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Abstract

In this work we have developed a decentralized algorithm for efficient localization

and tracking of hands from a sequence of depth and colour images. We deduce

the location of key-points using a Bayesian framework. We use anthropomorphic

constraints for modelling the interaction between body-parts. Furthermore, we in-

corporate an occlusion reasoning and data association preservation procedure for

dealing with ambiguities. Our work is adaptive to illumination changes despite

utilizing the skin-color information for tracking. Experimental results demonstrate

that our system produces more accurate tracking of the head and hands in video,

compared to prior research.
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Chapter 1

Introduction

Gesture recognition algorithms are getting increasingly important for a wide range

of applications related to Human Computer Interaction (HCI). The most intuitive

gesture interaction tool is our hand, as we aim to alleviate the usage of mouse, joy-

stick or other input devices. However the prerequisite of hand gesture recognition is

tracking where the hand is localized from the scene, before higher level information

is extracted from image sequence. There are two major approaches to develop hand

tracking systems. These are model based approach and the appearance based ap-

proach [20]. In model based hand tracking systems [11, 25, 40, 36, 15], the image

of the user’s hand is fitted to a hand model and subsequent variations of the hand

posture are parametrized based on the model. While this ensures accuracy in terms

of tracking there are some practical issues like computational expense for model fit-

ting. This is because hand is a highly deformable object and the parameter space for

describing the model is very large. On the other hand, in appearance based tracking

[30] some image features are detected and tracked over the image sequence. Ideally

the chosen feature should be invariant over time so that tracking is not interrupted.

One of the candidate features is skin-color because of its invariance to rotation,

scale-change and shape variation.

However color-based hand tracking works well only in a controlled setup with

good illumination. The illumination of a scene in an uncontrolled set-up could be

less than ideal and so the skin-color detection algorithms will return poor result.

Recent advances in range sensor enable us to retrieve a dense 3D scan of the en-

vironment in real-time. We augment the range data with the color image to obtain
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an easy localization of user and subsequent localization of hands before the track-

ing is initialized. The other challenges related to skin-color based tracking include

the ambiguities that arise when the hands overlap with one another, or when the

hand overlaps with the face. One solution is to utilize the location of the arms to

disambiguate the hand locations as introduced by Buehler et al. [2] in the context

of sign language recognition from video. Their approach shows an improvement

in the robustness of the tracker as they successfully track the hand over long im-

age sequence. However this approach leads to modification of the original hand

tracking problem into a larger pose estimation and tracking problem, which is com-

putationally more demanding than hand tracking. In this thesis we introduce a novel

technique to reduce the computation by employing a decentralized mechanism for

simultaneous detection and tracking of key-points representing the body-parts by

integrating them with a directed graphical model for pose-consistency.The major

advantage of our decentralized tracking scheme is that it supports parallel compu-

tation to speed up the tracking process.

Our approach to solving the pose estimation problem is a combination of bottom-

up and top-down approaches. We hypothesize the location of hands, head and torso

using appearance based body-part detectors in the color and range images and de-

duce the location of the key-points probabilistically using a Bayesian framework.

We reduce the computation overhead of arm detection by predicting the location of

elbow based on location of head and hand in range data. The overall methodology

may be classified as a probabilistic assemblies of part approach [17] to solve pose

estimation. We apply the skin-color detector on the foreground image to extract the

hand and face region. Adaboost based face detector operator is applied to detect the

face in the image and isolate the colour blob corresponding to the face. The torso

is detected by using parallel line detection by probabilistic Hough transform on the

range image. Since the shape of the torso is invariant, the location of shoulder joint

is isolated from the torso geometrically. Now we apply the a kinematic constraint

on the detected parts (face, hands and torso) to deduce the location of elbow. The

key observation we use here is that if we recover the 3D coordinates of face , torso

and hand we can predict the location of elbow, because of anthropomorphic ratio
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of human body and constraints produced by keypoints (shoulder joint, elbow joint

and centroid of hand). Thus we develop the inter-part kinematic constraints by us-

ing anthropomorphic ratio and spatial joint depth priors. Thus, unlike the scheme

employed in the pictorial structure based approach in [2], we don’t perform any

appearance based detection of upper and lower arms. This helps in reducing the

dimensionality of the problem and making it computationally efficient. In addi-

tion to this we incorporate an occlusion reasoning and data association preserving

mechanism in our graphical model for resolving the ambiguities that arise when

skin-coloured objects move close to one another.

The thesis is organized as follows. In Chapter 2 we review some of the back-

ground and related works. In Chapter 3 we provide a brief overview of our frame-

work and discuss the theoretical details behind the Dynamic Bayesian Network

(DBN) and its decomposition and subsequent solution with particle filter. Here we

also discuss the formulation of hand tracking using the DBN model. Chapter 4

discusses the implementation details of the framework. Finally, in Chapter 5 we

discuss our experimental findings and show the comparison of our results with re-

spect to state-of-the art methods. Chapter 6 talks about the overall contribution of

this work and potential extensions.
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Chapter 2

Related Works

In this chapter, we give a background of pose estimation literature which is relevant

in context of our problem. The three aspects that we look at are:

1. Different approaches to hand tracking;

2. Different approaches to pose estimation with taxonomy;

3. Inference of Dynamic Bayesian Network in context of tracking problem.

2.1 Approaches to Hand Tracking

Hand tracking algorithms in literature can be categorized into 2 classes :

1. Model based Tracking;

2. Appearance based Tracking.

2.1.1 Model based Tracking

In model based hand tracking algorithms a model of hand is built. The image from

camera is fitted against the projection of the model to estimate the model parame-

ters. The advantage of this approach is its high accuracy. However, the downside is

high computation cost for model fitting algorithm and hence not suitable for real-

time applications in general.

2.1.2 Appearance based Tracking

In appearance based approaches, the hand is tracked based on features extracted

from image. In this approach feature extraction is a major challenge in real world
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settings. The problem is more complicated in case of hand tracking because of de-

formable nature of the human hand, hence reliable feature extraction is mandatory.

One of the most common approaches used for hand detection in a scene is to

look for skin coloured regions in the image and track them. While the idea behind

using colour feature for hand tracking is simple and intuitive, there are practical

challenges associated with this approach. First, skin colour is dependent on the am-

bient illumination conditions. There are wide range of approaches for skin colour

detection in constrained environment [12]. In practical scenarios there is an issue

of having skin colour variations among different users depending on complexion.

Also, there are illumination issues which might result in shadows. In addition to

this there may be false positive detection (non-skin object assuming skin colour).

Recent approaches in appearance based tracking use invariant features for de-

tection of hand. Scale Invariant Feature Transform (SIFT), SURF , Histogram of

Gradient (HOG) have been used in different researches to extract the features from

the image. A set of training examples is used to learn the positive and negative

examples of hand. A learning algorithm is then employed to classify the extracted

features to be hand or non-hand.

2.2 Pose Estimation

In our work, pose estimation has been formulated as a sub-problem of tracking as it

aids in tracking the hand by appearance by providing additional information. Pose

estimation has been thoroughly studied over the last two decades. [32] provides

some extensive reviews of various works in this area. In this section we provide

a brief classification of the methodologies before we discuss some of those work

which are closely related to ours.

The pose estimation problem (using a single view) is solved by using two main

approaches: model-based approach, and learning-based approach. In model-based

approach a geometric representation of a full human body is constructed. This

representation could be 2D (eg. Cardboard model) or 3D (eg. Super-quadrics),

and it encompasses the shape and kinematic constraint between various parts. A
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standard approach is to employ an analysis-by-synthesis methodology where by an

optimization is performed to maximize the similarity between the observed images

and the projection of the model [26, 34]. The learning based approaches, on the

other hand, directly estimate the body pose from the appearance in the image. In

this approach, the problem is solved either by learning the appearance of differ-

ent body parts and detecting them independently in the image before inferring the

pose probabilistically by cost function minimization (known as probabilistic assem-

blies by part) [4, 16, 23, 27, 24, 7] or by learning the mapping between the image

space and model space by using a large number of example 2D views (known as

example-based approach) [18, 29, 1, 32]. Our framework is a combination of these

two paradigms that comprise the learning-based approaches. We use a part based

approach to localise the hand and face from the coloured image. The relative posi-

tions of shoulder, elbow and hands are learned from training examples comprising

of dense range sensor data.

There is a broad range of pose estimation algorithms in literature that are based

on learning. We highlight some of the prominent works in this field. Felzenszwalb

[4] introduced pictorial structure, which is a generative body model which can be

applied to efficient inference of the part constellations. In [16] body parts are de-

tected using Adaboost and are assembled together using RANSAC algorithm with

prior pose constraints. In [23] Ramanan and Forsyth built a bottom-up framework

where appearance of an individual is modelled by clustering candidate body seg-

ments, and then used this model to find all individuals in each frame by using a

loopy belief propagation algorithm. In [27] Ren et al. have detected body parts us-

ing parallel line based detectors. They formulate the pose estimation as an integer

quadratic programming problem by using the pairwise constraints between body

parts. In [24] Conditional Random Fields (CRF) were used to model the parameter

estimation problem and is solved by gradient ascent to maximize the conditional

likelihood. In [7] the human body configuration is represented by a Markov chain

where the body parts are represented by nodes of the graph parameterized using

shape and location. The problem is solved using a sequential data-driven belief

propagation. In [18] several exemplar manually annotated 2D views in different
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pose configurations are used to localize the joints in an image and subsequent pose

estimation. In [29] exemplar images are efficiently mapped to pose configuration

by using parameter sensitive hashing strategy for k-NN based pose retrieval. Agar-

wal and Triggs [1] maps the silhouettes to pose space by non-linear regression on

shape descriptors recovered from silhouettes. The pose recognition framework be-

hind Xbox Kinect [32] uses a large database ( 500,000 frames) of motion capture

data to learn the segmentation of body parts before using depth image features with

randomized decision forest classifiers to classify the user’s pose. However these

mapping based technique are not scalable to unconstrained environment settings

because of high dimensionality of human pose space. We utilize the anthromorphic

ratio of the human body to reduce the search space. Instead of learning the joint

distribution of all key-points of the body we learn the position vector connecting

the key-points relative to the spatial location of head. This prior based approach

together with temporal constraints in DBN solves the self-occlusion problem.

In recent advances triggered by range sensors, most of the systems rely on fea-

ture extraction from depth data. These approaches are aimed at exploiting the dense

correspondence between the model and the depth map and use Iterative Closest

Point (ICP) to match the observation against a template. These methods are all

based on local optimization and fails when the arms move to the torso. Grest et al.

[6] have used non-linear least square algorithm for model fitting to edge map and

established temporal correspondence from frame to frame. They have detected and

tracked the upper-body pose. Knoop et al [14] uses a fusion of stereo camera and

range sensor to fit a cylindrical 3D body model to the data using ICP. Siddiqui &

Medioni [33] used a hand-engineered head, hand and forehand detectors to show

that data driven MCMC model fitting outperforms ICP. Zhu et al. [42] uses coarse

body part detectors for labelling body parts before applying kinematic constraints

to estimate the location of joints from the depth-map. In [43] they modify their

system for robustness when tracking failure occurs by re-detection of key-points

with deformable 2D templates and using Bayesian framework for temporal pre-

diction. However the process is computationally expensive (frame rate is 0.1 Hz ).

Another interesting approach is to exploit the geodesic distance on depth map to ex-
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tract the human body features using an assumption that geodesic distance between

any points on the body remains constant. In [5] researchers use DBN to combine

generative model with a discriminative model and use the data driven evidence of

body-part location, which are detected using geodesic distance. The solution is

posed as MAP problem which is solved by a local hill-climbing optimization and

an inference approximation procedure to generate likely states for model-based al-

gorithm. In [28] the authors integrate these features using inverse kinematics con-

straints and fit skeletal model. They attempt to solve the self-occlusion problem

by motion estimation using optical flow. The key-point estimation procedure in

our algorithm is non-iterative and determined probabilistically using the temporal

correspondence and spatial prior which solves the problems associated with deter-

ministic approaches.

2.3 Inference of Graphical Model

Our pose estimation and hand tracking algorithm is driven by a probabilistic model.

One of the standard tools for probabilistic tracking is Sequential Monte Carlo Ap-

proximation (SMCA), also known as particle filter. Application of particle filter

for video tracking has been studied extensively and a large number of variants have

been proposed. These variants are aimed at improving the tracking performance

and also computational efficiency. These are achieved in various ways including,

but not limited to, improving on the importance sampling function from which the

particles are sampled, incorporation of local optimization to improve the particle

likelihood [30] and using axillary particles to obtain better approximation of target

location [38]. In addition, particle filter provides a principled mechanism to inte-

grate multiple cues from image. This improves the robustness of tracker. However

particle filter, in its standard form, is not suited for multi-object tracking because

multiple hypothesis get fused together or tracker gets lost when occlusion event

takes place. This is known as data association problem in object tracking literature.

There are variants of particle filter for solving the multi-target tracking problem.

These algorithm explore the joint state space of the interacting targets to localize
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the objects. In [9] a Joint Particle Filter (JPF) has been proposed, which augments

the measurement corresponding to the objects to obtain a joint observation model.

The major problem associated with JPF is its computational complexity, which in-

creases exponentially with number of targets. As a result it cannot be used in real

time tracking. In [13] a Markov Chain Monte Carlo (MCMC) scheme has been

introduced for multi-object tracking. They use pair-wise Markov Random Field

(MRF) to model the interaction between the objects. They replace the importance

sampling step in particle filter with an MCMC sampler which provides a better

approximation of the hypotheses in multi-target setting.

All these methods are based on centralized scheme. Recent approaches to multi-

object tracking algorithms are decentralized by nature. In [41] Yu et al. have used

a collaborative tracking mechanism of multiple autonomous trackers. They have

used variational analysis to solve the tracking problem which they formulated us-

ing a Markov Network. Qu et al. [22] developed a distributed scheme where the

interaction between multiple objects was modelled using a magnetic interaction po-

tential model, which has an intuitive resemblance with higher order Markov model.

The major advantage of these distributed schemes are their parallel nature and the

fact that their computational complexity increases linearly with increase in number

of objects.

Probabilistic inference is often used to solve articulated object tracking which

has high dimensional state space. Graphical models such as Bayesian network can

be used to formulated the tracking problem in higher dimension. Sudderth et al.

developed Nonparametric Belief Propagation (NBP) algorithm to solve articulated

tracking problem [37]. Isard et al. proposed PAMPAS algorithm by combining

ideas of belief propagation and particle filters [8]. Sigal et al. used PAMPAS for

tracking human pose with loose limbed model [35]. Shen et al. [31] used Belief

Propagation and Mean Field methods to infer a DBN for tracking. Wu et al. [39]

proposed a computationally efficient way to solve the problem using DBN with

Mean Field Monte Carlo (MFMC).
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Chapter 3

Theory

3.1 Overview

In this section, we give a general description of our proposed theoretical framework,

which includes tracking and occlusion reasoning in the context of hand localization.

The uniqueness of the proposed graphical model is the integration of independent

appearance based hand tracking with the upper body pose estimation, that can be

implemented using parallel pipeline. A portion of the pipeline, concerned with

tracking the left hand and elbow, is shown in Figure 3.1. The implementation details

about the framework are provided later in this thesis. The intuitive idea behind the

framework is reasonably simple. When the user performs a hand movement, our

focus moves over to the hand, which is differentiated by its skin colour , depth

and motion (visual saliency). We label the hands (left or right), depending on its

connectivity to the right or left elbow. However unlike hand, elbow feature is not

distinguishable from a scene at all times. To localize the elbow, we focus on the

configuration of torso and hand. From depth segmentation of torso, the location of

shoulders are determined, which in turn helps us locating the elbow. However when

one of the hands is occluded by the other , we use the knowledge about the location

of the corresponding elbow to approximate the location of the hand. We use a

directed graphical model (Fig 3.2) to formalize this intuitive idea and subsequently

solve the problem.

10



Figure 3.1: Simultaneous body pose estimation and hand tracking pipeline in the
presence of color and depth information. This figure shows the part of the frame-
work that is concerned with left hand, face and left elbow tracking, in absence of
occlusion. The portion of the pipeline concerned with the implementation of the
Graphical Model has been highlighted in blue.

3.2 Model Description

A standard representation of articulated human body is shown in Figure 3.2. The

graph can be explained as follows. Each of the key-points corresponding to various

body part is represented by a hidden state. In our model, we perform the tracking of

various body parts using corresponding key-points. We use the following symbols

to describe the latent states in our graphical model.

Hand : xwl and xwr for left and right hands respectively.

Elbow : xel and xer represent the states of left and right elbow.

Shoulder : xsl and xsr represent the left and right shoulder.

Torso : xT represents the state of torso.
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Figure 3.2: Graphical Model Representation of Human Body for pose Estimation
problem. Undirected thin edges represent the inter-part constraints between key-
points representing body parts. Bold edges joining a pair of nodes represent the
interaction between the corresponding pair of trackers in appearance space.

Head : xH represents the state of head.

Associated to each hidden state xi there is an observation state zi. An edge join-

ing two hidden states xi and xj represent the constraint between the corresponding

body parts. Each of these states is parametrized as x = (cx, cy, d), where (cx, cy)

represent the spatial coordinate for the corresponding joint and d represent the range

observation of the joint. Some of the body parts are observed in coloured images.

Specifically, face and hands are observed in the colour image. For each of these

hidden states there is an associated color observation ci. We denote the state of the

part at time t by xti and the associated observation by zti. Furthermore the history

of a state upto time t is x0:t
i , where x0

i is the initialized state. Similarly the history

of range observation upto time t is given by z0:t
i . The directed edges from xt−1

i to

xti represent the motion dynamics of the tracker. We assume that dynamic motion

model employed in our system is Markovian in nature.

12



We account for occlusion in color appearance space by introducing additional

edges in the graph (bold undirected edges in Figure 3.2). These edges connect the

pair of nodes associated with the objects, which potentially generates ambiguity in

course of appearance based tracking. In context of appearance based hand track-

ing, such ambiguity arises in case of hand and face detection using skin colour. As

an example, when two skin-color blobs merge it’s impossible to distinguish them

unless we use additional information. We attempt to resolve the ambiguity by us-

ing additional pose information. The undirected bold edge connecting two nodes

represent the interaction energy between the objects. When this interaction energy

reaches a threshold, the models corresponding to occlusion reasoning gets activated

(see Figure 3.5 for the model transition diagram). There are three edges intercon-

necting the hidden states xH , xwl and xwr associated with skin colour regions.

The joint estimation of all the states is computationally intractable. So we de-

centralize the tracking problem into different components. This decentralization

approach for articulated body tracking is similar to the framework used in [21].

However in their work the authors have used tracker for each body part which are

conditionally dependent on the neighbourhood parts. As a result each one of their

trackers is solved using iterative approach to take the neighbourhood information

into account. A key observation used in our approach is that, some of the body

parts are more distinguishable than the others. These parts can be tracked indepen-

dently without considering their neighbourhood parts. As an example, the hands are

distinguishable by skin colour and can be tracked independently without knowing

the state information of elbow. Similarly, the torso can be tracked independently

and efficiently using the shape information because its shape is relatively invariant.

These two independent trackers are unified using state of the elbow. A graphical

model in Figure 3.2 can be simplified to a directed graphical model to track the

state of the elbow using its relationship with the hand and shoulder (Figure 3.3,

3.4). During an occlusion event it’s reasonable to assume that independent skin

colour information from hand is not reliable to estimate the location of elbow. So,

the direction of the edges connecting the elbows with the corresponding hand is

reversed. The undirected edges are decomposed to directed edges when each part

13



is tracked. This idea of decomposition is similar to what has been proposed in [21].

However, the occlusion modelling in their work is dependent on the user activity

(for example, walking or running). In our work this modelling is done for more ran-

dom action (hand movement).The parameters of this graphical model is computed

using Sequential Monte Carlo Approximation (SMCA). The interrelationship be-

tween these trackers can be represented by the layered graph representation. The

layers A and C in the model correspond to the independent trackers. Layer B cor-

responds to the representation of elbow and is visualized as unification of the hand

and torso trackers.

Figure 3.3: Dynamic Bayesian Network using our Layered Graphical Model rep-
resentation. This image shows the temporal correspondences between successive
time frames that we exploit for Sequential Monte Carlo Approximation.

3.3 Inference Algorithm

3.3.1 Graphical Model Decomposition

DBN is difficult to analyse directly because of the complex structure of the net-

work, with several directed and undirected edges, as well as, correlation between

14



Table 3.1: Particle Filter Algorithm for independent color trackers

Step 1. Generate N particles, {x(r)
i,t }Nr=1 from the dynamic motion model.

x
(r)
i,t ∼ P (x

(r)
i,t |x

(r)
i,t−1)

Step 2. Compute the observation likelihood (weights) of each particle.

π
(r)
i,t = P (zi,t|x(r)

i,t )

Step 3. Normalize the weights π(r)
i,t

Step 4. Compute the expected state of the target

x̂i,t =
N∑
r=1

π
(r)
i,t x

(r)
i,t

Step 5. Resample the particles for the next time step. {x(r)
i,t , π

(r)
i,t }Nr=1

the variables. We adopt the decentralization strategy similar to the ones reported in

[21] by decomposing the network into independent components corresponding to

each tracker. The decomposition is done using the following rules:

1. For each vertex in the graph retain only the vertices which are connected to

the said vertex. Delete all the remaining vertices.

2. For the said vertex, retain only the edge links which are leaving the vertex.

Delete the remaining edges.

The resulting subgraphs (after the decomposition operation) are Directed Acyclic

independent Graphs (DAG) (see figure 3.6 for illustration). Associated to each of

these DAG is a moral graph which is defined as the ”undirected graph on the same

vertex set and with the same edge set obtained by including all edges in the directed

graph together with all edges necessary to eliminate forbidden Wermuth configura-

tion” [19]. We refer the readers to [19, 21] for further details. See Figure 3.7 for

moral graph construction from a DAG.

The following Markov properties are verifiable for each of the DAG. These

properties are used to simplify the posterior and obtain the Sequential Monte Carlo

Approximation as we describe in the following subsections.
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P (zi,t|xi,t,ZNeighbour(i),t, zi,1:t−1,xi,1:t−1,ZNeighbours(i),1:t−1) = P (zi,t|xi,t)

P (xi,t,ZNeighbours(i),t|xi,1:t−1, zi,1:t−1,ZNeighbours(i),1:t−1) = P (xi,t,ZNeighbours(i),t|xi,1:t−1)

P (ZNeighbours(i),t|xi,t,xi,1:t−1) = P (ZNeighbours(i),t|xi,t)

P (xi,t|xi,1:t−1) = P (xi,t|xi,t−1)

P (zi,t|xi,t,xj,1:t) = P (zi,t|xi,t)

P (ZNeighbours(i),t|xi,t) =
∏

j∈Neighbours(i)

P (zj,t|xi,t)

(3.1)

In these equations, ZNeighbours(i),t is joint observation of all neighbours of i :

ZNeighbours(i),t = {zj,t, j ∈ Neighbours(i)}

3.3.2 Independent Trackers for Hands, Face and Torso

The independent trackers are modelled using a single chain Bayesian network. The

posterior probability for this model is resolved by

P (xi,1:t|ci,1:t, zi,1:t)

This expression can be written as

P (xi,1:t|ci,1:t, zi,1:t) = ηP (ci,t, zi,t|xi,t)∫
P (xi,t|xi,t−1)P (xi,1:t−1|ci,1:t−1, zi,1:t−1) dxi,t−1 (3.2)

The computation of the posterior probability P (xi,1:t|ci,1:t, zi,1:t) at time t is thus

recursively related to that at time t− 1, P (xi,1:t−1|ci,1:t−1, zi,1:t−1).

3.3.3 Tracking Elbow using Interaction with Neighbouring parts

The elbow is tracked using the directed graphical model shown in Fig 3.3. The

posterior probability associated with elbow is given by
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P (xe,1:t|ze,1:t, zs,1:t, zw,1:t)

Utilizing the Markovian properties of the graphical model, this above expression

can be rewritten as

P (xe,1:t|ze,1:t, zs,1:t, zw,1:t) =

ηP (ze,t|xe,t)(
∏
j=s,w

∫
P (zj,t|xj,t)P (xj,t|xe,t) dxj,t)

×
∫
P (xe,t|xe,t−1)P (xe,1:t−1|ze,1:t−1, zs,1:t−1, zw,1:t−1) dxe,t−1 (3.3)

The above equation shows the influence of adjoining key-points (shoulder joint

s and centroid of hand w ) in the tracking of elbow. The right hand side of the

equation shows the relative constraint term P (xj,t|xe,t), the associated weights of

shoulder and hand estimations P (zj,t|xj,t), the motion dynamic model of the elbow

P (xe,t|xe,t−1) and the weight of estimated elbow state P (ze,t|xe,t). These terms are

used to estimate the posterior at time t in a recursive manner from the posterior

P (xe,1:t−1|ze,1:t−1, zs,1:t−1, zw,1:t−1), at time step t− 1.

3.3.4 Sequential Monte Carlo Approximation

Particle filter is employed to estimate the posterior probability in equation 3.3. A

set of weighted particles S = {(x(n)
t , π

(n)
t )}Nn=1 is used to represent the posterior

distribution P (xi,1:t|ci,1:t, zi,1:t), where the weight of the nth particle xnt at time t

is given by π(n)
t . Approximating the posterior probability distribution using these

particles, we have

P (xi,1:t|zi,1:t) ≈
∑
n

πnt−1P (xi,t|xi,t−1) (3.4)

The sample set evolution is modelled using the propagation of the particles ac-

cording to a dynamic model. In the above equation the model is governed by the

pdf P (xt|xt−1).
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We use the principle of Sequential Importance Sampling to choose the weights

of the particles. The samples (xki,t) can be generated from an importance density

Q(·) with associated importance weights

π
(n)
i,t ∝

P (xi,1:t|zi,1:t)

Q(·)
(3.5)

For trackers of key-points (for example, elbow), which have interaction with

neighbouring components, we have

π
(n)
i,t ∝

P (xi,1:t|zi,1:t,ZNeighbour(i),1:t)

Q(·)
(3.6)

For the independent trackers, if the importance density is chosen asQ(xi,1:t|zi,1:t),

then

π
(n)
i,t ∝

P (xi,1:t|zi,1:t)

Q(xi,1:t|zi,1:t)
(3.7)

If the importance density is chosen to factorize

Q(xi,1:t|zi,1:t) = Q(xi,t|xi,1:t−1, zi,1:t)Q(xi,1:t−1|zi,1:t−1) (3.8)

By substitution we have

π
(n)
i,t = π

(n)
i,t−1

P (zi,t|xni,t)P (xni,t|xni,t−1)

Q(xni,t|xni,1:t−1, zi,1:t)
(3.9)

Furthermore, if Q(xi,t|xi,1:t−1, zi,1:t) = Q(xi,t|xi,t−1, zi,t), then the importance

density becomes dependent on xi,t−1 and zi,t. The modified weight becomes

π
(n)
i,t = π

(n)
i,t−1

P (zi,t|xni,t)P (xni,t|xni,t−1)

Q(xi,t|xi,t−1, zi,t)
(3.10)

It can be shown that these weights give an approximation of the posterior density

for the independent tracker. For the trackers having interaction with neighbouring

trackers, the importance density is chosen to factorize such that

Q(xi,1:t|zi,1:t,ZNeighbours(i),1:t) = Q(xi,t|xi,1:t−1, zi,1:t,ZNeighbours(i),1:t)

Q(xi,1:t−1|zi,1:t−1,ZNeighbours(i),1:t) (3.11)
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Substituting this in the weight expression we have

π
(n)
i,t = π

(n)
i,t−1

P (zi,t|xni,t)P (xni,t|xni,t−1)

Q(xni,t|xni,1:t−1, zi,1:t,ZNeighbours(i),1:t)

×
∏

j∈Neighbours(i)

{
Ns

j∑
l=1

P (zj,t|xlj,t)P (xlj,t|xni,t)} (3.12)

In this equation the density function P (xlj,t|xni,t) models the interaction between

samples of part i and its neighbour, part j. P (zj,t|xlj,t) is the weighting bias that is

added to this interaction.

3.3.5 Inter-part Interaction using Spatial-Kinematic Prior

In this section we define the interaction probability density that we use to com-

pute the posterior equations defined in the previous sections. This density function

P (xj,t|xi,t) is used to quantify the interaction between the part xi and the neigh-

bouring part xj . As an example, in Figure 3.3 the directed edge connecting the

nodes xel and xwl represents the interaction (spatial and kinematic constraints) be-

tween the corresponding key-points. The advantage of this spatial prior is that it

incorporates the physical constraints between various joints effectively without try-

ing to parametrize the joint interrelationship using Gaussian distribution [21] or

mixture of Gaussians [35]. We discuss the implementation of prior computation in

section 4.9.

3.4 Decentralized Occlusion Reasoning

Occlusion reasoning is imperative for consistent tracking over a long period of time

in multi-hypothesis setting. Occlusion reasoning is specifically important in our

problem setting because of the labelling ambiguity created by skin-color in terms

of detecting the hand and face in the image. While the targets are reasonably far

from one another, this labelling can be achieved by using the strategy described in

the previous section. However, when the targets move closer, a more sophisticated

reasoning strategy needs to be used.
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3.4.1 Modelling the Multi-object Interaction

Each of the skin colour object have an interaction zone. When another skin colour

object enters that zone, the graphical model for occlusion reasoning gets activated

(Figure 3.5). The inference sub-problem is represented as P (xi,1:t|zi,1:t, zj,1:t, zk,1:t),

where xi,1:t represent the state of the object in question, xk,1:t is the state of the

object which is interfering in tracking and xj,1:t is the state of the neighbouring

body part which provides the auxiliary information to improve the performance of

tracking. Assuming that the graphical model is Markovian, one can simplify the

posterior as follow.

P (xi,1:t|zi,1:t, zj,1:t, zk,1:t) =

ηP (zi,t|xi,t)
∫
P (zj,t|xj,t)P (xj,t|xi,t) dxj,t ×

∫
P (zk,t|xk,t)P (xk,t|xi,t)dxk,t

×
∫
P (xi,t|xi,t−1)P (xi,1:t−1|zi,1:t−1, zj,1:t−1, zk,1:t−1) dxi,t−1 (3.13)

The right hand of the above equation shows three components. The integral∫
P (zj,t|xj,t)P (xj,t|xi,t) dxj,t describes the interaction between the object and the

neighbouring body part. For example, the interaction between the left hand and

left elbow is modelled using this integral. The second integral of the equation,∫
P (zk,t|xk,t)P (xk,t|xi,t)dxk,t models the occlusion event created by the interaction

between the hypotheses xi and xk at time t. The third component in the right hand

side represents the temporal coherence.

3.4.2 Inter-tracker Interaction Densities

There are two types of hidden state interaction priors required to solve this posterior.

The prior used to describe the interaction between neighbouring parts has been

described in an earlier section. The other interaction density function, P (xk,t|xi,t),

used in the above equation is the inter-tracker interaction density (shown in Figure

3.2 and 3.4 using bold edges). We track the skin color hand blobs using bounding

rectangles. When two blobs xi,t and xk,t are close to one another, three different

scenarios are possible
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1. Object xk,t occludes Object xi,t

2. Object xk,t is together with Object xi,t

3. Object xi,t occludes Object xk,t

We model the resulting distribution as follows :

P (xk,t|xi,t) = φi,k(1−N (−d(xk,t,xi,t); 0, σi,k)) (3.14)

where d(xk,t,xi,t) represents the difference in depth between the predicted key-

point locations. The factor φi,k is a depth ordering factor, which rewards the hypoth-

esis pair if they preserve the depth ordering from the previous frame. We define φi,k

as :

φi,k = 0.5(1 + correctness ∗ N (−δdepth(xk,t,xi,t)) (3.15)

where, correctness is 1, if the depth order is preserved and -1 if it is not.

Table 3.2: Particle Filter Algorithm with Neighbour Interaction (no Occlusion)

Step 1. Generate the particles, {x(r)
i }

Ni
r=1, from the importance sampling density.

x
(r)
i,t ∼ Q(xi,t|xi,t−1, zi,t,ZNeighbours(i),t)

Step 2. Compute the likelihood (weights) π(r)
i,t of each particle using Equation

3.12.
Step 3. Normalize the weights π(r)

i,t , so that
∑Ni

r=1 π
(r)
i,t = 1

Step 4. Compute the expected state of the target

x̂i,t =
n∑
r=1

π
(r)
i,t x

(r)
i,t

Step 5. Resample the particles for the next time step. {x(r)
i,t , π

(r)
i,t }
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Figure 3.4: Variations of Layered Graphical Model representation for occlusion
reasoning in colour space. (1) represents the scenario when the skin coloured object
are not interacting with each other during tracking. (2) when left hand & right hand
are close, (3) when the left hand & face are interacting with one another and (4)
when the right hand & face are interacting. For models 2, 3 and 4 the undirected
bold edge represents the inter-tracker interaction density.

22



Figure 3.5: Finite State Machine representation of model switching for an occlusion
event.

Figure 3.6: Decomposition of undirected graphical model into Directed Acyclic
independent Subgraphs.
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Figure 3.7: A Directed Acyclic Subgraph(left) and the corresponding Moral
Graph(right)
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Table 3.3: Particle Filter Algorithm with Neighbour Interaction (under Occlusion)

Step 1. Generate particles {x(r)
i }

Ni
r=1from the Importance sampling density.

x
(r)
i,t ∼ Q(xi,t|xi,t−1, zi,t,ZNeighbours(i),t,ZTrackers(i),t)

Step 2. Compute the likelihood (weights) π(r)
i,t of each particle using Equation

3.12.
Step 3. Normalize the weights π(r)

i,t , so that
∑Ni

r=1 π
(r)
i,t = 1

Step 4. Compute the temporary expected state of the target

x̂i,t =
∑
n

π
(r)
i,t x

(r)
i,t

For iter = 1:maxIter
Step 5. Update weights

π
(r)
i,t = π

(r)
i,t ∗

∏
k∈Trackers(i)

P (xk,t|x(r)
i,t )

Step 6. Normalize weights π(r)
i,t

Step 7. Estimate
x̂i,t =

∑
n

π
(r)
i,t x

(r)
i,t

/*estimating each of the interactive trackers. M is the number of trackers
interacting with i */

For k = 1:M
Step 8. Update weights

π
(r)
k,t = P (zk,t|x(r)

k,t)
∏

q∈Trackers(k)

P (xq,t|x(r)
k,t)

Step 9. Normalize weights π(r)
k,t

Step 10. Estimate

x̂k,t =
∑
n

π
(r)
k,tx

(r)
k,t

end
Step 11. Resample the particles for the next iteration. {x(r)

i,t , π
(r)
i,t } ,

{x(r)
k,t , π

(r)
k,t}

end
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Chapter 4

Implementation Overview

In our tracking framework, we assume that the depth camera can capture the upper-

body of the user completely. The user must face the camera and there must not be

any occlusion during initialization. In the beginning of the tracking phase the user

must stand straight with two arms outstretched and the palm facing the camera.

This is used to initialize the locations of various body parts. Our system is invariant

to illumination change as long as user’s face is visible to the color camera.

We make the following assumptions at the current stage of the implementation:

1. The user stays upfront at all time in front of the camera, although he can turn

his head once the tracker has been initialized.

2. The user is constrained to stand at the same location, where he was standing,

when tracking initialized.

We show a portion of the pipeline of the tracking framework in Fig 3.1. The

following subsection explains various components of the pipeline.

4.1 Depth Camera

Depth imaging technology has advanced dramatically over the last few years. Very

recently Microsoft developed the Kinect sensor, there by making the technology

available at a consumer-affordable price. The device projects a structured infrared

pattern on the scene and process the deformation of the reflected pattern to estimate

a depth map of the scene. We use the Kinect camera which gives 640 x 480 image

at 30 fps with a depth resolution of a few centimetres.

26



Depth cameras offer several advantages over the traditional intensity sensors,

working in low light levels, giving calibrated scale estimate, being color and texture

invariant and resolving silhouette ambiguity of pose. They also greatly simplify the

task of background subtraction.

4.2 Foreground Segmentation

The foreground is extracted by applying threshold on the depth information ob-

tained from the Kinect. The blobs are checked for false positives by applying face

detection algorithm on the corresponding image region of the coloured image. The

illustration of foreground extraction is shown in Figure 4.1.

4.3 Head-Neck-Torso Segmentation

Prior knowledge on the relative size of body parts is used when building a model

for segmenting the head and torso. In the initial phase of tracking, the user is

constrained to stand at a specific pose, so that the algorithm processes the depth

map. We use a template-matching approach for extracting the head and torso from

the depth map. The template is initialized based on detection of nearly vertical

lines using Hough Transform when the system is initialized. The horizontal edges

of the templates are initialized based on location of the head. Figure 4.1 shows an

illustration of template initialization.

4.4 Hand-Tracking Initialization

For initialization, the user stands with his hand stretched horizontally on both di-

rections. This serves two purpose : first, the parameters which describe the user’s

body-parts can be estimated by estimating the relative length of upper and lower

arms. Second, our method can utilize the observation that the extremity of the arms

represents the user’s hand. If the arms are not occluding the torso or head, subtrac-

tion of torso and head from the image leads to the localization of the arms. Oth-

erwise depth thresholding is applied relative to the torso. We track the hand using
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Figure 4.1: Torso Initialization from the depth and color images. Top row shows the
depth image (A) and the color image (B). The the extracted foreground is shown in
(C) , the edge map computed from the foreground image (D) , the result of Hough
transform to detect the vertical edges (E). The resulting torso template is shown in
(F).

Mean-shift Embedded Particle Filter (MSEPF) [30]. For running the mean-shift al-

gorithm we formulate the feature-space as an augmentation of color and depth. The

MSEPF algorithm is described in Section 4.6.
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4.5 Skin-color Detection

There are a large number of skin detection algorithms available in the literature.

They can be broadly classified into two types [12] :

i) Frame based approach: In frame based approaches the parameters for skin

colour detection are initialised at the beginning of the algorithm and not altered

thereafter. These parameters can be learned by using discriminative approach.

ii) Sequence based approach: In sequence based approach the parameters are

adapted based on intensity values from the sequence of images. It is assumed that

the skin pixels have some initial colour model. This model adapts to the changes in

the illumination in the environment by using principle similar to moving average.

Based on the parameters the image pixels are assigned probability values (prob-

ability of being a skin pixel) or clustered in the space of skin colours to assign the

labels. We aim to make the system illumination adaptive using a spatial prior of

skin color in the given room illumination. The system is trained with the user’s skin

colour during the initialization of the system. Initially the locations of hands are de-

termined using distance transform on the depth map of the outstretched arms. This

process is repeated over ten frames during which hands are registered at various lo-

cations in the image. Spatial prior of skin-color for these regions are determined by

computing the mean and covariance of the color of hands in these locations. Spatial

map of color is computed by interpolation.

4.6 Particle Filter Implementation for Tracking Color
Region

We use a particular variant of particle filter algorithm in this thesis to implement the

colored blob tracking. The important component of our particle filter implementa-

tion is a local optimization step after assignment of the initial weight values to the

particle. This optimization aims to move to the particles towards the local maxima.

In our approach, we use the mean-shift algorithm [3] for performing this local op-

timization since we are using color information. The usage of mean-shift reduces

the number of particles to describe a distribution [30]. Hence, it improves the time
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Figure 4.2: Initialization of color tracking framework using color and depth images.
The top row shows the color and depth maps. The bottom row shows the skin color
region (left) and the motion mask of skin colour region (right).

Figure 4.3: Result of color Tracking. Three bounding box shows the result of three
regions of interest in the coloured image.
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requirement for particle filtering. This method is known as mean-shift embedded

particle filter (MSEPF). In our work, we have extended the original work from 2D

tracking to 3D tracking by incorporating the range measurement from the Kinect.

The basic steps of the MSEPF algorithm are:

Step 1: Re-sampling N particles

Step 2: Propagating each particle using the Dynamic motion model

Step 3: Optimizing the particle using mean shift optimization

Step 4: Weight the particles by using a Statistical Likelihood model

Step 5: Estimate the expected position of the particles

For describing the implementation of our framework, lets say that that we want

to estimate the pdf P (xt|c1:t,d1:t) for tracking the hand location. This uses the color

information from the appearance c1:t, raw depth information d1:t. In the following

subsection we give a description of our implementation for MSEPF. Equations re-

lated to mean-shift local optimization , in this subsection, are adapted from the

original work [30].

4.6.1 Dynamic State Update for Particle Propagation

For tracking purpose we represent the hand by a bounding rectangle. For tracking

the hand, its state at time t is described by three parameters.

xt = [x, y, z] (4.1)

(x, y) represent the centroid of the current location of the hand and z represents

the range measurement of the hand , required to approximate the current location

of the hand in the 3D space.

We use the following motion model based on random walks [10] along X and

Y axes:

xt = xt−1 + Et (4.2)

where Et denotes the stochastic term associated with the zero-mean Gaussian

noise. Covariance parameter associated with Et is learned empirically.
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4.6.2 Observation

The depth map is augmented with the color map to create the skin blob Mc. The

zero-order moment corresponding to the skin-blob is computed over all points (x́, ý)

lying within the bounding box of the object.

Kc =
∑
x́

∑
ý

Mc(x́, ý) (4.3)

The size of the bounding box is proportional to the depth. The constant of

proportion is empirically determined after series of experiments.

However the colour cue is not the most reliable when the hand is moving quite

fast. In such scenario motion cue provides a better representation of the hand. In the

original paper of MSEPF [6] it was assumed that the other objects move slower than

the hand. Our approach doesn’t have this constraint as we isolate the foreground

from the background by using the depth information. The moving region is isolated

by using temporal differencing of the image. The region of interest in this case

is obtained by using logical AND between the skin blob location and significant

motion region to create the map Mm. The zero-order moment is computed on this

color-motion blob for all points (x́, ý) lying within the bounding box of the object.

Km =
∑
x́

∑
ý

Mm(x́, ý) (4.4)

The color and motion cues are balanced by a trade-off factor β. Thus, combining

the effect of both cues one can define the zero order moment as:

K = (1− β)Kc + βKm (4.5)

4.6.3 Mean-Shift Optimization

Given the particle locations, we compute the new location by using the Mean Shift

optimization as described on the original paper [30].

Assuming that we have the initial blob centroid at (x0, y0), one can update the

centroid location by performing the following steps:

32



Step 1: Compute the observed colour and motion cues over the pixels (x́, ý),

within the rectangular bounding box located at the centroid

K =
∑
x́

∑
ý

(1− β)Mc(x́, ý) + βMm(x́, ý) (4.6)

Kx́ =
∑
x́

∑
ý

x́((1− β)Mc(x́, ý) + βMm(x́, ý)) (4.7)

Ký =
∑
x́

∑
ý

ý((1− β)Mc(x́, ý) + βMm(x́, ý)) (4.8)

Step 2: Compute the new centroid (x1, y1) of the bounding box based on the

zero-order and first- order moments for x and y .

x1 =
Kx́

K
, y1 =

Ký

K
(4.9)

Step 3: If the displacement of centroid is more than tolerance limit then go to

Step 1 else terminate the loop.

4.6.4 Particle-weight Assignment

The particles are assigned weight based on probability distribution model. A simi-

larity measure is computed based on the distance between the target region and the

candidate region. This measure is used in the distribution function to obtain the

probability or the weight. The dissimilarity measure Dist between the ithparticle

and the target object is estimated as follows

Dist(i) = (1− K(i)

T
) (4.10)

where T is the total number of pixels in the bounding box rectangle. Subsequently

the likelihoodwi of the ith particle being the representative of the target is estimated

by the Gaussian distribution.

w(i) =
1

σc
√

2π
e−(Dist(i))2/2σ2

c (4.11)

To account for the range information, the weights are adjusted as
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w(i) = w(i) exp (−(z(i) −R(x(i), y(i)))2

σ2
d

) (4.12)

where, (x(i), y(i), z(i)) is the ith particle and R is the range image. Thus R(x(i), y(i))

is the range data corresponding to a pixel, (x(i), y(i)), in the color image. The

weights, w(i), are then normalized so that their values add upto one. These weights

are used to compute the expected location of the target from the generated samples.

4.7 Torso Tracking

The torso is tracked based on the template-matching approach using particle filter.

We assume that the shape of the torso is invariant. The particles are initialized as

the centre of gravity of the torso region. They are propagated according to first

order dynamic model similar to that of MSEPF described in the earlier section.

The image likelihood is computed based on a similarity measure between the shape

of the template and the shape detected within the bounding box of the propagated

particles. In our work we have used Sum of Square Distance (SSD) similarity

between the template and the image.

P (zT,t|xT,t) = exp(−(SSD(zT,t,xT,t))

σ2
T

) (4.13)

In this step we account for occlusion of the upper-body due to the movement

of arms. This is done by using depth slicing (Figure 4.4). We assume that the part

of the upper body, which is occluded by arms, retains the same range values from

pre-occlusion stage.

4.8 Shoulder Estimation

The location of shoulder is estimated from the location of torso. The distance be-

tween the torso and shoulder is fixed and can be estimated when the torso template

is initialized. At present our implementation is only equipped to handle the sce-

nario where user is facing the camera when the tracking is underway. As a result,

the planar distance between the torso key-point and shoulder remains the same at

all time and is tracked by estimating the key-point corresponding to the torso.
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4.9 Spatial Prior Computation

We used an example-based approach to learn the spatial prior. In our application this

spatial prior is used to localize the elbow key-points when the hands can be tracked

independently without any occlusion event. We learn the location of elbow with re-

spect to corresponding hand and shoulder from manually annotated images. There

are two types of challenges associated with this example-based learning. First, the

number of training examples that need to be used to account for all possible con-

figurations of the arms. Second, the prior should be invariant over different users.

Instead of learning the joint configuration of all the key-points, we learn the pair-

wise constraints from the examples. This results in reducing the dimensionality of

the problem and hence reduces its variance. We make the priors scale invariant by

measuring the locations of key-points of hands and elbow relative to the head ( as

reference point ), and representing the spatial location as unit vectors. For discretiz-

ing unit vectors in 3D we use a 20 x 20 x 20 bin. For clarity of representation, we

define a mapping function ψi,j for computing the vectors xj,t when the correspond-

ing vector xi,t is encountered. Figure 4.5 shows the construction of prior database

using exemplar image. In this illustration the joint state space of left elbow (shown

in yellow) and left wrist (shown in red) is indicated. Centroid of the hand, in train-

ing examples, is determined by interpolating the wrist (in red) and the finger tips

(in green).

ψi,j(xi,t;µdist,xH,t) = µdist ∗ Tableij(x̂iH,t) + xH,t (4.14)

In this equation µdist is the mean distance between the key-points xi,t and xj,t.

x̂iH,t represents the unit-vectors corresponding to the location of the key-point of

part i with head of the user as the point of reference in the coordinate system.

4.10 Elbow Initialization

The elbow is initialized using the estimated hand centroid and shoulder key-points.

This is done by combining the spatial prior of elbow and the observed depth map.

For known hand and shoulder locations, the candidate locations of elbow are sam-
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pled using spatial prior. These samples are weighted based on image cues. Since

the length of upper and lower arm are unknown during initialization, the elbow

location is determined by varying the length l of upper and lower arm iteratively.

This iterative process can be viewed as minimization of a cost function. This pro-

cess gives us the location of elbow key-point x∗e,t and the length of upper and lower

arms, which are both initialized as l∗. This penalty function minimizes the distance

between the elbow location predicted by the hand ψw,e(xw,t; l,xH,t) and that pre-

dicted by shoulder ψs,e(xs,t; l,xH,t)). Density functions P (ze,t|ψw,e(xw,t; l,xH,t))

and P (ze,t|ψs,e(xs,t; l,xH,t)) are used to incorporate the range data. The penalty

function is given by

(l∗,x∗e,t) = arg minl{(ψw,e(xw,t; l,xH,t)− ψs,e(xs,t; l,xH,t))

P (ze,t|ψw,e(xw,t; l,xH,t))P (ze,t|ψs,e(xs,t; l,xH,t))} (4.15)

4.11 Elbow Estimation and Tracking

We combine the elbow dynamic motion model with the image information to obtain

the Importance sampling function for generating the particles to track the elbows.

We take advantage of the extracted foreground depth map and use the length of

upper and lower arm to get image observation of elbow with respect to the corre-

sponding shoulder and hand. We construct a mixture density function by combining

the dynamic model and range features as following :

Imp(xe,t) = P (xe,t|xe,t−1)ψw,e(xw,t; ll,xH,t)ψs,e(xs,t;ul,xH,t) (4.16)

where ll and ul denotes the length of lower and upper arm respectively as com-

puted from previous frame.

When the hands and face occlude one another, it is difficult to estimate the

location of centroid of hand. Consequently, the hand location is not used to localize

the elbow. For this reason, under the occlusion condition, the importance sampling
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function is modified as the Gaussian density corresponding to the lower arm is

dropped from the importance sampling function.

Impoccl(xe,t) = P (xe,t|xe,t−1)ψs,e(xs,t;ul,xH,t) (4.17)

For computing the weights, we use the weighted distance transform map com-

puted from non-Torso foreground pixels. We define the observation likelihood func-

tion P (ze,t|xe,t) as :

P (ze,t|xe,t) = exp(−(Euc(ze,t,xe,t))) (4.18)

The density function P (xj,t|xe,t) is computed as a normal distribution , where

variance σe,j is learned from training examples, as in :

P (xj,t|xe,t) = N (Euc(xj,t, ψe,j); 0, σe,j) (4.19)

where, σe,j is the allowed variance in distance. This is determined empirically.

Figure 4.6 shows an illustration of Elbow tracking. Top row shows the result for

tracking without occlusion. The importance sampling function used the left hand

and left shoulder to generate the elbow samples. For tracking under occlusion, the

left hand could no longer be used to generate samples, as a result the particles spread

out considerably as seen in the second row of the figure.
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Figure 4.4: Illustration of depth-slicing for torso recovery. (A) shows the depth
image where the arms occlude the torso, The arm region is sliced out by using
relative depth of torso and hand (B), the recovered map of torso (C).
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Figure 4.5: Construction of joint prior. The location of left elbow is learned with
respect to user’s left hand. User’s face is used as point of reference to compute the
unit vectors, so that normalized data can be referenced from the table.
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Figure 4.6: Illustration of elbow tracking without occlusion (first row) and with
occlusion (second row). Note the increase in variance when the knowledge about
hand location is discarded during occlusion event.
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Chapter 5

Experimental Results

The proposed system has been implemented in Matlab R2010 on a Core 2 Duo

Processor (T60 2.10GHz). Thus far the results have been tested on datasets of one

user. The range and color images were collected using Microsoft Kinect. The

results of the tracker are discussed subsequently.

We collected 2 datasets, each with 120 frames. In the first dataset, we consider

the scenario when only one hand creates the occlusion event when it comes in front

of the user’s face. In the second video both the right and left hand generate the

occlusion event when they interact with one another and with the face.

Figure 5.1 shows the result of color tracking in absence of occlusion event. For

each tracker 25 particles have been used. Figure 5.2 shows the result of head and

torso tracking in the corresponding frames. The results of torso tracking, shown in

the images, are obtained by using the SSD based shape matching algorithm. When

the torso gets occluded by hand, depth slicing strategy was used, as we discussed in

previous chapter.

Finally in Figure 5.3, we show the result of elbow tracking based on the inde-

pendent tracking results obtained from the 4 trackers (3 color-tracker and 1 shape-

tracker). The results reflect the dependency of elbow with its neighbouring parts,

hand and shoulder.

In our first experiment we compared the result of our algorithm, while tracking

two objects (left hand and head), with multiple independent trackers using Mean

Shift embedded particle filter [30], Markov Chain Monte Carlo Tracker [13], Joint

Particle Filter [8] , multiple independent particle filters [10]. For this comparison
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Figure 5.1: Results of MSEPF trackers for skin coloured regions. The three re-
gions have been shown using three different colours. The state of the trackers are
represented by the center of the respective bounding boxes.

we considered the first image sequence where the left hand occludes the user’s face.

We show the result of our algorithm under occlusion. Figures 5.4 and 5.5 show the

comparison of the trackers while tracking the head and left hand respectively during

the occlusion event. Both the plots show an improvement of tracking performance

over depth-based mean shift embedded particle filter algorithm. We estimated the

error, in terms of distance between estimated object centroids and manually anno-

tated object centroid, over 70 frames and show the plots here. The performance of

our tracking algorithm can be visualized in Figure 5.6 and 5.7. We show the visual

comparison of our result with respect to MSEPF. In Figure 5.6, we compare the
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Figure 5.2: Results of torso tracking using SSD based template matching and depth-
slicing. The three cross-marks represent 3 landmarks of the body. The left-most
cross represents the left shoulder, the right-most cross represents the right-shoulder
and central cross represents the state of the torso.

results of the algorithms when the occlusion event is beginning. Figure 5.7 shows

the performance when the occlusion event terminates. For both the scenarios our

algorithm shows better performance while avoiding tracker fusion.

Table 5.1 shows the quantitative comparison of the algorithms using Root Mean

Squared Error (RMSE) metric. RMSE is taken as an average over 5 runs on each

image sequence. One can see that our algorithm performs significantly better than

the baseline algorithms (multiple independent tracker, based on particle filters, with

or without mean shift local optimization) and comparable to the performance of
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Figure 5.3: Result of estimation of elbow from the estimated states of hand and
torso. The joints locations are joined and overlapped on the color image to show
the correspondences visually.

MCMC multi-object tracking algorithm.

In the second experiment we use our algorithm to track both hands and face

simultaneously. For this experiment 150 particles are used during occlusion rea-

soning and 4 iterations of particle updating were used. Figure 5.8 shows how the

particles converge with each iteration. The results indicate that our algorithm suc-

cessfully track the hands during occlusion even when they are close to the face. We

show the results over 8 consecutive frames in Figure 5.9. We plot the tracking error

while tracking the left hand, right hand and head (shown in Figure 5.10, 5.11 and

5.12) and compare the results with multiple independent trackers (with and with-
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out mean-shift). The RMS errors, generated by the algorithms, are listed in Table

5.2. RMS error for Independent trackers of hand and right hand are high because

of tracker fusion during occlusion event.

In our third experiment we demonstrate that our algorithm can perform tracking

under poor illumination (see Figure 5.13). In this phase all the trackers relies exclu-

sively on depth information as skin colour information is not available. Under this

condition we had to impose two restrictions on our framework. First, the face must

be visible in the color camera so that face detection can be performed to initialize

trackers. Second, the hands cannot stay close the body to ensure that depth slic-

ing and torso subtraction don’t remove any information related to hand and elbow.

We avoid using skin-color information for the corresponding tracker when the skin

color detector fails to detect the color of the corresponding object.

Figure 5.4: Plot showing the comparison between the tracking error of head loca-
tion generated by our algorithm in first experiment. Error is computed as the dis-
tance between estimated location of the object centroid and the manually annotated
ground truth.
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Figure 5.5: Plot showing the comparison between the Tracking Errors of Left Hand
location generated by our algorithm in first experiment. Error is computed as the
distance between estimated location of the object centroid and the manually anno-
tated ground truth.

Table 5.1: Comparing RMS Error of the algorithms for Experiment 1
Algorithms Left Hand Head

M.I.T. 8.3 17.15
M.I.T + meanshift 7.99 14.41

JPF 11.60 10.83
MCMC 6.55 10.38

Our algorithm 5.86 9.6

Table 5.2: Comparing RMS Error of the algorithms for Experiment 2
Algorithms Left Hand Head Right Hand
M.I.T. 10.39 24.92 23.01
M.I.T + meanshift 10.29 17.42 22.95
MCMC 27.05 9.43 5.73
Our Algorithm 10.98 7.18 8.55
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Figure 5.6: Comparison of the tracking performances when the occlusion event
initiates. Top row shows the result of independent trackers. Bottom row shows the
result of our algorithm.
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Figure 5.7: Comparison of the tracking performances when the occlusion event
terminates. Top row shows the result of independent trackers. Bottom row shows
the result of our algorithm.
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Figure 5.8: Convergence of particles after every iteration.
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Figure 5.9: Results of our algorithm while tracking three interactive targets (left
hand, right hand and face) simultaneously.
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Figure 5.10: Plot showing the comparison between the tracking error of head lo-
cation generated by our algorithm and the multiple independent trackers (M.I.T.)
during the second experiment. Error is computed as the distance between estimated
location of the object centroid and the manually annotated ground truth.
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Figure 5.11: Plot showing the comparison between the tracking errors of left hand
location generated by our algorithm and multiple independent trackers during the
second experiment. Error is computed as the distance between estimated location
of the object centroid and the manually annotated ground truth.
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Figure 5.12: Plot showing the comparison between the tracking errors of right hand
location generated by our algorithm and multiple independent trackers during the
second experiment. Error is computed as the distance between estimated location
of the object centroid and the manually annotated ground truth.
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Figure 5.13: Illustration of tracking under low illumination.
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Chapter 6

Conclusion and Future Work

Hand tracking has a wide variety of applications because of increasing use of ges-

ture recognition systems for practical applications. While there has been substantial

research in hand tracking in video, the advent of real time range sensors has spurred

on further development. In this work we have proposed a theoretical framework for

hand tracking by fusing the data from a range sensor and a color camera.

In this thesis we have developed a multi-object tracking algorithm using Dy-

namic Bayesian Network for tracking hands and face. The main contribution of

this thesis is the integration of the appearance based color trackers within the pose

estimation framework. The primary implication of such approach being, color re-

gions can be tracked independent of one another, when they are not interacting.

However, when they get close to each other, additional pose information from the

body can be used to improve the performance of the tracker.

Our algorithm shows improvements over skin color based hand trackers, even

after incorporating depth information in these algorithms. This is because, we ac-

count for the pose information of the user within our computational framework.

Experimental results indicate that our tracker performs consistently even when the

hands are close to another, as well as occluding the user’s face. Our algorithm is

an improvement over trackers which uses depth map but not colour image. This is

because trackers which use depth map alone are either computationally expensive

due to pixel classification prior to tracking, or inaccurate when the hands moves

close to torso and cannot be differentiated from the depth-map.

Another contribution is the development of an inter-tracker interaction density
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for multi-target tracking. We have exploited the availability of range sensor data to

improve the likelihood measure by introducing a depth ordering factor. This addi-

tional factor rewards the hypotheses pairs based on their relative depth difference,

in spite the object being close to one another.

There are some areas of improvement in our current framework. Currently the

implementation has been done in MATLAB. It will be interesting to see the speed-

up, when the framework is implemented in GPU to exploit the decentralized nature

of the inference methodology. Also in our current implementation the user is user

is assumed to stand still during the tracking process and the upper-body is assumed

to be upright. This can be improved by adding additional parameters to describe the

latent variables in our graphical model. We are also currently studying the change in

quality of tracking as the user moves closer to or further away from Kinect sensor.

One of the areas of improvements is the importance sampling function for gen-

erating the particles for dependent trackers. In this work, we have combined the

knowledge of arm length with the dynamic motion model for creating the impor-

tance sampling functions. Other image cues (edge , shape for example) can be

introduced in the importance sampler to improve the quality of samples.

Feature selection is another relatively open area that one could focus on to im-

prove the tracking performance. In our work, we have used the colour feature be-

cause of its shape and scale invariance. However, this makes it difficult to differen-

tiate between hands when they are very close.

Our system, as of now, works with the user facing the camera front face and is

used to track the hand and face region. The color tracking based framework is not

yet able to handle the general scenario when the skin of the forearms is visible. A

better likelihood function can be designed to make our system more robust in more

complex environmental conditions.
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vances in vision-based human motion capture and analysis. Comput. Vis. Im-
age Underst., 104:90–126, November 2006.

[18] G. Mori and J. Malik. Estimating human body configurations using shape
context matching. In European Conference on Computer Vision LNCS 2352,
volume 3, pages 666–680, 2002.

[19] Pan Pan and Dan Schonfeld. Video tracking based on sequential particle fil-
tering on graphs. IEEE Transactions on Image Processing, 20(6):1641–1651,
2011.

[20] Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual in-
terpretation of hand gestures for human-computer interaction: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:677–
695, 1997.

[21] Wei Qu and Dan Schonfeld. Real-time decentralized articulated motion analy-
sis and object tracking from videos. IEEE Transactions on Image Processing,
16(8):2129–2138, 2007.

[22] Wei Qu, Dan Schonfeld, and Magdi A. Mohamed. Real-time distributed
multi-object tracking using multiple interactive trackers and a magnetic-inertia
potential model. IEEE Transactions on Multimedia, 9(3):511–519, 2007.

[23] Deva Ramanan and D. A. Forsyth. Finding and tracking people from the
bottom up. Computer Vision and Pattern Recognition, IEEE Computer Society
Conference, 2:467, 2003.

[24] Deva Ramanan and Cristian Sminchisescu. Training deformable models for
localization. Computer Vision and Pattern Recognition, IEEE Computer So-
ciety Conference, 1:206–213, 2006.

[25] James Rehg and Takeo Knade. Visual tracking of high dof articulated struc-
tures: an application to human hand tracking. In In European Conference on
Computer Vision, pages 35–46. Springer-Verlag, 1994.

[26] James M. Rehg and Takeo Kanade. Model-based tracking of self-occluding
articulated objects. In ICCV, pages 612–617, 1995.

58



[27] Xiaofeng Ren, Alexander C. Berg, and Jitendra Malik. Recovering human
body configurations using pairwise constraints between parts. Computer Vi-
sion, IEEE International Conference on, 1:824–831, 2005.

[28] Loren Arthur Schwarz, Artashes Mkhitaryan, Diana Mateus, and Nassir
Navab. Estimating human 3d pose from time-of-flight images based on
geodesic distances and optical flow. In FG, pages 700–706, 2011.

[29] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation
with parameter-sensitive hashing. In Proceedings of the Ninth IEEE Inter-
national Conference on Computer Vision - Volume 2, ICCV ’03, pages 750–,
2003.

[30] Caifeng Shan, Yucheng Wei, Tieniu Tan, and Frdric Ojardias. Real time hand
tracking by combining particle filtering and mean shift. In FGR’04, pages
669–674, 2004.

[31] Chunhua Shen, Anton van den Hengel, Anthony Dick, and Michael J. Brooks.
2D articulated tracking with dynamic Bayesian networks. In 4th International
Conference on Computer and Information Technology (CIT’04), pages 130–
136, Wuhan, China, September 2004.

[32] Jamie Shotton and Toby Sharp. Real-time human pose recognition in parts
from single depth images. Training, 2:1297–1304, 2011.

[33] Matheen Siddiqui. Human pose estimation from a single view point , real-time
range sensor. Image Rochester NY, (June):1–8, 2010.

[34] Hedvig Sidenbladh, Michael J. Black, and David J. Fleet. Stochastic tracking
of 3d human figures using 2d image motion. In Proceedings of the 6th Eu-
ropean Conference on Computer Vision-Part II, ECCV ’00, pages 702–718,
2000.

[35] Leonid Sigal, Michael Isard, Benjamin H. Sigelman, and Michael J. Black.
Attractive people: Assembling loose-limbed models using non-parametric be-
lief propagation. In NIPS, 2003.

[36] B. Stenger, P. R. S. Mendoni, and R. Cipolla. Model-based 3d tracking of an
articulated hand. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference, 2:310, 2001.

[37] Erik B. Sudderth, Alexander T. Ihler, William T. Freeman, and Alan S. Will-
sky. Nonparametric belief propagation. In CVPR (1), pages 605–612, 2003.

[38] Junqiu Wang and Yasushi Yagi. Adaptive mean-shift tracking with auxil-
iary particles. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 39(6):1578–1589, 2009.

[39] Ying Wu, Gang Hua, and Ting Yu. Tracking articulated body by dy-
namic markov network. Computer Vision, IEEE International Conference
on, 2:1094, 2003.

[40] Ying Wu, John Y. Lin, and Thomas S. Huang. Capturing natural hand articu-
lation. In ICCV, 2001.

59



[41] Ting Yu and Ying Wu. Decentralized multiple target tracking using netted
collaborative autonomous trackers. Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, 1:939–946, 2005.

[42] Youding Zhu and Kikuo Fujimura. Constrained optimization for human pose
estimation from depth sequences. In ACCV (1), pages 408–418, 2007.

[43] Youding Zhu and Kikuo Fujimura. Bayesian 3d human body pose tracking
from depth image sequences. In ACCV (2), pages 267–278, 2009.

60


