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Abstract

Causality is a fundamental concept in reasoning. The éffawss of many reasoning tasks depends on the undergiandin
of the underlying cause-effect relationships. Thereftire notion of causality has been explored in a wide rangesoiflines.
Causal discovery, however, was not modeled as a machimarigaask until recently. Many learning approaches haventyg
been developed and applied to capture causation. The neogstefintly used approach among them is learning causal Bayesi
networks (CBNs). A powerful calculus, capable of causatoeing, has been formalized through CBNs. In this paper, we
reviewed the fundamentals of learning causal structurieg) @BNs. We distinguished between observation and inteiwe,

a crucial concept for learning CBNs. We reviewed some metliodlearning from observational and interventional daté.
have noted that, as a growing field of research, learning GBMtsire is being investigated with increasingly diffiquioblems
and possibilities are arising for incorporating it to otlearning problems, such as active learning.

1 Introduction subpopulation level contradicts with a conclusion at total
population level. Pearl showed that, an attempt to model

Causal reasoning has become a central point of atten-causality with probabilities can fall into this paradox.
tion in many practical areas. For example, in medical diag- __Pearl Tormahzed causal calculus, which can avoid the
nosis, researchers are concerned in discovering the condiSimpson's paradox. He introduced causal Bayesian net-
tions, events or genes that are the causes of a certaineliseasVorks (CBNSs) that are more effective than general BNs
Causal reasoning is also essential in resolving problems inf0r causal discovery. A central concept of CBNs is inter-
finance such as prediction of market prices and risk man-Vention: perturbation of a variable from an external agent.
agement [16]. When an external agent forces a system variable to take a

In recent decades, artificial intelligence (Al) research ha SPECific value, its previous causal relationships are dut of
a growing interest in causal reasoning [11]. Discovery of CBNS can answer intervention queries, such as, whether a
the underlying model of a world often requires knowledge patient gets well if she is given as_pecmc medicine. It_|s_ dif
about cause-effects. Hence, automated causal reasorsing nderent than the case where a patient takes the medicine on
recently developed as an active field of machine learning. Ner own. CBNs are able to capture causal structures from

Many different methods have been developed to capture()bser\;]"flt'on"’lI as well as mte(rj\_/f(?nnonal dat'[]a.d or learn;
causal relationships [7],[12]. The most frequently used ap c In this paper, we survey 2' eren(; melt 0 ﬁ or earmngl
proach is using Bayesian networks (BNs), stemming from CBN structures. In section 2, we develop the conceptua
the works of Pearl [10]. In fact, BNs as well as many other framework necessary for the understanding of the subse-

directed acyclic graphical models in statistical and Allapp quegtfdlslcuss_lons. In sefctlon 3;) we d?sc”?g‘ some methods
cations, were originally intended as a formalism for causal use (;)r eqrt)nlng CBNs rhorg Of se;rvatlpnac ata.fln se.ctlon
reasoning [9]. BNs are frequently used for capturing the 4, we describe some methods for learning CBNS from inter-

probabilistic model ventional data. In section 5, we conclude with a summary

BNs are inadequate for capturing causal relationships. ItOlc the trends of such works.

is because probabilistic calculus itself is incapable ofimo

eling causality. Pearl illustrated it through Simpson'sspa 2 Conceptual Framework

dox, a phenomenon well known to statistical community

[9]. It occurs when conditioning on an event, a probabil-  To understand structure learning in CBNs, we first need
ity measure increases but in each of its subpopulation, theto define Bayesian networks and described their properties.
probability measure decreases. Therefore, a conclusion affhen, we define intervention and causal Bayesian networks.



Figure 1. Example of a Bayesian network Figure 2. Example of a mutilated network

2.1 Bayesian Networks 2.2 Causal Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph A causal Bayesian network (CBN) is a BN where each
(DAG) G where nodes represent random variables and arcsarc is interpreted as a cause-effect relationship from&ne p
represent probabilistic dependencies among them. An ex-ent to the child. A CBN satisfies thmusal Markov condi-
ample of such a BN with four variables is depicted in Fig- tion: given the direct causes, the phenomenon associated
ure 1. A BN encodes the joint probabili#y over a set of  with a node is independent of its non-effects. This assump-
variablesV = {X;, X5, ..., X,,} and decomposes it into tion permits the joint distribution of the variables in a CBN
a product of the conditional probability distributions ove to be factored as in Equation 2.1.
each variable given its parents in the graph. That is, A powerful feature of a CBN is that it can answer in-

tervention queries as well as probabilistic queries. idn
N terventionover a random variablé; to z;, denoted as
P(X1, X2, X)) = H P(X; | Pa(X))) (2.1) do(X; = x;), is a perturbation from an external agent, forc-
ing the value ofX; to be fixed atr;. An intervention query
takes a form ofP(Y | do(X = x)). In the following, we

Pa(X;) is the set of parents of;. Given that the dis- describe pbservati_onal d:?\ta and interventional data.
tribution factorizes according to th& as above, théocal Observational datés passively observed data. Values taken
Markov conditiorholds, that is, by each variable are determined by the causal interactions

between them within the system.
Interventional datds a record of phenomena perturbed by

i=1

P(X; | Pa(X;),Z) = P(X; | Pa(X;)) external agents. Some variables in the system are given
fixed values by an external force, most often by an exper-
where, 7 is any set of non-descendant nodesXgfex- imenter.
cept the nodes i?a(X;). P is said to be &Markov relative Intervention essentially separates; from its direct
to G. causes. Anintervention can be described by a mutilated net-

It asserts that, given its parents, the probability of each work derived from the original network of the joint distri-
variable is independent of its non-descendants in the graphbution, by removing all the incoming arcs 16, and setting
concisely described a§ X; | Z | Pa(X;)). Note that, the CPD ofX; asP(X; | Pa(X;)) = I(X; = z;). The
wheneverX is independent o given Z, it can be written ~ network in Figure 2 is a mutilated network resulting from
asI(X LY | 2Z). the network in Figure 1 by intervening on variabig.

All such independence assertions derived fi@Grare de- Pearl defines CBNs more formally as follows:
noted as/(G). There can be severéis that represent the

. . : . Definition (causal Bayesian network A DAG G is said to be
same set of independencies. Given two different graphs

a causal Bayesian networtompatible with every possible

Gy = (V. Er) andGs = (V, E») with set of arcskn # B, interventional distributiorP (v | do(X = z)), wherev is an
if I(G1) = I(G2), thenG, andG are called/-equivalent assignment of values 6 and X C V, allowing X = ¢, if
All such graphs form ad-equivalence class and only if:

Note that, according tdocal Markov condition it is

sufficient to know the conditional probability distributio o EveryP(v|do(X = z)) is aMarkov relativeto ;

(CPD) of X; in the form of P(X; | Pa(X;)). The graphG o P(X;|do(X =x)) = I(X; = z;) with X; C X
and CPDs associated with the nodes form a full description e P(X; | Pa(X;),do(X = z)) = P(X; | Pa(X;))
of a BN. with X; ¢ X.



Therefore, if a CBN can capture the true causal relation-  The final step ensures that the arc-directions preserve the
ships between the variables, then any interventional queryindependencies. For example, direction is imposed if that i
on such variables can be answered by deriving the mutilatedhecessary to avoid a directed cycle.
network from the CBN and applying a truncated factoriza-  This algorithm has worst-case complexity bounded by
tion, O(]V]9) with high probability, where q is the maximum

number of adjacent nodes for any node in the graph. The
algorithm usually results into a partially directed acgcli
P(v|do(X =2))= [] P(vi|pa) graph (PDAG). The PDAG represents drequivalence
ivigx class. These approaches are highly sensitive to erroneous
independence test results, more likely when data sets are

Note that an/-equivalence of a CBN can represent the small.

same probabilistic independencies but not the same caus

relationships. aé.z Score-Based Approaches

Score-Based approaches quantitatively distinguish be-
tween BN structures. There are two separate tasks in such
. . . methods. First, a measure is defined to score BNs: struc-

Here we will cons_lder the task of leamning (_:BNS from tures that better represent the empirical distributiorutdho
completely observational data. Structure learning of CBNs be scored higher. The second task is to devise a search al-

in observational data is essentially the same as structuregorith m (e.g., local. global, heuristic) that uses the scor
learning of BNs. -9 , ,

There are two classes of methods for structure learning
of BNs: constraint-based methods and score-based meth- ]
ods. Here we discuss some seminal approaches of thes§2 Algorithm

3 Learning CBN from Observational Data

metric.

methods. Cooper et al. devised a score metric and an algorithm,
. namely K2, for learning DAG structures [1]. It requires
3.1 Constraint-based Approaches some assumptions, such as, discrete value assumption, inde

pendent data assumption, complete data assumption and pa-

These approaches are based on the qualitative properti€gymeter independence assumption. The score metric helps
of the probability distribution. In these approaches, € s 5 find the most probable structu® given the dataD. It
of independencies are derived from the empirical distribu- essentially maximize®(G | D). However ast(GiD) _

tion and used as constraints in the structure learning. P(G1.D) _ P(G2]D) —
P(G;fD) , K2 algorithm looks for a network structu€e that
PC Algorithm maximizesP(G, D).

They represented the probability in terms of local
Spirtes et al. devised PC algorithm for recovering DAG parent-child subgraphs. Their measure is:

structures [13]. The algorithm takes a set of independen-

cies derived from independence test over the variables in  p(@, D)
domainV (found in the empirical distribution) and outputs

a partially directed graph.

The algorithm starts with a complete undirected graph =P(G)/P(D | G,0c)P(0c | G)dbc (3.1)
among the variables iv. The first major step of the m
method is to delete an edge betweeandy, if there ex- :p(G)/H P(Ch | G,0c)P(6c | G)dbc (3.2
istsaZ Cc V\ {z,y} such thatl(z L y | Z). The basis h=1
of this step is that, if there exists an edge betweamdy, "o
they cannot be conditionally independent for aty This =P(G) / H H P(Xi = din | Pa(Xi) = dpax;n, )
step builds the skeleton of the graph. el

The second major step is, if there is a triptet- y — 2 x P(0c | G)doc (33)
with noz — z and there exists ng C V' \ {z, 2z} such that - ST o N Nk
I(z L 2| ZUy), thenitis replaced withk — y <+ 2. The P(G)/Ejli[l kE[lP(XZ = vik | Pa(Xs) = wiy, 0c)
basis is that, if the orientation is not sb(z L 2 | y) will « P(0c | G)ddc (3.4)

be immediately true. So, if there is no such conditional in- N
erendence betweemndz and the undirected orientation —P(G) Hg(Xi, Pa(X)) (3.5)
isx—y—z thenitmustbe: — y + z. i



o Pa(x) = [ o2 T

Although, among the BNs id-equivalence class, any
BN is as useful capturing the probabilistic model as the
other, but they yield different cause-effect relationship
giving rise to different answers to causal queries. Many
non-equivalent networks can have reasonably high scores.

where ¢ is CPD parameters associated to the nodes 0]cTh_erefore, a betFer approach i§ to use Bayesian model aver-
G, O, is thehth data instance ib. d;, is the value, takes aging that qugn'ufy the probgb_nlty mass of structure_s.abth
in hth data instancev;, is thekth value ofX; andw;; is approaches include, combining both the constraint-based
the jth assignment oPa(X;). N;j is the number of data and score-based approaches.
instances in whictlX; = v;; and Pa(X;) = w;;. m is the However, it is not always possible to identify the com-
total number of instances,is the total number of variables, plete CBN structure from observational data alone. To dis-
r; is the total number of valuek; can take and; is the total tinguish between structures further, we need interveation
number of assignmentBa(X;) can have.g(X;, Pa(X;)) data.
is a measure for the local subgraphs consisting child and
parents.
Equation 3.2 is due to the independent data assumption4  Learning CBNs from Interventional Data
Equation 3.3 is due to the complete data assumption that al-
lows the factorization. Equation 3.4 is due to discrete-vari
able and parameter independence assumption. Learning CBN structure from interventional data is sig-
The algorithm assumes that there exists an ordering ofnificant in many ways. First, CBNs are formulated to con-
the variables such that iX; precedesX; in the ordering  sider data obtained from interventions. Such data is avail-
thenX; — X; is not allowed. Then the algorithm iterates able and arises in many scientific experiments. It is, hence,
over the following steps to find the parents of each n&igle  natural to incorporate interventional data for learningh\CB
First, it selects &; € {X1, X»,, X;_1} — Pa(X;) such structures. Second, learning from observational data can
thatg(X;, Pa(X;)UX;)is maximum. TherX; isincluded  only identify models up td-equivalence, where interven-
asX,’s parentifA = g(X;, Pa(X;)UX;)—g(X;, Pa(X;)) tional data can help discover causal relationships further
is greater than zero. The loop iterates utXifalls below a
threshold orPa(X;) has become maximal. The time com-
plexity of K2 algorithm isO(Nu?n?r), where N is the
number of data instances, is the maximum number of
parents allowedy is the number of variables andis the
maximum number of possible values a variable can take.

(Nij +7r; — 1)'

Both constraint-based and score-based approaches can
be applied for learning CBNs from interventional data.
However, enough data instances of any given type of in-
tervention for a reliable independence test is generalty no
available. On the other hand, the score-based approach is
flexible for dealing with a combination of observational and
interventional data, having interventions at differentes.

BDe Metric There are two major axes along which types of interven-
nI]ion can vary. One is whether an intervention is perfect or
imperfect. A perfect intervention occurs when an interven-
tion sets a variable to a fixed value. In imperfect interven-
tion, the variable does not take a fixed value, but takes a
different distribution of values than the original one, apo
intervention.

Heckerman et al. devised a Bayesian score-based algorith
that can use a BN for prior knowledge [6]. Such guid-
ance through prior knowledge is a great assistance for-struc
ture learning of CBNs when some causal links are already
known. They proposed the BDe metric (Bayesian metric
with Dirichlet priors and equivalence) that requires addi-

tional assumptions in addition to the assumptionsin the pre  Another axis asks whether an intervention is determinis-
vious method, such as, parameter modularity assumptiorfiC or nondeterministic. A deterministic intervention is a

and likelihood equivalence assumption. The measureis: ~assured intervention on a variable by experimenter. In a
nondeterministic intervention, the experimenter is utaier

N . whether the execution of the intervention will be succdssfu
P(G, D) = P(G) H H (o) H Dok + Nijr) or r!ot. A classical example, as mentioned by.C.:oope_r et
s Tlaig + Nig) o Do) al., is when a group of patients volunteer to participate in a
study and given a medicine to take but a patient can decide

The derivation follows from Equation 3.4 after incorpo- ot to take it [2].
rating the additional assumptions. It gives the same score Not all the cases are interesting, practical or thoroughly
to all I-equivalent BNs. Their algorithm outputs dn explored. Here we discuss some of the works on these dif-
equivalence class of networks. ferent cases.



4.1 Learning from Data with Perfect Intervention

addedMl), P(Xl | PG(XZ),]\/L = k7eg) = I(Xz = ]g),
while for nondeterministic intervention, it is not so. The a

One of the first works on learning CBN structures from thors mentioned that, addindg;s to the set of variables and
mixed data is due to Heckerman [5]. He proposed a score-carrying out the same analysis as in the deterministic in-

based method for mixed data where interventional data arelérvention would derive the CBN. The addition bf; will

necessary for the BDe metric, derived by the same author,ntervene or not, for each data instance.

he proposed some additional assumptions: mechanism in-

Korb et al. generalized this model in terms of effec-

dependence and component independence. These assumfizeness [8]. They formulated the uncertainty of the suc-
tions are similar to the parameter independence of BDe pa-cess of intervention through a latent indicat@y, where

rameter but applicable in an interventional setting up@n th
intervened nodes.

R; = 1 when the intervention is successful aRd = 0

when it is not. ThereforeP(X,; | Pa(X;), M; = k,0¢)

The most important step is, for each intervened variable Pecomes a mixture model. Under perfect nondetermin-

X, in a data instance, every incoming arcXgis removed
andp(X; | Pa(X;)) is changed ta/(X; = z}), where
x} is the value at whichX; is intervened. Essentially, this
changes the conditional probability distribution (CPDp&
1 whenX; = z} and 0 elsewhere.

Let's see how it affects the score metric. We are primar-
ily interested in finding the network structuéé that max-
imizes P(G | D). Itis essentially the same as maximiz-
ing P(G, D) for the same data. NowR (G, D) follows the
derivation as EquatioB.1-3.4, except that in EquatioB.4
for this case,N,;, means the number of data instances in
which X; = v, and Pa(X;) = w;; whereX; is not inter-
vened It differs from thelV;;;, in K2 algorithm as there was
no interventional data in that setting. The difference is du
to the fact that whenevey; in data instancé is intervened,
P(X; =din | Pa(X;) = dPa(Xi)lu fc)issetto 1.

Now, consider a network over two variabl&sandY". To
find which one is cause and which one is effect, if any, we
look for P(X — Y | D) andP(Y — X | D). Given only
observational data, both network§ — Y and X «+ Y
would bel-equivalent and hence indistinguishable. This is
because, the coumY;;;, is symmetrical for a pair of vari-

istic intervention, it is described by(R; = 0)P(X; |
Pa(Xi),0c) + P(Ri = 1)I(X; = k).

4.2 Learning from Data with Imperfect Interven-

tion

Tian et al. termed an imperfect intervention anecha-
nism changél4].

Definition (Mechanism changeA Mechanism change is a trans-
formation of causal modeM =< G,f0s >at a variable
X, to a new modelMx, =< G,0; >, wherefy
U, U (g \ ¥;) and ] is a set of parameters having dif-
ferent values than ig;.

Hence, we set,

p(Xi | Pa(Xi), M; = 0,0c) = p(X; | Pa(X;), V)
and p(XZ' | Pa(Xi), M; 75 07 QG) = p(XZ' | Pa(XJﬂI’;)

With these assumptions, the Equation 3.3 can be parti-

ables in observational data. However, in the interventiona tioned into cases wher¥; is passively observed and cases
data, N;;x will render an asymmetrical count for this pair whereX; is intervened [4].

of variables, given that only one of them is intervened in

a data instance. Therefore, the metric will score these two

networks differently. Note that, intervening on both vari-
ables here is of no use.

Perfect Nondeterministic Intervention

Cooper et al. proposed a method for learning from data with

perfect nondeterministic intervention [2]. They introgdc
an extra variable)1;, for the role of the experimenter in in-
tervention on variableX;. M; = 0 whenX; is passively
observed.M; = k (from 1 tor;), when the experimenter
wishes to interveneX; at valuek. It helps to see nonde-
terministic intervention as a general case of determuisti

P(G, D)

=P(G) II TIP&:=din| Pa(Xs) = dpacx,n, ¥s)

h:M;,=0i=1
< [ JI TIPX:=dn|Pa(X:) = dpacx,n, ¥7)

hiM;,#£0 i=1
x P(V} | G)d¥,

Note that, the formulation of non-deterministic interven-

intervention to get the difference between them. In casetion by Korb et al. is also applicable on imperfect nondeter-

of a deterministic intervention under this descriptiontfwi

ministic interventions.



5 Conclusion

(5]

This paper serves as a short summary of the recently

flourished research area of learning CBNs. We have re-
viewed the conceptual background, developed a suitable
taxonomy and summarized some learning methods along

the divisions.

We have noted that, initial efforts only used observa-
tional data for causal discovery. However, with observa-

(6]

tional data alone, these approaches can only identify the [7)

structure up ta/-equivalence. In the absence of interven-
tional data, structure learning of CBNs is just the same as

structure learning of BNs.

The use of interventional data has enabled further disam- [8]

biguation of structures. Since CBNs were formalized, many
works have been done on learning causal discovery from

different types of interventional data. The differencenin i
terventional data arises from different intervention pdtu

real world problems. The types of interventions have be-
come subsequently challenging, from perfect to imperfect,

from deterministic to non-deterministic. The trend of lear

ing CBNs under increasingly difficult interventional setup

[9] J. Pearl.

continues, for example, Eaton et al. has recently worked on[10]

uncertain interventions where the effects of the inteneent
are unknown [4].

Learning CBNs has recently been incorporated with ac-

tive learning, where the learning algorithm actively seeks [11]

appropriate data points, in this case interventional data i
stances, in order to optimize performance [15]. A great deal
of research is to be done to extend the idea of CBNs and in-
tegrate it to other learning problems where causality is con

cerned. [12]
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