
Fast Exact MultiConstraint Shortest Path Algorithms
Yuxi Li Janelle Harms Robert Holte

Department of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8�
yuxi, harms, holte � @cs.ualberta.ca

Abstract— QoS routing has been shown to be NP-hard. A
recent study of its hardness shows that the “worst-case” may
not occur in practice [13]. This suggests that there may exist fast
exact algorithms for the multi-constraint shortest path (MCSP)
problem, an instance of QoS routing.

Search techniques such as A* and IDA* may solve hard
problems exactly in polynomial time. In [14], we deploy the idea
of iterative deepening search to design IDA* MCSP, and show
its efficiency by extensive empirical study. In this paper, we show
that for infeasible cases, IDA* MCSP may not be as efficient
as A*Prune. This motivates us to design an algorithm that is
efficient in both feasible and infeasible cases.

We design an exact MCSP algorithm A* MCSP, which intro-
duces the state notion and dominance relationship between states.
Furthermore, we design an exact MCSP algorithm FringeMCSP.
It can be regarded as an integration of IDA* MCSP and
A* MCSP. Extensive empirical study shows that FringeMCSP
has good performance in both feasible and infeasible cases;
while IDA* MCSP still shows its superiority among the proposed
MCSP algorithms in feasible cases.1

I. INTRODUCTION

The multi-constraint path (MCP) problem is to find one
or several feasible paths subject to multiple constraints on a
given network topology with link weights, such as delay, loss,
administrative cost, etc. For instance, we may want to find
the shortest path in a DiffServ network or an overlay network
with the delay and the loss ratio below certain level. The multi-
constraint shortest path (MCSP) problem is to find the shortest
path with respect to hop count that satisfies the constraints. The
MCP and the MCSP problems are instances of QoS routing.
Their NP-hardness property [22] led to the proposals of many
heuristic algorithms or approximate algorithms. See [6] and
[12] for overviews. On the other hand, Cheeseman et al. found
that typical cases of many NP-hard problems are tractable in
practice [5]. Kuipers et al. studied that the hardness of QoS
routing occurs in topologies with special characteristics, and
the problem may be easy to solve in realistic communication
networks [13]. This suggests that there may exist fast exact
algorithms for MCP and MCSP problems. Recently, there are
research efforts on designing exact algorithms for them. See
[12] for an overview.

QoS routing has two components: QoS information collec-
tion and QoS routing computation. We assume QoS informa-
tion collection has been done by a mechanism such as the
OSPF extension in [3] or by a measurement approach such
as that in [2]. We concentrate on QoS routing computation.
A link may be a physical link in a network, or a virtual

1The paper contains several large figures. It may takes some time to
download and to print. Thank you for your patience.

link in a Virtual Private Network or an overlay network. The
information gathered may be related to delay, loss rate or
bandwidth. Link weights are defined by these metrics. Link
weights can be additive, multiplicative or concave. By additive
weight, we mean the weight of a path is the sum of the weights
of the links on the path. For a multiplicative weight, the weight
of a path is the product of the weights of the links on the path.
Multiplicative weights such as loss rate can be transformed to
additive weights by taking the logarithm of the path weight. A
concave weight of a path is the minimum of the link weights
of the path. Concave weights such as bandwidth can be dealt
with by using a preprocessing procedure to remove ineligible
links. Without loss of generality, we concentrate on additive
weights.

The constraints may be specified by the Service Level
Agreements (SLAs) or customers’ requirements. Given the
link weights and constraints, each node can compute the
shortest path to a destination subject to multiple constraints. In
a DiffServ architecture, paths may be computed centrally at the
Bandwidth Broker [18]. In an overlay network [2], paths are
computed at overlay nodes. Once a path is computed, source
routing or MPLS may be used to forward packets on that route.

Search techniques from the artificial intelligence community
such as A* [9] and IDA* [10] have shown their strength
in solving some hard problems in practice [20]. A search
algorithm usually uses look-ahead information to speed up
the search. When the look-ahead information always underes-
timates the solution cost, the search algorithm is guaranteed to
find the optimal solution. With the assistance of a good look-
ahead function to predict solution length, A* and IDA* may
solve hard problems exactly in polynomial time [20], [11].

A*Prune [15] and SAMCRA [17] are two exact QoS routing
algorithms. A*Prune is designed for the MCSP problem and
SAMCRA is designed for the MCP problem, although it can
also be used for MCSP. They borrow ideas from A* and
conduct best first searches using a priority queue. They use
look-ahead information to cut off the part of search space
that won’t lead to a feasible solution. In [14], we design
a fast exact MCSP algorithm, IDA* MCSP, and show its
superiority over A*Prune in feasible cases. We also show
the high accuracy of look-ahead information in [14], which
determines the efficiency of a search-based MCSP algorithm.

Previous work in QoS routing focuses on designing efficient
algorithms when a problem is feasible, i.e., there is at least
a solution. However, an MCSP may be infeasible, due to
one or more constraints. This can happen in the service
negotiation phase. Thus, it is desirable to design an efficient

algorithm for both feasible cases and infeasible cases, which
can either find the feasible path fast or can determine quickly
that there is not a feasible path. In this paper, we first design
A* MCSP, which introduces the state notion to replace partial
paths in A*Prune and SAMCRA. Furthermore, we design
FringeMCSP, which can be regarded as an integration of
IDA* MCSP and A* MCSP. Extensive performance study
shows that FringeMCSP performs well in both feasible and
infeasible cases; while IDA* MCSP still shows its superiority
among the proposed MCSP algorithms in feasible cases.

Our work of designing exact MCSP algorithms is differ-
ent from the work in QoS routing that proposes a heuris-
tic and looks for an approximate solution. Our algorithms
IDA* MCSP, A* MCSP and FringeMCSP are guaranteed to
find the exact solution once it terminates (if it is feasible).
Their optimality makes them different from the polynomial
time approximation algorithms.

We give the notation used in the paper. A network is repre-
sented by a graph �������
	��� , where � is the set of nodes and
� is the set of edges. Each edge ����	������� is associated with� non-negative additive weights, ��������	��� , ����� 	"!�	$#%#%#&	 � .
The � weights on edge �'�(��) form an � -dimensional
weight vector *+�'�(��),� � �.-/�'�(��)0	��213����	���4	$#%#%#&	��657�'�(��)4� .
We denote the source node as 8:9/; and the destination node
as <38:= . We have an � -dimensional constraint vector >?�� ;:-/	�;01 	$#%#&#%	�;05�� , corresponding to the � weights. The @ -th
weight of a path A is �CB���ADE�?FHG&IKJ L4MON PQ�2B��'�(��)0	SR���T
@UT � . The weight vector of a path A is *+�'ADV�� �.-/��AD4	��213�'AD0	$#%#&#%	��257�'AD4� . When we say shortest path, we
mean the shortest path with respect to hop count, if not
explicitly stated. The path length is the number of hops of a
path. The definitions of the MCP and MCSP problems follow.

Definition 1: MCP problem: Given a network represented
by a graph � , � associated non-negative additive weights on
edges, the source node 8:9/; , the destination node <)8:= , and the� -dimensional constraint vector > , the MCP problem is to
find a path A such that � B �'AD�TW; B 	SRX��TY@
T � .

Definition 2: MCSP problem: Given a network represented
by a graph � , � associated non-negative additive weights on
edges, the source node 8:9/; , the destination node <)8:= , and the� -dimensional constraint vector > , the MCSP problem is to
find the shortest path A such that �CB���AD�TY;$B�	ZR��[T\@]T � .

In Section II, we present an overview of search techniques.
In Section III, we present an approach to compute look-ahead
information [14]. We overview IDA* MCSP in Section IV.
We investigate the performance of IDA* MCSP for infeasible
cases in Section V. We present A* MCSP in Section VI and
FringeMCSP in Section VII. We also present the comparison
results. Then we draw conclusions.

II. OVERVIEW OF SEARCH TECHNIQUES

A. Look-ahead

A search algorithm usually deploys some look-ahead func-
tion to predict the quality of a potential solution. A good look-
ahead function plays an important role in enhancing the perfor-
mance of a search algorithm, by facilitating decision making

E

H

(2,2)

D

G

(1,1)

F

I(2,2) (3,2)

(2,1)(2,2)

(2,2) (1,1) (2,3)

(1,2)

(3,7)(1,2) BA C

Fig. 1. Example Graph

of whether to further search a branch. We use the Dijkstra’s
algorithm to calculate the shortest paths for ^`_"a or for each
of the weight metrics to obtain look-ahead information.

We give an example for illustration. In Figure 1, we are to
find the shortest path from b to > subject to the constraint�/c 	�de� . The vectors on the edges are edge weight vectors,
such as *+��bD	gf,h�i��� 	"! . Denote these two edge weights
� - 	�� 1 , and the two constraints, ; - 	�; 1 . Denote the look-ahead
information for node � and metric � as jlk/���D	��m , where �
can be the hop count or one of the two edge weights � - and
� 1 . It is easy to compute that for node b , jlk/��^`_"an	gb���o! ,
j�kp��� - 	gb�+�rq , and j�k/�'� 1 	gb�s�rt ; while for node � ,
j�kp��^`_"an	��,X�u! , jlk/���.-v	g��
��w , and jlk/���21 	���x��! , etc.

B. A* Search

A* algorithm is a well-known search strategy in artificial
intelligence. It is a best-first search algorithm. For each node
in the search tree, A* maintains the distance traversed so far
and the estimate distance, which is the sum of the distance
traversed and the distance of look-ahead.

A* maintains an _"azy|{}j�@Z8:= and a ;0j'_p8|yv<Kj'@Z8$= . It takes the first
node from the _"azy:{}j'@Z8$= and expands it to the neighbors. Newly
expanded nodes are put into _"a`y|{}j'@S8:= , sorted in increasing
order by the estimate distance. Ties are broken with traversed
distance, giving preference to larger values, since a larger value
means more reliable information. The state just removed from
_"a`y|{}j'@S8:= is put in ;$j'_p8|yv<Kj'@S8:= . A* terminates if the goal node is
found or there is no node on the _"a`y|{}j'@S8:= . A* always finds the
shortest path given that the heuristic does not over-evaluate the
distance from a node to the destination. That is, admissibility
of heuristics guarantees the optimality of the solution [20].
However, it requires exponential space since it stores all the
temporary search results.

Liu and Ramakrishnan [15] extend A* to A*Prune for
the problem of finding K shortest paths subject to multiple
constraints. It maintains partial paths on a list, in increasing
order of the estimates of distances to the destination, breaking
ties with the lengths of partial paths. The first path on the list is
expanded to the neighbors of the tail node. The resulting partial
paths that pass the eligibility tests against all the constraints are
put into the list for further expansion. The algorithm terminates
once it finds ~ shortest paths or there are no more partial paths
on the list.

We will introduce a new exact MCSP algorithm based
on A*, A* MCSP, which introduces the state notion and
dominance relationship between states. It eliminates the cost
to maintain partial paths as in A*Prune.

C. Iterative Deepening Search

An iterative deepening search algorithm [10] conducts a
series of depth-first searches. Different from depth-first search,
it has a depth bound for each iteration. That is, when the search
algorithm has traveled as far as the depth bound, or it predicts
that there wouldn’t be a solution within the search bound,
it stops searching from that node. An iterative deepening
search algorithm updates the depth bound after each iteration,
until the solution is found, or it determines that there is no
feasible solution. Bounding the search depth avoids searching
too deeply. Moreover, by updating the search bound properly,
the algorithm guarantees to find the shortest path. The cost
to pay is that part of the search space has to be searched
redundantly. We design IDA* MCSP in [14], which will be
described in Section IV.

D. Fringe Search

A* has to keep a sorted openlist of all the frontier nodes
in the search tree, which may be costly. IDA* has to make
iterations with updated search threshold, unless the source has
perfect lookahead information of the destination. Many nodes
will be searched redundantly. Björnsson et al. [4] recently
introduce Fringe search to attempt to overcome shortcomings
of A* and IDA*, and show its efficiency on pathfinding on
game maps. The basic idea follows. The algorithm keeps
{}_v�.j�@Z8:= and j'�3=Zy|9/j�@Z8:= , and iterates on a depth bound. In each
iteration, the algorithm searches on {}_v�.j'@Z8$= , and put nodes
to be considered later on j'�3=Zy|9/j�@Z8:= . The head of {}_v�.j�@Z8:= is
removed from the list and examined. If its estimate distance is
greater than the depth threshold, then the head element is put
into j'�3=Zy|9/j�@Z8:= . Otherwise, add the children of the head to the
front of {}_v�.j�@Z8:= . When {}_v�.j'@S8:= is empty, update the depth
threshold, copy j'�3=Zy|9/j�@Z8:= to {}_v�.j'@Z8$= , and clear j'�3=Zy|9/j�@Z8:= .
Search on {}_v�.j�@Z8:= iteratively, until the goal is found or it
is determined that the goal is not reachable. Fringe search can
be regarded as an integration of A* and IDA*. It attempts
to take advantage of both A* and IDA*; at the same time, it
attempts to avoid their shortcomings. We extend Fringe search
to MCSP in Section VII.

III. LOOK-AHEAD

We discuss the approach we use to compute look-ahead
information. The input to a search-based MCSP algorithm is
the graph representation of the network topology, the weights
on each link, and the constraints.

A 2-dimensional array j�kp� ��� �0�S� {m� is used to store the
lower bounds, i.e. the look-ahead values, for the �\� � metrics� ^`_"an	�� - 	�� 1 	:#&#%#%	�� 5 � (hop count and � weights) for each of
the { nodes. We use Algorithm 1 to set the lower bounds at
the initialization stage using the j'_/_p�e�)^`yv�)<`�l function, which
calls the Dijkstra’s algorithm to calculate the shortest paths.

Algorithm 1 ;0_ � a`�`=Zyv�x_v�.y|9/k0_v�`{}<z��
1: for each metric � y|=S9v@O;[� � ^`_"an	��.-v	��21 	:#&#%#%	��25,� do
2: j�k/� � y:=S9v@S;"�S� ��� lookahead � � y|=S9v@O;: ;
3: end for

Function j'_/_p����^`yv�3<z� � y|=S9v@O;: calculates the shortest paths for
all the nodes to the destination, with respect to � y|=S9v@O; , which
can be the hop count or one of the weights. The results are
recorded in the array j�k/� �S� � . The destination has lookahead
values of 0 for each metric.

Dijkstra’s algorithm is used for calculating the respective
shortest path due to its efficiency. More importantly, Dijkstra’s
algorithm makes underestimates, which is a necessary property
for the look-ahead function in order to help a search-based
MCSP algorithm find the optimal solution. By an under-
estimate, we mean that the least cost (length) path found
by Dijkstra’s algorithm won’t exceed the cost (length) of
the shortest constrained path. We assume the topology is
symmetric, thus we can use Dijkstra’s algorithm on the single-
source shortest path problem to compute the look-ahead values
of all the nodes to the destination. For an asymmetric topology,
we may first compute the transpose of the graph [7], and
then apply Dijkstra’s algorithm. We assume link weights are
static, so we need to calculate the lower bounds only once. If
there are changes, an efficient, incremental algorithm can be
designed based on the work in Ramalingam and Reps [19] to
incrementally recalculate lowerbounds after changes.

We study the accuracy of look-ahead information on a wide
range of topologies including inferred ISP topologies, Internet-
like power-law topologies, and Waxman random topologies.
The empirical study on the diverse topologies shows the
high accuracy of look-ahead information using the Dijkstra’s
algorithm, which implies the potential efficiency of a search-
based MCSP algorithm. Please see [14] for details.

A. Eligibility Test

A search-based MCSP algorithm can use look-ahead infor-
mation to do eligibility tests to prune unnecessary portions
of the search space. Algorithm 2 presents the function that
conducts an eligibility test at node {}_/<3y for the neighbor {nk"9
according to the current accumulated weight vector ;4�z9p* .
For each weight, � B , it predicts the path weight from 8:9/;
to <)8:= via {}_/<3y and {nk49 by adding up the following three
components: the @ -th element of ;4�z9/* ; the weight on the link
from {}_/<Ky to {nk"9 , �CBg�'{}_/<Ky3	�{nk"9p ; and the look-ahead value
for the predicted path from {nk"9 to the destination, j�k$B . If any
constraint is violated, the test fails.

IV. IDA* MCSP

We overview our extension of IDA* to the MCSP problem
IDA* MCSP [14], on which FringeMCSP in Section VII is
based. IDA* MCSP returns the optimal path if there exists
one. Otherwise, it reports a failure.

Algorithm 3 presents one iteration of the IDA* MCSP
algorithm. The algorithm arrives at the current node {}_/<3y , with

Algorithm 2 yvj'@��)@Zk4j'y)�'{}_/<Ky3	�{nk49/	�;4�z9p*H
1: for each weight �2B]� � �.-v	��21K	$#%#&#%	��25�� do
2: jlk4B = jlk [�6B][{}_/<3y];
3: if ;0�`9p*�B � �6Bg��{}_/<3y3	�{nk"9p � j�k0BX�Y>�B then
4: return �m�)j�8|y ;
5: end if
6: end for
7: return =S9v�zy ;

Algorithm 3 IDA* MCSP({}_/<Ky , ^`_"a , ;4�z9p* , <3yga�=�^ k4_v�`{}<)
1: ^���j�k/� ^�_"a��O� {}_/<3y$� ;
2: if ^ is 0 then
3: return true;
4: end if
5: a�9/yv< @S;4= <3yga�=�^��?^ + ^`_"a ;
6: if a�9/yv< @S;4= <3yga�=�^��W<Kyga�=�^ k4_v�z{}< then
7: return false;
8: end if
9: for each neighbor {nk49 of {}_/<Ky do

10: if yvj�@l�)@Zk4j'y)��{}_/<3y3	�{nk"9/	g;4�z9/*H is =S9v�zy then
11: �Kaz<K�3=Zy/*+��{}_/<3y3	�{nk"9/	g;4�z9/*H ;
12: <K_v{}y�� IDA* MCSP({nk"9 , ^`_"a +1, ;0�`9p* , =);
13: 9/yv8:=Z_v9/y/*+��{}_/<3y3	�{nk"9/	g;4�`9p*H ;
14: if <K_v{}y is =S9v�zy then
15: return =S9v�zy ;
16: end if
17: end if
18: end for

distance ^`_"a from 8:9/; and accumulated path weight vector
;4�`9p* , and the search threshold <3yga�=�^ k0_v�`{}< . If the predicted
path length is greater than <3y�a`=�^ k4_v�z{}< , it stops searching
this partial path further. Otherwise, it considers each of the
{}_/<Ky ’s neighbors. An eligibility test is conducted first for the
neighbor {nk49 to see whether there is a potential solution via
{nk"9 . If the eligibility test succeeds, the algorithm updates the
hop count and the weight vector for the traversed partial path,
and searches further from {nk"9 . Otherwise, it considers the next
available neighbor. Functions �Kaz<K�3=Zy/*+��{}_/<3y3	�{nk"9/	g;4�`9p*H
and 9vy/8:=Z_v9/y/*+��{}_/<3yK	�{nk"9/	�;0�`9p*H are called before and after
making a recursive call to IDA* MCSP() to properly record
the current accumulated weight.

Algorithm 4 presents the main function to use the
IDA* MCSP algorithm. At the initialization stage, it calculates
the lower bounds for the hop count and each link weight.

The threshold <Kyga�=�^ k4_v�z{}< is initialized as the look-
ahead value for hop count from 8:9v; to <)8:= . If the algo-
rithm fails to reach a solution within the <Kyga`=�^ k4_v�z{}< , it
increases <3yga�=�^ k4_v�`{}< to search further. IDA* MCSP updates
<Kyga�=�^ k4_v�z{}< as the value of the least predicted distance
(a`9vyv<K@S;4= j'y|{m�3=�^ in Line 5 in Algorithm 3) in the last iteration
to make a close estimate of the constrained path length.

The search process from Line 5 to Line 14 of Algorithm 4
finds the shortest constrained path. IDA* MCSP() is called

Algorithm 4 main()
1: Global 8:9v;p	�<)8$=4	">[� �3�`�
y|{m�)=�^
2: ;0_ � a��z=Zyv�
_v�.y|9pk4_v�z{}<`�l ;
3: <3yga�=�^ k0_v�`{}<���j�kp� ^`_"ae�S� 8:9/;"� ;
4: <3_v{}y7� false;
5: while <K_v{}y is �m�)j�8|y do
6: ;4�z9/*�� 0;
7: <K_v{}y�� IDA* MCSP(8:9/; , 0, ;4�z9/* , <3yga�=�^ k4_v�`{}<);
8: if <K_v{}y is false then
9: update <3y�a`=�^ k0_v�`{}< ;

10: if reach stopping condition then
11: report failure;
12: end if
13: end if
14: end while

iteratively with updated (increased) <3yga�=�^ k0_v�`{}< after each
iteration. It returns true when it finds the shortest path. The
path can be constructed by backtracking the search stack. It
reports failure when the stopping condition is reached.

A. An Example

Take the example in Figure 1 in Section II-A. Recall that
we are to find the shortest path from b to > subject to the
constraint

�/c 	�de� . IDA* MCSP starts with depth bound 2, since
the shortest path from b to > has length 2. At iteration 1, the
algorithm will reach nodes f and � . After reaching node f ,
it does not expand node > , since using the eligibility test,
;01���d will be violated. Neither will node � be expanded,
since with the look-ahead information on hop count, the length
of the shortest path from � to > , is 2; and � � � � !��sq
exceeds the depth bound 2 for this iteration. Node � won’t
be further expanded due to the reason that the depth bound
will be violated.

An iteration with depth bound 3 won’t find the solution
either. In fact, with proper update, this iteration can be skipped
to make the search more efficient. The depth bound can be set
as 4 for the second iteration, since a potential solution via
node � has at least ! � !���q hops, where the ! ’s are the
distance traversed so far and the length of shortest path from
� to > , the look-ahead information on hop count.

In the iteration with depth bound 4, again, after reaching f ,
> won’t be expanded. After reaching � , it will expand � and
reaches > . The shortest path A���b�f��D�D> will be found,
with the weight vector *+�'AD[� � te	gt�� . Path b��h�D�D> may
be found, if we expand neighbors in a different way.

V. PERFORMANCE OF IDA* MCSP IN INFEASIBLE CASES

In [14], extensive empirical study shows that, in feasible
cases, IDA* MCSP is much more efficient than A*Prune. We
now investigate the performance of IDA* MCSP and A*Prune
in infeasible cases.

It would be desirable to study network problems on real-
istic Internet topologies. However, ISP topologies are usually

regarded as proprietary information. Fortunately, the Rocket-
fuel project [21] deployed new techniques to measure ISP
topologies and made them publicly available. OSPF/IS-IS
weights on the links (inferred weight and latency) are also
provided [16]. We also use synthetic topologies, including
Internet-like topologies following power-laws [8], [1] and
random graphs based on the Waxman model [23]. For power-
law topologies, we use sizes of 3037, 5000, 7500 and 10000.
For Waxman topologies, we use network sizes of 250, 500,
1000, 2500 and 5000. On these topologies, link weights are
set uniformly in the range of �'�e	:�| . There are two link weights,
i.e. � ��! . We use a tightness factor, � , to set the constraint
vector for each search. For each source-destination pair, each
constraint is set as the tightness factor � times the weight
of the least weight path of the source-destination pair by
Dijkstra’s algorithm with respect to that weight. � is set as
1.1, 1.2 or 1.5. As a consequence, the constraints may be
different for different source-destination pairs.

Both IDA* MCSP and A*Prune do the identical preprocess-
ing to calculate the lower bounds, thus we concentrate on the
comparison of the computation time for the search process
(for IDA* MCSP, Line 5 to Line 14 of Algorithm 4). For
the inferred ISP topologies, we study each possible source-
destination pair. In each synthetic topology, we choose 10
destinations randomly, and 100 random sources for each des-
tination. The experiments are conducted on a Linux machine
with 602 MHz CPU and 256MB memory. For each source-
destination pair, we run 1000 repetitions and take the average
for precision. For performance study for feasible cases in later
sections, in each synthetic topology, we choose 100 destina-
tions randomly, and 100 random sources for each destination.

Figure 2 shows the results with scatter plots2. A point below
the �Q��� line means for that instance, IDA* MCSP is faster
than A*Prune. The closer to the � -axis, the faster IDA* MCSP
is, vice versa. For inferred ISP topologies, there are not many
infeasible cases, esp. when the tightness factor � is large. On
ISP topologies and random topologies, IDA* MCSP is faster
than or comparable with A*Prune. However, on power-law
topologies, A*Prune can be much faster than IDA* MCSP in
infeasible cases.

A* maintains a priority list. IDA* conducts iterative deep-
ening search. In infeasible cases, the look-ahead information
is not accurate (there is no solution at all). Therefore an A*-
based MCSP algorithm has the chance to narrow down the
search space; while an IDA*-based MCSP algorithm has to
do redundant search. This is the reason A*Prune may win
IDA* MCSP in some infeasible cases. It is interesting to
design a MCSP algorithm that is efficient in both feasible and
infeasible cases. An A*-based algorithm is worth exploiting.

VI. A* MCSP
It is time-consuming to maintain partial paths in A*Prune.

Thus, it is desirable not to maintain partial paths during

2To save space, we do not show the results for random topologies, for pair-
wise comparisons, i.e., one algorithm versus another. The average search time
over all instances for each topology can be found in Figure 7 and Figure 8.

the search process. There may be several paths reaching a
node with the same quality. By path quality, we mean both
hop number and accumulated weights. We call such partial
paths equivalent partial paths. Take the example in Figure 1
in Section II-A. When the search reaches node � by paths
b.f,� and b��h� , we have two equivalent partial paths, with
the same hop number and the same accumulated partial path
weights. We observe that it is a waste if the search algorithm
processes two different paths further, b�f��D� and b��h�D� ,
since searching two different paths will not improve the path
quality of searching only one of them.

We first introduce the concept of state and dominance, then
we describe the A* MCSP algorithm and study its perfor-
mance. State and dominance are also important components
in designing FringeMCSP in Section VII.

A. State and Dominance

The maintenance cost increases by maintaining partial paths
formed from equivalent partial paths, without improving the
quality of the searched paths. It suffices to remember the
quality of paths that have reached a node. We use the 8$=Z�3=Zy
notation to represent a state in the search space in our A*
extension to MCSP, rather than a`�3=�^ as in A*Prune. In the
following, when we mention a state, we mean the state in the
state notation we use. A state is a tuple,

8:=Z�3=Zy[� � {}_/<3yK	"^�_"a(�y/8:=S@ � �3=Zy3	g* 	�a`�39/y|{¡="�K	
where {}_/<3y is the node in question, ^�_"a records the number
of hops from the source to this state, y/8$=S@ � �3=Zy is the sum
of ^`_"a and the look-ahead of {}_/<Ky , * is the weight vector
containing the weight values accumulated so far, and a`�39/y|{¡=
is a backward pointer to the state that leads to the current state.

Using the state notation, both path b�f�� and path b��h�
can be encoded as a state, ¢n£¤� � ��	"!�	�q`	 � we	�q��K	"¢¡¥]� , with
^`_"a and y/8:=S@ � �3=Zy as ! and q respectively. Here we have the
weight vector as

� we	�q�� . The az�K9/y|{¡= field is set as ¢ ¥ , the
state notation of node f . We will explain how we process the
a`�39/y|{¡= field after introducing the <3_ � @l{}�3{};0y relation.

We have made the search space compact by using state
notation. We can check dominance relation of two states
of the same node, a , to make further enhancements. ¢ 1¦ �� a(g^`_"a`1/	gy/8$=S@ � �3=Zy|1p	g*�1p	'az�39vy|{¡=Z1p� is dominated by ¢ -¦ �� a(g^`_"am-|	gy/8$=S@ � �3=Zy/-v	g* -v	'az�39vy|{¡=�-v� , if

^`_"am-�T�^`_"a`1 and * -�TW*�1 	
where * - � � �.- J -v	��C- J 1p	:#&#%#%	��.- J 5,� , and *�1 �� �21 J -v	��61 J 1p	:#&#%#%	��21 J 5�� . Thus * - T *�1 is defined by
�.- J B7T��61 J B�	SR��§T¨@hT � . Note that ^`_"a¡-�To^�_"az1 implies
y/8:=S@ � �3=Zyp-�T�yv8:=S@ � �K=Zyv1 , since ¢ -¦ and ¢ 1¦ are of the same
node a , thus they have the same look-ahead value for hop
count. It is unnecessary to further search a dominated state,
since it is impossible for it to lead to a better solution than
the state that dominates it. Discarding dominated states can
prevent cycles, since a state associated with a path containing
a cycle is dominated by a state for the path removing the
cycle. Thus a search algorithm with this feature does not need

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

� ��� #%� ���¤� #©! �§�¤� #©ª
(a) Rocketfuel Topologies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20

ID
A

*_
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

� ��� #%� ���¤� #©! �§�¤� #©ª
(b) Power-law Topologies

Fig. 2. Search Process Time (msec), Infeasible Case: A*Prune (« -axis) vs. IDA* MCSP (¬ -axis)

to remove cycles explicitly. Note that a dominance relation is
necessary for discarding a state. That is, we can not discard
a state ¢ which is not dominated by any other state, even if
one or several of its constraints are much larger than that of
the other states. In MCSP, such an ¢ may lead to a better
path (with respect to hop count) than the others.

Now we give more explanations of the az�39vy|{¡= field of a
state. There are two ways to set the a`�39/y|{¡= field, a single
parent or multiple parents. We may store the parent that gives
the state the best quality. The quality of a state is measured
by both the hop number and the accumulated weights. A state
of the best quality dominates all the other states (of the same
node). This suffices to find a single optimal path. We may
also store some or all the parents that have led to the current
state, except those forming cycles. In this example, we may
set a`�39/y|{¡=�� � ¢¡¥2	"¢¡[� . Storing multiple parents, the search
algorithm can backtrack recursively to find multiple optimal
paths (which may not be node-disjoint). In the following, we
store only the best parent. Note, multiple partial paths leading
to the same node will be encoded as multiple states, if they
do not have dominance relationship with each other.

In the above example, we set a`�39/y:{¡= field as ¢ ¥ , but not
¢ , because a possible state ¢]®£ � � ��	g!e	�q�	 � w�	�qe�3	g¢ � via
path b��h� is dominated by ¢ £ � � ��	g!e	�q�	 � w�	�qe�3	g¢ ¥ � via
path b.f,� (in fact, they have the same state quality).

We also conduct eligibility tests on a possible state expan-
sion to a neighbor, by checking whether any constraint will
be violated using look-ahead values of weights. In Figure 1

in Section II-A, state
� ��	$� 	�q�	 � � 	"!)�3	g¢}¯�� won’t be expanded

to state
� �7	g!e	�te	 � w�	�qe�3	g¢}6� , since the weight metric ��-

evaluated for node � is q � t��H�:� , which violates constraint
;:-2� c

(;$1 is also violated).
We observe that the number of states will not exceed the

number of partial paths. Free of path operations is another
benefit of the state approach, which maintains backward
pointers to construct the entire path after it is found. However,
it needs to check dominance relationship between states.

B. A* MCSP

Algorithm 5 presents the function to check whether a state 8p®
newly created for {}_/<Ky is dominated by an old state stored for
{}_/<3y . Algorithm 6 presents the main algorithm of A* MCSP,
our extension of A* to MCSP. At the initialization stage,
;0_ � a��z=Zyv�
_v�.y|9pk4_v�z{}<`�l (Algorithm 1) calculates the lower
bounds for the hop count and each link weight. We use
yvj�@l�)@Sk0j'y)�� (Algorithm 2) to make eligibility tests.

The search process from Line 3 to Line 18 of Algo-
rithm 6 finds the shortest constrained path. A* MCSP has an
_"a`y|{}j'@S8:= and a ;0j�_p8:yv<3j�@Z8:= . New states are put into _"azy:{}j'@Z8$=
for further expansion. On the _"a`y|{}j�@Z8:= , states are sorted in
increasing order by the y/8:=S@ � �3=Zy values, breaking ties with
^`_"a values, and giving preference to larger ^`_"a values. If
a neighbor can not pass the eligibility tests, A* MCSP will
not further consider it. When constructing a new state for
an eligible neighbor, A* MCSP updates y/8:=S@ � �3=Zy using the
look-ahead information. It also updates the weight vector *
(plus the constraints on the link) and ^`_"a (plus 1). Function

Algorithm 5 isDominated(8 ®)
1: {}_/<Ky°� node field of 8 ® ;
2: ¢±� all stored states of {}_/<3y ;
3: for each s ��¢ do
4: if 8D²W8 ® then
5: return =S9v�zy ;
6: end if
7: end for
8: return �m�)j�8|y ;

Algorithm 6 A* MCSP()
1: ;0_ � a��z=Zy|�x_v�.y|9pk4_v�`{}<z�� ;
2: put state

� 8:9/;/	���	�jlk/� ^`_"ae�S� 8$9/;"�O	:³�)	�{¡�mj'jZ� into _"a`y|{}j�@Z8:= ;
3: while _"azy:{}j'@Z8$= not empty do
4: 87� first state in _"a`y|{}j�@Z8:= ;

/*take 8 away from _"a`y|{}j'@S8:= */
5: put 8 into ;$j'_p8|yv<Kj'@S8:= ;
6: if 8K# {}_/<Ky is <38:= then
7: construct path;
8: return =S9v�zy ;
9: end if

10: for each neighbor {nk"9 of 8K# {}_/<Ky do
11: if y|j'@l�3@Zk4j�y3�l8K# {}_/<3y3	�{nk"9/	g;4�`9p*H then
12: construct state 8 ® for {nk49 ;
13: if isDominated(8 ®) is �m�)jl8:y then
14: put 8 ® into _"a`y|{}j�@Z8:= in order;
15: end if
16: end if
17: end for
18: end while
19: return �m�)j�8|y ;

@S8|�h_ � @O{}�3=Zy|<z��8v checks whether state 8 is dominated by any
state on _"a`y|{}j�@Z8:= or ;0j�_p8|y|<3j�@Z8:= . We use an efficient data
structure to implement the _"azy:{}j'@Z8$= for A* MCSP. We use
a 2-dimensional bucket to store the states, with the assistance
of an array and a variable to query proper state to expand.

C. Performance Study of A* MCSP

Figure 3 and Figure 4 show that A* MCSP outperforms
A*Prune in both infeasible and feasible cases3. The main
reason is A* MCSP uses state maintenance, replacing partial
path maintenance in A*Prune. In Figure 4 (b) with �´�µ�K# ª ,
there are cases where A*Prune is slightly more efficient
than A* MCSP, which is due to that A* MCSP has to do
dominance check. However, A* MCSP outperforms A*Prune
in most cases. We can say A* MCSP is more efficient.

Experimental results also show that in most cases
IDA* MCSP is much more efficient than A* MCSP in feasible
cases, although there are some cases where A* MCSP wins
IDA* MCSP (to save space, we do not show the results). It is

3For feasible cases, we do not show the results for AS1239 and AS3257
of Rocketfule topologies, to reduce the size of the file.

Algorithm 7 expand(s)
1: if 8K#©���Y<3yga�=�^ k4_v�`{}< then
2: insert 8 at the end of j'�3=Zy|9vj'@Z8$= ;
3: return �m�)j�8|y ;
4: end if
5: for each neighbor {nk"9 of 8K# {}_/<Ky do
6: if y|j'@��)@Zk4j'y)�l8 # {}_/<3yK	�{nk"9/	�;0�`9p*H then
7: if {nk49 is <38:= then
8: construct path;
9: return =S9v�zy ;

10: end if
11: construct state 8 ® for {nk"9 ;
12: if isDominated(8 ®) is �m�)j�8|y then
13: if 8 ® #©��²W<Kyga`=�^ k4_v�z{}< then
14: put 8 ® into {}_v�.j'@S8:= ;
15: else
16: put 8 ® into j'�3=Zy|9/j�@Z8:= ;
17: end if
18: end if
19: end if
20: end for
21: return �m�)j�8|y ;

interesting to investigate whether there is still room to improve
A* MCSP in both feasible cases and infeasible cases. Fringe
search is worth exploiting.

VII. FRINGEMCSP
Björnsson et al. [4] recently introduce Fringe search to at-

tempt to overcome the shortcomings of A* and IDA*, namely,
sorting _"azy|{}j�@Z8:= and redundant search. We extend Fringe
search to design an exact MCSP algorithm, FringeMCSP. It
searches iteratively according to a threshold like IDA* MCSP.
It uses the state notation and dominance check like A* MCSP.
It uses Algorithm 2 yvj�@l�)@Zk4j'y)�� to make eligibility test. It uses
Algorithm 5 @Z8|�h_ � @l{}�3=Zyv<z�� to check dominance relationship
of states of a node.

Algorithm 8 presents the FringeMCSP algorithm. It keeps
{}_v�.j'@S8:= and j'�3=Zy|9/j�@Z8:= of states. It initializes the lowerbounds
for ^�_"a and each of the weight metrics. In each iteration, the
algorithm searches on {}_v�.j'@Z8$= , and put states to be considered
later on j'�3=Zy|9/j�@Z8:= . The head state of {}_v�.j'@S8:= is removed
from the list and examined using the y:�Ka`�3{}<z�� function in
Algorithm 7. We use 8K# {}_/<3y to denote the node of 8 , and 8 #©�
to denote the estimate distance of state 8 , which is the sum
of the distance traversed so far and the look-ahead value of
hop count. If the estimate distance is greater than the depth
threshold, then the head state is put into j��K=Zy|9/j�@Z8:= . Otherwise,
for each eligible neighbors, construct the state, and check its
dominance relationship with states of the same node. For an
un-dominated state, if the estimate distance is less than the
depth threshold, put it in {}_v�.j�@Z8:= 4; otherwise, put it into

4If the children states are put into the front of ¶)·g¸�¹»º�¼Z½ in order of their
expansion, FringeMCSP mimics IDA* MCSP, except for the elimination of
redundant search. We follow this approach in implementation.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

� ��� #%� ���¤� #©! �§�¤� #©ª
(a) Rocketfuel Topologies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

� ��� #%� ���¤� #©! �§�¤� #©ª
(b) Power-law Topologies

Fig. 3. Search Process Time (msec), Infeasible Case: A*Prune (« -axis) vs. A* MCSP (¬ -axis)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

� ��� #%� ���¤� #©! �§�¤� #©ª
(a) Rocketfuel Topologies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

A
*_

M
C

SP
 S

ea
rc

h
T

im
e

(m
se

c)

A*Prune Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

� ��� #%� ���¤� #©! �§�¤� #©ª
(b) Power-law Topologies

Fig. 4. Search Process Time (msec), Feasible Case: A*Prune (« -axis) vs. A* MCSP (¬ -axis)

Algorithm 8 FringeMCSP()
1: ;0_ � a��z=Zy|�x_v�.y|9pk4_v�`{}<z�� ;
2: put state

� 8:9/;/	���	�jlk/� ^`_"ae�S� 8$9/;"�O	 ³�)	�{¡�mj'jZ� into j'�3=Zy|9/j�@Z8:= ;
3: <Kyga`=�^ k4_v�z{}<���j�k/� ^�_"a��O� 8:9/;"� ;
4: <K_v{}y°�i�m�)j�8|y
5: while <3_v{}y is �m�)jl8:y do
6: {}_v��j�@Z8:=��¾j��3=Zy:9/j'@S8:=
7: while {}_v�.j�@Z8:= not empty �K{}<¿<K_v{}y is �m�)j�8|y do
8: 87� first state in {}_v�.j'@Z8$= ;

/*take 8 away from {}_v�.j�@Z8:= */
9: <3_v{}y[�¾y|� az�3{}<`�l8| ;

10: end while
11: if <3_v{}y is false then
12: update <Kyga�=�^ k4_v�z{}< ;
13: if reach stopping condition then
14: report failure;
15: end if
16: else
17: return =S9v�zy ;
18: end if
19: end while

j'�3=Zy|9vj'@Z8$= to consider in the next iteration. When {}_v�.j'@Z8$= is
empty, update the depth threshold, copy j'�3=Zy|9/j�@Z8:= to {}_v��j�@Z8:= ,
and clear j��3=Zy:9/j'@S8:= . Search on {}_v�.j�@Z8:= iteratively, until the
goal is found or it is determined that the goal is not reachable.

The search process from Line 5 to Line 19 of Algorithm 8
finds the shortest constrained path.

Take the example in Figure 1 in Section II-A again.
FringeMCSP searches in a similar way as IDA* MCSP does,
with the exception that FringeMCSP won’t search node b , f
and � for the redundantly second time.

A. Optimality and Completeness

In [14], we analyze the optimality and completeness of
IDA* MCSP. The analysis of A* MCSP and FringeMCSP
will follow a similar approach. It is based on the optimality
and completeness of A* and IDA*, the search algorithms our
MCSP algorithms are based on. Please see the references
of [9] and [10] for the rigorous analysis of A* and IDA*.
Fringe search is an integration of A* and IDA*. It only
change the search process of IDA* and A*–it combines
the ideas of iterative deepening and list of frontier nodes,
such that the net result is that it eliminates the redundant
search in IDA*–thus it preserves the property of optimality
and completeness. In A* MCSP and FringeMCSP, similar
to A*Prune and IDA* MCSP, we introduce the eligibility
test, which prevents a search algorithm from searching an
unnecessary space. Therefore, A* MCSP and FringeMCSP are
optimal (if feasible) and complete.

B. Performance Study of Fringe Search

Figure 5 shows that FringeMCSP has better or similar
performance to A* MCSP in infeasible cases. Figure 6 shows
the results of FringeMCSP and A* MCSP for feasible cases.

Although there are some cases where FringeMCSP is not as
fast as A* MCSP, FringeMCSP is faster in most cases.

For feasible cases, IDA* MCSP has better or comparable
performance as FringeMCSP. To save space, we do not show
the results. Figure 7 and Figure 8 give the average search time.

C. Summary

We present the average and the confidence interval of
the search time. Figure 7 shows that for infeasible cases,
FringeMCSP has a good performance. IDA* MCSP may not
perform well in infeasible cases, due to the inaccurate look-
ahead information, which causes lots of redundant search.
FringeMCSP makes a good tradeoff. It uses the depth bound
to restrict the search depth at each iteration. It uses {}_v�.j'@S8:=
and j��3=Zy:9/j'@S8:= to avoid redundant search. It does not need to
sort states on the lists.

Figure 8 shows that in feasible cases, IDA* MCSP is
the most efficient. The rank is, IDA* MCSP, FringeM-
CSP, A* MCSP and A*Prune. FringeMCSP is close to
IDA* MCSP. For feasible cases, IDA* MCSP is fast due to the
accurate look-ahead information and the iterative deepening
search. As a result, IDA* MCSP does not do much redundant
search. As well it does not need to maintain partial paths or
states and their ordering.

In short, for a feasible MCSP problem, IDA* MCSP is
the best choice. For a MCSP problem uncertain about its
feasibility, FringeMCSP may be a good option.

VIII. CONCLUSIONS

We deploy search techniques to design fast exact algorithms
for MCSP, which was shown as NP-hard. We use highly
accurate look-ahead information to predict path length, and
use eligibility test to prune unnecessary search space.

We show that for infeasible cases, IDA* MCSP [14] may
not be as efficient as A*Prune. This motivates us to design an
algorithm that is efficient in both feasible and infeasible cases.

We design an A*-based exact MCSP algorithm, A* MCSP,
which introduces the state notion and dominance relationship
between states. Furthermore, we design an exact MCSP al-
gorithm FringeMCSP. This is based on a recently proposed
search technique, Fringe search, which can be regarded as an
integration of A* and IDA*. Consequently, FringeMCSP can
be regarded as an integration of IDA* MCSP and A* MCSP.
Extensive empirical study shows that FringeMCSP has good
performance in both feasible and infeasible cases; while
IDA* MCSP still shows its superiority among the proposed
MCSP algorithms in feasible cases.

We plan to study the time complexity of search-based MCSP
algorithms for feasible cases. We have a conjecture that, on
realistic topologies like inferred Internet ISP topologies and
power-law topologies, and random topologies like those gen-
erated following the Waxman model, the look-ahead accuracy
is high and these algorithms, especially IDA* MCSP and
FringeMCSP, behave in a polynomial manner in practice.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.05 0.1 0.15 0.2 0.25 0.3

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2 0.25

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
AS 1221
AS 1239
AS 1755
AS 3257
AS 3967
AS 6461

� ��� #%� ���¤� #©! �§�¤� #©ª
(a) Rocketfuel Topologies

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5

Fr
in

ge
M

C
SP

 S
ea

rc
h

T
im

e
(m

se
c)

A*MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

� ��� #%� ���¤� #©! �§�¤� #©ª
(b) Power-law Topologies

Fig. 5. Search Process Time (msec), Infeasible Case: A* MCSP (« -axis) vs. FringeMCSP (¬ -axis)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
AS1221
AS1755
AS3967
AS6461

� ��� #%� ���¤� #©! �§�¤� #©ª
(a) Rocketfuel Topologies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

Fr
in

ge
 S

ea
rc

h
T

im
e

(m
se

c)

A*_MCSP Search Time (msec)

y=x
3037 nodes
5000 nodes
7500 nodes

10000 nodes

� ��� #%� ���¤� #©! �§�¤� #©ª
(b) Power-law Topologies

Fig. 6. Search Process Time (msec), Feasible Case: A* MCSP (« -axis)vs. FringeMCSP (¬ -axis)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP
FringeMCSP

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP
A*Prune

A*_MCSP
FringeMCSP

AS 1239 AS 1755 AS 3257
(a) Rocketfuel Topologies

(Confidence interval not reported due to small sample sizes for tightness factor �§�¤� #©ª .)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP
FringeMCSP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP
FringeMCSP

3037 nodes 7500 nodes 10000 nodes
(b) Power-law Topologies

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP
FringeMCSP

1000 nodes 2500 nodes 5000 nodes
(c) Waxman Random Topologies

Fig. 7. Average Search Process Time (msec) with 95% Confidence Interval, Infeasible Case

REFERENCES

[1] INET Topology Generator. http://topology.eecs.umich.edu/inet/.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proceedings of 18th ACM SOSP, October
2001.

[3] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, T. Przygienda, and
D. Williams. Qos routing mechanisms and ospf extensions. IETF RFC
2676, August 1999.

[4] Y. Björnsson, M. Enzenberger, R. Holte, and J. Schaeffer. Fringe
search: beating A* at pathfinding on game maps. In Proceedings of
IEEE Symposium on Computational Intelligence and Games. Colchester,
Essex, UK, April 2005.

[5] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard
problems are. In Proceedings of IJCAI’91. Sidney, Australia, 1991.

[6] S. Chen and K. Nahrstedt. An overview of quality-of-service routing for
the next generation high-speed networks: problems and solutions. IEEE
network magazine, 12(6), 1998.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, USA, 2001.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships
of the internet topology. In Proceedings of SIGCOMM’99, 1999.

[9] P. Hart, N. Nilsson, and B. Paphael. A formal basis for the heuristic
determination of minimum cost path. IEEE Transaction on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[10] R. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, 1985.

[11] R. Korf, M. Reid, and S. Edelkamp. Time complexity of iterative-
deepening-A*. Artificial Intelligence, 129(1-2):199–218, June 2001.

[12] F. Kuipers, T. Korkmaz, M. Krunz, and P. V. Mieghem. An overview
of constraint-based path selection algorithms for qos routing. IEEE
Communications Magazine, 40(12), December 2002.

[13] F. Kuipers and P. V. Mieghem. The impact of correlated link weights
on qos routing. In Proceedings of INFOCOM’03, March 2003.

[14] Y. Li, J. Harms, and R. Holte. IDA* MCSP: a fast exact MCSP
algorithm. In Proceedings of IEEE ICC’05, May 2005.

[15] G. Liu and R. Ramakrishnan. A*prune: An algorithm for finding
k shortest paths subject to multiple constraints. In Proceedings of
INFOCOM’01, 2001.

[16] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 1.1 1.2 1.3 1.4 1.5 1.6

S
ea

rc
h

Ti
m

e
(m

se
c)

tightness factor

IDA*_MCSP

A*Prune
A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

AS 1239 AS 3257 AS 6461
(a) Rocketfuel Topologies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

3037 nodes 7500 nodes 10000 nodes
(b) Power-law Topologies

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.1 1.2 1.3 1.4 1.5 1.6

Se
ar

ch
 T

im
e

(m
se

c)

tightness factor

IDA*_MCSP

A*Prune

A*_MCSP

FringeMCSP

1000 nodes 2500 nodes 5000 nodes
(c) Waxman Random Topologies

Fig. 8. Average Search Process Time (msec) with 95% Confidence Interval, Feasible Case

weights using end-to-end measurements. In Proceedings of IMW’02,
2002.

[17] P. V. Mieghem and F. A. Kuipers. Concepts of exact quality of service
algorithms. IEEE/ACM Transactions on Networking, 12(5):851–864,
October 2004.

[18] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services
architecture for the internet. IETF RFC 2638, July 1999.

[19] G. Ramalingam and T. Reps. An incremental algorithm for a generaliza-
tion of the shortest-path problem. Journal of Algorithms, 21(2):267–305,
September 1996.

[20] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[21] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. In Proceedings of ACM SIGCOMM’02, August 2002.

[22] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting
multimedia applications. IEEE Journal on Selected Areas in Communi-
cations, 14(7):1228–1234, September 1996.

[23] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In Proceedings of INFOCOM’96, 1996.

