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Abstract

Causality is a fundamental concept in reasoning. The effectiveness of many reasoning tasks depends on the understanding
of the underlying cause-effect relationships. Therefore,the notion of causality has been explored in a wide range of disciplines.
Causal discovery, however, was not modeled as a machine learning task until recently. Many learning approaches have recently
been developed and applied to capture causation. The most frequently used approach among them is learning causal Bayesian
networks (CBNs). A powerful calculus, capable of causal reasoning, has been formalized through CBNs. In this paper, we
reviewed the fundamentals of learning causal structures using CBNs. We distinguished between observation and intervention,
a crucial concept for learning CBNs. We reviewed some methods for learning from observational and interventional data.We
have noted that, as a growing field of research, learning CBN structure is being investigated with increasingly difficultproblems
and possibilities are arising for incorporating it to otherlearning problems, such as active learning.

1 Introduction

Causal reasoning has become a central point of atten-
tion in many practical areas. For example, in medical diag-
nosis, researchers are concerned in discovering the condi-
tions, events or genes that are the causes of a certain disease.
Causal reasoning is also essential in resolving problems in
finance such as prediction of market prices and risk man-
agement [16].

In recent decades, artificial intelligence (AI) research has
a growing interest in causal reasoning [11]. Discovery of
the underlying model of a world often requires knowledge
about cause-effects. Hence, automated causal reasoning has
recently developed as an active field of machine learning.

Many different methods have been developed to capture
causal relationships [7],[12]. The most frequently used ap-
proach is using Bayesian networks (BNs), stemming from
the works of Pearl [10]. In fact, BNs as well as many other
directed acyclic graphical models in statistical and AI appli-
cations, were originally intended as a formalism for causal
reasoning [9]. BNs are frequently used for capturing the
probabilistic model.

BNs are inadequate for capturing causal relationships. It
is because probabilistic calculus itself is incapable of mod-
eling causality. Pearl illustrated it through Simpson’s para-
dox, a phenomenon well known to statistical community
[9]. It occurs when conditioning on an event, a probabil-
ity measure increases but in each of its subpopulation, the
probability measure decreases. Therefore, a conclusion at

subpopulation level contradicts with a conclusion at total-
population level. Pearl showed that, an attempt to model
causality with probabilities can fall into this paradox.

Pearl formalized causal calculus, which can avoid the
Simpson’s paradox. He introduced causal Bayesian net-
works (CBNs) that are more effective than general BNs
for causal discovery. A central concept of CBNs is inter-
vention: perturbation of a variable from an external agent.
When an external agent forces a system variable to take a
specific value, its previous causal relationships are cut off.
CBNs can answer intervention queries, such as, whether a
patient gets well if she is given a specific medicine. It is dif-
ferent than the case where a patient takes the medicine on
her own. CBNs are able to capture causal structures from
observational as well as interventional data.

In this paper, we survey different methods for learning
CBN structures. In section 2, we develop the conceptual
framework necessary for the understanding of the subse-
quent discussions. In section 3, we describe some methods
used for learning CBNs from observational data. In section
4, we describe some methods for learning CBNs from inter-
ventional data. In section 5, we conclude with a summary
of the trends of such works.

2 Conceptual Framework

To understand structure learning in CBNs, we first need
to define Bayesian networks and described their properties.
Then, we define intervention and causal Bayesian networks.
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Figure 1. Example of a Bayesian network

2.1 Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph
(DAG) G where nodes represent random variables and arcs
represent probabilistic dependencies among them. An ex-
ample of such a BN with four variables is depicted in Fig-
ure 1. A BN encodes the joint probabilityP over a set of
variablesV = {X1, X2, ..., Xn} and decomposes it into
a product of the conditional probability distributions over
each variable given its parents in the graph. That is,

P (X1, X2, ..., Xn) =

n∏

i=1

P (Xi | Pa(Xi)) (2.1)

Pa(Xi) is the set of parents ofXi. Given that the dis-
tribution factorizes according to theG as above, thelocal
Markov conditionholds, that is,

P (Xi | Pa(Xi), Z) = P (Xi | Pa(Xi))

where,Z is any set of non-descendant nodes ofXi ex-
cept the nodes inPa(Xi). P is said to be aMarkov relative
toG.

It asserts that, given its parents, the probability of each
variable is independent of its non-descendants in the graph,
concisely described asI(Xi ⊥ Z | Pa(Xi)). Note that,
wheneverX is independent ofY givenZ, it can be written
asI(X ⊥ Y | Z).

All such independence assertions derived fromG are de-
noted asI(G). There can be severalGs that represent the
same set of independencies. Given two different graphs
G1 = 〈V,E1〉 andG2 = 〈V,E2〉with set of arcs,E1 6= E2,
if I(G1) = I(G2), thenG1 andG2 are calledI-equivalent.
All such graphs form anI-equivalence class.

Note that, according tolocal Markov condition, it is
sufficient to know the conditional probability distribution
(CPD) ofXi in the form ofP (Xi | Pa(Xi)). The graphG
and CPDs associated with the nodes form a full description
of a BN.

Figure 2. Example of a mutilated network

2.2 Causal Bayesian Networks

A causal Bayesian network (CBN) is a BN where each
arc is interpreted as a cause-effect relationship from the par-
ent to the child. A CBN satisfies thecausal Markov condi-
tion: given the direct causes, the phenomenon associated
with a node is independent of its non-effects. This assump-
tion permits the joint distribution of the variables in a CBN
to be factored as in Equation 2.1.

A powerful feature of a CBN is that it can answer in-
tervention queries as well as probabilistic queries. Anin-
terventionover a random variableXi to xi, denoted as
do(Xi = xi), is a perturbation from an external agent, forc-
ing the value ofXi to be fixed atxi. An intervention query
takes a form ofP (Y | do(X = x)). In the following, we
describe observational data and interventional data.
Observational datais passively observed data. Values taken
by each variable are determined by the causal interactions
between them within the system.
Interventional datais a record of phenomena perturbed by
external agents. Some variables in the system are given
fixed values by an external force, most often by an exper-
imenter.

Intervention essentially separatesXi from its direct
causes. An intervention can be described by a mutilated net-
work derived from the original network of the joint distri-
bution, by removing all the incoming arcs toXi and setting
the CPD ofXi asP (Xi | Pa(Xi)) = I(Xi = xi). The
network in Figure 2 is a mutilated network resulting from
the network in Figure 1 by intervening on variableX3.

Pearl defines CBNs more formally as follows:

Definition (causal Bayesian network). A DAG G is said to be
a causal Bayesian networkcompatible with every possible
interventional distributionP (v | do(X = x)), wherev is an
assignment of values toV andX ⊂ V , allowingX = φ, if
and only if:

• EveryP (v|do(X = x)) is aMarkov relativetoG;

• P (Xi | do(X = x)) = I(Xi = xi) with Xi ⊂ X;

• P (Xi | Pa(Xi), do(X = x)) = P (Xi | Pa(Xi))
with Xi 6⊂ X.
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Therefore, if a CBN can capture the true causal relation-
ships between the variables, then any interventional query
on such variables can be answered by deriving the mutilated
network from the CBN and applying a truncated factoriza-
tion,

P (v | do(X = x)) =
∏

i|Vi 6∈X

P (vi | pai)

Note that anI-equivalence of a CBN can represent the
same probabilistic independencies but not the same causal
relationships.

3 Learning CBN from Observational Data

Here we will consider the task of learning CBNs from
completely observational data. Structure learning of CBNs
in observational data is essentially the same as structure
learning of BNs.

There are two classes of methods for structure learning
of BNs: constraint-based methods and score-based meth-
ods. Here we discuss some seminal approaches of these
methods.

3.1 Constraint-based Approaches

These approaches are based on the qualitative properties
of the probability distribution. In these approaches, the set
of independencies are derived from the empirical distribu-
tion and used as constraints in the structure learning.

PC Algorithm

Spirtes et al. devised PC algorithm for recovering DAG
structures [13]. The algorithm takes a set of independen-
cies derived from independence test over the variables in
domainV (found in the empirical distribution) and outputs
a partially directed graph.

The algorithm starts with a complete undirected graph
among the variables inV . The first major step of the
method is to delete an edge betweenx andy, if there ex-
ists aZ ⊂ V \ {x, y} such thatI(x ⊥ y | Z). The basis
of this step is that, if there exists an edge betweenx andy,
they cannot be conditionally independent for anyZ. This
step builds the skeleton of the graph.

The second major step is, if there is a tripletx − y − z

with nox− z and there exists noZ ⊂ V \ {x, z} such that
I(x ⊥ z | Z ∪ y), then it is replaced withx→ y ← z. The
basis is that, if the orientation is not so,I(x ⊥ z | y) will
be immediately true. So, if there is no such conditional in-
dependence betweenx andz and the undirected orientation
is x− y − z, then it must bex→ y ← z.

The final step ensures that the arc-directions preserve the
independencies. For example, direction is imposed if that is
necessary to avoid a directed cycle.

This algorithm has worst-case complexity bounded by
O(|V |q) with high probability, where q is the maximum
number of adjacent nodes for any node in the graph. The
algorithm usually results into a partially directed acyclic
graph (PDAG). The PDAG represents anI-equivalence
class. These approaches are highly sensitive to erroneous
independence test results, more likely when data sets are
small.

3.2 Score-Based Approaches

Score-Based approaches quantitatively distinguish be-
tween BN structures. There are two separate tasks in such
methods. First, a measure is defined to score BNs: struc-
tures that better represent the empirical distribution should
be scored higher. The second task is to devise a search al-
gorithm (e.g., local, global, heuristic) that uses the score
metric.

K2 Algorithm

Cooper et al. devised a score metric and an algorithm,
namely K2, for learning DAG structures [1]. It requires
some assumptions, such as, discrete value assumption, inde-
pendent data assumption, complete data assumption and pa-
rameter independence assumption. The score metric helps
to find the most probable structureG given the dataD. It
essentially maximizesP (G | D). However, asP (G1|D)

P (G2|D) =
P (G1,D)
P (G2,D) , K2 algorithm looks for a network structureG that
maximizesP (G,D).

They represented the probability in terms of local
parent-child subgraphs. Their measure is:

P (G,D)

=P (G)

∫
P (D | G, θG)P (θG | G)dθG (3.1)

=P (G)

∫ m∏
h=1

P (Ch | G, θG)P (θG | G)dθG (3.2)

=P (G)

∫ m∏
h=1

n∏
i=1

P (Xi = dih | Pa(Xi) = dPa(Xi)h, θG)

× P (θG | G)dθG (3.3)

=P (G)

∫ n∏
i=1

qi∏
j=1

ri∏
k=1

P (Xi = vik | Pa(Xi) = wij , θG)
Nijk

× P (θG | G)dθG (3.4)

=P (G)

n∏
i=1

g(Xi, Pa(Xi)) (3.5)
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g(Xi, Pa(Xi)) =

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

∏
Nijk

where,θG is CPD parameters associated to the nodes of
G,Ch is thehth data instance inD. dih is the valueXi takes
in hth data instance.vik is thekth value ofXi andwij is
thejth assignment ofPa(Xi). Nijk is the number of data
instances in whichXi = vik andPa(Xi) = wij . m is the
total number of instances,n is the total number of variables,
ri is the total number of valuesXi can take andqi is the total
number of assignmentsPa(Xi) can have.g(Xi, Pa(Xi))
is a measure for the local subgraphs consisting child and
parents.

Equation 3.2 is due to the independent data assumption.
Equation 3.3 is due to the complete data assumption that al-
lows the factorization. Equation 3.4 is due to discrete vari-
able and parameter independence assumption.

The algorithm assumes that there exists an ordering of
the variables such that ifXj precedesXi in the ordering
thenXi → Xj is not allowed. Then the algorithm iterates
over the following steps to find the parents of each nodeXi.

First, it selects aXj ∈ {X1, X2, , Xi−1}−Pa(Xi) such
thatg(Xi, Pa(Xi)∪Xj) is maximum. ThenXj is included
asXi’s parent if∆ = g(Xi, Pa(Xi)∪Xj)−g(Xi, Pa(Xi))
is greater than zero. The loop iterates until∆ falls below a
threshold orPa(Xi) has become maximal. The time com-
plexity of K2 algorithm isO(Nu2n2r), whereN is the
number of data instances,u is the maximum number of
parents allowed,n is the number of variables andr is the
maximum number of possible values a variable can take.

BDe Metric

Heckerman et al. devised a Bayesian score-based algorithm
that can use a BN for prior knowledge [6]. Such guid-
ance through prior knowledge is a great assistance for struc-
ture learning of CBNs when some causal links are already
known. They proposed the BDe metric (Bayesian metric
with Dirichlet priors and equivalence) that requires addi-
tional assumptions in addition to the assumptions in the pre-
vious method, such as, parameter modularity assumption
and likelihood equivalence assumption. The measure is:

P (G,D) = P (G)
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)

The derivation follows from Equation 3.4 after incorpo-
rating the additional assumptions. It gives the same score
to all I-equivalent BNs. Their algorithm outputs anI-
equivalence class of networks.

Although, among the BNs inI-equivalence class, any
BN is as useful capturing the probabilistic model as the
other, but they yield different cause-effect relationships,
giving rise to different answers to causal queries. Many
non-equivalent networks can have reasonably high scores.
Therefore, a better approach is to use Bayesian model aver-
aging that quantify the probability mass of structures. Other
approaches include, combining both the constraint-based
and score-based approaches.

However, it is not always possible to identify the com-
plete CBN structure from observational data alone. To dis-
tinguish between structures further, we need interventional
data.

4 Learning CBNs from Interventional Data

Learning CBN structure from interventional data is sig-
nificant in many ways. First, CBNs are formulated to con-
sider data obtained from interventions. Such data is avail-
able and arises in many scientific experiments. It is, hence,
natural to incorporate interventional data for learning CBN
structures. Second, learning from observational data can
only identify models up toI-equivalence, where interven-
tional data can help discover causal relationships further.

Both constraint-based and score-based approaches can
be applied for learning CBNs from interventional data.
However, enough data instances of any given type of in-
tervention for a reliable independence test is generally not
available. On the other hand, the score-based approach is
flexible for dealing with a combination of observational and
interventional data, having interventions at different nodes.

There are two major axes along which types of interven-
tion can vary. One is whether an intervention is perfect or
imperfect. A perfect intervention occurs when an interven-
tion sets a variable to a fixed value. In imperfect interven-
tion, the variable does not take a fixed value, but takes a
different distribution of values than the original one, upon
intervention.

Another axis asks whether an intervention is determinis-
tic or nondeterministic. A deterministic intervention is an
assured intervention on a variable by experimenter. In a
nondeterministic intervention, the experimenter is uncertain
whether the execution of the intervention will be successful
or not. A classical example, as mentioned by Cooper et
al., is when a group of patients volunteer to participate in a
study and given a medicine to take but a patient can decide
not to take it [2].

Not all the cases are interesting, practical or thoroughly
explored. Here we discuss some of the works on these dif-
ferent cases.
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4.1 Learning from Data with Perfect Intervention

One of the first works on learning CBN structures from
mixed data is due to Heckerman [5]. He proposed a score-
based method for mixed data where interventional data are
perfect and deterministic. Together with the assumptions
necessary for the BDe metric, derived by the same author,
he proposed some additional assumptions: mechanism in-
dependence and component independence. These assump-
tions are similar to the parameter independence of BDe pa-
rameter but applicable in an interventional setting upon the
intervened nodes.

The most important step is, for each intervened variable
Xi in a data instance, every incoming arc toXi is removed
and p(Xi | Pa(Xi)) is changed toI(Xi = x∗

i ), where
x∗
i is the value at whichXi is intervened. Essentially, this

changes the conditional probability distribution (CPD) tobe
1 whenXi = x∗

i and 0 elsewhere.
Let’s see how it affects the score metric. We are primar-

ily interested in finding the network structureG that max-
imizesP (G | D). It is essentially the same as maximiz-
ing P (G,D) for the same data. Now,P (G,D) follows the
derivation as Equation3.1-3.4, except that in Equation3.4
for this case,Nijk means the number of data instances in
whichXi = vik andPa(Xi) = wij whereXi is not inter-
vened. It differs from theNijk in K2 algorithm as there was
no interventional data in that setting. The difference is due
to the fact that wheneverXi in data instanceh is intervened,
P (Xi = dih | Pa(Xi) = dPa(Xi)h, θG) is set to 1.

Now, consider a network over two variablesX andY . To
find which one is cause and which one is effect, if any, we
look for P (X → Y | D) andP (Y → X | D). Given only
observational data, both networksX → Y andX ← Y

would beI-equivalent and hence indistinguishable. This is
because, the countNijk is symmetrical for a pair of vari-
ables in observational data. However, in the interventional
data,Nijk will render an asymmetrical count for this pair
of variables, given that only one of them is intervened in
a data instance. Therefore, the metric will score these two
networks differently. Note that, intervening on both vari-
ables here is of no use.

Perfect Nondeterministic Intervention

Cooper et al. proposed a method for learning from data with
perfect nondeterministic intervention [2]. They introduced
an extra variable,Mi, for the role of the experimenter in in-
tervention on variableXi. Mi = 0 whenXi is passively
observed.Mi = k (from 1 to ri), when the experimenter
wishes to interveneXi at valuek. It helps to see nonde-
terministic intervention as a general case of deterministic
intervention to get the difference between them. In case
of a deterministic intervention under this description (with

addedMi), P (Xi | Pa(Xi),Mi = k, θG) = I(Xi = k),
while for nondeterministic intervention, it is not so. The au-
thors mentioned that, addingMis to the set of variables and
carrying out the same analysis as in the deterministic in-
tervention would derive the CBN. The addition ofMi will
require information about whether experimenter wished to
intervene or not, for each data instance.

Korb et al. generalized this model in terms of effec-
tiveness [8]. They formulated the uncertainty of the suc-
cess of intervention through a latent indicatorRi, where
Ri = 1 when the intervention is successful andRi = 0
when it is not. Therefore,P (Xi | Pa(Xi),Mi = k, θG)
becomes a mixture model. Under perfect nondetermin-
istic intervention, it is described byP (Ri = 0)P (Xi |
Pa(Xi), θG) + P (Ri = 1)I(Xi = k).

4.2 Learning from Data with Imperfect Interven-
tion

Tian et al. termed an imperfect intervention as amecha-
nism change[14].

Definition (Mechanism change). A Mechanism change is a trans-
formation of causal modelM =< G, θG >at a variable
Xi to a new modelMXi

=< G, θ′G >, where θ′G =
Ψ′

i ∪ (θG \ Ψi) andΨ′
i is a set of parameters having dif-

ferent values than inΨi.

Hence, we set,

p(Xi | Pa(Xi),Mi = 0, θG) = p(Xi | Pa(Xi),Ψi)

and p(Xi | Pa(Xi),Mi 6= 0, θG) = p(Xi | Pa(Xi),Ψ
′
i)

With these assumptions, the Equation 3.3 can be parti-
tioned into cases whereXi is passively observed and cases
whereXi is intervened [4].

P (G,D)

=P (G)

∫ ∏
h:Mih=0

n∏
i=1

P (Xi = dih | Pa(Xi) = dPa(Xi)h,Ψi)

× P (Ψi | G)dΨi

×

∫ ∏
h:Mih 6=0

n∏
i=1

P (Xi = dih | Pa(Xi) = dPa(Xi)h,Ψ
′
i)

× P (Ψ′
i | G)dΨ′

i

Note that, the formulation of non-deterministic interven-
tion by Korb et al. is also applicable on imperfect nondeter-
ministic interventions.
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5 Conclusion

This paper serves as a short summary of the recently
flourished research area of learning CBNs. We have re-
viewed the conceptual background, developed a suitable
taxonomy and summarized some learning methods along
the divisions.

We have noted that, initial efforts only used observa-
tional data for causal discovery. However, with observa-
tional data alone, these approaches can only identify the
structure up toI-equivalence. In the absence of interven-
tional data, structure learning of CBNs is just the same as
structure learning of BNs.

The use of interventional data has enabled further disam-
biguation of structures. Since CBNs were formalized, many
works have been done on learning causal discovery from
different types of interventional data. The difference in in-
terventional data arises from different intervention setup in
real world problems. The types of interventions have be-
come subsequently challenging, from perfect to imperfect,
from deterministic to non-deterministic. The trend of learn-
ing CBNs under increasingly difficult interventional setup
continues, for example, Eaton et al. has recently worked on
uncertain interventions where the effects of the intervention
are unknown [4].

Learning CBNs has recently been incorporated with ac-
tive learning, where the learning algorithm actively seeks
appropriate data points, in this case interventional data in-
stances, in order to optimize performance [15]. A great deal
of research is to be done to extend the idea of CBNs and in-
tegrate it to other learning problems where causality is con-
cerned.
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