ngp,dgp,ns,ds, w) ; 
s-weighted disturbance sensitivity function 
nix=ngs;
dix=conv([l 0],dgs);
[ixamp,ixfas]=bode(nix,dix,w);
[Jv,wind]=max(ixamp); 
wmax=w(wind);

% computes Jv

% creates the
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constrains.m

% constrains.m sets the constraints on the objective function. The
% constraints are typically on GMS and Ju (or kinf)

% Created in 2004 September 09 in Edmonton by Birgitta Kristiansson
% gives the constraints for the optimization
% called by kanada opt

% code calls kkansl.rn, kkompl.m and kreg.rn

function[g,geq] =constrains(x) 

geq=[];

maxs=l.7; maxt=l.3; %maxt=maxs* 1.3/1.7;
1am= 3; %1am= min i mum
limit for gain margin
tsteg=0.02;
t=[0:tsteg:1500];

global INDEXPAR; 
global WOMEGA; 
global NGPROCESS; 
global DGPROCESS;

kinf=INDEXPAR(1); 
wpip=INDEXPAR(2);

w=WOMEGA;
ngp=NGPROCESS;
dgp=DGPROCESS;
[ampp, fip] =bode (ngp, dgp, w) ;

ki=x (1); 
zeta=x(2); 
tau=x(3);

beta=kinf/(tau*ki);

[ngr, dgr]=kreg(ki,tau,beta,zeta);

[nl, dl]=kkrets(ngr, dgr,ngp,dgp,w);
[ampl, f il] =bode (nl, dl, w) ;

[ns,ds,samp,ms,maxs_w,wmaxs_w]=kkansl(nl, dl, w) ;
[nt, dt, tamp,mt, wb] =kkompl (nl, dl, w) ;

g (1)=ms-maxs; % imposes the constraint
max|S| <= MS
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g(2)=mt-maxt; % imposes the constraint
max|T| <= MT

g = [ g ( 1 )  g ( 2 )  ] ;
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kreq.m

% Modified in September 2004 in Edmonton by Birgitta Kristiansson

% kreg.m creates a PID controller with a 1st order filter, given the 
% parameters ki, betazeta, tau
% code is called by ka.n_ixlf.m and constrains.m

function [ngr,dgr]=kreg(ki,tau,beta,zeta);

ngr=ki*[tauA2 2*zeta*tau 1]; 
dgr=conv([l 0], [tau/beta 1]);
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kkrets.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

% kkrets.m creates the loop given the 
% plant and the controller
% code is called by kan_ixlf.m and constrains.m 

function [nl,dl]=kkrets(ngr,dgr,ngp,dgp,w);

nl=conv(ngr,ngp); 
dl=conv(dgr,dgp);

lnl=length(nl);ldl=length(dl); 
if lnl>ldl, dl=[zeros(1,lnl-ldl),dl]; 
elseif ldl>lnl, nl=[zeros(1,ldl-lnl),nl]; 
end

loopl=tf(nl,dl);
[ampl, fil]=bode(loopl,w); 
index=find (fil<=-180);
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kkansl.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

% kkansl.m creates the sensitivity function and the 1/s-weighted 
sensitivity function given the loop 
% It calculates Ms
% code is called by kan ixlf.rn and constrains.m 

function [ns, ds,samp,ms,maxs_w,wmaxs_w]=kansl(nl,dl,w);

lnl=length(nl); 
ldl=length(dl); 
ns=dl;

ds=nl+dl;
[samp,sfas]=bode(ns, ds, w) ; 

[ms,sind]=max(samp); 
dsr=conv([l 0],ds);
[s_w,s_wfas]=bode(ns,dsr,w) ; 
[maxs_w,swi]=max(s_w); 
wmaxs w=w(swi(l));
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kkompl.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

% kkompl.m creates the complementary sensitivity function T and th 
bandwidth wb, given the 
% loop
% code is called by kan ixlf.rn and constrains.m

function [nt, dt,tamp,mt,wb]=kkompl(nl,dl,w);

nt=nl; 
dt=dl+nl;

[tamp,tfas]=bode(nt,dt,w);
[mt,tind]=max(tamp);

indwb=find(tamp<(1/sqrt(2)));
wb=w(indwb(1)); %bandwith for the closed loop
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kdisten.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

% kdisten.m creates the disturbance sensitivity function = Gvy

function[ngs,dgs,gsamp]=kdisten(ngp,dgp, ns, ds,w);

ngs=conv(ngp,ns); 
dgs=conv(dgp,ds);
[gsamp, gsf as] =bode (ngs, dgs, w) ;
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kdisten.m

% Modified in September 4004 in Edmonton by Birgitta Kristiansson

% kdisten.m creates the disturbance sensitivity function = Gvy

function[ngs,dgs,gsamp]=kdisten(ngp,dgp,ns,ds,w);

ngs=conv(ngp,ns); 
dgs=conv(dgp,ds);
[gsamp,gsfas]=bode(ngs,dgs,w);
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