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Abstract: This paper proposes a cooperative adaptive cruise control model, adding a communi-
cation network structure to an existing model that has been shown to capture real commercial
adaptive cruise control vehicle behavior. The proposed model is interesting because it only
requires minimal information sharing, facilitating the creation of platoons comprised of vehicles
from different manufacturers. We prove the stability of the model and discuss string stability.
Algorithms for estimating the velocity of the vehicles locally and for estimating the velocities of
all the vehicles in the platoon are presented. We simulate vehicle platoon control with the lead
vehicle following an experimentally collected trajectory, showing that adding communication
can cause a string unstable platoon to become stable.
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1. INTRODUCTION

Autonomous vehicles promise to transform mobility and
change the way we think about travel. However, before
fully autonomous vehicles become commercially available,
driver assist features such as adaptive cruise control (ACC)
are an important step. ACC is a radar assisted cruise
control that monitors the distance to, and relative speed
with respect to, the vehicle immediately in front of it,
and adjusts the vehicle speed to maintain a safe distance.
This feature has been available in luxury vehicles for over
a decade, and has recently become a standard feature
on many more cars. It has long been speculated that
features such as ACC may be able to alter the emergent
properties of and even stabilize the traffic flow (Talebpour
and Mahmassani, 2016). The relevant notion of stability
here is that of string stability, which tells whether a
disturbance will dissipate as it propagates from one vehicle
to the next in a string of vehicles (Swaroop and Hedrick,
1996).

When analyzing ACC systems, it is desirable to model the
vehicle dynamics without having to consider the specifics
of the low-level controller. The goal is to capture the
second-order (acceleration) dynamics of an ACC vehicle
as a function of the vehicle’s surroundings. This idea dates
back to the early car following models for human driving
developed in the 1950s (Gazis et al., 1959), but recently
has been applied to model ACC systems using sensor
measurements for distance (e.g., radar) as the model
inputs. Such car following models generally take the form:

ẍ(t) = f(s, ẋ, ṡ), (1)

where the acceleration ẍ is modeled as a function of the
space-gap s from the front bumper of the following vehicle
to the rear bumper of the lead vehicle, the speed of the
following vehicle ẋ, and the relative speed between the
lead vehicle and the following vehicle ṡ.

One such car following model that has recently been
shown to be able to capture the dynamics of commercially
available ACC vehicles is the optimal velocity relative
velocity (OVRV) model. This model uses a constant time
headway 1 policy (similar to the two-second rule often
taught to young drivers) along with a gain on the relative
velocity with respect to the lead vehicle. The model is
string unstable for the headway choices commonly used
for commercially-available ACC vehicles (Gunter et al.,
2019).

Currently, commercially available ACC vehicles are only
able to adjust their driving behavior based on distance
measurements made with their on-board sensors. How-
ever, with the possibility of vehicle connectivity through
dedicated short range communications (DSRC) radios and
other technology, connectivity may soon be commonplace
on vehicles, opening the possibility of cooperative ACC
(CACC) where, in addition to using sensor information
about the position of the vehicle in front, a communication
network is employed to share relative position, velocity,
and acceleration between nearby vehicles.

Vehicle connectivity has long been thought to be one pos-
sible way to stabilize autonomous driving systems. It has
been shown both theoretically (Levine and Athans, 1966;

1 Headway is the time gap between the lead vehicle and the following
vehicle.
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Philip E. Paré ∗ Ehsan Hashemi ∗∗ Raphael Stern ∗∗∗

Henrik Sandberg ∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems at KTH Royal Institute of
Technology, Sweden (e-mail: philipar,hsan,kallej@kth.se)

∗∗ Department of Mechanical and Mechatronics Engineering at
University of Waterloo, Canada (e-mail: ehashemi@uwaterloo.ca)

∗∗∗ Department of Informatics at the Technical University of Munich,
Germany (e-mail: raphael.stern@tum.de)

Abstract: This paper proposes a cooperative adaptive cruise control model, adding a communi-
cation network structure to an existing model that has been shown to capture real commercial
adaptive cruise control vehicle behavior. The proposed model is interesting because it only
requires minimal information sharing, facilitating the creation of platoons comprised of vehicles
from different manufacturers. We prove the stability of the model and discuss string stability.
Algorithms for estimating the velocity of the vehicles locally and for estimating the velocities of
all the vehicles in the platoon are presented. We simulate vehicle platoon control with the lead
vehicle following an experimentally collected trajectory, showing that adding communication
can cause a string unstable platoon to become stable.

Keywords: Semi-autonomous vehicles, Intelligent cruise control, Networks, Traffic control

1. INTRODUCTION

Autonomous vehicles promise to transform mobility and
change the way we think about travel. However, before
fully autonomous vehicles become commercially available,
driver assist features such as adaptive cruise control (ACC)
are an important step. ACC is a radar assisted cruise
control that monitors the distance to, and relative speed
with respect to, the vehicle immediately in front of it,
and adjusts the vehicle speed to maintain a safe distance.
This feature has been available in luxury vehicles for over
a decade, and has recently become a standard feature
on many more cars. It has long been speculated that
features such as ACC may be able to alter the emergent
properties of and even stabilize the traffic flow (Talebpour
and Mahmassani, 2016). The relevant notion of stability
here is that of string stability, which tells whether a
disturbance will dissipate as it propagates from one vehicle
to the next in a string of vehicles (Swaroop and Hedrick,
1996).

When analyzing ACC systems, it is desirable to model the
vehicle dynamics without having to consider the specifics
of the low-level controller. The goal is to capture the
second-order (acceleration) dynamics of an ACC vehicle
as a function of the vehicle’s surroundings. This idea dates
back to the early car following models for human driving
developed in the 1950s (Gazis et al., 1959), but recently
has been applied to model ACC systems using sensor
measurements for distance (e.g., radar) as the model
inputs. Such car following models generally take the form:

ẍ(t) = f(s, ẋ, ṡ), (1)
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Fig. 1. Overview of proposed modeling framework. Note
that the communicated values are for vehicles j in
the communication neighborhood Ni.

Swaroop and Hedrick, 1996; Besselink and Johansson,
2017) and experimentally (Ioannou et al., 1993; Shladover,
1995; Milanés et al., 2014) that through connectivity it is
possible to form dense vehicle platoons that remain string
stable.

Here we propose an extension of the OVRV model (Gunter
et al., 2019) that includes network communication, and call
it the cooperative-OVRV (C-OVRV) model. It is worth
noting that much like the OVRV model, this model is
intended to describe vehicle-level car following dynamics,
not taking into account the specific low-level controllers
that may be present on a vehicle. Therefore vehicles
from different manufacturers may form a platoon using
this CACC system without sharing those more detailed,
possibly proprietary, specifications since each vehicle in
the flow only needs to share its spacing si, speed ẋi, jam
spacing ηi, desired headway τi, and vehicle length li.

To achieve a networked platoon of vehicles, it is important
to be able to accurately estimate the current vehicle state
which is being shared via connectivity. Among vehicle
states, information about vehicle (longitudinal and lateral)
velocity is significant for stability control, road condition
estimation, and motion planning (Savitski et al., 2018;
Jalali et al., 2016). While such quantities can be measured
via GPS, the poor accuracy of available commercial GPSs,
particularly in measuring velocity in the lateral direction,
and their reliability due to their loss of reception, impede
their use in velocity measurements. Therefore, reliable ve-
locity estimation, robust to variations in model parameters
and environmental conditions, is vital (Liang et al., 2016;
Turri et al., 2017). To this end, a distributed vehicle speed
estimation algorithm for arbitrary vehicle networks is pre-
sented here. It allows for vehicles with different low-level
controllers to share accurate state estimates for platoon-
ing. Another advantage is that the local state estimator
uses on-board production vehicle sensor data, such as
wheel speed and accelerations, to estimate vehicle speed
and is robust to road surface friction changes.

The main contributions of this paper are to (1) propose the
C-OVRV model; (2) derive the equilibrium of the model,
show the system is stable, and discuss string stability; (3)
develop algorithms to estimate the true velocity of the
vehicles locally and to estimate the states of all the vehicles
in the platoon; and (4) simulate the proposed model
illustrating the utility of the proposed framework, which
is summarized in Figure 1. The paper proceeds as follows.
In Section 2 we present the C-OVRV model. We analyze
the behavior of the model in Section 3. We present the
state estimation algorithms in Section 4. We simulate the

Fig. 2. Platoon configuration showing communication be-
tween vehicles.

system, illustrating that string stability can be achieved
via communication, in Section 5. Note, currently Sections 3
and 4 are disconnected however combining everything as
in Figure 1 is a future direction.

Notation: For any positive integer n, we use [n] to denote
the set {1, 2, . . . , n}. We use 0 and 1 to denote the vectors
whose entries all equal zero and one, respectively, I to
denote the identity matrix, while the dimensions are to be
understood from the context. For any vector x ∈ IRn, we
use x� to denote the transpose and diag(x) or X to denote
the n×n diagonal matrix whose ith diagonal entry equals
xi. We let ei ∈ IRn be a vector of zeros with the ith entry
equal to one and Ei,j ∈ IRn×n be a matrix of zeros with
the i, jth entry equal to one. Given an adjacency matrix A,
the Laplacian matrix is defined as L := diag(

∑
i[A]ij)−A,

where [·]ij indicates the ijth entry. For a set A we denote
the cardinality of the set by |A|.

2. THE C-OVRV MODEL

OVRV models allow the ACC system of a vehicle to take
into account both driving at the optimal velocity and
matching the velocity of the vehicle directly in front of it.
We adopt the following special case of the OVRV model
considered in (Liang and Peng, 1999; Milanés et al., 2014;
Gunter et al., 2019), which has been shown to capture the
dynamics of commercial ACC systems quite well (Gunter
et al., 2019):

ẍi = f(si, ẋi, ṡi) = k1(si − ηi − τiẋi) + k2ṡi (2)

where xi is the position of the front bumper of vehicle i,
si := xi−1 − xi − li−1 is the space-gap of vehicle i or the
distance between the front bumper of vehicle i and the
back bumper of the vehicle in front of it (vehicle i− 1) as
seen in Figure 2, the gain parameters k1 and k2 correspond
to the constant time-headway term and a follow-the-leader
term (i.e., match the lead vehicle velocity), respectively, ηi
is the jam spacing (the minimum distance two vehicles will
attain in steady state), and the parameter τi is the desired
headway. The lead vehicle, i = 1, has the dynamics

s1 = xc − x1 (3)

where xc is location of a phantom vehicle that represents
the trajectory of an imaginary vehicle following a constant
speed c that drives in front of the first platoon vehicle.
Therefore

ṡ1 = c− ẋ1. (4)

Now similar to the ideas in (Pirani et al., 2018), we add
communication between the vehicles. We expand (2) to the
C-OVRV model:
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ẍi = k1(si − ηi − τiẋi) + k2ṡi + wi + k3
∑

j∈N+
i

(
ˆ̇xj − ẋi

)

+ k4
∑

j∈N+
i


x̂j − xi − l̂j −

i∑
k=j+1

(ηk + lk + τk ˆ̇xk) + li


 ,

(5)

where x̂j =
∑

j

(
ŝj + l̂j

)
, and ŝj , ˆ̇xj , and l̂j are the

spacing, velocity, and length of vehicle j communicated via
DSRC, respectively, lk is the length of vehicle k, Ni is the
set of vehicle i’s network neighbors in the communication
graph, N+

i is the set of vehicles j ∈ Ni such that j < i,
that is, the cars in front of vehicle i that vehicle i can
communicate with, and wi is an unknown disturbance. We
assume all the gains are positive.

Remark 1. The communication network can have an arbi-
trary structure. We only consider one specific static case
in this article. Time varying networks and communication
delays will be considered in future work. The effect of
vehicle yaw rate ψ̇ on vehicle longitudinal kinematics is
ignored. Thus, the measured longitudinal acceleration can
be expressed as the time derivative of longitudinal speed.

Since we want to maintain a stable space gap between the
vehicles, we consider the full dynamics in terms of the state
variable (s, ẋ). Therefore we rewrite (5), namely the last
term, as a function of the vector of space gaps, s:

ẍi = k1(si − ηi − τiẋi) + k2ṡi + wi + k3
∑

j∈N+
i

(
ˆ̇xj − ẋi

)

+ k4
∑

j∈N+
i


ŝj +

i∑
k=j+1

ŝk − (ηk + lk + τk ˆ̇xk)


 . (6)

If we assume that the communication is perfect, that is,

for all j, ŝj = sj , ˆ̇xj = ẋj , and l̂j = lj , and if vehicle i
can communicate with vehicle j it can also communicate
with all vehicles ι, with j < ι < i, then the model can be
written in matrix form as[
ṡ
ẍ

]
=

[
0 S

k1I + k4D M

] [
s
ẋ

]
+

[
c e1

−k1η − k4D(η + l) + w

]
,

(7)

where

M = k2S − k3L− k1T − k4DT, (8)

S =




−1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

. . .
. . .

...
. . .

. . .
0 0 0 · · · 1 −1



, (9)

L is the Laplacian matrix associated with the communi-
cation graph determined by the neighbor sets N+

i , T =
diag(τi),

[D]ij =

{
|N+

i | − (i− j)− 1, if |N+
i | < j ≤ i

0, otherwise,
(10)

η = [η1, . . . , ηn]
�, l = [l1, . . . , ln]

�, and w is the vector of
wi’s (the unknown disturbances).

3. ANALYSIS

We now analyze the behavior of the C-OVRV model (7).
For the first part of this section, we assume wi(t) = 0 for
all t ≥ 0. Note that S is invertible. Also, with k1, k4 > 0,
since k1I + k4D is lower triangular with positive diagonal
entries, all of its the eigenvalues are greater than zero.
Therefore k1I+k4D is invertible. Thus, the equilibrium of
the model is the following:[

s∗

ẋ∗

]
=

[
0 S

k1I + k4D M

]−1 [ −c e1
k1η + k4D(η + l)

]

=

[
M̂ (k1I + k4D)−1

S−1 0

] [
−c e1

k1η + k4D(η + l)

]

=

[
(k1I + k4D)−1(k1η + k4D(η + l)− cM1)

c1

]
,

(11)
where M̂ = −(k1I + k4D)−1MS−1.

Given a vector of reference spacings sr, we have the
following equilibrium:

ẋ∗ = M−1(k1η + k4D(η + l)− (k1I + k4D)sr). (12)

If we ignore the relative velocity/acceleration parts of the
model by setting k2 and k3 to zero, the velocities in (12)
become

ẋ∗ = (−k1T − k4DT )−1(k1η + k4D(η + l)

− (k1I + k4D)sr).

Further simplifying the model by removing the communi-
cation network, i.e., setting k4 = 0, gives

ẋ∗ = T−1(sr − η),

which is the same equilibrium as the standard heteroge-
neous OVRV model (Gunter et al., 2019).

Similar to the OVRV model (Monteil et al., 2018), for pa-
rameter values as constrained above, the C-OVRV model
is always stable.

Proposition 1. The system in (7) converges exponentially
to the equilibrium (11).

Proof. Since the system in (7) is affine, it has a unique
equilibrium; so if the system is stable it converges to that
equilibrium exponentially fast.

Now to show the system is stable, we will show that the
system matrix is Hurwitz. Applying a state transformation

that reorders the states as [s1 ẋ1 s2 ẋ2 · · · sn ẋn]
T
makes

the matrix lower block triangular. The first block is[
0 −1
k1 −k1τ1 − k2

]
,

which has second-order characteristic polynomial equal to
s2 + (k1τ1 + k2)s + k1. Since all the gains and τ1 are
positive, by the Routh-Hurwitz criterion, these eigenvalues
are always strictly negative.

The eigenvalues of the rest of the diagonal blocks follow
similarly. Since a block triangular matrix has the same
eigenvalues as the union of the eigenvalues of the blocks,
the system matrix is Hurwitz.

While the stability of the system is essential, a platoon
of vehicles requires a higher level of safety, that of string
stability, where perturbations do not amplify as they
propagate through the platoon (Ploeg et al., 2014). While
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spacing, velocity, and length of vehicle j communicated via
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graph, N+
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communicate with, and wi is an unknown disturbance. We
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for all j, ŝj = sj , ˆ̇xj = ẋj , and l̂j = lj , and if vehicle i
can communicate with vehicle j it can also communicate
with all vehicles ι, with j < ι < i, then the model can be
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0 S
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+
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L is the Laplacian matrix associated with the communi-
cation graph determined by the neighbor sets N+

i , T =
diag(τi),

[D]ij =

{
|N+

i | − (i− j)− 1, if |N+
i | < j ≤ i

0, otherwise,
(10)

η = [η1, . . . , ηn]
�, l = [l1, . . . , ln]

�, and w is the vector of
wi’s (the unknown disturbances).

3. ANALYSIS

We now analyze the behavior of the C-OVRV model (7).
For the first part of this section, we assume wi(t) = 0 for
all t ≥ 0. Note that S is invertible. Also, with k1, k4 > 0,
since k1I + k4D is lower triangular with positive diagonal
entries, all of its the eigenvalues are greater than zero.
Therefore k1I+k4D is invertible. Thus, the equilibrium of
the model is the following:[
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ẋ∗

]
=
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k1I + k4D M

]−1 [ −c e1
k1η + k4D(η + l)

]

=

[
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]

=

[
(k1I + k4D)−1(k1η + k4D(η + l)− cM1)
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]
,

(11)
where M̂ = −(k1I + k4D)−1MS−1.

Given a vector of reference spacings sr, we have the
following equilibrium:

ẋ∗ = M−1(k1η + k4D(η + l)− (k1I + k4D)sr). (12)

If we ignore the relative velocity/acceleration parts of the
model by setting k2 and k3 to zero, the velocities in (12)
become

ẋ∗ = (−k1T − k4DT )−1(k1η + k4D(η + l)

− (k1I + k4D)sr).

Further simplifying the model by removing the communi-
cation network, i.e., setting k4 = 0, gives

ẋ∗ = T−1(sr − η),

which is the same equilibrium as the standard heteroge-
neous OVRV model (Gunter et al., 2019).

Similar to the OVRV model (Monteil et al., 2018), for pa-
rameter values as constrained above, the C-OVRV model
is always stable.

Proposition 1. The system in (7) converges exponentially
to the equilibrium (11).

Proof. Since the system in (7) is affine, it has a unique
equilibrium; so if the system is stable it converges to that
equilibrium exponentially fast.

Now to show the system is stable, we will show that the
system matrix is Hurwitz. Applying a state transformation

that reorders the states as [s1 ẋ1 s2 ẋ2 · · · sn ẋn]
T
makes

the matrix lower block triangular. The first block is[
0 −1
k1 −k1τ1 − k2

]
,

which has second-order characteristic polynomial equal to
s2 + (k1τ1 + k2)s + k1. Since all the gains and τ1 are
positive, by the Routh-Hurwitz criterion, these eigenvalues
are always strictly negative.

The eigenvalues of the rest of the diagonal blocks follow
similarly. Since a block triangular matrix has the same
eigenvalues as the union of the eigenvalues of the blocks,
the system matrix is Hurwitz.

While the stability of the system is essential, a platoon
of vehicles requires a higher level of safety, that of string
stability, where perturbations do not amplify as they
propagate through the platoon (Ploeg et al., 2014). While
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the definition in (Ploeg et al., 2014) is applicable for
ACC systems since the dynamics of vehicle i are only a
function of vehicle i − 1, this is not the case for the C-
OVRVmodel. Therefore, similar to the ideas in (Middleton
and Braslavsky, 2010; Besselink and Knorn, 2018) we
propose the following definition that will be discussed via
simulation in Section 5.

Definition 1. A platoon of n vehicles with communication
is considered to be string stable if there exists a uniform
bound γ such that, for all n,∣∣∣∣∣

∣∣∣∣∣[0 I]

(
sI −

[
0 S

k1I + k4D M

])−1 [
0
I

]∣∣∣∣∣

∣∣∣∣∣
H∞

< γ.

4. STATE ESTIMATION IN A VEHICULAR
NETWORK

The previous sections assume perfect measurements and
communication. However, we know that sensors are not
completely accurate all of the time. To enable networked
platoon control of vehicles without knowledge of the spe-
cific low-level controller of each vehicle, it is important to
have accurate estimates of each vehicles’ states. Therefore,
in this section, we first propose an estimation algorithm
that estimates the true longitudinal velocities using a
parameter-varying observer. Then we proceed to present a
vehicle-local algorithm that estimates the velocities of the
whole platoon, not only the network neighbors, employing
the velocity estimates via the communication network.

4.1 Local state estimation in the physical layer

Vehicle accelerations ˆ̈xj measured by local inertial mea-
surement units (IMUs) can be directly communicated via

DSRC, but longitudinal speeds ˆ̇xj , which are significant
contributors not only in the developed C-OVRV model,
but in local low-level stability and traction control of
each individual vehicle, need to be estimated. To this
end, and to model the longitudinal dynamics of each
individual vehicle, the vehicle kinematics and LuGre tire
model Canudas-de Wit et al. (2003) are combined to
obtain a kinematic-tire model based system with states
ξi = [zti vri ]

�, where zti is an internal LuGre tire state
and vri is relative longitudinal speed caused by slip at
each tire of vehicle i, as shown in Fig. 3. The input term is
ūi = Riω̇i − axti

, where ω̇i is wheel acceleration and axti

is corner acceleration, which is measured by a local IMU
and mapped to four vehicle corners (tires). The dynamics
evolve as

ξ̇i = Avi
(ωi)ξi +Bvūi + w̄i

with

Avi(ωi) =

[
−ζiRiωi 1

0 0

]
,

where ζi is a tire parameter, ωi ∈ R+ is the wheel speed
(and is treated as a bounded time-varying parameter), Ri

is the tire radius, Bv = [0 1]�, and w̄i captures the model
uncertainties (due to tire forces and noises in acceleration
and wheel speed measurements). Then, by implementing
measured vehicle accelerations and wheel speeds at each
vehicle tire, a parameter-varying observer is designed in
Hashemi et al. (2017) as

˙̂
ξi = Avi(ωi)ξ̂i +Bvūi + L(fi − f̂i), (13)

Fig. 3. Local observers and distributed speed estimation
in the cyber layer

to estimate longitudinal speed for each vehicle in the
network. L ∈ R2 includes local observer gains L1,L2

and the estimated output is related to the states as

f̂i = Cvi(ωi)ξ̂i + CBi
Bvūi with CBi

= [p2i 0]] and
Cvi(ωi) = [p1i −p2iζiRiωi p2i +p3i ], in which p1i , p2i , p3i

are tire parameters. The error dynamics
˙̃
ξi = ξ̇i− ˙̂

ξi yields
˙̃
ξi(t) = Ãvi(ωi)ξ̃i + B̃viw̄i, (14)

where Ãvi(ωi) = Avi(ωi)− LCvi and

B̃vi =

[
1− L1p2i 0
−L2p2i 1

]
.

Proposition 2. The local speed estimator error dynamics
in (14) are stable for bounded feasible wheel speed ωi ∈
[ωl

i, ω
u
i ].

The stability of the local speed estimator (13) is proved
and its performance is investigated in (Hashemi et al.,
2017) based on affine quadratic stability and affine
quadratic H∞ performance.

Remark 2. The locally estimated speed of each vehicle
is calculated as ¯̇xi = (Riωi − v̂ri) cos δi, where δi is the
steering angle of wheel of vehicle i and v̂ri is the estimate
from the state observer (13).

For the discrete-time distributed scheme, from here on, the
estimated speed in the cyber layer is denoted by ˆ̇xi[κ]. All
local estimates ¯̇xi are sent to the cyber layer as initial
conditions ˆ̇xi[0] (for the iterative policy (15)) and, at
each time step, are treated as components of vehicle i’s
measurement vector yi[κ] that it has access to (its own
speed and the speed values of its neighbors).

4.2 Distributed speed estimation

This subsection focuses on the performance of a dis-
tributed speed estimation scheme in terms of graph-
theoretic properties for cooperative adaptive cruise con-
trol. Due to the nature of distributed calculation via
communication, in this subsection, the updating rules and
observability analysis are provided in discrete-time. The
objective is for vehicle i, that is not in the communication
range of vehicle j, to estimate the speed of vehicle j,
denoted by ˆ̇xj [0]. Vehicle i obtains its own speed, ¯̇xi, using
the local state estimator in (13) (as explained in Remark
2), and the speed of other vehicles within its communica-
tion range, Ni, employing information from both front and
rear neighbors, at each time step tκ = κTs, where Ts is the
sampling time. More formally, implementing the following
updating rule, similar to (Pirani et al., 2018), vehicle i
executes a distributed consensus policy that incorporates
the estimated velocities of its network neighbors with some
positive arbitrary gains φi

i, φ
i
j :
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ˆ̇xi[κ+ 1] = φi
i
ˆ̇xi[κ] +

∑
j∈Ni

φi
j
ˆ̇xj [κ], (15)

where ˆ̇xj [κ] represents an estimate of the longitudinal
speed of vehicle j at time κ that incorporates the shared
information via the communication network. The aim
of such information dissemination is for each vehicle to
calculate the initial conditions of all other vehicles after
running the linear dynamics (15), which occurs in the
cyber layer, after several time steps as shown in Figure 3.
The vector form of the iteration policy (15) yields ˆ̇x[κ +

1] = Φˆ̇x[κ], where ˆ̇x = [ˆ̇x1, . . . , ˆ̇x2]
�. The components of

matrix Φ ∈ Rn×n are positive arbitrary weights φi
j , but

Φij = 0 if j /∈ Ni ∪ {i}. Vehicle i receives the speed of
its neighbors and has access to its own speed, thus, the
measurement vector for vehicle i is yi[κ] = Ci

ˆ̇x[κ], at each
time step, where Ci is a (|Ni|+1)×n matrix with each row
equal to ej for j ∈ Ni∪{i}. The updating rule (15) enables

each vehicle to estimate the speed of other vehicles, ˆ̇x[0]
after some time steps, and updates the velocity estimates
ˆ̇xi[κ], in the cyber layer.

Problem 1. Given the model in (15) and local speed esti-
mation from (13), find the necessary and sufficient condi-
tions that guarantee vehicle i can correctly estimate the
longitudinal velocities of all the vehicles in the platoon.

The set of available measurements for vehicle i during the
first q + 1 time steps is

yi[0 : q − 1] = Oi,q
ˆ̇x[0], (16)

where Oi,q = [Ci; CiΦ; CiΦ
2Ad . . . CiΦ

qAq−1
d ]� is the

observability matrix. The discrete-time state transition
matrix Ad = eATs from the system (7) with

A =

[
0 S

k1I + k4D M

]

is taken into account to include the interconnection be-
tween the local observers in the physical layer and the
distributed calculation algorithm in the cyber layer. Hav-
ing full column rank of the observability matrix Oi,q (ob-
servability condition) allows vehicle i to correctly estimate
the initial speed of the rest of the vehicles. Based on
Theorem 2 in Sundaram and Hadjicostis (2008), we can
conclude that for almost any choice of gain matrix Φ,
such that the observability matrix is guaranteed to be full
column rank, vehicle i can estimate ˆ̇xj [0] after q + 1 time
steps for a bounded value of q that depends on |Ni| and
maxj∈[n]{|i− j|}.

5. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted with
the model proposed in (5) using k-nearest neighbor graphs
(|N+

i | = k) to demonstrate how the model can be used to
simulate platoon dynamics, and explore the influence of
the communication neighborhood size on string stability.
The parameter values for k1, k2, τ , and l in the simulations
were those found in (Gunter et al., 2019, under review)
from real commercial vehicles, k3 = k4 = 0.3 (chosen
arbitrarily), and the lead vehicle follows an experimentally
collected vehicle trajectory presented in (Gunter et al.,
2019, under review).

Fig. 4. Platoon simulation of three homogeneous platoons
with n = 10 CACC vehicles that all follow the dynam-
ics in (2) with k1 = 0.08, k2 = 0.44, k3 = 0.30, k4 =
0.30, τ = 0.52, η = 8.34, and l = 4.89. The size of the
communication neighborhood k is varied to show the
influence of the radius communication network on the
degree of overshoot in braking. The speed overshoot
of successive vehicles in the platoon indicates string
instability, since the initial perturbation is amplified
through the vehicle platoon.

Fig. 5. Using Definition 1 we plot the H∞ norm of the
systems in Figure 4 against the size of the platoon n.

In Figure 4 the velocities of a homogeneous platoon of n
= 10 vehicles are shown. In the dataset, the lead vehicle
starts at a constant speed of roughly 22 m/s (50 mph)
and, after roughly 10 seconds, the lead vehicle decelerates
to 19.7 m/s (44 mph). The communication radius k is
increased from k = 1 neighbor in the first plot to k =
5 neighbors in the last plot. The result is that when
the communication radius is increased, the same vehicle
parameter values go from being string unstable to being
string stable.

The string instability is illustrated by the amplification
of the perturbation as it propagates through the platoon.
As the platoon gets larger this amplification would cause
vehicles to go below the minimum velocity and switch off
the CACC system, therefore splitting the platoon. Note
that k = 1 makes the C-OVRV model equivalent to the
OVRV model, i.e. no communication. Therefore, these
simulations show that under realistic parameter values,
i.e. on real vehicles, adding communication to an string
unstable platoon can make it string stable. Note that the
first CACC vehicle follows the lead vehicle with a greater
headway than the remaining CACC vehicles. This is be-
cause there is no connectivity between the experimental
lead vehicle and the platoon of CACC following vehicles.

To explore the string stability of the system in more detail
using Definition 1, we calculated the H∞ norm of the
systems in Figure 4 varying the size of the platoon n.
The results are presented in Figure 5. Note how for k = 1
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ˆ̇xi[κ+ 1] = φi
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∑
j∈Ni

φi
j
ˆ̇xj [κ], (15)
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speed of vehicle j at time κ that incorporates the shared
information via the communication network. The aim
of such information dissemination is for each vehicle to
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running the linear dynamics (15), which occurs in the
cyber layer, after several time steps as shown in Figure 3.
The vector form of the iteration policy (15) yields ˆ̇x[κ +
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is taken into account to include the interconnection be-
tween the local observers in the physical layer and the
distributed calculation algorithm in the cyber layer. Hav-
ing full column rank of the observability matrix Oi,q (ob-
servability condition) allows vehicle i to correctly estimate
the initial speed of the rest of the vehicles. Based on
Theorem 2 in Sundaram and Hadjicostis (2008), we can
conclude that for almost any choice of gain matrix Φ,
such that the observability matrix is guaranteed to be full
column rank, vehicle i can estimate ˆ̇xj [0] after q + 1 time
steps for a bounded value of q that depends on |Ni| and
maxj∈[n]{|i− j|}.
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the communication neighborhood size on string stability.
The parameter values for k1, k2, τ , and l in the simulations
were those found in (Gunter et al., 2019, under review)
from real commercial vehicles, k3 = k4 = 0.3 (chosen
arbitrarily), and the lead vehicle follows an experimentally
collected vehicle trajectory presented in (Gunter et al.,
2019, under review).

Fig. 4. Platoon simulation of three homogeneous platoons
with n = 10 CACC vehicles that all follow the dynam-
ics in (2) with k1 = 0.08, k2 = 0.44, k3 = 0.30, k4 =
0.30, τ = 0.52, η = 8.34, and l = 4.89. The size of the
communication neighborhood k is varied to show the
influence of the radius communication network on the
degree of overshoot in braking. The speed overshoot
of successive vehicles in the platoon indicates string
instability, since the initial perturbation is amplified
through the vehicle platoon.

Fig. 5. Using Definition 1 we plot the H∞ norm of the
systems in Figure 4 against the size of the platoon n.

In Figure 4 the velocities of a homogeneous platoon of n
= 10 vehicles are shown. In the dataset, the lead vehicle
starts at a constant speed of roughly 22 m/s (50 mph)
and, after roughly 10 seconds, the lead vehicle decelerates
to 19.7 m/s (44 mph). The communication radius k is
increased from k = 1 neighbor in the first plot to k =
5 neighbors in the last plot. The result is that when
the communication radius is increased, the same vehicle
parameter values go from being string unstable to being
string stable.

The string instability is illustrated by the amplification
of the perturbation as it propagates through the platoon.
As the platoon gets larger this amplification would cause
vehicles to go below the minimum velocity and switch off
the CACC system, therefore splitting the platoon. Note
that k = 1 makes the C-OVRV model equivalent to the
OVRV model, i.e. no communication. Therefore, these
simulations show that under realistic parameter values,
i.e. on real vehicles, adding communication to an string
unstable platoon can make it string stable. Note that the
first CACC vehicle follows the lead vehicle with a greater
headway than the remaining CACC vehicles. This is be-
cause there is no connectivity between the experimental
lead vehicle and the platoon of CACC following vehicles.

To explore the string stability of the system in more detail
using Definition 1, we calculated the H∞ norm of the
systems in Figure 4 varying the size of the platoon n.
The results are presented in Figure 5. Note how for k = 1
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the norm appears to increase without bound with n while
for k = 3 and k = 5, the H∞ norm appears to approach
some bound γ, consistent with the simulations in Figure 4,
where the simulation with k = 1 is string unstable, while
the simulations for k = 3 and k = 5 are stable. For future
work, we will provide a rigorous proof of this phenomenon,
characterizing γ in terms of the model parameters.

6. CONCLUSION

In this paper we proposed the C-OVRV model which adds
a communication network to the OVRV model for ACC
systems to make it a CACC system. We performed some
preliminary analysis on the model, proving stability. We
proposed a distributed estimation algorithm that allows
vehicles to locally estimate the velocities of all the vehicles
in the platoon. We simulated the model using real data
as our phantom lead vehicle, illustrating how the model
can exhibit both string stable and unstable behavior, and
how communication may remove the instability. We also
explored the string stability of the system via simulation.

For future work we would like to perform further analysis
on the model, providing a necessary and sufficient condi-
tion for string stability, characterizing γ from Definition 1
in terms of the model parameters. We would also like to
integrate the distributed estimation algorithm into the C-
OVRV model, allowing vehicle i to include the estimated
velocities of the rest of the platoon in its velocity update,
completing the loop in Figure 1. Further, we would like to
implement this system on a real platoon and experimen-
tally verify the theoretical and simulation results.
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