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Abstract

State-of-the-art advancements in the realm of industrial process control and moni-

toring often require accurate descriptions of complex processes and their dynamical

behaviours. Usually, many industrial processes are described by partial differential

equations (PDE) or ordinary differential equations (ODE) depending on whether their

dynamics evolve spatio-temporally or temporally, and thus are classified as distributed

parameter systems (DPS) and lumped parameter systems (LPS), respectively. In this

thesis, discrete-time estimator, soft sensor, and regulator designs are proposed for lin-

ear distributed and lumped parameter systems.

Considering the unavailability of full state information or prohibitive cost for in-

stalling spatially-distributed sensors, state estimation is often necessary for the reg-

ulation (or control) problems and/or for the monitoring purpose. To estimate the

spatio-temporal state, the discrete-time Luenberger observer and Kalman filter are

proposed for linear infinite-dimensional systems. Specifically, the discrete-time ob-

server gain can be solved from continuous- or discrete-time Riccati equations nu-

merically. To account for the output and disturbance constraints in the estimation,

moving horizon estimation (MHE), as an optimization-based approach, is developed

for a rather general class of DPSs, namely regular linear infinite-dimensional systems,

by extending the MHE theory of LPSs. Stability and optimality are proved for the

proposed MHE design.

Towards the unavailability of accurate model parameters and/or model struc-

tures, three estimators are further proposed, ranging from the mode-based MHE for

output/state and mode estimation of switching regular linear infinite-dimensional sys-
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tems, to the hybrid estimator development for pipeline leak detection, localization,

and estimation of distributed pipeline systems based on discrete-time Luenberger

observer and support vector machine (SVM), to the entirely model-free (i.e., data-

driven) transfer learning (TL) based soft sensor design of linear finite-dimensional

systems using variational Bayesian inference. The stability of the proposed advanced

MHE design is given.

For the sake of disturbance rejection and reference tracking, the discrete-time

output regulator design is developed for linear distributed parameter systems. In

particular, the Cayley-Tustin (CT) bilinear transformation is applied to approximate

the continuous system by a discrete-time infinite-dimensional system with essential

model properties being preserved. Specifically, two types of output regulator designs

are presented, namely, state-feedback regulator design and error-feedback regulator

design, by exploring the internal model principle. Discrete regulator equations are

formulated, and their solvability is proved and linked to the continuous counterparts.

To ensure the stability of the discrete-time closed-loop system, the design of stabilizing

feedback gain and its dual problem of stabilizing output injection gain design are

provided using Riccati equations.

The effectiveness of the developed discrete-time Luenberger observer, Kalman

filter, MHE, and advanced MHE methods are demonstrated on the transport-reaction

processes, wave, Schr¥odinger and beam equations, and a heat exchanger system.

The proposed soft sensor algorithm (i.e., transfer slow feature analysis) is validated

through a numerical example, the Tennessee Eastman (TE) benchmark dataset, and a

steam-assisted gravity drainage (SAGD) industrial process. The applicability of the

proposed discrete-time output regulator designs is verified through heat equation,

transport equation, pipeline networks, and two fluid flow systems (i.e., Kuramoto-

Sivashinsky and Ginzburg-Landau equations).
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Chapter 1

Introduction

In this chapter, the motivations of this thesis are introduced at first. Literature re-

lated to distributed parameter systems and the corresponding control and estimation

development are reviewed. After that, research objectives, contributions and thesis

outline are provided.

1.1 Motivation

Infinite-dimensional systems (or distributed parameter systems, DPS) have been an

increasingly active area of research, due to their remarkable capacity of describing

ubiquitous spatiotemporal dynamics in chemical, mechanical and civil engineering

and applied mathematics. Many existing studies have been devoted to extending and

generalizing the infinite-dimensional versions of the linear quadratic control problem

[4, 5, 6], Kalman filtering problem [7, 8, 9], internal model control problem [10, 11,

12, 13, 14], and boundary stabilization problem [15, 16, 17]. However, most of the

work has been done in a continuous-time setting and one question naturally arises in

how to ensure the performance of late-lumping controllers designed for continuous-

time PDE models in numerical realizations (namely, in the discrete-time setting) [18].

Considering that system theoretic developments often go in parallel for continuous-

time and discrete-time models, it is common practice to derive results for one class of

systems and then map these over to the other by using a bilinear transformation in

finite-dimensional system theory [19]. Since it is often possible to use some bilinear

transform to avoid repeating tedious derivations if results have been obtained for

continuous systems and similar results are needed for the discrete ones and vice
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versa [19]. As a bilinear transformation, Cayley transform has been widely used

for establishing 1-1 correspondences of continuous- and discrete-time PDE systems

in terms of conservativity (i.e., energy preserving) [19, 20], reachability, [19], stability

[21, 22], stabilizability, controllability and observability [19, 4, 23], and optimality

[24]. Based on the preceding considerations, this thesis aims to develop discrete-time

servo-controllers and estimators for linear distributed parameter systems using the

Cayley-Tustin transformation. Compared to the existing contributions on sampled-

data control of infinite-dimensional systems [25, 26, 27, 28], this thesis is concerned

with a different approach (namely, Cayley-Tustin transformation) in a late lumping

manner (also called direct design).

Compared to the advanced development of control theory of infinite-dimensional

systems, the state and parameter estimation theory of such systems are relatively

under-explored, especially when it comes to the discrete-time estimator design [29, 30,

31, 32, 33, 34]. On the other hand, the research area of estimation theory of linear and

non-linear lumped parameter systems (i.e., finite-dimensional systems) has flourished

over the past decades [35, 36]. Among these, a representative approach is moving hori-

zon estimation (also named receding horizon estimation) [37, 38, 39] that can be for-

mulated as a quadratic optimization problem, thus capable of handling disturbances,

measurements and input constraints widely presented in distributed or lumped param-

eter systems and engineering practice. However, constrained state/output estimation

for infinite-dimensional systems has not been fully investigated. This thesis is devoted

to systematically studying state/output and parameter estimation of deterministic

and stochastic linear infinite-dimensional systems by extending the Luenberger ob-

server, Kalman filter, and moving horizon estimator theories and designs developed

for continuous-time infinite-dimensional cases and/or discrete-time finite-dimensional

cases.

Furthermore, the designed controllers and/or estimators often suffer from time-

varying operating conditions and/or abnormal working conditions (such as flow leak-

age), leading to performance deterioration. Under such conditions, accurate model

parameters and/or structures are often not available and hence model re-identification

is typically needed. To address these issues, several estimators are further proposed

in this thesis, including the advanced moving horizon estimator for state/output and
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mode estimation of regular linear infinite-dimensional systems and a hybrid estimator

(i.e, a grey box algorithm) for pipeline leak detection, localization and size estimation

by combining a model-based Luenberger observer and a data-driven regression algo-

rithm. Considering the extreme cases when the model structure is entirely unknown

and under varying working conditions, a pure data-driven method – transfer slow fea-

ture analysis algorithm in the form of the linear lumped parameter model with Gaus-

sian noises is proposed for soft-sensor (i.e., predictor) design of quality variables. This

thesis covers physical model-based and data-driven methods and their integration for

state/output and parameter estimation of linear distributed and lumped parameter

systems, and have potential applications in adaptive soft sensor designs for linear

PDE systems (including transferring soft sensors designed for one PDE system to

another). This is of theoretical and practical significance in model reduction, model

adaptation and mismatch handling of distributed and lumped parameter systems as

well as transfer learning development from dynamical system point of view.

1.2 Literature review

1.2.1 Distributed parameter systems

A significant amount of industrial systems are “distributed” in space so that their

dynamical behaviours depend both on time and space [30]. These systems are named

distributed parameter systems and are often modelled by partial different equations

and/or delay equations. Compared to lumped parameter systems that are typically

described by ordinary differential equations, distributed parameter systems enable us

to describe a wide range of industrial processes with spatiotemporal dynamics, such

as heat transfer, material processing, fluid dynamics, and structural vibration that

are widely presented in chemical, biochemical, mechanical and civil engineering and

science [4, 15, 21, 40, 41, 42, 43].

Majority of DPS models can be derived from first principles, which include conser-

vation laws of continuity, momentum, and energy. Given these physical conservation

laws, well-defined inputs, states and outputs can be identified with corresponding

physical meaning. To complete a physical realization of a distributed parameter sys-

tem, suitable boundary conditions (BCs) and initial conditions (ICs) should be given
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correspondingly. Let us take a general second-order infinite-dimensional model as an

example:

m2G (Z, C)
mC2

= 5

(
G (Z, C) , D (C) , mG (Z, C)

mZ
,
mG (Z, C)
mC

,
m2G (Z, C)
mCmZ

,
m2G (Z, C)
mZ2

)
(1.1)

H (C) = 6 (G (Z, C) , D (C)) (1.2)

with initial conditions and boundary conditions given as:

G (Z, 0) = G1
0 (Z),

mG (Z, 0)
mC

= G2
0 (Z) (1.3)

20
mG (0, C)
mZ

+ 21G (0, C) = 0, 22
mG (;, C)
mZ

+ 23
mG (;, C)
mC

= 0 (1.4)

where G(Z, C), D(C) and H(C) denote the state, input and output of interest, and Z

and C stand for spatial and temporal coordinates. In addition, 5 and 6 can be two

non-linear or linear functions of state G, input D, first-order spatial derivative of state
mG(Z,C)
mZ

, second-order spatial derivative of state m2G(Z,C)
mZ2

, first-order temporal derivative

of state mG(Z,C)
mC

, and temporal derivative of first-order spatial derivative m2G(Z,C)
mCmZ

. In

the formulation of lumped parameter systems, there is no spatial dependence of state

G(Z, C) as in Eq.(1.1). The spatial characteristics make control and estimation de-

sign of distributed parameter systems relatively difficult in comparison with lumped

parameter systems.

The initial conditions are described by spatial functions as given in Eq.(1.3). In

addition, a general mixd Robin boundary condition at Z = 0 is described as Eq.(1.4),

which is more physically realistic for practical processes. When we define the pa-

rameters 20 = 22 = 0, it can lead to the well-known Dirichlet boundary conditions

with flux of states equal to zero. On the other hand, one can define the Neumann

boundary conditions by having 21 = 23 = 0.

To classify a linear second-order PDE model, one can linearize Eq.(1.1) as the

following expression:

0
m2G (Z, C)
mC2

+ 21
m2G (Z, C)
mCmZ

+ 2 m
2G (Z, C)
mZ2

+ (lower order terms) = 0 (1.5)

Then, the above equation is referred to as:

• Parabolic PDE, if 12 − 02 = 0, for diffusion and conduction problems.
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• Hyperbolic PDE, if 12 − 02 > 0, for vibration and wave motion problems.

• Elliptic PDE, if 12 − 02 < 0, for steady-state and potential-type problems.

There is a single state G(Z, C) in the PDE model (1.1), and the state varies in one

dimensional spatial domain Z ∈ [0, ;]. In realistic industrial processes, distributed

parameter systems can have multiple states that are coupled together in a multi-

dimensional spatial domain (such as two dimensions or three dimensions), which

poses a significant challenge in state estimation, control and output regulation.

1.2.2 Control and estimation of distributed parameter sys-
tems

Generally speaking, there are two main classes of controller and estimator design

methodologies proposed for infinite-dimensional systems in literature, namely, early

lumping and late lumping [30]. The basic idea of early lumping approaches is to firstly

approximate distributed parameter systems in the spatial variables by utilizing finite

difference methods, spectral approaches and/or finite element techniques, and then

apply finite-dimensional state estimation and control methods to the resulting early

lumped parameter systems. In contrast, late lumping approaches refer to that state

estimation and control design steps are carried out directly on the original distributed

parameter systems by using infinite-dimensional control theories, and then spatial

approximation or discretization is performed in the numerical simulation stage for

realization purposes. Both early and late lumping methods have pros and cons when

it comes to the theoretical design and numerical performance. For instance, late

lumping methods produce accurate estimators and controllers for the original DPSs

while relatively complicated mathematical techniques are required as the underlying

mathematical models are governed by partial differential equations. Compared to

the late lumping methods, early lumping approaches are simpler to be conducted by

exploring finite-dimensional control theories and methods, while questions of stability

and performance of the designed systems naturally arise [44].

Over the past decades, several central control problems have been focused on in

the distributed parameter systems community, namely, optimal control [4, 40, 45, 46,

5, 6, 47, 48, 49, 50, 51], internal model control (i.e., servo-control or output regulation)
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[10, 11, 52, 12, 53, 13, 54, 55, 56, 57], boundary control and stabilization [4, 42, 15, 58,

16, 17, 59, 60, 43], predictive control [61, 62, 63, 64, 65], nonlinear and robust control

[66, 67, 68], and adaptive control [69, 70]. Regarding these aspects, many important

results and methods have been generated, including semigroup methods [4, 42, 21, 43,

71], back-stepping techniques [15, 72, 70], port-Hamiltonian approaches [41, 73, 74],

optimization-based methods [61, 64, 65] and etc. Most of these contributions are based

on continuous-time infinite-dimensional models or continuous-time finite-dimensional

models after applying some forms of model reductions. Hence, designing controllers

and estimators for discrete-time infinite-dimensional models are of theoretical and

practical significance.

Compared to the aforementioned contributions on controller designs and model

stabilization, relevant studies on the state/output and parameter estimation of infinite-

dimensional systems have attracted less attentions although the estimation theory

(e.g., infinite-dimensional filtering) was initially developed quite early that can be

traced back to the 1970s, see [75, 76, 8, 7, 77]. For example, the filtering prob-

lem for linear infinite-dimensional continuous-time systems with bounded operators

was systematically studied in [78, Cha. 6]. A synthesizing overview on parameter

identification in distributed systems was reported in [29], where various techniques

and applications were discussed including identification for process control, struc-

tural vibrations, agricultural parameter determination, petroleum, gas, and mineral

exploration, oceanic temperature and convection current determination and etc. Re-

cently, a comprehensive review on the applications and classifications of observers to

chemical process systems was offered in [79]. The state estimation problem of dis-

tributed parameter systems based on information from a finite number of sensors was

systematically investigated in [40, Cha. 6]. Essentially, unbounded operators and

infinite dimensionality of state space are two main difficulties in controller and esti-

mator designs of PDE systems. Moreover, disturbances, constraints and uncertainties

issues widely presented in industrial process system engineering pose another layer

of technical challenge to the estimation and control of DPSs. On the other hand,

the theoretical development of state, parameter estimation and model identification

of finite-dimensional systems have been flourished since the 1970s [80, 81, 82, 35].

Numerous methods and algorithms developed therein show great potential to the es-
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timation theory development of infinite-dimensional systems. Considering that many

important infinite-dimensional control theories and methods are actually extended

from finite-dimensional cases (e.g., optimal control, back-stepping and etc), this the-

sis aims to further extend the finite-dimensional estimation theories to enhance the

estimation, soft sensing and servo-control performance of infinite-dimensional sys-

tems.

1.3 Research objectives

The overall goal of the thesis is to extend the state and parameter estimation theories

of lumped parameter systems into the realm of linear distributed parameter systems

and the theories of continuous-time output regulation of linear distributed parameter

systems to general discrete-time linear distributed parameter systems. As an alterna-

tive of online instrumental measurements, a soft sensor design is proposed for online

estimation of key process variables of lumped parameter systems, with the potential

to be applied to distributed parameter systems.

Estimation and soft
sensing

State/output
estimation in
LTI cases

State/output
estimation and soft
sensing in LPV cases

Luenberger
observer and
Kalman filter

Servo-control

Moving
horizon
estimator

MHE for
Switching DPS

Transfer
learning for
soft sensing

Hybrid
estimator for
leak diagnosis

(Chap. 2) (Chap. 3) (Chap. 4) (Chap. 5) (Chap. 6)

Estimation, soft sensing and servo-control of linear
distributed and lumped parameter systems

Regulator 
designs for 
linear DPSs 

Regulator 
designs of fluid
flow systems

Regulator designs 
of pipeline network

systems 

(Chap. 8) (Chap. 9)

(Chap. 7)

Objective 1 Objective 2 Objective 3

Figure 1.1: Outline of the research objectives

As illustrated in Fig. 1.1, the detailed research objectives are:

• Observer, filter and moving horizon estimator designs for linear distributed pa-

rameter systems

Designs of continuous- and discrete-time infinite-dimensional Luenberger ob-
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servers are covered. The theoretical extensions of finite-dimensional discrete-

time Kalman filter and moving horizon estimator to linear infinite-dimensional

systems are explored. These objectives are considered in Chapters 2-3.

• Hybrid estimator and soft sensor designs for linear distributed and lumped

parameter systems

The design problems range from state/output and mode estimation of switching

regular linear systems, to soft sensing of linear lumped parameter systems, to

the leak detection, localization and estimation of hyperbolic PDE systems. The

design techniques span from the model-based MHE, to the data-driven (i.e.,

entirely model-free) Bayesian inference, to the hybrid estimator using model-

based and data-driven methods. These objectives are considered in Chapters

4-6.

• Discrete output regulation of linear distributed parameter systems

Two regulator design problems including discrete-time state and error feedback

output regulators are considered along with in-domain or boundary disturbance,

control, and outputs. The relationship between discrete- and continuous-time

regulator design problems is revealed under the Cayley-Tustin transformation.

Spectral, non-spectral, and networked PDE systems are investigated. These

objectives are considered in Chapters 7-9.

1.4 Contributions and thesis outline

This thesis is concerned with discrete-time observer, estimator, and controller designs

using Cayley-Tustin transform in a late lumping manner (sometimes called direct

design). Under this transformation, a discrete-time infinite-dimensional system is

obtained along with essential system properties being preserved, including stability,

observability, etc. The novelty in this work is that the obtained discrete-time system is

in a form that facilitates estimator (and controller) designs without any approximation

or lumping in the spatial domain. The main contributions of the thesis are the

constrained output estimation of distributed parameter systems (and switching DPSs)

using moving-horizon strategies and Cayley-Tustin transform.
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Chapter 2 extends known finite-dimensional Luenberger observer and Kalman fil-

ter designs to the realm of linear transport-reaction systems frequently present in

chemical engineering practice. A unified modelling framework for distributed pa-

rameter systems that does not induce any type of spatial approximation or model

order reduction is developed. Applying the Cayley-Tustin transformation to continu-

ous linear distributed parameter systems leads to structure- and property-preserving

discrete distributed parameter models, amenable to observer and filter design devel-

opments. Designs presented in this chapter cover well-known state reconstruction

methodologies ranging from least square estimation, to continuous- and discrete-time

Luenberger observers, to Kalman filter designs. Simple implementation and realiza-

tion account for the appealing nature of the discrete-time observers and filter designs

for linear transport-reaction systems. The simulation scenarios cover the majority of

representative examples existing in process system engineering practice.

Chapter 3 addresses constrained output estimation of well-posed regular linear

infinite-dimensional systems by using a moving horizon estimation approach. Con-

sidering that directly estimating continuous systems modelled by partial differential

equations can be challenging due to the unbounded operators (induced by bound-

ary or point-wise disturbance and measurement) and the presence of disturbance

and output constraints, the continuous-time system with unbounded operators is

transformed into a discrete-time infinite-dimensional model with all bounded oper-

ators using Cayley-Tustin transformation without any spatial discretization and/or

model reduction. Instead of constructing a continuous-time Riccati equation with

unbounded operators, a well-posed discrete-time Riccati equation suitable for numer-

ical computation is shown to have the same minimal nonnegative self-adjoint solution

as the continuous-time Riccati equation. The discrete-time model and Riccati equa-

tion are utilized in the moving horizon estimator design accounting for estimation

efficiency and physical constraints on disturbance and output in an explicit way.

The optimality and stability are proved and the corresponding sufficient conditions

are presented. The resulting receding-horizon estimator leads to a finite-dimensional

constrained quadratic optimization problem easily solvable by standard optimization

techniques. Finally, two simulation examples including Schrödinger and wave equa-

tions demonstrate the effectiveness of the proposed method.
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Chapter 4 addresses moving horizon estimation for a class of switching regular lin-

ear infinite-dimensional systems described by partial differential equations, where the

system is corrupted with bounded plant (or input) and measurement disturbances

and the system mode is regarded as an unknown and unpredictable discrete state

to be estimated. To address the issues associated with unbounded operators (in-

duced by boundary or point-wise observation and disturbance) and better suited for

discrete-time moving horizon estimator design, the Cayley-Tustin transformation is

deployed for model time discretization without any spatial discretization or model

reduction while preserving model essential properties. A series of observability con-

cepts along with corresponding properties are proposed and analyzed for the switching

linear infinite-dimensional discrete-time systems. Two moving horizon estimation al-

gorithms that accounts for state/output and mode estimation and constraint handling

are proposed. Based on the proposed observability properties, the stability of the pro-

posed moving horizon estimators is proved. Two simulation examples are provided to

verify the derived results.

In Chapter 5, soft sensor designs for linear lumped parameter systems using vari-

ational Bayesian inference are proposed. Data-driven methods have been extensively

utilized in establishing predictive models from historical data for process monitoring

and prediction of quality variables. However, most data-driven approaches assume

that training data and testing data come from steady-state operating regions and

follow the same distribution, which may not be the case when it comes to complex

industrial processes. To avoid these restrictive assumptions and account for practical

implementation, a novel online transfer learning technique is proposed to dynamically

learn cross-domain features based on the variational Bayesian inference in this chap-

ter. Stemming from the probabilistic slow feature analysis, a transfer slow feature

analysis (TSFA) technique is presented to transfer dynamic models learned from dif-

ferent source processes to enhance prediction performance in the target process. In

particular, two weighting functions associated with transition and emission equations

are introduced and updated dynamically to quantify the transferability from source

domains to the target domain at each time instant. Instead of point estimation, a

variational Bayesian inference scheme is designed to learn the parameters under prob-

ability distributions accounting for corresponding uncertainties. The effectiveness of
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the proposed technique with applications to soft sensor modelling is demonstrated by

a simulation example, a public dataset and an industrial case study.

In Chapter 6, a hybrid estimator design for leak detection, localization, and es-

timation of a realistic pipeline modelled by a nonlinear coupled first-order hyper-

bolic PDE system is studied. Based on the so-called water hammer equation, a

linear distributed parameter system is obtained by linearization. The structure- and

energy-preserving Cayley-Tustin time discretization scheme is used to realize a dis-

crete infinite-dimensional hyperbolic PDEs system without spatial approximation or

model order reduction. In order to reconstruct pressure and mass flow velocity evolu-

tion with limited measurements, a discrete-time Luenberger observer is designed by

solving the Riccati equation. Based on this distributed observer system, data asso-

ciated with different normal and leakage conditions (i.e., various leak amounts and

positions) are generated and fed to train a support vector machine model for leak de-

tection, amount and position estimation. Finally, the effectiveness of the developed

method on leak detection, amount estimation and localization are verified by a set of

simulations.

In Chapter 7, we address discrete-time state and error feedback output regulator

designs for a class of linear distributed parameter systems with bounded control and

observation operators. By utilizing the Cayley-Tustin bilinear transform, a linear

infinite-dimensional discrete-time system is obtained without model spatial approxi-

mation or model order reduction. Based on the discrete-time model representation,

discrete state and error feedback regulators are designed using the internal model

principle. In particular, discrete Sylvester regulator equations are formulated, and

their solvability is proved and linked to the solvability of their continuous counter-

parts. In addition, to ensure the stability of the closed-loop system, the design of

stabilizing feedback gain and its dual problem of stabilizing output injection gain

design are provided in the discrete-time setting. Finally, three simulation examples

including a first-order hyperbolic partial differential equation model and a 1-D heat

equation with considerations of step-like, ramp-like and harmonic exogenous signals

are shown to demonstrate the applicability of the proposed method.

In Chapter 8, model-based discrete-time output regulator design is proposed for

fluid flow systems using a geometric approach. More specifically, a class of vortex
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shedding and falling thin film phenomena modelled by the complex Ginzburg-Landau

equation (CGLE) and the Kuramoto-Sivashinsky equation (KSE) are considered. Dif-

ferently from a traditional continuous-time controller design, a novel discrete-time

modelling technique is proposed in a general infinite-dimensional state-space setting,

which does not pertain any spatial approximation or model reduction, and preserves

model intrinsic properties (such as stability, controllability and observability). Based

on the time discretized plant model (CGLE and KSE systems) by the Cayley-Tustin

method, discrete Sylvester regulation equations are established and facilitated for

an output regulator design to achieve fluid flow control and manipulation. To ad-

dress model instability, a spectrum analysis is utilized in stabilizing continuous-time

CGLE and KSE systems, and a link between discrete- and continuous-time closed-

loop system stabilizing gains is established. Finally, the proposed methodology is

demonstrated through simulation studies, by which the output tracking, disturbance

rejection, and model stabilization are achieved for the considered CGLE and KSE

systems.

In Chapter 9, a discrete-time output regulator design is proposed for a class of gas

pipeline network systems to meet various operating requirements in energy schedul-

ing. Based on the isothermal Euler equations, linearized continuous-time gas pipeline

network models with boundary actuation and sensing in the infinite-dimensional space

are established, with consideration of Rankine-Hugoniot conditions at junction joints.

Cayley-Tustin bilinear transformation is applied for model time discretization with-

out any spatial approximation, by which the continuous-time model with unbounded

operators is transformed into an infinite-dimensional discrete-time system with all

bounded operators and essential continuous-time properties are invariant under this

transformation. Based on the internal model principle, the discrete output regulator

is constructed and its solvability conditions are provided. Considering the unavail-

ability of the full state information, observer design methods for state estimation of

exogenous and pipeline systems are proposed in order to construct an output feed-

back regulator. Additionally, a stability analysis of the considered pipeline system is

provided. Finally, two simulation examples representing a single gas pipeline and a

star-shaped pipeline network are given to demonstrate the applicability of the pro-

posed method.
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Chapter 2

Observer and Kalman Filter Design
for Linear Infinite-Dimensional
Systems

2.1 Introduction

Transport-reaction processes represent the core of relevant first principle based models

in chemical engineering practice. The prominent feature of transport-reaction systems

is that their models belong to the class of distributed parameter systems (DPS), which

are given by partial differential and/or delay equations. Typical distributed parame-

ter system plants are characterized with dominant spatial characteristics along which

temporal and spatial evolution of physical properties takes place. In addition, dis-

tributed parameter systems are equipped with spatially distributed and/or boundary

placed actuators, which are frequently combined with spatially distributed measure-

ment sensor devices. In principle, one cannot measure everywhere in the physical

plant either due to the inability to realize spatially distributed sensors and/or due

to physical limitations and accessibility limitations associated with the plant design.

Therefore, distributed parameter systems are compelling plant models to be explored

from the state reconstruction point of view by the estimator, observer and filter de-

signs.

An important issue of monitoring and estimating spatiotemporal states and their

evolution in the distributed parameter systems has been explored in the relevant

chemical process literature [30, 83] and it has been initiated with seminal contribu-

tions of Luenberger [84, 81] and Kalman [85] who introduced basic concepts of state
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Luenberger observer and Kalman filter designs. In particular, initial contributions of

Harmon Ray [30] and Seinfield [83, 86, 87] explored and extended finite dimensional

designs to the framework of partial differential equations. Their work introduced the

notion of optimality in the measurement sensors placement and conditions on observ-

ability of linear distributed systems that are mainly used to describe models of axial

dispersion and tubular reactors [83, 86]. In addition to these efforts, the fundamental

theoretical contribution in [4] extended existing finite dimensional concepts of the

observer design to the infinite dimensional setting, in a compact and elegant form, in

the case of continuous models.

The major theme in the observer design within the DPS setting is to apply either

early lumping and reduce the system dimensionality by using appropriate spatial dis-

cretization methods and/or model approximations suitable for the finite dimensional

observer design, or to apply late lumping by performing the analysis and observer

design in the infinite dimensional setting, and then lump the designed observer along

some spatial approximation for the purpose of implementation [30, 88, 89]. Following

the line of proposed designs within the area of chemical engineering, advances that

addressed the design of state observers for transport reaction systems with unknown

kinetics have been developed by Dochain and co-workers and a recent review paper

(see [79]) on observers applied in chemical process systems scarcely refers to a possi-

bility that finite dimensional observers can be extended to the models which account

for representative examples of axial dispersion and plug flow reactors [90, 91, 92, 79].

Additionally, in some instances the observer design is applied to a fully nonlinear and

data based processing setting [93, 94]. However, these contributions always assume

some type of model approximation and/or model reduction in the design procedure,

or impose requirement on a large number of implemented point measurements (or

continuous measurements) in the design procedure [90, 94].

Therefore, the issue of spatial approximation by some modelling technique and/or

model reduction is one of the main issues when observer designs for distributed pa-

rameters are considered, and addressing the question of the observer design that does

not account for spatial approximations nor lumping is of importance. In addition to

addressing the design step of model reduction and the drawbacks associated with it,

the distributed parameter systems, when endowed with stochastic processes charac-
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terized by the noise that exists in every physically realizable setting, bring technical

and theoretical complexity in their consideration [95]. For example, the finite dimen-

sional linear state space setting can be endowed easily in the stochastic framework

by adding noise arising from the process and measurements, while the distributed

parameter systems, due to the infinite-dimensional nature, pose a problem of ap-

propriate setting formulation when it comes to their description. Although discrete

design methodologies are very well established and explored for finite dimensional

chemical process models [96], the transport-reaction systems in chemical processes

are represented ultimately within the continuous infinite-dimensional setting that in-

duces difficulties in obtaining a relevant discrete system description which adequately

represents spatially varying transport-reaction continuous models. Along the line

of discrete model representations and designs, current modern implementation tech-

nologies are ultimately realized as discrete sampled data system realizations, which

requires a discrete state space setting in order to provide foundations for easy and

robust controllers and estimators design that can be easily reconfigured and/or main-

tained under a variety of operating conditions in the process plants.

In this chapter, we explore well known discrete estimation techniques within the

setting of discrete infinite dimensional models which are obtained from the well-known

first principle models of linear transport-reaction systems ranging from axial disper-

sion to plug flow reactor models. The salient feature of all designs proposed in this

chapter is that the models of transport-reaction systems are not approximated by any

spatial discretization process and no spatial model reduction is applied in the discrete

model generation. This is achieved by the application of Cayley-Tustin discretization

which is a symmetric and symplectic discretization approach, such that the physical

characteristics (energy) and theoretical properties of considered systems can be pre-

served. In this way, the continuous distributed parameter systems are transferred to

discrete counterparts, which can be utilized and explored within known finite dimen-

sional designs, with well defined corresponding infinite dimensional properties. The

chapter presents a standard least square sequential estimation applied to the DPS

system, and we point out characteristics, limitations and to what extent this tech-

nique can be used in physically relevant DPS systems. Further, we provide the insight

in the application and developments associated with the Cayley-Tustin discretization
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and associated results that provide foundation for application of this discretization

techniques to DPS systems. Along the line of designs, the Luenberger observer design

for the continuous transport-reaction systems described by hyperbolic and parabolic

PDEs is accomplished by design of converging observer by exploring the correspond-

ing link among Riccati and Lyapunov operator equations. We provide an important

insight in the relation among discrete and continuous observer designs which is fol-

lowed by the proofs of main results. The considered designs account for the boundary

and in domain (interval or point) measurement sensor placement providing the output

admissibility of the operators settings. Along the same line, the Kalman Filter for the

transport-reaction system described by hyperbolic and parabolic PDEs is developed

as one-step ahead predictor, and accounts for the process and measurement noise,

and the different treatment between the finite-dimensional and infinite-dimensional

Kalman filter realizations is clarified. The link between the Cayley-Tustin discretiza-

tion scheme and Kalman filter design is provided by demonstrating the equality of

similar discrete state space realizations which have unique stable input-output (I/O)

transfer function realization. Finally, in the numerical simulations section representa-

tive examples of hyperbolic and parabolic systems are simulated and the performance

of associated least square estimator, discrete and continuous Luenberger observer and

Kalman filter are demonstrated through simulation studies.

2.2 Preliminaries

Linear transport-reaction systems are described by the following general form as:

¤G(C) = AG(C) + BD(C), G(0) = G0 (2.1)

H(C) = CG(C) + DD(C) (2.2)

where spatial state is G(C) ∈ X, where X = !2((0, ;),R) is being defined as separable

Hilbert space. The input is D ∈ !2
;>2
( [0,∞),*), and the * is real Hilbert space,

H ∈ !2
;>2
( [0,∞), . ) and . is real Hilbert space. The usual assumption on A being

closed implies that domain D(A) is also Hilbert space equipped with the graph norm

‖G‖2
D(A) := ‖G‖2X + ‖AG‖

2
X and with the understanding that resolvent set d(A) is

nonempty, with the norm ‖G‖D(A) = ‖(U−A)G‖X with an arbitrary U ∈ d(A). Hence,
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a different selection of U induces an equivalent norm to D(A). We denote X1 := D(A)
and use the norm ‖(U� −A)G‖X, then (U� −A)−1 maps X isometrically to X1, which

enables us to define the space X−1 as the completion of X with respect to the norm

‖G‖X−1 = ‖(U� − A)−1G‖X. By iteration of this construction, one can define X9 for
any 9 ∈ Z with X9 ⊂ X: if 9 ≤ : with a dense inclusion, in other words, the extension

or restriction of A and corresponding semigroup T (C) to A 9 ∈ L(X9+1,X9 ) and

T9 (C) ∈ X9 is feasible. By introducing a block operator called node S :=

[
A&B
C&D

]
as a

mapping X×* → X×. , one defines the operator node on (X,*,. ) with the following

structure: 1) A is a closed, densely defined operator on X with a nonempty resolvent

set, 2) B ∈ L(*,X−1), 3) D(() =
{[

G

D

]
∈ X ×* : A−1G + BD ∈ X

}
, where A−1 is

the extension of A (this is to account for boundary or point actuation) and D(() is

equipped with the graph norm



 [

G

D

] 


2

D(()
:= ‖A−1G+BD‖2X+‖G‖

2
X+‖D‖

2
*
, 4) C&D ∈

L(D((), . ), see [21, 20]. The mapping S : D(·) ↦→ H(·) is the input/output map of

(, and its Laplace transform is the transfer function G(B) = C(B� −A)−1B + D. The

operators B and C denote input (representing actuation) and output (representing

measurements) operators which can be spatially distributed and/or applied at the

boundary. In current contribution, we constrain analysis to the case of bounded input

and output operators in the following examples, keeping in mind that one needs to

revise the space setting as given above, if point or boundary input or measurements

are applied. In addition, the setting accounts for majority of linear transport-reaction

systems which also includes the systems with spatially varying coefficients.

2.2.1 Cayley-Tustin discretization

Let us consider the following linear systems dynamics given by Eqs. (2.1)-(2.2) and

we apply the Crank-Nicolson type of discretization to the continuous system Eqs.

(2.1)-(2.2) for any given time discretization interval ΔC:

G(:ΔC) − G((: − 1)ΔC)
ΔC

≈ A G(:ΔC) + G((: − 1)ΔC)
2

+ BD(:ΔC), G(0) = G0 (2.3)

H(:ΔC) ≈ C G(:ΔC) + G((: − 1)ΔC)
2

+ DD(:ΔC), : ≥ 1 (2.4)

then by simple approximation of D(:ΔC) (substitute D(:ΔC) with D(:ΔC)√
ΔC

), and it can be

shown that D(:ΔC)√
ΔC

converges to D(:ΔC) as ΔC → 0 in several different ways, similar for
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H(:ΔC), see [97]. Further, in the engineering literature a finite dimensional discrete

time dynamics given by Eqs. (2.3)-(2.4) is frequently called Tustin discretization (it

is discovered in 1940s by Tustin and it is referred also as Tustin transform in digital

and sample-data control literature, see [98, p.27]) and it is given as:

G(:ΔC) − G((: − 1)ΔC)
ΔC

≈ A G(:ΔC) + G((: − 1)ΔC)
2

+ BD(:ΔC)√
ΔC

, G(0) = G0 (2.5)

H(:ΔC)
√
ΔC
≈ C G(:ΔC) + G((: − 1)ΔC)

2
+ D D(:ΔC)√

ΔC
, : ≥ 1 (2.6)

In order to address the assumption associated with the discretization of the input

signal
{
D(:ΔC)√
ΔC

}
, the following is considered. The discretizing operator is given by

D(:ΔC)√
ΔC

= 1
ΔC

∫ :ΔC

(:−1)ΔC D(C)3C which is defined as mean value within a given sampling time.

Therefore, for the assumption on piecewise-constant input in the sampled intervals one

can obtain the standard input approximation applied in other discretization schemes.

Then, the following approximate discrete time counterpart of Eqs. (2.1) -(2.2) is given

as:

G(:ΔC) = A3G((: − 1)ΔC) + B3D(:ΔC), G(0) = G0 (2.7)

H(:ΔC) = C3G((: − 1)ΔC) + D3D(:ΔC), : ≥ 1 (2.8)

with corresponding discrete-time spatial operators given as follows:

S3 :=

[
A3 B3
C3 D3

]
=

[
(X� − A)−1(X� + A)

√
2X(X� − A)−1B√

2XC(X� − A)−1 G(X) + D

]
(2.9)

and its transfer function is given as �3 (I) = C3I(� − IA3)−1B3 + D3. The well-

known bilinear mapping (Mobius transform) which maps the open right-half plain

C+ = {B ∈ C : <4(B) > 0} into the exterior of the unit disc D+ = {I ∈ C : |I | > 1},
given as I = X+B

X−B and conversely B = I−1
I+1 X. The Cayley transform is defined as mi-

nus the Mobius transform and it was introduced by von Neumann [99], so that the

mapping between S ↦→ S3 is called the Cayley transform of continuous time systems

to discrete time systems, so that following folds �3 (I) = � ( 1−I1+I X) and establishes

one-to-one relationship between the continuous and the discrete time system [62, 97].

Further, it can be proved that given X > 0 and S to be a system node whose main

operator satisfies R+ ⊂ d(A), then the system A is (continuous time) input-output
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stable if and only if its Cayley transformation S3 is (discrete time) input/output sta-

ble.

In order to address the issue of dynamical system theoretic preserving proper-

ties of Cayley-Tustin discretization we are looking in the energy balances since the

conservativity is given by the following expression for node S as:

3

3C
‖G(C)‖2X = |D(C) |

2 − |H(C) |2, for C ∈ R+ (2.10)

and in discrete time for S3 as:

‖G(:ΔC)‖2X − ‖G((: − 1)ΔC)‖2X = |D(:ΔC) |
2 − |H(:ΔC) |2, for : ∈ Z+ (2.11)

Then, the Cayley-Tustin transform S3 of an energy preserving system node S is an

energy preserving discrete linear system. Moreover, such transform S3 is conservative
(discrete time) if and only if node S is conservative.

The discrete form of Eqs. (2.1)-(2.2) is dynamical structure preserving since the

system theoretic properties (strong stability, approximate controllability and observ-

ability, infinite-time input and output admissibility) are preserved under the Cayley-

Tustin transform and it is parameterized with the discretization time X = 2
4C which can

be freely chosen in the case of dynamically stable distributed parameter processes,

see for details in [23]. Moreover, in [23] the one to one relationship is established

among the discrete and continuous time system Lyapunov equations strong stabiliz-

ing solutions. In addition, to the conservative systems settings, the framework can

be extended to the dissipative distributed parameter system - nodes satisfying that

dim(*) = 1 = dim(. ), see [97].

In addition, in this chapter we consider distributed parameter systems which are

physically realizable. This implies that they are strictly proper and are characterized

with D = 0 implying that there is no instantaneous transfer of the input signal to

the output, so that the expression in Eq. (2.9) for G(X) = C(X� − A)−1B is just a

transfer function of the model evaluated at B = X. This implies that whenever one can

obtain the closed analytic form of the transfer function of the continuous transport-

reaction model it is also feasible to write an exact discrete form of the underlying

model, as this will be explored and demonstrated in the ensuing sections. Finally,

the benefit of the underlying model’s discrete form is also recognized in the ability to
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handle boundary/point actuation (if present in the system), as well as boundary or

point observation, since discrete formulation provides boundness of input and output

operators in the infinite dimensional space setting, see [100].

Remark 1. The Crank-Nicolson type of discretization setting originates from the

well-known implicit midpoint rule, which is a symmetric numerical method since

Eq. (2.3) stays unaltered, if G(:ΔC) is exchanged with G((: − 1)ΔC), (G(:ΔC) ↔
G((: − 1)ΔC)), and ΔC ↔ −ΔC, see [101]. This is also the type of discretization re-

ferred as reversible in the time discretization method which can guarantee structure-

preserving numerical integrations [101]. The integration schemes that preserve the

energy equality or more complex dynamics invariants of the system are called sym-

plectic or Hamiltonian integrators. Therefore, the Crank-Nicolson discretization for

the linear system is the lowest order symplectic integration scheme from the the family

of Gauss quadrature based Runge-Kutta methods [101].

2.3 Least square estimation of constant distributed
parameter state

The finite dimensional least square estimation is well developed and documented as

one of the first estimation techniques utilized in systems science [35]. It is of interest

to explore how this concept is extended when it comes to the distributed parameter

systems setting. First, we consider the time invariant spatially varying steady state

G = G(Z), that frequently arises in the transport-reaction systems as the physically

realizable equilibrium profile. The measurement of the state is given as:

H: = CG + E: (2.12)

where C is the output measurement operator which determines the place of the output

measurement. The noisy measurement H: is realized as the time invariant spatially

varying state G = G(Z) measurement augmented with the noise signal E: given as

a random variable with zero mean and covariance ': (i.e., E: ∼ N(0, ': ) ). The

realization of the recursive least-square estimator is given as follows:

 : = %:−1C∗(C%:−1C∗ + ': )−1 = %:C∗':−1 (2.13)
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Ĝ: = Ĝ:−1 +  : (H: − CĜ:−1) (2.14)

%: = (� −  :C)%:−1(� −  :C)∗ +  :': ∗: (2.15)

which is an extension of the well known finite dimensional system least square sequen-

tial estimation. In addition, we note that Ĝ0 = � (G0) and %0 = � [(G0 − Ĝ0) (G0 − Ĝ0)∗].

Proposition 1. The realization of the recursive least-square estimator for Eq. (2.12)

is given by Eqs. (2.13)-(2.15).

A proof of Proposition 1 and the detailed derivation of Eqs. (2.13)-(2.15) is given in

the following proof section.

Proof. The estimated state error mean propagation can be calculated as:

� [G (Z) − Ĝ: (Z)]

= � [G − Ĝ: ]

= � [G − Ĝ:−1 −  : (H: − CĜ:−1)]

= � [G − Ĝ:−1 −  : (CG + E: − CĜ:−1)]

= � [(� −  :C) (G: − Ĝ:−1) −  :E: ]

= (� −  :C) � (G − Ĝ:−1) −  :� (E: ) (2.16)

It is obvious to know that for a given initial state estimation Ĝ0 = � (G) one can

lead to unbiased estimator since � (E: ) = 0. Then, the estimation-error covariance

propagation can be computed as:

%: = �
[
(G − Ĝ: ) (G − Ĝ: ))

]
= �

[
[(� −  :C) � (G − Ĝ:−1) −  :� (E: )] [(� −  :C) � (G − Ĝ:−1) −  :� (E: )])

]
= (� −  :C) �

[
(G − Ĝ:−1) (G − Ĝ:−1))

]
(� −  :C)∗ +  :�

(
E:E:

)
)
 :
∗

= (� −  :C) %:−1(� −  :C)∗ +  :': :∗ (2.17)

In order to determine the gain matrix  : , one can easily follow recursive least square

estimation derivation procedures of finite-dimensional systems (with �: = )A (%: ))
and obtain:

m�:

m :
=
m)A (%: )
m :

= 2 (� −  :C) %:−1 (−C∗) + 2 :': = 0 (2.18)
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 : = %:−1C∗(C%:−1C∗ + ': )−1 = %:C∗':−1 (2.19)

where �: is the cost function to be minimized in Eq. (2.18) and with the covariance

being defined as %: = �
[
(G(Z) − Ĝ: (Z)) (G([) − Ĝ: ([)))

]
, with understanding that

covariance is given as a nonnegative symmetric operator %: (Z, [) which is property

preserved by Eq. (2.15).

In addition, one needs to resolve how to realize Eq. (2.13), since output operators

C and C∗ are present and two dimensional covariance %: is applied in the case of

estimation of one dimensional distributed parameter state. An example of a simple

transport-reaction system is given in the numerical simulations section to demonstrate

aforementioned points and it will be clear that least square estimator fails to estimate

the state throughout domain since it does not utilize any distributed parameter system

model features. The way to improve to some extent the least square estimation is

to enlarge the measurement space by placing more measurements along domain and

to extend the space dimensionality of the H: ∈ .<, (< = 1, · · · , "< - number of

measurements, with "< < ∞). However, there is obviously a limited interest in

this, since least square estimation can address the PDE state reconstruction only in

approximate sense and under the condition that a large number of measurements is

applied.

2.4 Observer design for linear transport-reaction sys-
tems

2.4.1 Continuous-time observer design

In order to address the DPS state reconstruction, one can consider the case of an

appealing and practically realizable observer design for a transport linear DPS. In

particular, this design considers the following representation, without the applied

input present in the systems output (i.e., D) given as Eqs. (2.1)-(2.2):

¤G(C) = AG(C) + BD(C) (2.20)

H(C) = CG(C) (2.21)

The observer design takes the standard form given as:

¤I(C) = AI(C) + BD(C) + ! (H(C) − CI(C)) (2.22)
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such that one can easily define the error as 4(C) = G(C) − I(C), and therefore obtain:

¤4(C) = (A − !C)4(C) = �04(C) (2.23)

Hence, the design of the observer in the continuous setting is given as the design of

an appropriate spatial ! (Z)-operator, and in this case the operator is sought as a

spatial function, such that the operator �0 = A − !C is stable with desired stability

properties. Obviously, this is not a trivial task since the PDE spatial operator A is

characterized by infinite dimensional features and/or different stability characteristics

than one used in the finite dimensional theory. Therefore, in order to obtain the

desired error decay, we look into the following Lyapunov type of argument that can

be applied in the design of the ! (Z) operator. On one side, this is important design

characteristics since we don’t apply any type of approximations or lumping of the

DPS model utilized for the construction of the ! (Z), while on the other side the

proposed method applies successfully to the spectral and/or non-spectral types of the

distributed parameter systems by which accounts for majority of relevant chemical

transport-reaction systems.

In order to provide the general theorem that accounts for the observer design,

we introduce a following Lemma that embodies the exponential stability of the error

dynamics �0 = A − !C.

Lemma 1. Let �0 be an infinitesimal generator of the �0-semigroup TA> (C) on X
and " be a positive operator on L(X). Then, TA> (C) is exponentially stable if and

only if there exists a nonnegative self-adjoint operator &0 ∈ L(X) as a solution of the

following operator Lyapunov equation such that

〈&0G, �
∗
0G〉 + 〈�

∗
0G, &0G〉 = −〈"G, G〉, for all G ∈ � (�∗0) (2.24)

holds and &0(� (�∗0)) ⊂ � (�0).

It can be demonstrated that the above equation Eq. (2.24) can be rewritten in

the following form:

(�0&0 +&0�
∗
0 + ")G = 0, for all G ∈ � (�∗0) (2.25)

which is a standard operator Lyapunov equation which given a positive " yields a

nonnegative self-adjoint bounded operator &0 (that is 〈G, &0H〉 = 〈&0G, H〉 for any two
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functions G, H ∈ X) which maps from � (�∗0) to � (�0). Based on this Lemma 1, we

can provide a description of a general approach of finding observer stabilizing gain

! (Z) in Eq. (2.23).

Theorem 1. (A, C) is exponentially detectable if and only if there exists a nonneg-

ative self-adjoint operator &0 as a solution to the following operator Riccati algebraic

equation:

A&0 +&0A∗ + " − 2&0�
∗�&0 = 0, on � (A∗) (2.26)

with &0(� (A∗)) ⊂ � (A), where " is a positive definite design parameter, then

the observer gain ! = &0C∗ is an exponentially stabilizing output injection gain in

�0 = A − !C.

Proof. In order to demonstrate the stabilizing properties of the obtained observer

gain !, one can easily link Eq. (2.24) to Eq. (2.26) by considering:

〈&0G, �
∗
0G〉 + 〈�

∗
0G, &0G〉 = −〈"G, G〉 for all G ∈ � (�∗0) (2.27)

so that Eq. (2.27) can be easily written in the following inner product form and

further transformed as follows:

〈&0G, �
∗
0G〉 + 〈�

∗
0G, &0G〉 = −〈"G, G〉

〈�0&0G, G〉 + 〈&0�
∗
0G, G〉 = −〈"G, G〉

〈(A − !C)&0G, G〉 + 〈&0(A − !C)∗G, G〉 = −〈"G, G〉

〈((A − !C)&0 +&0(A − !C)∗)G, G〉 = −〈"G, G〉

〈((A −&0�
∗�)&0 +&0(A −&0C∗C)∗)G, G〉 = −〈"G, G〉

〈(A&0 +&0A∗ −&0C∗C&0 −&0C∗C&0)G, G〉 = −〈"G, G〉

〈(A&0 +&0A∗ − 2&0C∗C&0 + ")G, G〉 = 0 (2.28)

since G is not equal to zero, one obtains Eq. (2.26). Therefore, both equations are

satisfied with unique operator &0 which implies exponentially stability of �0 = A−!C.

A similar theorem for the control problem is introduced in [102] with the design

requirement to find stabilizing gain  = −B∗&0 which generates an exponentially

stable �0-semigroup by (A + B ) associated with Eq. (2.20).
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In order to demonstrate the above design, two most prominent classes of transport-

reaction models considered in the numerical simulations section are given by scalar

first order hyperbolic and second order parabolic PDE as a majority of chemical and

materials process control application are accurately enough described and/or can be

approximated with these cases of distributed parameter systems.

Remark 2. A considered example of transport-reaction linear parabolic PDE in nu-

merical simulations section is given as a model of conductive heat transport in the

catalytic metal bar. An identical model as the one given in the Eq. (2.60) in terms of

its characteristics, can be considered when it comes to the transport-reaction system

modelled by the diffusion process and linear chemical kinetics. Hence, the most im-

portant example of the transport-reaction system given by the axial dispersion reactor

with given model dynamics as GC = �GZ Z − EGZ + :G, with Danckwerts boundary condi-

tions can be easily transformed to the parabolic PDE structure given by Eq. (2.60), by

applying state transformation G(Z, C) → 4−
E
2� Z Ḡ(Z, C). Alternatively, one can directly

apply the above design and analysis by considering the convection-diffusion-reaction

model belonging to the class of Sturm-Liouville systems with a well defined operator

characterized by the point spectrum and the associated eigenfunctions [103, 104, 105].

In other words, this analysis and the design can be applied to other types of distributed

parameter systems with a spectral operator of the Riesz type, such as string and/or

beam equations in petroleum, structural and mechanical engineering, respectively [4].

2.4.2 Discrete-time observer design

In a similar manner, as described above, a practical, appealing and easy to realize

discrete Luenberger observer design is motivated by the notion that all modern design

methodologies in practice assume discrete systems realization and design. In partic-

ular, we design an observer based on the following DPS plant model given by Eqs.

(2.7)-(2.8):

G: = A3G:−1 + B3D: (2.29)

H: = C3G:−1 + D3D: (2.30)

25



Then, a discrete Luenberger observer is constructed as follows:

Ĝ: = A3 Ĝ:−1 + B3D: + !3 (H: − C3 Ĝ:−1 − D3D: ) (2.31)

As the observer design requires us to find !3 such that the error dynamics is given

by:

4: = (A3 − !3C3)4:−1 = Ã34:−1 (2.32)

where Ã3 is the operator with the desired decay rate obtained by calculating !3 (Z)
operator.

However, discrete operators cannot be directly used in calculating the observer

gain operator !3 = &3C∗3 , and therefore one needs to solve the corresponding contin-

uous Lyapunov equation in order to obtain a stabilizing observer gain. In this case,

the discrete Lyapunov equation is given as:

〈G, [Ã∗3&3Ã3 −&3]G〉 = −〈G, [C∗3#C3]G〉 (2.33)

and can be solved by finding a solution to the corresponding continuous Lyapunov

equation given as:

〈�30G, &3G〉 + 〈&3G, �30G〉 = −〈CG, #CG〉, G ∈ � (�∗0) (2.34)

where �30 = �
∗
0 and # is nonnegative. Let us demonstrate the link between Eq. (2.33)

and Eq. (2.34) by considering Ã3 := −�+2X(X�−�30)−1, Ã∗
3

:=
[
−� + 2X(X� − �30)−1

]∗
and C3 =

√
2X� [X� − �30]−1. Therefore, we have[

−� + 2X(X� − �30)−1
]∗
&3

[
−� + 2X(X� − �30)−1

]
−&3 = −C∗3#C3 (2.35)

by factoring out (X� − �30)−1, one obtains:[ [
−� + 2X(X� − �30)−1

]∗
&3 [2X − (X� − �30)]−&3 (X�− �30)

]
(X�− �30)−1 = −C∗3#C3

and in the same way,

(X� − �30)−1∗ [[−(X� − �30) + 2X]∗&3 [−(X� − �30) + 2X] − (X� − �30)∗&3 (X� − �30)
]

×(X� − �30)−1 = −C∗
3
#C3
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which leads to

(X� − �30)−1∗ [2�∗30&3X + 2X&3�30

]
(X� − �30)−1

= −
(√

2XC [X� − �30]−1
)∗
#

(√
2XC [X� − �30]−1

)
or

(X� − �30)−1∗ [2�∗30&3X + 2X&3�30

]
(X� − �30)−1

= −(
√

2X)2(X� − �30)−1∗C∗#C(X� − �30)−1

hence,

�∗30&3 +&3�30 = −C∗#C (2.36)

which clearly becomes operator Lyapunov equation Eq. (2.34). Therefore, given

that the solution of Eq. (2.34) exist and can be found, it is also the solution of

the corresponding discrete Lyapunov equation Eq. (2.33), and converse is also true.

Further, in order to solve for the operator &3, we invoke the Theorem 1. The obtained

&3 operator is the solution of the following operator Riccati equation given by:

�0&3 +&3�
∗
0 − 2&3C∗#C&3 + " = 0 (2.37)

which is identical in the setting to the problem already presented and resolved in

Eq. (2.26). In general, the issue of necessity to solve for the stabilizing operator

&3 by considering continuous operator Lyapunov or Riccati equation is due to the

following facts. Eq. (2.33) does not need to satisfy any conditions when it comes

to the integral operators and hence boundary conditions are not required, this is in

contrast to the presented continuous operator equations which are always defined

with the space of functions and corresponding domain. Along the same line, on the

other hand the setting of the expression in Eq. (2.33), Ã∗
3
&3Ã3k −&3k = −C∗3#C3k

induces the presence of an arbitrary function k so that &3 operator can not be

uniquely determined (Ã3k and C3k are well defined as integral operators applied

to function k). As it will be demonstrated in the numerical simulations section the

operator &3 is often found as a solution of boundary value problem obtained as

the outcome of constructing a continuous operator equations. Finally, the novelty
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associated with discrete Luenberger observer design is that presented methodology

does not account for the spatial approximations and/or model reduction, for example

by mere discretization of the underlying spatial operators which is a usual procedure

in the literature [30, 90, 91, 92, 79].

2.5 Kalman filter design for linear transport-reaction
systems

2.5.1 Discrete-time Kalman filter design

Along the line of discrete Kalman filter design for lumped parameter systems, we ex-

plore the Kalman filter design for linear distributed parameter systems. Initially, we

provide a design procedure for discrete linear infinite-dimensional systems by Cayley-

Tustin transformation and case studies of typical linear transport-reaction systems

described by hyperbolic and parabolic PDEs are presented. A general linear discrete-

time transport-reaction system obtained by Cayley-Tustin time discretization is con-

sidered in the following form:

G: = A3G:−1 + B3D: + F:−1

H: = C3G:−1 + D3D: + E:
(2.38)

where the operators (A3 ,B3 , C3 ,D3) are well defined in the rigged spaces X: , (for
: = 1, 2, · · · ) constructed from X by means of the operator A given in Eq. (2.1),

that is X0 = X, and X= = D(A: ) (see 3.6 in [21]). The above equations are solvable

since there are no problems induced by unbounded operators, so that the input map

is B3 : !2(Z;*) → X by control input sequence {D: }:∈Z+ and augmented by noise

signal F: , the output space H: ∈ '= = . with =-denoting number of measured outputs

is given by C3&D3 : X ×* → . and is augmented by the measurement noise signal

E: . The process noise F: is the zero mean multivariate normal distribution with

covariance &: , and E: is the measurement noise of having zero mean Gaussian white

noise with covariance ': given as, F: ∼ N(0, &: ), E: ∼ N(0, ': ), � [F:F)9 ] = &:X:, 9 ,

� [E:E)9 ] = ':X:, 9 , � [E:F)9 ] = 0. The process noise is present in Eq. (2.38) without

any spatial characteristics since F: = �F: , however, one can appropriately model

spatial distribution of the noise if there is a prior knowledge of the noise source. We

emphasize that in the modelling of discrete infinite dimensional system given by Eq.
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(2.38) we augment the state and output noise with the appropriate noise signals in

affine manner and our approach is not to define the noise signals in the continuous

setting and then to transform to the discrete one by Cayley-Tustin discretization.

The compelling reason is that area of stochastic partial differential equations requires

completely different functional space setting and different operator definitions which

is out of scope of this chapter.

Therefore, having the Eq. (2.38), a priori state estimate is given as Ĝ−
:
= �{G: |H1,

H2, · · · , H:−1} with the corresponding priori estimate covariance %−
:
= � [(G:− Ĝ−: ) (G:−

Ĝ−
:
)∗]. Similarly, a posteriori state estimate is Ĝ+

:
= �{G: |H1, H2, · · · , H: } with the

corresponding posteriori estimate covariance %+
:
= � [(G: − Ĝ+: ) (G: − Ĝ

+
:
)∗].

In order to guarantee the consistency in the time instants of the discrete transport-

reaction system and the standard discrete Kalman filter structure of finite-dimensional

systems, one can express H: in terms of the current state G: instead of the previous

state instance G:−1 in Eq. (2.4) and Eq. (2.8), which leads to the following:

G: = A3G:−1 + B3D: + F:−1

H: = C̄3G: + D̄3D: + E:
(2.39)

where the updated discrete-time spatial operators are denoted as follows:[
A3 B3
C̄3 D̄3

]
=

[
−� + 2XR(Z, X)

√
2XR(Z, X)�

−
√

2X�R(Z,−X) G(−X)

]
(2.40)

As it is shown in the above expressions for C̄3 and D̄3, a resolvent and transfer

function of continuous system are evaluated at B = −X instead of at B = X.

Proposition 2. The noise free discrete systems given by the S3 :=

[
A3 B3
C3 D3

]
and

the discrete system given by
[
A3 B3
C̄3 D̄3

]
in Eq. (2.9) have the same transfer function

and input/output representation properties.

Proof. The proof consists of two steps.

(1) State Space Formulation:

From Eqs. (2.7)-(2.8), one has the following:

G: = (X� − A)−1(X� + A)G:−1 +
√

2X(X� − A)−1BD:
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It is simple to manipulate above expression as follows:

G:−1 =
[
(X� − A)−1(X� + A)

]−1
G: −

[
(X� − A)−1(X� + A)

]−1√
2X(X� − A)−1BD:

= (X� + A)−1(X� − A)G: −
√

2X(X� + A)−1BD:

Then, one can substitute this above expression into the output expression Eq. (2.4)

and obtain the following

H: =
√
ΔC�

1

2

[
� + (X� + A)−1(X� − A)

]
G: −
√
ΔC�

1

2

√
2X(X� + A)−1BD:

=
√
ΔC�

1

2
(−2X) (−X� − A)−1G: +

√
ΔC�

1

2

√
2X(−X� − A)−1BD:

= −
√

2X� (−X� − A)−1G: + � (−X� − A)−1BD:

Hence, the updated discrete operators of C̄3 and D̄3 are given by

C̄3 = −
√

2X� (−X� − A)−1 = −
√

2X�R(Z,−X)

D̄3 = � (−X� − A)−1B = �R(Z,−X)B = G(−X)

(2) Transfer Function Comparison

In order to obtain the discrete transfer function, the Z transformation is applied to

Eq. (2.7) which yields the following:

G (I) =
[
� − (X� − A)−1(X� + A)I−1

]−1√
2X(X� − A)−1BD (I)

H(I) =
√

2XC(X� − A)−1I−1
[
� − (X� − A)−1(X� + A)I−1

]−1√
2X(X� − A)−1BD(I)

+ C(X� − A)−1BD(I)

Then, one can further derive as follows:

H(I) =
√

2XC(X� − A)−1I−1
[
� − (X� − A)−1(X� + A)I−1

]−1√
2X(X� − A)−1BD(I)

+ C(X� − A)−1BD(I)

=2XCI−1(X� − A)−1
[
� − (X� − A)−1(X� + A)I−1

]−1(X� − A)−1BD(I)

+ C(X� − A)−1BD(I)

=C
[
2XI−1

[
(X� − A)2 − (X� + A) (X� − A) I−1

]−1 + (X� − A)−1
]
BD(I)

=� (I)D(I)
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Applying Z transformation to Eq. (2.39) leads to:

H(I) = −
√

2XC(−X� − A)−1
[
� − (X� − A)−1(X� + A)I−1

]−1√
2X(X� − A)−1BD(I)

+ C(−X� − A)−1BD(I)

Then, one can simplify the above transfer function as follows:

H(I) = −
√

2XC(−X� − A)−1
[
� − (X� − A)−1(X� + A)I−1

]−1√
2X(X� − A)−1BD(I)

+ C(−X� − A)−1BD(I)

=2XC(X� + A)−1
[
� − (X� − A)−1(X� + A)I−1

]−1(X� − A)−1BD(I)

− C(X� + A)−1BD(I) − C(X� − A)−1BD(I) + C(X� − A)−1BD(I)

=C
[
2X(X� + A)−1

[
� − (X� − A)−1(X� + A)I−1

]−1(X� − A)−1B
]
D(I)

− C
[
(X� − A)−1(X� − A)(X� + A)−1 + (X� − A)−1(X� + A)(X� + A)−1

]
BD(I)

+ C(X� − A)−1BD(I)

=2XC(X� + A)−1
[
� − (X� − A)−1(X� + A)I−1

]−1(X� − A)−1BD(I)

− 2XC(X� − A)−1(X� + A)−1BD(I) + C(X� − A)−1BD(I)

=2XC
[
(X� − A) (X� + A) − (X� + A)(X� + A)I−1

]−1BD(I)

− 2XC[(X� + A) (X� − A)]−1BD(I) + C(X� − A)−1BD(I)

=2XC[(X� + A) (X� − A)]−1 [(X� + A) (X� − A)]

×
[
(X� − A) (X� + A) − (X� + A)(X� + A)I−1

]−1BD(I) + C(X� − A)−1BD(I)

=2XC[(X� + A) (X� − A)]−1
[
(X� + A)(X� + A)I−1

]
×

[
(X� − A) (X� + A) − (X� + A)(X� + A)I−1

]−1BD(I) + C(X� − A)−1BD(I)

=C
[
2XI−1 [(X� − A)]−1

[
(X� − A) − (X� + A)I−1

]−1 + (X� − A)−1
]
BD(I)

=C
[
2XI−1

[
(X� − A)2 − (X� + A) (X� − A) I−1

]−1 + (X� − A)−1
]
BD(I)

=� (I)D(I)

Therefore, the updated Crank-Nicolson discretization setting described in Eq. (2.39)

is identical with the original framework shown in Eq. (2.7).

The well known configuration for the Kalman filter can be written as a single

equation [35], however it is most often realized as the calculation of two distinct

computing steps: “Prediction” and “Update”. The initial conditions are described as
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below:
Ĝ+0 = � (G0) = Ĝ0

%+0 = � [(G0 − Ĝ+0) (G0 − Ĝ+0)
∗] = &0

(2.41)

We have the prediction step (also called the prior estimation step) as follows, with

measurement up to time : − 1:

%−: = A3%
+
:−1A

∗
3 +&:−1 = A3 [A3%

+
:−1]

∗ +&:−1

Ĝ−: = A3 Ĝ
+
:−1 + B3D:

(2.42)

and the update step (also called the posterior estimation step) is given as follows, by

using additional output measurement H: at time instance ::

 : =%
−
: C̄
∗
3 (C̄3%

−
: C̄
∗
3 + ': )

−1

=(C̄3%−: )
∗ [C̄3 (C̄3%−: )

∗ + ': ]−1

%+: =(� −  : C̄3)%
−
: (� −  : C̄3)

∗ +  :': ∗:
=�%−: �

∗ −  : C̄3%−: �
∗ − �%−: C̄

∗
3 
∗
: +  : C̄3%

−
: C̄
∗
3 
∗
: +  :': 

∗
:

=�%−: �
∗ −  : C̄3%−: �

∗ − � (C̄3%−: )
∗ ∗: +  : C̄3 (C̄3%

−
: )
∗ ∗: +  :': 

∗
:

=[(%−: )
−1 + C̄∗3'

−1
: C̄3]

−1

=(� −  : C̄3)%−:
Ĝ+: =Ĝ

−
: +  : (H: − C̄3 Ĝ

−
: − D̄3D: )

(2.43)

The proposed framework follows and extends a standard finite-dimensional discrete-

time Kalman filter design and realization, and the differences arise in the treatment

of discrete spatial operators and consideration of the covariances which admit spatial

characteristics. In particular, the priori estimate covariance %−
:
and the posteriori

estimate covariance %+
:
are two-dimensional and self-adjoint, such that %−

:
= %−∗

:
=

%−∗
:
(Z1, Z2) and %+

:
= %+∗

:
= %+∗

:
(Z1, Z2) provided by Kalman estimation evolution

formulas Eqs. (2.42)-(2.43) preserving self-adjoint and positive definiteness due to

positive definitness of &: and ': . Finally, the Kalman filter stability is provided by

(C3 ,A3) being detectable, (A3 , &
1/2
:
) stabilizable and &0 being non-negative definite

[9].

2.5.2 One-step discrete Kalman filter design

In addition, we explore a one-step Kalman filter with a single estimation step formu-

lated by combining the prior estimation equation and posterior estimation equation.
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In particular, one can manipulate the state and its corresponding covariance prior

estimation Eqs. (2.42)-(2.43) as follows:

Ĝ−:+1 = A3 Ĝ
−
: + B3D:+1 + !:

(
H: − C̄3 Ĝ−: − D̄3D:

)
%−:+1 = A3%

−
:A3

∗ − A3%
−
:C
∗
3 (C3%

−
:C
∗
3 + ': )

−1C∗3%
−
:A3

∗ +&: (2.44)

 : = %
−
: C̄
∗
3 (C̄3%

−
: C̄
∗
3 + ': )

−1

where !: serves as an one-step ahead Kalman filter prediction gain and its relationship

with Kalman gain is given by !: = A3 : = A3%
−
:
C̄∗
3
(C̄3%−: C̄

∗
3
+ ': )−1. This state

estimation evolution expression is similar to the one provided by Astrom [96] in the

finite dimensional state space setting.

Derivation of formula (2.44): By taking Eq. (2.43) into Eq. (2.42), one gets the

following expressions:

Ĝ−:+1 = A3 Ĝ
+
: + B3D:+1

= A3

[
Ĝ−: +  : (H: − C̄3 Ĝ

−
: − D̄3D: )

]
+ B3D:+1

= A3 Ĝ
−
: + A3 : (H: − C̄3 Ĝ−: − D̄3D: ) + B3D:+1

= A3 Ĝ
−
: + B3D:+1 + !:

(
H: − C̄3 Ĝ−: − D̄3D:

)
The corresponding prior estimated covariance (also called steady-state discrete filter-

ing Riccati matrix) is given as:

%−:+1 = A3%
+
:A3

∗ +&:

= A3

(
%−: −  : C̄

∗
3%
−
:

)
A3
∗ +&:

= A3

(
%−: − %

−
: C̄
∗
3 (C̄3%

−
:C
∗
3 + ': )

−1C̄∗3%
−
:

)
A3
∗ +&:

= A3%
−
:A3

∗ − A3%
−
: C̄
∗
3 (C3%

−
: C̄
∗
3 + ': )

−1C̄∗3%
−
:A3

∗ +&:

Remark 3. The difference between Kalman filter and Luenberger observer estima-

tion is that the one-step ahead Kalman filter prediction gain is updated by recursive

estimation of the time varying Riccati equation in terms of the state covariance ma-

trix %: given above, while the Luenberger observer gain is deterministic and given as

constants determined by solving the operator Riccati equation.

Similarly, one can easily obtain the posterior estimated state and its covariance for-

mulas as follows:

Ĝ+: =
(
� −  : C̄3

) (
A3 Ĝ

+
:−1 + B3D:

)
+  : (H: − D̄3D: )
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%+: =
(
� −  : C̄3

) (
A3%

+
:−1A3

∗ +&:−1
)

(2.45)

 : = %
+
: C̄
∗
3':

−1

Remark 4. In order to describe the state and measurement noise distributions, one

can introduce bounded operators �F and �E accounting for spatial influence of state

noise F: and different channel measurement noises distributions E: for a system at

each time instance, which yields the following system:

G: = A3G:−1 + B3D: + �FF:−1

H: = C̄3G:−1 + D̄3D: + �EE:

(2.46)

Following the one-step Kalman filter design procedures for distributed parameter sys-

tems, one can easily conclude the following posteriori Kalman filtering estimation

formulas for the given more general infinite-dimensional system considering the noise

distribution characteristics from the state and measurement:

Ĝ+: =
(
� −  : C̄3

) (
A3 Ĝ

+
:−1 + B3D:

)
+  : (H: − D̄3D: )

%+: =
(
� −  : C̄3

) (
A3%

+
:−1A3

∗ + �F&:−1�F
∗) (2.47)

 : = %
+
: C̄
∗
3 (�E':�E

∗)−1

2.6 Numerical simulations

In this section, we provide numerical examples associated with the observer and

filter designs. First we consider an example of the least square estimator applied to

the typical transport-reaction system characterized by the time invariant spatially

nonuniform steady state.

2.6.1 Least square estimator

An example of a simple transport-reaction system is given as:

GC = −GZ + G, G(0, C) = Ḡ0 = 1, G(Z, 0) = G0(Z) (2.48)

H(C) = G(;, C) + E(C) (2.49)

where GZ = mG
mZ

and with Eq. (2.49) rewritten in the sampled data form given by

Eq. (2.12), so that the steady-state solution takes the form of exponential function,
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limC→∞G(Z, C) = GBB (Z) = Ḡ04
Z . In this case, the measurement is taken at the reactor’s

exit (e.g., ; = 1) and therefore CG =
∫ 1

0
X(Z −1)GBB (Z)3Z = GBB (1). Since %: is symmet-

ric in Eq. (2.13), and is realized as %:−1C∗ = (C%:−1)∗ =
∫ 1

0
X(Z − 1)%:−1(Z, [)3Z , so

that C%:−1C∗ = C(C%:−1)∗ is meaningful. As it is expected, the least square estima-

tor is capable of proper reconstruction of the state at the boundary of the domain (exit

of the plug flow reactor, see Fig. 2.1), but it fails to estimate the state throughout the

spatial domain. This is expected, since the least square estimator does not utilize any

model of the underlying system dynamics and therefore cannot provide any reliable

estimates of the distributed spatial state. In addition, single measurement available

to the least square estimator is not sufficient to reconstruct an infinite dimensional

spatially distributed state. Possible improvements in the time invariant spatial state

estimation could be obtained with a large number of measurements applied along

the state domain. This path, however, is not frequently feasible, as distributed pa-

rameter system plants are already built in the process industry with no structural

feature to add a large number of measurements and change plant design accordingly.

In practice, it is possible to add only boundary measurements to already existing

plant structure. Hence, the least square state estimation of time invariant spatial

state in the distributed parameter systems setting can be achieved only with a large

number of point measurements available. Finally, there is obviously a limited interest

in this, since least square estimation can address the PDE state reconstruction only

in approximate sense and under the condition that a large number of measurements

is applied.

2.6.2 Observer design

Example 1: Transport-reaction system modelled by 1BC order hyperbolic PDE:

A simple model of the plug flow reactor with constant transport velocity E and spa-

tial function k associated with linearized kinetics of the chemical reaction along the

reactor length is considered:

GC = −EGZ + kG +
1

2n
1[0−n,0+n]D(C), (Z, C) ∈ [0, 1] × R+

G(0, C) = 0, G(Z, 0) = 5 (Z)

H(C) = CG

(2.50)
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Figure 2.1: Estimated state of the hyperbolic system (solid line), and the steady state
GBB = Ḡ04

Z given in Eq. (2.48) (line "–+–"), with E: being a random variable with
variance ': = +0A{E: } = 0.01 and zero mean, and H: given by Eq. (2.49) taken at
the reactor’s exit Z = ;.

Figure 2.2: State of the hyperbolic system G(Z, C) given in Eq. (2.50).

where G(·, C) ∈ !2((0, 1),R+) is a state. The modelling assumption is that mea-

surements are specified with the operator C, while input operator B approximates

boundary actuation with the actuation distribution function 1(Z) = 1
2n 1[0−n,0+n] which

is bounded. In order to apply the above design, one defines the operator A = −E 3
3Z
+k
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with a domain D(A) = {q(Z) ∈ !2(0, 1), |q is abs. cont., 3q
3Z
∈ !2(0, 1), q(0) = 0}, and

the associated adjoint operator A∗ = E 3
3Z
+ k with its domain as D(A∗) = {q(Z) ∈

!2(0, 1), |q is abs. cont., 3q
3Z
∈ !2(0, 1), q(1) = 0}, where “absolutely continuous" is

shortly written as “abs. cont.” for simplicity. Then, design implies that the expres-

sion in Eq. (2.26) is applied, with a free choice of the design parameter " (Z) and
arbitrary function Ψ(Z) in a domain of D(A∗), which leads to the following:

Figure 2.3: Evolution of the observer error 4(Z, C) given in Eq. (2.23).

A&0 +&0A∗ + " − 2&0C∗C&0 = 0, on � (A∗) (2.51)

−E 3
3Z
[&0Ψ(Z)] + k&0Ψ(Z) +&0E

3

3Z
[Ψ(Z)] + k&0Ψ(Z) + "Ψ(Z)

− 2&0C∗C&0Ψ(Z) = 0 (2.52)

−E 3&0

3Z
Ψ(Z) − E&0

3Ψ(Z)
3Z

+&0E
3Ψ(Z)
3Z

+ 2k&0Ψ(Z) + "Ψ(Z)

− 2&0C∗C&0Ψ(Z) = 0 (2.53)

where it should be noted that the operator &0 is given by a spatial function (also

denoted by &0 for the ease of notation) multiplied by an identity operator, see [50,

The. 5]. Then we can further derive the following

3&0

3Z
=

1

E
(2k&0 − 2&0C∗C&0 + ") , &0(0) = 0 (2.54)
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Based on the understanding that the measurement operator C can be defined for

different scenarios, we consider several cases of possible solutions to the observer gain

! (Z).
For example, one can look at the trivial case of having identity operator C = �

which implies that the entire state is measured and in the trivial case C∗C = �, which
leads to the following:

3&0

3Z
=

1

E

(
−2&2

0 + " + 2k&0

)
, &0(0) = 0 (2.55)

Therefore, one needs to choose &0(0) = 0 and positive spatial function " to ensure

semi-positive definiteness of the function &0 and the observer gain is ! = &0(Z)C∗.
On the other hand, in the case that the output measurement is taken at the exit of

the reactor, that is (H(C) = G(1, C)), and the operator C&0 is defined as C&0 =
∫ 1

0
X(Z−

1)&0(Z)3Z = &0(1). Furthermore, the operator C∗ is given as C∗(·) = X(Z−1)
∫ 1

0
(·)3[.

In addition, we provide a quick explanation of the C∗ operator features by forming

the inner product with any two functions G, H, so that:

10
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8 1

t

x
(

,t
) 0.2

0.86
0.64

0.4

0.4

2
0.2

0

Figure 2.4: State of the parabolic PDE system G(Z, C) given in Eq. (2.60).

〈CG, H〉 =
∫ 1

0

[ ∫ 1

0
X(Z − 1)G(Z)3Z

]
H([)3[ (2.56)
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=

∫ 1

0
[
∫ 1

0
X(Z − 1)G(Z)H([)3Z]3[

=

∫ 1

0
G(Z) [X(Z − 1) [

∫ 1

0
H([)3[]]3Z

= 〈G, C∗H〉

and therefore C∗(·) = X(Z − 1)
∫ 1

0
(·)3[, which leads to the following expression of Eq.

(2.54),
3&0

3Z
=

1

E
(−2&0C∗C&0 + " + 2k&0) , &0(0) = 0 (2.57)

knowing that C&0 =
∫ 1

0
X(Z − 1)&0(Z)3Z = &0(1), and by applying the finding of the

C∗ expression one obtains

3&0

3Z
=

1

E
(−2&0(Z)X(Z − 1)&0(1) + " + 2k&0(Z)) , &0(0) = 0 (2.58)

or
3&0

3Z
=

1

E

(
−2&2

0(1) + " + 2k&0(Z)
)
, &0(0) = 0 (2.59)

In this particular case, we consider the following parameters k = 1, E = 1, " = 1,

5 (Z) = sin(2cZ), Z ∈ [0, 1] and &0(0) = 0 in the simulation demonstration. Eq.

(2.59) provides the expression for the observer gain and it is solved numerically. For

the sake of successful demonstration of the observer design, the case is realized when

Eq. (2.22) is augmented with the time varying input applied at the boundary condi-

tion D(C) = sin(lC) with l = 0.025, see Fig. 2.2. Numerical realization of the model

Eq. (2.50) and of the associated observer Eq. (2.22) is accomplished with backward

finite difference in space 4Z = 0.01 and forward in time with time discretization

step 4C = 0.01, see Fig. 2.3. Finally, as one can observe in the case of observer

design for scalar hyperbolic systems, one can also consider spatially varying velocity

E(Z) and k(Z), since the complexity for numerical integration of Eq. (2.57) is not

significantly increased. In Fig. 2.3, one can find that the observer error is more pro-

nounced in the area of the initial condition contribution to the state evolution (that

is G(Z, C) ∈ [0 < Z < 1, 0 < C < 1], see Figs. 2.2-2.3), as this is due to the fact that

the observer is initialized at zero and that the error cannot decay faster than initial

data transported throughout the domain by transporting velocity (E = 1 in example)

of the transport-reaction system (for the values C > 1 the error evolution is smaller
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than the velocity term, E = 1).

Example 2: Transport-reaction system modelled by 2=3 order parabolic PDE:
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Figure 2.5: State evolution of the observer state I(Z, C) given in Eq. (2.22).

A simple model of a heated catalytic metal bar exposed to the time-varying source

term applied along the bar length is considered, while the output measurement is ap-

plied within the catalytic metal bar domain. Therefore, the model takes the following

form of linear parabolic PDEs:

GC = GZ Z + UG + VD(C), (Z, C) ∈ [0, 1] × R+ (2.60)

G(0, C) = 0 = G(1, C)

H(C) = CG(C) =
∫ 1

0

1

2n
1[Z0−n,Z0+n] (Z)G(Z, C)3Z (2.61)

where G(·, C) ∈ !2((0, 1),R+) is a state. An assumption is that output measure-

ments are taken within the domain of the metal bar, H(C) = CG, with 1
2n 1[Z0−n,Z0+n]

being a unit measurement distribution function which is applied at Z0 over [Z0 −
n, Z0 + n] interval. The operator A = m2

mZ2
is defined by its domain D(A) =

{
k ∈

!2(0, 1), k, k′ are abs. cont., 3
2k

3Z2
∈ !2(0, 1), k(0) = 0 = k(1)

}
. Along the same line,

as in the previous example, the issue of the observer design is given as a systematic
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Figure 2.6: Observer error 4(Z, C) given in Eq. (2.23).

procedure of obtaining the observer gain ! (Z) in equation Eq. (2.26), so that the

following equations are formulated:

A&0 +&0A∗ + " − 2&0C∗C&0 = 0, on � (A∗) (2.62)

or in the inner product form

〈&0G1,A∗G2〉 + 〈A∗G1, &0G2〉 + 〈"G1, G2〉 − 2〈C&0G1, C&0G2〉 = 0 (2.63)

taken that G1 = k8 and G2 = k 9 , and with the operator being self-adjoint A = A∗

with _8 being operator eigenvalues and k8 associated eigenfunctions. Therefore, the

following expression is obtained:

〈&0k8,Ak 9 〉 + 〈Ak8, &0k 9 〉 + 〈"k8, k 9 〉 − 2〈C&0k8, C&0k 9 〉 = 0 (2.64)

〈&0k8, _ 9k 9 〉 + 〈_8k8, &0k 9 〉 + 〈"k8, k 9 〉 − 2〈C&0k8, C&0k 9 〉 = 0 (2.65)

_ 9 〈&0k8, k 9 〉 + _8 〈k8, &0k 9 〉 + 〈"k8, k 9 〉 − 2〈C&0k8, C&0k 9 〉 = 0 (2.66)

Under a mild assumption that the solution &0 is given in the form of &0G1 =∑∞
8, 9 @8 9 〈G1, k8〉k 9 , then @8 9 = 〈k8, &0k 9 〉. In addition, " can be taken as a constant,

which leads to the following:

_ 9@8 9 + _8@8 9 + "X8 9 − 2〈C&0k8, C&0k 9 〉 = 0 (2.67)
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If the output measurement operator C is defined as C = 1
2n 1[Z0−n,Z0+n] with Z0 = 4/5

and n = 1/5. Then, we obtain the following two expressions,

_ 9@8 9 + _8@8 9 + "X8 9 − 2〈&0k8, &0k 9 〉 = 0, Z ∈ [0.6, 1] (2.68)

_ 9@8 9 + _8@8 9 + "X8 9 = 0, Z ∈ [0, 0.6] (2.69)

or

_ 9@8 9 + _8@8 9 + "X8 9 − 2
∞∑
;=0

@8;@ 9 ; = 0, Z ∈ [0.6, 1] (2.70)

_ 9@8 9 + _8@8 9 + "X8 9 = 0, Z ∈ [0, 0.6] (2.71)

One can deduce that for 8 ≠ 9 , the expression @8 9 is the solution of the above equation.

And the solution for 8 = 9 becomes,

2_8@88 + " − 2@2
88 = 0, Z ∈ [0.6, 1] (2.72)

2_8@88 + " = 0, Z ∈ [0, 0.6] (2.73)

which yields{
@88 =

_8±
√
_2
8
+2"

2 , Z ∈ [0.6, 1]
@88 = − "

2_8
, Z ∈ [0, 0.6]

or

{
@88 =

−82c2±
√
(82c2)2+2"
2 , Z ∈ [0.6, 1]

@88 =
"

282c2
, Z ∈ [0, 0.6]

(2.74)

Since the solution must be non-negative, one obtains:

&0 =


∞∑
8=0

−82c2 +
√
(82c2)2 + 2"

2
〈·, k8〉k8, Z ∈ [0.6, 1]

∞∑
8=0

"

282c2
〈·, k8〉k8, Z ∈ [0, 0.6]

(2.75)

In this particular case, we consider a simulation scenario U = −0.1, V = 5, " = 10,

5 (Z) = sin(cZ), Z ∈ [0, 1]. Eq. (2.60) is numerically solved by applying a standard

Galerkin numerical solution with 10 eigenfunctions (k8, 8 = 1, · · · , 10), discretization

time 4C = 0.0005 and an explicit integration scheme with time varying input D(C) =
sin(lC) with l = 0.0159. One can observe that in this case the observer gain is given

as an infinite sequence of convergent spatial functions given in Eq. (2.75), and not

in the closed form. This implies that the observer gain for the given set of design

parameters cannot be exactly determined but it is given in an approximated form.
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Figure 2.7: Profile of a posteriori estimate covariance %+
:
described in Eq. (2.42) at

time step : = 5, 10, 20, 40, 60, 80, 90, 100.

Example 3: Kalman filter design for the transport-reaction system modelled by 1BC

order hyperbolic PDE:

We are revisiting the convection dominated transport-reaction model described by

Eq. (2.50) with the uniformly applied input as in-domain actuation, which accounts

for the realization of spatially uniform cooling with the jacket fluid flow. The spatial

operator A = −E m
mZ
+k is defined on its domain � (A) = {G ∈ !2(0, 1) |G is abs. cont.

3G
3Z
∈ !2(0, 1), G(0) = 0} and the operator C( 5 (Z)) =

∫ 1

0
5 (Z)X(Z − 1)3Z = 5 (1), the

input is applied along the domain instead of boundary actuation, and k is assumed

to be a constant spatial function. The discrete linear hyperbolic PDE system corre-

sponding to Eq. (2.50) is obtained by applying Cayley-Tustin transformation and is

given in the following form explicitly accounting for time and spatial characteristics:

G(Z, :) = A3G(Z, : − 1) + B3D(:) + F(: − 1), G(Z, 0) = G0

H(:) = C̄3G(Z, :) + D̄3D(:) + E(:), : ≥ 1
(2.76)

where

A3 (·) = [X� − A]−1 [X� + A](·)

= −(·) + 2X
[ ∫ Z

0

1

E
(·)4− 1

E
(k−X)[3[

]
4

1
E
(k−X)Z
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Figure 2.8: Profile of the state with noise G(Z, :) described in Eq. (2.76).
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Figure 2.9: Profile of the state estimate Ĝ(Z, :) described in Eq. (2.43).
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B3 =
√

2X[X� − A]−1�(Z)

=
√

2X
[ ∫ Z

0

1

E
B([)4− 1

E
(k−X)[3[

]
4

1
E
(k−X)Z

C̄3 (·) = −
√

2XC[−X� − A]−1(·)

= −
√

2X
[ ∫ !

0

1

E
(·)4− 1

E
(k+X)[3[

]
4

1
E
(k+X)!

D̄3 = C[−X� − A]−1B + D

=
[ ∫ !

0

1

E
B4− 1

E
(k+X)[3[

]
4

1
E
(k+X)!

The simulation result of the Kalman filter design given by Eqs. (2.41)-(2.43) for

the discrete linear hyperbolic PDE system described in Eq. (2.43) is given in Fig.

2.9. We consider the following parameters: the spatial parameter arising from the

linearization of the reaction term in the operator A is chosen to be k = 0.5, while the

input operator B(0 < Z < 1) = 1 represents spatially uniform realized heat transfer

across the reactor shell. The time varying input is considered as D: = 3 sin(2c:),
the output measurement is taken at Z = 1 (the exit of the reactor), while initial

conditions are G0 = 5 sin(2cZ) and Ĝ0 = 3 sin(4cZ). We assume that the process

noise is F: ∈ N (0, &: ) with &: = 0.1 and measurement noise E: ∈ N (0, ': ) with
': = 0.1. Evolution profile of a posteriori two-dimensional estimate covariance %+

:
at

different time instances is shown in Fig. 2.7 and it converges to the two-dimensional

surface given as %+(Z1, Z2, 100) in Fig. 2.7. Profiles of the state with noise and the

estimated state are presented in Fig. 2.8 and Fig. 2.9. In Fig. 2.10 the profiles

of the noisy output and the estimated output are presented and it can be seen that

in the first : ≈ 25 instances the Kalman filter estimation is delayed in time by the

approximate value of transport residence time, and the mismatch is also influenced

by the transients associated with the initial state conditions.

Example 4: The Kalman filter design for transport-reaction system modelled by 2=3

order parabolic PDEs:

In this section, the Kalman filter is applied to the representative cases of diffusion

dominated model of an axial dispersion reactor described by the parabolic PDE with

Dirichlet and Neumann boundary conditions. The linear infinite-dimensional system

model of the diffusion dominated transport-reaction system is given by Eq. (2.1)

where A = m2

mZ2
+ k is the linear operator defined on its domain � (A) as it is given
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Figure 2.11: Profile of the posteriori estimate covariance %+
:
described in Eq. (2.42)

at time step : = 5, 10, 20, 50, 100, 200, 500, 1000.
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in Example 2. The output is the state of the PDE at a point within the domain, for

example at Z = Z0 and is obtained by the operator C( 5 (Z)) =
∫ !

0
5 (Z)X(Z − Z0)3Z =

5 (Z0) and D = 0.

The resolvent operator '(B,A) = [B� − A]−1 of the operator A is obtained by

applying the Laplace transform and is expressed as follows:

'(B,A)G(Z, 0) =[B� − A]−1G(Z, 0) (2.77)

=
1

√
B − k

sinh(
√
B − kZ)

sinh(
√
B − k)

∫ 1

0
G([, 0) sinh[

√
B − k(1 − [)]3[

−
∫ Z

0

1
√
B − k

G([, 0) sinh[
√
B − k(Z − [)]3[

so that A3 :=
[
−� + 2X(X� − A)−1

]
is evaluated at B = X by using the expression in

Eq. (2.77). The discrete linear parabolic PDE system with the Dirichlet boundary

condition obtained by Cayley-Tustin transformation is given as below:

G(Z, :) = A3G(Z, : − 1) + B3D(:) + F(: − 1), G(Z, 0) = G0

H(:) = C̄3G(Z, :) + D̄3D(:) + E(:)
(2.78)

where the discrete time operators A3, B3, C̄3 and D̄3 are obtained by using the

resolvent operator described in Eq. (2.77) and Eq. (2.40).

The application of the Kalman filter design for parabolic PDE with Dirichlet

boundary condition is provided in Figs. 2.12-2.13. In particular, the parameter k in

the operator A is taken as k = 5, and the operator B(0 < Z < 1) = 1. In addition,

the input is D: = 1.5 sin(2c:), and the output measurement is at Z = 0.5 while initial

conditions are taken as G0(Z) = 15[−(Z − 0.5)2 + 0.52] and Ĝ0(Z) = 15[−(Z − 0.5)2 +
0.52] + F0. In simulation, we assume that the process noise is F: ∈ N (0, &: ) with
&: = 0.01 and measurement noise is E: ∈ N (0, ': ) with ': = 0.01. The simulation

results of the Kalman filter design for parabolic PDE with the Dirichlet boundary

condition are given in Figs. 2.12-2.13 , while the profiles of a posteriori estimate

covariance evolution %+
:
at different time steps are shown in Fig. 2.11. The profiles of

the state with noise and the state estimate are presented in Fig. 2.12 and Fig. 2.13,

while Fig. 2.14 shows profiles of the output with noise and estimated output.

In addition to the realization of the Kalman filter for the parabolic PDE with

Dirichlet boundary conditions, we provide also the case of a parabolic PDE with
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Figure 2.12: Profile of the state with noise G(Z, :) described in Eq. (2.78) with
Dirichlet boundary condition.
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Figure 2.13: Profile of the estimated state Ĝ(Z, :) of parabolic PDE with the Dirichlet
boundary condition.
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Figure 2.14: Profile of the output with noise H(:) taken at Z = 0.5 and described
in Eq. (2.78) with the Dirichlet boundary condition and the Kalman filter output
estimates Ĥ(:).

natural Neumann boundary conditions. In this case, one needs to provide an in-

sight into the construction of the resolvent operator being the crucial element in the

design procedure. Therefore, the resolvent of the operator A with � (A) = {G ∈
!2(0, 1) |G is abs. cont., 3G

3Z
∈ !2(0, 1), 32G

3Z2
∈ !2(0, 1), 3G(0)

3Z
= 0 = 3G(1)

3Z
} is given as:

'(B,A)G(Z, 0) =[B� − A]−1G(Z, 0) (2.79)

=
1

√
B − k

cosh(
√
B − kZ)

sinh(
√
B − k)

∫ 1

0
G([, 0) cosh[

√
B − k(1 − [)]3[

−
∫ Z

0

1
√
B − k

G([, 0) sinh[
√
B − k(Z − [)]3[

Finally, the discrete linear parabolic PDE system with the Neumann boundary

condition is described in Eq. (2.78) with discrete operators A3, B3, C3 and D3 ac-

cording to the resolvent operator '(B,A) described in Eq. (2.79). The simulation

conditions are taken so that k = −0.1 in the operator A, while the input is dis-

tributed as follows, B(0 < Z < 0.2) = 0, B(0.2 < Z < 0.8) = 1, B(0.8 < Z < 1) = 0,

the input D: = sin(2c:), the output is taken at Z = 1, and the initial conditions are

G0 = 5 cos(2cZ) and Ĝ0 = 5 cos(2cZ)+F0, while the process noise is F: ∈ N (0, &: ) with
&: = 0.01, and the measurement noise is E: ∈ N (0, ': ) with ': = 0.01. The simula-
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Figure 2.15: Profile of the state with noise G(Z, :) described in Eq. (2.78) with the
Neumann boundary condition.

tion results of the Kalman filter design for parabolic PDE with Neumann boundary

condition are given in Figs. 2.15-2.17. From the simulation results of the linear

transport-reaction system, it can be seen that the performance of the Kalman filter

is good in estimating the state of the linear infinite-dimensional system described

by hyperbolic PDE and parabolic PDE when the output measurements are noisy

and when the process disturbances are present. Although the Kalman filter provides

good results in estimating the states of linear transport-reaction systems, the issue

of naturally present constraints of the state estimates can be adequately addressed

through the constrained Kalman filter and/or moving horizon estimator design. As

for stability issues of proposed observer and filter designs [106], we will discuss these

in our future work.

Remark 5. The expression for the resolvent '(B,A) is necessary in evaluating the

operator A3. Therefore, for the convection-reaction-diffusion system modelled by GC =

�GZ Z−EGZ+:Z with Danckwerts boundary conditions �GZ (0, C) = EG(0, C) and GZ (1, C) =
0, expression for resolvent is provided. The resolvent in this case is quite complex,
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Figure 2.16: Profile of estimated state Ĝ(Z, :) of parabolic PDE with the Neumann
boundary condition.
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Figure 2.17: Profile of the output with noise H(:) described in Eq. (2.78) with the
Neumann boundary condition and estimated output Ĥ(:) .
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and it is given as:

'(B, Z) (·) =
[
E

?
%1 +%2 −

2

1 + �
?

%1

?

] ∫ 1

0

%1

%3
(·)3Z−

∫ Z

0

1

?

[
4
E−?
2� (Z−[)− 4

(E+?)
2� (Z−[)

]
(·)3[

(2.80)

where ? =
√
E2 − 4� (B − :), %1 = 4

(E−?)
2� Z − 4

(E+?)
2� Z , %2 = 4

(E+?)
2� Z + 4

(E−?)
2� Z , and %3 =

E4
E−?
2� ( E−?2� ) − E(

E+?
2� )4

E+?
2� + ?4

E+?
2� ( E+?2� ) + ?4

E−?
2� ( E−?2� ). This can be easily applied in

calculating the operators (A3 ,B3 , C̄3 , D̄3).

2.7 Summary

This chapter addresses the issue of systematic design of the state reconstruction in

the realm of distributed parameter systems in the chemical process industry. The

issue of steady state estimation is addressed in the setting of boundary available

measurements. Furthermore, design methodology is presented for the systematic ob-

server and the Kalman filter for distributed parameter systems modelled by linear

transport-reaction models. The prominent feature of the discrete observer and the

Kalman filter is that the modelling framework of a continuous spatially distributed

plant is preserved by application of the Cayley-Tustin discretization, while generic

properties of stability, controllability and observability are preserved by this transfor-

mation. Design methodology accounts for the spectral Riesz (parabolic PDEs with

Dirichlet, Neumann or Danckwerts boundary conditions) and non spectral (hyper-

bolic PDEs) linear distributed parameter systems described in chemical engineering,

and provides grounds for addressing other designs originating from the finite dimen-

sional systems theory. In particular, the underlying designs can be easily extended to

the systems of different types of coupled PDEs, or along the direction of developing

a moving horizon estimator and a robust estimator when plant’s uncertainties can be

explicitly accounted for in the design.
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Chapter 3

Moving Horizon Estimation for
Regular Linear Systems

3.1 Introduction

Moving horizon Estimation (MHE) for finite-dimensional systems has been well devel-

oped [107, 108, 36]. However, MHE designs for infinite-dimensional systems modelled

by partial differential equations (PDE) are significantly under-explored in existing

literature. In this chapter, the MHE design for a general class of infinite-dimensional

systems, namely regular linear infinite-dimensional systems with unbounded observa-

tion and disturbance operators, is considered in the presence of bounded plant and

measurement disturbances.

Regular linear systems (RLS) were firstly introduced by Salamon & Weiss in the

1980s [109, 110]. Let -, * and . be three Hilbert spaces that represent respectively

the state, input and output spaces of an infinite-dimensional linear system. This

system is described by the following equations:

¤G(C) = �G(C) + �D(C), G(0) = G0 ∈ - (3.1a)

H(C) = �G(C) + �D(C), C ≥ 0 (3.1b)

where the control operator � and the observation operator � can be unbounded, al-

lowing for actuators and sensors to be supported at isolated points, piecewise, and/or

at the boundary. This class of infinite-dimensional systems, although the input and

output operators can be unbounded, possesses many properties that parallel finite-

dimensional systems in many ways, and hence they are of considerable practical in-
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terest. For an introduction of well-posed systems, we refer to the seminal works in

[21, 42, 111].

The optimal control problem of well-posed systems has been extensively studied

in the literature since the 1990s. Generally, there are two ways of solving the opti-

mal cost operator in linear quadratic optimal control problems on an infinite time

horizon, including using algebraic Riccati equations and performing the spectral fac-

torization of the associated Popov functions [5]. For systems with bounded � and

� operators, the control algebraic Riccati equation and its corresponding solution

parallel these in finite-dimensional systems, while the formulation of Riccati equation

is not always well-defined when having unbounded � and � operators [112, 5]. To

address this issue, the Riccati equation theory has been extensively investigated in

[46, 21] (and the references therein) by proposing complex assumptions and extension

operators accounting for admissibility. Another perspective is to find some alterna-

tive expressions for Riccati equations, e.g., the Riccati equations associated with the

optimal control problems for the reciprocal systems [113, 24], and the discrete-time

systems by using Cayley transform [24]. Thus, the control problems of the original

systems with unbounded operators can be linked equivalently to the corresponding

control problems for the reciprocal (or discrete) systems with all bounded operators

and well-posed Riccati equations that are simpler to solve.

As a dual problem of the optimal control problem, the optimal filtering problem

of linear infinite-dimensional systems can be traced back to the 1970s, see [75, 7, 8].

The filtering problem for linear infinite-dimensional continuous-time systems with

bounded operators was systematically studied in [78, Cha. 6]. Recently, some contri-

butions on this topic include, [114] where consensus filters were designed for a class of

infinite-dimensional systems having a network of pointwise measurements, [9] where

the solution to an operator Riccati equation minimized the steady-state error variance

and the result was further extended to optimal sensor placement by minimizing the

trace of the Riccati operator, [115] where an optimal state estimation problem was

cast into a nonstandard finite-horizon linear quadratic output tracking problem for

non-time invertible evolutionary systems, where disturbance constraints were consid-

ered as an upper bound on the objective function. Overall, the constrained optimal

filtering problem of well-posed systems with unbounded disturbance and observation
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operators is comparatively under-explored. Essentially, the challenges lie in address-

ing the issues associated with the unboundedness of operators and constraint-handling

simultaneously.

The research area of moving horizon estimation with various applications has

flourished over the past two decades [107, 108, 36]. The intriguing nature of MHE

is threefold, including 1) Unlike Kalman filter using only one single instantaneous

measurement for an estimation, MHE deploys # most recent measurements in a

moving horizon manner, thus avoiding the so-called short-horizon syndrome and gen-

erating more robust and smoother estimation despite disturbances and modelling

uncertainties [116]; 2) MHE truncates a full information estimation (FIE) that uses

all measurements starting from time instant 0 by a moving horizon containing #

most recent measurements to enhance the estimation efficiency of online implemen-

tation; and 3) most importantly MHE explicitly accounts for the physical constraints

to prevent unrealistic estimates due to spurious measurements [37]. There have been

several attempts to tackle MHE design for distributed parameter systems, includ-

ing [117, 118, 116] by performing early lumping based on model reduction methods.

Therefore, how to simultaneously perform the MHE design and treat a linear DPS

intact (i.e., without any spatial approximation or model reduction) is the focus of

this chapter.

Motivated by the above findings, in this chapter, moving horizon estimation for

regular linear systems is developed. In particular, a discrete-time infinite-dimensional

model with all bounded operators suitable for MHE design is presented using the

Cayley-Tustin (CT) time-discretization approach [97] that does not involve any spa-

tial discretization or model reduction. The CT framework possesses a Crank-Nicolson

type of time integration scheme that admits an implicit midpoint integration rule,

leading to a symmetric (structure-preserving) and symplectic (energy-preserving) in-

tegration scheme [97, 119]. By applying the CT transformation, unbounded distur-

bance and observation operators in regular linear systems can be transformed to all

bounded operators in discrete systems, with better numerical realization ability and

essential system properties (e.g., stability) preserved [19, 4, 113, 24, 21, 22, 97]. Given

that the system properties and input-output mappings stay invariant under the CT

bilinear transformation, one can link the discrete estimation results back to the con-
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tinuous regular linear systems, leading to a constrained suboptimal estimation for

RLS. Therefore, the contributions of this chapter are listed as follows:

(1) The known moving horizon estimation theory of finite-dimensional systems

is extended to regular linear distributed parameter systems to explicitly account for

disturbance and output constraints in the estimation algorithm while considering the

boundary disturbance and observation. To the best knowledge of the authors, it is the

first time that the MHE design is incorporated in the infinite-dimensional setting in a

late lumping manner (i.e., spatial discretization is not performed in the design stage).

The full information estimator (FIE) and MHE designs are proposed, which provide

unified and systematic frameworks for constrained output estimation of regular linear

systems with unbounded or bounded input, output and system operators. Theorems

5-6 provide sufficient conditions to prove the strong stability of the proposed FIE and

MHE. This chapter extends the previous contribution on model predictive control

of regular linear systems [65] into its dual problem, a constrained moving horizon

estimation of regular linear systems.

(2) Based on the CT transformation, a well-defined discrete-time algebraic Riccati

equation is shown to have the same minimal nonnegative self-adjoint solution as the

continuous-time algebraic Riccati equation, and is utilized in the MHE design. The

link between discrete- and continuous-time Riccati equations is obtained by consid-

ering unconstrained optimal filtering problems on an infinite-time horizon. Theorem

4 shows that a regular linear system is estimatable iff its corresponding discrete sys-

tem induced by the CT transform is estimatable, and their optimal cost operators

are equal. This result extends the optimal control problems of well-posed systems

and control algebraic Riccati equations [24] into a filtering problem, where Laguerre

transform is utilized as a global transformation between discrete- and continuous-time

signals. Considering practical application, average sampling (namely, Crank-Nicolson

numerical integration) and zero-order sampling are proved to be capable of provid-

ing a good approximation of continuous plant disturbance signal using measurements

with a fast sampling rate in Proposition 3 by extending previous work on parameter

identification of finite-dimensional systems [120].

The rest of this chapter is organized into 6 sections. Necessary notations and

mathematical preliminaries on regular linear systems and the continuous-time fil-
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tering problem are provided in Section 3.2. Section 3.3 presents the model time-

discretization and the discrete-time Riccati equation. In Section 3.4, the FIE and

MHE designs are proposed and the stability analysis is provided. Two examples

are given in Section 3.5 to illustrate the effectiveness of the proposed MHE design.

Concluding remarks are drawn in Section 3.6.

3.2 Mathematical preliminaries

3.2.1 Notations

Assume that - and / are two Hilbert spaces and � : - ↦→ / is a linear operator.

Linear bounded operators from - to / are denoted by L(-, /) and L(-) if - = / .
The domain, range, spectrum, resolvent set and resolvent operator of a linear operator

� are denoted as: D(�), ℜ(�), f(�), d(�), and R(B, �) = (B� − �)−1 with B ∈ d(�),
respectively. We define the space -1 as D(�) with the norm ‖G‖1 = ‖(V� − �)G‖,
and the space -−1 as the completion of - with the norm ‖I‖−1 = ‖(V� − �)−1I‖,
where ∀G ∈ D(�), ∀I ∈ -, and V ∈ d(�). The constructed spaces are related by

-1 ⊂ - ⊂ -−1, with each inclusion being dense and continuous embedding [42]. The

extension of � to -−1 is still denoted by �, and the Λ-extension of an operator � is

denoted by �Λ. The inner product is denoted by 〈·, ·〉, and !2(0, ;)< with a positive

integer < denotes a Hilbert space of an <-dimensional vector of the real functions that

are square integrable over [0, ;] with a spatial length ;. Let R+0 = [0,∞), R
+ = (0,∞),

R− = (−∞, 0), and C+f = {B ∈ C|Re B > f} delimited by f ∈ R. Z− stands for the set

of negative integers, and Z+ denotes the set of positive integers. For any Hilbert space

+ , interval J and V ∈ R, we denote !2
V
(J ;+) = 4V!2(J ;+), where (4VE) (C) = 4VCE(C)

with the norm ‖4VE‖!2
V
= ‖E‖!2 , and we regard !2

loc(R
+
0, +) as a Fréchet space. For

any E ∈ !2
loc(R

+
0, +) and g ≥ 0, we regard the time-inversion operator Rg on [0, g] as:

( RgE) (C) = E(g − C) for C ∈ [0, g], ( RgE) (C) = 0 for C > g, and define ( RE) (C) = E(−C)
for all C ∈ R. For any Hilbert space + and g ≥ 0, Sg denotes the right shift operator

by g on !2(R+0, +), and Pg denotes the projection of !2(R+0, +) onto !
2( [0, g], +) (by

truncation). For any D, E ∈ !2
loc(R

+
0, -) and g ≥ 0, the g-concatenation of D and E is

defined by D^
g
E = PgD + SgE, see [121].
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3.2.2 Regular linear systems

There are several equivalent ways to define well-posed regular linear systems, and

here we shall use the definition from [121] by first introducing global operators Σg =

[Tg,Φg;Ψg, �g] for all g ≥ 0.

Definition 1. Let *, - and . be Hilbert spaces, Ω = !2(R+0;*) and Γ = !2(R+0, . ).
A well-posed linear system is a family of operators Σ = (ΣC)C≥0 partitioned as Σg =

[Tg,Φg;Ψg, �g], for all g ≥ 0, where (i) ) = ()C)C≥0 is a strongly continuous semigroup

of bounded linear operators on -; (ii) Φ = (ΦC)C≥0 is a family of bounded linear

operators from Ω to - such that Φg+C (D ^
g
E) = )CΦgD + ΦCE, for every D, E ∈ Ω and

all g, C ≥ 0; (iii) Ψ = (ΨC)C≥0 is a family of bounded linear operators from - to Γ

such that Ψg+CG0 = ΨgG0 ^
g
ΨC)gG0, for every G0 ∈ - and all g, C ≥ 0, and Ψ0 = 0; (iv)

� = (�C)C≥0 is a family of bounded linear operators from Ω to Γ such that �g+C (D ^
g
E) =

�gD ^
g
(ΨCΦgD + �CE), for every D, E ∈ Ω and all g, C ≥ 0, and �0 = 0.

Here the operators Φ, Ψ and � are also called input maps, output maps and input-

output maps, i.e., G(g) = TgG0+ΦgPgD and PgH = ΨgG0+�gPgD, where D ∈ !2
loc(R

+
0;*),

H ∈ !2
loc(R

+
0;. ), g ≥ 0 and G0 ∈ -. Let Ψ∞ and �∞ be the extended output and

input-output maps representing strong limits of Ψg ∈ L(-, !2
loc(R

+
0;. )) and �g ∈

L(!2
loc(R

+
0;*), !2

loc(R
+
0;. )) as g → ∞. Thus, the state and output are expressed as:

G(C) = TCG0 +ΦCD and H = Ψ∞G0 + �∞D.
Let *, - and . be the input, state and output spaces, where - is a separa-

ble Hilbert space, and * and . are finite-dimensional. For a strongly continuous

semigroup ) (C) on a Hilbert space -, ∀F > F0, there is a constant "F such that

∀C ≥ 0, ‖) (C)‖ ≤ "F4
FC , then the constant F0 is called the growth bound of the

semigroup [4, The. 2.1.6]. For a well-posed linear system, we can associate generat-

ing operators (�, �, �), where � : D(�) ⊂ - → - denote the generator of ) with

the growth bound F0, � ∈ L(*, -−1) is the control operator, � ∈ L(-1, . ) is the

observation operator, such that ΦgD =
∫ g

0
)g−f�D(f)3f and (Ψ∞G0) (C) = �)CG0 for

all C ≥ 0 and G0 ∈ -1. The operator � is called an admissible control operator for )

if ℜ(Φg) ⊂ -, and the operator � is called an admissible observation operator for )

if
∫ g

0
‖�)CG0‖23C ≤ :g‖G0‖2, with G0 ∈ D(�) and :g ≥ 0. If there exists a : > 0 and

:g ≤ : such that the above inequality holds as g →∞, then � is called an infinite-time
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admissible observation operator for ) . The infinite-time admissibility of the obser-

vation operator is needed later on for the stability analysis of MHE. Let us denote

the Λ-extension of the operator � by �Λ, where �ΛG0 = lim_→+∞�_(_� − �)−1G0, and

the domain of �Λ contains all G0 ∈ - for which the above limit exists [121]. The

well-posed system Σ is regular if limB→+∞ G(B)E = �E, for all E ∈ * [121, The. 1.3],

where the transfer function G(B) is defined by:

G(B) := �Λ(B� − �)−1� + � (3.2)

Here �Λ is the Λ-extension of �. To cast the well-posed system into model (3.1),

� must be replaced by �Λ. Define the Laplace transform L as D̂(B) = (LD) (B) :=∫ ∞
0
4−BCD(C)3C for B ∈ C+W� where W� ∈ R is the growth bound of �∞. By Plancherel’s

theorem, the Laplace transform is a unitary map from !2
W�
(R+,*) onto the Hardy

space H2(C+W� ,*). Thus, the output H ∈ !2
loc(R

+, . ) of a well-posed linear system is

represented by the initial state G0 and input D ∈ !2
loc(R

+
0,*) in Laplace domain as:

Ĥ(B) = � (B� − �)−1G0 + G(B)D̂(B), for B ∈ C+F0
(3.3)

where F0 ≥ W� , see [121, Pro. 4.1]. To use the duality between optimal control and

filtering problems, the concept of the dual well-posed system is introduced.

Theorem 2. [111, The. 3.5] Let Σ = [),Φ;Ψ, �] be a well-posed linear system with

input space *, state space - and output space . . Define Σ3g (the superscript d stands

for “dual”) as

Σ3g =

[
T3
g Φ3g

Ψ3g �3g

]
=

[
� 0
0 Rg

] [
T∗g Ψ∗g
Φ∗g �∗g

] [
� 0
0 Rg

]
(3.4)

for all g ≥ 0. Then Σ3 = [) 3 ,Ψ3;Φ3 , �3] is a well-posed system with input space

. , state space - and output space *. If �, � and � are the semigroup generator,

control operator and observation operator of Σ, then the operators associated with Σ3

are �∗, �∗ and �∗. The transfer functions are linked by: G3 (B) = G∗( B̄), B ∈ C+F0
.

Both semigroups share the same growth bound, i.e., F0 = F
3
0, where F

3
0 is the growth

bound of the semigroup ) 3.
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3.3 Continuous-time filtering problem

Consider a regular linear system with corrupted measurement:

¤G(C) = �G(C) + �F(C), C ≥ 0, G(0) = G0 ∈ - (3.5a)

H(C) = �G(C) + E(C), I(C) = �G(C) (3.5b)

where � : D(�) ⊂ - → - is a known infinitesimal generator of a �0-semigroup T(C)
on a separable Hilbert space -, F(C) denotes the plant (or input) disturbance on a

finite-dimensional Hilbert space , , and E(C) is output disturbance (independent with
F(C)) on a finite-dimensional Hilbert space . . H(C), I(C) ∈ . represent the measured

output and the to-be-estimated output, respectively. The operators �, � and �

are assumed to be known and admissible: � ∈ L(,, -−1), �, � ∈ L(-1, . ). As

aforementioned, unbounded � and � need to be replaced by their Λ-extension �Λ
and �Λ in transfer functions and system model (3.5) to ensure well-posedness. The

unknown initial state, plant and output disturbances that are generally induced by

process noise, sensor noise and/or modelling errors determine the observed output

H and the to-be-estimated output I. Instead of estimating the whole state, a linear

combination of states �G is considered, where � may be a state feedback that can be

utilized for construction of an output feedback controller [40].

We aim to find an adequate Riccati equation for an infinite-time filtering problem

for system (3.5). There are two ways of constructing an infinite-time filtering problem

from a finite-time one (on the interval [C0, C1]), either by letting C1 → +∞ or C0 → −∞.
The latter one is chosen along with C1 = 0 because the (discrete) Kalman filter is most

naturally posed on : ∈ Z− [85] and its duality with the optimal control problem on

C ∈ R+ (e.g. as in [122]) will be used.

Consider system (3.5) on C ∈ R− with measurements . (C) = {H(B), B ∈ R−} and
a final state G0 ∈ -, find the set {F} of possible plant disturbance such that the

following cost functional is minimized:

� (G0, F) =
∫ 0

−∞
‖F(C)‖2

&−1
+ ‖E(C)‖2

'−1
3C (3.6)

where positive-definite self-adjoint operators &−1 ∈ L(,) and '−1 ∈ L(. ) penalize
the uncertainties of plant and output disturbances F(C) and E(C) according to model
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(3.5). If there exists a self-adjoint operator %−1 ∈ L(-) such that the optimal cost is

given by:

inf
(G0,F)∈-×!2 (R−;,)

� (G0, F) =
〈
G0, %

−1G0

〉
then %−1 represents the optimal cost operator. The operator % is the minimal non-

negative self-adjoint solution of a continuous-time algebraic Riccati equation (CARE)

[123]. For bounded operators � and �, we simply obtain the following CARE [78,

Cha. 6 & 7]

�% + %�∗−%�∗'−1�%+ �&�∗= 0, on D(�∗) (3.7)

For unbounded operators � and �, however, it is nontrivial to obtain the correspond-

ing filter Riccati equation since technical treatment needs to be taken into account

for admissibility of operators, e.g., by using Λ-extension operators [46, 112, 5], Lur’e

form [124], and integral form of Riccati equations [115]. In this chapter, the proposed

approach takes a different path by using a discrete-time algebraic Riccati equation

that is always well-posed, easily computable, and suitable for MHE design in the

discrete-time setting. For completeness, we adopt the optimizability and estimatabil-

ity concepts from [122, Def. 3.1, Def. 4.1].

Definition 2. The well-posed system Σ (or the pair (�, �)) is optimizable if for every

G0 ∈ - there exists a F ∈ !2(R+,,) such that G(C) = TCG0 + ΦCF ∈ !2(R+, -). The

well-posed system Σ (or the pair (�,�)) is estimatable if (�∗, �∗) is optimizable.

Then, we make the following assumptions:

Assumption 1. (�,�) is estimatable.

Assumption 2. (�,�) is exactly observable in finite time g > 0, and � is infinite-

time admissible for T.

Assumption 3. � generates a strongly stable contraction �0-semigroup, i.e., ‖T(C)‖
≤ 1 and ) (C)I → 0 as C → +∞ for all I ∈ -.

Assumption 4. The disturbance and output spaces are finite-dimensional.

61



Assumption 1 ensures that (�∗, �∗) is optimizable and for I0 ∈ - there exists a

non-empty admissible output set Y(I0) defined by Y(I0) = { RH ∈ !2
loc(R

+, . ) | RF =

Ψ3∞I0 + �3∞ RH ∈ !2
loc(R

+;,) and the cost (3.6) is finite}. Assumptions 2 and 3 are

needed to ensure the finite-time exact observability of the discrete-time system (3.8)

(defined in the following section). It is clear that if (�,�) is exactly observable, then

it is also estimatable. Assumptions 3 and 4 assure that the discrete system (3.8) in

the ensuing section provides a good approximation of the continuous system (3.5).

3.4 Discrete-time filtering problem

3.4.1 Model time-discretization

Consider a Tustin time-discretization of model (3.5) for a given time discretization

interval ℎ on C ∈ (:ℎ, (: + 1)ℎ):

G:+1 − G:
ℎ

≈ �G:+1 + G:
2

+ �F:√
ℎ

(3.8a)

H:√
ℎ
≈ �G:+1 + G:

2
+ E:√

ℎ
,
I:√
ℎ
≈ �G:+1 + G:

2
(3.8b)

where the spatial dependence of G is omitted for brevity. For disturbances and outputs

discretization, we consider an “average” sampling operator Tℎ as in [97]:

F:√
ℎ
= (TℎF) (:) :=

1

ℎ

∫ (:+1)ℎ

:ℎ

F(C)3C (3.9)

and discrete signals E: , H: , and I: are similarly defined. As shown in [97, The. 4.3],

the Cayley-Tustin (CT) discretization is a convergent time discretization frame for

scalar-valued (dim U=dim Y=1) input-output stable system nodes in the sense that

as ℎ → 0, sup:≤)/ℎ ‖H:/
√
ℎ − H(ℎ:)‖ converges to 0, i.e., that the convergence is

uniform in :, where : ∈ Z and 0 ≤ : ≤ )/ℎ. Similar convergence condition holds for

F: , E: and I: . Direct manipulation of (3.8) leads to the Cayley-Tustin discretization

of (3.5) as:

G:+1 = �3G: + �3F: , G0 ∈ - (3.10a)

H: = �3G: + �3F: + E: = �3G: + Ē: (3.10b)

I: = �3G: ++3F: (3.10c)
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where Ē: = �3F: +E: denotes the discrete measurement disturbance, and the discrete

operators are given by:
�3 �3
�3 �3

�3 +3

 =

−� + 2XR(X, �)

√
2XR(X, �)�√

2X�R(X, �) G(X)√
2X�R(X, �) T (X)

 (3.11)

where we denote the resolvent operator by R(X, �) = (X� − �)−1, X = 2/ℎ ∈ d(�) ∩R+,
and T (X) = �ΛR(X, �)�. By CT transform, we have converted the continuous plant

(3.5) with unbounded operators to the discrete system (3.10) having all bounded

operators as: �3 ∈ L(-), �3 ∈ L(,, -), �3 , �3 ∈ L(-,. ), and �3 , +3 ∈ L(,,. ).
Moreover, we note by [125, Exe. 2.26b] that −X is not in the point spectrum of �3
if � is the infinitesimal generator of a contraction semigroup. We apply /-transform

to transform a discrete signal F: from the time domain to the frequency domain:

F̂(I) = ∑
:∈Z I

−:F: , for those I ∈ C for which the sum absolutely converges. We

define a transfer function (or characteristic function in [24]) from F: to H: for discrete

system (3.10) as follows:

G3 (I) = �3 (I� − �3)−1�3 + D3 (3.12)

for I ∈ d(�3). Then,

Ĥ(I) = �3 (I� − �3)−1G0 + G3 (I)F̂(I), for I ∈ d(�3)

Therefore, once the discrete-time plant disturbance F: and output I: are esti-

mated, they can be linked to their continuous counterparts, by applying T∗
ℎ
, where

the adjoint operator of Tℎ, T∗ℎ is 1/
√
ℎ times the zero-order hold operator on the

interval (:ℎ, (: + 1)ℎ) [97].

Remark 6. Based on the average sampling operation (3.9) and the mean value the-

orem, we note that the constraints on the continuous-time plant disturbance F(C),
measurement disturbance E(C), and estimated output I(C) remain identical to the con-

straints on the discrete-time counterparts F:/
√
ℎ, E:/

√
ℎ, and I:/

√
ℎ, respectively.

3.4.2 Discrete-time Riccati equation

According to (3.6), a discrete infinite-time filtering problem can be formulated through

minimizing: �3 (G0, F3) =
∑−1
==−∞(‖F: ‖2&−1 + ‖Ē: ‖

2
'̄−1
), where for a given final state
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G0 ∈ - the optimal cost is written in the form
〈
G0, %

−1
3
G0

〉
. The optimal cost operator

can be found by solving the discrete algebraic Riccati equation (DARE) [123]:

�3%3�
∗
3 − %3 + �3&�

∗
3 − !3(3!

∗
3 = 0 (3.13)

where the minimal nonnegative self-adjoint solution is %3 ∈L(-), with !3 =�3%3�∗3(
−1
3
,

(3 = �3%3�
∗
3
+ '̄ and '̄ = �3&�

)
3
+ ', such that �2;

3
= �3 − !3�3 is a strongly stable

operator.

The goal of the remainder of this section is to show that the optimal cost operator

of functional (3.6) and its discrete-time counterpart are equal under the consider-

ation of unbounded operators � and � (representing point-wise and/or boundary

applied actuation and/or measurement). For simplicity, we first consider the case

with bounded operators � and � according to Eq.(3.7) and Eq.(3.13), and provide

the following lemma through algebraic manipulation based on [23, 113].

Lemma 2. Let Σ be a regular linear system with bounded operators � and �, and

let Σ2 be the corresponding discrete system using the CT transform with parameter X.

Then, i). a nonnegative self-adjoint invertible operator % is a solution of the CARE

(3.7) iff it is a solution of the DARE (3.13); ii). The optimal cost operator %−1 for

the continuous infinite-time filtering problem of Σ equals the optimal cost operator

%−1
3

for the discrete infinite-time filtering problem of Σ2.

In frequency domain, for X > A ≥ 0, the CT transform (i.e., I = X+B
X−B and B =

I−1
I+1 X)

maps the right half-plane C+A bijectively onto the exterior disc D+A with center A/(X−A)
and radius X/(X − A), and thus induces a unitary transformation between H2(C+A ) and
H2(D+A ) by (F 6) (I)=

√
2X
I+1 6

(
I−1
I+1 X

)
and (F −1 5 ) (B)=

√
2X
X−B 5

(
X+B
X−B

)
, see [21, Cha. 12.1] and

[24]. Based on that, we show that the following lemma links model (3.5) to (3.10) in

frequency domain under the consideration of unbounded operators � and �.

Lemma 3. Let Σ be a regular linear system, Σ3 be the dual well-posed system of

Σ, and Σ32 be the corresponding discrete system of Σ3 using the CT transform with

parameter X. Then

�∗3 (I� − �
∗
3)
−1 =

X − B
√

2X
�∗(B� − �∗)−1 (3.14a)
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�∗(B�−�∗)−1=
I + 1
√

2X
�∗3 (I�−�

∗
3)
−1, G33 (I)=G

3 (B) (3.14b)

where I = X+B
X−B ∈ d(�

∗
3
)\{−1}, B = I−1

I+1 X ∈ C
+
F0
∩ d(�∗)\{X}, X ∈ R+, and G3 (B) and

G3
3
(I) denote the transfer functions of systems Σ3 and Σ32 , respectively.

Proof. The proof is similar to [24, Lem. 8] by replacing I by 1/I with consideration

of real valued X ∈ R+.
The following theorem provides the key connection between the admissible output

set Y(G0) of the regular linear system Σ and the admissible output set Y3 (G0) of the
corresponding discrete system Σ2 using the CT transform with a suitable parameter

X. Specifically, we introduce the time-domain version the CT transform, Laguerre

transform F3 [21, Def. 12.3.2], which is an isometric isomorphism.

Theorem 3. Let Σ be a regular linear system, and Σ2 be the corresponding discrete

system using CT transform with parameter X ∈ C+F0
∩ R+. Let Assumptions 1 and 4

hold.

(i). Let F be the plant disturbance of Σ for the final state G0 and output H ∈ Y(G0).
Then, F3 = F3F is the plant disturbance of Σ2 for the final state G0 and output

H3 =F3H.
(ii). Let F3 be the plant disturbance of Σ2 for the final state G0 and output H3 ∈ Y3 (G0).
Then, F = F ∗

3
F3 is the plant disturbance of Σ for the final state G0 and the output

H = F ∗
3
H3.

Proof. The proof is completed by appealing to the duality between optimal control

and filtering problems and by the assumption that both the plant disturbance space

, and output space . are finite dimensional. We first show the proof of (i), then the

proof of (ii) will be similar. Let us consider the dual system Σ3 of Σ as:

¤I(C) = �∗I(C)+ �∗D̄(C), I(0) = G0 ∈ -,∀C ≥ 0 (3.15a)

H̄(C) = �∗I(C) (3.15b)

where I ∈ -, D̄ = RH ∈ !2
loc(R

+
0;. ), and H̄ = RF ∈ !2

loc(R
+
0;,) represent the state,

control and observation. By Theorem 2, we note that Σ3 is a well-posed system and

�∗ is a generator of the semigroup ) 3 with the growth bound F0. Let Σ32 be the

discrete system of Σ3 using CT transform with parameter X ∈ C+F0
∩ R+.
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Define the quadratic cost functional for system (3.15)

�̄ (G0, D̄) =
∫ ∞

0
‖D̄(C)‖2' + ‖ H̄(C)‖2& 3C (3.16)

It can be seen that this problem is same as the Problem 2 in [24] for the system

[) 3 ,Φ3; [Ψ3; 0], [�3; �]] with the cost operator � = [&, 0; 0, ']. Hence, the positive �-
coercivity automatically holds. Under Assumption 1, we note (�∗, �∗) is optimizable.

Hence there exists a non-negative self-adjoint operator %̄ such that:

inf
D̄∈Y(G0)

&(G0, D) =
〈
G0, %̄G0

〉
-

(3.17)

where Y(G0)= {D̄ ∈ !2
loc(R

+
0;. ) | H̄ =Ψ3∞G0+�3∞D̄ ∈ !2

loc(R
+
0;,) and cost (3.16) is finite}

denotes a non-empty set of admissible inputs.

Define max{0, F0} ≤ A ≤ X. Since H̄ ∈ !2(R+0,,), we have I on the exterior disc

D+A :

ˆ̄H3 (I) = (F ˆ̄H) (I) =
√

2X

I + 1
ˆ̄H
( I − 1

I + 1
X

)
=

√
2X

I + 1
ˆ̄H(B) (3.18)

Due to B = I−1
I+1 X ∈ C

+
A , we have the following relation of H̄ with respect to D̄ and

G0 as in (3.3):

ˆ̄H(B) = �∗(B� − �∗)−1G0 + G3 (B) ˆ̄D(B) (3.19)

where G3 (B) is the transfer function of Σ3. Inserting (3.19) into (3.18) and applying

Lemma 3, we then have:

ˆ̄H3 (I) = �∗3 (I� − �
∗
3)
−1G0 +

√
2X

I + 1
G33 (I) ˆ̄D(B) (3.20)

For D̄ ∈ !2(R+0, . ), we note for I ∈ d(�∗
3
)\{−1} on the exterior disc D+A , ˆ̄D3 (I) =

√
2X
I+1 ˆ̄D(B). Thus, we can show that H̄3 is indeed the output of the system Σ32 for the

initial state G0 and input D̄3. Hence, F3 = F3F is the plant disturbance of Σ2 for the

final state G0 and output H3 = F3H.
The following theorem provides an alternative way to find the optimal cost opera-

tor of the regular linear system Σ by solving for the minimal nonnegative self-adjoint

solution of the discrete-time Riccati equation (3.13) via Cayley-Tustin and Laguerre

transforms.
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Theorem 4. Let Σ be a regular linear system, and Σ2 be the discrete system using

CT transform with parameter X ∈ C+F0
∩ R+. If Σ is estimatable, then so is Σ2 and

the optimal cost operators of Σ and Σ2 are equal. Moreover, the estimated plant

disturbances are linked by F3 = F3F.

Proof. From Theorem 3, we note that Cayley-Tustin and Laguerre transforms indeed

are isometric isomorphisms between stable continuous-time and discrete-time systems

and signals, and it follows that the admissible output sets in continuous- and discrete-

time settings are isomorphic under these transforms. Thus, the regular linear system

Σ is estimatable iff its discrete counterpart Σ2 is estimatable. Moreover, for any

final state G0 ∈ - and output H ∈ Y(G0) we have inf � (G0, F) = inf �3 (G0, F3). The

estimated continuous- and discrete-time disturbances can be linked by F3 = F3F
following Theorem 3.

Although Laguerre transform as a unitary transform inherits most global prop-

erties, it does not preserve local properties, i.e., if a finite-part of a continuous-time

output signal H(C) is known, then one cannot infer a finite-part of the corresponding

discrete-time output signal H: [21, Cha. 12.3]. Thus, it is not as useful as the average

sampling operator Tℎ for practical applications. Furthermore, considering that in

general H: may not be sampled by Tℎ but rather by a zero-order holder device, the

following proposition shows that using the ordinary zero-order holder device with a

fast sampling rate (ℎ → 0) can provide a good approximation of plant disturbance

F(C).

Proposition 3. Assume G(B) is a stable transfer function of regular linear system

(3.5), and RH ∈ !2(R+;. ). Then, as ℎ→ 0,

| |S∗ℎG
3
3Sℎ RH − F ∗3 G

3
3F3 RH | |!2 (R+;,) → 0 (3.21a)

| |G3
3Sℎ RH − SℎF ∗3 G

3
3F3 RH | |;2 (Z+;,) → 0 (3.21b)

where G3
3
denotes the time domain convolution operator corresponding to G3

3
(I), and

Sℎ represents an ordinary sampling operator (i.e., by a zero-order holder).

Proof. The main idea follows [120, Pro. 2]. Given that F3 is a unitary operator,

we note that Laguerre transform induces an exact mapping as: F ∗
3
G3
3
F3 = �3∞ [21,
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The 12.3.7]. By [97, The. 4.3], we have | |T∗
ℎ
G3
3
Tℎ RH − F ∗

3
G3
3
F3 RH | |!2 (R+;,) → 0 as

ℎ → 0. Since T∗
ℎ
is isometric, we also have | |G3

3
Tℎ RH − TℎF ∗3 G

3
3
F3 RH | |!2 (R+;,) → 0

as ℎ → 0. Then, we note that | | (Tℎ − Sℎ) 5 | |;2 (Z+;+) → 0 with 5 being defined as RH

or �3∞ RH (i.e., Rw), and + being . or , . By applying [120, Pro. 2] and the triangle

inequality, we conclude (3.21).

Considering that directly designing MHE for continuous system (3.5) can be chal-

lenging due to the presence of unbounded operators and that the MHE is usually

designed for discrete-time models (e.g., see [38, 108]), we provide MHE design and

the stability analysis for the discrete model (3.10) in the following section. By [97,

The. 4.3] and Proposition 3, the estimation results of the discrete model (3.10) can

be linked back to those of the continuous model (3.5), with a small time discretization

interval.

3.5 Moving horizon estimator design

This section proposes a moving horizon estimator for regular linear systems explicitly

accounting for physical constraints. This is done by extending the well-known MHE

design for lumped parameter systems [37, 38]. In what follows, we first construct a

full information estimator and then link it to the MHE design.

3.5.1 Full information estimation

Consider a constrained linear full information estimation (FIE) problem for system

(3.10):

Φ∗) = min
@,{F̂: }) −1:=0

Φ) (@, {F̂: }) (3.22a)

s.t. �3F̂: = Ĝ:+1|)−�3 Ĝ: |) , Ê: = H: − �3 Ĝ: |) (3.22b)

Imin ≤ �3 Ĝ: |) ++3F̂: ≤ Imax, (3.22c)

Fmin ≤ F̂: ≤ Fmax, Emin≤ Ê: ≤ Emax (3.22d)

where F̂: and Ê: denote the estimated discrete plant and measurement disturbances.

We consider linear equality constraints (3.22b) by following the system model (3.10)

and linear inequality constraints (3.22c)-(3.22d) to prevent physically unrealistic out-

put estimates due to spurious measurements. The cost functional Φ) takes a quadratic
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form using all measurements up to time instant ) as follows:

Φ) (@, {F̂: }) =
)−1∑
:=0

〈
F̂: , &

−1F̂:
〉
,
+

)∑
:=0

〈
Ê: , '̄

−1Ê:
〉
.

+
〈
@ − Ĝ0|−1, %

−1
0 (@ − Ĝ0|−1)

〉
-

(3.23)

where Ĝ0|−1 denotes a prior estimate of the state at time instant 0, @ = Ĝ0|) represents

initial state estimate at time instant ) , and %−1
0 is a self-adjoint positive-definite opera-

tor penalizing the initial state estimation error. The prior estimate Ĝ0|−1 should satisfy

the constraints (3.22b)-(3.22d). &−1 and '̄−1 (as aforementioned '̄ = �3&�
)
3
+ ')

are symmetric positive-definite penalty matrices on plant and measurement distur-

bances. Considering directly optimizing (3.22) with respect to infinite-dimensional

state @ = Ĝ0|) can be intractable in practical implementation (as the spatial dis-

cretization node of the initial state might go to infinity in order to obtain a good

estimation result), we deploy the following suitable approximation. By denoting

@ − �3 Ĝ0|−1 = �3F̂−1 as in [37], we note that optimizing Φ) (@, {F̂: })−1
:=0 ) with respect

to @ and {F̂: })−1
:=0 is converted to optimize Φ) ({F̂: })−1

:=−1) in terms of {F̂: })−1
:=−1.

3.5.2 Moving horizon estimation

With the measurements being accumulated, FIE may become intractable. For efficient

estimation, moving horizon estimation is formulated by deploying a moving horizon

strategy. With a fixed horizon length # < ) , we formulate the moving horizon

estimation as the solution to the following quadratic program problem:

Φ̂∗) = min
@,{F̂: }) −1:=) −#

Φ̂) (@, {F̂: }) (3.24)

subjected to the constraints (3.22b)-(3.22d). Φ̂∗
)
approximates the optimal cost Φ∗

)
in

the full information estimation (3.22a) at time ) . The cost functional Φ̂) is defined

as follows:

Φ̂) (@, {F̂: }) =Φ̂#
) (@, {F̂: }

)−1
:=)−# ) + Φ̂

∗
)−# (3.25)

=

)−1∑
:=)−#

〈
F̂: , &

−1F̂:
〉
,
+

)∑
:=)−#

〈
Ê: , '̄

−1Ê:
〉
+

+
〈
@ − Ĝ)−# |)−#−1, %

−1
∞ (@ − Ĝ)−# |)−#−1)

〉
-
+Φ̂∗)−#
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where @ = Ĝ)−# |) , and the cost function Φ̂) is divided into two parts, including

Φ̂∗
)−# that approximates the optimal cost Φ∗

)−# at time ) − # and Φ̂#
)
(@, {F̂: })−1

:=)−# )
as shown in (3.25). The last two terms in (3.25) are utilized to approximate the

arrival cost summarizing all previous information up to time instant ) − #. For

constrained FIE and MHE designs of finite-dimensional systems, it has been shown

that using steady-state Kalman filter gain is feasible to approximately summarize

previous information in an explicit way [37, 38]. Motivated by that fact, %∞ solved

as the minimal nonnegative self-adjoint solution of Eq.(3.13) denotes a penalty op-

erator on “initial” state (i.e., Ĝ)−# |)) estimation error. Similar to the FIE design,

we introduce @ − �3 Ĝ)−# |)−#−1 = �3F̂)−#−1 for practical deployment, so optimiz-

ing Φ̂#
)
(@, {F̂: })−1

:=)−# ) with respect to @ and {F̂: })−1
:=)−# is converted to optimize

Φ̂#
)
({F̂: })−1

:=)−#−1) in terms of {F̂: })−1
:=)−#−1. Through direct manipulation of (3.25),

we obtain the following quadratic program problem:

Φ̂#
) ({F̂: }

)−1
:=)−#−1) = 〈,: , �̄,:〉,#+1 + 2〈,: , %̄.:〉,#+1 + 〈.: , &̄.:〉.#+1 (3.26)

where �̄ ∈ L(,#+1) is positive-definite and self-adjoint given by

ℎ̄8, 9 =



#+1−8∑
:=0

�∗
3
(�:

3
)∗�∗

3
'̄−1�3�

:
3
�3 +&−1, for 8 = 9

#+1−8∑
:= 9−8

�∗
3
(�:

3
)∗�∗

3
'̄−1�3�

:− 9+8
3

�3 , for 8 < 9

ℎ̄∗
9 ,8
, for 8 > 9

where &−1 should be replaced by �∗
3
%−1
∞ �3 when 8 = 9 = 1. Moreover, we denote

.: =

(
H)−#+: − �3�:3 Ĝ)−# |)−#−1

) :=0

:=#
∈ .#+1, and %̄ ∈ L(.#+1,,#+1) with ?̄8, 9 =

�∗
3
(�∗

3
) 9−8�∗

3
'̄−1 for 8 ≤ 9 and elsewise ?̄8, 9 = 0. The cost functional (3.26) is subjected

to constraints (3.22b)-(3.22d), i.e., /min ≤ /̂: = ): Ĝ)−# |)−#−1 + (:,: ≤ /max, +min ≤
+: = .: − *̄:,: ≤ +max, ,min ≤ ,: ≤ ,max, leading to

�

−�
(:
−(:
*̄:
−*̄:


,: ≤



,max

−,min

/max − ): Ĝ)−# |)−#−1

): Ĝ)−# |)−#−1 − /min

.: −+min

+max − .:


(3.27)

where ,max = Fmax · 1#+1 with 1#+1 being the column vector with all elements

1, and ,min, /max, /min, +max and +min are similarly defined. Moreover, ,: =
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(F̂)−#+:−1):=0
:=#
∈ ,#+1, ): = �3 (�3):=0

:=#
∈ L(-#+1, .#+1), (: ∈ L(,#+1, .#+1) and

*̄: ∈ L(,#+1, .#+1) are given by: B8, 9 = �3 (�3)8− 9�3 for 8 ≥ 9 , B8, 9 = +3 for 8 = 9 − 1

and elsewise B8, 9 = 0; D̄8, 9 = �3 (�3)8− 9�3 for 8 ≥ 9 and elsewise D̄8, 9 = 0. Considering

finite-dimensional spaces , = . = C, the inner products become vector products in

the cost functional (3.26), and hence we have a finite-dimensional quadratic optimiza-

tion problem:

min
,:

Φ̂#
) (,: ) = min

,:
,)
: �,: + 2,)

: (%̄.: ) (3.28)

Note that the term 〈.: , &̄.:〉.#+1 can be neglected in the cost functional (3.26)

since it is not affected by,: . Given that all operators utilized in the objective function

(3.28) and the constraints (3.27) are bounded under the Cayley-Tustin transforma-

tion, the obtained quadratic optimization problem (3.28) is bounded and exactly the

same as the ones existing in finite-dimensional cases, e.g., [38, Eq. (5)]. Therefore,

the existing MHE theory for finite-dimensional systems can be freely inherited.

3.5.3 Stability analysis

Unlike controller design, the estimator has no control over the state evolution of the

closed-loop system and the cost functional (3.22a) may increase without upper bound

as time increases [38]. In addition, an improper choice of constraints may prevent the

estimated state converging to the true state. To analyze the stability of the proposed

estimator in the sense of an observer, we need the following definition and assumption,

see [38] for more details.

Definition 3. The state estimator is an asymptotically stable estimator for the fol-

lowing system:

G̃:+1 = �3 G̃: , H̃: = �3 G̃: , G̃0 = G0 ∈ - (3.29)

if for any Y > 0, there exist a number X̄ > 0 and a positive integer #̄ such that if

‖G̃0 − Ĝ0|−1‖- ≤ X̄ and Imin ≤ �3 Ĝ0|−1 ≤ Imax, then ‖Ĝ) − �)3 G̃0‖- ≤ Y for all ) ≥ #̄,
and lim)→+∞ ‖Ĝ) − �)3 G̃0‖- = 0.

Assumption 5. (Finite cost assumption) Suppose that system (3.29) with initial

condition G̃0 = G0 generates outputs {H̃: = �3�:3 G̃0}∞:=0. We assume that there exist
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Ĝ0|+∞, {F̂: |+∞}+∞:=0, and a finite number f > 0, such that∑+∞
:=0

〈
F̂: |+∞, &

−1F̂: |+∞
〉
,
+

〈
Ê: |+∞, '̄

−1Ê: |+∞
〉
.
+

〈
Ĝ0|+∞ − Ĝ0|−1, %

−1
0 (Ĝ0|+∞ − Ĝ0|−1)

〉
-
≤

f〈G0 − Ĝ0|−1, G0 − Ĝ0|−1〉-
where Imin ≤ �3 Ĝ: |+∞ + +3F̂: |+∞ ≤ Imax, Fmin ≤ F̂: |+∞ ≤ Fmax, Emin ≤ Ê: |+∞ ≤ Emax,

Ĝ:+1|+∞= �3 Ĝ: |+∞ +�3F̂: |+∞, and Ê: |+∞= H̃:− �3 Ĝ: |+∞.

Conceptually, Assumption 5 states that if we consider an infinite amount of data

generated by system (3.29), then there exist feasible state and disturbance solutions

leading to a finite cost. This assumption can be replaced by the feasibility of opti-

mization problem (3.22) as ) → +∞.
To prove the stability of MHE, we need to show the finite-time exact observability

of the discrete system (�3 , �3) so as to ensure the invertibility of the discrete-time

observability Gramian by the following proposition.

Proposition 4. Consider the regular linear system (3.5) and its discrete-time system

(3.10) using the Cayley-Tustin transform with a suitable parameter X. Let Assump-

tions 2-4 hold. Then (�3 , �3) is exactly observable in finite time  > 0.

Proof. The rational of the proof follows from the continuous-time case [42, Pro.

6.5.2.]. As � is infinite-time admissible for T, there corresponds an infinite-time

observability Gramian Q ∈ L(-):

QI = lim
g→+∞

∫ g

0
T∗C�

∗�TCI 3C, ∀I ∈ D(�) (3.30)

and it is the unique self-adjoint solution of the following Lyapunov equation in the

dual space of -−1 [42, The. 5.1.1]:

�∗QI + Q�I = −��∗I, ∀I ∈ D(�) (3.31)

or equivalently solved from the discrete-time Lyapunov equation [23, The. 2.4]:

�∗3Q
3�3G − Q3G = −�3�∗3G, ∀G ∈ - (3.32)

By using the CT transform, we note that �3 is strongly stable and a bounded contrac-

tive operator since � generates a strongly stable contraction �0-semigroup [21, The.

3.4.9, The. 12.3.10]. Since �3 is strongly stable and �3 is infinite-time admissible
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(induced by the infinite-time admissibility of �) [23, Lem. 2.2, The. 2.4] there exists

a unique solution of (3.32) named as the infinite-time discrete observability Gramian

Q3 ∈ L(-) defined as:

Q3G = lim
 →+∞

 ∑
:=0

(�∗3)
:
�∗3�3 (�3)

:G, ∀G ∈ - (3.33)

Hence, Q and Q3 are equal and their positive coercivity is invariant under the

Cayley-Tustin transform. Thus, the infinite-time exact observability of (�3 , �3) fol-
lows from that of (�,�) under the CT transform. Next, we show that the finite-time

exact observability of (�3 , �3) follows from that of (�,�).
For the infinite-time admissible � and by the exact observability of (�,�) in finite

time g, we have the lower and upper bounds for all I ∈ D(�) as:

`2 ‖I‖2- ≥ 〈QI, I〉 =
∫ +∞

0
‖�)CI‖2. 3C

=

∫ g

0
‖�)CI‖2. 3C +

∫ +∞

g

‖�)CI‖2. 3C ≥ ^2 ‖I‖2-

where ` > ^ > 0. Thus, we have the lower and upper bounds for the discrete

observability Gramian Q3 as:

`2 ‖I‖2- ≥
〈
Q3I, I

〉
=

+∞∑
:=0



�3 (�3): I

2

.
≥ ^2 ‖I‖2-

By decomposition in time as in [42, Pro. 6.5.2.], we have

 ∑
:=0

‖�3 (�3)
: I‖2.

=

+∞∑
:=0



�3 (�3): I

2

.
−
+∞∑

:= +1



�3 (�3): I

2

.

=

+∞∑
:=0



�3 (�3): I

2

.
−
+∞∑
:=0



�3 (�3):+ +1I

2

.

≥(^2 − `2‖(�3)
 +1‖2) · ‖I‖2- (3.34)

Since �3 is strongly stable and a bounded contractive operator (i.e., ‖�3I‖ ≤ ‖I‖ and
�:
3
I → 0 as : → +∞), the parenthesis in (3.34) becomes positive for some sufficiently

large  . For such  , (�3 , �3) is exactly observable.
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Theorem 5. Assume that & and ' are positive definite matrices, and %0 is a self-

adjoint positively coercive operator. Under Assumptions 2-5, the constrained full in-

formation estimator (3.22) is an asymptotically stable estimator for the system (3.29).

Proof. By '̄ = �3&�
)
3
+ ', we note that '̄ is positive definite since & and ' are

and �3 ∈ L(,,. ) is a matrix by Assumption 4 that supposes the plant disturbance

space, and output space . are finite dimensional. Under Assumptions 2-4 and using

Proposition 4, (�3 , �3) is exactly observable in finite time  . Under Assumptions 2-5,

the resulting full information estimator is equivalent to the ones designed in linear

finite-dimensional cases (e.g., [38, Eq. (2)]), and hence the results follow from the

standard finite-dimensional full information estimation theory, e.g. [126, Pro. 4.4.3].

Theorem 6. Assume that & and ' are positive definite matrices, and the minimal

nonnegative self-adjoint solution %∞ of (3.13) is invertible. Under Assumptions 2-

5, for # ≥  , the constrained moving horizon estimator is an asymptotically stable

estimator for the system (3.29).

Proof. By Assumptions 2-4 and using Proposition 4, we note that (�3 , �3) is exactly
observable in finite time  . By the preceding arguments, the quadratic optimiza-

tion problems (3.24)-(3.28) formulated in the MHE design of discrete-time infinite-

dimensional system (3.10) are the same as those in finite dimensional MHE problems

(e.g., [38, Eq. (5)]). Under Assumption 4 (having finite-dimensional disturbance

and output spaces), the optimality of the proposed MHE follows from the finite-

dimensional MHE cases. By using optimality and Assumption 5, a convergence anal-

ysis can be done as follows:
∑)−1
:=0

〈
F̂: , &

−1F̂:
〉
,
+∑)

:=0

〈
Ê: , '̄

−1Ê:
〉
.
→ 0 as ) → ∞

by performing similar derivations as in the proof of [38, Pro. 5]. Based on [38, Lem.

3], the estimation error ‖Ĝ) − �)3G0‖- converges to zero as ) goes to infinity. Thus,

the stability analysis of the proposed constrained moving horizon estimator follows

from the finite-dimensional moving horizon estimation theory, e.g. [38, Pro. 5, Cor.

7].

By choosing feasible constraints, the designed discrete-time MHE shall provide a

good estimate of the continuous-time regular system using measurements with a fast
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sampling rate. In Section 3.6, the MHE design of a damped Schrödinger equation

as a stable system is illustrated as an example.

3.5.4 Extension to unstable systems

For unstable systems, we introduce a shifted semigroup generated by � − U�, where
U is greater than the growth bound F0 of the semigroup ) generated by �, with

(�,�, �) being unchanged, resulting a shifted semigroup that is a strongly stable

contraction. The admissibility of � and exact observability of (�,�) of the shifted

system are equivalent to those of the original system [42, Sec. 6.5]. As in [127, Def.

3.1], we define Σ−Ug (∀g ≥ 0) as the exponential shift of Σg by the amount of −U ∈ C:

Σ−Ug =

[
T−Ug Φ−Ug
Ψ−Ug �−Ug

]
:=

[
4−UgTg 4−UgΦg4U
4−UΨg 4−U�g4U

]
(3.35)

where 4−U denotes the scalar function (4−U 5 ) (C) = 4−UC 5 (C), C ∈ R+0 and U > F0. For

the stable shifted system Σ−Ug , we can perform system discretization as in Eqs.(3.10)-

(3.11) by replacing R(X, �) by R(X+U, �) and the MHE design. The continuous- and

discrete-time plant and measurement disturbances stay unaffected under this shift

transform. By using the moving horizon estimator designed for the discrete-time sys-

tem corresponding to shifted system (3.35), the estimated discrete-time output and

disturbance can provide good approximations for the continuous-time output and dis-

turbance of the shifted system with a small time discretization interval. Afterwards,

one can freely convert the estimation results of the shifted system to those of the orig-

inal system by the performing an invertible shift transform 4U since the exponential

shift transformation is invertible. The MHE design for an unstable wave equation is

given as another example in Section 3.6.

3.6 Examples

3.6.1 Example 1: Schrödinger equation

Consider a stable Schrödinger equation on a 1-D spatial domain Z ∈ [0, 1] with

Neumann boundary disturbance and collocated observation:

GC (Z, C) = − 9GZ Z (Z, C) − EG(Z, C) (3.36a)
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GZ (0, C) = 0, GZ (1, C) = F(C), G(Z, 0) = G0(Z) (3.36b)

H(C) = G(1, C) + E(C), I(C) = G(0, C) (3.36c)

where E > 0 denotes the potential energy of the particle, 9 is the imaginary unit, and

G is the complex-valued state in the state space - = !2(0, 1). We consider the plant

disturbance and output spaces , = . = C. By [42, Rem. 10.1.6], we can formulate

system (3.36) in the standard state-space form (3.5) where � 5 := − 9 m
2 5

mZ2
− E 5 with

its domain D(�) = { 5 ∈ �2(0, 1;C) | 5 ′(0) = 5 ′(1) = 0}, and �, � and � can be

found as: � := 9X3 (Z − 1), � := 〈X3 (Z − 1), ·〉 and � := 〈X3 (Z), ·〉, where X3 (·) denotes
the Dirac function. It has been shown in [128, 129] that system (3.36) is well-posed

[130]. By [129, The. 2.1], we find system (3.36) (with E = 0) can be exponentially

stabilized under the output feedback D = − 9 :H with : > 0 which indicates that (�0, �)
is exactly controllable in any finite time g > 0, see [131], where �0 5 := − 9 m

2 5

mZ2
and

D(�0) = D(�). Since �∗0 = −�0 and � = �∗, the exact controllability of (�0, �)
is equivalent to the exact observability of (�0, �) [42, The. 11.2.1], which implies

that (�,�) is exactly observable in finite time g > 0 by [42, The. 6.7.2]. By [42,

Pro. 3.7.2], we note that �0 is m-dissipative since it is skew-adjoint, which implies

that � is also m-dissipative. Based on the Lumer–Phillips theorem [42, The. 3.8.4],

� generates a contraction semigroup. A simple spectral analysis shows that system

(3.36) is exponentially stable. Based on that, we note that � is infinite-time admissible

[122, Pro. 5.5].

By performing Laplace transform of (3.36a) with the boundary conditions (3.36b),

the resolvent operator is determined in the closed analytic form:

R(B, �) :=
1
√−FB

×
[
−

∫ Z

0
sinh(√FB (Z − [)) (·)3[

+
cosh(√FBZ)
sinh(√FB)

∫ 1

0
cosh(√FB (1 − [)) (·)3[

]
(3.37)

where FB = −(B + E) 9 . Then, a direct calculation leads to the expressions of the

discrete operators (�3 , �3 , �3 , �3) as

�3 (·) = − (·) −
2X
√−FX

∫ Z

0
sinh(√FX (Z − [)) (·)3[

+
2Xcosh(√FXZ)√−FX sinh(√FX)

∫ 1

0
cosh(√FX (1 − [)) (·)3[ (3.38a)
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�3 (·) = −
√

2X
√−FX

∫ 1

0
sinh(√FX (1 − [)) (·)3[

+
√

2Xcosh(√FX)√−FX sinh(√FX)

∫ 1

0
cosh(√FX (1 − [)) (·)3[ (3.38b)

�3 =

√
2X 9cosh(√FXZ)√−FX sinh(√FX)

, �3 =
9coth(√FX)√−FX

(3.38c)

where FX = −(X + E) 9 . We note that limB→+∞ G(B) = limX→+∞ �3 (X) = 0 so sys-

tem (3.36) is indeed a well-posed regular system [121]. In the similar manner, it

is straightforward to find that �3 (·) =
√

2X√−F X sinh(√F X)
∫ 1

0
cosh(√FX (1 − [)) (·)3[, and

+3 =
9√−F X sinh(√F X) . In this case, E = 1.5 is taken and we consider constraints on

plant and output disturbances as: Fmin = −0.008, Fmax = 0.008, Imin = −0.12, and

Imax = 0.12. The plant and output disturbances are chosen to be Gaussian noises

with zero mean and variances of & = 0.01 and ' = 0.4. Using MHE (horizon taken as

3), the estimated state and output (real-part) profiles are illustrated in Fig. 3.1 and

Fig. 3.2, where it is apparent that the proposed MHE design is capable of estimating

the output of the Schrödinger equation with considered constraints being satisfied. In

addition, the time discretization interval is ℎ= 0.01 and there are 181 spatial nodes.

The initial condition G0(Z)=cos(2cZ) is considered in this case.

Figure 3.1: Estimated state profiles of the Schrödinger equation
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Figure 3.2: Estimated disturbance (above) and output (below) profiles of the
Schrödinger equation

3.6.2 Example 2: wave equation

Another example is an unstable 1-D wave equation with boundary disturbance and

noncollocated observation:

GCC (Z, C) = GZ Z (Z, C) (3.39a)

G(0, C) = 0, GZ (1, C) = F(C) (3.39b)

G(Z, 0) = G0
1 (Z), GC (Z, 0) = G

0
2 (Z) (3.39c)

H(C) = GZ (0, C) + E(C), I(C) = GZ (0, C) (3.39d)

where G ∈ - with - = �1
!
(0, 1) × !2(0, 1), �1

!
(0, 1) = { 5 | 5 ∈ �1(0, 1), 5 (0) = 0},

equipped with the norm ‖( 5 , 6)‖2
-
=

∫ 1

0
| 5 ′(Z) |2 + |6(Z) |23Z for any ( 5 , 6) ∈ -, and

, = . = R. As in [132], wave equation (3.39) can be formulated in the usual

state-space form (3.5), where �( 5 , 6) = (6, 5 ′′) with the domain D(�) = {( 5 , 6) ∈
- |�( 5 , 6) ∈ -, 5 ′(1) = 0}, � = [0; X3 (Z − 1)], and � = � = [−〈X′

3
(Z), ·〉, 0], where

X3 (·) denotes the Dirac function. By [132, The. 1], we note that � (i.e., �, and �∗) is

admissible, (�, �) is exactly observable in finite time g > 2. By introducing a shifted

semigroup generated by �B = � − U� with U = 0.1, the resultant shifted semigroup

is exponentially stable and (�, �B) is exactly observable in finite time g > 2 and �

(i.e., �, and �∗) is still admissible [42, The. 6.7.2]. As in [125, Exa. 2.3.5] or [43,

Exa. 2.34], it can be shown that �B is the infinitesimal generator of a contraction
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semigroup.

In this case, we consider input and output constraints as: Fmin = −0.001, Fmax =

0.001, Imin = −1.75, and Imax = 1.75. For simplicity, we consider to-be-estimated

and measured outputs at the same location, i.e., � = � in Eq.(3.5). We can com-

pute the resolvent operator and find the discretized operators (�3 , �3 , �3 , �3 , �3 , +3)
and their adjoints. The wave system is a well-posed regular system [121] since

limB→+∞ G(B) = limX→+∞ �3 = limX→+∞
2

4X+4−X = 0. The plant and output distur-

bances are chosen to be Gaussian noises with zero mean and variances of & = 4×10−4

and ' = 0.2. Using MHE (horizon taken as 3), the estimated state and output pro-

files are illustrated in Fig. 3.3 and Fig. 3.4, where it can be observed that estimated

plant disturbance and output satisfy the presented constraints and the estimation

error converges to zero by using the proposed MHE design. In addition, the spatial

and time discretization intervals are selected as ΔZ = 0.001 and ℎ = 0.1. Initial con-

ditions G0
1 (Z) = sin(1.5cZ) and G0

2 (Z) = 0.2 sin(3.5cZ) are considered. For numerical

realization of the resolvent and discrete operators, the trapezoidal rule is applied in

both examples, leading to a second-order accuracy in space, which can be enhanced

by using advanced numerical integration methods (e.g., fourth-order Runge-Kutta).

Alternatively, the spectral methods can be utilized with superior rate of convergence,

low dissipation and dispersion errors [133]. To this end, additional efforts need to be

made in determining basis functions and the degrees of freedom [134].
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Figure 3.3: Estimated state profiles of the wave equation
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Figure 3.4: Estimated disturbance (above) and output (below) profiles of the wave
equation

3.7 Conclusion

In this chapter, a linear moving horizon estimator was designed for constrained output

estimation of regular linear distributed parameter systems with unbounded distur-

bance and observation operators. The salient design points are the application of the

Cayley-Tustin transformation to link continuous- to discrete-time regular linear DPSs

to address the issues associated with unbounded operators and constraints presence,

as well as the proof of Riccati equations and exact observability necessary for the

MHE design. By deploying two representative examples (namely, Schrödinger equa-

tion and wave equation), the proposed constrained moving horizon output estimation

design was successfully demonstrated. The approach developed for the output estima-

tion can be extended to prediction and smoothing problems of regular linear systems,

and they will be reported in a future publication. In addition, more changeling DPS

examples will be investigated, e.g., Euler-Bernoulli beam equation based on its nat-

ural connection with Schrödinger equation [135] and transport equations [65] widely

present in process control engineering.
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Chapter 4

Moving Horizon Estimation for
Switching Regular Linear Systems

4.1 Introduction

Switching infinite-dimensional systems (hybrid distributed parameter systems (DPS))

are of theoretical and practical significance due to the capacity of accounting for

multi-mode spatiotemporal dynamics. Many contributions on stability analysis, sta-

bilization and control of switching distributed parameter systems have been made

over the past decades [136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,

45, 149, 150, 151]. In this chapter, we focus on constrained state/output estima-

tion for a rather general class of switching distributed parameter systems, namely

switching regular linear infinite-dimensional systems described by partial differential

equations (PDE) with possibly unbounded observation and disturbance operators,

in the presence of bounded plant and measurement disturbances, where the system

modes switch within a known finite set in an unpredictable way.

The research on switched (linear and non-linear) lumped parameter systems (LPS)

that are modelled by ordinary differential equations (ODE) and the associated sta-

bility, control and estimation theories have been flourishing since the 1990s (see,

for example, [152, 153, 154, 155, 156, 108, 157] and the references therein). For

switching infinite-dimensional systems, the corresponding studies on stability, sta-

bilization and control theories have been actively investigated in recent years (e.g.,

[136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 45, 149, 150, 151]).

The initial interest is focused on general switching linear infinite-dimensional systems.
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More specifically, the stability of switching linear infinite-dimensional autonomous

systems of the form ¤G = �8G with 8 = 1, 2 was given in [137], where the infinitesimal

generators �1 and �2 commute. Two switching strategies were proposed for stabilizing

a class of infinite dimensional switched linear systems with two unstable subsystems

whose principal operators (�1 and �2) can be non-commutative [144], where the cases

of linear autonomous systems and with external perturbations were considered. An

optimal actuator-plus-controller switching scheme was formulated and proven for a

class of switched DPS subjected to switching bounded control and observation opera-

tors (namely, �? and �? with model index ?) by using the finite horizon LQR optimal

control [45]. Apart from these, a special interest has been devoted to switched lin-

ear hyperbolic systems (i.e., switched linear systems of conservation laws), for which

important results have been reported on stability analysis [151, 148, 142], stabiliza-

tion [147], and supervisory switching control design [140]. Recently, the boundary

stochastic stability of Markov jump linear hyperbolic systems was proved in [138] by

using Lyapunov techniques, where the Markov chain deciding the mode switching

was assumed to be observable, which may not be the case in practice. For switching

well-posed linear systems, an averaging problem for a system that fast switches be-

tween two infinite-dimensional well-posed LTI systems was investigated in [149]. In

addition, important works have been reported on switching control [141, 146, 139]

and sliding-mode control [136, 145] of PDE systems, and boundary observer-based

control for cascade hyperbolic PDE-ODE systems with stochastic jumps [143].

However, state/output and parameter estimation of switching DPSs are relatively

under-explored, c.f. [158, 159]. In particular, the calculus of variations approach for

state and parameter estimation in switched 1D hyperbolic PDEs coupled with an ODE

was proposed in [158]. Based on the backstepping method, a boundary observer was

constructed to estimate the point-wise expected value of the solution of a randomly

switching reaction-diffusion PDE while the random switching was assumed to be

governed by an observable Markovian process [159]. As a comparison, estimation of

switching (linear and non-linear) LPSs have been extensively studied over the past

decades, c.f. [155, 108, 157, 160]. Among these, moving horizon estimation (MHE)

or receding horizon estimation, as an optimization-based method, has been proposed

for system mode and state estimation of switched (linear or nonlinear) LPSs while
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explicitly handling physical constraints [108, 157, 160]. The MHE scheme used in

these papers was proposed in [39, 161], where a fixed prior diagonal matrix is used

as the arrival cost, and hence the objective function is fully deterministic. This

framework is different from the one developed in [38, 162], where MHE is formulated

as an approximation of the optimal full information estimator and the arrival cost

is introduced to summarize the effect of past measurements {H: })−#−1
:=0 on the state

G)−# , which might not have general analytic expressions.

In all of the aforementioned papers on MHE for switching systems, the plants are

linear or non-linear LPSs modelled by linear or non-linear ODEs. Although for MHE

design of non-switching DPSs, there are some related works, including [117, 118, 116]

by performing model reduction methods. To the best knowledge of the authors,

there is no published work on MHE for the general switching DPSs in literature due

to the fact that the state/output estimation problem of general switching PDEs is

mathematically challenging and relatively new to the control community.

In this chapter, we focus on constrained state/output estimation for a general

class of switching DPSs (i.e., switching regular linear infinite-dimensional systems

with possibly unbounded observation and disturbance operators (accounting for point

and/or boundary observation and disturbance)), where the system is corrupted with

bounded plant and measurement disturbances and switches within a known finite set

in an unpredictable way. The main contribution of this chapter is threefold. The

first contribution lies in moving horizon estimator design for switching regular linear

infinite-dimensional systems. To address unboundedness issues associated with the

observation and/or disturbance operators, and better suit the discrete-time MHE de-

sign, the Cayley-Tustin bilinear transformation is utilized to map the continuous-time

DPS model with unbounded operators to a discrete-time DPS model with all bounded

operators, while preserving essential model properties (such as: stability, observabil-

ity, input-output mapping and etc.), where no model spatial discretization or spatial

model reduction is required. Based on the discrete-time infinite-dimensional model

with bounded disturbances, an optimal MHE algorithm (Algorithm 1) is proposed

for the constrained state/output and mode estimation by extending the moving hori-

zon estimation approach proposed in [161, 157] for switching linear and non-linear

discrete-time finite-dimensional systems. Considering that directly optimizing the
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infinite-dimensional state may be intractable as the spatial discretization node tends

to infinity, a late-lumping MHE algorithm (Algorithm 2) is proposed by converting

the estimation of the infinite-dimensional state into an extended finite-dimensional

disturbance thus providing a practicable and implementable framework for the opti-

mal MHE algorithm instead of doing early-lumping (spatial discretization or model

reduction) in the design stage. It is worth noting that we consider unknown and

unpredictable switching modes that are not governed by any observable Markovian

process as in [138, 159] and hence more general in practice. The stability properties

of the proposed optimal MHE estimator are derived in Theorem 11. The resulting

MHE algorithms provide sub-optimal output/state estimation for switching regular

linear infinite-dimensional systems due to model time discretization.

The second contribution is the investigation of the essential observability prop-

erties of switching regular linear infinite-dimensional systems. The challenges lie in

the simultaneous estimation of state/output and mode in the presence of random

(unknown and unpredictable) switching pattern and the infinite dimensionality of

the state space. Unlike the observability of finite-dimensional systems, there are

several different observability concepts often utilized in infinite-dimensional systems,

including exact observability, approximate observability and etc [4, 42]. In this chap-

ter, the complete mode observability, complete observability, and simultaneous exact

(or approximate) observability are fully explored. This is a generalization of the

observability for switching finite-dimensional systems [161, 157] and non-switching

infinite-dimensional systems [4, 42]. Based on the simultaneous exact observability,

the stability analysis of the proposed MHE is derived in Theorem 11.

The third contribution is the applications to two representative switching regular

linear infinite-dimensional systems. In the first example, a counterflow heat changer

as a non-spectral system is considered with boundary measurement and spatially dis-

tributed disturbance and input. The heat exchanger is modelled by a general class of

2×2 linear coupled hyperbolic PDE system that can describe the packed gas absorber

processes, irrigation canals and etc, so the proposed MHE design can be directly ap-

plied to such systems. In the second example, the damped Rayleigh beam equation

as a spectral system along with boundary disturbance, input and output is consid-

ered. The developed MHE design can be extended to other types of beam equations
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providing that the models are stable and exact observable. Both examples are of prac-

tical and theoretical significance, and a generalization of the non-switching versions

[163, 164, 13]. In addition, the moving horizon estimator with perfect switching mode

information is investigated and compared with the proposed MHE in both examples.

The influences of different levels of disturbances on the estimation performance of

the proposed MHE are discussed, which verifies the robustness of the proposed MHE

algorithm numerically.

The structure of the chapter is as follows. Section 4.2 presents the switching regu-

lar linear systems and the corresponding switching discrete-time infinite-dimensional

systems by using Cayley-Tustin transformation. In Section 4.3, a series of observ-

ability concepts for the switching discrete-time systems is proposed along with the

corresponding analysis. Two MHE algorithms are formulated consisting optimal MHE

and late-lumping MHE in Section 4.4. Section 4.5 provides a stability analysis of the

proposed estimators. The theoretical results are illustrated in Section 4.6 via two

representative PDE models.

Notations : Assume that - and / are two Hilbert spaces and � : - ↦→ / is a linear

operator. Linear bounded operators from - to / are denoted by L(-, /) and L(-)
if - = / . The domain, range, kernel, spectrum, resolvent set and resolvent operator

of a linear operator � are denoted as: D(�), Ran(�), Ker(�), f(�), d(�), and

R(B, �) = (B� − �)−1 with B ∈ d(�), respectively. We define space -1 as D(�) with
the norm ‖G‖1 = ‖(V� − �)G‖, and space -−1 as the completion of - with the norm

‖I‖−1 = ‖(V� − �)−1I‖, where ∀G ∈ D(�), ∀I ∈ -, and V ∈ d(�). The constructed

spaces are related by -1 ⊂ - ⊂ -−1, with each inclusion being dense and continuous

embedding [42]. The extension of � to -−1 is still denoted by �, and the Λ-extension

of an operator � is denoted by �Λ. The inner product is denoted by 〈·, ·〉, and

!2(0, ;)< with a positive integer < denotes a Hilbert space of a <-dimensional vector

of the real functions that are square integrable over [0, ;] with a spatial length ;. For a

generic time-varying vector E: , we define E)
)−# = col(E)−# , E)−#+1, ..., E) ). Moreover,∏#

8=1 �8 = �1�2...�# denotes the ordered product of such operators �8 ∈ L(-).
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4.2 System description

4.2.1 Switching regular linear systems

Consider a switching regular linear system with corrupted measurement:

¤G(C) = �(AC)G(C) + �(AC)F(C), C ≥ 0, G(0)= G0 ∈ - (4.1a)

H(C) = � (AC)G(C) + E(C), I(C) = � (AC)G(C) (4.1b)

where �(AC) : D(�(AC)) ⊂ - → - is an infinitesimal generator of a strongly stable

contraction �0-semigroup TA (C) (i.e., ‖TA (C)‖ ≤ 1 and TA (C)I → 0 as C → +∞ for all

I ∈ -) on a separable Hilbert space -, AC ∈ S = {A1, A2, ..., A"} is the discrete state

(system mode), F(C) denotes the plant (or input) disturbance on a finite-dimensional

Hilbert space , , and E(C) is output disturbance (independent with F(C)) on a finite-

dimensional Hilbert space . . In addition, we assume that D(�(A1)) = D(�(A2)) =
... = D(�(A")). H(C) ∈ . and I(C) ∈ / represent the measured output and the to-

be-estimated output, where / is a finite-dimensional Hilbert space. The operators

�(AC), � (AC) and � (AC) are assumed to be admissible, i.e., �(AC) ∈ L(,, -−1), � (AC) ∈
L(-1, . ), and � (AC) ∈ L(-1, /). To ensure well-posedness, unbounded � (A) and � (A)
must be replaced by their Λ-extension operators �Λ(AC) and �Λ(AC), where �Λ(AC)G0 =

lim_→+∞� (AC)_(_�−�(AC))−1G0, and the domain of �Λ contains all G0 ∈ - for which the

above limit exists, and �Λ(AC) is similarly defined. The transfer function associated

with each system mode is given by: GA (B) := �Λ(AC) (B� − �(AC))−1�(AC), and each

system Σ is assumed to be regular in the sense that limB→+∞ GA (B)F = 0, for all

F ∈ , [121, The. 1.3]. For an introduction of well-posed systems, we refer to [21, 42],

and [111].

Moreover, it is assumed that all system operators (�(AC), �(AC), � (AC), � (AC)) are
available once the system mode AC is determined. The unknown initial state, input

and output disturbances, and system mode that are generally induced by process

noise, sensor noise and/or modelling errors determine the measured output H and the

to-be-estimated output I. Instead of estimating the whole state, a linear combination

of states � (AC)G is considered, where � (AC) maybe a state feedback that can be utilized

for construction of an output feedback controller [40].

Considering that direct handling all unbounded operators, constraint presence
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and mode detection in a continuous-time setting can be difficult, we transform the

continuous model (4.1) into a discrete system using Cayley-Tustin bilinear transfor-

mation, which is amenable for discrete MHE design as in [38, 39, 161, 162]. In what

follows, we will provide MHE design and analysis for the discrete model. By [97, The.

4.3], the estimation results of the discrete model can be linked back to those of the

continuous model (4.1), with a small time discretization interval, as in [65, Sec. 2.3].

4.2.2 Switching linear discrete-time DPSs

Consider a Tustin time-discretization of model (4.1) for a given time discretization

interval ℎ on C ∈ (:ℎ, (: + 1)ℎ):
G:+1 − G:

ℎ
≈ �(A: )

G:+1 + G:
2

+ �(A: )
F:√
ℎ

(4.2a)

H:√
ℎ
≈� (A: )

G:+1+G:
2
+ E:√
ℎ
,
I:√
ℎ
≈� (A: )

G:+1+G:
2

(4.2b)

where the spatial dependence of G is omitted for brevity. For the discretization of

disturbances and outputs, we consider an “average” sampling operator Tℎ as in [97]

F:√
ℎ
= (TℎF) (:) :=

1

ℎ

∫ (:+1)ℎ

:ℎ

F(C)3C (4.3)

and discrete signals E: , H: , and I: are similarly defined. As shown in [97, The. 4.3],

the Cayley-Tustin discretization (i.e., CT transform in short) is a convergent time

discretization frame for scalar-valued (dim U=dim Y=1) input-output stable system

nodes in the sense that ‖H:/
√
ℎ− H(C)‖ converges to 0 on the interval C ∈ (:ℎ, (: +1)ℎ)

as ℎ → 0. Direct manipulation of (4.2) leads to the Cayley-Tustin discretization of

(4.1) as:

G:+1 = �3 (A: )G: + �3 (A: )F: (4.4a)

H: = �3 (A: )G: + �3 (A: )F: + E: =�3 (A: )G:+ Ē: (4.4b)

I: = �3 (A: )G: ++3 (A: )F: (4.4c)

where for G0 ∈ -, : ∈ Z+, and G: ∈ - denotes discrete distributed state on the infinite-

dimensional Hilbert space -. F: ∈ , , H: ∈ . , and I: ∈ / represent discrete plant

disturbance, measured and to-be-estimated outputs. For simplicity, we denote the
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discrete measurement disturbance by Ē: = �3 (A: )F: + E: ∈ . . For ease of notations,

we still use E: to represent Ē: in what follows and when no confusion arises. Addition-

ally, we denote A:ℎ by A: for notational simplicity. It is worth noting that all operators

in the discrete-time model (4.4) are bounded, i.e., �3 (A: ) ∈ L(-), �3 (A: ) ∈ L(,, -),
�3 (A: ) ∈ L(-,. ), �3 (A: ) ∈ L(*,. ), �3 (A: ) ∈ L(-, /), +3 (A: ) ∈ L(*, /), which are

given by: 
�3 (A: ) �3 (A: )
�3 (A: ) �3 (A: )
�3 (A: ) +3 (A: )

=

−� + 2XR(X, A: )

√
2XR(X, A: )�(A: )√

2X� (A: )R(X, A: ) GA: (X)√
2X�R(X, A: ) TA: (X)


where we denote the resolvent operator by R(X, A: ) = R(X, �(A: )) = (X�−�(A: ))−1, X =

2/ℎ ∈ d(�(A: ))∩R+, GA: (X) = �Λ(A: )R(X, A: )�(A: ), and TA: (X) = �Λ(A: )R(X, A: )�(A: ).
Moreover, we assume that there exists a minimum dwell time bigger than the dis-

cretization interval and no switching occurs in the interval C ∈ (:ℎ, (: + 1)ℎ), namely,

switching only happens at the sampling time instance. Throughout this chapter, we

assume that the system mode is independent of state propagation and can be re-

garded as an exogenous variable that is governed by some external and unobservable

process. This is more general than assuming the switching mode is governed by an

observable Markovian process as in [138, 159]. By the preceding discussion, we note

that all model operators (�3 (A: ), �3 (A: ), �3 (A: ), �3 (A: ), �3 (A: ), +3 (A: )) are available

once the mode identity A: is determined.

Remark 7. It is remarkable to note that by the average sampling operation (4.3)

and the mean value theorem, the constraints on the estimated output I(C) remain

identical to the constraints on its discrete-time counterpart I:/
√
ℎ, namely, Imin ≤

I(C) ≤ Imax ⇔ Imin ≤ I:/
√
ℎ ≤ Imax. Similar results hold for the constraints on the

continuous- and discrete-time disturbances.

By using the CT transform, the challenges in unbounded operators and constraint

handling can be readily tackled by the MHE design for the discrete-time system (4.2).

Once the discrete-time disturbance F: and output I: are estimated, they can be linked

to their continuous counterparts, by applying T∗
ℎ
, where the adjoint operator of Tℎ,

T∗
ℎ
is 1/
√
ℎ times the zero-order hold operator on the interval (:ℎ, (: + 1)ℎ) [97].
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In order to achieve mode detection and analyze the convergence of proposed MHE

design, we will establish a series of observability concepts along with corresponding

properties in the following section.

4.3 Observability of switching linear DPSs

In this section, we study the observability of system (4.4). For the sake of simplic-

ity and without loss of generality, we will focus on the feasibility of reconstructing

the infinite-dimensional state G0 and the switching pattern A#0 from a measurements

sequence H#0 over a given time interval [0, #]. We first consider the observability of

system (4.4) in the absence of disturbances, and then move to the case with distur-

bances.

4.3.1 Observability in the absence of disturbances

Consider a noise-free version of model (4.4) on the interval : ∈ [0, #] as:

G:+1 = �3 (A: )G: , H: = �3 (A: )G: , I: = �3 (A: )G: (4.5)

It is straightforward to obtain the measurement sequence as: H#0 = C3 (A#0 )G0, where

C3 (A#0 ) = [�3 (A0);�3 (A1)�3 (A0); ...;�3 (A# )
∏#
8=1 �3 (A#−8)] ∈ L(-,.#+1).

Definition 4. (Complete Mode Observability). For system (4.5), it is defined that a

switching pattern Λ#0 ∈ P# is distinguishable from another switching pattern Λ′#0 ∈ P#
if C3 (Λ#0 )G0 ≠ C3 (Λ′#0 )G

′
0 for all G0, G

′
0 ∈ - with G0 ≠ 0 or G′0 ≠ 0. Furthermore,

system (4.5) is said to be completely mode observable if in steps # + 1, for every

couple Λ#0 ≠ Λ
′#
0 ∈ P# , Λ

#
0 is distinguishable from Λ′#0 .

Definition 4 is similar to [161, Def. 1]. According to complete mode observability,

it is possible to uniquely determine the switching pattern Λ#0 as well as the initial state

G0 on the basis of measurements H#0 , provided that the initial condition is nonzero

[161, Lem. 1].

Definition 5. (Complete Observability). System (4.5) is said to be completely ob-

servable in # + 1 steps if it is completely mode observable in # + 1 steps and if

C3 (Λ#0 )G0 ≠ C3 (Λ#0 )G
′
0 for any G0 ≠ G

′
0 ∈ - and any Λ#0 ∈ P# .
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Definition 5 is similar to [157, Def. 2], which guarantees that the plant state can

be uniquely determined from measurements H#0 . If G0 ≠ 0, both system mode and

state can be uniquely determined based on the measurement sequence H#0 .

Definition 6. (Simultaneous Approximate Observability). System (4.5) is said to be

simultaneously approximately observable in # +1 steps if for every couple Λ#0 ≠ Λ
′#
0 ∈

P# and (G0, G
′
0) ∈ -

⊕
-, C3 (Λ#0 )G0 − C3 (Λ′#0 )G

′
0 = 0 implies that (G0, G

′
0) = (0, 0),

namely, Ker ( [C3 (Λ#0 ),−C3 (Λ
′#
0 )]) = [0; 0].

Definition 7. (Simultaneous Exact Observability). System (4.5) is said to be simul-

taneously exactly observable in # + 1 steps if for every couple Λ#0 ≠ Λ′#0 ∈ P# , there
exists a finite positive number :# (depending on # and ℎ) such that for all I0, I′0 ∈ -,
we have ‖C3 (Λ#0 )I0 − C3 (Λ

′#
0 )I

′
0‖

2
.#+1

≥ :2
#
(‖I0‖2- + ‖I′0‖

2
-
).

Definitions 6 and 7 are a generalization of [42, Def. 6.4.1] for two continuous-time

DPSs to the switching discrete-time DPSs where there are finitely many switching

modes. The complete observability and simultaneous approximate observability have

the following relationship.

Theorem 7. System (4.5) is said to be completely observable in # + 1 steps if it is

simultaneously approximately observable in # + 1 steps.

Proof. On one hand, the complete mode observability immediately follows the si-

multaneous approximate observability since one has to take G0 = 0 and G′0 = 0 in

order to ensure C3 (Λ#0 )G0 = C3 (Λ′#0 )G
′
0 for every couple Λ#0 ≠ Λ′#0 ∈ P# . On the

other hand, simultaneous approximate observability of [C3 (Λ#0 ), C3 (Λ
′#
0 )] induces

approximate observability C3 (Λ#0 ) or C3 (Λ
′#
0 ), i.e., one obtain Ker (C3 (Λ#0 )) = 0 and

Ker (C3 (Λ′#0 )) = 0 from Ker ( [C3 (Λ#0 ), C3 (Λ
′#
0 )]) = (0, 0). Therefore, we conclude

that C3 (Λ#0 )G0 ≠ C3 (Λ#0 )G
′
0 for any G0 ≠ G

′
0 ∈ - and any Λ#0 ∈ P# .

Remark 8. For infinite-dimensional systems, exact observability as a stronger con-

cept indicates approximate observability, while relatively difficult to satisfy. Both con-

cepts ensures that it is possible to reconstruct the initial state from the measurements

H#0 , while the reconstruction operator is bounded for exact observable systems but might

be unbounded for approximate observable cases.
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Remark 9. By the preceding discussion, we note that simultaneous exact observabil-

ity ⇒ simultaneous approximate observability ⇒ complete observability ⇒ complete

mode observability. For switching linear lumped parameter systems (LPSs), stronger

results hold: simultaneous exact observability ⇔ simultaneous approximate observ-

ability ⇔ complete observability ⇔ complete mode observability, see [161, Lem 1].

Corollary 1. System (4.5) is simultaneously exactly (or approximately) observable

iff for every couple Λ#0 ≠ Λ
′#
0 ∈ P# with Λ#0 = {A0, A1, ..., A: } and Λ

′#
0 = {A′0, A

′
1, ..., A

′
:
}

the following extended system is exactly (or approximately) observable:[
G:+1
G′
:+1

]
=

[
�3 (A: ) 0

0 �3 (A′: )

] [
G:
G′
:

]
(4.6a)

H4: =
[
�3 (A: ) − �3 (A′: )

] [
G:
G′
:

]
(4.6b)

where : ∈ [0, #], [G: ; G′: ] denotes the extended infinite-dimensional state, and H4
:
is

the corresponding measurement.

From the simultaneous exact (or approximate) observability of the linear infinite-

dimensional systems (without switching) (see [42, Def. 6.4.1] and [165, Def. 3.1]), the

proof of Corollary 1 is readily obtained and hence omitted here. The simultaneous

exact (or approximate) observability concept indicates that by observing the difference

in two individual outputs, i.e., H4
:
= �3 (A: )G: − �3 (A′: )G

′
:
, we intend to recover the

initial states of the cascaded systems. Based on Corollary 1, one can address the

estimation problem of switching DPSs using the idea of diagonalizable semigroups of

the extended system.

In what follows, we will analyze the relationship between switching mode distin-

guishability and output measurements. For switching linear and non-linear LPSs, it

has been shown in [161, 157] that it is impossible to distinguish one switching sequence

from another if the measurements only differ from the first or the last [=G/=H − 1]
instants of the observation window [0, #], where the state and output spaces are

- = R=G , . = R=H . In this chapter, it is not trivial to obtain such result since we

consider infinite-dimensional systems, i.e., dim(-) = ∞, even if =H is a finite number

under the consideration of finite-dimensional space . . Here, we will derive the results

for the switching DPSs.
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Theorem 8. Consider two generic switching patterns Λ#0 ≠ Λ′#0 ∈ P# for system

(4.5). Then, it is possible for system (4.5) to be simultaneously approximately observ-

able if Λ#0 and Λ′#0 only differ in the first or in the last < (< ≥ 1) instants of the

observation window [0, #].

Proof. This proof is completed by induction. We first consider that Λ#0 and Λ′#0
only differ in the first instant. By defining Ker ( [C3 (Λ#0 ), C3 (Λ

′#
0 )]) = (I0,−I

′
0) and

the concatenation of two switching patterns as Λ#0 = A0 ⊗Λ
#
1 and Λ′#0 = A′0 ⊗Λ

#
1 with

Λ#1 = {A1, A2, ..., A# }, we have the following:

�3 (A0)
�3 (A1)�3 (A0)

...

�3 (A# )
#∏
8=1
�3 (A#−8)


I0 −



�3 (A′0)
�3 (A1)�3 (A′0)

...

�3 (A# )
#−1∏
8=1

�3 (A#−8)�3 (A′0)


I′0 = 0

which indicates that �3 (A0)I0−�3 (A′0)I
′
0 = 0 and �3 (A1)�3 (A0)I0−�3 (A1)�3 (A′0)I

′
0 = 0.

From the expression of �3 (A1) and �3 (A0) in (4.4), we note that
√

2X� (A1) [R(X, A0)I0−
R(X, A′0)I

′
0] = 0 and �3 (A1) [−(I′0 − I

′
0) + 2X(R(X, A0)I0 −R(X, A′0)I

′
0)] = 0, which implies

that I0 = I′0. By the second resolvent identity [166], one has [R(X, A0) − R(X, A′0)]I0 =
R(X, A0) (�(A′0) − �(A0))R(X, A

′
0)I0 = 0. This implies that I0 = I′0 = 0.

Thus, we note that it is possible for system (4.5) to be simultaneously approx-

imately observable if Λ#0 and Λ′#0 only differ in the first instant of the observation

window [0, #]. It is immediate that system (4.5) can be simultaneously approxi-

mately observable if Λ#0 and Λ′#0 only differ in the first < (< ≥ 1) instants of the

observation window [0, #].
Similarly, we consider the case that Λ#0 and Λ′#0 only differ in the last instant, i.e.,

Λ#0 = Λ
#−1
0 ⊗ A# and Λ′#0 = Λ#−1

0 ⊗ A′
#
with Λ#−1

0 = {A0, A1, ..., A#−1}, then we have

�3 (A0)
�3 (A1)�3 (A0)

...

�3 (A# )
#∏
8=1
�3 (A#−8)


I0 −



�3 (A0)
�3 (A1)�3 (A0)

...

�3 (A′# )
#∏
8=1
�3 (A#−8)


I′0 = 0

which indicates that �3 (A0)I0−�3 (A0)I′0 = 0 implying that I0 = I′0 as �3 is not a nilpo-

tent operator in general. From �3 (A# )
∏#
8=1 �3 (A#−8)I0 − �3 (A′# )

∏#
8=1 �3 (A#−8)I′0 = 0

and �3 (A# ) ≠ �3 (A′# ) we can further conclude that I0 = I′0 = 0.
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Therefore, we conclude that it is possible for system (4.5) to be simultaneously

approximately observable if Λ#0 and Λ′#0 only differ in the first or last < (< ≥ 1)

instants of the observation window [0, #].

Theorem 9. Consider two generic switching patterns Λ#0 ≠ Λ′#0 ∈ P# for system

(4.5). Then, it is possible for system (4.5) to be simultaneously exactly observable if

Λ#0 and Λ′#0 only differ in the first or in the last < (< ≥ 1) instants of the observation

window [0, #].

Proof. The proof is similar to that in Theorem 8. We first consider the case that Λ#0
and Λ′#0 only differ in the last instant, namely, Λ#0 = Λ

#−1
0 ⊗ A# and Λ′#0 = Λ#−1

0 ⊗ A′
#

with Λ#−1
0 = {A0, A1, ..., A#−1}. To show that system (4.5) is simultaneously exactly

observable, we derive the following

‖�3 (A0) (I0 −I′0)‖
2
. +

#−1∑
==1

‖�3 (A=)
=∏
8=1

�3 (A=−8) (I0− I′0)‖
2
.

+ ‖�3 (A# )
#∏
8=1

�3 (A#−8)I0 − �3 (A′# )
#∏
8=1

�3 (A#−8)I′0‖
2
.

≥:2
#−1(‖I0 − I

′
0‖

2
-) + ‖�3 (A# )

#∏
8=1

�3 (A#−8)I0 − �3 (A′# )
#∏
8=1

�3 (A#−8)I′0‖
2
.

≥:2
#−1(‖I0‖

2
- + ‖I′0‖

2
- − 2‖I0‖2- ‖I′0‖

2
-)

+ ‖�3 (A# )
#∏
8=1

�3 (A#−8)I0 − �3 (A′# )
#∏
8=1

�3 (A#−8)I′0‖
2
.

where the first inequality is ensured by the finite-time exact observability of (�3 (A8),
�3 (A8)) in terms of the switching pattern Λ#−1

0 . The second inequality is obtained

by reverse triangular inequality. By having �3 (A# ) and �3 (A′# ) sufficiently different,

it is possible to find some positive ^ such that :2
#−1(‖I0‖

2
-
+ ‖I′0‖

2
-
− 2‖I0‖2- ‖I′0‖

2
-
) +

‖�3 (A# )
∏#
8=1 �3 (A#−8)I0 − �3 (A′# )

∏#
8=1 �3 (A#−8)I′0‖

2
.
≥ ^2(‖I0‖2- + ‖I′0‖

2
-
), which in-

dicates that the simultaneous exact observability of system (4.5). �3 (A# ) and �3 (A′# )
can be made sufficiently different by having sufficiently different modes A# and A′

#
.

By induction, we conclude that it is possible for system (4.5) to be simultaneously

approximately observable if Λ#0 and Λ′#0 only differ in the last < (< ≥ 1) instants of

the observation window [0, #].
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Then, we consider that Λ#0 and Λ′#0 only differ in the first instant. Let us define

the concatenation of two switching patterns as Λ#0 = A0 ⊗Λ
#
1 and Λ′#0 = A′0 ⊗Λ

#
1 with

Λ#1 = {A1, A2, ..., A# }. To show simultaneous exact observability of system (4.5), we

derive the following:

‖�3 (A0)I0 − �3 (A′0)I
′
0‖

2
. +

#∑
==1

‖�3 (A=)
=−1∏
8=1

�3 (A=−8) (�3 (A0)I0 − �3 (A′0)I
′
0)‖

2
.

≥‖�3 (A0)I0 − �3 (A′0)I
′
0‖

2
. + :̄2

#−1(‖�3 (A0)I0 − �3 (A
′
0)I
′
0‖

2
-)

where the last inequality is indicated by the finite-time exact observability of (�3 (A8),
�3 (A8)) with respect to the switching pattern Λ#1 . By having �3 (A0) and �3 (A′0) (or
�3 (A0) and �3 (A′0)) sufficiently different, it is possible to find some positive ¯̂ such

that ‖�3 (A0)I0−�3 (A′0)I
′
0‖

2
.
+ :̄#−1(‖�3 (A0)I0−�3 (A′0)I

′
0‖

2
-
) ≥ ¯̂2(‖I0‖2- +‖I′0‖

2
-
). This

can be done by having sufficiently different modes A0 and A′0. Thus, it is possible for

system (4.5) to be simultaneously exactly observable if Λ#0 and Λ′#0 only differ in the

first < (< ≥ 1 by induction) instants of the observation window [0, #].
Therefore, we conclude that it is possible for system (4.5) to be simultaneously

exactly observable if Λ#0 and Λ′#0 only differ in the first or last < (< ≥ 1) instants of

the observation window [0, #].
By Theorems 8-9, we note that for switching DPSs it is possible to have simulta-

neous exact (or approximate) observability if two switching patterns Λ#0 and Λ′#0 only

differ in the first or in the last < (< ≥ 1) instants of the observation window [0, #].
This is novel when compared with the observability analysis of switching linear or

non-linear LPSs.

4.3.2 Observability in the presence of disturbances

Under the influence of state and measurement disturbances, the corrupted measure-

ment sequence on the interval [0, #] is given as:

H#0 = C3 (A
#
0 )G0 + D3 (A#0 )F

#−1
0 + E#0

whereD3 (A#0 )=[0, 0, ..., 0;�3 (A1)�3 (A0), 0, ..., 0;�3 (A2)�3 (A1)�3 (A0), �3 (A2)�3 (A1), ..., 0;

...;�3 (A# )
∏#−1
8=1 �3 (A#−8)�3 (A0), �3 (A# )

∏#−2
8=1 �3 (A#−8)�3 (A1), ..., �3 (A# )�3 (A#−1].
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Theorem 10. Consider two generic switching patterns Λ#0 ≠ Λ′#0 ∈ P# with Λ#0 =

{A0, A1, ..., A# } and Λ′#0 = {A′0, A
′
1, ..., A

′
#
}. Suppose that ,2 and +2 are compact sets

and system (4.5) is simultaneously exactly observable in # + 1 steps. If there ex-

ist (G0, F
#−1
0 , E#0 ), (G

′
0, F

′#−1
0 , E′#0 ) ∈ H

4 = -
⊕

,#
2

⊕
+#+12 satisfying C3 (A#0 )G0 +

D3 (A#0 )F
#−1
0 + E#0 = C3 (A′#0 )G

′
0 + D3 (A′#0 )F

′#−1
0 + E′#0 , there must be: ‖G0‖2 ≤ dG and

‖G′0‖
2 ≤ dG.

Proof. By simple manipulation, it is straightforward that

C3 (A#0 )G0 − C3 (A′#0 )G
′
0 = −D3 (A#0 )F

#−1
0 + D3 (A′#0 )F

′#−1
0 − E#0 + E

′#
0 (4.7)

Based on the simultaneous exact observability, one can readily obtain the following:

‖G0‖2- + ‖G′0‖
2
- ≤

1

:2
#



C3 (A#0 )G0 − C3 (A′#0 )G
′
0



2

.#+1

=
1

:2
#



−D3 (A#0 )F
#−1
0 +D3 (A′#0 )F

′#−1
0 −E#0 + E

′#
0



2

.#+1

≤ 2

:2
#

[20#dF + (# + 1)dE] = dG (4.8)

where we denote 20 = maxΛ#0 ∈P#
‖D3 (A#0 )‖

2, dF = supF∈,2 ‖F‖2, dE = supE∈+2 ‖E‖2,
since all discrete-time operators and disturbances are bounded. This completes the

proof.

Due to the existence of plant and measurement disturbances, it is possible to have

Λ#0 indistinguishable from another one. Theorem 10 claims that when the estimated

initial condition is sufficiently close to 0, then it is impossible to uniquely determine

the switching pattern. From (4.8), we can clearly see that the norm bound of [G0; G′0]
is related to the norm bounds of disturbance constraints, which implies that higher

disturbance levels will enlarge the norm bound of initial state making it difficult to

uniquely determine Λ#0 from H#0 , which is consistent with the finite-dimensional cases

[161, 157].

4.4 Moving horizon estimation design

In this section, a moving horizon estimator is proposed for output estimation of the

discrete-time DPSs with respect to disturbance and output constraints by utilizing
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the results developed in Section 4.3. For simplicity, we directly consider constraints on

discrete-time disturbances and output as they can be transformed to the constraints

on the continuous-time counterparts by Remark 7.

We denote the set of all the admissible switching patterns at time instant ) by

P) , namely, the set of all the switching patterns in the observation window [) −#,)]
that is consistent with the priori knowledge of the evolution of the discrete state. For

brevity, we assume that such a priori knowledge does not diminish with time, i.e.,

P)+1 ⊆ P) , ) = #, # + 1, ..., or, less restrictively, P) ⊆ P# . Let us define Y) (Λ) as
the set of all the possible observations vectors associated with the switching pattern

Λ ∈ P) :

Y) (Λ)={H̄))−# ∈ .#+1 | H̄))−# =C3 (Λ)Ḡ)−#+D3 (Λ)F̄)−1
)−#

+ Ē))−# , F̄)−1
)−# ∈ ,# , Ē))−# ∈ +#+1}

Thus, for a given measurement sequence H̃)
)−# , Λ̂

)
)−# ∈ P) is referred to be a feasible

estimate of the switching pattern Λ)
)−# if H̃)

)−# ∈ Y) (Λ̂))−# ).
As in [161, 157], we define the set of all feasible switching pattern P 5

)
as:

P 5

)
= {Λ| H̃))−# ∈ Y) (Λ)} (4.9)

By the preceding discussion, we can formulate the following estimation algorithm:

1). determine the set of feasible switching patterns P 5

)
at time step ) ; 2). minimize

a quadratic cost �) defined on the interval [) − #,)]:

�) (Ĝ)−# |) , F̂)−1
)−# , Λ̂

)
)−# ) =

)−1∑
:=)−#

〈
F̂: |) , &F̂: |)

〉
,
+

)∑
:=)−#

〈
Ê: |) , 'Ê: |)

〉
.

+
〈
Ĝ)−# |) − Ḡ)−# , %(Ĝ)−# |) − Ḡ)−# )

〉
-

(4.10)

where % ∈ L(-) denotes a self-adjoint positive definite operator that expresses our

belief in the “prediction” Ḡ)−# of the state G)−# , while & and ' as two positive definite

matrices representing the penalty weights on the plant and measurement disturbances.

Moreover, we note that Ê: |) = H: − �3 (Â: )Ĝ: |) and �3 (Â: )F̂: |) = Ĝ:+1|) − �3 (Â: )Ĝ: |) .
Therefore, the optimal estimates (Ĝ>

)−# |) , F̂
> )−1
)−# , Λ̂

> )
)−# ) can be obtained as follows:

(Ĝ>
)−# |) ,F̂

> )−1
)−# ,Λ̂

> )
)−#)=arg min

Ĝ) −# |) ∈-,F̂) −1) −# ∈,#,Λ
)
) −#∈P)

�) (Ĝ)−# |) , F̂)−1
)−# , Λ̂

)
)−# ) (4.11)
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According to this framework, we can formulate the following moving horizon estimator

algorithm:

Algorithm 1: Optimal MHE Algorithm

(1). Find the set P 5

)
∈ P) of feasible switching patterns in the moving interval

[) − #,)] defined in (4.9);

(2). For every feasible switching pattern Λ̂)
)−# = {Â)−# , Â)−#+1, ..., Â) } ∈ P

5

)
, solve the

following optimization problem:

min
Ĝ) −# |) ∈-,F̂) −1) −# ∈,#

�) (Ĝ)−# |) , F̂)−1
)−# , Λ̂

)
)−# ) (4.12)

subjected to the constraints:

Fmin≤ F̂: |) ≤ Fmax, for : = ) − #,) − # + 1, ..., ) − 1

Emin ≤ Ê)−# |) = H)−# − �3 (Â)−# )Ĝ)−# |) ≤ Emax,

Emin ≤ Ê: |) = H:−C3 (Â :)−# )Ĝ)−# |)−D3 (Â :)−# )F̂
:−1
)−#≤ Emax,

for : = ) − # + 1, ) − # + 2, ..., )

Imin ≤ Î: |) = H3 (Â :)−# )Ĝ)−# |) + V3 (Â
:
)−# )F̂

:−1
)−# ≤ Imax,

for : = ) − #,) − # + 1, ..., ) − 1

where

C3 (Â :)−# ) =�3 (Â: )
:−)+#−1∏

8=0

�3 (Â)−#+8)

D3 (Â :)−# )F̂
:−1
)−# =�3 (Â: ) ×

[
�3 (Â:−1)F̂:−1

+
:−)+#−1∑

9=1

(:−)+#−1∏
8= 9

�3 (Â)−#+8)�3 (Â)−#+ 9−1)F̂(Â)−#+ 9−1)
)]

By replacing �3 by �3 in the expressions of C3 and D3, H3 and V3 are similarly

defined. Let �̃) (Λ̂))−# ) denote the minimum of problem (4.12). Let G̃)−# |) and F̃)−1
)−#

be the estimated state and disturbances that correspond to such a minimum.

(3). The optimal estimate of the switching pattern is solved by

Λ̂> ))−# = arg min
Λ̂)
) −# ∈P

5

)

�̃) (Λ̂))−# )

Accordingly, we obtain the optimal estimates Ĝ>
)−# |) and F̂> )−1

)−# that correspond to

G̃)−# |) and F̃)−1
)−# associated to the switching pattern Λ̂> )

)−# = {Â>
)−# , Â

>
)−#+1, ..., Â

>
)
}.
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As for the estimated quantities, it should be noted that only Â>
)−# , Ĝ

>
)−# |) and F̂>

)−#

are retained in this stage and propagated to the next optimization problem by:

Ḡ)−#+1 = �3 (Â>)−# )Ĝ
>
)−# |) + �3 (Â

>
)−# )F̂

>
)−# (4.13)

where Ḡ)−#+1 denotes a priori prediction of G)−#+1. �

Apparently, the set P) is used when determining P)+1 at time instance ) + 1.

Generally, if no a priori assumption on the disturbance and output constraints is given,

the computational burden of steps (1)-(2) may be heavy. However, we consider the

disturbance and output constraints are bounded polytopes in this chapter, which can

simplify the executions of steps (1)-(2). In addition, some computationally efficient

numerical solvers might be deployed for online implementation of the proposed MHE

algorithm, c.f., [161].

Considering Ĝ)−# |) is an infinite-dimensional state, direct optimization of (4.12)

in step (2) of Algorithm 1 with respect to Ĝ)−# |) (along with F̂)
)−#) can be heavily

dependent on the spatial discretization node and may be intractable as the spatial

discretization node tends to infinity. To address this issue, we introduce the following

implementation strategy that can lead to a fully finite-dimensional MHE problem

without doing any spatial discretization in the design stage (in a late lumping man-

ner) and hence easily realizable using standard optimization techniques and finite

computing capacity.

As in [37], we define an additional F̂)−#−1|) relating Ĝ)−# |) to Ḡ)−# as

�3 (Â>)−#−1|) )F̂)−#−1|) = Ĝ)−# |) − Ḡ)−#

which converts the estimation of Ĝ)−# |) to the estimation of a finite-dimensional plant

disturbance F̂)−#−1|) . By doing so, the cost functional (4.10) can be rewritten as:

�) (F̂)−1
)−#−1, Λ̂

)
)−# ) =

)−1∑
:=)−#−1

〈
F̂: |) , &̄F̂: |)

〉
,
+

〈
Ê:+1|) , 'Ê:+1|)

〉
.

where &̄ = & for )−# ≤ : ≤ )−1 and &̄ = �3 (Â>)−#−1)
∗%�3 (Â>)−#−1) when : = )−#−1.

Along this line, we can propose the following late-lumping MHE algorithm.

Algorithm 2: Late-lumping MHE Algorithm

(1). Identical to step (1) of Algorithm 1;
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(2). For every feasible switching pattern Λ̂)
)−# = {Â)−# , Â)−#+1, ..., Â) } ∈ P

5

)
, solve the

following optimization problem:

�̃) (Λ̂))−# ) = min
F̂) −1
) −#−1∈,#+1

�) (F̂)−1
)−#−1, Λ̂

)
)−# ) (4.14)

subjected to the constraints identical to step (2) of Algorithm 1, where Ĝ)−# |) should

be expressed by Ĝ)−# |) = Ḡ)−# + �3 (Â>)−#−1)F̂)−#−1|) . Let G̃)−# |) and F̃)−1
)−#−1 be the

estimated state and disturbances that correspond to the minimum �̃) (Λ̂))−# ).
(3). The optimal estimate of the switching pattern is solved by

Λ̂> ))−# = arg min
Λ̂)
) −# ∈P

5

)

�̃) (Λ̂))−# )

Accordingly, we obtain the optimal estimates F̂> )−1
)−#−1 that correspond to F̃)−1

)−#−1

associated to the switching pattern Λ̂> )
)−# . The optimal state estimate is given by

Ĝ>
)−# |) = Ḡ)−# + �3 (Â>)−#−1)F̂

>
)−#−1|) . Similarly, only Â>

)−# , Ĝ
>
)−# |) and F̂>

)−# are

retained in this step and propagated to the next optimization problem by using (4.13).

�

The Late-lumping MHE Algorithm provides a practicable and implementable

framework for the Optimal MHE Algorithm instead of doing early-lumping (spatial

discretization or model reduction) in the design stage. In other words, the infinite-

dimensionality of the state space remains intact in the Late-lumping MHE Algorithm

in the design stage. We will test the performance of Late-lumping MHE Algorithm

numerically in the Section 4.6.

Remark 10. Since stable regular linear systems are focused in this chapter, it is

natural to include control actions (i.e., �D (AC)D, where D ∈ * and * is assumed to

be a finite-dimensional space, and �D can be either a bounded operator �D ∈ L(*, -)
or a unbounded operator �D ∈ L(*, -−1) depending on the specific actuations taken

place) on the right hand side of system model (4.1a). Consequently, one can derive

the counterpart of the discrete-time model (4.4), namely, by adding �D
3
D: , �D

3
D: and

+D
3
D: to the right hand side of Eqs.(4.4a)-(4.4c), where �D

3
D: , �D

3
D: and +D

3
D: are

similarly defined as �3D: , �3D: and +3D: respectively. In the MHE design, the cost

functionals (4.10)-(4.12) and (4.14) are still valid except that we need to update that

Ê: |) = H:−�3 (Â: )Ĝ: |)−�D
3
(Â: )D: and �3 (Â: )F̂: |) = Ĝ:+1|)−�3 (Â: )Ĝ: |)−�D3 (Â: )D: in the
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formulations of quadratic programming optimization problems and the corresponding

constraints.

4.5 Stability analysis

In this section, the stability properties of the proposed optimal MHE estimator in

Section 4.4 are derived. To show the convergence properties of such estimator, the

following assumptions are needed.

Assumption 6. System (4.5) is simultaneously exactly observable in # + 1 steps.

Assumption 7. For all A8 ∈ S, (�(A8), � (A8)) is exactly observable, and � (A8) is
infinite-time admissible for TA .

Assumption 8. For all A8 ∈ S, �(A8) generates a strongly stable contraction �0-

semigroup, and the disturbance and output spaces are finite-dimensional.

Assumption 9. Disturbances and output constraints are compact sets.

Assumptions 6 and 7 guarantees the system mode and state observability. As-

sumption 8 ensures the infinite-time admissibility of output operators and that the

discrete-time systems using CT transformation converges to the continuous-time reg-

ular linear systems in the input-output mapping sense as the time discretization

interval goes to zero. The stability assumption can be assured by using a shift semi-

group approach. Assumption 9 is used to show that disturbances and the estimated

output are norm bounded.

Based on the CT transformation, we note that �3 (A8) is strongly stable and a

bounded contractive operator since �(A8) generates a strongly stable contraction �0-

semigroup [21, The. 3.4.9, The. 12.3.10]. We show that there is a 1-1 correspondence

of the exact observability of (�(A8), � (A8)) and (�3 (A8), �3 (A8)) by the following propo-

sition.

Proposition 5. Consider non-switching (i.e., AC ≡ A8 ∈ S is fixed) regular linear

system (4.1) and its discrete-time system (4.4) using the Cayley-Tustin transform

with a suitable parameter X. Let Assumptions 7-8 hold. Then (�3 (A8), �3 (A8)) is
exactly observable in finite time  > 0.
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Proof. The rational of the proof follows from the continuous-time case [42, Pro.

6.5.2.]. As � (A8) is infinite-time admissible for TA , there corresponds an infinite-time

observability Gramian QA ∈ L(-):

QA I = lim
g→+∞

∫ g

0
(TA (C))∗� (A8)∗� (A8)TA (C)I 3C (4.15)

for all I ∈ D(�(A8)), and it is the unique self-adjoint solution of the following Lya-

punov equation in the dual space of -−1 [42, The. 5.1.1]:

�(A8)∗QA I + QA�(A8)I = −� (A8)� (A8)∗I (4.16)

or equivalently solved from the discrete-time Lyapunov equation [23, The. 2.4]:

�3 (A8)∗Q3A �3 (A8)G − Q3A G = −�3 (A8)�3 (A8)∗G (4.17)

for all G ∈ -. Since �3 (A8) is strongly stable (induced by the strong stability of TA
[21, The. 12.3.10]) and �3 (A8) is infinite-time admissible (induced by the infinite-time

admissibility of � (A8)) [23, Lem. 2.2, The. 2.4] there exists a unique solution of (4.17)

named as the infinite-time discrete observability Gramian Q3A ∈ L(-) defined as:

Q3A G = lim
 →+∞

 ∑
:=0

(�3 (A8)∗):�3 (A8)∗�3 (A8) (�3 (A8)):G (4.18)

Hence, QA and Q3A are equal and their positive coercivity is invariant under the

Cayley-Tustin transform. Thus, the infinite-time exact observability of (�3 (A8), �3 (A8))
follows from that of (�(A8), � (A8)) under the CT transform. Next, we show that the

finite-time exact observability of (�3 (A8), �3 (A8)) follows from that of (�(A8), � (A8)).
From the infinite-time admissible � (A8) and the exact observability of (�(A8), � (A8))

in finite time g, we have the lower and upper bounds for all I ∈ D(�(A8)) as:

:̃2 ‖I‖2- ≥ 〈QA I, I〉 =
∫ +∞

0
‖� (A8)TA (C)I‖2. 3C

=

∫ g

0
‖� (A8)TA (C)I‖2. 3C +

∫ +∞

g

‖� (A8)TA (C)I‖2. 3C ≥ ˜̂2 ‖I‖2-

where :̃ > ˜̂ > 0. Thus we have the lower and upper bounds for the discrete observ-

ability Gramian Q3A as:

:̃2 ‖I‖2- ≥
〈
Q3A I, I

〉
=

+∞∑
:=0



�3 (A8) (�3 (A8)): I

2

.
≥ ˜̂2 ‖I‖2-
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By decomposition in time as in [42, Pro. 6.5.2.], we have

 ∑
:=0

‖�3 (A8) (�3 (A8))
: I‖2.

=

+∞∑
:=0



�3 (A8) (�3 (A8)): I

2

.
−
+∞∑

:= +1



�3 (A8) (�3 (A8)): I

2

.

=

+∞∑
:=0



�3 (A8) (�3 (A8)): I

2

.
−
+∞∑
:=0



�3 (A8) (�3 (A8)):+ +1I

2

.

≥( ˜̂2 − :̃2‖(�3 (A8)) +1‖2) · ‖I‖2- (4.19)

Since �3 is strongly stable and a bounded contractive operator (i.e., ‖�3 (A8)I‖ ≤ ‖I‖
and �3 (A8): I → 0 as : → +∞), the parenthesis in (4.19) becomes positive for some

sufficiently large  . For such  , (�3 (A8), �3 (A8)) is exactly observable.

By Proposition 5, we know that Assumptions 7-8 can ensure the stability and

observability the non-switching discrete-time system. Next, we prove the stability of

the proposed MHE estimator.

Theorem 11. Under Assumptions 6-9, the square norm of the estimation error is

bounded from above as follows:

4)−#+: = ‖G)−#+: − Ĝ>)−#+: |) ‖
2 ≤ b)−#+:

The sequence of b)−#+: is shown as

bU = VU (4.20a)

b: = 2 b:−1 + V, : = U + 1, U + 2, ... (4.20b)

where

VU =
10

5f% + 2'22
× {'[(# + 1)dE + 223#dF + 21dG]

+ #&dF + (# + 1)'dE + 2f̄%‖G0 − Ḡ0‖2- } (4.21a)

2 =
80f̄%26

5f% + 2'22
(4.21b)

V =
10

5f% + 2'22
× [2'(# + 1)dE + (21' + 8f̄%24)dG

+ (223#' + #& + 16f̄%25)dF] (4.21c)
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and the corresponding notations are given by

f% = inf
G∈-,G≠0

‖%G‖
‖G‖ , f̄% = sup

G∈-,G≠0

‖%G‖
‖G‖

21 = sup
Λ̂)
) −# ,Λ

)
) −# ∈P

5

)
,G∈-,G≠0

‖ [C3 (Λ̂))−# ) − C3 (Λ))−# )]G‖
‖G‖

22 = inf
Λ̄)
) −# ∈P

5

)
,G∈-,G≠0

‖C3 (Λ̄))−# )G‖
‖G‖ , dF = sup

F∈,2
‖F‖2

23 = max
Λ̄)
) −# ∈P

5

)

‖D3 (Λ̄))−# )‖, dE = sup
E∈+2
‖E‖2

24 = sup
_̂,_∈S,G∈-,G≠0

‖ [�3 (_̂) − �3 (_)]G‖
‖G‖

25 = sup
_∈S,F∈,2 ,F≠0

‖�3 (_)F‖
‖F‖ , 26 = sup

_∈S,G∈-,G≠0

‖�3 (_)G‖
‖G‖

In addition, if % and ' are chosen such that 2 < 1, the bounding sequence {b: } has
the following properties:

(a). {b: } converges exponentially to the asymptotic value 4∞ = V/(1 − 2);
(b). if b: > 4∞, then b:+1 < b: , : = U, U + 1, ....

Proof. The rationale of the proof is inspired by the method presented in [161, The.

2]. Similarly, we seek to find the lower and upper bounds for the optimal cost �>
)
.

For the ease of notations, we drop the second subscript in the estimates of state,

disturbances and switching patten. Based on the following equalities:

H))−# = C3 (Λ̂))−# )Ĝ)−# + D3 (Λ̂))−# )F̂)−1
)−# + Ê))−#

= C3 (Λ))−# )G)−# + D3 (Λ))−# )F)−1
)−# + E))−#

one can reformulate the cost functional (4.10) as follows:

�) (Ĝ)−# , F̂)−1
)−# , Λ̂

)
)−# )

= ‖F̂)−1
)−# ‖2&+‖C3 (Λ

)
)−# )G)−#+D3 (Λ))−# )F)−1

)−#

+ E))−# − C3 (Λ̂))−# )Ĝ)−# − D3 (Λ̂))−# )F̂)−1
)−# ‖2'

+ 〈Ĝ)−# − Ḡ)−# , %(Ĝ)−# − Ḡ)−# )〉- (4.22)

Based on the optimality principle, we obtain the upper bound for the cost functional

�>
)
, namely, �>

)
≤ �) (G)−# |) , F)−1

)−# ,Λ
)
)−# ). Combining with the Schwarz inequality
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[167, Lem. 3.2-1] and the boundedness of operator %, we obtain:

�>) (Ĝ)−# |) , F̂
)−1
)−# , Λ̂

)
)−# )

≤ ‖F)−1
)−# ‖2& + ‖E

)
)−# ‖2' + ‖G)−# − Ḡ)−# ‖- ‖%(G)−# − Ḡ)−# )‖-

≤ #&dF + (# + 1)'dE + f̄%‖G)−# − Ḡ)−# ‖2- (4.23)

Then, we move to show the lower bound on the optimal cost �>
)
. Based on the Schwarz

inequality and the triangle inequality [167, Lem. 3.2-1], we can derive the following:

〈G)−# − Ĝ)−# , %(G)−# − Ĝ)−# )〉-
=〈G)−# − Ḡ)−# + Ḡ)−# − Ĝ)−# , %(G)−# − Ḡ)−# + Ḡ)−# − Ĝ)−# )〉-

=〈G)−# − Ḡ)−# , %(G)−# − Ḡ)−# )〉- + 〈Ḡ)−# − Ĝ)−# , %(Ḡ)−# − Ĝ)−# )〉-
+ 2〈G)−# − Ḡ)−# , %(Ḡ)−# − Ĝ)−# )〉-
≤2‖G)−# − Ḡ)−# ‖2% + 2‖Ḡ)−# − Ĝ)−# ‖2% (4.24)

Thus, the following lower bound for the last term on the right-hand side of (4.22) is

obtained:

‖Ĝ)−# − Ḡ)−# ‖2% ≥
1

2
‖G)−# − Ĝ)−# ‖2% − ‖G)−# − Ḡ)−# ‖2% (4.25)

As for the second term on the right-hand side of (4.22), we formulate:

‖C3 (Λ̂))−# ) (G)−# − Ĝ)−# )‖2'
=‖H))−# − C3 (Λ̂))−# )Ĝ)−# − D3 (Λ̂))−# )F̂)−1

)−#

− D3 (Λ))−# )F)−1
)−# − E))−# + D3 (Λ̂))−# )F̂)−1

)−#

+ [C3 (Λ̂))−# ) − C3 (Λ))−# )]G)−# ‖2'
≤5{‖H))−# − C3 (Λ̂))−# )Ĝ)−# − D3 (Λ̂))−# )F̂)−1

)−# ‖2'
+ ‖D3 (Λ))−# )F)−1

)−# ‖2' + ‖D3 (Λ̂))−# )F̂)−1
)−# ‖2'

+ ‖E))−# ‖2' + ‖[C3 (Λ̂))−# ) − C3 (Λ))−# )]G)−# ‖2'}

which implies that:

‖H))−# − C3 (Λ̂))−# )Ĝ)−# − D3 (Λ̂))−# )F̂)−1
)−# ‖2'

≥1

5
‖C3 (Λ̂))−# ) (G)−# − Ĝ)−# )‖2' − ‖E))−# ‖2'
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− ‖D3 (Λ))−# )F)−1
)−# ‖2' − ‖D3 (Λ̂))−# )F̂)−1

)−# ‖2'
− ‖[C3 (Λ̂))−# ) − C3 (Λ))−# )]G)−# ‖2' (4.26)

More specifically, we consider the following two cases.

Case I: If Λ̂)
)−# = Λ

)
)−# , we note that ‖ [C3 (Λ̂))−# ) − C3 (Λ))−# )]G)−# ‖2' = 0;

Case II: If Λ̂)
)−# ≠ Λ

)
)−# , we have ‖ [C3 (Λ̂))−# )−C3 (Λ))−# )]G)−# ‖2' ≤ 21‖G)−# ‖2' ≤ 21dG

by Theorem 10.

From Cases I and II, we can derive the following:

‖ [C3 (Λ̂))−# ) − C3 (Λ))−# )]G)−# ‖2' ≤ max{0, 21dG} = 21dG

By denoting that 4)−# = ‖G)−# − Ĝ>)−# ‖ and substituting (4.25) and (4.26) into �>
)
,

we have the following lower bound:

�>) (Ĝ
>
)−# , F̂

> )−1
)−# , Λ̂

> )
)−# ) ≥

1

2
f%4)−# − f̄%‖G)−#−Ḡ)−# ‖2 +

1

5
'224)−#

− '[(# + 1)dE + 223#dF + 21dG] (4.27)

In order to derive a bounding sequence on the quadratic estimation error, we

combine the lower bound (4.23) and upper bound (4.27) as follows:

(1
2
f% +

1

5
'22)4)−# ≤'[(# + 1)dE + 223#dF + 21dG]

+ #&dF + (# + 1)'dE + 2f̄%‖G)−# − Ḡ)−# ‖2- (4.28)

As for the last term on the right-hand side of (4.28), we derive the following inequality

by using (4.4) and (4.13):

‖G)−# − Ḡ)−# ‖2-
=‖�3 (A)−#−1)G)−#−1 + �3 (A)−#−1)F>)−#−1

− �3 (Â>)−#−1)Ĝ
>
)−#−1 + �3 (Â

>
)−#−1)F̂

>
)−#−1‖

≤4{‖�3 (Â>)−#−1) (G)−#−1 − Ĝ>)−#−1)‖
2

+ ‖[�3 (A)−#−1) − �3 (Â>)−#−1)]G)−#−1‖2

+‖�3 (A)−#−1)F)−#−1‖2+‖�3 (Â>)−#−1)F̂
>
)−#−1‖

2}

≤4264)−#−1 + 424dG + 825dF (4.29)

where by considering two cases as previous discussion (i.e., either Λ̂)−1
)−#−1 is equal

to Λ)−1
)−#−1 or not), we obtain that ‖ [�3 (A)−#−1) − �3 (Â>)−#−1)]G)−#−1‖2 ≤ 24dG. In
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addition, we note that 4)−#−1 = ‖(G)−#−1 − Ĝ>)−#−1|)−1
)‖2. By inserting (4.29) into

(4.28), we can readily attain a sequence {b: } defined in (4.20) as the upper bound of

4: with the corresponding notations VU, 2 and V in (4.21).

Moreover, we note that for 2 < 1, b: converges exponentially to 4∞ = V/(1 − 2) as
: → +∞; if b: > 4∞, then b:+1 < b: , : = U, U + 1, ....

The condition 2 < 1 can be easily ensured by properly selecting penalty weights

% and '. If dF = 0, dE = 0, dG = 0, the estimation error converges exponentially

to zero under the condition that 2 < 1, which implies that for the noise-free case,

we can realize perfect estimation in the sense that 4: → 0 as : → +∞ provided

that we know accurate priori knowledge on the switching patterns. Note that the

sequence {b: } depends continuously on dF, dE, dG, from which one might conclude

that if “small” values of dF, dE, dG are considered, such an upper bound (4∞) can be

“arbitrarily close” to the upper bound in the noise-free cases with switching-patterns

being available.

4.6 Examples

4.6.1 Example 1: heat exchanger

Consider the following counterflow heat exchanger model on a 1-D spatial domain

Z ∈ [0, ;]:

G1C (Z, C) =−0(AC)G1Z (Z, C)+1(AC) (G2(Z, C)−G1(Z, C)) + 51(Z)F(C) (4.30a)

G2C (Z, C) =2(AC)G2Z (Z, C) − 3 (AC) (G2(Z, C) − G1(Z, C)) + 52(Z)F(C) + 6(Z)D(C) (4.30b)

G1(0, C) =G2(;, C)=0, G1(Z, 0)=G10, G2(Z, 0) = G20 (4.30c)

H(C) =[G1(;, C); G2(0, C)] + E(C), I(C) = G1(
;

2
, C) (4.30d)

where 0(AC), 1(AC), 2(AC), 3 (AC) are positive constants for every AC on C ∈ R+, and they are

randomly switching in a finite set S = {A1, A2} and they are known once AC is identified.

G1 and G2 represent the transient temperatures of the counter-current fluids. In this

case, we consider bounded plant disturbance F equipped with spatial distribution

functions 51(Z) and 52(Z), and bounded measurement disturbance E. A spatially

distributed control described by 6(Z) is considered. Non-switching heat exchanger

models have been widely studies, e.g., in [168, 163].
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We formulate the state space model for the heat exchanger system (4.30). Let

us take the Hilbert space - = !2(0, ;)2 to be the state space, and define the in-

put, disturbance and output spaces as * = / = , = R and . = R2. The un-

bounded operator �(AC) : D(�(AC)) → - is defined by D(�(AC)) = {q = (q1; q2) ∈
- |q′

9
, q 9 ∈ !2(0, ;) for 9 = 1, 2, q1(0) = q2(;) = 0} and �(AC) (·) = [−0, 0; 0, 2] m

mZ
(·) +

[−1, 1; 3,−3] (·). For each AC on C ∈ R+, �(AC) is the generator of �0-semigroup of

contraction. In addition, we consider bounded control and plant disturbance op-

erators as �F = [ 51; 52] and �D = [0; 6], and unbounded observation operators

� (·) = [
∫ ;

0
X; (·)3Z, 0; 0,

∫ ;

0
X0(·)3Z], and � (·) =

∫ ;

0
X ;

2
(·)3Z , where X denotes the Dirac

delta function. As in [169, 170], one can show that the heat exchanger model is a

well-posed regular linear system. By applying linear transformation G1 =
√
1Ḡ1 and

G2 =
√
3Ḡ2, it is straightforward to obtain the PDE model corresponding to (Ḡ1, Ḡ2)

as �A (·) = [−0, 0; 0, 2] m
mZ
(·) + [−1,

√
13;
√
13,−3] (·). From [171, The. 2, The. 3],

we note that the system is exponentially stable and exactly observable in finite-time

;/min{0(AC), 2(AC)} for every AC . Based on that, we note that � (AC) is infinite-time

admissible [122, Pro. 5.5].

By applying Laplace transformation, we can solve for the resolvent operator ana-

lytically as:

'11(B, �) =
−012(Z)
0022(;)

∫ ;

0
021(; − [) (·)3[ +

1

0

∫ Z

0
011(Z − [) (·)3[

'12(B, �) =
012(Z)
2022(;)

∫ ;

0
022(; − [) (·)3[ −

1

2

∫ Z

0
012(Z − [) (·)3[

'21(B, �) =
−022(Z)
0022(;)

∫ ;

0
021(; − [) (·)3[ +

1

0

∫ Z

0
021(Z − [) (·)3[

'22(B, �) =
022(Z)
2022(;)

∫ ;

0
022(; − [) (·)3[ −

1

2

∫ Z

0
022(Z − [) (·)3[

where

011(Z) =
1

2*B
[(*B − (B)4

)B+*B
202 Z + (*B + (B)4

)B−*B
202 Z ]

012(Z) =
12

*B
(−1 + 4

*B
02
Z )4

)B−*B
202 Z , 021(Z) = −

03

12
012(Z)

022(Z) =
1

2*B
[(*B − (B)4

)B−*B
202 Z + (*B + (B)4

)B+*B
202 Z ]

with )B = 0(3 + B) − 2(1 + B), (B = 0(3 + B) + 2(1 + B), and *B =
√

402B(1 + 3 + B) + )2
B .

Along this line, one can substitute the resolvent solution to obtain the analytic forms
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of all discrete operators (�3 , �3 , �3 , �3 , �3 , +3) as follows:

�3 (·) = − (·) + 2X

[
'11(X, �) (·) '12(X, �) (·)
'21(X, �) (·) '22(X, �) (·)

]
(4.31a)

�3 =
√

2X

[
'11(X, �) 51 + '12(X, �) 52
'21(X, �) 51 + '22(X, �) 52

]
(4.31b)

�3 (·) =
√

2X

[
�311(·) �312(·)
�321(·) �322(·)

]
, �3 =

[
�311 51+�312 52
�321 51+�322 52

]
(4.31c)

�311(·) =
1

0

∫ ;

0

[−012(;)
022(;)

021(; − [) + 011(; − [)
]
(·)3[

�312(·) =
1

2

∫ ;

0

[012(;)
022(;)

022(; − [) − 012(; − [)
]
(·)3[

�321(·) =
−022(0)
0022(;)

∫ ;

0
021(; − [) (·)3[

�322(·) =
022(0)
2022(;)

∫ ;

0
022(; − [) (·)3[

�3 (·) =
√

2X
[
�31(·) �32(·)

]
, +3 =�31 51+�32 52 (4.31d)

�31(·) =
−012( ;2 )
0022(;)

∫ ;

0
021(;−[) (·)3[+

1

0

∫ ;
2

0
011(

;

2
−[) (·)3[

�32(·) =
012( ;2 )
2022(;)

∫ ;

0
022(;−[) (·)3[−

1

2

∫ ;
2

0
012(

;

2
−[) (·)3[

In a similar manner, the discrete operators (�D
3
, �D

3
, +D

3
) related to the control input

can be determined accordingly. Specifically, we consider bounded spatial functions

51(Z) = 52(Z) = 1, 6(Z) = sin(cZ). In this example, we consider two pairs of model pa-

rameters as: (0(A1), 1(A1), 2(A1), 3 (A1))= (0.5, 6, 0.5, 1.5) and (0(A2), 1(A2), 2(A2), 3 (A2))
= (0.1, 2, 0.75, 6). By substituting these into Eq. (4.31), we can determine two

pairs of model operators. The initial conditions (i.e., G10 and G20), plant and mea-

surement disturbances (namely, F and E) are assumed to be mutually indepen-

dent random variables. The initial conditions utilized in the example are taken as:

G10 = )10(:1Z
2 + 1)4−Z2 − )10 and G20 = )204

−(1−Z2)/C1 − )20, where :1 =
)20
)10
41 − 1

and C1 = 1/log )20
)10

, see [168]. In the simulations, the values of )10 and )20 are taken

as: )10 ∈ [18, 22] and )20 ∈ [78, 82]. Moreover, we consider the control input as

D(C) = 1.8 sin(0.25cC). The time and space discretization intervals are set as ℎ = 0.2 s

and ΔZ = 0.01 m, with overall length ; = 1 m. As for the MHE and MHEPI, we select

weighting parameters as % = 0.001, & = 0.1, and ' = 0.1, and consider constraints

F: ∈ [−AF, AF], E: ∈ [−AE, AE], and I: ∈ [−10, 35]. The priori estimates of G10 and
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G20 for both estimation algorithms are taken as the 0.5G10 and 0.5G20 accordingly.

Moreover, the values of the minimum dwell time (i.e., the minimum number of time

steps between one switch and the next) and the moving horizon length of MHE and

MHEPI are taken as 3.

To quantify the estimation performance, we consider two performance indexes

including Root Mean Square Error (RMSE) to evaluate the output estimation error

and Average Missing Rate (AMR) to assess the mode detection performance as in

[157]:

RMSE =
1

(

(∑
B=1

√√√
)∑
:=1

‖4:,B‖2
)

, AMR =
1

()

(∑
B=1

53,B

where 4:,B denotes the output estimation error at time : in the B-th simulation run

and 53,B represents the total number of the false detections of the switching modes in

the B-th simulation run. ( and ) are the number of simulation runs and simulation

horizon. In this case, the values of ( and ) are taken as 200 and 100, respectively.

For brevity, we denote the estimator proposed in the Algorithm 2 by moving

horizon estimator (MHE). For the sake of comparison, we investigate one baseline al-

gorithm, namely, moving horizon estimator with perfect mode information (MHEPI)

(i.e., by minimizing the cost �) under the further constraint Λ̂)
)−# = Λ)

)−#). The

quadratic optimization is conducted using Matlab optimization toolbox.

The influences of different levels of disturbances on the performance of considered

estimators are investigated and summarized in Table 4.1. It can be seen that MHEPI

outperforms MHE in all three cases since MHEPI has access to perfect switching mode

information. With the increase of disturbance levels, the estimation errors by using

MHE and MHEPI increases as well. Under weak disturbances (i.e., AF = AE = 0.1),

MHE shows a satisfactory performance on mode detection indicated by the aver-

age missing rate (AMR) being 0.1003. The AMR of MHE increases as the levels of

disturbances increase. It is remarkable that the proposed MHE can achieve compara-

ble output estimation performance to MHEPI when subjected to strong disturbance

(i.e., AF = AE = 1.0). The state and output estimation results under medium level

of disturbances (i.e., AF = AE = 0.5) are shown in Fig. 4.1 and Fig. 4.2, from which

one can clearly observe that the proposed MHE is capable of achieving constrained
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state/output estimation and mode identification.

Table 4.1: Estimation performance of the proposed estimator on the heat exchanger
with different AF and AE

AF 0.1 0.5 1.0
AE 0.1 0.5 1.0

RMSE MHE 0.0944 0.1367 0.1971
MHEPI 0.0789 0.1286 0.1889

AMR MHE 0.1003 0.1711 0.2432
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Figure 4.1: Estimated state profiles of the heat exchanger with parameters AF = AE =
0.5 (the upper one is G1 and the lower one is G2)

4.6.2 Example 2: damped Rayleigh beam equation

Consider a damped Rayleigh beam equation on a 1-D spatial domain Z ∈ [0, c] and
the time C ≥ 0 [13]:

GCC (Z, C)−U(AC)GZ ZCC (Z, C) − 0(AC)GZ ZC (Z, C) + GZ Z Z Z (Z, C) = 0 (4.32a)

G(0, C) = G(c, C) = GZ Z (c, C) = 0, (4.32b)
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Figure 4.2: Output estimation of the heat exchanger with parameters AF = AE = 0.5

−GZ Z (0, C) = F(C) + D(C), G(Z, 0) = G10, GC (Z, 0) = G20 (4.32c)

H(C) = GZC (0, C) + E(C), I(C) = GZC (
c

5
, C) (4.32d)

where G denotes the transverse displacement of the beam. Here U(AC) > 0 is propor-

tional to the moment of inertia of the cross section of the beam and 0(AC) > 0 is the

damping coefficient of the structural damping effect. U(AC) and 0(AC) are randomly

switching in a finite set S = {A1, A2} and once AC is identified U(AC) and 0(AC) are
known, see, [172, 173]. In addition, the torque disturbance F and control input D at

Z = 0 are considered along with collocated angular velocity observation H.

We formulate the state space model for the Rayleigh beam equation as in [13, 164].

We denote �̄ = H1
0 (0, c), + = H

2(0, c) ∩H1
0 (0, c), and define the inner product on �̄

such that 〈q, i〉�̄ = 〈(� − U32/3G2)q, i〉!2 , ∀q, i ∈ + . Let us introduce the operator

R : !2 [0, c] → + as: R = (� − U32/3G2)−1. It has been shown that as a bounded

operator, R is strictly positive [164]. Let us define the operator �0 : D(�0) → �̄ by:

D(�0) = {q ∈ H3(0, c) |q(0) = q(c) = 0, qZ Z (0) = qZ Z (c) = 0}, �0q = (34/3Z4) (Rq),
∀q ∈ D(�0). The operator �0 is self-adjoint, strictly positive, and commutes with R.
In what follows, we share use the notations: �̄1 = D(�0), �̄− 1

2
= !2 [0, c], �̄ 1

2
= + ,

and �̄−1 = H−1(0, c). Thus we have �0 ∈ L(�̄ 1
2
, �̄− 1

2
) and �0 commutes with R (and

hence with R−1).

We take transverse displacement G and its velocity GC as an extended state (i.e.,

G4 = [G; GC]). Define - = �̄ 1
2
× �̄ and * = . = , = / = C as the state, input, output

and disturbance spaces. It has been shown in [13] that � is m-dissipative, hence by
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the Lumer–Phillips theorem [42, The. 3.8.4] we note that � is the generator of a

contraction semigroup on - as � : D(�) = �̄1 × �̄ 1
2
→ -, with � = [0, �;−�0,−�1],

where �1 = −0R32/3G2 ∈ L(+), and �1 ≥ 0 on + and �̄. Denote -1 = D(�) and
-−1 = �̄ × �̄− 1

2
. Define the operator �0 ∈ L(�̄ 1

2
,C) with �0q = qZ (0) and the

observation operator � = [0, �0] ∈ L(-1,C). Moreover, we note that � = �∗ =

[0;�∗0] ∈ L(C, -−1). From [164, p. 649] and [174, Eq.(2.6)], we note that �∗0 =

−R 3
3Z
X0 = − 1

U
×[coth( c√

U
) sinh( Z√

U
)−cosh( Z√

U
)]. Similarly, we define that � = [0, �0] ∈

L(-1,C), where the operator �0 ∈ L(�̄ 1
2
,C) with �0q = qZ ( c5 ).

When there is no structural damping (i.e., 0 = 0), it has been shown that the

above system is a well-posed regular linear system and it is exactly observable and

controllable in [164, Rem. 5.5 and Rem. 6.3]. Since �1 is a bounded operator, we

note that the damped Rayleigh beam system (i.e., 0 ≠ 0) is still a well-posed regular

system [13] and exactly observable and controllable [175, The. 3.3]. Moreover, it is

established that � is exponentially stable in [13] by using [176, Pro. 3.14 and The.

3.18], which implies that � is infinite-time admissible [122, Pro. 5.5].

By performing Laplace transform of (4.32a) with the boundary conditions (4.32c),

the resolvent operator '(B, �) = ['11(B, �), '12(B, �); '21(B, �), '22(B, �)] can be de-

termined as in Example 1. By a direct calculation, one can obtain the expressions

of the discrete-time operators (�3 , �3 , �3 , �3 , �3 , +3). In this case, we consider that

there are two system modes with parameters (U(A1), 0(A1)) = (1× 10−5, 1× 10−5) and
(U(A2), 0(A2)) = (0.05, 0.3), respectively. Consequently, one can obtain two pairs of

model operators by substituting these parameters. In addition, we assume that the

system has a minimum dwell time that is taken as 6. In the parameter setting of

MHE and MHEPI, the moving horizon length is taken as # = 5, and weighting pa-

rameters are selected as % = 0.001, & = 0.1, and ' = 1×10−6. We consider constraints

F: ∈ [−AF, AF], E: ∈ [−AE, AE], and I: ∈ [−80, 80]. A periodic input signal is consid-

ered as D(C) = 4 sin(0.2cC) in this example. The initial conditions are considered to

be G10 = G20 = �0 sin(6Z), where the value of �0 is taken as �0 ∈ [1.9, 2.1]. The priori
estimates of G10 and G20 for MHE and MHEPI are taken as the 0.5G10 and 0.5G20,

respectively.

Similarly to Example 1, we investigate the proposed MHE algorithm (i.e., Algo-

rithm 2) in comparison with the baseline algorithm MHEPI subjected to different
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levels of disturbances in this example. The quadratic optimization is carried out by

means of Matlab optimization toolbox. Moreover, the values of simulation runs "

and simulation horizon ) are taken as 300 and 160, respectively. In each simulation,

the time discretization interval and spatial node are taken as ℎ = 0.25 s and 100,

respectively.

As shown in Table 4.2, MHEPI outperforms MHE in terms of RMSE in all three

scenarios. The estimation errors by using MHE or MHEPI increase with the increase

of disturbance magnitudes in terms of RMSE. For the considered model switching

parameters, the AMR of MHE is around 0.34 and it is remarkable that AMR slightly

increases as the level of disturbance increases. More specifically, the estimation per-

formance of MHE subjected to the medium level of disturbances is illustrated in Fig.

4.3 and Fig. 4.4, from which one can observe that the estimated state profiles are quite

smooth and the output estimation error of MHE slowly decreases as time increases.

Overall, the mode detection for the beam equation is more changeling compared to the

heat exchanger case due to the complex model structures (i.e., second-order deriva-

tive in time and fourth-order derivative in space). It is expected that by having more

distinguishable model switching parameters and weaker disturbances, the estimation

performance of MHE can be improved.

Table 4.2: Estimation performance of the proposed estimator on the damped Rayleigh
beam equation with different AF and AE

AF 0.1 0.5 1.0
AE 0.1 0.5 1.0

RMSE MHE 0.9025 0.9224 0.9251
MHEPI 0.3560 0.3587 0.3706

AMR MHE 0.3398 0.3428 0.3453

4.7 Conclusion

In this chapter, moving horizon estimator designs of a class of regular linear infinite-

dimensional systems have been accomplished with consideration of bounded distur-

bances and unknown and unpredictable switching modes. The challenges lie in han-

dling unbounded operators, constraint presence, and simultaneous state/output and

mode estimation. To address these, we have applied Cayley-Tustin transformation
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Figure 4.3: Estimated state profiles of the damped Rayleigh beam equation with
parameters AF = AE = 0.5 (the upper one is G and the lower one is GC)
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Figure 4.4: Output estimation of the damped Rayleigh beam equation with parame-
ters AF = AE = 0.5

to the regular linear infinite-dimensional system with unbounded operators leading

to a discrete-time infinite-dimensional model with all bounded operators, while pre-

serving essential model properties (e.g., input-output mappings, stability, and etc.).

Two discrete-time MHE algorithms have been proposed for simultaneous state/output

and mode estimation and constraint handling. Considering that the difficulties of this
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problem concerns how to establish appropriate observability conditions, we have pro-

posed simultaneous exact observability concepts and explored their corresponding

properties. Based on that, the stability analysis of the proposed MHE algorithm has

been provided. Two representative examples have verified the proposed design.
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Chapter 5

Soft Sensor Design for Lumped
Parameter Systems Using Variational
Bayesian Inference

Soft sensors (also called virtual sensors) are widely utilized for online measurements

of key process variables [177]. Considering that key process variables might not

be measured in an online manner (e.g., concentrations of the quality products in

chemical processes are usually measured in laboratories using advanced analyzers),

soft sensors are often used to realize online estimation of key process variables and

hence supplement online instrument measurements for advanced process monitoring

and control [178].

5.1 Introduction

Data-driven methods have been extensively applied to soft sensor development for a

wide range of process engineering fields over the past decades [179]. One of the main

reasons behind its increasing popularity is that compared to first-principle modelling

methods, data-driven soft sensor models are relatively simple to build without the

need to know complete knowledge or information on physical models.

With the rapid advance in computing power and multisensory technology, mas-

sive data accumulated can be processed by data-driven techniques to learn underlying

driving forces and/or hidden patterns for better monitoring and control of industrial

processes. Usually, in order to train a data-driven model with satisfactory perfor-

mance, sizable amounts of labelled ground-truth data are required. However, it is
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often expensive, time-consuming and labor-intensive to gather well-labelled data al-

though massive data is being collected. In particular, it becomes more demanding to

collect such labelled data for an industrial plant at its early stage. This is referred

to as the cold-start problem in recommender systems, where recommendations are

required for items when almost nothing is known about customer preferences [180].

In the context of the process industry, how to transfer the knowledge learned from

source processes with well-labelled data into a related target system that has limited

historical labels to establish a satisfactory soft sensor model motives this chapter.

Train data Test data Train data Test data

(a) Traditional machine learning (b) Transfer learning

Domain #1

Domain #2

Figure 5.1: Comparison of traditional machine learning and transfer learning

Typically, most multivariate statistical approaches assume that the normal pro-

cess data come from a single operating region so follow a unimodal distribution, which

is not the case when it comes to multi-mode operation processes [181]. Furthermore,

traditional machine learning (ML) methods often assume that the training and test-

ing data follow the same distribution and in the same feature space, and hence are

suitable for single domain learning. In other words, models learned by traditional ML

methods in one domain (e.g. domain # 1) may not be that useful in another domain

(e.g. domain # 2) as illustrated in Fig. 5.1. This is the main challenge when apply-

ing traditional ML methods to address multimodality of data distribution, cold-start

problem, and cross-domain learning tasks. On the other hand, transfer learning (TL)

has provided a suitable way to handle cross-domain learning by sharing the knowledge

learned from source domains to target domains, and its usefulness and applicability

have been demonstrated in various areas, including Web document classification, in-

door WIFI localization and machine fault diagnosis [182, 183, 184, 185, 186, 187].

Recently, an instance-based transfer learning method named domain adaptation ex-

treme learning machine was adopted to construct a soft sensor model for multi-grade
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chemical processes [188]. A fault description based attribute transfer learning ap-

proach was proposed for industrial fault diagnosis with zero-sample of the target

faults [189]. Overall, inadequate efforts have been made toward applying transfer

learning techniques to soft sensor modelling.

Feature extraction plays a crucial role in soft sensor modelling. To explore the

driving forces behind industrial processes from massive historical data, latent variable

models (representation learning [190]) have often been deployed to extract representa-

tive factors and common causes described by latent variables, such as principal com-

ponent analysis [191] and partial least squares [192]. The extracted latent variables

serve as a bridge connecting inputs and outputs whilst reducing the input dimen-

sionality and redundancy thus facilitating the prediction in soft sensors. However,

most data-driven methods in this category make the steady-states assumption by

ignoring the underlying process dynamics, which may suppress their potential in dy-

namic feature extraction greatly. To capture the intrinsic dynamics hidden in the

monitoring data, subspace identification methods [193] are often exploited to esti-

mate model structures and parameters from known inputs and outputs and adopt

the states estimated through system identification. Moreover, slow feature analysis

(SFA), as a novel technique that considers process temporal dynamics, was proposed

by finding features with slow varying velocities [194]. Unlike independent component

analysis (ICA), SFA aims to learn independent and slow varying features simultane-

ously. Later on, the optimization-based SFA framework was interpreted to a fully

probabilistic version called probabilistic slow feature analysis (PSFA) [195] which

was further extended to soft sensor modelling using the expectation maximization

(EM) algorithm with respect to fast-rate process data [196] and in a semi-supervised

manner [197]. Instead of using EM for point estimation, an interesting work about

dynamical slow feature extraction based on variational Bayesian inference (VBI) was

accomplished for soft sensing applications by fully considering probability distribu-

tions of parameters to account for corresponding uncertainties [198]. However, most

of the existing contributions on dynamic feature extraction are about single domain

(task, or process) learning so tend to be limited when it comes to varying operating

conditions (multimodality of data distributions), model adaption to new processes,

and cross-domain learning tasks.
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On the other hand, it is of significance to implement designed soft sensors in an

online fashion considering practical applications. To account for online realization,

some online transfer learning techniques have been proposed to transfer knowledge

from multiple homogeneous or heterogeneous source domains [199, 200]. For better

probabilistic interpretations, hidden Markov models are utilized to represent multiple

source domains and transferred to infer sequential data in target domains using online

Bayesian moment matching [201]. In addition, a joint prior probability density func-

tion of the source and target model parameters was introduced in the homogeneous

transfer learning frame to measure the transferability and then realize a fast optimal

Bayesian transfer learning classifier [202].

Motivated by the above considerations, a dynamic homogeneous transfer learning

technique named transfer slow feature analysis (TSFA) is proposed in this chap-

ter using variational Bayesian inference (VBI) to expand the applicability of slow

feature analysis for cross-domain learning and explore the common driving forces

behind similar processes. Unlike instance-based TL, the proposed method possesses

model parameter-based TL to transfer feature slowness and it behaves like a hybrid

combination of feature-based and parameter-based TL since the feature slowness is

characterized by the model parameters (namely transition matrices). The main con-

tributions of this chapter are the following: 1). To learn slow features by VBI, the

truncated Gaussian distribution is introduced as a conjugate prior to account for the

constrained transition matrix; 2). To quantify model transferability from multiple

source domains to the target one, two weighting functions associated with transition

and emission equations are introduced and learned dynamically at each time instant.

The remainder of this chapter is organized as follows. Section 5.2 presents the for-

mulation of PSFA and the corresponding parameter estimation are illustrated therein.

In Section 5.3, the transfer slow feature analysis technique is developed and parame-

ter learning via VBI is proposed correspondingly. To demonstrate the feasibility and

effectiveness of the proposed method, a simulation example, a public dataset and an

industrial case study are provided in Section 5.4. Finally, concluding remarks are

given in Section 5.5.
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5.2 Dynamic model learning

In this section, the probabilistic slow feature analysis is utilized for dynamic model

learning with good probability interpretation. As for model parameter learning, con-

jugate priors are utilized in the variational Bayesian inference scheme for efficient

estimation including the truncated Gaussian distribution considered for the transi-

tion matrix to account for the constrained supporting range. As illustrated in Fig.

5.2(a), PSFA is presented in this section for dynamic model learning and serves as a

preparatory step for the use of TSFA.

Sk-1Sk

Xk

H

R

A

μ0 , Λ0

αr , βr

μa , σa
m0 , P0

N

(a) PSFA

PSFA # 1

PSFA # 2

…

PSFA # M

Sk-1

Xkπk
N

μk Sk

(b) TSFA

Target DomainSource Domains Weights

m0 , P0

Figure 5.2: Probability graphical models of the probabilistic slow feature analysis
(PSFA) and the transfer slow feature analysis (TSFA)

5.2.1 Notation

For brevity, a list of notations and the corresponding definitions are summarized in Ta-

ble 5.1. Let ?1(+) and ?2(+) be two probability density functions. � ! [?1(+) | |?2(+)]
=

∫
?1(+) ln[?1(+)/?2(+)]3+ and H[?1(+)] = −

∫
?1(+) ln[?1(+)]3+ denote the

Kullback-Leibler (K-L) divergence from ?2(+) to ?1(+), and the entropy of ?1(+),
respectively. Throughout this chapter, if no special note is given, the matrices and

vectors are notated with letters in bold fonts, and scalars are represented by regular

characters. In particular, Od is used to denote an identity matrix of dimension 3.

5.2.2 Slow feature analysis revisited

As an unsupervised latent variable model, slow feature analysis (SFA) aims at learning

a slowness representation scheme as a feature space [194], which is different from other

feature learning techniques (such as PCA for maximum variance). Mathematically,
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Table 5.1: List of notations

Symbol Definition
Yk Slow features at time instant :
\ Latent variables
(8
:

8-th slow feature of Yk

^ Element of \
Yt
k

Slow features at time instant : in the target domain
� Hyper-parameters and slow features of PSFA
^k Observations or measurements at time instant :

?(^ |�) The marginal likelihood of ^ given �
- 8
:

8-th row vector of ^k

@(\) The proposal distribution of \
^ t
k

Observations at time instant : in the target domain
?(\ |^,�) The posterior distribution of \ given ^ and �

G The transition matrix of slow features Yk

`0, f0 Hyper-parameters of prior distribution ?(08)
Gcr The transition matrix of slow features Yt

k
m0, V0 Mean and variance of prior distribution ?(Y1)
08 Diagonal element of G

UA , VA Shape and rate of prior (Gamma) distribution ?(A)
N The emission matrix mapping from Yk to ^k

-0,�0 Mean and precision of prior distribution ?(hi)
Ncr The emission matrix mapping from Yt

k
to ^ t

k
ˆ̀08 , f̂08 Hyper-parameters of proposal distribution @∗(08)
hi 8-th row vector of N

m̂ i, �̂i Mean and variance of proposal distribution @∗(hi)
wk Gaussian noise involved in slow features Yk

ÛA , V̂A Shape and rate of proposal (Gamma) distribution @∗(A)
F8
:

Gaussian noise involved in slow feature (8
:

Gi,Ni,Hi Transition and emission matrices learned in 8-th source domain
w t

k
Gaussian noise involved in slow features Yt

k
W i,Xi Variances of noises learned in 8-th source domain
W Variance of Gaussian noise wk

zk , yk Identity indicators
Wcr Variance of Gaussian noise w t

k
I: 9 , H: 9 9-th elements in zk and yk
@8 Diagonal element of W

0k , .k Probabilities of having identities zk and yk
vk Gaussian noise involved in observations ^k

c: 9 , a: 9 Probabilities of having identities I: 9 and H: 9
v t
k

Gaussian noise involved in observations ^ t
k

c
( 5 )
: 9
,a
( 5 )
: 9

9-th elements of filtered 0k and .k
X Variance of Gaussian noise vk
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Table 5.1: List of notations (continued)

Symbol Definition
c
(?)
: 9
, a
(?)
: 9

9-th elements of predicted 0k and .k
Xcr Variance of Gaussian noise v t

k
� Hyper-parameters and slow features of TSFA
A Parameter of X, i.e., X = A−1 · OV
\ Element of �
E Average feature varying velocity

"0,". Hyper-parameters of prior distributions ?(0k) and ?(.k)
_k The quality outputs at time instant :

U
9
c, U

9
a 9-th elements of "0 and ".

H The emission matrix mapping from Yk to _k

"̂0, "̂. Hyper-parameters of proposal distributions @∗(0k) and @∗(.k)
gk Gaussian noise involved in outputs _k

Û
9
c, Û

9
a 9-th elements of "̂0 and "̂.

Z Variance of Gaussian noise gk
m( f )

k
Filtered mean of slow feature in the target domain

^e
k

Combined observations of ^k and _k

V( f )
k

Filtered variance of slow feature in the target domain
Ne The emission matrix mapping from Yk to ^e

k

m( p)
k

Predicted mean of slow feature in the target domain
ve
k

Gaussian noise involved in observations ^e
k

V( p)
k

Predicted variance of slow feature in the target domain
Xe Variance of Gaussian noise ve

k
_̂k Predicted quality output in the target domain
˜̂
k Augmented measurements with zero vectors

G̃, Ñk Fluctuated transition and emission matrices
W̃, X̃ Fluctuated variances of noises
Lt, Le Fluctuation terms in transition and emission equations

the averaged varying velocity for a finite sequence with # discrete samples {sk} with
sk ∈ R3×1 and 1 ≤ : ≤ # is represented as:

E(s) = E[(sk − sk−1)2] ≈
1

# − 1

#∑
:=2

(sk − sk−1)2 (5.1)

To extract slow features in a linear case, an optimization problem is often formulated

as follows:

min
z

E(s) (5.2a)

B.C. s = z) · ^ (5.2b)
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〈s(i)〉: = 0 (zero mean) (5.2c)

〈s(i)2〉:< = 1 (unit variance) (5.2d)

〈s(i) · s( j)〉: = 0, ∀8 ≠ 9 (independence) (5.2e)

where the matrix z) is used to map the measurements ^ into latent features s, and

〈·〉: represents the average over data samples. Specifically, we denote that z ∈ R%×3,
^ ∈ R%×# , s ∈ R3×# and s(i) ∈ R1×# . By imposing the constraints (5.2c)-(5.2e), one

can attain independent slow features sorted in descending order in terms of slowness

by applying the greedy strategy.

5.2.3 PSFA in state space

As a probability framework, probabilistic slow feature analysis (PSFA) can be for-

mulated as a linear Gaussian state-space model by extending the original SFA frame.

Specifically, the PSFA model takes the following form:

Yk = GYk−1 + wk , wk ∼ N(0,W) (5.3a)

^k = NYk + vk , vk ∼ N(0, X) (5.3b)

where Yk ∈ R3×1 and ^k ∈ R%×1 represent the slow features and observations in

each individual source domain. Moreover, G ∈ R3×3 denotes the transition matrix

of slow features and N ∈ R%×3 represents the emission matrix mapping slow features

into observations, respectively. Additionally, wk ∈ R3×1 and vk ∈ R%×1 stand for

two Gaussian noises (with variances W ∈ R3×3 and X ∈ R%×%, respectively, and

zero means having same sizes as wk and vk , which are notated with regular forms

throughout this chapter for brevity.) involved in slow features and observations.

Considering the equivalence relationship between SFA and PSFA, applying the unit

variance constraint in SFA to model (5.3) leads to W = Od − G) G, where Od denotes

the identity matrix of dimension 3. By the independence constraint in SFA, the slow

features are totally decoupled among each others as follows:

(8: = 08(
8
:−1 + F

8
: , F

8
: ∼ N(0, @8) (5.4a)

02
8 + @8 = 1 (5.4b)
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where G = diag(01, ..., 03) and W = diag(@1, ..., @3). (8
:
and F8

:
denote 8-th slow

feature and the corresponding noise at time instant :. Then, the associated average

varying velocity in SFA for latent feature Yi ∈ R1×# can be expressed by:

E(Yi) = E
[
((8: − (

8
:−1)

2
]
= 2(1 − 08) (5.5)

Hence, the feature slowness is characterized by the magnitude of 08, which implies

that the feature slowness can be transferred through sharing the model transition

matrix G.

Due to the positive definiteness of variance @8 in (5.5), 08 is constrained in the

range (−1, 1). Considering that noise terms tend to vary faster than meaningful

latent features, 08 can be further restricted in the range (0, 1) [198].
For a semi-supervised PSFA regression learning task, we can introduce another

emission equation for the quality outputs _k ∈ R?×1 as follow:

_k = HYk + gk , gk ∼ N(0,Z) (5.6)

where H ∈ R?×3 represents the corresponding emission matrix, and gk ∈ R?×1 denotes

the Gaussian noise with variance Z ∈ R?×?. By combining the process measurements

and quality variables together as ^e
k
= [^k ;_k] ∈ R(%+?)×1, an augmented emission

equation accounting for inputs and outputs are obtained as [197]:

^e
k = NeYk + vek , vek ∼ N(0, X

e) (5.7)

where ve
k
= [vk ; gk] ∈ R(%+?)×1, and the augmented emission matrix Ne = [N; H] ∈

R(%+?)×3 and measurement noise variance Xe = bdiag(X,Z) ∈ R(%+?)×(%+?) (Here
bdiag denotes a block diagonal matrix). In the following sections, the model structure

(5.3) is inherited by dropping the superscript ‘e’ in (5.7) for the ease of notation.

5.2.4 Parameter learning via VBI

In this section, the variational Bayesian inference (VBI) approach is utilized for pa-

rameter estimation. As shown in Fig. 5.2(a), we denote latent variables by \ (=
Y1:T , G,N, X) and the corresponding hyper-parameters by �(= `0, f0,m0, V0, UA , VA ,

-0,�0). In this section, � is fixed to represent a certain model structure so ?(^ |�)
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is considered as a constant. By marginalization over \, we can decompose ?(^ |�)
as follows:

ln ?(^ |�) =
∫
@(\) ln ?(^,\ |�)

@(\) 3\ +
∫
@(\) ln @(\)

?(\ |^,�) 3\

=L[@(\)] + � ! [@(\) | |?(\ |^,�)] (5.8)

where � ! [@(\) | |?(\ |^,�)] represents the Kullback-Leibler (K-L) divergence in-

dicating the probability distance between the proposal distribution @(\) and the

posterior ?(\ |^,�). Considering that K-L divergence is always non-negative, the

minimization problem of � ! [@(\) | |?(\ |^,�)] can be equivalently converted to a

maximization problem of the evidence lower bound (LB) L[@(\)]. To proceed with

the maximization process, the conditional distribution (accounting for measurements,

slow features and model parameters) of given hyper-parameters is decomposed as fol-

lows:

?(^1:T ,\ |�) = ?(^1:T , Y1:T |G,N, X,�)?(G,N, X |�)

=

#∏
:=1

?(^k |Yk ,N, X)
#∏
:=2

?(Yk |Yk−1, G)

× ?(Y1 |�)?(G|�)?(N |�)?(X |�) (5.9)

where ^1:T ∈ R(%+?)×# denotes the input and output observations (i.e., ^e
k
in (5.7))

in each source domain, N and X represent Ne and Xe in (5.7), and (1:# ∈ R3×#

denotes the time-series slow features. The last equality in (5.9) holds due to the state

space model (5.3). To avoid an intractable estimation, a variational factorization is

introduced to approximate the posterior distribution as:

@(\) = @(Y1:T)@(G)@(N)@(X) → ?(\ |^1:T ,�) (5.10)

Let ^ be one of these latent variables \ (= Y1:T , G,N, X), and its variational distribu-

tion can be updated as follow [203]:

ln @∗(^) ∝ E@ [\\^] [ln ?(^1:T ,\ |�)] (5.11)

To facilitate the learning process, Gaussian distribution and inverse Gamma distri-

bution are chosen as conjugate prior distributions of parameters N and X as follows:

N = [h1, ..., hV+ p]) , ?(hi |-0,�0) = N(-0,�−10 ) (5.12a)
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X = A−1 · OV+ p, ?(A |UA , VA) = Gamma(UA , VA) (5.12b)

?(Y1 |m0, V0) = N(m0, V0) (5.12c)

?(Yk |Yk−1, G) = N(GYk−1, Od − G) G) (5.12d)

?(^k |Yk ,N, X) = N(NYk , X) (5.12e)

where hi ∈ R3×1, -0 ∈ R3×1 and �0 ∈ R3×3 denote 8-th row vector of N and its

corresponding mean and precision, respectively. Y1 ∈ R3×1, m0 ∈ R3×1 and V0 ∈ R3×3

denote the initial condition of slow feature and its corresponding mean and variance,

respectively. The updating equations for N and X are derived as [198]

@∗(hi) = N(m̂ i, �̂
−1
i ), @∗(N) =

%+?∏
8=1

@∗(hi) (5.13a)

@∗(A) = Gamma(ÛA , V̂A) (5.13b)

where

�̂i = �0 + UAVA
#∑
:=1

〈
YkYk

)
〉

m̂ i = �̂
−1
i

(
UAVA

#∑
:=1

〈Yk〉 - 8: + �0-0

)
ÛA = UA +

# (% + ?)
2

V̂A = VA +
1

2

%+?∑
8=1

[ #∑
:=1

(
- 8:-

8
: − 2- 8: 〈Yk〉) m̂ i

)
+ CA

( #∑
:=1

〈YkYk〉) (m̂ i m̂
)
i + �̂

−1
i )

)]
where 〈·〉 denotes the statistical expectation of a random variable under its own dis-

tribution, and - 8
:
corresponds to 8-th row of ^k . Moreover, �̂i and m̂ i have the same

dimensions as �0 and -0, respectively.

To learn the hyper-parameter for updating @∗(G), the challenge arises in the con-

straint issue of 08 ∈ (0, 1). Compared to sampling methods proposed in [198], a

constrained conjugate prior is presented in this chapter considering computational

efficiency in practical implementations. Motivated by [204], we consider a truncated

Gaussian distribution as a conjugate prior distribution of ?(08) as follow:

?

(
08 |`0, f2

0 , 0, 1
)
= N)

(
`0, f

2
0 , 0, 1

)
(5.14)
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where G = diag(01, ..., 03) and

N)
(
`0, f

2
0 , 0, 1

)
=

5

(
08−`0
f0

)
f0

[
�

(
1−`0
f0

)
− �

(
0−`0
f0

)]
where 5 (I) Δ= 1√

2c
exp(− I22 ) is the probability density function (PDF) of the standard

normal distribution, and its cumulative density function (CDF) is given by � (I) Δ=∫ I

−∞ 5 (C)3C. The truncated Gaussian distribution can be interpreted as the Gaussian

distribution N
(
`0, f

2
0

)
supported on a bounded interval (0, 1). By recalling (5.11),

the updating proposal distribution of 08 is approximated with another truncated

Gaussian distribution as:

@∗(08) = N) (0̂8 | ˆ̀08 , f̂2
08
, 0, 1), @∗(G) =

3∏
8=1

@∗(08) (5.15)

where

f̂2
08
=

(
〈@8〉

#∑
:=2

〈
(8:−1(

8
:−1

〉
+ 1

f2
0

)−1

ˆ̀08 = f̂
2
08

(
〈@8〉

#∑
:=2

〈
(8:−1(

8
:

〉
+ `0
f2
0

)
where 〈@8〉 =

〈
1 − 02

8

〉
using (5.14). With the truncated Gaussian distribution being

applied, the constraint issue of 08 is resolved in the iterative learning process. Based

on the learned proposal distributions of parameters (G,N, X), we come to learning

the consequent proposal distribution of slow features.

However, it is not straightforward to estimate the slow features due to the un-

certainty of the model parameters, which indicates that one cannot simply estimate

slow features using expectations of model parameters as:

E@(G,N,X) [ln ?(Y1:T |^1:T , G,N, X,�)]

≠ ln ?(Y1:T |^1:T , 〈G〉 , 〈N〉 , 〈X〉) (5.16)

To address this issue, a unified inference frame [205] with the aid of Kalman filter and

Kalman-Rauch-Tung-Striebel smoother is formulated. Based on that, we can learn

the proposal distributions of slow features @(Y1:T) through:

ln @∗(Y1:T) ∝ E@(G,N,X) [ln ?(^1:T , Y1:T , G,N, X |�)]
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∝ ln ?(Y1:T | ˜̂1:T , G̃, W̃, Ñ1:T , X̃) (5.17)

where Yk ∼ N( G̃Yk−1, W̃) and ˜̂
k ∼ N(ÑkYk , X̃). In addition, G̃ = 〈G〉, W̃ =〈

Od − G) G
〉
, ˜̂

k = [^)k , 01×d, 01×d]
) , with : = 1, ..., # , X̃ = bdiag[〈X〉 , Od, Od], and

Ñk =

{ [
〈N〉) ,[G,[H

])
, if : = 1, ..., # − 1[

〈N〉) , 0d×d,[H

])
, if : = #

[G[G
) = Lt =

〈
G)(Od − G) G)−1

G
〉
−
〈
G)

〉〈
(Od−G) G)

−1〉〈
G
〉

[H[H
) = Le =

〈
N)X−1N

〉
−

〈
N)

〉〈
X−1

〉〈
N

〉
Here, Lt and Le represent two fluctuation terms from the transition and emission

equations (5.3). In addition, we note that [G,[H, Lt, Le ∈ R3×3, Ñk ∈ R(%+?+23)×3,
X̃ ∈ R(%+?+23)×(%+?+23), and G̃ and W̃ are of the same dimensions as G and W, respec-

tively.

5.2.5 Lower bound

The variational Bayesian inference not only provides a good probability interpretation

but also an effective way for dimensionality determination of latent variables. The

original maximization problem of posterior distributions is converted to maximizing

a evidence lower bound (LB) as follows [206]:

L[@(\)] =
∫

@(\) · ln ?(^,\ |�)
@(\) 3\

=

∫
@(\) ln ?(^,\ |�)3\ + H [@(\)] (5.18)

where H denotes the entropy. For different dimensions of latent variables, selecting

the maximum value of LB can lead to an optimal dimension selection of the feature

space.

Thus, an efficient probabilistic slow feature analysis method is proposed using

VBI for dynamic model learning. A brief summary of the proposed PSFA is given by

Algorithm 1.
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Algorithm 1. The proposed PSFA
Input: Source domain data (^1:T , _1:T)
Output: Source domain model (G,N, X)
(1). Initialize the hyper-parameters �;
(2). Update @(N), @(X) and @(G) using (5.13) and (5.15);
(3). Learn @(Y1:T) with (5.17);
(4). Iteratively perform steps (2) and (3) until the lower

bound (LB) converges.

5.3 Model transfer learning

Considering that there are often insufficient measurements (especially outputs or la-

bels) in the target domain to learn a predictive model, this section proposes an online

transfer learning technique to transfer the source domain models (G j ,N j , X j) (W j is

omitted since it can be uniquely determined by G j , with 9 = 1, ..., ") to the target

domain as depicted in Fig. 5.2(b). As described in (5.5), the feature slowness is char-

acterized by the transition matrix G so it can be naturally shared from source domains

to the target one by following this transfer mechanism. To measure the transferabil-

ity of transition and emission equations from source domains to the target one, two

weight functions are introduced and updated dynamically.

5.3.1 Transfer slow feature analysis in state space

To achieve dynamic transfer learning, the transfer slow feature analysis model is

constructed in a state space as:

Yt
k = GcrYt

k−1 + w
t
k , w t

k ∼ N(0,W
cr) (5.19a)

^ t
k = NcrYt

k + v
t
k , v tk ∼ N(0, X

cr) (5.19b)

where Yt
k
and ^ t

k
represent slow features and observations in the target domain with

the superscript ’t’ expressing target quantities in short. Similarly, w t
k
and v t

k
denote

the Gaussian noise terms of slow features and observations herein. In addition, we use

the superscript ’cr’ to represent the cross-domain knowledge learned from different

source domains to the target one. More specifically, we consider the same dimensions

of quantities used in (5.19) as those in (5.3) or (5.7) depending on whether we use

purely input observations or input and output measurements together. In addition,
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we note that there are #C samples (input measurements) in the target domain. Indeed,

we propose a three-step slow feature learning mechanism, including a filtering step

using only input observations (i.e., ^ t
k
), a filtering step using both input and output

observations (i.e., [^ t
k
;_ t

k
]) as shown in (5.7), and a prediction step using the filtered

slow features obtained in the second step. Based on the filtered slow features from

the first step, the objective is to predict output (_̂k) in the target domain by merging

" learned source domain models. For ease of notation, we drop the superscript ’t’

when no confusion arises.

To distinguish the impacts between transition and emission equations of the source

domain models on the target one, two weight functions are introduced as follows:

?(zk |0k) =
"∏
9=1

c
I: 9

: 9
, ?(yk |.k) =

"∏
9=1

a
H: 9

: 9
(5.20)

where I: 9 and H: 9 are two binary numbers. Specifically, zk ∈ R"×1 denotes a "-

dimensional binary random variable taking 1-of-" representation. More specifically,

zk = [I:1, I:2, ..., I:"]) and every element I: 9 satisfies that I: 9 ∈ {0, 1} and
∑"
9=1 I: 9 =

1, 9 = 1, ..., ". Similar notations hold for yk ∈ R"×1 and H: 9 . 0k ∈ R"×1 and

.k ∈ R"×1 denote the corresponding probabilities of having zk and yk , respectively.

Additionally, I: 9 = 1 corresponds to the transition equation of the 9-th source model

with a probability c: 9 at time instant :, and H: 9 = 1 indicates that the emission

equation of the 9-th source model holds with a probability a: 9 at time instant :.

Indeed, quantities c: 9 and a: 9 are regarded as responsibilities that the transition

equation in the source domain I: 9 and the emission equation in the source domain

H: 9 explain the target observations ^k best. In the proposed transfer learning frame,

c: 9 and a: 9 are employed as transferability measures accordingly. Along this line,

one can obtain the probabilistic expressions for the transition and emission functions

as:

?(Yk |Yk−1, zk) =
"∏
9=1

[
N(Yk |G jYk−1,W

j)
] I: 9 (5.21a)

?(^k |Yk , yk) =
"∏
9=1

[
N(^k |N jYk , X

j)
] H: 9 (5.21b)

where W j = Od−G j) G j with 9 = 1, 2, ..., ". It is apparent that once the model identity
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indices (zk , yk) with their corresponding probabilities (0k , .k) are determined, the

remaining part is a pure state estimation problem (Yk) and Kalman filter can provide

an optimal estimation [80]. However, the key challenge is how to merge these " source

models (with transition and emission equations individually considered) to achieve

a good transfer learning result. To tackle this issue, a conditional distribution is

adopted from [207]:

ln ?(^k |^1: k−1)=D ! [@(�) | |?(�|^1: k)]+L@(�) [^k |^1: k−1] (5.22)

where � = (Yk , zk , 0k , yk , .k). Using Bayes’ rule, the conditional distribution can

be decomposed into two components. The first component represents the K-L diver-

gence that is used to assess the quality of using the proposal distribution @(�) to
approximate the real posterior distribution ?(�|^1: k) as follows:

D ! [@(�) | |?(�|^1: k)] =
∫

@(�) ln @(�)
?(�|^1: k)

3� (5.23)

The second component in (5.22) corresponds to the evidence lower bound (LB):

L@(Θ) [^k |^1: k−1] =
∫

@(�) ln ?(�, ^k |^1: k−1)
@(�) 3� (5.24)

The recurrent likelihood ?(^k |^1: k−1) is considered as a constant since it is indepen-

dent of the slow features from the system transfer function perspective. Maximization

of LB is an alternative to enhance the quality of approximation (5.25) since K-L di-

vergence is alway non-negative and ?(^k |^1: k−1) is a constant. With mean field

assumption [206], we consider a factorized variational approximation to the posterior

distribution as follow:

@(�) = @(Yk)@(zk)@(0k)@(yk)@(.k) → ?(�|^1:k) (5.25)

where each individual proposal distribution can be updated iteratively by using the

coordinate ascent algorithm. Let \ be one of the variables Θ = (Yk , zk , .k , yk , 0k).
By applying VBI, we can update parameters iteratively through:

ln @∗(\) ∝ E@(�\\) [ln ?(�|^1:k−1)] (5.26)

To start the learning process, we consider Dirichlet distributions as conjugate prior

distributions for the two weighting functions:

?(0k |^1:k−1) = Dir(0k |"0) = � ("0)
"∏
9=1

c
U
9
c−1
: 9

(5.27a)
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?(.k |^1:k−1) = Dir(.k |".) = � (".)
"∏
9=1

a
U
9
a−1
: 9

(5.27b)

where we denote the parameters of Dirichlet distributions by "0,". ∈ R"×1, and

"0 = [U1
c, ..., U

"
c ]) with the constraint U 9c > 0, 9 = 1, ..., ", ensuring that the dis-

tribution (5.27a) can be normalized [203]. ". and its component U 9a are similarly

defined. Moreover, � ("0) and � (".) are two normalization constants for the consid-

ered Dirichlet distributions.

5.3.2 Learning proposal distributions by VBI

To learn the hyper-parameters and slow features, the following joint distribution is

considered as:

?(�, ^k |^1: k−1) = ?(^k , Yk |^1: k−1, zk , yk)

× ?(zk , yk |0k , .k)?(0k , .k |^1: k−1) (5.28)

where ?(0k , .k |^1: k−1) = Dir(0k |"0) ·Dir(.k |".) can be obtained from the prior infor-

mation (5.27). In addition, one can decompose ?(^k , Yk |^1: k−1, zk , yk) by marginal-

izing over Yk−1 as:∫
Yk−1

?(^k |Yk , yk)?(Yk |Yk−1, zk)?(Yk−1 |^1: k−1) 3Yk−1

where ?(Yk−1 |^1: k−1) = N(m( f )k−1
, V( f )

k−1
). For clarification, the superscripts ’(f)’ and

’(p)’ denote the filtered and predicted quantities. With the transition and emission

likelihood functions (5.21), the joint distribution (5.28) is rewritten as

?(�, ^k |^1: k−1) =
"∏
9=1

[
a
(?)
: 9
N(^k |N jYk , X

j)
] H: 9

· � (".)
"∏
9=1

[
a
(?)
: 9

]U 9a−1
∫
Yk−1

{ "∏
9=1

[
c
(?)
: 9
N(Yk |G jYk−1,W

j)
] I: 9

· N
(
Yk−1 |m

( f )
k−1

, V( f )
k−1

)}
3Yk−1 · � ("0)

"∏
9=1

[
c
(?)
: 9

]U 9c−1

=

"∏
9=1

[
a
(?)
: 9
N(^k |N jYk , X

j)
] H: 9
· � (".)

"∏
9=1

[
a
(?)
: 9

]U 9a−1
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·
"∏
9=1

[
c
(?)
: 9
N(Yk |m j

k

( p)
, V j

k

( p)
)
] I: 9
· � ("0)

"∏
9=1

[
c
(?)
: 9

]U 9c−1
(5.29)

The second equality above is due to the binary property of I: 9 , which permits the

exchange of integral and product operators [207]. Then the predicted parameters are

readily drawn as:

m j
k

( p)
= G j · m( f )

k−1
(5.30a)

V j
k

( p)
= G j · V( f )

k−1
· G j) + W j (5.30b)

Applying parameter learning formula (5.26), we can update the variational distribu-

tion as follows:

@∗ (zk) =
"∏
9=1

[c( 5 )
: 9
]I: 9 , @∗ (yk) =

"∏
9=1

[a( 5 )
: 9
]H: 9 (5.31a)

@∗ (0k) = Dir(0k |"̂0), @∗ (.k) = Dir(.k |"̂.) (5.31b)

where the hyper-parameters are updated as

c
( 5 )
: 9
∝ c

(?)
: 9
· N (Yk |m j ( p)

k
, V j ( p)

k
)

a
( 5 )
: 9
∝ a

(?)
: 9
· N (^k |N jm j ( p)

k
, X j + N jV j ( p)

k
N j) )

Û
9
c = U

9
c + c( 5 ): 9 , Û

9
a = U

9
a + a( 5 ): 9

where "̂0 = [Û1
c, ..., Û

"
c ]) ∈ R"×1 and "̂. = [Û1

a , ..., Û
"
a ]) ∈ R"×1 with constraints

Û
9
c, Û

9
a > 0, and 9 = 1, ..., ". Based on the updated parameters, the joint distribution

(5.29) can be approximated with a single Gaussian distribution by combining the

first- and second-order moments of Yk , which leads to

@∗(Yk) = N(Yk |m( f )k
, V( f )

k
) (5.32)

where

V( f )
k

=

[ "∑
9=1

[
a
( 5 )
: 9

N j)X j−1
N j + c( 5 )

: 9
V j ( p)
k

−1] ]−1

m( f )
k

= V( f )
k

"∑
9=1

[
a
( 5 )
: 9

N jZX j−1
^k + c( 5 ): 9 V

j ( p)
k

−1
m j ( p)

k

]
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With the filtered slow features in (5.32), one can predict the outputs (labels) in the

target domain as follows:

_̂k =

"∑
9=1

a
( 5 )
: 9

H jm( f )
k

(5.33)

The procedures for implementing the proposed transfer slow feature analysis tech-

nique are summarized as Algorithm 2.

Algorithm 2. The proposed TSFA
Input: " source domain data (^ j

1:T ,_
j
1:T), and

target domain data (^k).
Output: Predicted outputs _̂k in the target domain
Offline learning
For 9 = 1 : 1 : "
(1). Initialize the hyper-parameters �;
(2). Update @(N j), @(X j) and @(G j) using (5.13) and (5.15);
(3). Learn @(Y1:T) with (5.17);
(4). Iteratively perform the above steps (2) and (3) until

the LB converges.
end
Obtain " source domain models (G j ,N j , X j), with 9 = 1, ..., "
Online learning
For : = 1 : 1 : #C

(1). Predict m j
k

( p)
and V j

k

( p)
using (5.30);

(2). Learn model identities (zk , yk) and weights (0k , .k)
by (5.31) using input observations (^k);

(3). Estimate slow features by (5.32) based on input
observations (^k);

(4). Predict the quality outputs (_̂k) with (5.33);
(5). Repeat steps (2) and (3) using input and output

observations (namely [^k ;_k]) if _k is available.
end

5.4 Simulation and validation

In this section, a numerical example, a public dataset and an industrial case study

are utilized to demonstrate the applicability of the proposed transfer slow feature

analysis method in soft sensor modelling. All data samples used in the three cases

are time-series sequences. The well labeled source domain data (including all inputs
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and outputs) are utilized for the offline training of the TSFA model in order to learn

source domain models. The time-series data with limited labels (namely all inputs and

limited outputs) in the target domain are used to infer the TSFA model and quality

outputs in an online learning manner. The time difference between two available

outputs (labels) in the target domain is set as two (i.e., one of every two consecutive

labels is missing) in all cases. In the proposed TSFA model, hyper-parameters are

chosen with the preference for process slowness as: {`0, f0,m0, V0, UA , VA , -0,�0} =
{0.5, 1, 1d×1, Od, 0.1, 100, 1d×1, 200 × Od}, where 1d×1 denotes a 3 dimensional vector

with all elements 1.

As for comparison, six state-of-the-art methods including probabilistic slow fea-

ture analysis (PSFA) [195], probabilistic principal component analysis (PPCA) [208],

linear transfer component analysis (TCA) [209], metric transfer learning framework

(MTLF) [210], multi-component transfer metric learning (MCTML) [211], and domain-

adversarial neural network (DANN) [212, 213] are investigated as baseline techniques

in three cases. The hyper-parameters are selected via 5-fold cross-validation on the

training data for baseline methods. In addition, the DANN utilized here considers

the mean squared error as the objective function for regression tasks instead of the

binary cross-entropy for classification tasks in the original scheme [212, 213] and the

trade-off parameter _ is selected from [2−9, 2−8, ..., 1] by cross-validation. For the

implementation of the DANN algorithm, a linear discriminative network is used as

the last layer for regression tasks. Considering the small data sizes, a one hidden

layer architecture is considered as the DANN framework and the neuron numbers

are selected from 50, 100, and 150 by cross-validation. Principal component analysis

(PCA) [191] is taken as a preprocessing method for the MTLF and the MCTML when

dimension reduction is needed for dealing with high-dimensional data.

5.4.1 Numerical simulation example

To verify the effectiveness of the proposed transfer slow feature analysis method, a

synthetic dataset containing 4 domains are generated based on system (5.3). More

specifically, 4 models are constructed with the following transition matrices: G1 =

diag(0.99, 0.95, 0.92, 0.87), G2 = diag(0.99, 0.94, 0.91, 0.88), G3 = diag(0.80, 0.40, 0.30,

0.20), and G4 = diag(0.25, 0.24, 0.23, 0.12), where it is apparent that the first two tran-
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sition matrices (namely G1 and G2) correspond to slow features, while G3 accounts

for both fast and slow features, and G4 represents fast varying features. Using (5.4b),

the corresponding variance matrices W j ( 9 = 1, ..., 4) can be readily computed. As

for emission matrices, 4 random N j ∈ R5×4 and X j = A−1
9
· O5 with 9 = 1, ..., 4 (Here

N j and X j represent Ne and Xe in (5.7)) are introduced for synthetic data genera-

tion. For demonstration purpose, we further choose N1 = N2, while N3 and N4 are

different random matrices.

In this case, we set the first model as the target domain and the remaining 3 models

as the source domains. Along this line, 150 samples from 3 source domains are used

for training and 50 samples from the target domain are utilized for testing. Based

on the generated measurements of inputs and outputs from domain 2 to domain 4, 3

linear Gaussian state-space models are learned as source domain models. Through the

evidence lower bound, the dimension of latent variables of 3 source domain models

are determined as 3 that is quite close to the real dimension value 4. As shown

in Fig. 5.3(a), the learned transition matrices can basically reflect the real values.

Especially, the learned source model 1 has a clear preference for slowness, which shows

the potential to be transferred to the target model. In addition, each source domain

model has a distinct emission matrix and measurement noise variance as illustrated

in Fig. 5.3(b) and Fig. 5.4.

1 2 3

Dimension d

0

0.5

1

A

(a) Transition Matrices A

Source Model #1

Source Model #2

Source Model #3

(b) Measurement Noise Variances R

1 2 3

Source Model Identity

0

0.5

1

R

Figure 5.3: Transition matrices and measurement noise variances learned for source
domain models by TSFA
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Figure 5.4: Emission matrices learned for source domain models by TSFA

Table 5.2: Comparison of different dimensions of latent variables in the synthetic data
in terms of correlation coefficient

3 (#) PPCA PSFA TCA MTLF MCTML DANN TSFA
2 (50) 0.526 0.167 0.411 0.393 0.502 0.261 0.619
3 (100) 0.317 0.519 0.378 0.401 0.435 0.315 0.631
4 (150) 0.316 -0.058 0.362 0.473 0.419 0.318 0.628

Table 5.3: Comparison of different dimensions of latent variables in the synthetic data
in terms of root mean square error

3 (#) PPCA PSFA TCA MTLF MCTML DANN TSFA
2 (50) 1.452 1.723 1.602 1.282 1.237 1.187 1.173
3 (100) 1.447 1.338 1.597 1.284 1.271 1.194 1.155
4 (150) 1.447 1.888 1.594 1.228 1.227 1.193 1.166

To quantify the soft sensing performance, Pearson correlation coefficient (PCC)

and Root Mean Square Error (RMSE) are calculated for TSFA and six competing

algorithms under consideration of latent variables with different dimensions (namely

3 = 2, 3, 4) or neuron numbers (i.e., # = 50, 100, 150) in the DANN method. As

observed in Table 5.2 and Table 5.3, the proposed TSFA outperforms two traditional

machine learning methods (namely PPCA and PSFA) and four transfer learning algo-

rithms (including TCA, MTLF, MCTML, and DANN). Additionally, TSFA performs

better than PSFA since it reduces the effects of negative transfer from unrelated

source domains by reducing the corresponding weights. The possible reason why

TCA, MTLF, MCTML, and DANN are not as good as TSFA in terms of regression
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performance (especially PCC) might be because TCA, MTLF, MCTML, and DANN

perform a static transfer learning mechanism, which ignores model dynamics in cross-

domain transfer learning. It can be noted that MTLF, MCTML and DANN achieve

smaller prediction errors than those of TCA, and MCTML and MTLF achieve better

prediction performance than TCA and DANN with respect to PCC. MCTML out-

performs MTLF in terms of PCC and RMSE, owing to its capacity of automatically

learning distinct components from source domains and mitigate the negative influence

of unrelated samples. Moreover, DANN shows comparable performance to TSFA in

terms of RMSE. Graphically, the soft sensor performance of TSFA and PSFA with

3 = 3 is shown in Fig. 5.5, where both TSFA and PSFA can learn the main trend of

the reference output, while PSFA shows obvious local divergence especially at time

instants 20∼25. In addition, the learned weighting functions of transition and emis-

sion equations corresponding to the 1st source domain (namely model 2) converge to

1 rapidly as depicted in Fig. 5.6. This validates the fact that the 1st source domain

resembles the target domain as expected. Hence, the learned weights can be utilized

to dynamically measure the cross-domain transferability.
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Figure 5.5: Prediction performance of TSFA on simulated data
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Figure 5.6: Learning to update transition and emission weights by TSFA
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Table 5.4: Comparison of different target domains in the synthetic data in terms of
correlation coefficient

# PPCA PSFA TCA MTLF MCTML DANN TSFA
2 -0.491 0.122 0.488 0.412 0.312 0.222 0.514
3 0.187 0.102 -0.078 0.212 0.252 0.052 0.238

Table 5.5: Comparison of different target domains in the synthetic data in terms of
root mean square error

# PPCA PSFA TCA MTLF MCTML DANN TSFA
2 1.616 1.321 1.140 1.121 1.141 1.245 1.064
3 2.660 2.701 2.721 2.639 2.621 1.662 2.641

To further investigate the transfer learning performance of the propose TSFA, we

test model 2 and model 3 with slow varying features respectively as the target domain

and the remaining 3 domains as source domains. The performance of soft sensors

designed by TSFA and six baseline methods is evaluated and compared in Table

5.4 and Table 5.5 with respect to PCC and RMSE. It is shown that the proposed

TSFA outperforms most baseline methods with respect to regression performance

since it aims at learning cross-domain slow features. When model 3 is selected as

the target domain, DANN shows the smallest RMSE among other methods, while

having smaller PCC than most methods including the proposed TSFA, and MCTML

achieves the best prediction performance in terms of PCC and smaller RMSE than

the proposed TSFA. Using variational Bayesian inference, the proposed transfer slow

feature analysis is able to integrate the process knowledge and historical data in the

source domains and achieves model parameters transfer and slow features learning in

the target domain, which leads to a better online prediction of quality variables in

the target domain compared to the competing algorithms.

5.4.2 Simulation study on TE process

In this section, the Tennessee Eastman (TE) process [214] as a public simula-

tion benchmark is utilized to test the applicability and effectiveness of the proposed

method. TE process has been extensively deployed to validate and evaluate control,

identification and estimation techniques [198, 215, 216, 217, 218, 219]. Based on the
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simulator and decentralized control strategies proposed in [217, 218], we generate

data from 41 measurement variables and 12 manipulated variables under six normal

operating modes as shown in Table 5.6. Although the proposed transfer slow feature

analysis aims at dynamic feature extraction, it should be applicable for static or weak

dynamic process analysis under similar operating conditions [198].

Table 5.6: Operating modes of TE process

Mode Mass Ratio (G/H) Production Rate (m3/h)
1 50/50 22.89
2 40/60 22.89
3 60/40 22.89
4 50/50 19.45
5 40/60 19.45
6 60/40 19.45

Table 5.7: Validation results of estimating component C in the TE process in terms
of correlation coefficient

# PPCA PSFA TCA MTLF MCTML DANN TSFA
1 0.184 0.437 0.016 0.809 0.748 0.751 0.835
2 0.362 -0.459 -0.039 0.426 0.685 0.703 0.763
3 0.093 0.016 -0.179 0.543 0.654 0.705 0.897
4 0.556 0.167 -0.323 0.689 0.566 0.719 0.724
5 0.458 -0.184 -0.279 0.655 0.503 0.623 0.853
6 -0.251 0.157 -0.316 0.765 0.510 0.565 0.806

Table 5.8: Validation results of estimating component C in the TE process in terms
of root mean square error

# PPCA PSFA TCA MTLF MCTML DANN TSFA
1 3.244 2.967 3.350 1.956 2.197 2.034 1.873
2 2.314 3.874 2.569 2.460 1.838 1.852 1.667
3 1.691 2.079 1.770 1.449 1.272 1.562 0.791
4 1.986 2.241 2.310 1.590 1.798 1.732 1.551
5 2.473 3.398 2.820 2.067 2.364 1.857 1.449
6 2.759 2.619 2.617 1.620 2.180 1.810 1.485

Based on 31 commonly used online measurements that consist of 9 manipulated

variables and 22 process measurements, we intend to establish soft sensing models for

140



predicting a quality variable (usually measured offline) under six different operating

conditions. With prior knowledge [216], 13 representative features are selected out

of 31 features and fed into feature learning algorithms for building predictive models

to infer a key product (Component C) in an intermediate stream (Stream 6) [214].

Specifically, 13 representative features include feed flow, purge flow, reactor feed rate,

reactor pressure and etc., and we refer to [216] for detailed physical meanings of

all 13 features. There are 205 input-output samples collected under each operating

condition. In the training process, 1,025 samples from five operating modes (source

domains) are used for predictive model learning, while 205 samples from the remaining

operating mode (target domain) are utilized for validation.

The testing results are evaluated by PCC and RMSE as shown in Table 5.7 and

Table 5.8, respectively. It is apparent that the proposed TSFA is capable of extracting

transferrable slow features and thus providing better prediction results in comparison

to six baseline methods in all cases. In addition, MTLF, MCTML, and DANN as

the-state-of-art transfer learning techniques outperform other baseline methods with

higher correlation coefficients and smaller prediction errors in most cases, and achieve

comparable performance to TSFA in some cases (such as case #1 where mode 1 is

taken as the target domain). It is noted that the performance of MCTML is close to

(or worse than) that of MTLF in some cases, because only independent components

are extracted in the source domains [211].

5.4.3 Validation through industrial process

In order to further investigate the usage of the proposed method, an industrial process

with potential latent slow features is considered for a soft sensor modelling exercise.

This process is about steam-assisted gravity drainage (SAGD), which is a widely

utilized in-situ technology for heavy oil recovery using horizontal well-pairs. In SAGD

operations, hot steam is injected to underground heavy oil or bitumen reservoirs

through injector wells and the mixture of emulsion (including crude oil, water and etc)

is retrieved through producer wells using submersible pumps. The injected hot steam

heats up heavy crude oil and reduces its viscosity, making it easier to be pumped out.

In this process, water is inevitably mixed in the crude oil emulsion which is undesired

and needs to be separated for the recycling purpose. However, current engineering
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practice relies on the off-line measurement of the emulsion water content, which is

not efficient. Therefore, real-time estimation is preferable for efficient process control

and operation. Considering the similarities of well-pairs in working mechanisms and

operating conditions, it is potential to transfer the knowledge learned from source

well-pairs to enhance soft sensing performance of target well-pairs of interest.

In this study, 11 well-pairs are considered and each well-pair has 19 process vari-

ables for predicting the quality variable (water content), including steam tempera-

tures, emulsion flow rate and etc. As stated above, the 19 process variables are mea-

sured online while the water content is measured offline with a slow sampling rate by

a device called test separator. For proprietary reasons, all data have been normal-

ized. In addition, the fast-rate data is averaged within an acceptable time range to

align them with the slow-rate water content data. Consequently, there are 49 sam-

ple measurements of the water content for each well-pair within a one-year working

period (one averaged sample per week). Based on the prior process knowledge, 6

features including steam temperature, total flow rate, produced emulsion pressure

and temperature, casing gas pressure and temperature are selected for further feature

extraction.

Table 5.9: Validation results of estimating water content in the SAGD process in
terms of correlation coefficient

# PPCA PSFA TCA MTLF MCTML DANN TSFA
1 0.322 0.131 -0.311 -0.158 0.046 -0.294 0.467
2 0.283 0.121 0.228 -0.208 -0.007 0.116 0.537

Table 5.10: Validation results of estimating water content in the SAGD process in
terms of root mean square error

# PPCA PSFA TCA MTLF MCTML DANN TSFA
1 0.911 0.962 0.954 0.941 0.937 1.149 0.961
2 0.883 0.926 0.876 0.899 0.899 1.567 0.759

To demonstrate the performance of the proposed transfer learning technique, we

consider well-pair 1 and well-pair 2 as the target domain individually and the remain-

ing 10 well-pairs are treated as source domains. In this study, process variables and

the water content variable are considered available for learning each source model,
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while process variables and limited labels are considered known in the target domain.

In total, 490 samples from 10 source domains are used for model training and 49 sam-

ples from the target domain are utilized for model testing. Thus 10 source domain

models are learned and transferred to the target domain for soft sensor design by

TSFA. As shown in Table 5.9 and Table 5.10, the proposed method greatly improves

the prediction performance in comparison to the baseline methods in terms of PCC

and RMSE. This indicates that the proposed method is able to capture the slowness

characteristics in source well-pairs and transfer them to the target well-pair. By cal-

culating lower bounds, the latent variable dimensions in both cases are determined

as 5 for PSFA and TSFA, while the latent variable dimensions of PPCA and TCA

are selected as 1, 1 and 3, 2 based on the accumulated eigenvalues. In both cases,

the dimensions of latent space of MTLF and MCTML are chosen as 5 by using PCA

(based on the accumulated eigenvalues), and the neuron numbers of 1 hidden layer

DANN are selected as 100 and 150 respectively (from 50, 100, and 150) according

to cross-validation. In this case, TSFA shows much better performance than TCA,

MTLF, MCTML, and DANN due to its ability to account for dynamical transfer

learning by the use of variational Bayesian inference. Although PPCA, as the best

competitor, shows the smallest prediction error in the second case, it is not capable

of achieving better PCC than the proposed method. Hence, PPCA is not suitable for

such dynamic transfer learning task because it can only predict some global trends

while fails to reflect the local variations that can be well estimated by using the

proposed TSFA method as illustrated in Fig. 5.7.

5.5 Conclusion

In this chapter, an online transfer slow feature analysis (TSFA) was developed for

dynamically transferring the multiple source models to the target domain that has

limited output labels. More specifically, the probabilistic slow feature analysis method

was adopted for multiple source domain models learning (with a preference for slow

features) using input and output measurements from different source domains based

on variational Bayesian inference. To address the constraint issue associated with the

transition matrix, the truncated Gaussian distribution was introduced as a conjugate
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Figure 5.7: Prediction performance of TSFA in the SAGD process

prior for efficient learning. In addition, two weighting functions corresponding to

transition and emission matrices of source models were dynamically updated to mea-

sure the transferability from each source domain model to the target domain model

at each time instant. The effectiveness of the proposed technique with application

in soft sensor modelling is validated through a simulation example, a public dataset,

and an industrial SAGD process.
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Chapter 6

Hybrid Estimator Design for Long
Range Pipeline Leak Detection and
Localization

6.1 Introduction

As one of the widely utilized infrastructures for material transportation, numerous

pipelines have been laid onshore and offshore for crude and refined oil and gas products

delivering [220]. The practical difficulty, however, is that the operational status of

buried pipeline is rarely directly observable. On the other hand, harsh and changeable

operational and environmental conditions (extreme pressure and temperature, etc.)

may induce pipeline defects (such as leakage, breakage, bending, or other failure

modes) which, in turn, may affect its reliability and transportation efficiency, and

even result in severe damage, such as economic loss, ecological contamination and

human accidents [221, 222, 223]. Among these defects, leakage is considered to be

one of the most damaging defects affecting a pipeline system [224]. It is crucial,

therefore, to propose reliable and effective leak detection and localization methods to

guarantee pipeline integrity.

To address this, numerous methods have been proposed. Mostly, they fall un-

der three categories: 1) non-technical (manual) methods, 2) hardware based (semi-

automated) methods and 3) software based (automated) methods [221]. Furthermore,

non-technical methods and hardware based methods can be classified as direct meth-

ods (or external methods), while software based techniques can be referred as indirect

methods (or internal methods). Most of the direct methods are usually realized by
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routine survey (offline monitoring) rather than continuous online monitoring, which

can be done by software based techniques. Another difference is that software based

methods could be updated in existing software systems, while hardware based tech-

niques are difficult to be reinstalled once the hardware system is built. As stated in

the literatures [221, 225], non-technical methods involve patrolling by skilled workers

along pipelines to detect leaks by relying on natural senses (seeing, smelling or hear-

ing). Despite being accurate in detecting large leaks, these methods are not suitable

for detection of small leaks and in particular the leaks at their early stages. On top of

it, they require well-trained operators or qualified agents in the process, and heavily

depend on the patrolling frequency and the surrounding environment. Particularly, it

is hard to utilize these approaches when it comes to subsea or onshore buried pipes.

As for hardware based methods, they mostly rely on physical sensors and devices,

such as swimming robots, intelligent pigs, cable sensors, optical fibres, infrared cam-

eras, vapour/liquid sensing tubes, etc [226, 227, 228]. The sensors and devices are

used to monitor working status of pipeline systems to detect any irregular working

condition, such as leakage, and then locate a specific leakage position. One inevitable

drawback of these methods is prohibitive costs of installation and maintenance of

numerous sensors along entire pipeline systems. On the other hand, software based

methods comprise model-based approaches and data-driven techniques. With limited

measurement of process variables at pipeline ends provided by SCADA (Supervisory

Control and Data Acquisition) systems, including pressure, mass flow rate and tem-

perature, model-based methods aim at finding the relationship between measurements

and the process states, by using first principle modelling. Then, the estimated out-

puts and associated measurements are compared, to diagnose and pinpoint leakage

[225].

The advantage of model-based methods is that physical meaning is clearly de-

scribed which enables us to capture the intrinsic nature of hydraulic dynamics, whereas

model adaption may fail when it comes to varying working conditions. Typical mod-

els in this category are: mass/volume balance model, real time transient model,

negative pressure wave method and pressure point analysis. On the other hand,

data-driven techniques, as black box modelling approaches (such as support vector

machine [229, 230, 231], neural networks [232], wavelet transform [233], etc.), have
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become increasingly popular in the past decades because of the advances in sensor

technology and computing capacity. However, these techniques fail to provide a link

between the estimation variables and pipeline physical characteristics, if they are em-

ployed by pure application of statistic algorithms without guidance on physical model

features.

As a representative of model-based approaches, real time transient model has

attracted a lot of interest from academia and industry. In particular, this model

has been widely used in water-pipeline and oil/gas-pipeline transient analysis and

condition monitoring due to its cost-effective performance, noninvasive installation

and wide operational ranges [225]. Specifically, the presence of leakage in pipelines

can alter hydraulic transient behaviour by changing the spatiotemporal profiles of

pressure, mass flow velocity and/or temperature. Hence, abnormal phenomena can

be captured by comparing the measured and estimated process variables obtained by

real time transient model based on mass, energy and momentum conservation laws.

In the past decades, some enhanced transient model-based leak-detection tech-

niques have been proposed, including inverse transient analysis (ITA) [228], frequency

method [227] and direct transient analysis (DTA) [225]. However, there are still some

drawbacks that prevent their further application in pipeline leak detection. For in-

stance, in order to achieve better performance, ITA has to entail a wide range of

measurements at different locations along a pipeline system to calibrate its model in

terms of deviation analysis between measured values and calculated ones. Moreover,

when it comes to larger scale pipeline networks, numerical simulation error of ITA may

be amplified by solving the inverse problem [225]. Likewise, the frequency domain

method depends on persistent excitation at one location for transient flow generation

to actuate leak-induced system frequency responses, while the relationship between

leak-induced frequencies and leak characteristics is still unclear. As an alternative to

ITA, direct transient analysis does not utilize numerous spatial measurements but re-

lies on full pressure trajectory estimation by pipeline boundary measurements. Since

it is pressure point analysis, it may not be successful in capturing leak-induced features

on other process variables and estimating of varying parameters is quite challenging,

caused by system uncertainty, process noise and changeable working conditions [225].

To reduce the cost of numerous sensors placed along pipelines, researchers and
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engineers aim at designing an adaptive observer or estimator to monitor working con-

dition of pipeline systems and diagnose various faults such as leakage and breakage

[234] with limited measurements. Instead of using four boundary conditions (pressure

and velocity at both upstream and downstream ends) as measurements, an extended

Kalman observer is proposed in the reference [235] for pipeline leak detection and

localization with two measurements, i.e., pressure at the pump inlet and pressure

at the system downstream end. In Aamo’s paper [236], leak size and position can

be estimated independently by introducing a loss term to the original water-hammer

equations. A probability density function is defined in the loss term to describe

the leak spatial distribution. By formulating a continuous-time Luenberger observer,

both single and multiple leaks can be estimated effectively by this method. In order

to address real-time deployment of the observer under varying operating conditions,

an adaptive online observer is design by Wang [237]. To enhance local leakage de-

tectability, a consensus algorithm based onH∞ estimator is designed for water pipeline

system leak detection using water hammer equation [238]. However, most of these

Luenberger or Kalman observers are designed within a continuous-time system set-

ting, which prevents direct applications to digital devices, such as SCADA system or

data-processing centres. Although continuous-time designs can be realized in discrete

settings by applying Euler finite difference method in time and space, simulation ac-

curacy cannot be often guaranteed, especially when dealing with inverse transient

analysis [239], which requires more accurate and robust simulation techniques. On

the other hand, most of the model-based diagnosis approaches are based on recursive

estimation, which tends to take more time to render estimation results compared to

pattern recognition methods.

Due to these drawbacks, a hybrid method in terms of discrete Luenberger observer

of a direct transient model and support vector machine model is developed in this

chapter. More specifically, a linear infinite-dimensional pipeline hydraulic system is

obtained by applying linearization to the original nonlinear water hammer equation.

As for model discretization, the Crank-Nicolson approach realized by Cayley-Tustin

time discretization is utilized for the pipeline infinite-dimensional system represen-

tation in this chapter. There are several main advantages of using Crank-Nicolson

discretization setting. Among these, the first one is that no spatial discretization or
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model reduction technique is applied. In addition, the Crank-Nicolson method, as

an implicit mid-point integration, has second-order discretization accuracy in time,

while explicit Euler and implicit Euler methods have first-order discretization accu-

racy in time. Moreover, the Crank-Nicolson method is symmetric or time-reversible

given by the implicit mid-point rule, which ensures numerical stability which might be

lost by applying the explicit Euler discretization method [62, 97, 119]. In particular,

the discrete hydraulic system is attained by solving for the corrsponding resolvent

operator. Based on that, a discrete Luenberger observer is designed to reconstruct

spatiotemporal process states with limited boundary measurements. By means of

varying boundary conditions of mass flow velocity, different normal conditions and

leakage scenarios are simulated, including different leak amounts and leak positions.

Based on the database generated by the proposed observer, a machine learning (ML)

model - support vector machine (SVM) is utilized to reveal the nonlinear relationship

between leak-induced patterns and process variables. Unlike Kalman filter, SVM can

convert this recursive estimation process into a pattern recognition problem, which

speeds up leak detection, amount estimation and localization process substantially.

Finally, a long range pipeline is studied in this chapter, and different leakage amounts

and positions can be accurately diagnosed and pinpointed intelligently by combining

discrete Luenberger observer and SVM.

The main contributions of this chapter are shown as follows: 1) a closed-form so-

lution of pressure, velocity and density with respect to time and space of distributed

pipeline systems is derived and obtained; 2) a distributed discrete Luenberger ob-

server is designed; 3) based on the developed discrete infinite-dimensional model and

its corresponding analytical solution, numerous datasets are generated under normal

working conditions and different leakage scenarios via limited external measurements,

and one-class support vector machine (OCSVM) and support vector regression (SVR)

models are exploited to detect leak existence, estimate leak amounts and expose leak

locations with high accuracy. The rest of this chapter is constructed as follows:

following the description of the water hammer equation, steady state analysis, deter-

mination of resolvent operator and discrete-time pipeline hydraulic model are realized

in Section 6.2. Based on these, details of the discrete Luenberger observer design are

discussed in Section 6.3. Different working conditions, such as normal conditions and
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various leak situations including different leak magnitudes and positions, are simu-

lated, detected and diagnosed by means of OCSVM model and SVR model in Section

6.4. Finally, conclusions are drawn in Section 6.5.

6.2 Problem formulation

In this section, the so-called water hammer equation is introduced for pipeline hy-

draulic modelling. In particular, steady state profiles of pressure, density and velocity

are determined by linearization of the original first-order coupled nonlinear hyperbolic

PDEs system and then a distributed parameter system setting is given to describe

this linearized model. By determining the resolvent operator, one obtains a discrete-

time state space realization of the pipeline infinite-dimensional system without spatial

approximation or model reduction.

6.2.1 Model description

As one of the most representative and cost-effective ways for material transportation,

pipelines have been widely utilized in oil, gas and water distribution industry. Funda-

mental conservation laws are utilized in pipeline hydraulic modelling, which include

conservation laws of mass, momentum and energy.

In the ensuing section, we consider that: 1) a rigid buried pipe is assumed and

pipeline parameters are considered to be constants as shown in Table 6.1; 2) the flow

is single-phase liquid flow; 3) the flow is viscous (viscosity causes shear stresses in the

moving fluid); 4) the flow is one-dimensional flow meaning that mass flow velocity,

density and pressure vary only along pipeline axial direction; 5) small density changes

in liquid flow imply local compressibility which induces interesting phenomena in

piping systems, such as water hammer and leakage [240]; 6) the flow is isothermal.

The last assumption implies that temperature changes due to pressure changes and

friction effects can be neglected in the flow system. This is motivated by the fact that

majority of the pipeline infrastructure is buried underground, and for example, in the

case of a buried gasoline pipeline, the heat flux between the flow and surrounding soil

is negligible [241].

In the following model development, the conservation of energy is not considered
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due to the isothermal flow assumption. Then, a distributed parameter system is

provided by applying conservation laws of mass and momentum, which are augmented

with the equation of the speed of sound for a liquid flow transport pipeline (physical

properties of incoming fluid are given as velocity of 2.05 m/s, pressure of 1.68 × 106

Pa and density of 680 kg/m3), as follows:

d
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with boundary conditions:

E(0, C) = E0, ?(!3 , C) = ?0, d(!3 , C) = d0 (6.2)

where E represents flow velocity, ? is pressure, d stands for liquid density, Z is spatial

position along the pipeline, C is time, the quantity of 6 sinU is the Z -component of the

original gravity acceleration 6, 0 is the speed of sound in the fluid, _ is a dimensionless

friction coefficient described in Eq.(6.3a) for laminar flow (with Reynolds number

smaller than 2320) and the Colebrook equation Eq.(6.3b) for turbulent flow (for larger

values of the Reynolds number) [240].
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where � is the pipeline inner diameter, and :'
�

is relative pipe roughness and Re is

the Reynolds number. The above system of Eq.(6.1a)-(6.1c) is usually referred as

water hammer equation [242]. In the ensuing section, numerical value of _ is directly

adopted from the reference [242] and it is shown in Table 6.1. From Eq.(6.1c), one can

easily get the relationship between the following derivatives of pressure and density

with respect to time and space:
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3C
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3?

3Z
= 02 3d
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(6.4)
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In fact, considering different boundary conditions of pressure and density as shown

in Eq.(6.2), the actual relationship for pressure and density becomes Eq.(6.4) instead

of Eq.(6.1c). From full derivatives of 3E
3C
, 3?
3C

and 3d

3C
, one obtains:
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Substituting these derivatives in Eq.(6.5a)-(6.5c) into the original distributed param-

eter system described by Eq.(6.1a)-(6.1c), then the system model becomes as follows:
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Plugging the relationship of pressure and density Eq.(6.4) into Eq.(6.6a)-(6.6c), the

density state can be eliminated and then the system can be simplified as the following

two-state coupled nonlinear first-order hyperbolic system with the same boundary

conditions given by Eq.(6.2):
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Remark 11. The above section is devoted to the model development of a single phase

pipeline fluid flow model, however, without lost of generality, one can replace Eq.(6.1c)

with the equation of state and develop a hydraulic model for single-phase gas flow. A

similar type of derivation is presented in Reddy’s work [234] where the gas pipeline

flow system is considered with mass flow rate and pressure as system states.

6.2.2 Steady states analysis

In this chapter, we are focused on the pipeline hydraulic model around steady states.

Hence, by applying the linearization procedure, the steady states EBB, ?BB and dBB can
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be determined by setting all derivatives with respect to time equal to zero (m/mC := 0)

in Eq.(6.6a)-(6.6c) which leads to Eq.(6.8a)-(6.8c).

EBB
mdBB

mZ
+ dBB

mEBB

mZ
= 0 (6.8a)

dBBEBB
mEBB

mZ
+ m?BB
mZ
+ dBB6 sinU + dBB

_EBB |EBB |
2�

= 0 (6.8b)

EBB
m?BB

mZ
+ 02dBB

mEBB

mZ
= 0 (6.8c)

Based on this, three corresponding steady states profiles are illustrated in Fig. 6.1

by using finite difference methods. Pipeline parameters used for simulation are shown

in Table 6.1 [242].
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Figure 6.1: Profiles of steady states in Eq.(6.8a)-(6.8c).

Table 6.1: Pipeline parameters

Notations Numerical Values
Length !3 10, 000 <

Speed of Sound 0 1, 059 </B
Friction Coefficient _ 0.0158
Gravity Acceleration 6 9.81 </B

Diameter � 0.2065 <
Inclination Angle U -0.00256
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Remark 12. Steady states EBB, ?BB and dBB must satisfy their corresponding boundary

conditions Eq.(6.2). By subtracting the steady state models Eq.(6.8a)-(6.8c), the orig-

inal system Eq.(6.1a)-(6.1c) can be linearized around steady states via Taylor series

expansion.

By using the change of variables, new states are introduced as follows:

?̄(Z, C) = ?(Z, C) − ?BB (Z, C) (6.9a)

Ē(Z, C) = E(Z, C) − EBB (Z, C) (6.9b)

d̄(Z, C) = d(Z, C) − dBB (Z, C) (6.9c)

with new boundary conditions given as:

Ē(0, C) = 0, ?̄(!3 , C) = 0, d̄(!3 , C) = 0 (6.10)

Substituting new state variables shown in Eq.(6.9a)-(6.9c) and steady states Eq.(6.8a)-

(6.8c) into Eq.(6.6a)-(6.6c) yields two models since E can be positive or negative. In

the following derivation, we mainly consider the case of velocity with positive sign.

In this case, the nonlinear distributed parameter system in Eq.(6.6a)-(6.6c) can be

linearized as follows:

m ?̄

mC
+ EBB

m ?̄

mZ
+ Ē m?BB

mZ
+ 02dBB

mĒ

mZ
+ ?̄ mEBB

mZ
= 0 (6.11a)

mĒ

mC
+

(
?̄EBB

02dBB
+ Ē

)
mEBB

mZ
+ EBB

mĒ

mZ
+ 1

dBB

m ?̄

mZ
+

(
6 sinU

02dBB
+

_E2
BB

2�02dBB

)
?̄ + _ĒEBB

�
= 0 (6.11b)

with the same boundary conditions shown in Eq.(6.10). Given that ?̄ = d̄02, one

can further reduce the system to a two-state system (pressure and velocity) as shown

in Eq.(6.11a)-(6.11b), which can also be linearized directly from the aforementioned

system Eq.(6.7a)-(6.7b). For the sake of simplicity, the linearized infinite-dimensional

model is given in the following matrix form:

m
mC

[
?̄(Z, C)
Ē(Z, C)

]
+

[
! #

� !

]
m
mZ

[
?̄(Z, C)
Ē(Z, C)

]
+

[
) '

& �

] [
?̄(Z, C)
Ē(Z, C)

]
= 0 (6.12)

where all notations are defined as follows:

! = EBB, ' =
m?BB

mZ
, # = 02dBB, ) =

mEBB

mZ
, � =

1

dBB
(6.13a)
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& =
EBB

02dBB

mEBB

mZ
+ 6 sinU

02dBB
+

_E2
BB

2�02dBB
, � =

mEBB

mZ
+ _EBB

�
(6.13b)

From the steady state profiles of pressure and velocity in Fig. 6.1, the spatial deriva-

tive of velocity steady state mEBB
mZ

can be neglected due to its near-zero value, which im-

plies ) = 0. Considering the tremendous contribution from the coefficient # = 02dBB,

relatively smaller values of parameters EBB and
m?BB
mZ

can be ignored consequently, which

infers ! = 0 and ' = 0 such that & and � can be simplified as:

& =
6 sinU

02dBB
+

_E2
BB

2�02dBB
, � =

_EBB

�
(6.14)

Then, the distributed parameter pipeline system Eq.(6.12) can be rewritten in a

simpler form as follow:

m
mC

[
?̄(Z, C)
Ē(Z, C)

]
+

[
0 #

� 0

]
m
mZ

[
?̄(Z, C)
Ē(Z, C)

]
+

[
0 0
& �

] [
?̄(Z, C)
Ē(Z, C)

]
= 0 (6.15)

As shown in Eq.(6.15), simplified first-order coupled hyperbolic partial differential

equations (PDEs) are obtained to represent the continuous-time hydraulic system in

terms of pressure and velocity as process states. Then, one can directly apply Laplace

transformation to Eq.(6.15), and rewrite it in the following form:[
0 #

� 0

]
m
mZ

[
?̄(Z, B)
Ē(Z, B)

]
= −

[
B 0
& � + B

] [
?̄(Z, B)
Ē(Z, B)

]
+

[
?̄(G, 0)
Ē(G, 0)

]
(6.16)

In order to simplify the derivation, one can make the following notations:

�0 =

[
0 #

� 0

]
, �0 =

[
B 0
& � + B

]
, " = −�0

−1�0 (6.17a)

& =
6 sinU

02dBB
+

_E2
BB

2�02dBB
, � =

_EBB

�
(6.17b)

Through further calculation, a frequency-domain solution of the distributed parame-

ter pipeline system is finally generated as follows:[
?̄(Z, B)
Ē(Z, B)

]
= 4"Z

[
?̄(0, B)
Ē(0, B)

]
+

∫ Z

0
4" (Z−[)�0

−1

[
?̄([, 0)
Ē([, 0)

]
3[ (6.18)

By checking the nonzero elements off the diagonal of matrix �0, it is easy to prove

that �0 is invertible, which guarantees that the solution shown in Eq.(6.18) is well

posed.
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Remark 13. As for negative velocity in Eq.(6.6a)-(6.6c), the same linearization pro-

cedure can be adopted and the analytical solution in Laplace domain is identical as

Eq.(6.18) with the same notations as in Eq.(6.17a) but different expressions of & and

� described as follows:

& =
6 sinU

02dBB
−

_E2
BB

2�02dBB
, � = −_EBB

�
(6.19)

6.2.3 Resolvent operator

In order to utilize the Crank-Nicolson discretization framework, the resolvent operator

need to be determined beforehand. In general, for any given continuous-time PDE

system, there is a link between its analytical solution in Laplace-domain and the

associated resolvent operator. For example, for a given first-order hyperbolic PDE,

¤G(C, Z) = AG(C, Z) with A := m
mG
, one can obtain the resolvent operator by applying

the Laplace transform as <(B,A)(·) = [B� − A]−1(·) being related to A. Then, the

frequency-domain solution can be further expressed by the resolvent operator as:

G(B, Z) = <(B,A)G(0, Z) (6.20)

Along this line, one can determine the resolvent operator for the pipeline system

according to the aforementioned frequency-domain solution in Eq.(6.18). For simplic-

ity, one can then define these following notations in order to determine the resolvent

operator:

4"Z =

[
"11(Z, B) "12(Z, B)
"21(Z, B) "22(Z, B)

]
(6.21a)

�0
−1 = � (Z, B) =

[
0 1

� (Z,B)
1

# (Z,B) 0

]
=

[
0 �12(Z, B)

�21(Z, B) 0

]
(6.21b)

Through further manipulation, closed-form analytical solutions of the state evolu-

tional matrix can be shown as follows:
"11(Z, B) = [cosh(.Z) − /

.
sinh(.Z)] [cosh(/Z) − sinh(/Z)]

"12(Z, B) = (�+B)#-
[sinh((/ + . )Z) − cosh((/ + . )Z)] [cosh(2.Z) + sinh(2.Z) − 1]

"21(Z, B) = 2�B
-

sinh(.Z) [sinh(/Z) − cosh(/Z)]
"22(Z, B) = [cosh(.Z) + /

.
sinh(.Z)] [cosh(/Z) − sinh(/Z)]

(6.22)
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where the notations -, . , / are defined as follows:

- =
√
# (#&2 + 4�B2 + 4��B), . =

√
# (#&2 + 4�B2 + 4��B)

2�#
, / =

&

2�
(6.23)

Finally, the distributed parameter pipeline system can be manipulated in the following

compact form:[
?̄(Z, B)
Ē(Z, B)

]
=

[
"11(Z, B) "12(Z, B)
"21(Z, B) "22(Z, B)

] [
?̄(0, B)
Ē(0, B)

]
+∫ Z

0

[
"11(Z − [, B) "12(Z − [, B)
"21(Z − [, B) "22(Z − [, B)

] [
0 �12([, B)

�21([, B) 0

] [
?̄([, 0)
Ē([, 0)

]
3[

(6.24)

In order to complete this infinite-dimensional linearized model, one needs to facilitate

boundary conditions in Eq.(6.10) as follows:

(a) At Z = 0, one can plug Ē(0, B) = 0 into Eq.(6.24) which leads to:[
?̄(0, B)
Ē(0, B)

]
=

[
"11(0, B) "12(0, B)
"21(0, B) "22(0, B)

] [
?̄(0, B)
Ē(0, B)

]
(6.25)

From the above Eq.(6.25), it is easy to show "21(0, B) = 0 which can be derived via

Eq.(6.22).

(b) At Z = !3, one can substitute ?̄(!3 , B) = 0 into Eq.(6.24) which yields:[
?̄(!3 , B)
Ē(!3 , B)

]
=

[
"11(!3 , B) "12(!3 , B)
"21(!3 , B) "22(!3 , B)

] [
?̄(0, B)
Ē(0, B)

]
+∫ !3

0

[
"11(!3 − [, B) "12(!3 − [, B)
"21(!3 − [, B) "22(!3 − [, B)

] [
0 �12([, B)

�21([, B) 0

] [
?̄([, 0)
Ē([, 0)

]
3[

(6.26)

From this, one can solve for:

?̄(0, B) = − 1
"11 (!3 ,B)

∫ !3

0
["12(!3 − [, B)�21([, B) ?̄([, 0)

+"11(!3 − [, B)�12([, B)Ē([, 0)] 3[
(6.27)

Boundary conditions of this distributed parameter pipeline system are bi-directional,

as shown in Eq.(6.10), so one needs to convert them to be both at Z = 0 utilizing the

system Eq.(6.24) and Eq.(6.27) in order to determine the resolvent operator in the

following form: [
?̄(Z, B)
Ē(Z, B)

]
=

[
<11(B, ") <12(B, ")
<21(B, ") <22(B, ")

] [
?̄([, 0)
Ē([, 0)

]
(6.28)
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Following this, the frequency-domain solution of the infinite-dimensional pipeline

system can be expressed as Eq.(6.28) with the associated resolvent operator as:

<11(B, ") (·) = − "11 (Z,B)
"11 (!3 ,B)

∫ !3

0
"12(!3 − [, B)�21([, B) (·)3[

+
∫ Z

0
"12(Z − [, B)�21([, B) (·)3[

<12(B, ") (·) = − "11 (Z,B)
"11 (!3 ,B)

∫ !3

0
"11(!3 − [, B)�12([, B) (·)3[∫ Z

0
"11(Z − [, B)�12([, B) (·)3[

<21(B, ") (·) = − "21 (Z,B)
"11 (!3 ,B)

∫ !3

0
"12(!3 − [, B)�21([, B) (·)3[∫ Z

0
"22(Z − [, B)�21([, B) (·)3[

<22(B, ") (·) = − "21 (Z,B)
"11 (!3 ,B)

∫ !3

0
"11(!3 − [, B)�12([, B) (·)3[∫ Z

0
"21(Z − [, B)�12([, B) (·)3[

(6.29)

6.2.4 Discrete-time pipeline model realization

Based on the resolvent operator proposed in the previous section, one can get the

discrete-time pipeline hydraulic system by evaluating B as a real value X = 2
ℎ
(ℎ is

the time increment) in the resolvent operator Eq.(6.28) and Eq.(6.29), which can be

directly utilized for digital model simulation. Considering that there are two main

drawbacks of the Euler finite difference discretization methods, which may hinder

leak detection and localization performance, we utilize the Cayley-Tustin discretiza-

tion technique to achieve a higher order (second-order) discretization accuracy in time.

More specifically, Euler finite difference methods could not avoid spatial discretiza-

tion, and they only have first-order discretization accuracy in time [119]. On the

contrary, by exploiting the Cayley-Tustin discretization framework, one can map the

original continuous distributed pipeline system into its corresponding discrete version

without spatial discretization or model order reduction, which ensures realization of

accurate leak localization.

In particular, the continuous state evolutional operator A can be utilized to gen-

erate its associated discrete evolutional operator A3 using A3 = [X − A]−1 [X + A] =
−� +2X[X�−A]−1 = −� +2X<(X,A) where � is an identity operator [62]. From the for-

mulation of the resolvent operator shown in Eq.(6.28) and Eq.(6.29), one can obtain
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a discrete-time system realization as follows:[
?̄(Z, :ℎ)
Ē(Z, :ℎ)

]
= A3

[
?̄(Z, (: − 1)ℎ)
Ē(Z, (: − 1)ℎ)

]
= (−� + 2X<(X, "))

[
?̄(Z, (: − 1)ℎ)
Ē(Z, (: − 1)ℎ)

]
=

(
−� + 2X

[
<11(X, ") <12(X, ")
<21(X, ") <22(X, ")

] ) [
?̄(Z, (: − 1)ℎ)
Ē(Z, (: − 1)ℎ)

] (6.30)

Combining Eq.(6.9a)-(6.9c), a discrete-time transient distributed parameter pipeline

system is formulated as follows:[
?(Z, :ℎ)
E(Z, :ℎ)

]
=

[
?̄(Z, :ℎ)
Ē(Z, :ℎ)

]
+

[
?BB (Z)
EBB (Z)

]
(6.31)

where : stands for time instance and one can easily implement this framework into

digital device settings such as computers or SCADA systems.

6.3 Discrete observer design

In general, one cannot realize leak detection and localization by spatially distributed

sensors along the entire long-range pipeline system either due to physical limitations

of installation and/or prohibitive expenses if possible to be realized. In these cases, a

model-based observer design serves a purpose of reducing the target number of exter-

nal measurements to be taken. In this section, a discrete Luenberger observer for this

linearized coupled water hammer equation under discrete-time infinite-dimensional

setting is designed. In order to simplify the derivation process, one introduces the

following change of variables:
Ḡ(Z, C) =

?̄(Z,C)−
√
#
�
Ē(Z,C)

2

H̄(Z, C) =
?̄(Z,C)+

√
#
�
Ē(Z,C)

2

(6.32)

Then, plugging the Eq.(6.32) into the pipeline system Eq.(6.15) yields:

m
mC

[
Ḡ(Z, C)
H̄(Z, C)

]
+

[
−
√
#� 0

0
√
#�

]
m
mZ

[
Ḡ(Z, C)
H̄(Z, C)

]
+


−
√
( #
�
)&+�

2 −
√
( #
�
)&+�
2√

( #
�
)&−�
2

√
( #
�
)&+�
2


[
Ḡ(Z, C)
H̄(Z, C)

]
= 0

(6.33)
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For simplicity, one can define an expanded state G4 (Z, C) = [Ḡ(Z, C), H̄(Z, C)]′, and
make the following notations:

^ =

[
−
√
#� 0

0
√
#�

]
, i =


−
√
( #
�
)&+�

2 −
√
( #
�
)&+�
2√

( #
�
)&−�
2

√
( #
�
)&+�
2

 =
[
−Δ −Π
Δ Π

]
(6.34)

Then, the model Eq.(6.33) can be rewritten as:

mG4 (Z,C)
mC

= A1G
4 (Z, C) = −^ mG

4 (Z,C)
mZ
− iG4 (Z, C) (6.35)

where A1(·) = −^ m
mZ
(·) − i(·) with the domain as D(A1) = {G4 = [q1(Z), q2(Z)]′ ∈

!2(0, !3), q1(!3) + q2(!3) = 0, q2(0) − q1(0) = 0, q1(Z) and q2(Z) are absolutely

continuous}. Then, the distributed parameter pipeline system is completed with an

output defined as: {
¤G4 (C) = A1G

4 (C)
H4 (C) = C1G

4 (C)
(6.36)

where the output operator C1 is defined as follows:

C1 :=

[ ∫ !3

0
X(Z − 0) (·)3Z 0

0
∫ !3

0
X(Z − !3) (·)3Z

]
(6.37)

where X(Z) is the Dirac function.

6.3.1 Stabilization observer gain

In order to monitor the distributed pipeline system with limited boundary measure-

ments, a Luenberger observer is formed directly by applying infinite-dimensional sys-

tem theory [4] as follows:{
¤̂G4 (C) = A1Ĝ

4 (C) + L1 [H4 (C) − Ĥ4 (C)]
Ĥ4 (C) = C1Ĝ

4 (C)
(6.38)

By introducing an observed error variable G̃4 (C) = G4 (C) − Ĝ4 (C), the observer error

dynamic is then obtained by combining the original system Eq.(6.36) and the observer

system Eq.(6.38) as follows:

¤̃G4 (C) = ¤G4 (C) − ¤̂G4 (C) = (A1 − L1C1)G̃4 (C) (6.39)
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Theorem 12. An observer system (A1, C1) is exponentially detectable with a dis-

tributed parameter setting, if there exists a nonnegative self-adjoint operator &0 guar-

anteeing that the following operator Riccati equation holds.

A1&0 +&0A∗1 + " − 2&0C∗1C1&0 = 0, >= D(A∗1) (6.40)

where " is a positive definite matrix which serves as a design parameter, such that

&0(D(A∗1)) ⊂ D(A1), and 〈q1, &0q2〉 = 〈&0q1, q2〉, and the observer gain is given

by L1 = &0C∗1 . Then, the stability of the observer error system is ensured, such that

(A1 − L1C1) generates an exponentially stable �0-semigroup.

A similar theorem for the control problem is introduced in reference [102]. To solve

the operator Riccati equation, adjoint operators of A1 and C1 need to be determined

beforehand. For the system, it is easy to find the adjoint operator A∗1 using condition

of 〈A1q1, q2〉 = 〈q1,A∗1q2〉, as follows:

A∗1(·) = ^
m
mZ
(·) − i) (·) (6.41)

with the domain defined as D(A∗1) = {G = [q1(Z), q2(Z)]′ ∈ !2(0, !3), q1(!3) +
q2(!3) = 0, q1(0) − q2(0) = 0, q1(Z) and q2(Z) are absolutely continuous}.

Similarly, C∗1 is determined as follows, by applying 〈C1q1, q2〉 = 〈q1, C∗1q2〉:

C∗1 :=

[
X(Z − 0)

∫ !3

0
(·)3[ 0

0 X(Z − !3)
∫ !3

0
(·)3[

]
(6.42)

Remark 14. Different spatial functions of " can lead to different &0, so we can

define " = ["11(Z), "12(Z);"12(Z), "22(Z)] without loss of generality. Since &0 is

a symmetrical operator, one can define it as a diagonal form for simplicity.

One is free to choose arbitrary functions [q1(Z), q2(Z)]′ in D(A∗1) for determina-

tion of operator Riccati equation (6.40) as:[ √
#� m

mZ
+ Δ Π

−Δ −
√
#� m

mZ
− Π

] [
&11(Z) 0

0 &22(Z)

] [
q1(Z)
q2(Z)

]
+

[
&11(Z) 0

0 &22(Z)

] [
−
√
#� m

mZ
+ Δ −Δ

Π
√
#� m

mZ
− Π

] [
q1(Z)
q2(Z)

]
+

[
"11(Z) "12(Z)
"12(Z) "22(Z)

] [
q1(Z)
q2(Z)

]
+ 2&0C∗1C1&0

[
q1(Z)
q2(Z)

]
= 0

(6.43)
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where

&0C∗1C1&0

[
q1(Z)
q2(Z)

]
=

[
!3&11

2(0) 0
0 !3&22

2(!3)

] [
q1(Z)
q2(Z)

]
(6.44)

Given by the special structures of A1 andA∗1,
mq1
mZ

and mq2
mZ

can be naturally eliminated

such that one can easily simplify the above operator Riccati equation as follows:
√
#�

3&11 (Z)
3Z
+ 2&11Δ + "11(Z) + 2!3&

2
11(0) = 0

Π&22(Z) − Δ&11(Z) + "12(Z) = 0

−
√
#�

3&22 (Z)
3Z
− 2&22Π + "22(Z) + 2!3&

2
22(!3) = 0

(6.45)

Remark 15. To determine &11(Z), &22(Z), "11(Z), "12(Z) and "22(Z), the neces-

sary condition to ensure is the positive definiteness. In addition, another condition

shown in Theorem 12 is to guarantee that &0(D(A∗1)) ⊂ D(A1) as follows:

&11(!3) +&22(!3) = 0, &11(0) −&22(0) = 0 (6.46)

For simplicity, one can further fix &11(!3) = 0 and &22(!3) = 0, and suppose

"11(Z) +2!3&
2
11(0) and "22(Z) +2!3&

2
22(!3) are just known spatial functions. Then,

one gets the profiles of observer gain &0 and design parameter " by using the finite

difference method, as shown in the Figs. 6.2-6.3.
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Figure 6.2: Plots of observer gain &11 and &22 in Eq.(6.45) with boundary conditions
Eq.(6.46).

By applying the similarity transformation, one can easily find the observer gain

corresponding to the original states [ ?̄(Z, C), Ē(Z, C)]′ as follows:

)−1
B A)B&0 +&0()−1

B A)B)∗ + " − 2&0(C)B)∗C)B&0 = 0, on D(A∗) (6.47)
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Figure 6.3: Plots of design parameter " matrix in Eq.(6.45) with boundary conditions
Eq.(6.46).

where
[
?̄ (Z, C)
Ē (Z, C)

]
= )B

[
Ḡ (Z, C)
H̄ (Z, C)

]
with )B =

[
1 1

−
√
�
#

√
�
#

]
.

By combining Eq.(6.15) and Eqs.(6.32)-(6.33), one can obtain the observer gain

&̃0 = )B&0)
)
B corresponding to the original states. Finally, the observer error dynam-

ics is shown as:

4(C) =
[
?̄ (Z, C)
Ē (Z, C)

]
−

[
?̄0 (Z, C)
Ē0 (Z, C)

]
(6.48a)

¤4(C) = (A − LC)4(C) = (A − &̃0C∗C)4(C) = (A − )B&0)
)
B C∗C)4(C) (6.48b)

Remark 16. The continuous observer gain &0 is identical to its associated discrete

observer gain &3, which yields the corresponding discrete observer error system as

follows:

4(Z, :ℎ) =
[
?̄ (Z, :ℎ)
Ē (Z, :ℎ)

]
−

[
?̄0 (Z, :ℎ)
Ē0 (Z, :ℎ)

]
(6.49a)

4(Z, :ℎ) = (A3 − L3C3)4(Z, (: − 1)ℎ) = (A3 − &̃0C∗3C3)4(Z, (: − 1)ℎ)

= (A3 − )B&0)
)
B C∗3C3)4(Z, (: − 1)ℎ) (6.49b)

where ?̄0 (Z, :ℎ) and Ē0 (Z, :ℎ) correspond to the discrete linearized states. From the

Crank-Nicolson discretization setting, the resolvent operator can be utilized as a link

to connect the discrete-time output operator C3 and continuous one C, as follows [62]:

C3 (·) =
√

2XC[X − A]−1(·) =
√

2XC<(X, ") (·) (6.50)

Until now, a discrete-time Luenberger observer for the distributed parameter

pipeline system is completely constructed and can be directly implemented for the
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pipeline condition monitoring, leak detection and diagnosis. With limited measure-

ments of pressure at upstream and mass flow velocity at downstream, the entire

spatiotemporal states evolution can be reconstructed by the well-designed discrete

Luenberger observer. Along this line, velocities at upstream and downstream are

collected for feature selection, and are then used for support vector machine training

and testing later on.

6.4 Leak simulation and detection

In this section, the dynamical evolution of this derived distributed parameter pipeline

system is analyzed around the steady state profiles primarily based on a set of physical

parameters [242] illustrated in Table 6.1. Subsequently, normal working conditions

and different single individual leakage scenarios, including different leak magnitudes

and positions are generated by varying initial conditions and boundary conditions

of pressure and velocity at upstream and downstream. Based on these datasets, a

one-class support vector machine (OCSVM) is used for leak detection and a support

vector regression (SVR) model [243] is trained and exploited for leak amount and

position estimation.

6.4.1 Simulation of normal conditions

In this section, a long range pipeline system under normal working conditions is

simulated based on the proposed discretized-time infinite-dimensional system. In

particular, different normal working conditions are generated by varying the model

initial conditions. Considering the limited measurements of pressure at upstream

and velocity at downstream, the presented Luenberger observer is further utilized

to reconstruct the entire state evolution profiles along with the corresponding error

evolution profile. In particular, one adopts pipeline parameters as shown in Table

6.1. Then, simulation parameters are set as spatial interval ΔZ = 500 <, temporal

interval ℎ = 2 seconds, based on which, the profiles of linearized pressure and velocity

and their associated transients are determined and illustrated in the following Figs.

6.4-6.7 over 120 seconds of simulation.

From these profiles, it is apparent that this distributed parameter pipeline system
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Figure 6.4: Profile of linearized velocity Ē(Z, C) evolution given by Eq.(6.15) and
numerically realized by Eq.(6.30).
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Figure 6.7: Profile of transient pressure ?(Z, C) evolution numerically realized by
Eq.(6.31).

is dynamically stable (small perturbation in the states at a given operating condition

will not induce transients to another operating state) and the change of the velocity

direction does not affects its stability. Considering the space limitation, the simulation

results with negative velocity are not depicted here. The initial conditions of system

states and observer error states for this case are shown as follows. Adding the steady

state profiles into this linearized profiles leads to the real transient diagrams that can

be harnessed for the pipeline condition monitoring and leak detection in the next

section. From Figs. 6.8-6.9, one can see that observed errors converge to zero with

time increase, which implies that the estimated states are capable of converging to real

states even with complex trigonometric initial error conditions Eqs.(6.51a)-(6.51b),

which further verifies the effectiveness of the aforementioned observer gain.

{
?̄0(Z) = −0.1 3?BB

3Z
(!3 − Z), Ē0(Z) = 10 3EBB

3Z
Z ; (E > 0)

?̄0(Z) = −0.1 3?BB
3Z
(!3 − Z), Ē0(Z) = −10 3EBB

3Z
Z ; (E ≤ 0)

(6.51a){
?̃0(Z) = 0.001 3?BB

3Z
!3 sin(0.002cZ)

Ẽ0(Z) = −0.002 sin(0.002cZ)
(6.51b)

6.4.2 Simulation of leakage scenarios

In this section, different leakage scenarios considering single individual leak are sim-

ulated, including different leak amounts from 1% to 20% of the corresponding local

mass flow velocity at the leak point (before a leak occurs) with an increment of 1%
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Figure 6.9: Observer error evolution profile of pressure ?̃(Z, C) in Eq.(6.49b) with
initial conditions Eq.(6.51b).

and different leak positions from 500 < to 9, 500 < with spatial increment of 500 <.

In order to emulate internal process dynamics when a leak occurs, one can adjust the

mass flow velocity at the upstream and downstream of the pipeline system. More

specifically, the distributed pipeline can be separated into two independent systems

once a leak occurs. However, the pressure values at upstream and downstream will

not change, since they rely on their respective upstream and downstream systems.

Take the reservoir-pipeline-reservoir system as an example, the pipeline pressure at

both ends will depend on two associated reservoir heights only, regardless the leakage

in the pipeline.

In order to simulate the velocity profiles of the pipeline after a leak occurs, the

shooting method is utilized for simulation of new steady states. More specifically, the
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leak amount is pre-determined as the change of mass flow velocity at the leak position.

As shown in Fig. 6.10, pressure variation at the leak point can be determined based

on the leak amount (i.e., leak size). Considering the downstream part of the pipeline

(i.e., the pipe segment from the leak position to the downstream end of the pipeline),

the velocity at the downstream end can be determined using the unchanged pressure

at downstream and velocity at the leak point. Similarly, to match the unchanged

pressure at the upstream end, one can calculate the velocity of the upstream part of

the pipeline (i.e., the pipe segment from the upstream end of the pipeline to the leak

position) by using the shooting method. Thus, steady state profiles under different

leakage scenarios are generated, and can be added to linearized states to formulate the

transient model under different leakage conditions including different leakage amounts

and locations.

The simulated leak occurrence time for all cases is at 100 seconds (≈ 1.67 minutes),

and the entire simulation time period is 160 seconds (≈ 2.67 minutes). Since this

chapter does not focus on the leak propagation process, and also this period is very

short (within 10 seconds for this pipeline setting) due to the high propagation speed

(1,069 m/s), priority is then given to the discrepancy of the steady state profile once

a leak is present. In particular, one leak case with a 2% leakage amount and location

at 4, 000 < from the left end as the leak position is shown in the Figs. 6.10-6.14.
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Figure 6.10: Comparison of velocity steady state before and after leakage occurs.

From Figs. 6.10-6.11, one can clearly see the discrepancy of steady states profiles

before and after a leak occurs. In particular, a polyline appears instead of a straight

line after the existence of leak, and the knee point corresponds to the leak position
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Figure 6.12: 3D profile of velocity when leakage is present.

directly, while the deviation distance from the original red dashed line implies the

leak magnitude in Fig. 6.10. In addition, there is an ascending jump at upstream

and a descending drop at the downstream in the velocity profile. As for the pressure

change, based on the comparison of the steady state lines before and after the leak, we

can conclude that the jumping point is located at the leak position (in this case it is

at 4, 000 < from the left end), and the slope changes of the upstream and downstream

profiles can be utilized to calculate leak magnitude.

When compared with the state profiles under normal working condition Figs. 6.6-

6.7, there is a corresponding change in three-dimensional profiles of pressure and

velocity, as shown in Figs. 6.12-6.13 with the existent leakage. From these recon-

structed 3-D profiles calculated by the pre-designed observer, velocity profiles both

at upstream and downstream can be collected and illustrated, as shown in Fig. 6.14.
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Figure 6.14: Velocity change when leakage is present.

In particular, these changes in velocity profiles are consistent with the above Fig.

6.10. With limited measurements of pressure at upstream and mass flow velocity at

downstream, one can ultimately rebuild the entire spatiotemporal profiles of pressure

and velocity. In the next section, only measured and estimated velocity profile at

both ends will be utilized for leak detection and localization, while one can directly

extend this proposed method by combining the pressure profiles.

6.4.3 Leak detection and localization

Stemming from the mass flow velocity data generated in the previous section, a ma-

chine learning (ML) model- support vector machine is trained and validated for leak

detection, amount estimation and localization.

The support vector machine (SVM) as a classical machine learning method has
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been widely utilized for pattern recognition and trend analysis (also known as clas-

sification and regression problems) [243]. In particular, the one-class SVM is a well-

known method for anomaly detection [244]. When it comes to solving for regression

problem, SVM can be referred as support vector regression (SVR). The main idea

behind this technique is to maximize the margin between different datasets by con-

structing hinge loss functions. Compared to other machine learning algorithms, such

as neural networks, it has good generalization ability and the sparseness of the solu-

tion with the aid of less training samples. In particular, in order to address nonlinear

characteristics of datasets, nonlinear kernel functions are introduced to the original

formulation of SVM such that a low-dimensional Euclidean space can be mapped into

a higher-dimensional Hilbert space where originally difficult-to-classify data can be

separated. Thus, it attracts more and more attention from academia and industry,

especially when it comes to small training samples.

However, the classification and regression performances of SVM highly depend

on the kernel parameters and penalty parameters. To address this, the grid search

method is utilized for hyper-parameters tuning and a one-class SVM model and

an epsilon support vector regression model are utilized for pipeline leak detection,

amount estimation and localization. To evaluate the model performance, classifi-

cation/regression accuracy, standard deviation (STD) and root mean square error

(RMSE) are utilized. In particular, penalty factor � and kernel function parameter

W are searched in the range of [10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105] and the

loss function parameter epsilon is optimized from [10−4, 10−3, 10−2]. To avoid over-

fitting, a five-fold cross-validation method is exploited in the training stage and the

estimation accuracy evaluation follows a hold-out cross validation procedure. As for

SVM realization, the libsvm library is utilized in this chapter [245].

Feature selection plays an important role when it comes to training an accu-

rate and robust support vector machine model. In this chapter, velocity profiles at

upstream and downstream are taken into account, then representative features are

extracted including mean value, maximum value, minimum value of the first part,

second part of the pipeline and maximum difference value of the entire pipeline (to-

tally 14 features extracted from two velocity profiles). The entire datasets contain

leakage conditions with leakage locations at [500 <, 1000 <, · · · , 9500 <] and leak
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amounts of [0.01, 0.02, · · · , 0.2]. For the sake of leak localization, the features cor-

responding to leak positions at [1000 <, 2000 <, · · · , 9000 <] and leak amounts of

[0.06, 0.10, 0.14, 0.18] are fed into the SVR model for testing, and the remaining

data is used for model training. In order to estimate leak magnitudes, the fea-

tures associated with leak amounts of [0.03, 0.05, ..., 0.19] and leak positions at

[1000 <, 3000 <, · · · , 9000 <] and are fed into the SVR model for testing and the

remaining data serves as training data. It should be emphasized that testing datasets

are completely different leakages scenarios which are not used for model training pro-

cess. More details about the training and testing datasets segregation are shown in

Table 6.2.

Table 6.2: Datasets segregation

Datasets Leak Locations (m) Leak Amounts
Total Simulation

Dataset [500, 1000, ..., 9500] [0.01, 0.02, ..., 0.2]

Leak
Position

Estimation

Training
Dataset — —

Testing
Dataset [1000, 2000, ..., 9000] [0.06, 0.10,0.14,0.18]

Leak
Amount

Estimation

Training
Dataset — —

Testing
Dataset [1000, 3000, ..., 9000] [0.03, 0.05, ..., 0.19]

Table 6.2: Datasets segregation (continued)

Datasets Sets Samples
Total Simulation

Dataset ( 380 × 14

Leak
Position

Estimation

Training
Dataset

)'%$
(s.t. )'%$ ∪ )�%$ = (;
)'%$ ∩ )�%$ = ∅)

344 × 14

Testing
Dataset )�%$ 36 × 14

Leak
Amount

Estimation

Training
Dataset

)'�"
(s.t. )'�" ∪ )��" = (;
)'�" ∩ )��" = ∅)

335 × 14

Testing
Dataset )��" 45 × 14
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To realize leak detection, the one-class SVM model is utilized here using datasets

under normal working conditions generated by the developed observer systems with

different initial conditions. In particular, the one-class SVM model with Gaussian

radial basis function is trained using 180 data points under normal working situations.

In the testing process, 90 data samples (randomly chosen 45 points under leakage

conditions and 45 points under normal conditions) are utilized to validate the trained

one-class SVM model and run five times. As shown in classification results, the

average leak detection accuracy is about 96.00% with small standard deviation and

RMSE values of 3.00% and 2.69%, respectively.

As for leak amount estimation and localization, SVR models with consideration

of four typical kernel functions, including: Gaussian radial basis function (RBF),

linear kernel function, sigmoid kernel function and polynomial kernel function, are

investigated as shown in Table 6.3 and Table 6.4. From these tables, it is apparent

that SVR with Gaussian radial basis function outperforms other kernel functions in

terms of more accurate estimated positions and smaller standard deviation values.

Except that, SVR with polynomial kernel function has better leakage localization

performance, compared to linear function and sigmoid function. As for leak amount

estimation, SVR models with four different kernel functions all have good estimation

performance in terms of expectation and standard deviation values. Hence, the RBF

kernel is demonstrated be the best kernel among the four kernel functions.

The leakage amount estimation and localization of SVR with Gaussian radial ba-

sis function are further depicted in Figs. 6.15-6.18. As shown in Figs. 6.15-6.16, the

estimated leak positions perfectly match the actual ones with total diagnosis accuracy

of 98.12% − 99.80%. In particular, the mean localization accuracies reach above 99%

except leak positions at 4, 000 < and 9, 000 < with relatively lower estimation accu-

racy. Considering other assessment criteria, the feasibility of the proposed method is

proved by high localization accuracy and small RMSE values. As for the leak amount

estimation, the accuracy is even higher, i.e., it is 99.89%−99.98% as illustrated in Figs.

6.17-6.18. In terms of estimation accuracy and RMSE, one can clearly see that the

estimation discrepancy is small enough when compared with actual leakage amounts,

which further verifies the effectiveness and reliability of the proposed method.

To investigate the pipeline parameter sensitivity of the developed observer model,
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Table 6.3: Leak localization results by SVR with different kernel functions

Actual
Leak

Position
(m)

Estimated
Position
by RBF
SVR (m)

Estimated
Position
by Linear
SVR (m)

Estimated
Position by
Sigmoid
SVR (m)

Estimated
Position by
Polynomial
SVR (m)

Mean STD Mean STD Mean STD Mean STD
1000 996.92 88.48 2551.33 1169.37 2553.30 1171.52 1030.15 362.16
2000 2027.09 61.31 5458.08 293.40 5460.05 295.53 1771.57 311.73
3000 2967.55 22.00 6616.33 103.10 6618.29 101.04 2708.28 115.24
4000 3939.76 47.74 7250.87 322.74 7252.83 320.57 3846.64 173.17
5000 4952.52 32.46 7654.09 470.61 7656.05 468.44 4954.17 161.04
6000 5976.28 73.53 7933.81 576.42 7935.78 574.25 5953.06 77.49
7000 6986.13 67.51 8139.53 656.03 8141.50 653.86 6831.09 56.58
8000 7946.40 17.27 8297.30 718.17 8299.27 716.00 7597.55 189.93
9000 8830.49 93.88 8422.18 768.07 8424.14 765.90 8266.99 330.27

Table 6.4: Leak amount estimation results by SVR with different kernel functions

Actual Leak
Amount

Estimated Amount
by RBF SVR

Estimated Amount
by Linear SVR

Mean STD Mean STD
0.03 0.030033 0.000045 0.029979 0.000019
0.05 0.050034 0.000037 0.049969 0.000031
0.07 0.070012 0.000027 0.069957 0.000042
0.09 0.089976 0.000024 0.089944 0.000053
0.11 0.109942 0.000027 0.109929 0.000063
0.13 0.129922 0.000024 0.129913 0.000072
0.15 0.149921 0.000018 0.149896 0.000080
0.17 0.169930 0.000027 0.169877 0.000088
0.19 0.189926 0.000033 0.189858 0.000095

we vary the friction coefficient _ as one of the representative parameters with ±5% and

repeat the Luenberger observer design, and SVR based leak localization and amount

estimation process. The simulation results are shown as Table 6.5 and Table 6.6. The

notations are made as: Lambda_No_SVR stands for original _ without any varia-

tion, Lambda_Ne_SVR represents original _ with minus 5%, and Lambda_Po_SVR

stands for original _ with plus 5%. It is apparent that the position and amount estima-

tion using PDE models with different friction coefficients preserve good performance.

In terms of mean and standard deviation values, one can observe that there are neg-

ligible differences brought by variation of friction coefficient _, which demonstrates
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Table 6.4: Leak amount estimation results by SVR with different kernel functions
(continued)

Actual Leak
Amount

Estimated Amount
by Sigmoid SVR

Estimated Amount
by Polynomial SVR

Mean STD Mean STD
0.03 0.029978 0.000015 0.030026 0.000025
0.05 0.049969 0.000024 0.050003 0.000034
0.07 0.069960 0.000032 0.069981 0.000040
0.09 0.089950 0.000040 0.089961 0.000044
0.11 0.109938 0.000048 0.109944 0.000048
0.13 0.129925 0.000055 0.129931 0.000051
0.15 0.149911 0.000061 0.149924 0.000054
0.17 0.169896 0.000067 0.169924 0.000057
0.19 0.189880 0.000072 0.189931 0.000061
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Figure 6.15: Comparison of estimated leak positions and actual ones.

the developed SVR model is not sensitive to the parameter uncertainty. In this case,

the kernel function is set as Gaussian radial basis function.

For the sake of comparison, the pipeline leak detection case from Guillen’s work

[235] is considered. In particular, a 85 < pipeline is considered in Guillen’s work

[235], while the pipeline length considered in this chapter is a long range pipeline

(!3 = 10, 000 <) as shown in Table 6.7. In addition, instead of solving a recursive

filtering problem, leak diagnosis is based on SVR method, which is essentially a

pattern recognition problem. It reduces the computing time to approximately 0.016

second for a single testing based on MacBook Pro (processor is 3.1GHz, Intel Core

i5, and memory is 8 GB 2133 MHz LPDDR3 with operation system macOS Sierra
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Table 6.5: Leak localization results by SVR with variations of friction coefficient _

Actual
Leak

Position
(m)

Estimated Position by
Lambda_No_SVR(m)

Estimated Position by
Lambda_Ne_SVR(m)

Estimated Position by
Lambda_Po_SVR(m)

Mean STD Mean STD Mean STD
1000 996.92 88.48 995.83 89.25 999.55 89.24
2000 2027.09 61.31 2027.13 62.85 2027.22 60.44
3000 2967.55 22.00 2966.19 22.54 2965.37 21.18
4000 3939.76 47.74 3936.80 49.30 3938.56 47.00
5000 4952.52 32.46 4949.99 32.08 4951.82 33.45
6000 5976.28 73.53 5974.85 71.63 5975.65 73.80
7000 6986.13 67.51 6985.62 65.70 6985.73 67.33
8000 7946.40 17.27 7946.34 16.62 7946.32 15.71
9000 8830.49 93.88 8830.59 93.93 8830.87 94.21

Table 6.6: Leak amount estimation results by SVR with variations of friction coeffi-
cient _

Actual
Leak
Amount

Estimated Amount by
Lambda_No_SVR

Estimated Amount by
Lambda_Ne_SVR

Estimated Amount by
Lambda_Po_SVR

Mean STD Mean STD Mean STD
0.03 0.030033 0.000045 0.029940 0.000013 0.029925 0.000008
0.05 0.050034 0.000037 0.049919 0.000009 0.049911 0.000038
0.07 0.070012 0.000027 0.069935 0.000008 0.069900 0.000038
0.09 0.089976 0.000024 0.089945 0.000008 0.089888 0.000019
0.11 0.109942 0.000027 0.109939 0.000016 0.109880 0.000007
0.13 0.129922 0.000024 0.129921 0.000024 0.129875 0.000015
0.15 0.149921 0.000018 0.149902 0.000028 0.149868 0.000016
0.17 0.169930 0.000027 0.169892 0.000031 0.169857 0.000032
0.19 0.189926 0.000033 0.189879 0.000034 0.189831 0.000049
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Figure 6.16: RMSE and accuracy of leak localization.
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Figure 6.17: Comparison of estimated leak amount and actual ones (leak amount
refers to the percentage of local mass flow velocity at the leak point).

10.12.06). As for diagnosis accuracy, it can reach 99% meaning that it outperforms

the filtering method, where the accuracy is around 95% [235], and waiting time for

one estimation result is around 60 seconds.

Remark 17. Since the spatial discretization interval is 500 < and leak amount is

discretized by 0.01 (the loss proportion of mass flow velocity at a given leak point)

in the simulation of leakage scenarios, the ensuing training and testing datasets of

SVM are generated based on these. However, this chapter can be extended for leak

detection, leak amount and position estimation of long-range pipeline systems with

leakage occurring other positions along the pipeline and/or other leakage amounts.

The discrete observer and support vector machine model design can preserve high

accuracy by setting the desired spatial discretization interval and specifying desired
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Figure 6.18: RMSE and accuracy of leak amount estimation (leak amount refers to
the percentage of local mass flow velocity at the leak point).

Table 6.7: Comparison of simulation results with Guillen’s paper

Methods Guillen’s Method Proposed Method
Mechanism Recursive estimation Pattern recognition

Pipeline Length 85 < 10, 000 <
Computing Time 60 s ≤1 s

Diagnosis Accuracy ≈ 95 % ≈99 %

leakage amount in pipeline simulation.

Remark 18. Considering the extrapolation performance, it can be seen that the SVR

model deteriorates when it comes to localization close to both ends as shown in Fig.

6.15. This is due to the fact that in the simulation process the current spatial dis-

cretization is relatively coarse while on the other hand, Gaussian radial basis function

is a typical local kernel with good performance in interpolation but not in extrapola-

tion. Hence, one can enhance the extrapolation performance through decreasing the

spatial discretization interval and/or proposing mixed kernel functions for SVM, such

as by combing Gaussian radial basis function and polynomial kernel function [246].

6.5 Conclusions

State estimation plays an important role for pipeline condition monitoring and leak

diagnosis. This chapter presents a discrete Luenberger observer and investigates

its utilization together with support vector machine models in leakage detection,

amount estimation and localization based on infinite-dimensional nonlinear coupled
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first-order hyperbolic equations. The major conclusions are drawn as: 1) the closed-

form solution of the pipeline dynamics is mathematically formulated to reveal the

spatiotemporal representation of the key process states, such as pressure, mass flow

velocity and density; 2) the design of a discrete Luenberger observer is realized by

utilizing the resolvent operator and solving the operator Riccati equation to obtain

the stabilization observer gain for this class of the distributed parameter system;

3) based on the proposed infinite-dimensional discrete Luenberger observer, normal

working situations and different leakage cases are simulated, including various leakage

amounts and positions. And finally, two support vector machine models (OCSVM

and SVR) are used to expose the presence of leakage and diagnose the corresponding

leakage location and its amount. Simulation results show that the presented discrete

observer and support vector machine models achieve satisfactory diagnosis accuracy

(around 99%) with limited external measurements. The ultimate benefit of this design

formulation is that the proposed design can be further integrated in discrete SCADA

and embedded control systems.
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Chapter 7

Discrete Output Regulator Design for
Linear Distributed Parameter
Systems

7.1 Introduction

Output regulation has been an active research and practical application driven topic

during the past decades. The main idea of output regulation is to design regula-

tors capable of stabilizing unstable systems, tracking desired output references, and

rejecting undesired disturbance signals simultaneously. In general, there are two dis-

tinct design problems associated with output regulation, i.e., the state feedback and

output/error feedback regulator designs. In the case of the state feedback regulator

design the full state information is assumed to be available while only the output or

error is known for the output/error feedback regulator design problems. Since the

pioneering work of [247], the internal model principle has initiated a plethora of im-

portant contributions in the output regulation theory of various linear and nonlinear

finite-dimensional systems [248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258].

When it comes to complex dynamical systems in engineering applications which

are often modelled by partial differential equations (PDE) and/or partial integral-

differential equations (PIDE), the major challenge in regulator design is to account for

the characteristics of infinite-dimensional systems and incipient efforts were made to-

ward extending the output regulation theory in finite-dimensional systems to infinite-

dimensional systems. In particular, the non-model based PI controllers were naturally

explored as early regulators for stable distributed parameter systems with constant
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disturbance by [259], and later [260] introduced the concepts of the state feedback

and the output feedback in the design of regulators based on state-space representa-

tions. [251] studied the output regulator design problem of finite-dimensional non-

linear systems by solving certain output regulator equations, which were generalized

to infinite-dimensional systems with bounded control and observation operators in

[10], and recently further extended to an important class of regular linear systems by

[13]. Within the regulator design approaches the distinct realizations can be grouped

in the cases when the exo-system is finite-dimensional [261, 262, 10, 74] or infinite-

dimensional [262, 52, 12, 53], which implies that reference and disturbance signals

can take finite- or infinite-dimensional representation.

Except the existing contributions on geometric regulation [57], the backstepping

approach [15] was introduced to solve output regulation problems leading to system-

atic regulator design methods. In particular, [263] applied a backstepping method

for disturbance rejection of a boundary controlled linear 2×2 hyperbolic system with

co-located sensing and actuation, which was extended for the same type of system

with interior domain disturbance by [264], = + 1 systems by [265] and more general

=+< heterodirectional first-order hyperbolic systems by [266] and [267]. Recently, [60]

introduced an integral transform into hyperbolic PDEs and proposed a backstepping-

forwarding controller and observer for this class of hyperbolic PDEs with Fredholm

integrals, which was further extended to the output regulation problem by [268].

As for parabolic systems, [54] first developed a backstepping-based regulator design

approach for a scaler PDE system and the results were extended to output regula-

tion problems of a 1-D Schrödinger equation by [269] and PIDE systems by [270].

Recently, there are intense interests in cascade PDE systems by the use of backstep-

ping approaches, including cascaded parabolic PDEs by [271], hyperbolic-parabolic

PDE-PDE cascade by [272], ODE-PDE-ODE cascade systems by [273] and etc.

However, most of the existing work on the output regulation problem is conducted

on the continuous-time setting, and relatively limited references are available on out-

put regulation of discrete-time systems. Among these, discrete-time output regulation

were considered for linear lumped parameter systems with input saturation by [274],

piecewise-linear systems by [275], and linear finite-dimensional multi-agent systems

by [276]. Nevertheless, there are even more scattered contributions when it comes to
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discrete-time output regulator design in infinite-dimensional systems. Among these,

a simple sampled-data low-gain controller was proposed for approximate tracking and

disturbance rejection of a class of exponentially stable well-posed infinite-dimensional

systems [277]. A sampled-data control problem of output tracking and disturbance

rejection for unstable well-posed linear infinite-dimensional systems was considered

with respect to constant disturbance and reference signals [278], where a frequency-

domain technique based on coprime factorizations approach was employed. A lifting

technique was used to design a discrete-time feedback controller that achieves approx-

imate robust output tracking and disturbance rejection in [279]. Motivated by the

fact that digital controllers and discrete-time systems are of great practical and theo-

retical interest, this chapter addresses discrete-time output regulator design problem

for linear distributed parameter systems with state-space models and consideration

of general exogenous signals (including step-like, ramp-like and harmonic signals).

In particular, we consider discrete-time output regulation design problem for linear

distributed parameter systems driven by a finite-dimensional exo-system and extend

key results of [10] and [102]. More specifically, novel contributions of this chapter lie in

the following aspects: (1) state and error feedback discrete regulators are designed for

linear discrete-time distributed parameter systems by employing the Cayley-Tustin

bilinear transform which preserves model structure and properties of linear infinite-

dimensional continuous-time systems; (2) the discrete regulator equations are for-

mulated and proved in the design of state and error feedback regulators, and the

discrete state and error feedback regulator design problems are solvable if and only if

the discrete regulator equations can be solved; (3) A 1-1 correspondence between the

solutions of discrete regulator equations and the corresponding continuous regulator

equations is established, implying that one can solve for the continuous Sylvester

equations and utilize the results in a discrete regulator design and vice versa; (4) the

non-resonance solvability conditions of the discrete regulator equations are provided

and linked to the corresponding continuous regulator equations; (5) a novel way of

determining discrete-time stabilizing feedback gain (and its dual problem) is provided

for the infinite-dimensional discrete-time systems using discrete-time Lyapunov and

Riccati equations.

The rest of this chapter is organized as follows: in Section 7.2, continuous-time
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infinite-dimensional plant and exogenous system are described and discretized in time

by using the Cayley-Tustin transform. In Section 7.3, after revisiting some main re-

sults in the continuous-time state feedback regulator, the discrete-time state feedback

regulator is designed and the solvability of the discrete Sylvester equations is proved

and linked to its continuous counterpart. To ensure the stability of the closed-loop

system, continuous- and discrete-time Lyapunov and Riccati equations are introduced

to determine the discrete stabilizing feedback gain along with their continuous par-

allels. In the same manner, a discrete error feedback regulator is formulated and the

solvability of the corresponding regulator equations is proved, along with its contin-

uous counterpart, and the dual problem of solving output injection gain is studied in

Section 7.4. Finally, the results are shown to be applicable to a first-order hyperbolic

PDE model and a heat equation model in Section 7.5, and conclusions are offered in

Section 7.6.

We use the following notations in this chapter. Assume that X and V are two

Hilbert spaces and A : X ↦→ V is a linear operator from X to V. L(X,V) denotes
the set of linear bounded operators from X to V. If X = V, we simply write L(X).
The domain, spectrum, resolvent set and resolvent operator of a linear operator A
are denoted as: D(A), f(A), d(A), and R(B,A) = (B� − A)−1 with B ∈ d(A),
respectively. We denote the space X1 as the space D(A) with the norm ‖G‖1 =

‖(V� − A)G‖, and the space X−1 as the completion of X with the norm ‖I‖−1 =

‖(V� −A)−1I‖, where ∀G ∈ D(A), ∀I ∈ X, and V ∈ d(A). The constructed space are

linked by X1 ⊂ X ⊂ X−1, with each inclusion being dense and continuous embedding

[42]. In addition, the inner product is denoted by 〈·, ·〉, and !2(0, ;)< with a positive

integer < denotes a Hilbert space of a <-dimensional vector of the real functions that

are square integrable over [0, ;] with a spatial length ;.

7.2 Preliminaries

The plant - The following linear infinite-dimensional continuous-time system is con-

sidered:

¤G(C) = AG(C) + BD(C) + Ξ3 (C), G(0) = G0 ∈ X (7.1a)

H2 (C) = CG(C) (7.1b)
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where the spatial state G(·, C) ∈ X, with X = !2((0, ;),C) is being defined as a complex

separable Hilbert space. Z ∈ [0, ;] ⊂ R and C ∈ [0,∞) represent temporal and

spatial coordinates. We denote the input D(C) ∈ !2
;>2
( [0,∞),*), the disturbance

3 (C) ∈ !2
;>2
( [0,∞),*3), and the controlled output H2 (C) ∈ !2

;>2
( [0,∞), . ), where *, *3

and . are finite-dimensional Hilbert spaces. A : D(A) ⊂ X ↦→ X is an infinitesimal

generator of a �0-semigroup TA (C) on X. The operators B ∈ L(*,X), Ξ ∈ L(*3 ,X),
and C ∈ L(X, . ) are assumed to be bounded operators. We remark that our approach

can be extended to the more general class of well-posed linear systems which include

unbounded input and output operators in the sense of [121, 280]. To address that,

we need to introduce the spaces X1 and X−1 so as to define unbounded control,

observation and disturbance operators as in [42, Pro. 2.10.3] and [281].

Naturally, one can express the transfer functions as follows:

G2 (B) = CR(B,A)B, B ∈ d(A) (7.2a)

T2 (B) = CR(B,A)Ξ, B ∈ d(A) (7.2b)

where G2 (B) and T2 (B) stand for transfer functions from D(C) to H2 (C) and from 3 (C)
to H2 (C), respectively.
The plant discretization in time - In order to address the issue of time dis-

cretization, the energy and structure preserving Cayley-Tustin bilinear transform is

applied to the linear infinite-dimensional continuous-time system (7.1) for a given

time discretization interval 4C > 0 as follows:

G(:ΔC) − G((: − 1)ΔC)
ΔC

≈ A G(:ΔC) + G((: − 1)ΔC)
2

+ BD(:ΔC) + Ξ3 (:ΔC) (7.3a)

H2 (:ΔC) ≈ C
G(:ΔC) + G((: − 1)ΔC)

2
, G(0) = G0, : ≥ 1 (7.3b)

As shown in Eq.(7.3), the discretization is performed based on the implicit mid-point

integration rule, which does not rely on any spatial discretization or model reduction,

leading to a symmetric (in time) and symplectic discretization scheme [119]. Through

simple algebraic manipulation of Eq.(7.3), one can obtain the infinite-dimensional

discrete-time state-space model as:

G: = A3G:−1 + B3D: + Ξ33: , : ≥ 1 (7.4a)

H2: = C3G:−1 + D3D: + Υ33: (7.4b)
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where the discrete state, disturbance and output are denoted by G: , 3: and H2: .

Additionally, the discrete input is given by D:√
ΔC
= 1

ΔC

∫ :ΔC

(:−1)ΔC D(C)3C, and it can be

shown that D:√
ΔC

converges to D(C) on the interval C ∈ ((: − 1)ΔC, :ΔC) as ΔC → 0 [97].

Similar expressions hold for the discrete time 3: and H2: . The associated discrete-time

operators are given as follows:[
A3 B3 Ξ3
C3 D3 Υ3

]
=

[
−� + 2XR(X,A)

√
2XR(X,A)�

√
2XR(X,A)Ξ√

2XCR(X,A) G2 (X) T2 (X)

]
(7.5)

where R(X,A), G2 (X) and T2 (X) denote the resolvent operator R(B,A) = (B� −A)−1,

transfer functions G2 (B) and T2 (B) with B evaluated at B = X = 2/ΔC ∈ d(A). In addi-

tion, there are feedforward operators D3 and Υ3 appearing in the discrete-time setting

(7.4) after applying Cayley-Tustin discretization, which is not necessarily present in

the continuous model (7.1b). The transfer functions of the discrete-time system (7.4)

are given by:

G3 (I) = C3 (I� − A3)−1B3 + D3 , I ∈ d(A3)\{−1} (7.6a)

T3 (I) = C3 (I� − A3)−1Ξ3 + Υ3 , I ∈ d(A3)\{−1} (7.6b)

where G3 (I) and T3 (I) are transfer functions from D: to H2: and from 3: to H2: ,

respectively. Based on the well-known bilinear mapping I = X+B
X−B and B = I−1

I+1 X [23]

(taken as: X = 1), the discrete- and continuous-time transfer functions are linked as:

G3 (I) = G2 (
I − 1

I + 1
X), T3 (I) = T2 (

I − 1

I + 1
X), I ∈ d(A3)\{−1} (7.7a)

G2 (B) = G3 (
X + B
X − B ), T2 (B) = T3 (

X + B
X − B ), B ∈ d(A)\{X} (7.7b)

By the Cayley-Tustin bilinear transformation, the open right-half plane C+ = {B ∈ C :

<(B) > 0} is mapped into the exterior of the unit disc D+ = {I ∈ C : |I | > 1} and vice

versa. Based on that, a 1-1 correspondence of stability, admissibility, controllability

and observability between continuous- and discrete-time systems has been established

in terms of Lyapunov and Riccati equations by [23]. In this chapter, we will explore

the 1-1 equivalence of discrete- and continuous-time regulation problems in terms of

Sylvester equations.

Remark 19. In the discrete-time model (7.4), all discrete-time operators are bounded

and defined as: A3 ∈ L(X), B3 ∈ L(*,X), Ξ3 ∈ L(*3 ,X), C3 ∈ L(X, . ), D3 ∈
L(*,. ), Υ3 ∈ L(*3 , . ), see details in the reference [279].
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Exo-system - In order to generate disturbance and reference signals, a finite-

dimensional exogenous system (exo-system in short) is introduced as follows:

¤@(C) = (@(C), @(0) = @0 ∈ C=@ (7.8a)

3 (C) = �@(C), HA (C) = &@(C) (7.8b)

where @, 3 and HA represent the state, disturbance and reference signals of the

continuous-time exo-system. In addition, @(C) ∈ C=@ , (, � and & have compatible

dimensions.

Assumption 10. ( : D(() : C=@ → C=@ is a matrix with all eigenvalues on the

imaginary axis and ( has two candidates (< and (=. (< has distinct eigenvalues and

is diagonalizable with dimension of =@, while (= is a nilpotent matrix of dimension

2 as (= =
[

0 0
1 0

]
. Hence, this design of ( accounts for the modelling of step-like,

ramp-like, and harmonic exogenous signals.

Exo-system discretization - A discrete exo-system is formulated to generate discrete-

time disturbance and output reference signals as follows:

@: = (3@:−1, @0 = @
0 ∈ C=@ (7.9a)

3: = �3@: , HA: = &3@: , : ≥ 1 (7.9b)

where @: , 3: and HA: are the state, disturbance and output reference signals in the

discrete-time setting. Specifically, (3 is the discrete state evolution matrix and ob-

tained by discretizing the corresponding continuous evolution matrix ( using the

Cayley-Tustin transform as:

(3 = −� + 2X0(X0� − ()−1, X0 ∈ d(() = C\f(() (7.10a)

�3 = �, &3 = & (7.10b)

where X0 = 2/Δ) with Δ) defined as the discretization time for the exo-system and

we assume Δ) = ΔC for simplicity, which implies that X = X0.

By the light of Assumption 10, we have two candidates for (3 as (3 = (3< or (3 =

(3= , which implies that all the eigenvalues of (3 are on the unit circle boundary on the

complex plane. In particular, (3
8
= −� + 2X(X� − (8)−1, 8 = <, =, and (3< has all distinct
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eigenvalues and (3= =
[

1 0
2
X

1

]
. Hence, (3 is capable of generating step-like, ramp-like,

and harmonic signals in the discrete-time setting. Thus, the correspondence between

the continuous- and discrete-time exogenous systems is established in order to link

the solvability of discrete Sylvester equations and the continuous counterparts.

Remark 20. We need discretize � and & as below using Cayley-Tustin discretization

approach in order to ensure the corresponding relationship of discrete- and continuous-

time error feedback regulators.

(3 = −� + 2X(X� − ()−1, X ∈ d(() = C\f(() (7.11a)

�3 =
√

2X� (X� − ()−1, &3 =
√

2X&(X� − ()−1 (7.11b)

Corollary 1. With diagonalizable ( and (3 (i.e., ( = (< and (3 = (3<), for each

eigenpair (_B
8
, qB

8
) of (, the associated eigenpair (_3

8
, q3

8
) of (3 is given by _3

8
= −1 +

2X(X − _B
8
)−1 and q3

8
= qB

8
where X ∈ d((); With non-diagonalizable ( and (3 (i.e.,

( = (= and (3 = (3=), we have the multiplicity of eigenvalues _B = 0 and _3 = 1 (for

simplicity we drop the subscript 8 in this case), which induces a standard eigenvector

(qB1 = _BqB1 or (3q31 = _3q31 and a generalized eigenvector as (qB2 = _BqB2 + q
B
1 or

(3q
3
2 = _3q32 + q

3
1 by using the chain rule. Furthermore, we suppose _B

8
≠ X and

_3
8
≠ −1, which can always be ensured by Assumption 10 and a proper choice of the

discretization interval.

For clarification, we introduce the following stability concepts.

Definition 8. The �0-semigroup TA (C) on X is exponentially stable if there exist

positive constants " and U such that:

‖TA (C)‖ ≤ "4−UC , ∀C ∈ R+

and it is strongly stable if ‖TA (C)G‖ → 0 as C →∞ for all G ∈ X. A3 is power stable

if there exist positive constants " and W < 1 such that:

‖A:
3 ‖ ≤ "W

: , ∀: ∈ N

and A3 is strongly stable if A:
3
G → 0 as : →∞ for all G ∈ X.
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Theorem 13. [23, The. 2.9] Suppose that Σ(A,B, C,D) and Σ3 (A3 ,B3 , C3 ,D3)
are continuous- and discrete-time analogues. Then Σ3 (A3 ,B3 , C3 ,D3) is strongly sta-
bilizable (detectable) if and only if Σ(A,B, C,D) is strongly stabilizable (detectable).

Normally, it is more favourable to show the 1-1 correspondence between the power

stability of A3 and exponential stability of TA (C). However, it needs more rigorous

assumption on the boundedness of A on X [282, Lem. 4.4] or the semigroup generated

by A and A−1 [22, The. 4.4], which needs more technical treatments and it will not

be considered in this chapter.

Throughout this chapter, we make some general assumptions as below:

Assumption 11. The spectrum of ( is included in the resolvent set of A, i.e.,

f(() ⊂ d(A).

By applying the Cayley-Tustin transform with some proper time discretization

interval, we can ensure that the spectrum of (3 is contained in the resolvent set of

A3, i.e., f((3) ⊂ d(A3).

Assumption 12. The pair (A,B) is exponentially stabilizable.

By Theorem 13 and Assumption 12, we note that the pair (A,B) is strongly

stabilizable, which further implies that (A3 ,B3) is strongly stabilizable.

Assumption 13. The pair
( [
A %

0 (

]
,
[
C −&

] )
is exponentially detectable and

there exists G2 = [�1;�2] ∈ L(.,Ω) where Ω is a Hilbert space with Ω = X
⊕
C=@

such that
[
A %

0 (

]
−G2

[
C −&

]
=

[
A − �1C % + �1&

−�2C ( + �2&

]
generates an exponen-

tially stable �0-semigroup, where % = Ξ�.

By Theorem 13 and Assumption 13, we can induce that the pair
( [
A3 %3
0 (3

]
, [C3

Θ23 −&3]
)
is strongly detectable and there exists G23 ∈ L(.,Ω), such that[

A3 %3
0 (3

]
− G23

[
C3 Θ23 −&3

]
=

[
A3 − �13C3 %3 − �13 (Θ23 −&3)
−�23C3 (3 − �23 (Θ23 −&3)

]
is a

strongly stable operator, where G23 = [�13;�23], %3 = Ξ3�3 and Θ23 = Υ3�3.

It can proved by showing that
( [
A3 %3
0 (3

]
,
[
C3 Θ23 −&3

] )
corresponds to the
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discrete-time operator
( [
A %

0 (

]
,
[
C −&

] )
by using the Cayley-Tustin transform.

In order to show the solvability of the regulator equations, we introduce the concept

of transmission zero. Under the consideration of finite-dimensional input and output

spaces, we make the following definition as in [10].

Definition 9. B0 ∈C is a transmission zero of continuous-time plant (7.1) if detG2 (B0)
= 0, and I0 ∈ C is a transmission zero of discrete-time plant (7.4) if detG3 (I0) = 0.

7.3 State feedback regulation

In this section, with the full state information being provided, a discrete-time state

feedback regulator is designed for the discrete system (7.4) and it is presented in

parallel with its continuous analogue for comparison. Based on the Cayley-Tustin

discretization, we prove the solvability of the discrete output regulator equations and

provide a 1-1 correspondence between the solutions of discrete- and continuous-time

regulator equations.

7.3.1 Continuous-time state feedback regulator

To proceed with the discrete-time state-feedback regulator design, we briefly revisit

the corresponding continuous-time counterpart in this section.

For simplicity, the continuous-time state feedback regulator design problem is

reviewed as follows. A continuous-time state-feedback regulator is designed for the

system (1) by finding a control law having the following form:

D(C) =  G(C) + !@(C) (7.12)

where  ∈ L(X,*), ! ∈ L(C=@ ,*) such that the following conditions hold.

[c1]: The closed-loop system operator A +B generates an exponentially stable �0-

semigroup;

[c2]: For the closed-loop system, the output tracking error 4(C) = H2 (C) − HA (C) → 0

with C → +∞ for any given initial conditions of G0 ∈ X and @0 ∈ C=@ .
To determine the control law (7.12), the following theorem is often utilized:
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Theorem 14. Let Assumptions 11-12 hold. The continuous-time state feedback reg-

ulation problem is solvable if and only if there exist mappings Π ∈ L(C=@ ,X) with
Π� (() ⊂ � (A) and Γ ∈ L(C=@ ,*) such that the following Sylvester equations hold

[10, The. IV.1]:

Π( = AΠ + BΓ + % (7.13a)

CΠ = & (7.13b)

where % = Ξ�, and ! = Γ −  Π can be utilized for computing the control input

D(C) =  G(C) + !@(C).

7.3.2 Discrete-time state feedback regulator

A discrete state feedback regulator is designed for the discrete system (7.4) in a

discrete-time setting by satisfying the following conditions.

[C1]: The closed-loop system operator A3 + B3 3 is strongly stable;

[C2]: For the closed-loop system, the output tracking error 4: = H2: − HA: → 0 with

: → +∞ for any given initial conditions of G0 ∈ X and @0 ∈ C=@ .
Discrete time regulator design - a full state feedback: With full state infor-

mation of plant and exo-system being available, the discrete state feedback regulator

design problem is addressed by finding a discrete regulator in the following form:

D: =  3G:−1 + !3@: (7.14)

where  3 ∈ L(X,*), !3 ∈ L(C=@ ,*) such that [C1] and [C2] hold.

To address the discrete-time state feedback regulator design problem, we propose the

following theorem.

Theorem 15. Under Assumptions 11-12, the discrete state feedback regulation prob-

lem is solvable if and only if there exist mappings Π3 ∈ L(C=@ ,X) and Γ3 ∈ L(C=@ ,*)
such that the following discrete Sylvester equations hold:

Π3(3 = A3Π3 + (B3Γ3 + %3)(3 (7.15a)

&3(3 = C3Π3 + (D3Γ3 + Θ23)(3 (7.15b)

where %3 = Ξ3�3, Θ23 = Υ3�3, and !3 = Γ3 − 3Π3(−1
3

can be utilized to compute the

state feedback control law D: in Eq.(7.14).
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Proof. First, let us prove the sufficiency. Plugging Eq.(7.14) into the discrete

system (7.4) leads to the closed-loop model as follows:

G: = (A3 + B3 3)G:−1 + (B3!3 + %3)@: (7.16)

To ensure [C1], the operator A3 +B3 3 needs to be strongly stable and the discrete-

time solution takes the following form:

G: = (A3 + B3 3):G0 +
:∑

<=1

(A3 + B3 3)<−1(B3!3 + %3)@:+1−< (7.17)

By substituting Eq.(7.9) and Eq.(7.15) into Eq.(7.17), one gets:

G: = (A3 + B3 3):G0 +
:∑

<=1

(A3 + B3 3)<−1 [B3 (Γ3 −  3Π3(−1
3 ) + %3]@:+1−<

= (A3 + B3 3):G0 +
:∑

<=1

(A3 + B3 3)<−1 [(B3Γ3 + %3)(3 − B3 3Π3)]@:−<

= (A3 + B3 3):G0 +
:∑

<=1

(A3 + B3 3)<−1 [Π3(3 − (A3 + B3 3)Π3)]@:−<

= (A3 + B3 3):G0 +
:∑

<=1

(A3 + B3 3)<−1Π3@:+1−<

−
:+1∑
<=2

(A3 + B3 3)<−1Π3@:+1−<

= (A3 + B3 3): (G0 − Π3@0) + Π3@: (7.18)

Moreover, the discrete tracking error can be expressed as:

4: =H2: − HA:

=C3G:−1 + D3D: + Θ23@: −&3@:

=(C3 + D3 3)G:−1 + (D3!3 + Θ23 −&3)@:

=(C3 + D3 3) (A3 + B3 3):−1(G0 − Π3@0)

+ [(C3 + D3 3)Π3 + (D3!3 + Θ23 −&3)(3]@:−1 (7.19)

Since A3 + B3 3 is a strongly stable operator, we have that (A3 + B3 3):G → 0 as

: → +∞ for all G ∈ X. Therefore, G: converges to Π3@: in Eq.(7.18) and the discrete

tracking error 4: goes to zero in Eq.(7.19) as : → +∞, which is guaranteed by the

discrete Sylvester equations (7.15a)-(7.15b).
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Now, we focus on the proof of the necessity and let us construct the following

extended closed-loop system:[
G:
@:

]
=

[
A3 + B3 3 (B3!3 + %3)(3

0 (3

] [
G:−1

@:−1

]
(7.20)

It is straightforward to conclude the solution of Eq.(7.20) by induction as follows:
G:

@:

 =
 (A3 + B3 3):G0 +

:∑
<=1
(A3 + B3 3)<−1(B3!3 + %3)@:+1−<

(:
3
@0

 (7.21)

Given that A3 + B3 3 is strongly stable, (A3 + B3 3):G0 → 0 as : → +∞ and

Eq.(7.21) indicates that
[
G:
@:

]
→

[
Π3@:
@:

]
as : → +∞ and Π3 ∈ L(C=@ ,X). To

determine Π3, we can construct the dynamical evolution of
[
G:
@:

]
−

[
Π3@:
@:

]
as the

following homogeneous difference equation:[
G:
@:

]
−

[
Π3@:
@:

]
=

[
A3 + B3 3 (B3!3 + %3)(3

0 (3

]
×

( [
G:−1

@:−1

]
−

[
Π3@:−1

@:−1

] )
(7.22)

where the initial condition is defined as
[
G0

@0

]
−
[
Π3@0

@0

]
∈ Ω with Ω = X

⊕
C=@ . The

first component in Eq.(7.22) leads to (A3 + B3 3)Π3 + (B3!3 + %3)(3 = Π3(3 which

is identical to discrete-time Sylvester equation (7.15a). Furthermore, the discrete

tracking error is described as:

4: = H2: − HA:

= C3G:−1 + D3D: + Θ23@: −&3@:

= (C3 + D3 3)G:−1 + (D3!3 + Θ23 −&3)@:

=
[
C3 + D3 3 (D3!3 + Θ23 −&3)(3

] [
G:−1

@:−1

]
→ [(C3 + D3 3)Π3 + (D3!3 + Θ23 −&3)(3] @:−1 (as : → +∞) (7.23)

To realize perfect tracking, it is necessary to ensure that (C3 +D3 3)Π3 + (D3!3 +Θ23
−&3)(3 = 0, which implies Eq.(7.15b) by substituting !3 = Γ3 −  3Π3(−1

3
.

7.3.3 Link between continuous and discrete regulator equa-
tions

The solutions of the proposed discrete-time regulator equations are linked to the

associated continuous analogues, based on Theorem 14, Theorem 15 and Cayley-

Tustin bilinear transform.
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Before we proceed with the theorem showing the equivalent link, let us propose

the following proposition:

Proposition 6. Suppose that we have these “second-order” transfer functions (or

equivalently the derivatives of transfer functions G2 (B), G3 (I), T2 (B), and T3 (I)) for

the continuous- and discrete-time system (7.1) and (7.4) accordingly as:

G (2)2 (B) = C(B� − A)−2B, B ∈ d(A)\{X} (7.24a)

G (2)
3
(I) = C3 (I� − A3)−2B3 , I ∈ d(A3)\{−1} (7.24b)

T (2)2 (B) = C(B� − A)−2Ξ, B ∈ d(A)\{X} (7.24c)

T (2)
3
(I) = C3 (I� − A3)−2Ξ3 , I ∈ d(A3)\{−1} (7.24d)

Using the Cayley-Tustin bilinear transform, it can be proved that the following rela-

tionships hold:

G (2)
3
(I) = (X − B)

2

2X
× G (2)2 (B) (7.25a)

T (2)
3
(I) = (X − B)

2

2X
× T (2)2 (B) (7.25b)

Proof. By substituting the discrete operators (A3 ,B3 , C3 ,Ξ3) given by Eq.(7.5)

and I = X+B
X−B into (7.24b), one can obtain

G (2)
3
(I) =

√
2XC(X� − A)−1 [2X(X − B)−1 − 2X(X� − A)−1]−2

√
2X(X� − A)−1B

=
(X − B)2

2X
× C(B� − A)−2B

=
(X − B)2

2X
× G (2)2 (B) (7.26)

In the similar manner, the proof of Eq.(7.25b) can be completed.

To reveal the relationship between (Γ,Π) and (Γ3 ,Π3), we provide the following

theorem:

Theorem 16. Let Assumptions 10-12 hold. By Cayley-Tustin transform (7.5) and

(7.10), the solutions of continuous- and discrete-time Sylvester equations are linked

by:

(a). For diagonalizable ( = (<, (3 = (3<
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Γ3 = Γ (7.27a)

Π3q
B
8 =

X + _B
8√

2X
ΠqB8 =

√
2X_3

8

_3
8
+ 1

ΠqB8 (7.27b)

(b). For non-diagonalizable ( = (=, (3 = (3=

Γ3 = Γ (7.27c)

Π3q
B
1 =

√
X

2
ΠqB1, Π3q

B
2 =

√
X

2
ΠqB2 +

1

X

√
X

2
ΠqB1 (7.27d)

Proof. Under the stated assumptions, we have that Theorem 14 and Theorem 15

hold. We first consider diagonalizable ( and (3, namely ( = (<, (3 = (3<. Based on

simple manipulations of discrete Sylvester equations (7.15) on the eigenpair (_3
8
, q3

8
)

of (3, the discrete regulator gains (Γ3 ,Π3) can be found as:

Π3q
3
8 = _

3
8 (_38 � − A3)−1(B3Γ3 + %3)q38 (7.28a)

Γ3q
3
8 = [G3 (_38 )]−1 [&3 − T3 (_38 )�3]q38 (7.28b)

where G3 (_38 ) and T3 (_38 ) are discrete-time transfer functions G3 (I) (from D: to H2:)

and T3 (I) (from 3: to H2:) with I evaluated at I = _3
8
. Since _3

8
∈ d(A3)\{−1},

G3 (_38 ) and T3 (_38 ) are always solvable.

Similarly, one can solve for the continuous regulator gains (Γ,Π) from continuous

Sylvester equations (7.13) as below:

ΠqB8 = (_B8 � − A)−1(BΓ + %)qB8 (7.29a)

ΓqB8 = [G2 (_B8 )]−1 [& − T2 (_B8 )�]qB8 (7.29b)

where G2 (_B8 ) and T2 (_B8 ) are continuous-time transfer functions G2 (B) (from D(C) to
H2 (C)) and T2 (B) (from 3 (C) to H2 (C)) with B evaluated at B = _B

8
. Since _B

8
∈ d(A)\{X},

G2 (_B8 ) and T2 (_B8 ) are always solvable.

To proceed with the proof, one need to show the following relationships between

the continuous- and discrete-time transfer functions:

G2 (_B8 ) = G3 (_38 ), T2 (_B8 ) = T3 (_38 ), ∀_B8 ∈ f((), ∀_38 ∈ f((3) (7.30)

Under Assumptions 10-11 and Corollary 1, one can deduce that _3
8
=

X+_B
8

X−_B
8
∈ f((3) ⊂

d(A3) (and _38 ≠ −1 since −1 ∉ f((3)) which coincides with the bilinear mapping
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I = X+B
X−B with I = _3

8
and B = _B

8
. Combining Eq.(7.7), we can infer Eq.(7.30). Note

that � = �3 and & = &3, so one can finally conclude that Γ = Γ3.

With the relationship between _B
8
and _3

8
shown in Corollary 1, we establish the

correspondence between Π and Π3 in Eq.(7.29a) and Eq.(7.28a) as follows:

Π3q
3
8 = _38 (_38 � − A3)−1(B3Γ3 + %3)q38
= _38 [2X(X − _B8 )−1 − 2X(X� − �)−1]−1

√
2X(X� − �)−1(BΓ + %)q38

= _38

√
2X
−1(X − _B8 ) (_B8 � − A)−1(BΓ + %)qB8 (with q38 = qB8 )

= _38

√
2X
−1(X − _B8 )ΠqB8

=

√
2X_3

8

_3
8
+ 1

ΠqB8 (7.31)

Therefore, in the case that ( and (3 are diagonalizable the solutions of Sylvester reg-

ulator equations in continuous- and discrete-time settings are related by Eq.(7.27a)-

(7.27b).

Then we consider non-diagonalizable ( and (3, i.e., ( = (= and (3 = (3= . By

recalling Assumption 10, we can show that there are two eigenvectors associated with

the eigenvalue 0 of (, and two eigenvectors associated with the eigenvalue 1 of (3.

Considering the multiplicity of eigenvalues 0 and 1, there are a standard eigenvector

and a generalized eigenvector associated with ( and (3 respectively.

From Corollary 1, we have the following relationship of the first (standard) eigen-

vector in ( and (3:

(qB1 = _
BqB1, (3q

3
1 = _

3q31 (7.32)

In this case, the solutions of continuous and discrete Sylvester regulator equations

are related by Eq.(7.27a)-(7.27b). The proof is the same as the previous one so it is

omitted. More specifically, due to _B = 0 and _3 = 1, we have the following for the

first (standard) eigenpair:

Γ3 = Γ (7.33a)

Π3q
B
1 =

√
X

2
ΠqB1 (7.33b)
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Now we need to fully consider the the action of Π and Π3 on the generalized eigen-

vectors of ( and (3, namely qB2 and q32 as follows:

Π3(3q
3
2 = A3Π3q

3
2 + (B3Γ3 + %3)(3q

3
2 (7.34a)

&3(3q
3
2 = C3Π3q

3
2 + (D3Γ3 + Θ23)(3q32 (7.34b)

By substituting (3q32 = _
3q32 + q

3
1 into Eq.(7.34), a directly algebraic manipulation

leads to

Π3q
3
2 = (_

3 � − A3)−1(B3Γ3 + %3)_3q32 − (_
3 � − A3)−1_−1

3 A3Π3q
3
1 (7.35a)

Γ3q
3
2 = [G3 (_

3)]−1 [&3 − T3 (_3)�3]q32 + [G3 (_
3)]−1 [G3 (2) (_3)Γ3 + T3 (2) (_3)�3]q31

(7.35b)

where G (2)
3
(_3) and T (2)

3
(_3) represent the discrete-time “second-order” transfer func-

tions G (2)
3
(I) and T (2)

3
(I) with I evaluated at I = _3. Similarly, by inserting the

generalized eigenvector qB2 (with (qB2 = _
BqB2 + q

B
1) in the continuous-time Sylvester

regulator equations (7.13), it is straightforward to attain

ΠqB2 = (_
B � − A)−1(BΓ + %)qB2 − (_

B � − A)−1ΠqB1 (7.36a)

ΓqB2 = [G2 (_
B)]−1 [& − T2 (_B)�]qB2 + [G2 (_

B)]−1 [G2 (2) (_B)Γ + T2 (2) (_B)�]qB1 (7.36b)

where G (2)2 (_B) and T (2)2 (_B) denote continuous-time “second-order” transfer functions

G (2)2 (B) and T (2)2 (B) with B evaluated at B = _B. Applying the link (7.24) between

discrete- and continuous-time “second-order” transfer functions, one can readily con-

clude that Γ3 = Γ (i.e., Eq.(7.27c)) holds.

To show the relationship between Π3 and Π, we can substitute Eq.(7.28a) with

q3
8
= q31 into Eq.(7.35a) as follows:

Π3q
3
2 = (_

3 � − A3)−1(B3Γ3 + %3)_3q32 − (_
3 � − A3)−1A3 (_3 � − A3)−1(B3Γ3 + %3)q31

= _3 (_3 � − A3)−1(B3Γ3 + %3)q32 + (_
3 � − A3)−1(B3Γ3 + %3)q31

− (_3 � − A3)−1Π3q
3
1 (7.37)

Based on the chain rule of the generalized eigenvectors qB2 and q32 shown in Corollary

1, we have the following:

q32 =
(X − _B) (X − ()

2X
qB2 =

(X − _B)2

2X
qB2 −

X − _B
2X

qB1 (7.38)
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which can be further substituted in Eq.(7.37). Through simple algebraic manipula-

tion, one can rewrite Eq.(7.37) as:

Π3q
B
2 =

√
X

2
(−A)−1(BΓ3 + %)qB2 +

2

X

√
X

2
(−A)−1(BΓ3 + %)qB1

− 1

X
(−A)−1(X� − A)Π3q31

=

√
X

2
ΠqB2 +

√
1

2X
ΠqB1 (7.39)

The last expression is induced by the use of Eq.(7.36a). This completes the whole

proof.

Remark 21. With the 1-1 correspondence (7.27), it can be seen that the solutions of

discrete Sylvester equations (7.15) and its continuous counterparts (7.13) are linked

via the Cayley-Tustin bilinear transform. Hence, one can solve for (Γ3 ,Π3) from
discrete-time Sylvester equations to attain (Γ,Π) for continuous-time regulator design

and vice versa.

Regarding the solvability of the regulator equations, the non-resonance conditions

of finite-dimensional systems have been generalized for the continuous-time linear

infinite-dimensional systems in [10]. Following that, we establish the non-resonance

conditions for the discrete state feedback regulator equations (7.15).

Lemma 4. Let Assumptions 10-12 hold. The regulator equations (7.13) are solvable

for every choice of % and & if and only if no eigenvalue of ( is a transmission zero

of continuous-time plant (7.1), i.e., detG2 (_B8 ) ≠ 0,∀_B
8
∈ f(().

Proof. For the diagonalizable ( having all eigenvalues on the imaginary axis

(namely ( = (<), the proof is shown in [10, Corollary V.1]. For the case of non-

diagonalizable (, i.e., ( = (=, we observe that Π is always solvable under stated

assumptions, and the solvability of Γ depends on the invertibility of G2 (_B) (indeed
_B = 0 and for simplicity we drop the subscript 8 in _B

8
in this case) as shown in

Eq.(7.36) that is same as the case of diagonalizable ( but through more complicated

manipulation.

In the similar manner, we can prove the non-resonance solvability criteria for

discrete-time regulator equations (7.15) with a proper choice of the time discretization

interval.
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Corollary 2. Let Assumptions 10-12 hold. The regulator equations (7.15) are solv-

able for every choice of %3 and &3 if and only if no eigenvalue of (3 is a transmission

zero of discrete-time plant (7.4), i.e., detG3 (_38 ) ≠ 0,∀_3
8
∈ f((3).

By combining Lemma 4 and Corollary 2, we show that the non-resonance condi-

tions stay invariant under the Cayley-Tustin transformation.

Theorem 17. Let Assumptions 10-12 hold. The non-resonance conditions in Lemma

4 and Corollary 2 are equivalent under the Cayley-Tustin bilinear transformation, and

regulator equations (7.15) are solvable if and only if regulator equations (7.13) are

solvable.

Proof. Under Assumptions 10-11 and Corollary 1, we have _3
8
=

X+_B
8

X−_B
8
∈ f((3) ⊂

d(A3), _B8 =
_3
8
−1

_3
8
+1 X ∈ f(() ⊂ d(A), where X ∉ f(() and −1 ∉ f((3) with a proper

choice of X, which indicates G2 (_B8 ) = G3 (_38 ), for all _B
8
∈ f(() and _3

8
∈ f((3) by

using the 1-1 correspondence in continuous- and discrete-time transfer functions (7.7).

Thus we have detG2 (_B8 ) ≠ 0,∀_B
8
∈ f(() if and only if detG3 (_38 ) ≠ 0,∀_3

8
∈ f((3).

The proof is completed by combining Lemma 4 and Corollary 2.

7.3.4 Stabilizing feedback control gain

The 1-1 correspondence of exponential (strong) stability of the pairs (A,B) and
(A3 ,B3) has been addressed by [23]. In this chapter, we will provide a novel way to

determine the discrete stabilizing feedback controller gain by finding its correspon-

dence relationship with the associated continuous counterpart.

Lemma 5. Given that A2 is an infinitesimal generator of the �0-semigroup TA2 (C)
on the Hilbert space, TA2 (C) is exponentially stable if and only if there exists a non-

negative self-adjoint operator &2 such that [4, The. 5.1.3]:

A∗2&2 +&2A2 + "2 = 0, on D(A2) (7.40)

with &2 (D(A2)) ⊂ D(A∗2), where "2 is a positive definite design parameter.

With A2 = A + B , the Lemma 5 is linked to the following theorem.
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Theorem 18. Let Assumption 12 hold. If there exists a non-negative self-adjoint

operator &2 that solves the following algebraic Riccati equation [102, The. 1]:

A∗&2 +&2A + "2 − 2&2BB∗&2 = 0, on D(A) (7.41)

where "2 is a positive definite design parameter such that &2 (D(A)) ∈ D(A∗) and
the stabilizing feedback control gain is  = −B∗&2, then the closed-loop system is

exponentially stable, i.e., A + B generates an exponentially stable �0-semigroup. It

can be shown that the Eq.(7.41) is equivalent to Eq.(7.40) by taking  = −B∗&2 and
&2 (D(A)) ⊂ D(A∗), see [102]. Motivated by this, we aim at proposing a novel way

to determine the discrete stabilizing control gain  3.

By [4, Exe. 4.30], it can be shown that the operator &2 that is the solution of

the continuous-time Lyapunov equation (7.40) and Riccati equation (7.41) coincides

with the solution &23 of the discrete-time Lyapunov equation:

A∗23&23A23 −&23 + "23 = 0, on X (7.42)

where "23 is a positive definite design parameter such that &23 ∈ L(X).
To show that the discrete- and continuous-time Lyapunov equations share the same

solution, we propose the following proposition.

Proposition 7. Let Assumption 12 hold. Given that "2 = C∗#2C, "23 = C∗23#2C23,
A23 = −� + 2X(X −A2)−1 and C23 =

√
2XC(X −A2)−1 by the Cayley-Tustin transform,

the discrete Lyapunov equation (7.42) and its continuous version (7.40) share the

same solution, i.e., &2 = &23, where #2 is a positive definite design parameter.

Proof. Stemming from the continuous Lyapunov equation (7.40), we can demon-

strate the following:

A∗2&2 +&2A2 + C∗#2C = 0

⇔ −2X(X� − A2)∗&2 − 2X&2 (X� − A2) + 4X2&2 + 2XC∗#2C = 0

⇔ −2X&2 (X� − A2)−1 − 2X[(X� − A2)−1]∗&2 + 4X2 [(X� − A2)−1]∗&2 (X� − A2)−1

+2X[(X� − A2)−1]∗C∗#2C(X� − A2)−1 = 0

⇔ [−� + 2X(X� − A2)−1]∗&2 [−� + 2X(X� − A2)−1] −&2 + C∗23#2C23 = 0
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⇔ A∗
23
&2A23 −&2 + C∗23#2C23 = 0

The last expression implies that &2 = &23.

Then, we further investigate the link between solutions of the discrete-time Lya-

punov equation and Riccati equation by the following corollary.

Corollary 3. Let Assumption 12 hold. If there exist the non-negative operator &23
that solves the following discrete-time algebraic Riccati equation:

A∗3&23A3 −&23 + C∗3#2C3 −  
∗
3

(
2� + B∗3&23B3 + D

∗
3#2D3

)
 3 = 0, on X (7.43)

where #2 is a positive definite design parameter, then the strongly stabilizing feedback

control gain is  3 = −(� + B∗3&23B3 + D
∗
3
#2D3)−1(B∗

3
&23A3 + D∗3#2C3).

As for the proof, one can take A23 = A3 + B3 3, C23 = C3 + D3 3 and  3 =

−(� +B∗
3
&23B3 +D∗3#2D3)−1(B∗

3
&23A3 +D∗3#2C3) in Eq.(7.42) which can be further

simplified as Eq.(7.43).

Remark 22. The continuous- and discrete-time stabilizing feedback control gains are

given by:  = −B∗&2 and  3 = −(� + B∗3&23B3 + D
∗
3
#2D3)−1(B∗

3
&23A3 + D∗3#2C3)

where &2 = &23, so we can solve for discrete &23 and apply it for the construction of

continuous  , and vice versa.

7.4 Error feedback regulation

In this section, after a brief review of the continuous-time error feedback regulator de-

sign, the discrete-time error feedback regulator design is proposed. More specifically,

the discrete error feedback output regulator equations are constructed and proved.

7.4.1 Continuous-time error feedback regulator

In comparison to the discrete error feedback regulator design, the continuous counter-

part is reviewed shortly. A continuous-time error feedback regulator design is achieved

by finding a regulator taking the following form:

¤A (C) = G1A (C) + G24(C), A (0) = A0 (7.44a)
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D(C) = �A (C) (7.44b)

where A (C) ∈ Ω = X
⊕
C=@ for C ∈ [0, +∞), G1 ∈ L(Ω), G2 ∈ L(.,Ω) and � ∈

L(Ω,*), and only the error signal 4(C) is known in order to satisfy the following

conditions:

(c3) The system

¤G(C) = AG(C) + B�A (C) (7.45a)

¤A (C) = G2CG(C) + G1A (C) (7.45b)

is exponentially stable when @ ≡ 0, which implies [A B�;G2C G1] is an infinitesimal

generator of an exponentially stable �0-semigroup.

(c4) The tracking error 4(C) → 0 as C → +∞ for any given G0 ∈ X, A0 ∈ Ω and

@0 ∈ C=@ .
To solve the continuous-time error feedback regulator design problem, the following

theorem is often utilized.

Theorem 19. Let Assumptions 11-13 hold. The continuous-time error feedback reg-

ulation problem is solvable if and only if there exist mappings Π ∈ L(C=@ ,X) with
Π� (() ⊂ � (A) and Γ ∈ L(C=@ ,*) such that the following Sylvester equations hold

[10, The. IV.2]:

Π( = AΠ + BΓ + % (7.46a)

CΠ = & (7.46b)

where % = Ξ�, and ! = Γ −  Π. With Π and Γ, the error feedback regulator is found

by:

¤A (C) = G1A (C) + G24(C) (7.47a)

D(C) = �A (C) (7.47b)

where A (C) ∈ Ω = X
⊕
C=@ and

G1 =

[
A + B − �1C % + B(Γ −  Π) + �1&

−�2C ( + �2&

]
G2 =

[
�1

�2

]
, � =

[
 Γ −  Π

]
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Here  ∈ L(X,*), �1 ∈ L(.,X) and �2 ∈ L(.,C=@ ) such that  ∈ L(X,*) is
an exponentially stabilizing feedback gain for the pair (A,B) and G2 =

[
�1

�2

]
is an

exponentially stabilizing output injection gain for the pair
( [
A %

0 (

]
,
[
C −&

] )
.

7.4.2 Discrete-time error feedback regulator

Discrete-time error feedback regulator design: Find a regulator having the

following form:

A: = G13A:−1 + G234:−1, : ≥ 1 (7.48a)

D: = �3A: (7.48b)

where A: ∈ Ω = X
⊕
C=@ , Ω is a Hilbert space, G13 ∈ L(Ω), G23 ∈ L(.,Ω) and

�3 ∈ L(Ω,*), where only the error signal 4: is available, such that the following

conditions hold:

(C3) The system

G: = A3G:−1 + B3�3A: (7.49a)

A:+1 = G23C3G:−1 + (G13 + G23D3�3)A: (7.49b)

is strongly stable when @: ≡ 0, which means [A3 B3�3; G23C3 (G13 + G23D3�3)]
is a strongly stable operator.

(C4) The tracking error 4: → 0 as : → +∞ for any given G0 ∈ X, A0 ∈ Ω and

@0 ∈ C=@ .
To address the discrete-time error feedback regulation problem, we propose the fol-

lowing theorem.

Theorem 20. Under Assumptions 11-13, the discrete error feedback regulation prob-

lem is solvable if and only if there exist mappings Π3 ∈ L(C=@ ,X) and Γ3 ∈ L(C=@ ,*)
such that the following discrete Sylvester equations hold:

Π3(3 = A3Π3 + (B3Γ3 + %3)(3 (7.50a)

&3(3 = C3Π3 + (D3Γ3 + Θ23)(3 (7.50b)
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where %3 = Ξ3�3, Θ23 = Υ3�3, and the discrete error feedback control law D: can be

computed as follows:

A: = G13A:−1 + G234:−1, : ≥ 1 (7.51a)

D: = �3A: (7.51b)

where A: ∈ Ω = X
⊕
C=@ and

G13 =

[
A3 + B3 3 − �13 ] %3 + B3!3 − �13a

−�23 ] (3 − �23a

]
(7.52a)

G23 =

[
�13

�23

]
, �3 = [ 3 !3] (7.52b)

where ] = C3 + D3 3, a = D3!3 + Θ23 − &3, !3 = Γ3 −  3Π3(−1
3
,  3 ∈ L(X,*),

�13 ∈ L(.,X) and �23 ∈ L(.,C=@ ), such that A3 + B3 3 is a strongly stable op-

erator and G23 =

[
�13

�23

]
is a strongly stabilizing output injection gain for the pair( [

A3 %3
0 (3

]
,
[
C3 Θ23 −&3

] )
.

Proof. Let us prove sufficiency first. In the regulator equation (7.51), one can

take A: =
[
Ĝ:−1

@̂:

]
∈ Ω as the estimated plant and exogenous states, which leads to[

Ĝ:−1

@̂:

]
= G13

[
Ĝ:−2

@̂:−1

]
+ G234:−1

=

[
�11 �12

�21 �22

] [
Ĝ:−2

@̂:−1

]
+

[
�13

�23

]
[C3G:−2 + D3D:−1 + Θ23@:−1 −&3@:−1]

=

[
�11 �12

�21 �22

] [
Ĝ:−2

@̂:−1

]
+

[
�13D3

�23D3

]
D:−1

+
[
�13C3 �13 (Θ23 −&3)
�23C3 �23 (Θ23 −&3)

] [
G:−2

@:−1

]
=

[
�11 + �13D3 3 �12 + �13D3!3
�21 + �23D3 3 �22 + �23D3!3

] [
Ĝ:−2

@̂:−1

]
+

[
�13C3 �13 (Θ23 −&3)
�23C3 �23 (Θ23 −&3)

] [
G:−2

@:−1

]
(7.53)

D: = [ 3 !3]
[
Ĝ:−1

@̂:

]
(7.54)
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where G13 =

[
�11 �12

�21 �22

]
. Then, we substitute D: in Eq.(7.54) back into the plant

(7.4a) and exo-system (7.9a) as follows:[
G:−1

@:

]
=

[
A3 %3
0 (3

] [
G:−2

@:−1

]
+

[
B3 3 B3!3

0 0

] [
Ĝ:−2

@̂:−1

]
(7.55)

By combining Eq.(7.53) and Eq.(7.55) and introducing two estimation errors 4G:−1 =

G:−1 − Ĝ:−1 and 4@: = @: − @̂: , one can attain:[
4G:−1
4@:

]
=

[
A3 − �13C3 %3 − �13 (Θ23 −&3)
−�23C3 (3 − �23 (Θ23 −&3)

] [
G:−2

@:−1

]
+

[
(B3 − �13D3) 3 − �11 (B3 − �13D3)!3 − �12

−�23D3 3 − �21 −�23D3!3 − �22

] [
Ĝ:−2

@̂:−1

]
(7.56)

Through direct calculation, one can have the following homogeneous difference equa-

tion for describing the error evolution dynamics:[
4G:−1
4@:

]
=

[
A3 − �13C3 %3 − �13 (Θ23 −&3)
−�23C3 (3 − �23 (Θ23 −&3)

] [
4G:−2
4@:−1

]
(7.57)

With Theorem 13 and Assumption 13, one can readily conclude that
[
4G:−1
4@:

]
con-

verges to zero with : → +∞, and obtain the following by combining Eq.(7.56) and

Eq.(7.57):

G13 =

[
�11 �12

�21 �22

]
=

[
A3 + B3 3 − �13 ] %3 + B3!3 − �13a

−�23 ] (3 − �23a

]
(7.58)

where ] = C3 + D3 3, a = D3!3 + Θ23 − &3. Finally, from Eq.(7.54) we have D: →
 3G:−1 + !3@: since Ĝ:−1 → G:−1 and @̂: → @: as : → +∞. Based on the proof

of Theorem 15, we can conclude that the tracking error 4: → 0 with : → +∞ and

the error feedback regulation problem is solved given that Sylvester equations (7.50)

hold.

Now we prove the necessity. Similarly, let us consider A: =
[
Ĝ:−1

@̂:

]
∈ Ω, 4G:−1 =

G:−1− Ĝ:−1 and 4@: = @: − @̂: . Substituting Eq.(7.51) and Eq.(7.52) into the extended

system (7.55) leads to Eq.(7.57). Then one can plug the expression of D: in Eq.(7.51b)

into the plant system (7.4), and induce that

G: = A3G:−1 + B3 ( 3 Ĝ:−1 + !3 @̂: ) + %3@:

= (A3 + B3 3)G:−1 − B3 34G:−1 + (B3!3 + %3)@: − B3!34@: (7.59)
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By combining Eq.(7.57) and Eq.(7.59), we denote Φ:−1 = [G:−1; 4G:−1 ; 4@: ] and obtain

Φ: = A1Φ:−1 + %1@: + B1D: (7.60a)

@: = (3@:−1 (7.60b)

4: = C1Φ:−1 + D3D: + (Θ23 −&3)@: (7.60c)

where B1 = [0; 0; 0], C1 = [C3 0 0], %1 = [B3!3 + %3; 0; 0] and

A1 =


A3 + B3 3 −B3 3 −B3!3

0 A3 − �13C3 %3 − �13 (Θ23 −&3)
0 −�23C3 (3 − �23 (Θ23 −&3)


Along this line, we can define an extended mapping Π1 = [Π3; 0; 0] : C=@ ↦→
X

⊕
.

⊕
C=@ and then apply Theorem 15 to design a state feedback regulator for the

system (7.60) as: D: =  1Φ:−1+ (Γ1− 1Π1(
−1
3
)@: where  1 = [ 3 0 0] and Γ1 = Γ3.

Then the following Sylvester equations are obtained for solving the corresponding

operators Π1 and Γ1 ∈ L(C=@ , . ):

Π1(3 = A1Π1 + (B1Γ1 + %1)(3 (7.61a)

&3(3 = C1Π1 + (D3Γ1 + Θ23)(3 (7.61b)

Under Assumptions 11-13 and Theorem 13, it is apparent that A1 is strongly stable,

and hence A1 + B1 1 is strongly stable due to B1 = 0. Taking the first component of

Eq.(7.61a) and Eq.(7.61b) into consideration, one can obtain:

Π3(3 = (A3 + B3 3)Π3 + (B3!3 + %3)(3 (7.62a)

&3(3 = C3Π3 + (D3Γ3 + Θ23)(3 (7.62b)

which further indicates Eq.(7.50) with !3 = Γ3 −  3Π3(−1
3
.

Corollary 4. Let Assumptions 10-13 hold. With Cayley-Tustin transform (7.5) and

(7.11), the corresponding relationships between (Γ3 ,Π3) and (Γ,Π) are established as

below for the continuous- and discrete-time error feedback regulator designs.

(a). For diagonalizable ( = (<, (3 = (3<

Γ3 =

√
2X

X − _B
8

Γ (7.63a)
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Π3q
B
8 = _

3
8 Πq

B
8 (7.63b)

(b). For non-diagonalizable ( = (=, (3 = (3=

Γ3q
B
1 =

√
2

X
ΓqB1, Γ3q

B
2 =

√
2

X
ΓqB2 +

1

X

√
2

X
ΓqB1 (7.63c)

Π3q
B
8 = Πq

B
8 (7.63d)

Proof. Under stated assumptions, we have that Theorem 19 and Theorem 20

hold. The next proof is similar to Theorem 16 so it is omitted.

We note that under Assumptions 10-13, the solvability of the state feedback reg-

ulator problem is equivalent to that of the error feedback regulator problem in a

continuous- or discrete-time setting. Along this line, we can establish the same non-

resonance solvability criteria for continuous-time error feedback regulator equations

(7.46) and discrete-time error feedback regulator equations (7.50) as in Lemma 4 and

Corollary 2 by including Assumption 13. Thus we can further show that the solv-

ability of discrete-time error feedback regulator equations is equivalent to that of the

continuous analogues.

Corollary 5. Under Assumptions 10-13, we have the following assertions: a). regu-

lator equations (7.46) are solvable if and only if no eigenvalue of ( is a transmission

zero of continuous-time plant (7.1), i.e., detG2 (_B8 ) ≠ 0,∀_B
8
∈ f((); b). regulator

equations (7.50) are solvable if and only if no eigenvalue of (3 is a transmission zero

of discrete-time plant (7.4), i.e., detG3 (_38 ) ≠ 0,∀_3
8
∈ f((3); c). the non-resonance

conditions a) and b) are equivalent under the Cayley-Tustin bilinear transformation;

and d) regulator equations (7.50) are solvable if and only if regulator equations (7.46)

are solvable.

Proof. The proof is similar to Lemma 4, Corollary 2 and Theorem 17 under As-

sumptions 10-13, so we omit it.

7.4.3 Discrete stabilizing output injection gain

In this section, we will provide a new way to solve for the discrete stabilizing output

injection gain G23. First let us revisit some main results on stabilization of continuous-

and discrete-time systems from [4, 102].
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Lemma 6. Given that A> is an infinitesimal generator of the �0-semigroup TA> (C)
on the Hilbert space, TA> (C) is exponentially stable if and only if there exists a non-

negative self-adjoint operator &> such that [4]

A>&> +&>A∗> + "> = 0, on D(A∗>) (7.64)

with &> (D(A∗>)) ⊂ D(A>), where "> is a positive definite design parameter.

Given that A> =

[
A %

0 (

]
−G2

[
C −&

]
, we adopt the following theorem from

[102] to solve for G2.

Theorem 21. Let Assumption 13 hold. If there exists a non-negative self-adjoint

operator Θ1 and Θ2 that solve the following algebraic Riccati equations [102, The. 5]:

AΘ1 + Θ1A∗ − 2Θ1C∗CΘ1 + ">1 = 0 (7.65a)

%Θ2 + 2Θ1C∗&Θ2 + ">2 = 0 (7.65b)

(Θ2 + Θ2(
∗ − 2Θ2&

∗&Θ2 + ">3 = 0 (7.65c)

where ">1 and ">3 are positive definite operator and matrix, respectively, and ">2 is

determined based on solutions of Θ1 and Θ2 to ensure that
[
">1 ">2

"∗
>2 ">3

]
is positive

definite and Θ1(D(A∗)) ⊂ D(A), then G2 =

[
�1

�2

]
=

[
Θ1C∗
−Θ2&

∗

]
is an exponentially

stabilizing output injection gain.

By [4, Exe. 4.30], it can be shown that the operator &> that solves the continuous

Lyapunov equation (7.64) coincides with the solution &>3 (namely [Θ1 0; 0 Θ2] =
[Θ13 0; 0 Θ23] as shown in Eq.(7.67)) of the following discrete-time Lyapunov

equation:

A>3&>3A∗>3 −&>3 + ">3 = 0, on X (7.66)

where ">3 is a positive definite design parameter and &>3 ∈ L(X) is a non-negative

self-adjoint operator. To prove that, one can take "> = B#>B∗ in Eq.(7.64), ">3 =

B>3#>B∗>3, B>3 =
√

2X(X−A>)−1B and A>3 = −� + 2X(X−A>)−1 by using the Cayley-

Tustin transform, where #> is a positive definite design parameter.
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Given that A>3 =

[
A3 %3
0 (3

]
− G23

[
C3 Θ23 −&3

]
, we provide the following

discrete Riccati equations for solving the discrete stabilizing output injection gain

G23.

Corollary 6. Let Assumption 13 hold. If there exist the non-negative operators Θ13

and Θ23 that solve the following discrete-time algebraic Riccati equations

A3Θ13A∗3− Θ13+ %3Θ23%
∗
3− �13 (2'1+ C3Θ13C∗3+Ω3Θ23Ω

∗
3)�

∗
13+ "31 = 0 (7.67a)

(%3 − �13Ω3)Θ23 ((3 − �23Ω3)∗ − (A3 − �13C3)Θ13C∗3�
∗
23 + "32 = 0 (7.67b)

(3Θ23(
∗
3 − Θ23 − �23 (2'2 + C3Θ13C∗3 +Ω3Θ23Ω

∗
3)�

∗
23 + "33 = 0 (7.67c)

where '1, '2, "33 and "31 are positive definite matrices and operator, respec-

tively, and "32 is determined such that
[
"31 "32

"∗
32 "33

]
is positive definite, then G23 =[

�13

�23

]
=

[
(A3Θ13C∗3 + %3Θ23Ω

∗
3
) ('1 + C3Θ13C∗3 +Ω3Θ23Ω

∗
3
)−1

(3Θ23Ω
∗
3
('2 + C3Θ13C∗3 +Ω3Θ23Ω

∗
3
)−1

]
is a strongly sta-

bilizing output injection gain, where Ω3 = Θ23 −&3.

Proof. Given &>3 = bdiag(Θ13 ,Θ23), ">3 =

[
"31 "32

"∗
32 "33

]
and A>3 =

[
A3 %3
0 (3

]
−

G23

[
C3 Θ23 −&3

]
with G23 =

[
�13

�23

]
, �13 = (A3Θ13C∗3+%3Θ23Ω

∗
3
) ('1+C3Θ13C∗3

+Ω3Θ23Ω
∗
3
)−1 and �23 = (3Θ23Ω

∗
3
('2 + C3Θ13C∗3 + Ω3Θ23Ω

∗
3
)−1, simple algebraic

manipulation of Eq.(7.66) leads to Eq.(7.67).

Remark 23. To solve the algebraic Riccati equations (7.67), we provide the following

steps:

1. Initialize '1, '2, "31 and "33;

2. Solve for Θ13 and Θ23 in Eq.(7.67a) and Eq.(7.67c) using numerical iteration

methods (e.g. Newton-Kleinman iteration method [283, 284, 285]);

3. Find "32 by substituting Θ13 and Θ23 into Eq.(7.67b), and check the positive

definiteness of ">3 =

[
"31 "32

"∗
32 "33

]
and &>3 =bdiag(Θ13 , Θ23), if not return to

repeat steps (1)-(2).

Remark 24. Given that "> = B#>B∗ and ">3 = B>3#>B∗>3, the continuous- and

discrete-time stabilizing output injection gains G2 and G23 can be linked by Theorem

20 and Corollary 6. Thus one can solve for G23 and then apply the result (Θ13 ,Θ23)
for the construction of G2, and vice versa.
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7.5 Simulation

To verify the effectiveness and applicability of the proposed discrete-time regulator

design methods, we provide three examples including two state feedback regulator

designs for a first-order hyperbolic PDE (non-spectral system) with considerations

of harmonic and polynomial exogenous signals respectively, and an error feedback

regulator design for a 1-D heat equation (spectral system) to realize set-point reference

control.

7.5.1 Example 1: state feedback regulator design for a first-
order hyperbolic PDE (non-spectral system) with con-
sideration of harmonic reference and disturbance

Let us consider a tubular reactor system described by a first-order hyperbolic partial

differential equation model as follows:

IC (Z, C) = −EIZ (Z, C) + k(Z)I(Z, C) + 1(Z)D(C) + 5 (Z)3 (C) (7.68a)

I(0, C) = 0, I(Z, 0) = I0(Z) (7.68b)

H2 (C) = �2I(Z, C) (7.68c)

where Z ∈ [0, 1] and C ∈ [0, +∞) stand for spatial and temporal coordinates, respec-

tively. We consider bounded input and disturbance operators as 1(Z) = 1, 5 (Z) = 0.5

with model parameters E = 2 and k(Z) = sinh(Z). A bounded output operator is con-

sidered as �2 :=
∫ 1

0
1

2n2
1[Z2−n2 ,Z2+n2] (·)3Z , where 1[0,1] (Z) denotes the spatial shaping

function: 1[0,1] (Z) =
{
1, Z ∈ [0, 1]
0, otherwise . The system operatorA is defined as: A := −E m

mZ
+

sinh(Z) with the domain D(A) = {q(Z) ∈ X|q(Z) is absolutely continuous, 3q(Z)
3Z
∈

X and q(0) = 0}. In addition, Z2 = 0.5, n2 = 0.01, and I0(Z) = 2 sin(2cZ).
In this example, we focus on harmonic reference and disturbance signals, so the

discrete-time exo-system is designed with the diagonalizable (3 = (3< = [0.9969, 0.0784;

−0.0784, 0.9969] (with the continuous counterpart ( = (< = [0, 0.05c;−0.05c, 0]),
@0 = [0; 1], &3 = [2, 0], and �3 = [0, 1]. Along this line, the discrete disturbance

and reference signals are generated as: 3: = cos(0.025:c) and HA: = 2 sin(0.025:c).
Apparently, we have f(() ⊂ d(A) ensuing that Assumption 11 holds. Then, the

state feedback regulator is constructed using the procedures shown in Table 7.1.

209



Table 7.1: Construction of the discrete state feedback regulator.

Algorithm 1: Discrete state feedback regulator
Step 1: Solve discrete Sylvester equations (7.15) for Γ3 and Π3
Step 2: Solve for continuous stabilizing feedback gain &2 in Eq.(7.41), and then
obtain  3 to stabilize the discrete operator A3 + B3 3
Step 3: Determine !3 = Γ3 −  3Π3(−1

3
and simulate the exo-system and plant

Step 4: Construct the discrete state feedback regulation law (7.14) and apply to
the discrete system (7.4)

Through discrete Sylvester equations (7.15), the discrete feedforward gain can

be solved as Γ3 = [7.6629,−0.3479] and Π3 can be obtained as spatial functions

correspondingly. To ensure the stability of the closed-loop system, the state feedback

stabilizing gain is solved using Eq.(7.41) as bellow:

2
3&2 (Z)
3Z

+ sinh(Z)&2 (Z) +&2 (Z) sinh(Z) + " − 2&2 (Z)2 = 0, &2 (1) = 0 (7.69)

where " is a design parameter which is chosen as 0.001 in this example. It is straight-

forward to solve this ODE by the finite difference method, from which we obtain the

feedback control law D: =  3G:−1 + !3@: by performing Steps 3-4.

After 80 seconds of simulation, the regulation results are illustrated in Fig. 7.1.

Specifically, the simulated time and spatial intervals are set as 0.5 second and 0.01.

With the control action applied, the closed-loop state profile can follow the sinusoidal

reference trend and reject undesired cosine disturbance as well. As shown in Fig.

7.1(b), it can be seen that controlled output H2 tracks the desired sinusoidal reference

rapidly and the tracking error converges to zero under the closed-loop control.

In addition, the influence of the choice of the sampling time on the output reg-

ulation performance is investigated below. With the same regulation objective and

overall simulation time of 80 seconds, different simulated time intervals (with ±5%

and ±25% based on the chosen 0.50s) are implemented. As illustrated in Table 7.2,

it is apparent that the tracking error increases approximately with the increase of

discretization time interval and overall the relative error stays within a reasonable

range (around 0.01).
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(a) State regulation performance.
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(b) Output regulation performance.

Figure 7.1: Output regulation of the transport equation with harmonic reference and
disturbance signals.

Table 7.2: Comparison of regulation performance with different time discretization
intervals.

ΔC (s) 0.375 0.475 0.50 0.525 0.625
Absolute Tracking Error |4: | 0.0016 0.0009 0.0070 0.0022 0.0100

7.5.2 Example 2: state feedback regulator design for a first-
order hyperbolic PDE (non-spectral system) with con-
sideration of step-like and ramp-like reference and dis-
turbance

In this example, we construct another state feedback regulator for the same first-

order hyperbolic PDE model (7.68) with the same parameters considered in the first

example. Differently to the Example 1, we aim at tracking ramp-like and step-like

references by considering a non-diagonal exo-system in this example.

In this case, we consider the continuous exo-system with the non-diagonalizable

( = (= = [0, 0; 1, 0], and the discrete counterpart (3 = (3= = [1, 0; 0.5, 1] with ΔC = 0.5

and @0 = [1; 0]. By designing &3 = [1, 1] for 0 ≤ : ≤ 60 and &3 = [15, 0] for 61 ≤
: ≤ 160, the output reference signal is generated as HA: =

{
1 + 0.5:, 0 ≤ : ≤ 60
15, 61 ≤ : ≤ 160

. In

addition, a constant disturbance 3: = 0.5 is considered in this example with �3 =

[0.5, 0]. By revisiting discrete Sylvester equations (7.15), the discrete feedforward

gain can be solved as Γ3 = [3.5819, 3.8319] for 0 ≤ : ≤ 60, Γ3 = [57.2292, 0] for
61 ≤ : ≤ 160. Using the same stabilizing gain calculated in the first example, the
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feedback control law D: =  3G:−1 + !3@: can be computed by implementing Steps 2-4

given in Table 7.1. The initial condition in this case is taken as: I0(Z) = 6 sin(3cZ).

(a) State regulation performance.
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(b) Output regulation performance.

Figure 7.2: Output regulation of the transport equation with polynomial reference
and disturbance signals.

After 80 seconds of simulation, the output regulation performance are illustrated

in Fig. 7.2. Using the constructed state feedback regulator, the output is steered

to track the ramp-like and step-like reference signals and reject the undesired step

disturbance simultaneously. In particular, the tracking error converges to zero rapidly

as shown in Fig. 7.2 (b).

7.5.3 Example 3: error feedback regulator design for a 1-D
heat equation (spectral system) with set-point reference
control

In this case, we consider a 1-D heated bar model described by a parabolic PDE with

Newman boundary conditions as follows:

GC (Z, C) = GZ Z (Z, C) + 1(Z)D(C) + 5 (Z)3 (C) (7.70a)

GZ (0, C) = 0 = GZ (1, C) (7.70b)

H2 (C) = �2G(Z, C) (7.70c)

where Z ∈ [0, 1] and C ∈ [0, +∞) represent spatial and temporal coordinates, respec-

tively. In addition, we consider spatially distributed actuation and disturbance that

are characterized by: 1(Z) = 1
2Y1

1[Z1−Y1 ,Z1+Y1] (Z) and 5 (Z) = 1. The goal is to regu-
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late the output H2 with �2 :=
∫ 1

0
1

2Y2
1[Z2−n2 ,Z2+n2] (·)3Z . More specifically, we consider

Z1 = 0.5, Y1 = 0.3, Z2 = 0.99 and n2 = 0.01.

It is apparent that the original state evolution operator A := m2

mZ2
has the eigen-

values _= = −(=c)2, = ∈ N, which violates the Assumption 11 since 0 ∈ f(A). To

address this issue, we stabilize the system by introducing a stabilizing gain  as

 Φ = −V〈Φ, 1〉, with V > 0 [10]. For the stabilized system A2 := m2

mZ2
+ 1(Z) with

0 ∉ f(�), we have f(B) ⊂ f(A2) so Assumption 11 is satisfied. The rest design of

the discrete error feedback regulator follows the steps as shown in Table 7.3.

Table 7.3: Construction of the discrete error feedback regulator.

Algorithm 2: Discrete error feedback regulator
Step 1: Solve discrete Sylvester equations (7.50) for Γ3 and Π3
Step 2: Solve for discrete stabilizing output injection gain Θ13 and Θ23 in Eq.(7.67),
and then obtain G23
Step 3: Determine G13 and simulate A: system (7.51a)
Step 4: Construct the discrete error feedback control law (7.51b) and apply it to
the discrete system (7.4)

(a) State regulation performance.
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(b) Output regulation performance.

Figure 7.3: Output regulation of the heat equation.

To track and reject step signals, we set ( = 0 (hence (3 = 1), �3 = 1 and &3 = 3.

Based on the discrete output regulator equations (7.50), we obtain: !3 = Γ3 = 8.7859

and �3 = [0 8.7859] due to  3 = 0 and 0 is a zero vector with proper dimension.

By solving Riccati equations (7.67), we can determine the discrete stabilizing output

injection gain G23 and G13, with '1 = '2 = "33 = 1 and "13 = 1 where 1 is an

identity matrix with proper dimension. Then, one can simulate A: system (7.51) to
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generate control trajectory D: , which is plugged into the original discrete plant (7.4).

As shown in Fig. 7.3, the closed loop output H2 follows the set-point and the tracking

error converges to zero rapidly. In addition, the discretization time interval is 0.2

second and the number of spatial nodes is 1001.

Remark 25. As proposed in this chapter, the discrete-in-time regulator design pro-

vides a novel way to directly realize digital regulator design in a late-lumping manner.

Most importantly, intrinsic properties of linear continuous systems are fully preserved

in the discrete-time systems by the use of Cayley-Tustin transform. Therefore, the

discrete-in-time regulator design method is beneficial to the corresponding design of

continuous-time systems by using the equivalent relationships between continuous- and

discrete-time systems established in this chapter.

Remark 26. Spatial discretization may have a potential effect on the time-discretized

stability in the numerical realization stage. Particularly, dissipation and dispersion

errors may be induced by an improper choice of spatial and temporal discretization

intervals, which may eventually influence time-discretized stability. To reduce the

dissipation and dispersion errors, the spatial and temporal discretization intervals

need to be chosen small enough, see details in the reference [286, Cha. 7.2, 7.3].

7.6 Conclusion

In this chapter, discrete-time state and error feedback output regulators are designed

for a class of linear distributed parameter systems with bounded input and output op-

erators. The Cayley-Tustin bilinear transform is used for model discretization without

spatial approximation or model order reduction. Based on the discretized plant and

exogenous systems, discrete-time Sylvester equations are formulated and solved for

discrete state and error feedback regulator designs. The solvability of discrete-time

regulator equations is proved and linked to the associated continuous version. Given

the solutions of discrete-time Sylvester regulator equations, one can attain the corre-

sponding continuous solutions and vice versa. To stabilize the closed-loop systems, a

novel way to determine the stabilizing output injection gain (and its dual problem)

is provided. Finally, three output regulators are designed and simulated, including
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harmonic, step-like and ramp-like reference control for a first-order hyperbolic PDE

system and set-point tracking for a 1-D heat equation, which verify the feasibility of

the proposed method. The discrete-in-time design and continuous-time design can

be beneficial to each other in determining the stabilizing controller gain, stabilizing

output injection gain and regulator gain. Hence, the proposed discrete-in-time design

has the potential to be utilized in digital control applications, such as sampled-data

control of distributed parameter systems.
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Chapter 8

Discrete-time Model-Based Output
Regulation of Fluid Flow Systems

8.1 Introduction

Flow control and manipulation play an important role in the realm of aerodynamics

and hydrodynamics especially when it comes to drag reduction, lift enhancement and

turbulence suppression. Generally speaking, there are mainly three approaches to

cope with general fluid dynamics problems, namely, theoretical analysis, numerical

simulation, and experimental study. Considering that experimental study often re-

quires a prohibitive amount of time and cost, while numerical simulation heavily relies

on advanced computational technology, computing capacity and most importantly on

the availability of accurate, robust and flexible dynamic models, this chapter seeks

to propose an efficient, computational implementable and scalable modelling method

for fluid flow output regulation and manipulation.

Differently from the dynamics of lumped parameter systems, fluid dynamics of-

ten take place in both time and space domains and their state evolves on infinite-

dimensional Hilbert spaces, which requires relatively complex spatiotemporal mod-

elling techniques. Mathematically stated, most fluid dynamics models are governed

by partial differential equations (PDEs) and/or delay equations, leading to general

distributed parameter systems (DPSs). For instance, the Ginzburg-Landau equation

(GLE) involves a first-order temporal derivative, and first- and second-order spatial

derivatives with complex model coefficients, which dramatically increases the difficulty

of accurate modelling and corresponding control designs. In addition, one may need
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Figure 8.1: Vortex shedding in the 2D flow behind a cylinder [2]

to address multiple spatial variables (e.g. three spatial components in Navier-Stokes

equation) and even higher-order derivatives and nonlinear terms (e.g. fourth-order

spatial derivatives and nonlinear multiplication term in Kuramoto-Sivashinsky equa-

tion). Hence, these considerations stated above provide a strong motivation to seek

advanced modelling and control techniques for effective and implementable flow con-

trol of fluid dynamics systems.

Among the aforementioned fluid dynamics processes, vortex shedding has at-

tracted increasing attention, due to their wide existence manifested by vortex for-

mation when flows pass submerged obstacles with Reynolds numbers larger than the

critical values. More specifically, a schematic diagram illustrating the vortex shed-

ding phenomenon in a 2D flow behind a cylinder is given in Fig. 8.1, where it clearly

shows an unstable vortex shedding and its evolution [2]. Additionally, there is also

strong interest in falling thin film phenomena described by the Kuramoto-Sivashinsky

equation (KSE), which as a representative PDE flow model accounts for a wide range

of complex phenomena, such as falling film fronts dynamics, unstable flame fronts

evolution, phase turbulence in Belousov-Zhabotinsky reaction-diffusion systems and

interfacial instabilities between multiple viscous phases [287, 288, 289]. As shown

in Fig. 8.2, a two-phase annular falling flow in a vertical tube is illustrated using a

schematic [3]. For the sake of brevity, this chapter considers vortex shedding phe-

nomena and falling thin film processes as two representative examples, and review

some existing work on modelling and control of CGLE and KSE sequentially.

Regarding vortex shedding analysis and suppression, plenty of studies have been

carried out experimentally and using numerical simulation. From an experimental

perspective, it has been revealed that the laminar Kármán vortex can be suppressed

within a certain range of Reynolds number by several distinct approaches, includ-
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Figure 8.2: Schematic framework of a two-phase annular flow in vertical pipe modelled
by Kuramoto-Sivashinsky Equation [3].

ing: external oscillating the cylinder normal to the mean flow [290], feedback control

through suction and blowing treatment on the surface [291, 292, 293], and acoustic

feedback of signals collected from hot-wires in the wake of the cylinder [294]. In ad-

dition, the Navier-Stokes equation (NSE) has been explored to model the dynamics

of the cylinder wake theoretically [295, 296, 297]. However, owing to the inherent

complexity of the Navier-Stokes equation, most of the related work has been con-

ducted numerically. On the other hand, the complex Ginzburg-Landau equation

(CGLE) with appropriate coefficients was suggested as a simplified model to describe

vortex shedding processes in [298]. Along the line of controller designs, a propor-

tional feedback controller was proposed for Kármán vortex shedding suppression with

Reynolds numbers close to the critical value (Rec ≈ 47 based on the cylinder diameter)

[299]. In addition, a non-linear one-dimensional Ginzburg-Landau wake model at 20%

above the critical Reynolds number was controlled using a conventional proportional-

integral-derivative (PID) controller and a non-linear fuzzy controller [300]. For feed-

back boundary control, the backstepping approach has been extensively utilized for

stabilization of 1D and 2D CGLE systems [301, 2, 58, 16]. The developed controllers

were validated using computational fluid dynamics (CFD) simulations [302, 303] and

extended to 3D scenarios [304]. A hybrid method and evolution strategies were de-

ployed to study 2D and 3D vortex evolution of cylinder wakes in [305, 306]. From

an optimal control perspective, a model predictive controller (MPC) was proposed
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to solve the problem of CGLE stabilization with consideration of input and state

constraints [1]. These studies on CGLE are oriented on stabilizing control while work

related to the output regulation of CGLE is limited, which motivates this contribu-

tion.

When it comes to flow control of falling thin film processes modelled by the

Kuramoto-Sivashinsky equation, many control methods have been developed using

recent advances in the area of control of distributed parameter systems. Among

these, one important contribution lies in the stabilization of the KSE model, includ-

ing: global stabilization of KSE by in-domain output feedback control [307, 308]

and through boundary control [309, 15]. A single-input-single-output (SISO) and

multiple-input-single-output (MISO) boundary model predictive controllers were pre-

sented for KSE stabilization in the presence of input and state constraints using a

truncated modal decomposition [310, 3, 311]. A zero dynamics inverse design method

was proposed for tracking regulation of a nonlinear KSE with two boundary actu-

ators [312]. For sampled-data control of KSE, a spatially distributed controller is

constructed for local stabilization of KSE by using a time-delay approach and a de-

scriptor method [313]. Recently, a delayed boundary controller was designed for global

stabilization of a linear KSE by means of the spectral decomposition and the Artstein

transform [314]. Although these contributions have provided elegant solutions and

controller designs to guarantee the exponential stability of the closed-loop system,

most of them are conducted in a continuous-time setting, which at the implemen-

tation level needs to be realized in a sampled-data computationally feasible setting

and in addition brings another layer of complexity and questions to be addressed.

Furthermore, a realizable sampled-data servo-control design and not just stabiliza-

tion is needed for manipulation of various fluid dynamics systems represented by the

Kuramoto-Sivashinsky equation. Moreover, the realization of continuous-in-time de-

signs in the sampled-data setting with finite computational resources has not been

fully addressed since temporal and spatial approximations (and/or model reduction)

need to be performed for control algorithm realization with the hope that approxi-

mate controllers account for the infinite-dimensional nature of underlying distributed

parameter models. Hence, the motivation behind this chapter is not to take the path

of continuous designs first, then approximate at the realization level (early lumping),
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but to discretize the model in time by application of structure-preserving Cayley-

Tustin discretization (linear system properties including stability, controllability and

observability are preserved [97, 119]) and conduct discrete-in-time regulator design for

complex fluid flow systems without any model lumping or spatial approximation. In

this way, both regulator design and computing control law realization can be accom-

plished in the natural discrete-time sampled-data computational setting of modern

microchips.

Therefore, this chapter is devoted to the development of effective, computational

realizable and scalable servo controllers in the discrete-time setting for fluid flow out-

put regulation of linear CGLE and KSE systems. In particular, the Cayley-Tustin

transform is deployed for infinite-dimensional model discretization in the time do-

main and it does not induce any spectral decomposition or spatial approximation.

Then, the internal model principle [247] is revisited and extended to the output

regulation of infinite-dimensional discrete-time systems. By further establishing a

finite-dimensional discrete-time exogenous system, discrete-time regulator equations

are formulated and utilized for solving a state feedback regulation problem. As for

model stabilization, a pole-shifting approach is employed for continuous PDE models

and linked to their discrete counterparts. Additionally, an output feedback regula-

tor design is completed by the development of finite-dimensional (exo-system) and

infinite-dimensional (fluid flow-plant) observers. Furthermore, we emphasize that pro-

posed design is applicable for a general class of Riesz-spectral distributed parameter

systems, and can be extended to DPS models other than CGLE and KSE systems.

The remainder of this chapter is organized as follows. Section 8.2 presents a

necessary preliminary, including: general continuous-time PDE model description,

and time discretization with the aid of the Cayley-Tustin approach. In Section 8.3, a

finite-dimensional discrete-time exogenous system is provided and a discrete output

regulator design framework is given. To demonstrate the feasibility and effectiveness

of the proposed method, two representative PDE flow models, i.e., CGLE and KSE

systems, are analyzed in detail. The model formulation, spectrum analysis, analytic

resolvent determination, and simulation studies for two models are shown in Sections

8.4 and 8.5, respectively. Finally, a conclusion is drawn in Section 8.6.
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8.2 Preliminary

8.2.1 Notations

In this chapter, the following notation is used. Suppose that - and + are two Hilbert

spaces and � : - ↦→ + is a linear operator. L(-,+) denotes the set of linear bounded
operators from - to + . If - = + , we simply write L(-). The domain, spectrum,

resolvent set and resolvent operator of a linear operator � are denoted by: D(�),
f(�), d(�), and R(B, �) = (B� − �)−1 with B ∈ d(�), respectively. We denote the

space -1 as the space D(�) with the norm ‖G‖1 = ‖(V� − �)G‖, and the space -−1 as

the completion of - with the norm ‖I‖−1 = ‖(V� − �)−1I‖, where ∀G ∈ D(�), ∀I ∈ -,
and V ∈ d(�). The constructed spaces are related as follows: -1 ⊂ - ⊂ -−1, with each

inclusion being dense and continuous embedding [42]. The extension of � to -−1 is still

denoted as �, and �Λ represents the Λ-extension of �, i.e., �ΛG = lim
_→+∞

_�R(_, �)G,
where the domain of �Λ consists of those elements G ∈ - for which the limit exists.

Additionally, the inner product is denoted by 〈·, ·〉, and !2(0, ;)< with a positive

integer < denotes a Hilbert space of a <-dimensional vector of the real functions that

are square integrable over [0, ;] with a spatial length ;.

8.2.2 Model description

As fluid flow dynamics often takes place in both temporal and spatial domains, the

mathematical models are described by partial differential equations (PDE). In gen-

eral, we consider a continuous-time infinite-dimensional system having the following

abstract form:

mG

mC
(b, C) = �G(b, C) + �D(C) + �3 (C), G(0) = G0 (8.1a)

H2 (C) = �2G(b, C) + �2D(C) + �23 (C), C ≥ 0 (8.1b)

H< (C) = �<G(b, C) + �<D(C) + �<3 (C) (8.1c)

on a complex Hilbert space - = !2((0, ;),C), i.e., the spatial state G(·, C) ∈ -, where
b ∈ [0, ;] and C ∈ [0,∞) represent spatial and temporal variables. We denote the

input D(C) ∈ !2
;>2
( [0,∞),*), disturbance 3 (C) ∈ !2

;>2
( [0,∞), �), and the controlled

and measured outputs H2 (C), H< (C) ∈ !2
;>2
( [0,∞), . ), where*, � and . are assumed to

be finite-dimensional Hilbert spaces with dim * = dim � = dim . = 1. Additionally,
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� : D(�) ⊂ - ↦→ - is an infinitesimal generator of a �0−semigroup T� (C) on -. For
simplicity, we consider bounded control operator � ∈ L(*, -), bounded disturbance

operators � ∈ L(�, -), �2, �< ∈ L(�,. ), and bounded measured output operator

�< ∈ L(-,. ). The controlled output operator �2 ∈ L(-1, . ) is considered to be

unbounded and assumed to be admissible for T� (C). To account for well-posedness,

one needs to replace �2 by �ΛG = lim
_→+∞

_�2R(_, �)G, where G ∈ - and _ ∈ d(�).
Thus this framework leads to a well-posed regular system [21, 42, 111]. For ease of

notation, we will use �2 to denote �Λ in what follows. The transfer functions can be

expressed as:

G2 (B) = �2R(B, �)� + �2 (8.2a)

T2 (B) = �2R(B, �)� + �2 (8.2b)

G< (B) = �<R(B, �)� + �< (8.2c)

T< (B) = �<R(B, �)� + �< (8.2d)

with B ∈ d(�) and R(B, �) = (B� − �)−1 is the resolvent operator, and G2 (B) and T2 (B)
stand for continuous-time transfer functions from D(C) to H2 (C) and from 3 (C) to H2 (C),
respectively. Likewise, G< (B) and T< (B) are transfer functions from D(C) to H< (C) and
from 3 (C) to H< (C).

8.2.3 Model time-discretization

In order to preserve system properties (such as stability, controllability, and observ-

ability) in a discretization process, the Cayley-Tustin time-discretization approach is

facilitated to transform a continuous-time model into its discrete analogue [97, 119].

For the considered linear infinite-dimensional continuous-time invariant system (8.1),

one deploys the Crank-Nicolson discretization for a given time discretization interval

ℎ as follows:

G(b, :ℎ) − G(b, (: − 1)ℎ)
ℎ

≈ �G(b, :ℎ) + G(b, (: − 1)ℎ)
2

+ �D(:ℎ) + �3 (:ℎ) (8.3a)

H2 (:ℎ) ≈ �2
G(b, :ℎ) + G(b, (: − 1)ℎ)

2
+ �2D(:ℎ) + �23 (:ℎ) (8.3b)

H< (:ℎ) ≈ �<
G(b, :ℎ) + G(b, (: − 1)ℎ)

2
+ �<D(:ℎ) + �<3 (:ℎ) (8.3c)
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with G(0) = G0 ∈ -, : ≥ 1. Above time discretization admits an implicit mid-point

integration rule and is reversible in time (namely: symmetric) due to the fact that

Eq.(8.3a) stays invariant when one interchanges G(b, :ℎ) ↔ G(b, (: − 1)ℎ) and ℎ ↔
−ℎ, see details in [119]. Additionally, this time discretization scheme is symplectic

in the sense that it preserves Hamiltonian properties of the system [119]. Simple

algebraic manipulations lead to the following infinite-dimensional discrete-time state

space model:

G: = �3G:−1 + �3D: + �33: (8.4a)

H2: = �23G:−1 + �23D: + Υ233: (8.4b)

H<: = �<3G:−1 + �<3D: + Υ<33: (8.4c)

with G(0) = G0 ∈ -, : ≥ 1, where G: , D: , 3: , H2: and H<: denote the discrete-time

state, input, disturbance, controlled output and measured output. It is noted that

the discrete input is given by the integration as D:√
ℎ
= 1

ℎ

∫ :ℎ

(:−1)ℎ D(C)3C on the interval

C ∈ [(: − 1)ℎ, :ℎ], and it has been shown that the Cayley-Tustin discretization is

a convergent time discretization scheme for input-output stable system nodes (with

dim * = dim � = dim . = 1) in the sense that ‖ D:√
ℎ
− D(C)‖ → 0 as ℎ → 0+, see [97].

Similar expressions hold for the approximation of 3: , H2: and H<: . The associated

discrete-time operators are given by:
� � �

�2 �2 �2
�< �< �<

 →

�3 �3 �3
�23 �23 Υ23
�<3 �<3 Υ<3

 (8.5)

=


−� + 2XR(X, �)

√
2XR(X, �)�

√
2XR(X, �)�√

2X�2R(X, �) G2 (X) + �2 T2 (X) + �2√
2X�<R(X, �) G< (X) + �< T< (X) + �<


where G2 (X), T2 (X), G< (X), and T< (X) are the transfer functions G2 (B), T2 (B), G< (B),
and T< (B) respectively with B evaluated at X = 2/ℎ ∈ d(�). Note that there are

feedforward operators �23, Υ23, �23 and Υ<3 introduced in the discrete-time setting

(8.4) after performing the Cayley-Tustin discretization, which are not necessarily

present in the continuous model setting (8.1) (i.e., when �2 = �2 = �< = �< = 0).

Furthermore, we denote the discrete-time transfer functions from D: to H2: and from

3: to H2: by G23 (I) = �23 (I� − �3)−1�3 + �23 and T23 (I) = �23 (I� − �3)−1�3 + Υ23
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respectively, where I ∈ d(�3)\{−1}. Similar definitions hold for transfer functions

G<3 (I) and T<3 (I).

Remark 27. The Cayley-Tustin discretization scheme brings an obvious technical

advantage that enables one to avoid direct treatment of unbounded operators in the

continuous-time setting by instead dealing with bounded operators in the discrete-time

setting.

Remark 28. It is shown that the continuous- and discrete-time transfer functions

satisfy the following relationship [97]:

G23 (I) = G2 (
I − 1

I + 1
X), T23 (I) = T2 (

I − 1

I + 1
X), I ∈ d(�3)\{−1} (8.6a)

G2 (B) = G23 (
X + B
X − B ), T2 (B) = T23 (

X + B
X − B ), B ∈ d(�)\{X} (8.6b)

which provides a way for finding G23 (I) and T23 (I) from their continuous counterparts,

and vice versa. Thus, a stable, continuous-time transfer function is holomorphic

and bounded on C+ if and only if the corresponding discrete-time transfer function is

holomorphic and bounded on D+, see details in [24, 23].

Remark 29. For a conservative infinite-dimensional linear system with a scalar in-

ner transfer function and a zero initial state, the discrete-time state trajectory con-

verges to the corresponding continuous-time one in some Hilbert norm sense as the

time discretization interval goes to zero [239]. It was also shown that the discrete state

converges to the continuous one as time increases for the first-order evolution differen-

tial equations (with zero input) in Hilbert space with bounded and unbounded � oper-

ators depending on the smoothness of the initial conditions [315, 316, 317, 318, 319],

which was further extended to the cases of initial values problems and boundary values

problems of second-order evolution differential equations [320, 321, 322]. Neverthe-

less, the state approximation induced by the Cayley-Tustin transformation does not

hinder its use in the output regulation problem since transfer functions from the input

to the output are preserved from the continuous-time model to the discrete-time one,

which plays a central role in the output regulation context.

In order to proceed with the regulator design, the following concepts are intro-

duced.
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Definition 10. A �0-semigroup T� (C) on the Hilbert space - is exponentially stable

if there exist positive constants " and U such that:

‖T� (C)‖ ≤ "4−UC , ∀C ∈ [0,∞) (8.7)

and it is strongly stable if ‖T� (C)G‖ → 0 as C → +∞ for all G ∈ -. T� (C) is V-
exponentially stable if (8.7) holds for −U < V, i.e., its stability margin is at least −V.
�3 is power stable if there exist positive constants " and W < 1 such that:

‖�:3 ‖ ≤ "W
: , ∀: ∈ N (8.8)

and �3 is strongly stable if �:
3
G → 0 as : → +∞ for all G ∈ - [4].

Definition 11. Assume that � is the infinitesimal generator of the �0-semigroup

T� (C) on the Hilbert space -, � ∈ L(*, -), �< ∈ L(-,. ), where * and . are finite-

dimensional Hilbert spaces. Let Σ(�, �, �<) denote the state linear system ¤I(C) =
�I(C) + �D(C), H(C) = �<I(C), C ≥ 0, I(0) = I0 ∈ -, where generating operators �, �,

and �< are defined as above, and state, input and output spaces are -, *, and . . If

there exist  ∈ L(-,*) and ! ∈ L(., -) such that � + � and � + !�< generate

exponentially stable �0-semigroup T� (C) and T!� (C), then the system Σ(�, �, �<) is
exponentially stabilizable and detectable. If T� (C) and T!� (C) are V-exponentially

stable, then the system Σ(�, �, �<) is V-exponentially stabilizable and detectable [4].

8.3 Output regulation

In this section, an output regulator design method is developed for output regulation

of a class of infinite-dimensional systems in a discrete-time setting. In particular, a

discrete-time output regulator design is proposed for self-adjoint Riesz-spectral PDE

systems, based on the discretized distributed parameter flow plant and discrete ex-

ogenous system.

8.3.1 Exogenous system

To construct the disturbance (to be rejected) and the reference signals (to be tracked),

a discrete-time finite-dimensional exogenous system (i.e., exo-system) is introduced
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as follows:

@: = (3@:−1, @0 = @
0 ∈ C=, : ≥ 1 (8.9a)

3: = �3@: (8.9b)

HA: = &3@: (8.9c)

where @: , 3: , and HA: represent the exogenous state, disturbance, and reference signals

in the discrete-time setting. Moreover, (3 denotes a discrete-time evolution matrix

of state @: and is of = × = dimension. More specifically, it is assumed that (3 has

distinct eigenvalues placed on the boundary of the unit disc, i.e., _3
8
= _'4+_�< 9 where

8 = 1, ..., =, 92 = −1, _'4 ∈ [0, 1], _�< ∈ [0, 1] and _2
'4
+_2

�<
= 1. Thus, (3 accounts for

step-like and sinusoid-like signals. In order to reconstruct the full state information

from the reference single HA: , it is assumed that ((3 , &3) is observable. Additionally,
we suppose that �3 and &3 have proper dimensions to generate disturbance and

reference signals of interest.

8.3.2 State feedback regulator design

The main purpose of output regulation is to realize system stabilization, disturbance

rejection and reference tracking. Normally, it can be mathematically stated as con-

structing a discrete-time state feedback regulator of the following form:

D: =  3G:−1 + !3@: , : ≥ 1 (8.10)

where  3 ∈ L(-,*), !3 ∈ L(C=,*), such that the following conditions are ensured:

(1) The discrete-time closed-loop system operator �3 + �3 3 is strongly stable;

(2) The discrete-time tracking error 4: = H2: − HA: → 0 as : → +∞ for any given

G0 ∈ - and @0 ∈ C=.

For this design, all state information of the plant and the exo-system is assumed to

be known in (8.10), which literally interprets the definition of “state feedback regula-

tor”. Combining the discrete-time plant and exogenous models, the following theorem

states the necessary and sufficient condition for the discrete-time state feedback reg-

ulator design:
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Theorem 22. Suppose that (�, �) is exponentially stabilizable and f((3) ⊂ d(�3).
The discrete state feedback regulation problem is solvable if and only if there exist

mappings Π3 ∈ L(C=, -) and Γ3 ∈ L(C=,*) such that the following discrete Sylvester

equations hold:

Π3(3 = �3Π3 + (�3Γ3 + %3)(3 (8.11a)

&3(3 = �23Π3 + (�23Γ3 + Θ23)(3 (8.11b)

where %3 = �3�3, Θ23 = Υ23�3, and !3 = Γ3 −  3Π3(−1
3

are utilized to compute the

state feedback control law D: in Eq.(8.10). Here, �3 and Υ23 are defined in Eqs.(8.4)-

(8.5).

Proof. First, we prove the sufficiency. Substituting Eq.(8.10) into the discrete system

(8.4) leads to the closed-loop model as follows:

G: = (�3 + �3 3)G:−1 + (�3!3 + %3)@: (8.12)

By induction, the discrete-time state solution can be found as:

G: = (�3 + �3 3):G0 (8.13)

+
:∑

<=1

(�3 + �3 3)<−1(�3!3 + %3)@:+1−<

By substituting Eq.(8.9) and Eq.(8.11) into Eq.(8.13), one obtains:

G: − (�3 + �3 3):G0 (8.14)

=

:∑
<=1

(�3 + �3 3)<−1 [�3 (Γ3 −  3Π3(−13 ) + %3]@:+1−<

=

:∑
<=1

(�3 + �3 3)<−1 [(�3Γ3 + %3)(3 − �3 3Π3)]@:−<

=

:∑
<=1

(�3 + �3 3)<−1 [Π3(3 − (�3 + �3 3)Π3)]@:−<

=

:∑
<=1

(�3 + �3 3)<−1Π3@:+1−< −
:+1∑
<=2

(�3 + �3 3)<−1Π3@:+1−<

Then, the last expression further induces:

G: = (�3 + �3 3): (G0 − Π3@0) + Π3@: (8.15)
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Moreover, the discrete tracking error can be expressed as:

4: =H2: − HA: (8.16)

=�23G:−1 + �23D: + Θ23@: −&3@:

=(�23 + �23 3)G:−1 + (�23!3 + Θ23 −&3)@:

=(�23 + �23 3) (�3 + �3 3):−1(G0 − Π3@0)

+ [(�23 + �23 3)Π3 + (�23!3 + Θ23 −&3)(3]@:−1

Under the assumption that (�, �) is exponentially stabilizable, it is shown in [23]

that (�3 , �3) is strongly stabilizable with a proper choice of X ∈ d(�). Thus we can

find  3 ∈ L(-,*) such that �3 + �3 3 is a strongly stable operator, which indicates

(�3 + �3 3):G → 0 as : → +∞ for all G ∈ -. Therefore, G: converges to Π3@: in

Eq.(8.15) and the discrete tracking error 4: goes to zero as : → +∞ in Eq.(8.16),

which is ensured by the discrete Sylvester equations (8.11a)-(8.11b).

Now, we show the proof of the necessity by constructing the following extended closed-

loop system: [
G:
@:

]
=

[
�3 + �3 3 (�3!3 + %3)(3

0 (3

] [
G:−1

@:−1

]
(8.17)

It is straightforward to obtain the solution of Eq.(8.17) by induction as follows:
G:

@:

 =
 (�3 + �3 3)

:G0 +
:∑

<=1
(�3 + �3 3)<−1(�3!3 + %3)@:+1−<

(:
3
@0

 (8.18)

Given that �3+�3 3 is strongly stable, (�3+�3 3):G0 → 0 as : → +∞ and Eq.(8.18)

indicates that [G: ; @: ] → [Π3@: ; @: ] with : → +∞ and Π3 ∈ L(C=, -). To determine

Π3, we can construct the dynamical evolution of F: = [G: ; @: ] − [Π3@: ; @: ] as the

following homogeneous difference equation:

F: =

[
�3 + �3 3 (�3!3 + %3)(3

0 (3

]
F:−1 (8.19)

where the initial condition is defined as F0 = [G0; @0] − [Π3@0; @0] with H4 = -
⊕
C=.

The first component in Eq.(8.19) leads to (�3+�3 3)Π3+(�3!3+%3)(3 = Π3(3 which
is identical to discrete-time Sylvester equation (8.11a). Furthermore, the discrete

tracking error is described as:

4: = H2: − HA: (8.20)
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= �23G:−1 + �23D: + Θ23@: −&3@:

= (�23 + �23 3)G:−1 + (�23!3 + Θ23 −&3)@:

=
[
�23 + �23 3 (�23!3 + Θ23 −&3)(3

] [
G:−1

@:−1

]
→ [(�23 + �23 3)Π3 + (�23!3 + Θ23 −&3)(3] @:−1

(as : → +∞)

To realize perfect tracking, one needs to ensure that (�23 + �23 3)Π3 + (�23!3

+Θ23 −&3)(3 = 0, which can be simplified as Eq.(8.11b) with !3 = Γ3 −  3Π3(−1
3
.

By projecting the eigenvalue pair (_3
8
, q3

8
) of (3 on the discrete Sylvester equations

(8.11), it is straightforward to determine the discrete regulator gains (!3 ,Π3) as:

Π3q
3
8 = _

3
8 (_38 � − �3)−1(�3!3 + %3)q38 (8.21a)

!3q
3
8 = [G23 (_38 )]−1 [&3 − T23 (_38 )�3]q38 (8.21b)

where G23 (_38 ) is the discrete transfer function from D: to H2: with I evaluated at

I = _3
8
. Similarly, T23 (_38 ) is the discrete transfer function from 3: to H2: with I

evaluated at I = _3
8
.

Remark 30. In this design the assumption that _3
8
∈ f((3) ⊂ d(�3) can be ensured

by adjusting the time discretization interval ℎ. To ensure the solvability of the discrete

Sylvester equations (8.11), we need to further assume that G23 (_38 ) ≠ 0, ∀_3
8
∈ f((3),

such that G23 (_38 ) is invertible in Eq.(8.21).

Remark 31. The 1-1 correspondence between discrete- and continuous-time transfer

functions shown in Eq. (8.6) provides a constructive way in evaluating the discrete

transfer functions (G23 (_38 ),T23 (_38 )) by using their continuous counterparts.

For the control law (8.10), what remains is to provide a convenient way to solve

for the stabilizing controller gain  3. In order to address this issue, the following

theorem is proposed:

Theorem 23. Suppose that a self-adjoint Riesz-spectral operator � is an infinitesi-

mal generator of the �0-semigroup T� (C) on the Hilbert space -, � ∈ L(C, -). As-

sume that � has simple eigenvalues and the spectrum {_=, q=} of � can be decom-

posed into an unstable part {_D=D , q
D
=D
} (with _D=D ≥ 0) and a stable part {_B=B , q

B
=B
}
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(with _B=B < 0). Then the discrete stabilizing controller gain  3 ∈ L(-,C) can be

obtained as  3q = −
∑#
=D=1 V

3
=D
〈q, qD=D〉, where V

3
=D

satisfies | X+_
D
=D
−
√

2XV3=D 1=D
X−_D=D

| < 1, with

1=D =
〈
�, qD=D

〉
≠ 0, such that the Cayley-Tustin discretized system �3 + �3 3 is

strongly stable, where X = 2
ℎ
∈ d(�) and ℎ denotes the discretization time interval.

Proof. Given that a self-adjoint Riesz-spectral operator � is an infinitesimal gener-

ator of the �0-semigroup T� (C) on the Hilbert space -, it is straightforward to show

that � has the following decomposition:

�G =

+∞∑
==1

_= 〈G, q=〉 q= (8.22)

where _= and q=, with = ∈ N, are eigenvalues and eigenfunctions of �, see [4].

For Σ(�3 , �3 , �<3) obtained by Cayley-Tustin transform (8.5) of Σ(�, �, �<), it is

straightforward to obtain operator decompositions as follows:

RG =
+∞∑
==1

1

X − _=
〈G, q=〉 q= (8.23a)

�3G =

+∞∑
==1

X + _=
X − _=

〈G, q=〉 q= (8.23b)

�3G =

+∞∑
==1

√
2X

X − _=
〈�G, q=〉 q= (8.23c)

�<3G =

+∞∑
==1

√
2X

X − _=
〈G, q=〉�<q= (8.23d)

Now, it is apparent that by the Cayley-Tustin transform one can map _= ∈ C− of the

S-plane into the interior section of the unit disc on the Z-plane (except -1), and vice

versa.

Suppose that the spectrum {_=, q=} of � can be decomposed into an unstable

part {_D=D , q
D
=D
} (with _D=D ≥ 0) and a stable part {_B=B , q

B
=B
} (with _B=B < 0). By Eq.

(III.6) in the reference [10], a bounded stabilizing controller gain  can be chosen as

 q = −∑#
=D=1 V=D 〈q, qD=D〉 with some positive V=D , so that the finite set of countable

unstable eigenvalues of � can be shifted to the left side of the complex plane as

follows:

(� + � )G =
#∑

=D=1

_D=D

〈
G, qD=D

〉
qD=D − V=D 〈G, q

D
=D
〉�
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+
+∞∑

=B=#+1
_B=B

〈
G, qB=B

〉
qB=B (8.24)

where # denotes the number of possibly unstable eigenvalues and hence it is the rank

of  . Thus, the original continuous-time system is stabilized, see [4].

Furthermore, one can determine the discrete-time stabilizing operator  3q =

−∑#
==1 V

3
=D
〈q, qD=D〉 with some design parameter V3=D as:

(�3 + �3 3)G =
#∑

=D=1

[
X + _D=D
X − _D=D

〈
G, qD=D

〉
qD=D

−
√

2XV3=D
X − _D=D

〈
�〈G, qD=D〉, q

D
=D

〉
qD=D ]

+
+∞∑

=B=#+1

X + _B=B
X − _B=B

〈
G, qB=B

〉
qB=B (8.25)

as it can be ensured that 〈�, qD=D〉 = 1=D ≠ 0 for =D = 1, 2, ..., # , it is straightforward

to solve the discrete-time stabilizing gain satisfying | X+_
D
=D
−
√

2XV3=D 1=D
X−_D=D

| < 1.

Corollary 7. Under the assumptions in Theorem 22 and �< ∈ L(-,C), the dis-

crete stabilizing output injection gain !13 ∈ L(C, -) can be obtained as !13�<3q =

−∑#
=D=1 W

3
=D
〈�<3 , q〉qD=D , where W

3
=D

satisfies | X+_
D
=D
−
√

2X2=D W
3
=D

X−_D=D
| < 1, with 2=D =

〈
�<, q

D
=D

〉
≠

0, such that the discretized system using Cayley-Tustin method �3+!13�<3 is strongly

stable, where X = 2
ℎ
∈ d(�) and ℎ denotes the discretization time interval.

Proof. It is straightforward to show that this is a dual problem of Theorem 23.

Hence, the proof can be completed if one takes �<3 = �∗3 and !13 =  
∗
3
.

Remark 32. In general, Theorem 23 and Corollary 7 can be extended to the case

with � being a general Riesz-spectral operator by finding corresponding eigenfunctions

of �∗ operator and the case with * = C? and . = C@ through complex manipulation.

Based on the series expressions in Eq.(8.23a) and spectral decomposition, one can

design a stabilizing controller (and/or observer) gain. For the resolvent and the

corresponding discrete operators (�3 , �3 , �<3) given by closed-form expressions, we

provide the following theorem to guarantee the equivalence of the stability property

of the discretized stabilized system using continuous- and discrete-time stabilizing

gains by following [23].
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Theorem 24. Given an infinitesimal generator � of the �0-semigroup T� (C) on the

Hilbert space -, � ∈ L(C, -),  ∈ L(-,C) ensuring that � + � is exponentially

stable, the continuous- and discrete-time stabilizing controller gain are linked by the

following expression:

 3 =
√

2X (X − � − � )−1 (8.26)

where X ∈ d(�) ∩ d(� + � ), and  3 ∈ L(-,C) is the discrete-time stabilizing gain

in the sense that �3 + �3 3 is strongly stable, where �3 and �3 are the corresponding

discrete-time operators of � and � using the Cayley-Tustin transformation.

Proof. The stability of the closed-loop system in the continuous-time (�2 = � + � )
and discrete-time settings (�3 + �3 3) are related as follows:

�23 = −� + 2X(X − �2)−1

= −� + 2X(X − � − � )−1 (8.27)

�32 = �3 + �3 3

= −� + 2X(X − �)−1 · (� + 1
√

2X
� 3) (8.28)

where �23 represents the closed-loop system that is first stabilized in the continu-

ous setting by designing a continuous-time stabilizing gain  and then subsequently

discretized, while �32 denotes the system that is first discretized in time and then sta-

bilized in the discrete setting by finding a discrete-time stabilizing gain  3. Hence,

by holding the equality of �23 and �32 expressions, one can directly calculate the

solution of  3 in terms of  as follow:

 3 =
√

2X (X − � − � )−1 (8.29)

Hence the proof is completed and it demonstrates the invariance of the Cayley-

Tustin discretization with respect to closed-loop stabilization.

Corollary 8. For an infinitesimal generator � of the �0-semigroup T� (C) on the

Hilbert space -, �< ∈ L(-,C), the continuous- and discrete-time stabilizing output

injection gains can be linked by !13 =
√

2X(X − � − !�<)−1!, such that the discretized

observer error systems �3> = �3 + !13�<3 and �>3 = −� +2X(X− �− !�<)−1 share the

same stability property by using continuous- and discrete-time output injection gains
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! ∈ L(C, -) and !13 ∈ L(C, -) based on the Cayley-Tustin transformation, where

X ∈ d(�) ∩ d(� + !�<).

Proof. The proof is similar to Theorem 24 and hence can be completed by taking

�<3 = �
∗
3
and !13 =  

∗
3
.

8.3.3 Output feedback regulator design

Considering the unavailability and/or potentially prohibitive costs of installing spa-

tially distributed sensing devices, the implementation of a state feedback compensator

is not realistic. Hence, the output feedback regulator is more preferred in practical

use. Along this line, the state feedback regulator is extended to an output feedback

regulator, which is mathematically described as:

D: =  3 Ĝ:−1 + !3 @̂: , : ≥ 1 (8.30)

where  3 ∈ L(-,*), !3 ∈ L(C=,*), where Ĝ:−1 and @̂: denote the estimated states

of the plant and exogenous systems.

Along this line, one can construct Luenberger-type observers for plant and exo-system

respectively as follows:

Ĝ: = �3 Ĝ:−1 + �3D: + �3 3̂: + !13 (H<: − Ĥ<: ) (8.31a)

Ĥ<: = �<3 Ĝ:−1 + �<3D: + Υ<3 3̂: (8.31b)

@̂:+1 = (3 @̂: + !23 (HA: − ĤA: ) (8.31c)

3̂: = �3 @̂: (8.31d)

ĤA: = &3 @̂: (8.31e)

where Ĝ0 ∈ -, @̂0 = @̂
0 ∈ C=, : ≥ 1.

By direct manipulation of Eqs.(8.30)-(8.31) the following form is obtained:

Ĝ4: =

[
$1 $2

0 $3

]
Ĝ4:−1 +

[
!13 0
0 !23

] [
H<:
HA:

]
(8.32a)

D: =
[
 3 !3

]
Ĝ4:−1 (8.32b)

where Ĝ4
:
= [Ĝ: ; @̂:+1], with : ≥ 1, and

$1 = �3 − !13�<3 + (�3 − !13�<3) 3
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$2 = (�3 − !13Υ<3)�3 + (�3 − !13�<3)!3

$3 = (3 − !23&3

Finally, one can deploy Corollary 7 or Corollary 8 to determine the stabilizing output

injection gain !13 of the plant observer and apply pole-placement to find a stabilizing

observer gain !23 for the exo-system.

In the ensuing sections, two representative examples (CGLE and KSE) of fluid flow

systems are given to illustrate the feasibility and applicability of the proposed regu-

lator design method.

Remark 33. In the output regulation problem, there are two components in the con-

trol laws (8.10) and (8.30), including a feedback control part accounting for (closed-

loop) model stabilization and a feedforward control part ensuring the tracking error

converging to zero as time goes to infinity. In general, one can adopt some existing

feedback techniques to realize model stabilization of nonlinear distributed parameter

systems, e.g., by using interpolants and projections methods [323, 324]. However, the

feedforward control is much more difficult to find since it is determined by a set of

nonlinear partial differential and algebraic equations, which is a nonlinear counter-

part of the regulator equations encountered in the linear output regulation problems.

The difficulties lie in the solvability of the so-called nonlinear regulator equations. To

address that, a zero dynamics design method can be applied as in [312, 325], also

see [326, Chapter 3] for nonlinear lumped parameter systems. Since this chapter is

focused on the discrete-time linear output regulator design of fluid flow systems, the

nonlinear regulator design will not be detailed in this chapter.

Remark 34. The presented Cayley-Tustin transformation is capable of transform-

ing a continuous-time infinite-dimensional systems with possible unbounded operators

(boundary control and observation) into a discrete-time infinite-dimensional model

with all bounded operators. However, for the unstable system (e.g. Ginzburg-Landau

equation) considered in this chapter, the corresponding model stabilization via bound-

ary control could not be achieved by using traditional methods, and the most common

practice to solve boundary control problem is to use backstepping methods, which is be-

yond the scope of this chapter. Another possible approach is to utilize model predictive
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controller design proposed in [65]. Since this chapter is focused on the discrete-time

linear output regulator design of fluid flow systems with bounded control and obser-

vation operators, the boundary control and observation will not be addressed in this

chapter.

8.4 Complex Ginzburg-Landau flow model

In this section, a linearized complex Ginzburg-Landau equation (CGLE), which takes

form of a complex parabolic partial differential equation (PDE), is considered. More

specifically, a discrete-time CGLE model is generated without spatial approximation

or model reduction using the Cayley-Tustin discretization method. Additionally, a

resolvent operator is found in a closed analytic form and deployed in the realization

of the discrete CGLE model.

8.4.1 CGLE model description

Based on the model developments from [1, 58], a linearized complex Ginzburg-Landau

equation is given as follows:

mG

mC
(b̄, C) = 01

m2G(b̄, C)
mb̄2

+ 02(b̄)
mG(b̄, C)
mb̄

+ 03(b̄)G(b̄, C) (8.33a)

Gb̄ (0, C) = D̄(C) (8.33b)

Gb̄ (b̄3 , C) = 0 (8.33c)

where G(b̄, C) ∈ X̄ is a complex-valued function with spatial variable b̄ ∈ [0, b̄3] ⊂ R,
and temporal variable C ∈ [0,∞). X̄ = !2((0, b̄3),C) denotes a complex Hilbert space.

In addition, 01 is a positive constant, and 02(b̄) and 03(b̄) are two complex spatial

functions. By applying an invertible state transformation F(b̄, C) = G(b̄, C)6(b̄), 6(b̄) =
exp( 1

201

∫ b̄

0
02([)3[) and spatial scaling b = b̄3−b̄

b̄3
, the convective term is eliminated

as:

mF

mC
(b, C) = 11

m2F(b, C)
mb2

+ 12(b)F(b, C) (8.34a)

Fb (1, C) = D(C) (8.34b)

Fb (0, C) = 0 (8.34c)
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with notations:

11 =
01

b̄2
3

(8.35a)

12(b) = −
1

2
0′2(b) −

1

401
02

2(b) + 03(b) (8.35b)

where F(b, C) ∈ X = !2((0, 1),C), b ∈ [0, 1], and 0′2(b) denotes the spatial derivative

of 02(b). Moreover, D(C) is the corresponding input of the scaled system (8.34).

By [42, Rem. 10.1.6], the boundary actuation can be transformed into an abstract

in-domain control described by a spatial distribution function B(b) by solving an inner

product formula as below:

〈L>q, k〉 = 〈q,A∗k〉 + 〈�q,B∗k〉 (8.36)

where ∀q ∈ D(L>), ∀k ∈ D(A∗), and L> := 11
m2

mb2
+12(b) withD(L>) = H1((0, 1),C).

The boundary control is denoted by �, namely, �q := qb (1). By introducing

X1 = Ker (�), we obtain A = L> |X1 with the same definition as L>, but a dif-

ferent domain as D(A) = {q ∈ X|q ∈ H1((0, 1),C) ∩Ker (�)}. It can be found that

A∗ = 11
m2

mb2
+ 12(b) and D(A∗) = D(A). It is straightforward to obtain

〈�q,B∗k〉 = qb (1)k∗(1) (8.37)

where ∀q ∈ D(L>), and ∀k ∈ D(A∗). Comparing this with the fact that �q = qb (;),
it follows that B(b) = X(b−1). For the sake of simplicity, we deploy the approximation

B(b) ≈ 1
2Y1[b1−Y,b1+Y] (b) in what follows, where 1[0,1] (b) denotes the spatial shaping

function: 1[0,1] (b) =
{

1, b ∈ [0, 1]
0, otherwise .

Therefore, a standard infinite-dimensional state-space model is formulated for the

considered CGLE model as:

mF

mC
(b, C) = AF(b, C) + BD(C) + E3 (C) (8.38a)

H2 (C) = C2F(b, C) (8.38b)

H< (C) = C<F(b, C) (8.38c)

where D(C) ∈ !2
;>2
( [0,∞),*), 3 (C) ∈ !2

;>2
( [0,∞),*3), and H(C) ∈ !2

;>2
( [0,∞), . ), with

*, *3 and . being finite-dimensional spaces. More specifically, we consider dim * =

dim *3 = dim . = 1. In addition, we consider A : D(A) ⊂ X ↦→ X being an

236



infinitesimal generator of a �0−semigroup T(C) on X, a bounded control operator

B ∈ L(*,X), a point observation operator C2 ∈ L(X1, . ), and a bounded disturbance

operator E ∈ L(*3 ,X). More specifically, we aim to steer a flow at point b2, so the

output of interest is given as: C2 :=
∫ 1

0
X(b−b2) (·)3b, where X(b−b2) denotes the Dirac

delta function. For model well-posedness, we employ CΛG = lim
_→+∞

C2_(_� − A)−1G to

replace C2, where � is an identity operator, G ∈ X, _ ∈ d(A) (see details in [111]). As

for observation, we introduce a bounded operator C< as: C< (b) = 1
2h1[b<−h,b<+h] (b).

The design objective is to realize output reference tracking, disturbance rejection, and

model stabilization. In order to find the stabilizing controller and observer gains, we

provide a spectrum analysis utilized in pole-shifting design.

8.4.2 Spectrum analysis

It can be shown in several ways that for a constant spatial function 12(b) the spectrum
of A can be found analytically as follows:

_= = 12 − 11=
2c2 (8.39a)

q= =
√

2 cos(=cb) (8.39b)

with = ∈ N. As for = = 0, one has (_0, q0) = (1̄2, 1(b)). However, for an arbitrary

complex spatial function 12(b), it is not simple to find the spectrum characteristic of

A. For simplicity, we take maximum value (w.r.t. real part) of the spatial function

12(b) as 1̄2 to approximate the original function 12(b), resulting in A := 11
m2

mb2
+ 1̄2.

Then, the spectrum of A naturally follows Eq.(8.39) with 12 replaced by 1̄2, which

is given as follows:

_= = 1̄2 − 11=
2c2 (8.40a)

q= =
√

2 cos(=cb) (8.40b)

with = = 1, 2, .... For = = 0, one has (_0, q0) = (1̄2, 1(b)), which will be further

exploited for the output regulator design in the ensuing sections.

8.4.3 CGLE resolvent operator

One of the most important steps in discrete regulator design is to find the resol-

vent operator from the continuous model so as to realize the corresponding discrete-
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time model. To achieve this, Laplace transformation is usually performed on the

continuous-time model (8.38). Considering that the resolvent operator purely de-

pends on A, one can drop B and E and directly apply Laplace transformation leading

to:

m

mb

[
F(b, B)
Fb (b, B)

]
=

[
0 1

B−12
11

0

] [
F(b, B)
Fb (b, B)

]
−

[
0
1
11

]
F(b, 0)

By defining F4 (b, B) = [F(b, B);Fb (b, B)], it is straightforward to obtain the solution

of F4 (b, B) as follow:

F4 (b, B) = 4"bF4 (0, B) +
∫ b

0
4" (b−[)�0F([, 0)3[ (8.41)

where

�0 =

[
0
− 1
11

]
, " =

[
0 1

B−12
11

0

]
After some simple algebraic manipulations, one can obtain 4"b = ["8 9 (b, B)]2×2, with

8, 9 = 1, 2, as below

4"b =


cosh(

√
B−12
11
b)

√
11
B−12 sinh(

√
B−12
11
b)√

B−12
11

sinh(
√
B−12
11
b) cosh(

√
B−12
11
b)


Substituting boundary conditions Fb (1, B) = 0 = Fb (0, B) into Eq.(8.41), one can solve

for F(0, B) so that the resolvent operator is determined in the closed analytic form:

R(B,A)(·) = "11(b, B)
11"21(;, B)

∫ 1

0
"22(1 − [, B) (·)3[ −

1

11

∫ b

0
"12(b − [, B) (·)3[

=
1√

11(B − 12)
×

[
−

∫ b

0
sinh(FB (b − [)) (·)3[

+ cosh(FBb)
sinh(FB)

∫ 1

0
cosh(FB (1 − [)) (·)3[

]
(8.42)

where FB =
√
B−12
11

. Then, a direct calculation leads to the expressions of (A3 ,B3 , C3 ,
D3) as:

A3 (·) = −(·) −
2X√

11(X − 12)

∫ b

0
sinh(FX (b − [)) (·)3[

+ 2Xcosh(FXb)√
11(X − 12) sinh(FX)

∫ 1

0
cosh(FX (1 − [)) (·)3[ (8.43a)
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B3 =


√

2X
2Y(X−12)

[
1 − cosh (FX (b − b1 + Y)) +
cosh(F Xb) cosh(F X (b−b1+Y))

sinh(F X)

]
, b ∈ [b1 − Y, b1 + Y]

√
2X cosh(F Xb) cosh(F X (b−b1+Y))

2Y(X−12) sinh(F X) , otherwise

(8.43b)

C23 (·) = −
√

2X√
11(X − 12)

∫ b2

0
sinh(FX (b2 − [)) (·)3[

+
√

2Xcosh(FXb2)√
11(X − 12) sinh(FX)

∫ 1

0
cosh(FX (1 − [)) (·)3[ (8.43c)

D23 =
cosh (FXb2) cosh (FX (b2 − b1 + Y))

2Y (X − 12) sinh (FX)
, b2 < b1 − Y (8.43d)

where FX =
√
X−12
11

. With b2 < b1 − Y < 1, we note that

lim
B→+∞

G2 (B) = lim
X→+∞

D23 (X) = 0

In a similar fashion, we can obtain analytic expressions of D<3 and other discrete

operators. With b< + h < b1 − Y, one can further infer that

lim
B→+∞

T2 (B) = lim
X→+∞

D<3 (X) = 0

which implies that the system (8.38) is a well-posed regular system [121].

8.4.4 Simulation study

In the simulation section, the designed discrete-time regulator is implemented to

regulate the real part of the controlled output of the linearized CGLE model (8.38).

More specifically, sinusoidal signals generated by the discrete-time exo-system are

deployed as disturbance and reference signals. In addition, the model parameters of

the considered CGLE model in this chapter are adopted from [303, 1], and are given

in Table 8.1.

In this case, the disturbance distribution is described by E(b) = 1[0,0.5] (b), and
other numerical parameters are taken as Δb = 0.00125, ℎ = 0.5, b3 = 1.5, b2 = 0.5, b1 =

0.9, Y = 0.1, b< = 0.1 and h = 0.1. Additionally, the initial condition utilized here is

given as: F̂0 = (
√

2−
√

28)×(0.01×cos(2cb)−0.0003×cos(4cb)). By applying Theorem

23 and Corollary 7,  3 and !13 can be consequently determined. By performing pole

placement, the real part of the eigenvalues of ((3 − !23&3) are placed at −0.1. In

order to generate sinusoidal signals, we take (3 = [0.9824, 0.1868;−0.1868, 0.9824],
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Table 8.1: Parameters considered for the CGLE model (where 92 = −1) [1]

Parameter Numerical Value
01 0.01667

02(b̄)
(0.1697 + 0.04939 9)b̄2 − (0.1748 + 0.06535 9)b̄
−0.09061 + 0.001485 9

03(b̄)
(0.1563 − 0.001352 9)b̄4 + (−1590 + 0.6278 9)b̄3
+(0.3958 − 1.8577 9)b̄2 + (−1.6852 + 1.6759 9)b̄
+1.2645 − 0.2489 9

@̂0 = [−0.4; 1.4], �3 = [0, 0.010], and &3 = [0.030, 0], leading to periodic reference

and disturbance signals as: HA: = 0.03 × sin(0.06:c) and 3: = 0.01 × cos(0.06:c).
Revisiting Eq.(8.21b) and Eq.(8.6), the discrete feedforward gain can be solved as

!3 = [0.0224, 0.0340], which completes the control action D: .

After simulation of 30 seconds, the closed-loop state and output evolution profiles

are depicted in Fig. 8.3 and Fig. 8.4. It is apparent that the designed output regulator

can stabilize the originally unstable system, and the spatiotemporal profile shows the

expected periodic behaviour. From the perspective of output tracking performance,

one can clearly see that the real part of the controlled output follows the desired

reference signal and the tracking error converges to zero quickly, which demonstrates

the effectiveness of the proposed output regulator design.
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Figure 8.3: State evolution of closed-loop GLE system in the case of regulation of the
real part of the controlled output.
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Figure 8.4: Output trajectory of closed-loop GLE system in the case of regulation of
the real part of the controlled output.

8.5 Kuramoto-Sivashinsky equation

In this section, a continuous-time nonlinear Kuramoto-Sivashinsky equation (KSE)

is introduced to describe the falling thin film dynamics. For the sake of simplicity, a

linear KSE is achieved by performing linearization. In the same manner, the Cayley-

Tustin transformation is utilized for time discretization for the linear KSE model.

Moreover, an explicit closed-form solution is obtained for the corresponding resolvent

operator, which is exploited for the discrete-time regulator design.

8.5.1 KSE model description

In this section, a general nonlinear Kuramoto-Sivashinsky equation with an in-domain

actuation is considered as follows [327]:
mG

mC
(Z, C) +EGZ Z Z Z (Z, C) + GZ Z (Z, C)

+ GZ (Z, C) G (Z, C) + �(Z)D(C) + � (Z)3 (C) = 0 (8.44)

with boundary conditions and initial condition:

G (0, C) = 0, G (;, C) = 0, GZ (0, C) = 0, GZ (;, C) = 0 (8.45a)

G (Z, 0) = G0(Z) (8.45b)

where G describes the thickness of a thin falling flow, as illustrated in Fig. 8.2.

C ∈ [0,∞) and Z ∈ [0, ;] denote temporal and spatial variables, respectively. The total
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length of the vertical pipe is denoted by ;. Additionally, GC represents the first-order

temporal derivative of state G, while GZ , GZ Z and GZ Z Z Z stand for first-order, second-

order and fourth-order derivatives of state G with respect to space. D(C) denotes a

manipulated variable representing the angle at which the air front is acting on the

film-annulus separation points, and �(Z) is a spatial function describing the control

action along the vertical pipe. In particular, we consider �(Z) = 1
2Y1[Z1−Y,Z1+Y] (b).

3 (C) represents a distributed disturbance characterized by a bounded spatial function

� (Z). After linearizing the KSE (8.44) around the spatially uniform steady state

GBB (Z) = 0, a linear KSE is attained as follow [311]:

GC (Z, C) + EGZ Z Z Z (Z, C) + GZ Z (Z, C) + �(Z)D(C) + � (Z)3 (C) = 0 (8.46)

with:

G (0, C) = 0, G (;, C) = 0, GZ (0, C) = 0, GZ (;, C) = 0 (8.47a)

G (Z, 0) = G0(Z) (8.47b)

To complete the KSE system, we define an controlled output H2 (C) and an measured

output H< (C) as below:

H2 (C) = C2G(Z, C) (8.48a)

H< (C) = C<G(Z, C) (8.48b)

where C2 represents a point observation described by C2 (·) =
∫ ;

0
X (Z − Z2) (·) 3Z , with

X (Z − Z2) denoting the Dirac delta function. In other words, the controlled output

extracts state information at a specific spatial point Z2 of interest, i.e., H2 (C) = G(Z2, C).
In addition, a bounded operator C< is introduced to describe H< (C) as: C< (Z) =
1
2h1[Z<−h,Z<+h] (Z). In doing so, a continuous-time KSE system is constructed in the

following abstract state-space form:

mG

mC
(Z, C) = AG(Z, C) + BD(C) + E3 (C) (8.49a)

H2 (C) = C2G(Z, C) (8.49b)

H< (C) = C<G(Z, C) (8.49c)

whereA := −E m4

mZ4
− m2

mZ2
with domainD(A) = {q(Z) ∈ !2(0, ;) |q, qZ , qZ Z , qZ Z Z are abs.

con., qZ Z Z ∈ !2(0, ;), q(0) = 0, q(;) = 0, qZ (0) = 0, qZ (;) = 0}. In addition, we have
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B := �(Z) and E := � (Z). This standard model structure taking the same form as Eq.

(8.1) is suitable for model time discretization through the Cayley-Tustin approach as

described previously.

8.5.2 KSE resolvent operator

In a similar manner as we solved the resolvent operator of CGLE model, we aim to

determine the resolvent operator of KSE model in this section. Differently, it needs

more complex manipulation to solve for the KSE resolvent operator R owing to the

higher order derivatives in the state evolution operator A := −E m4

mZ4
− m2

mZ2
. By directly

applying Laplace transform to the linearized Kuramoto-Sivashinsky equation (8.46)

and ignoring the input and disturbance, one achieves the following:

GZ Z Z Z (Z, B) = −
B

E
G (Z, B) − 1

E
GZ Z (Z, B) +

1

E
G0 (Z) (8.50)

To utilize boundary conditions for solving the state solution, we introduce new state

derivatives to Eq.(8.50) as follows:

mx

mZ
= �x + x0 (8.51)

where x = [G; GZ ; GZ Z ; GZ Z Z ], x0 = [0; 0; 0; 1
E
G0 (Z)], and

� =


0 1 0 0
0 0 1 0
0 0 0 1
− B
E

0 −1
E

0


Direct integration of Eq.(8.51) leads to:

x (Z, B) = 4�Zx (0, B) +
∫ Z

0
4�(Z−[)x0([)3[ (8.52)

where 4�Z = [08 9 (Z, B)]4×4, with 8, 9 = 1, 2, 3, 4. Thus, substituting the boundary con-

ditions G(0, B) = 0 and GZ (0, B) = 0 into Eq.(8.52) leads to the following simplification:[
G (Z, B)
GZ (Z, B)

]
=

[
013 (Z, B) 014 (Z, B)
023 (Z, B) 024 (Z, B)

] [
GZ Z (0, B)
GZ Z Z (0, B)

]
+

∫ Z

0

[
014 (Z − [, B)
024 (Z − [, B)

]
G0 ([) 3[ (8.53)
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Then, the remaining two boundary conditions G(;, B) = 0 and GZ (;, B) = 0 in Eq.(8.47a)

are deployed in Eq.(8.53) such that GZ Z (0, B) and GZ Z Z (0, B) can be determined as

follows: [
GZ Z (0, B)
GZ Z Z (0, B)

]
= −1

E
"−1

∫ ;

0

[
014 (; − [, B)
024 (; − [, B)

]
G0 ([) 3[ (8.54)

where " = [013(;, B), 014(;, B); 023(;, B), 024(;, B)]. The invertibility of " must be

checked to ensure that Eq.(8.54) holds.

Finally, one can obtain the solution of G (Z, B) by plugging Eq.(8.54) into Eq.(8.53),

which leads to the associated resolvent operator of the KSE system as follows:

R (Z,A) (·) =1

E

∫ Z

0
014 (Z − [, B) (·)3[

+ 013 (Z, B)
E [023 (;, B) 014 (;, B) − 013 (;, B) 024 (;, B)]

×
∫ ;

0
[014 (; − [, B) 024 (;, B) − 024 (; − [, B) 014 (;, B)] (·)3[

− 014 (Z, B)
E [023 (;, B) 014 (;, B) − 013 (;, B) 024 (;, B)]

×
∫ ;

0
[014 (; − [, B) 023 (;, B) − 024 (; − [, B) 013 (;, B)] (·)3[ (8.55)

where due to the specific structure of �, an analytic expression of resolvent operator

is found by:

023(Z, B) =
E (s sinh (sZ) − l sinh (lZ))

√
1 − 4BE

(8.56a)

013(Z, B) =
E (cosh (sZ) − cosh (lZ))

√
1 − 4BE

(8.56b)

024(Z, B) =
E (cosh (sZ) − cosh (lZ))

√
1 − 4BE

(8.56c)

014(Z, B) =

(
1 −
√

1 − 4BE
)

4B2
√
(2 − 8BE)

× [
(
2BE − 1 −

√
1 − 4BE

)
×
√

2s sinh (sZ) + 2BE
√

2l sinh (lZ)] (8.56d)

where s =

√
−1+
√

1−4BE
2E and l =

√
−1−
√

1−4BE
2E . It is observed that, for a given positive

real B, s stays as a complex number while l can be a complex or real number with

different choices of E. Due to the existence and multiplication with hyperbolic func-

tions ("sinh" and "cosh"), it is straightforward to check that 08 9 (Z, B) ∈ !2((0, ;),R),
∀B ∈ R, with 8, 9 = 1, 2.
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The closed-form expressions of discrete-time operators in Eq.(8.4) corresponding

to the discrete KSE system can be determined by simply substituting Eq.(8.55)-(8.56)

back into Eq.(8.5). By comparing the order of B in R(Z,A), it can be shown that for

any given b2 = 0.5 and b< + h ≤ b1 − Y

lim
B→+∞

G2 (B) = lim
X→+∞

D23 (X) = 0

lim
B→+∞

T2 (B) = lim
X→+∞

D<3 (X) = 0

which implies that the system (8.49) is a well-posed regular system [121].

8.5.3 Simulation study

In this section, the proposed discrete-time output regulator is implemented to the

KSE system and the results are discussed. To demonstrate the effectiveness of the

developed regulator, we consider an unstable KSE with E = −3. The characteristic

equation is found by EB4 + B2 = _ (or equivalently written as
(
B2 + 1

2E

)2 − _
E
− 1

4E2
= 0),

so the eigenvalue spectrum is roughly given by the range (−∞, 1
4E ] [311]. By revisiting

Theorem 23 and Corollary 7,  3 and !13 can be found.

To achieve asymptotic tracking and disturbance rejection of periodic signals, we

take (3 = [0.9995, 0.0314;−0.0314, 0.9995], @̂0 = [−0.2; 1.2], �3 = [0, 0.1], &3 =

[0.01, 0], E(Z) = 1[0,1] (Z), Z1 = 0.98, Y = 0.01, Z< = 0.1, h = 0.1, and Z2 = 0.5. The

reference and disturbance signals are generated as: 3: = 0.1× cos(0.009:c) and HA: =
0.01 × sin(0.009:c). Using Eq.(8.21b) and Eq.(8.6), the discrete feedforward gain is

found as !3 = [2640.6559,−23.2574], which leads to the control law D: . Additionally,

pole placement is applied to move the real part of eigenvalues of ((3−!23&3) to −0.5.

The simulated pipe length is taken as ; = 1m with a spatial interval Δ; = 0.005m.

Moreover, a time discretization interval ℎ = 0.1s is chosen with total simulation of

40 seconds. As shown in Fig. 8.5, the state is steered to reject a cosine disturbance

and follow a sinusoid wave using the closed-loop control. As for the output tracking

performance, it is apparent that the controlled output rapidly converges to the desired

reference and the tracking error goes to near zero around 30s, as illustrated in Fig.

8.6, which further verifies the feasibility of the proposed regulator design.
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Figure 8.5: State evolution of the closed-loop KSE system.
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Figure 8.6: Output regulation performance of the closed-loop KSE system.

8.6 Conclusion

In this chapter, discrete-time output regulators are designed for PDE model-based

fluid flow manipulation and regulation. To model the vortex shedding process and

falling thin film dynamics, the linearized complex Ginzburg-Landau and Kuramoto-

Sivashinsky models are utilized. For realistic implementation of regulators in digi-

tal computer systems, the Cayley-Tustin time discretization method is utilized for

discrete-in-time analysis with system properties preserved and no spatial approxi-

mation. Standard finite-dimensional continuous-time regulator design framework is

extended to an infinite-dimensional discrete-time setting with application to CGLE
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and KSE systems. As key components for the formulation of a discrete-time model

(�3 , �3 , �3 , �3), the resolvent operators corresponding to CGLE and KSE are found

in analytic forms, which are used to show the well-posedness of CGLE and KSE

models. Simulation results show that the developed design method is capable of sta-

bilizing the system, tracking the periodic output references in the CGLE model and

higher-order dynamics in the KSE case. Undesired periodic disturbance signals are

rejected for both systems. In the future work, the implementation and realization of

the proposed design will be explored experimentally on vortex shedding and falling

thin film control problems.
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Chapter 9

Discrete-time Modeling and Output
Regulation of Gas Pipeline Network

9.1 Introduction

Natural gas transportation through pipeline networks is of significance for energy

planning, scheduling, and operations management. With the increasing need for en-

ergy storage and transportation, more and more sophisticated and large-scale pipe

networks have been established to gather and distribute oil/gas from spatially dis-

tributed reservoirs to local consumers. However, in reality, pipeline operations often

involve complex interactions between various supplies and demands and might en-

counter pressure surges and oscillations [328]. On the other hand, the full state in-

formation of pipeline systems is not often available due to either physical constraints

on sensor implementations or prohibitive costs of installation of spatially-distributed

sensors, leading to limited measurements, which poses another challenge for pipeline

condition monitoring and regulation. Hence, it is of practical importance to design

output feedback regulators to meet various operating and scheduling requirements on

distributed gas pipeline networks.

To model flow dynamics in pipeline systems, the real-time transient model (RTTM),

as a representative of the first principle modelling approach, has gained a lot of at-

tention from academia and industry [329]. Essentially, the real-time transient model

is formulated based on mass, momentum, and energy balance laws, making it capable

of capturing the physical nature of pipeline transport flow that is difficult to ensure

by using data-driven methods. When it comes to pipeline engineering practices, the
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(a) A gas pipe network of # = 8 + 9 pipes. (b) A gas pipe network of # = 6 pipes.

(c) A gas pipe network of # = 7 pipes.

Figure 9.1: Different architectures of star-shaped gas pipe networks.

RTTM method has been utilized for mathematical modelling of liquid and gas flows

[329, 330], single straight pipeline and pipe network [331, 332], and pipeline systems

with associated accessories (such as pumps, valves, reducers, etc.) [333, 235]. Among

these, a special interest has been given to star-shaped gas pipeline networks due to

their wide existence in realistic pipeline network topologies as shown in Fig. 9.1(a).

More specifically, the coupling conditions (also referred to as Rankine-Hugoniot con-

dition) at the vertex of the gas pipe networks and related modelling analysis have

been intensively investigated [334]. Among these, relevant studies on classical solu-

tions, feedback stabilization, and time-delay boundary stabilization of such systems

were reported in [335, 332, 336]. However, inadequate efforts have been made toward

output regulation of pipeline network systems although servo control is significant

for energy planning and flow regulation of pipeline network systems, which motivates

this chapter.

Output regulation has been an active control topic during the past decades. The

main idea of output regulation is to track desired output references and reject unde-

sired disturbances, while ensuring the stability of the closed-loop system. As stated,

there are two distinct design problems in the realm of output regulation, i.e., state

feedback regulator design and output/error feedback regulator design. In general,
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full state information is assumed to be available for a state feedback regulator de-

sign while only output or tracking error is known in output/error feedback regulator

design problems. Following the pioneering work by Francis on the internal model con-

trol [247], the output regulation theory has been developed and extended to various

linear and nonlinear lumped parameter systems (LPSs) [248, 251]. Furthermore, the

internal model control theory has been applied for output regulation of distributed pa-

rameter systems (DPSs) governed by partial differential equations (PDEs), including

parabolic PDE systems [10, 337] and hyperbolic PDE systems [338, 13].

On the other hand, the backstepping approach has been developed for output

regulation of DPSs, based on Krstic’s work [17, 15]. As a general model structure

that is similar to the single pipeline model, a class of 2×2 linear bidirectional cou-

pled hyperbolic PDE systems has been studied in output regulator design problems

using the backstepping approach. Specifically, 2×2 linear hyperbolic systems with

boundary and in-domain disturbances as well as co-located sensing and actuation

were considered, and backstepping transforms were performed to acquire the control

action to annihilate the disturbance effect in [263, 264]. Recently, this work was fur-

ther extended to a class of general linear heterodirectional hyperbolic systems with

spatially-varying coefficients [267] and ODE-PDE-ODE cascade systems [339].

However, the existing contributions have not fully addressed the output regulation

of gas pipeline network systems. Furthermore, most of the work has been done in a

continuous-time setting and the question arises in how to ensure the convergence of

late-lumping controllers in numerical realizations [18]. Considering that system theo-

retic developments often go in parallel for continuous-time and discrete-time systems,

it is common practice to derive results for one class of systems and then map these

over to the other by using a bilinear transformation in finite-dimensional system the-

ory [19]. Since it is often possible to use some bilinear transform to avoid repeating

tedious derivations if results have been obtained for continuous systems and simi-

lar results are needed for the discrete ones and vice versa [19]. When it comes to

infinite-dimensional systems, Cayley bilinear transform has been used in establishing

1-1 correspondences of continuous- and discrete-time systems in terms of conservativ-

ity (energy preserving) [19, 20], reachability and observability [19], stability [21, 22],

stabilizability, controllability and observability [4, 23], and optimality [24].
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These facts motivate us to propose a novel discrete-time regulator design method

for pipeline networks by using the Cayley-Tustin transform, and the main contri-

butions are the following: 1). The linear continuous-time model with unbounded

operators is transformed to a linear discrete-time infinite-dimensional model with all

bounded operators, and the essential continuous-time properties (including stability,

controllability and observability) stay invariant under the Cayley-Tustin transfor-

mation; 2). The discrete output regulator is designed without the usual technical

difficulties present in the continuous-time infinite-dimensional case and its solvability

conditions are provided in the form of discrete output regulator equations. The pro-

posed design method is validated with applications in output regulation of a single

gas pipeline and a stared-shaped gas pipeline network under consideration of coupling

conditions at junction joints.

The rest of this chapter is presented in sections. Following the model description,

steady states analysis, model time discretization, and resolvent operator determina-

tion, the discrete-time single gas pipeline model are provided in Section 9.2. Section

9.3 presents a star-shaped gas pipe network model and its discretization, with consid-

eration of coupling conditions at junction joints. Regarding output regulation, details

on state and output feedback regulator design and realization are provided in Section

9.4. An internal stability analysis is provided in Section 9.5 for the considered pipeline

system. To verify the feasibility and applicability of the developed output regulator

design, two numerical examples are illustrated in Section 9.6. Finally, conclusions are

drawn in Section 9.7.

9.2 Single pipe model for gas transportation

In this section, the isothermal Euler equations in the form of 1st-order coupled nonlin-

ear hyperbolic PDEs are introduced for pipeline gas flow modelling. In particular, a

linearized model is obtained by linearizing the original nonlinear model around some

given operating mode of interest. By the use of Cayley-Tustin transform, a discrete-

time state-space model for describing the single pipeline system is established and

realized by determining the resolvent operator, which is amenable to the discrete

output regulator design.
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9.2.1 Model description

In this chapter, we consider that: 1) Each pipe segment is a rigid buried pipe implying

that the cross-sectional area change along the stream of gas can be negligible, and

the parameters are given in Table 9.1; 2) The single-phase gas flow is assumed to be

a 1-D flow indicating that mass flux, density and pressure are only functions of time

and position along the pipe axis; 3) All states are subsonic, i.e., |@ |
d
� 0, where d, @,

and 0 represent the gas density, mass flux and speed of sound in the considered gas

flow (@ = dE, E denotes mass flow velocity); 4) The flow is viscous (viscosity causes

shear stresses in the moving flow); 5) There is no vacuum present; 6) The flowing

process is isothermal which implies ?/d = I')/("6) = 02, where ? is the pressure,

I represents the natural gas compressibility factor, ' stands for the universal gas

constant, ) is the absolute gas temperature, and "6 is the gas molecular. The last

assumption implies that temperature changes due to pressure changes and friction

effects can be neglected in the flow system. This is motivated by the fact that most

of the pipeline infrastructures are buried underground, and for example, in the case

of a buried gasoline pipeline, the heat flux between the flow and surrounding soil is

negligible [241].

Table 9.1: Pipeline parameters

Item Notation Numerical Value
Length ; 10, 000 m

Speed of Sound 0 370.7010 m/s
Friction Coefficient _ 0.011
Gravity Acceleration 6 9.81 m/s2

Diameter � 0.5 m
Inclination Angle U −0.00256

Based on the continuity and momentum equations, the 1-D transient gas flow

model is constructed for a single pipeline system as follows [340, 330]:

dC + @G = 0 (9.1a)

@C +
(
@2/d + 02d

)
G
= −_ @ |@ |

2�d
− 6d sinU (9.1b)

Using the equation of state of ideal gas, one obtains:

?/d = I')/("6) = 02 (9.2)
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with boundary conditions:

@(0, C) = @0 + D(C), ?(;, C) = ?0, d(;, C) = d0 (9.3)

where G ∈ [0, ;] and C ∈ [0,∞) are spatial and temporal coordinates, and subscripts

C and G refer to derivatives in time and G-direction respectively. The length of the

straight pipe is ;, and the quantity of 6 sinU is the G-component of the gravity ac-

celeration 6. _ is a dimensionless friction factor described by the following Chen’s

equation. Additionally, the boundary input is denoted by D(C). For high-pressure gas
pipes, typical values are taken as: @/d ≈ 10 m/s, 0 ≈ 300 m/s, and 02d ≈ 7 MPa.

In particular, the momentum term @2/d is of order 10−3 while the friction term is of

order 10−2 for a pipe with length ; = 100 km and operational time of 1 hour [341, 340].

Hence, the momentum term @2/d can be dropped for the sake of simplicity, leading

to the Weymouth equation as follows:

dC + @G = 0 (9.4a)

@C + 02dG = −_
@ |@ |
2�d

− 6d sinU (9.4b)

Inserting Eq.(9.2) into the system (9.4) yields

?C + 02@G = 0 (9.5a)

@C + ?G = −_
@ |@ |02

2�?
− 6? sinU

02
(9.5b)

@(0, C) = @0 + D(C), ?(;, C) = ?0 (9.5c)

which are often referred to as the isothermal Euler equations [334, 336, 332, 330] and

can also be expressed by pressure ? and mass flow rate " (with " = dE�). As for the

characterization of solutions, spaces and regularity of the nonlinear isothermal Euler

equations, we refer to the references [342, 343, 344, 345, 346, 347]. In this chapter,

we assume steady state friction, which can be explicitly determined by the following

Chen’s equation [348]:

1
√
_
= −2 log

(
Y

3.7065�
− 5.0452

Re
log

(
1

2.8257

( Y
�

)1.1098
+ 5.8506

0.8981Re

))
where Re represents the Reynolds number with Re= dE�/a, and a is the dynamic

viscosity. Y denotes the pipe roughness, and we suppose that the considered straight

pipe have the same value of friction factor.
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9.2.2 Steady states analysis

By setting the temporal derivative terms equal to zero, we have the following:

02@̃G = 0, ?̃G = −_
@̃ |@̃ |02

2�?̃
− 6?̃ sinU

02
(9.6a)

@̃(0) = @0, ?̃(;) = ?0 (9.6b)

where @̃ and ?̃ denote steady states of mass flux and pressure. It can be seen that

@̃ and ?̃ are spatial functions and do not depend on time. For simplicity, we adopt

some physical values of incoming gas flow as: ?0 = 5 MPa, @0 = 278.7455 kg/(m2s),

D0 = 7.661 m/s, d0 = 36.385 kg/m3 from [330]. Based on that, the steady states are

numerically calculated and depicted in Fig. 9.2.
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Figure 9.2: Steady states of pressure, mass flux and density.

Along this line, the transient pressure and mass flux are introduced as ?̄(G, C) =
?(G, C) − ?̃(G, C) and @̄(G, C) = @(G, C) − @̃(G, C). In the ensuing sections, we assume

that the mass flux is always positive, i.e., @ > 0. Thus, one can derive the transient

dynamics with respect to the new states ?̄(G, C) and @̄(G, C) by linearizing the system

(9.5a)-(9.5c) around the determined steady states as follows:

m

mC

[
?̄(G, C)
@̄(G, C)

]
+ � m

mG

[
?̄(G, C)
@̄(G, C)

]
+ �

[
?̄(G, C)
@̄(G, C)

]
= 0 (9.7)

where � = [0, 02; 1, 0], � = [0, 0;&, �], & = 26 sinU/02 + ?̃G/?̃ and � = _02@̃/(�?̃).
Combining boundary conditions (9.5c) and (9.6b) leads to the new boundary condi-
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tions as:

@̄(0, C) = D(C), ?̄(;, C) = 0 (9.8)

After simple algebraic manipulation, a boundary control system (BCS) of the gas

flow pipe model is constructed as follows:

m

mC
F(G, C) = A1F(G, C), F(G, 0) = F0(G) (9.9a)

B1F(G, C) = D(C), H2 (C) = C2F(G, C), H< (C) = C<F(G, C) (9.9b)

where F(G, C) = [ ?̄(G, C); @̄(G, C)] and F(·, C) ∈ X, with X = !2((0, ;)2,R) defined as

a separable Hilbert space. The input is denoted by: D(C) ∈ !2
;>2
( [0,∞),*), and the

controlled and measured outputs are H2, H< ∈ !2
;>2
( [0,∞), . ), where * and . are

assumed to be finite-dimensional spaces. Specifically, the continuous-time operators

are denoted as follows:

A1= −
[

0 02 m
mG

m
mG
+& �

]
,B1 =

[
0,

∫ ;

0
X (G) (·) 3G

]
(9.10a)

C2=
[∫ ;

0
X (G − G2) (·) 3G, 0

]
(9.10b)

C< = bdiag
(∫ ;

0
X (G − G<1) (·) 3G,

∫ ;

0
X (G − G<2) (·) 3G

)
(9.10c)

where X denotes the Dirac delta function, and “bdiag” represents a block diagonal

matrix. We note that the domain of operator A1 is D(A1) = {F(G) = [F1(G);F2(G)] ∈
X|F1(;) = 0, F1(G) andF2(G) are abs. cont.}. In this chapter, there is no constraint

posed on the definition of the controlled and measured outputs, which indicates that

the controlled and measured outputs are not necessarily to be co-located. To proceed

with the regulator design in the ensuing sections, the following abstract linear state-

space model is developed:

m

mC
F(G, C) = AF(G, C) + BD(C), F(G, 0) = F0(G) (9.11a)

H2 (C) = C2F(G, C), H< (C) = C<F(G, C) (9.11b)

where A takes the same expression as A1, but a different domain as: D(A) =
{[q1(G); q2(G)] ∈ X |q1(;) = 0, q2(0) = 0, q1(G) and q2(G) are abs. cont.}. By [42,

Rem. 10.1.6], B can be obtained through solving the following inner product formula:

〈A1F, k〉 = 〈F,A∗k〉 + 〈B1F,B∗k〉 (9.12)
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where k ∈ D(A∗), F ∈ D(A1). By solving the inner product formula 〈Aq, k〉 =
〈q,A∗k〉, the adjoint operator A∗ can be found as: A∗ = [0,−& + m

mG
; 02 m

mG
,−�], with

the associated domain defined as D(A∗) = {[k1(G);k2(G)] ∈ X | k1(;) = 0, k2(0) = 0,

k1(G) and k2(G) are abs. cont.}. Thus, a direct computation of Eq.(9.12) leads to:〈
B1

[
F1

F2

]
,B∗

[
k1

k2

]〉
= 02D(C)k1(0) (9.13)

which implies that B = [02X (G); 0], with X defined as the Dirac delta function.

In the abstract linear system (9.11), we assume A : D(A) ⊂ X ↦→ X is an

infinitesimal generator of a �0-semigroup T(C) on X. We introduce the space X1

as the space D(A) with the norm ‖G‖1 = ‖(V� − A)G‖, and the space X−1 as the

completion of X with the norm ‖I‖−1 = ‖(V� − A)−1I‖, where ∀G ∈ D(A), ∀I ∈ X,
and V ∈ d(A). The constructed spaces are linked by X1 ⊂ X ⊂ X−1, with each

inclusion being dense and continuous embedding. The restriction of A to X that is

the generator of T(C) on X1 is also denoted by A, leading to A ∈ L(X1,X) [42]. The
operators B ∈ L(*,X−1), and C2, C< ∈ L(X1, . ) are assumed to be admissible to

account for boundary control and observation. For F0 ∈ X, D(C) ∈ !2
;>2
( [0,∞),*),

the functions F : [0,∞) → X and H2, H< ∈ !2
;>2
( [0,∞), . ) have the weak solutions as:

F(C) = T(C)F0+
∫ C

0
T(C − g)�D(g)3g (9.14a)

H2 (C) = C2Λ
[
T(C)F0 +

∫ C

0
T(C − g)�D(g)3g

]
(9.14b)

where C2Λ denotes the Λ-extension of C2, i.e., C2ΛF = lim_→+∞ C2_(_� − A)−1F, and

the domain of �2Λ contains all F ∈ X for which the above limit exists. In addition, the

solution of H< has the same expression as H2 with C2Λ being replace by C<Λ that is the

Λ-extension of C<. To let a well-posed system have the usual state-space presentation

(9.11), C2 and C< have to be replaced by C2Λ and C<Λ, respectively.
As in [121], we define the transfer function from the input D(C) to the controlled

output H2 (C) in the following form:

G2 (B) = C2Λ(B� − A)−1B, for B ∈ C+f ∩ d(A) (9.15)

where f is the maximum of growth index of a well-posed linear system and the

growth bound of the semigroup T(C), and C+f denotes the right open half-plane in C
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with C+f = {B ∈ C|Re B > f} delimited by f ∈ R. Similarly, G< (B) can be defined by

replacing C2Λ with C<Λ in (9.15). Moreover, it can be shown that the model (9.11)

is well-posed following the structure of the 2× 2 port-Hamiltonian system [170, Lem.

4.1], and it is indeed regular and will be shown later on. For ease of notation, we keep

using C2 and C< to denote their Λ-extensions C2Λ and C<Λ in the ensuing sections.

9.2.3 Model time-discretization

To address the boundary (or point) control and observation, we deploy the Cayley-

Tustin bilinear transform to convert the continuous-time model with unbounded op-

erators into a discrete-time infinite-dimensional model with all bounded operators.

Meanwhile, the essential properties of the continuous-time system stay invariant un-

der this transformation, including conservativity [19, 20], reachability and observabil-

ity [19], stability [21, 22], stabilizability, controllability and observability [4, 23], and

optimality [24]. Furthermore, the 1-1 correspondences between the continuous model

with its discrete counterpart can be utilized in digital control (or sampled-data con-

trol). To start with, we apply the Cayley-Tustin transform to the linear continuous

model (9.11) with a given time discretization interval ΔC as follows [97]:

F(:ΔC) − F((: − 1)ΔC)
ΔC

≈ AF(:ΔC) + F((: − 1)ΔC)
2

+ BD(:ΔC), : ≥ 1 (9.16a)

H2 (:ΔC) ≈ C2
F(:ΔC) + F((: − 1)ΔC)

2
(9.16b)

H< (:ΔC) ≈ C<
F(:ΔC) + F((: − 1)ΔC)

2
(9.16c)

As shown in Eq.(9.16), this discretization framework follows an implicit mid-

point integration rule. Furthermore, this framework is a symmetric and symplec-

tic integration scheme leading to a structure- and energy-preserving time discretiza-

tion [119]. The discrete input is given by the mean value sampling as D:/
√
ΔC =

1/ΔC
∫ :ΔC

(:−1)ΔC D(C)3C. It can be shown that ‖D:/
√
ΔC − D(C)‖ → 0 on the interval

[(:−1)ΔC, :ΔC] as ΔC → 0+, and similar expressions hold for H2: and H<: [97]. Through

simple algebraic manipulations, one can obtain the following discrete-time infinite-

dimensional state-space model:

F: = A3F:−1 + B3D: , : ≥ 1 (9.17a)
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H2: = C23F:−1 + D23D: (9.17b)

H<: = C<3F:−1 + D<3D: (9.17c)

where one denotes F: , D: , H2: and H<: as the discrete-time state, input, controlled

and measured outputs, with the associated discrete-time operators given as follows:
A3 B3
C23 D23

C<3 D<3

 =

−� + 2XR(X,A)

√
2XR(X,A)B√

2XC2R(X,A) G2 (X)√
2XC<R(X,A) G< (X)

 (9.18)

where X = 2/ΔC ∈ R+ with R+ denoting the set of all positive real numbers, and

X ∈ C+f ∩ d(A). R(X,A) represents the resolvent operator R(B,A) = (B� −A)−1 with

B evaluated at X. G2 (X) and G< (X) denote the transfer functions G2 (B) and G< (B)
with B evaluated at X, respectively.

Remark 35. With Cayley-Tustin discretization being applied to system (9.11), the

continuous-time unbounded operators are all converted to discrete-time bounded op-

erators in Eq.(9.17), where the operators are defined as: A3 ∈ L(X), B3 ∈ L(*,X),
C23 , C<3 ∈ L(X, . ), D23 ,D<3 ∈ L(*,. ), see details in the reference [279, Sec. IV.B].

Remark 35 provides a technical advantage for addressing the continuous model

(9.11) with unbounded operators. Furthermore, it can be recognized that there are

feedthrough operators D23 and D<3 existing in the discrete-time setting (9.17) after

applying Cayley-Tustin transform, which are not necessarily present in the continuous

model (9.11).

As in [24], we define the transfer function (also called characteristic function) from

D: to H2: for the discrete-time system (9.17) as follows:

G3 (I) = C23 (I� − A3)−1B3 + D23 (9.19a)

for I ∈ d(A3). Then, we establish a 1-1 equivalent relationship between continuous-

and discrete-time transfer functions via the Cayley-Tustin transform.

Lemma 7. With the well-posed continuous system (9.11), and its discrete counter-

part (9.17) induced by Cayley-Tustin transform, the following relationship holds

G2 (B) = G3 (I) (9.20)

where I = X+B
X−B ∈ d(A3)\{−1} and B = I−1

I+1 X ∈ C
+
f ∩ d(A)\{X}.
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Proof. The proof is similar to [24, Lem. 8] by replacing I with 1/I under the

consideration of X ∈ R+.
The same 1-1 relationship between continuous- and discrete-time transfer func-

tions with respect to bounded control and observation operators has been shown in

[23] (for X = 1). Apparently, for X > A ≥ 0, Cayley-Tustin transform maps the right

half-plane C+A bijectively the exterior disc D+A with center A/(X−A) and radius X/(X−A).
For more results on Cayley transform, see references [19, 23, 24, 21].

9.2.4 Resolvent operator

In order to realize the discrete-time model (9.17), the resolvent operator needs to

be determined from the continuous-time counterpart (9.11). Considering that the

resolvent operator only depends on operator A, one can apply Laplace transformation

to Eq.(9.7) or (9.11a) by neglecting B as follows:

F(G, B) = 4"GF(0, B) +
∫ G

0
4" (G−[)�0

−1F([, 0)3[ (9.21)

where �0 = [0, 02; 1, 0] and " = −[&, � + B; B/02, 0]. For simplicity, one can denote

4"G = ["8 9 (G, B)]2×2 with 8, 9 = 1, 2. By checking the nonzero elements off the diagonal

of matrix �0, it is straightforward to show that �0 is invertible, which guarantees the

solvability of Eq.(9.21). More specifically, the analytical expression of 4"G is given

by:

4"G =

[
"11(G, B) "12(G, B)
"21(G, B) "22(G, B)

]
= 4−

&G

2 ×
[

cosh( H
20G) −

&0

H sinh( H
20G) −2(�+B)0

H sinh( H
20G)

− 2B
H0 sinh( H

20G) cosh( H
20G) +

&0

H sinh( H
20G)

]
(9.22)

where � =
√
&202 + 4B2 + 4�B. Substituting boundary conditions ?̄(;, C) = 0 and

@̄(0, C) = 0 into Eq.(9.21), one can solve for ?̄(0, B) and then determine the resolvent

operator as follows:

F(G, B) = R(B,A)F(G, 0) (9.23)

where R(B,A) = [R8 9 (B,A)]2×2, with 8, 9 = 1, 2. The explicit resolvent expressions

are provided are provided in the Appendix. From the limit of the transfer function

as B→ +∞, we can show that the system (9.11) is regular as:

lim
B→+∞

G2 (B) = lim
B→+∞

C2Λ(B� − A)−1B
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= lim
B→+∞

4(� + B)04−
&G2
2 [exp( H

20 (; − G2)) − exp( H
20 (G2 − ;))]

(� −&0) exp( H
20 ;) + (� +&0) exp(− H

20 ;)
= 0 (with� =

√
&202 + 4B2 + 4�B) (9.24)

Thus, the networked pipeline system is also regular due to the fact that the cascade

connection of two regular systems is regular [121]. Substituting the resolvent operator

R(B,A) back to Eq.(9.18) with B evaluated at 2/ΔC, one can obtain the discrete-time

model (9.17) of the single gas pipeline.

9.3 Gas pipe network model

In this section, we consider a general star-shaped gas pipeline network as shown in

Fig. 9.1(a). Based on the continuity and momentum balance laws and the equation

of state of ideal gas, a 1-D transient gas flow pipe network is established as follows

[340]:

d
(8)
C +@

(8)
G = 0 (9.25a)

@
(8)
C +

(@ (8)2
d(8)
+ 02d(8)

)
G
=−_(8) @

(8) |@ (8) |
2� (8)d(8)

− 6d(8) sin(U(8)) (9.25b)

? (8)/d(8) = I')/("6) = 02 (9.25c)

with boundary conditions given below:

@ (8) (0, C) = @ (8)0 + D
(8) (C), ? (8) (;, C) = ? (8)0 , d

(8) (;, C) = d(8)0 (9.26)

By performing model linearization (around the same steady states for brevity) and

model time discretization as in the previous sections, one can obtain the discrete-time

gas pipe network model as:

m

mC
F (8) (G, C) = A (8)F (8) (G, C) + B (8)D(8) (C) (9.27a)

H
(8)
2 (C) = C (8)2 F (8) (G, C), H (8)< (C) = C (8)< F (8) (G, C) (9.27b)

where F (8) (G, 0) = F
(8)
0 (G), F

(8) (G, C) = [ ?̄ (8) (G, C); @̄ (8) (G, C)], and the corresponding

continuous-time operators in Eq.(9.10) are: A (8) := −[0, 02 m
mG

; m
mG
+& (8) , � (8)], B (8) =

B, C (8)2 = C2, C (8)< = C<, where D(A (8)) = {[q81(G); q
8
2(G)] ∈ X| q

8
1(;) = 0, q82(0) = 0,
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q81(G) and q82(G) are abs. cont.}. In addition, the superscript 8 corresponds to the

quantities of the 8-th pipe segment.

The coupling conditions at pipe junctions exhibit a significant difference between

the single gas pipeline model and the gas pipeline network. To be precise, we model

the coupling conditions by neglecting the pressure and mass loss at the vertex joint

: as follows:

?̄
(8)
:
(;, C) = ?̄ ( 9)

:
(0, C), (8 ∈ � : , 9 ∈ �: , : ∈  ) (9.28a)∑

8∈�:
@̄
(8)
:
(;, C) +

∑
8∈�:

@̄
( 9)
:
(0, C) = 0 (9.28b)

where � : denotes all pipes with incoming flow toward the junction node :, and �:

denotes all pipes with outgoing flow from the junction node :. In addition, we denote

the set of all junction nodes as  . The coupling conditions (9.28) have been widely

utilized for gas pipe network modelling and analysis, see references [334, 336, 332].

9.3.1 SIMO gas pipe network

The gas pipe network model (9.27) represents a general architecture as boundary

control and observation are considered for each pipe segment, while it is complex and

may not be the case when it comes to engineering practice. In order to address this

issue, we focus on gas pipe network systems with boundary actuations applied at

upstream pipe ends. Firstly, we consider a simple star-shaped pipe net with a single

inlet and multiple outlets (SIMO) as shown in Fig. 9.1(b). For this architecture,

boundary input is applied only at upstream of pipe 1, i.e., @̄ (1) (0, C) = D(C). Based on

the coupling conditions (9.28), we have the relationship: ?̄ (1) (;, C) = ?̄ (3) (0, C). Fur-

thermore, we assume the incoming mass flux to pipe 3 is proportional to the outgoing

mass flux from pipe 1, i.e., @ (3) (0, C) = W@ (1) (;, C), where the flow directionality is

neglected, which allows two PDE systems of pipe 1 and pipe 3 to be connected as a

cascade PDE system with a goal of controlling the pressure at some position in pipe

3 (marked as an orange star in Fig. 9.1(b)). Moreover, we measure the upstream

pressure and downstream mass flux of all considered pipes. In this case, we need to

measure pipe 1 and pipe 3 as: @ (1) (;, C), ? (1) (0, C), and @ (3) (;, C) (since ? (3) (0, C) is
given by ? (1) (;, C)). Mathematically, the dynamics of the cascade system (pipe 1 and
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pipe 3) are described in the continuous-time setting as below:

m

mC
F4 (G, C) = A4F4 (G, C) + B4D4 (C) (9.29a)

H42 (C) = C42F4 (G, C), H4< (C) = C4<F4 (G, C) (9.29b)

where F4 (G, 0) = F40(G), F
4 (G, C) = [F (1) (G, C);F (3) (G, C)] and D(A4)= {[q1(G); q2(G);

q3(G); q4(G)] ∈ !2(0, ;)4 | q2(0) = 0, q1(;) = q3(0), q4(0) = Wq2(;), q3(;) = 0, q1(G),
q2(G), q3(G) and q4(G) are abs. cont.}. The corresponding extended operators are

given as follows:

A4 := bdiag(A (1) ,A (3)), B4 := [B (1); 0] (9.30a)

C42 :=
[
0 C (3)2

]
, C4< := bdiag(C (1)< , C (3)< ) (9.30b)

By performing model discretization as in Eq.(9.16), a discrete pipe network model is

established as:

F4: = A
4
3F

4
:−1 + B

4
3D

4
: , : ≥ 1 (9.31a)

H42: = C
4
23F

4
:−1 + D

4
23D

4
: (9.31b)

H4<: = C
4
<3F

4
:−1 + D

4
<3D

4
: (9.31c)

where the associated discrete operators take same expressions as in Eq.(9.18) with all

operators being replaced by their extended counterparts. Consequently, the resolvent

operator corresponding to the pipe network model is also extended as:

F4 (G, B) = <(B,A4)F4 (G, 0) (9.32)

where <(B,A4) = [<8 9 (B,A4)]4×4, with 8, 9 = 1, 2, 3, 4. By applying boundary con-

ditions associated with A4, one can attain the analytic expressions of the extended

resolvent operator as shown in the Appendix. Hence, we convert the single-inlet-

multiple-outlet pipe network into a two-pipe cascade system (9.31).

9.3.2 MIMO gas pipe network

In this section, we consider a gas pipe framework with two inlets and multiple out-

lets (MIMO) as shown in Fig. 9.1(c). Similarly, we can formulate the associated

continuous-time network model as Eq.(9.29), where F� (G, C) = [F (1) (G, C);F (2) (G, C);
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F (3) (G, C)], D� (C) = [D(1) (C), D(2) (C)] with D(A� ) = {[q1(G); q2(G); q3(G); q4(G); q5(G);
q6(G)] ∈ !2(0, ;)6 | q2(0) = 0, q5(;) = 0, q1(;) = q3(;) = q5(0), q4(0) = W [q2(;)+q4(;)],
q8 (G) (with 8=1,...,6) is abs. cont.}. The corresponding extended operators are given

as follows:

A� := bdiag(A (1) ,A (2) ,A (3)) (9.33a)

B� := [B (1) 0; 0 B (2); 0 0] (9.33b)

C�2 :=
[
0 0 C (3)2

]
, C�< := bdiag(C (1)< , C (2)< , C (3)< ) (9.33c)

By applying the Cayley-Tustin transform, the corresponding discrete-time model

of the multi-inlet-multi-outlet pipe network can be derived as Eq.(9.31), which can

be completed by determining the resolvent operator corresponding to the extended

state evolution operator A� . Considering the space limitation, the process of solving

the resolvent operator is omitted here.

Remark 36. Generally, a star-shaped gas pipe network with multiple inlets and mul-

tiple outlets, as shown in Fig. 9.1(a), can be modelled as a cascade PDE system with

multiple inputs and multiple outputs as shown in Eq.(9.29) and Eq.(9.31).

Remark 37. To account for input constraints (e.g. same or different amplitude con-

straints for different inputs), the semiglobal approach developed in [349] for output

regulation of discrete-time finite-dimensional systems subject to input saturation can

be further extended.

9.4 Discrete output regulator design

In this section, discrete-time output regulator designs for infinite-dimensional discrete-

time gas pipe network systems are presented. Based on the discrete exogenous and

plant models, discrete-time regulator equations are constructed for a state feedback

regulator design. Considering that in reality the full state information of the pipeline

system and exogenous system (i.e., exo-system) may not be available, an observer-

based output feedback regulator is proposed.
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9.4.1 Exo-system description

In order to generate reference signals, a finite-dimensional discrete-time exo-system

is considered as follows:

@: = (3@:−1, @0 = @
0 ∈ C= (9.34a)

HA: = &3@: , : ≥ 1 (9.34b)

where @: and HA: are the exogenous state and output reference in the discrete-time

language. In particular, (3 is the discrete-time state evolution matrix of = × = di-

mension, and we assume that (3 has distinct eigenvalues placed on the boundary of

the unit disc, i.e., _3
8
= a8 + ]8 9 where 92 = −1 and a2

8
+ ]2

8
= 1 with a8, ]8 ∈ R, and

8 = 1, 2, ..., =. Hence, (3 is capable of generating step-like and harmonic signals, and

(3 is invertible. In order to estimate the exogenous state from the reference HA: , we

further assume that ((3 , &3) is observable. In addition, &3 has proper dimension for

generating reference signals.

For clarification, we introduce the following stability concepts.

Definition 12. The �0-semigroup T(C) on X is exponentially stable if there exist

positive constants " and U such that:

‖T(C)‖ ≤ "4−UC , ∀C ∈ R+

and it is strongly stable if ‖T(C)G‖ → 0 as C → +∞ for all G ∈ X. A3 is power stable

if there exist positive constants " ≥ 1 and W < 1 such that:

‖A:
3 ‖ ≤ "W

: , ∀: ∈ N

and A3 is strongly stable if A:
3
G → 0 as : → +∞ for all G ∈ X [4, 23].

9.4.2 Discrete state feedback regulator design

In this section, we aim to design a discrete state feedback regulator by assuming

all state information is available. The discrete-time state feedback regulator design

problem is addressed by finding a discrete regulator in the following form:

D: =  3F:−1 + !3@: (9.35)
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where  3 ∈ L(X,*), !3 ∈ L(C=,*), and all state information of the plant and the

exo-system is assumed to be known, such that: (1) A3 + B3 3 generates a strongly

stable operator; (2) the discrete-time tracking error 4: = H2: − HA: → 0 as : → +∞
for any given F0 ∈ X and @0 ∈ C=.

In order to determine the feedback gain  3 to guarantee the stability or to adjust

the convergence rate of the closed-loop system, we introduce the following lemma:

Lemma 8. An infinite-dimensional discrete-time system F: = A23F:−1 is power

stable if and only if there exists a positive self-adjoint operator &23 such that

A∗23&23A23 −&23 + "23 = 0 (9.36)

on X, where "23 is a positive definite design parameter.

Proof. The proof is similar to [4, Exe. 4.29c] and [350] if we let the observability

gramian !� be &23, � = A23 and �∗� = "23, respectively.

By substituting A23 = A3 + B3 3 and "23 = (C23 + D23 3)∗#23 (C23 + D23 3)
into Eq.(9.36), one can construct the following discrete-time Riccati equation:

A∗3&23A3 −&23 + C∗23#23C23 −  
∗
3

(
2`� + B∗3&23B3 + D

∗
23#23D23

)
 3 = 0 (9.37)

on X. ` and #23 are positive definite design parameters such that &23 ∈ L(X) and
the feedback gain is  3 = −(`� + B∗3&23B3 + D

∗
23
#23D23)−1(B∗

3
&23A3 + D∗23#23C23).

Similar discrete-time Riccati equations can be found in [4, Exe. 6.35] and [24, Lem. 6]

where the connection between the discrete-time Riccati equation and its continuous-

time counterpart is established by the use of Cayley transform for the optimal control

problem. Clearly, we note that the solution of &23 is not unique, since we can have

different choices of the design parameters ` and #23. Since the power stability induces

the strong stability, one can obtain a strongly stabilizing gain  3 by solving the

discrete-time Riccati equation (9.37).

To determine the feedforward gain !3 in Eq.(9.35), a common assumption is made

that the spectrum of (3 is included in the resolvent set of A3 (i.e., f((3) ⊂ d(A3)),
with some proper time discretization interval in the Cayley-Tustin transform. The

pair (A3 ,B3) is assumed to be strongly stabilizable. Thus, we provide the following

discrete-time regulator equations motivated by the similar design of continuous-time

output regulator equations [10, The. IV.1]:
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Theorem 25. Under the assumptions that f((3) ⊂ d(A3) and (A3 ,B3) is strongly
stabilizable, the discrete state feedback regulation problem is solvable if and only if there

exist mappings Π3 ∈ L(C=,X) and Γ3 ∈ L(C=,*) such that the following discrete

regulator equations hold:

Π3(3 = A3Π3 + B3Γ3(3 (9.38a)

&3(3 = C23Π3 + D23Γ3(3 (9.38b)

where !3 = Γ3 −  3Π3(−1
3

can be utilized to compute the state feedback control law D:

in Eq.(9.35).

Proof. First, we prove the sufficiency. For brevity, we denote A23 = A3 + B3 3.
By substituting Eq.(9.35) into the discrete system (9.17), the closed-loop model is

obtained as follows:

F: = A23F:−1 + B3!3@: (9.39)

By induction, the solution of F: takes the following form:

F: = (A23):F0 +
:∑

<=1

(A23)<−1B3!3@:+1−< (9.40)

Plugging exo-system model (9.34) and Eq.(9.38) into Eq.(9.40) leads to:

F: = (A23):F0 +
:∑

<=1

(A23)<−1B3 (Γ3 −  3Π3(−1
3 )@:+1−<

= (A23):F0 +
:∑

<=1

(A23)<−1 [Π3(3 − A23Π3]@:−<

= (A23):F0+
:∑

<=1

(A23)<−1Π3@:+1−<−
:+1∑
<=2

(A23)<−1Π3@:+1−<

⇒ F: = (A23): (F0 − Π3@0) + Π3@: (9.41)

Then, the discrete tracking error can be expressed as:

4: = H2: − HA:

= C23F:−1 + D23D: −&3@:

= (C23 + D23 3)F:−1 + (D23!3 −&3)@:
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= (C23 + D23 3) (A23):−1(F0 − Π3@0)

+ [(C23 + D23 3)Π3 + (D23!3 −&3)(3]@:−1 (9.42)

Under the assumption thatA23 is a strongly stable operator, we have that (A23):−1

(F0 −Π3@0) → 0 as : → +∞ for all on (F0 −Π3@0) ∈ X. Therefore, F: −Π3@: con-

verges to zero in Eq.(9.41) and the discrete tracking error 4: goes to zero as : → +∞
in Eq.(9.42), which is guaranteed by the discrete regulator equations (9.38a)-(9.38b).

Now, we show the proof of the necessity by constructing the following extended

closed-loop system: [
F:
@:

]
=

[
A23 B3!3(3

0 (3

] [
F:−1

@:−1

]
(9.43)

It is straightforward to find the solution of Eq.(9.43) by induction as follows:[
F:
@:

]
=

 (A23):F0 +
:∑

<=1
(A23)<−1B3!3@:+1−<
(:
3
@0

 (9.44)

By assuming that A23 is strongly stable, (A23):F0 → 0 as : → +∞ and Eq.(9.44)

indicates that [F: ; @: ] → [Π3@: ; @: ] with : → +∞ and Π3 ∈ L(C=,X). To

determine Π3, we construct the dynamics of I: = [F: ; @: ] − [Π3@: ; @: ] by the

following homogeneous difference equation:

I: =

[
A23 B3!3(3
0 (3

]
I:−1 (9.45)

where the initial condition is defined as [F0; @0]−[Π3@0; @0] ∈ H4 withH4 = X
⊕
C=.

The first component in Eq.(9.45) leads to the discrete-time regulator equation (9.38a).

Furthermore, the discrete tracking error is described as:

4: = H2: − HA:

= C23F:−1 + D23D: −&3@:

=
[
C23 + D23 3 (D23!3 −&3)(3

] [
F:−1

@:−1

]
→ [(C23 + D23 3)Π3 + (D23!3 −&3)(3] @:−1

(as : → +∞) (9.46)

To realize a perfect tracking, it is necessary to ensure that (C23+D23 3)Π3+(D23!3−
&3)(3 = 0, which indicates the regulator equation (9.38b) with !3 = Γ3 −  3Π3(−1

3
.
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Through simple manipulations of discrete regulator equations (9.38a)-(9.38b) with

the eigenpair (_3
8
, q3

8
) of (3, the discrete regulator gains (Π3 , Γ3) can be solved by:

Π3q
3
8 = _

3
8 (_38 � − A3)−1B3Γ3q38 (9.47a)

Γ3q
3
8 = [G3 (_38 )]−1&3q

3
8 (9.47b)

where G3 (_38 ) is the discrete transfer functions G3 (I) with I evaluated at _3
8
∈ f(S3).

To ensure the solvability of the regulator equations (9.38a)-(9.38b), we assume that

G3 (_38 ) ≠ 0 for all _3
8
∈ d((3).

9.4.3 Discrete output feedback regulator design

Considering that the state information of the exo-system and pipeline model may not

be available, we formulate the following observer-based output feedback regulator:

D: =  3F̂:−1 + !3 @̂: (9.48)

where  3 ∈ L(X,*), !3 ∈ L(C=,*). For state estimation, we propose two Luen-

berger observers for the infinite- and finite-dimensional systems. First, let us con-

struct an observer for the discrete-time infinite-dimensional single pipe system (9.17)

as follows:

F̂: =A3F̂:−1 + B3D: + � (H<: − Ĥ<: ) (9.49a)

Ĥ<: =C<3F̂:−1 + D<3D: (9.49b)

By introducing an estimation error 4F
:
= F:−F̂: , it is straightforward to derive the

error dynamics through combining the observer model (9.49) with the plant model

(9.17) as follows:

4F: = (A3 − �C<3)4F:−1 (9.50)

To determine the discrete output injection gain �, we introduce the following

lemma that is a dual version of Lemma 2.

Lemma 9. An infinite-dimensional discrete-time system F: = A>3F:−1 is power

stable if and only if there exists a positive self-adjoint operator &>3 satisfying

A>3&>3A∗>3 −&>3 + ">3 = 0 (9.51)

on X , where ">3 is a positive definite design parameter.
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Proof. The proof is similar to [4, Exe. 4.29b] and [350] if we replace the controllability

gramian !� by &>3, � = A>3 and ��∗ = ">3, respectively.

By plugging A>3 = A3 − �C<3 and ">3 = (B3 − �D<3)#>3 (B3 − �D<3)∗ in

Eq.(9.51), we obtain the following discrete-time Riccati equation:

A3&>3A∗3 −&>3 + B3#>3B∗3 −�
(
2o�+ C<3&>3C∗<3 + D<3#>3D

∗
<3

)
�∗ = 0 (9.52)

on X . o and #>3 are positive definite design parameters so that &>3 ∈ L(X)
and the discrete stabilizing output injection gain is given by � = (A3&>3C∗<3 +
B3#>3D∗<3) (o� + C<3&>3C∗<3 + D<3#>3D

∗
<3
)−1. Similar discrete-time Riccati equa-

tions can be found in [4, Exe. 6.35] and [24, Lem. 6]. Particularly, the output

injection gain is not unique given that one can choose different design parameters o

and #>3.

Based on the modern control theory of finite-dimensional systems, one can design

an observer for the exo-system (9.34) as below:

@̂: = (3 @̂:−1 + � (HA (:−1) − ĤA (:−1)), @̂0 = @̂
0 ∈ C= (9.53a)

ĤA: = &3 @̂: , : ≥ 1 (9.53b)

Along this line, the estimation error is defined as 4@
:
= @: − @̂: and its dynamics is

described as:

4
@

:
= ((3 − �&3)4@:−1, 4

@

0 = 4
@0 ∈ C=, : ≥ 1 (9.54)

Therein, � can be determined such that (3 −�&3 is a Hurwitz matrix by performing

pole placement. The estimated states F̂: and @̂: can be eventually substituted into

Eq.(9.48) to attain the control law D: . Hence, the discrete-time output regulator

design is completed and will be verified by two simulation examples in Section 9.6.

9.5 Stability analysis

In this section, we provide insight into the internal stability of the continuous-time

system (9.11) by using a Lyapunov functional analysis. Based on that, the strong

stability of the discrete-time model (9.17) can be ensured.

Theorem 26. The system (9.11) is exponentially stable with D = 0.
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Proof. A symmetric hyperbolic system is obtained by applying a linear transforma-

tion ) = [0.5,−0.50; 0.5, 0.50] to the system (9.11) as below:

F̄(G, C) = )F(G, C) (9.55)

Along this line, the transformed state equations are given as:

m

mC
F̄(G, C) = AF̄F̄(G, C), F̄(G, 0) = )F0(G) (9.56)

withAF̄ = )A)−1 = Λ>
m
mG
+ Σ>, where Δ = 0&−�

2 , Π =
0&+�

2 , Λ> = [0, 0; 0,−0], and
Σ> = [Δ,Π;−Δ,−Π].

In order to further convert Σ> into a symmetric matrix form while Λ> stays

invariant, the following similarity transform is deployed as F̂(G, C) = )̂ F̄(G, C) =
[
√
−Δ, 0; 0,

√
Π]F(G, C). Thus, one can attain new transformed state equations as:

m

mC
F̂(G, C)=AF̂F̂(G, C), F̂(G, 0)= )̂)F0(G) (9.57)

whereAF̂ = )̂AF̄)̂
−1 = Λ m

mG
+Σ, with Λ = [0, 0; 0,−0], and Σ = [Δ,

√
−ΔΠ;

√
−ΔΠ,−Π].

Apparently, AF̂ := Λ m
mG
+ Σ with the domain D(AF̂) = {q = [q1(G), q2(G)]) ∈

!2(0, ;)2,
√
Πq1(;) +

√
−Δq2(;) = 0,

√
Πq1(0) −

√
−Δq2(0) = 0. q1(G) and q2(G) are

abs. cont.} generates a �0-semigroup on X. In this case, we can simply check that

Δ < 0 and Π > 0 leading to a real value of (−ΔΠ).
Motivated by [169], we construct a Lyapunov functional +\ : X → R+ as follows:

+\ (F̂(G, C)) =
∫ ;

0
F̂(G, C)∗4G\ΛF̂(G, C)3G (9.58)

For a given smooth initial condition, one can calculate the temporal derivative of

the considered Lyapunov functional ¤+\ (F̂(G, C)) as below:∫ ;

0

m

mC
F̂(G, C)∗4G\ΛF̂(G, C)3G +

∫ ;

0
F̂(G, C)∗4G\Λ m

mC
F̂(G, C)3G

=

∫ ;

0
[ΛF̂G (G, C) + ΣF̂(G, C)]∗4G\ΛF̂(G, C)3G

+
∫ ;

0
F̂(G, C)∗4G\Λ [ΛF̂G (G, C) + ΣF̂(G, C)]3G

=F̂(G, C)∗Λ4G\ΛF̂(G, C) |;0 −
∫ ;

0
F̂(G, C)∗\Λ24G\ΛF̂(G, C)3G
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+
∫ ;

0
F̂(G, C)∗ [Σ∗4G\Λ + 4G\ΛΣ]F̂(G, C)3G

=F̂(;, C)∗Λ4;\ΛF̂(;, C) − F̂(0, C)∗ΛF̂(0, C)

−
∫ ;

0
F̂(G, C)∗4 1

2 G\Λ [\Λ2 − 2Σ]4 1
2 G\ΛF̂(G, C)3G

+
∫ ;

0
F̂(G, C)∗4 1

2 G\ΛΩ(G, C)4 1
2 G\ΛF̂(G, C)3G

≤F̂(;, C)∗Λ?>4;\ΛF̂(;, C) + F̂(0, C)∗Λ?>F̂(0, C)

−
∫ ;

0
F̂(G, C)∗Λ?>4G\ΛF̂(G, C)3G

−
∫ ;

0
F̂(G, C)∗4 1

2 G\Λ [\Λ2 − Λ?> − 2Σ]4 1
2 G\ΛF̂(G, C)3G

+
∫ ;

0
F̂(G, C)∗4 1

2 G\ΛΩ(G, C)4 1
2 G\ΛF̂(G, C)3G (9.59)

where Ω(G, C) = 4 1
2 G\ΛΣ4−

1
2 G\Λ + 4− 1

2 G\ΛΣ4
1
2 G\Λ − 2Σ, and Λ?> = 0� with the identity

matrix �.

It is straightforward to show that the summation of first three terms are negative

in the last expression in Eq.(9.59), and there exists some positive constant " leading

to:

I∗(\Λ2 − Λ?> − 2Σ∗)I ≥ \

"
I∗I, ∀I ∈ R2×1 (9.60)

Furthermore, one can consider some large constant p to ensure the following:∫ ;

0
F̂(G, C)∗4 1

2 G\ΛΩ(G, C)4 1
2 G\ΛF̂(G, C)3G ≤ p\2+\ (F̂(G, C)) (9.61)

Therefore, for some small values of \ (eg: \ = 1
2"p), one can show that

¤+\ (F̂(G, C)) ≤ −
\

2"
+\ (F̂(G, C)) (9.62)

The last expression implies that the original continuous-time system (9.11) is ex-

ponentially stable. By the [23, Lem. 2.2], one can finally conclude that the associated

discrete-time system (9.17) is internally strongly stable.

Remark 38. The proposed proof of internal stability extends the previous results in

[169] to the case with nontrivial boundary conditions, so that the internally strong

stability of the associated discrete-time system is subsequently guaranteed.

Remark 39. In a similar manner, one can verify the internally strong stability of

the star-shaped pipe network system (9.31).
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9.6 Numerical simulation

In this section, two realistic gas pipeline systems are simulated to verify the effec-

tiveness of the proposed discrete-time output regulator design, including step signal

tracking for a straight pipeline and harmonic signal tracking for a star-shaped net-

work. In both simulation cases, we adopt pipeline parameters given in Table 9.1 and

the equilibrium profiles shown in Fig. 9.2 for each pipe segment. In addition, we take

ΔC = 5 s, ΔG = 10 m and G2 = ;/2 in both cases.

9.6.1 Example 1: step signal tracking for a straight pipeline

In this example, we consider step-like reference signal tracking for a single straight

gas pipeline. Based on the target reference signals, the discrete-time exo-system is

designed as (3 = 1, @0 = 1, @̂0 = 0.8, and &3 =

{
20000, C ∈ [0, 500)

40000, C ∈ [500, 1000] . Thus, the

discrete-time reference signal is generated as: HA: =

{
20000, C ∈ [0, 500)

40000, C ∈ [500, 1000] . Re-

visiting Eq.(9.47a)-(9.47b), the discrete regulator gains Π3 and Γ3 can be solved as

Γ3 =

{
23.4810, C ∈ [0, 500)

46.9619, C ∈ [500, 1000] . The linearized model derived from the original non-

linear model around different equilibrium points will have different model parameters.

Hence, for implementing regulators to better suit the original nonlinear cases and the

linearized models with different model parameters, in general we need to solve the

regulator equations for each tracking task.

In this case, we calculate the discrete stabilizing gain  3 and output injection gain

� via Eq.(9.37) and Eq.(9.52) numerically, where G<1 = 0 and G<2 = ; are chosen as

the sensor locations. As for the observer design of the exogenous system, we apply the

pole placement and the desired eigenvalue of error system (9.54) is set as −0.5. After

1000 seconds of simulation, the results are depicted in Fig. 9.3 and Fig. 9.4. It is

apparent that the intrinsic dynamics of the pipeline model is stable since the open-loop

output H2 converges to zero. With the control law applied to the upstream mass flux,

the controlled pressure at G2 = ;/2 can track the pre-designed step reference signal

as illustrated in Fig. 9.3. From the output regulation perspective, it can be clearly

seen that controlled output H2 can realize perfect tracking and the tracking error

converges to near zero rapidly under the closed-loop control, as shown in Fig. 9.4. By
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implementing the designed discrete regulator to the nonlinear continuous model (9.5)

and the linearized continuous model (9.9), it can be seen that the designed discrete

regulator is capable of perfectly regulating the linearized continuous (LC) model and

steering nonlinear continuous (NC) model to track small reference (2× 104 Pa) while

the tracking performance of the NC model starts to degrade as the tracking reference

increases to 4 × 104 Pa.

Remark 40. The proposed discrete regulator design can be utilized to regulate the

linearized continuous model (9.9) and approximately steer the nonlinear continuous

model (9.5) for tracking small references close to the nominal equilibrium points.

Figure 9.3: Closed-loop pressure profile of the single pipe system.
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Figure 9.4: Reference tracking performance of the single pipe system.

9.6.2 Example 2: periodic signal tracking for a star-shaped
network

In this case, we design an output regulator to track a periodic signal for the single-

inlet-two-outlet gas pipeline network (9.31), and W is taken as 0.5. To generate the tar-

get reference signal, the discrete-time exo-system is designed as (3 = [0.9518, 0.3066;
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−0.3066, 0.9518], @0 = [0; 1], @̂0 = [−0.2; 1.2], and &3 = [10000, 0]. Thus, the

discrete reference signal is generated as: HA: = 10000 × sin(cΔC:/50). Recalling

Eq.(9.47a)-(9.47b), we can calculate discrete regulator gains Π3 and Γ3 as Γ3 =

[−145.1998,−194.0138]. In this example, we rely on the model internal stability

and do not apply feedback control. By using pole placement, we design an observer

for the finite-dimensional exo-system.

Figure 9.5: State evolution of the pipe network: (a) open-loop mass flow flux evolu-
tion; (b) open-loop pressure evolution; (c) closed-loop mass flow flux evolution; (d)
closed-loop pressure evolution.

After simulation of 600 seconds, the state and output evolution profiles are illus-

trated in Fig. 9.5 and Fig. 9.6. It can be seen that intrinsic dynamics of the pipeline

network is stable because the open-loop profiles of mass flow flux and pressure con-

verges to zero, as shown in Fig. 9.5 (a)-(b). By implementing the control action at

the upstream end, the controlled pressure at the middle point (G2 = ;/2) of pipe 3 is

capable of tracking the sinusoid reference signal as shown in Fig. 9.5 (c)-(d). More
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specifically, it can be observed that the closed-loop controlled output at first steps is

not smooth due to fact that there are still non-ignorable estimation errors. With time

increasing, the controlled output H2 converges to the desired reference signal and the

tracking error decays to near zero as illustrated in Fig. 9.6.
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Figure 9.6: Reference tracking performance of the pipe network.

9.7 Conclusions

In this chapter, a discrete-time output regulator for gas flow pipeline network systems

described by linearized first-order coupled hyperbolic equations was developed. The

major conclusions are drawn as follows: 1) by using Cayley-Tustin bilinear transform,

the linearized continuous-time infinite-dimensional model with unbounded operators

was transformed into a discrete-time infinite-dimensional model with all bounded op-

erators; 2) closed-form analytic expressions of discrete model operators of the pipeline

gas network were obtained under consideration of the coupling conditions at junctions;

3) based on the internal model control theory, novel discrete-time output regulator

equations were formulated and the corresponding solvability conditions were provided;

4) Discrete-time Riccati equations were proposed for calculating the controller and ob-

server gains. Finally, two numerical examples have demonstrated that the presented

discrete regulator design is effective and has a good servo-control performance. The

further benefit of this design methodology can be integrated into supervisory control

and data acquisition (SCADA) systems of large-scale pipe network systems for en-

ergy scheduling and pressure surge suppression by considering a disturbance observer

design in a future work.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

In this thesis, we systematically studied the state/output, parameter and model es-

timation and soft sensing of linear distributed and lumped parameter systems under

the consideration of plant and measurement noises/disturbances, physical constraints

and varying operating conditions, and extended the continuous-time internal model

control theory into discrete-time regulation of linear distributed parameter systems.

Fruitful applications of the proposed techniques have been provided.

In Chapter 2, this thesis addressed state estimation problems of linear determinis-

tic and stochastic transport-reaction distributed parameter systems. For determinis-

tic systems, continuous- and discrete-time infinite-dimensional Luenberger observers

were designed and their performances were numerically compared. For stochastic sys-

tems, discrete-time two-step and one-step Kalman filters were proposed by extending

the standard finite-dimensional Kalman filter theory. The prominent feature of the

observer and filter designs was the application of the Cayley-Tustin transformation,

leading to a discrete-time infinite-dimensional model, while preserving essential model

properties. The design results were demonstrated through illustrative examples of

chemical transport-reaction processes.

To complement the works in Chapter 2, Chapter 3 developed a linear moving

horizon estimator for constrained output estimation of general regular linear dis-

tributed parameter systems with unbounded disturbance and observation operators.

The Cayley-Tustin transformation was utilized to approximate the continuous DPS

model with a discrete distributed parameter model. Important results on the discrete-
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time Riccati equation and exact observability were provided. Based on that, the opti-

mality and stability analysis for the proposed full information estimation and moving

horizon estimator was given. Two representative examples including Schrödinger

equation and wave equation demonstrated the effectiveness of the proposed design.

Chapter 4 is an extension of the proposed estimator design from Chapter 3. In

Chapter 4, we proposed moving horizon estimator designs for switching regular linear

infinite-dimensional systems with bounded disturbances and unknown (and unpre-

dictable) switching modes. Similarly to Chapters 2-3, we have applied Cayley-Tustin

transformation to transform the continuous model with unbounded operators to the

discrete-time model with all bounded operators. By introducing ad-hoc observability

concepts (i.e., simultaneous exact (and approximate) observability), we have proposed

suitable observability conditions for finding a solution of the estimation problem. This

was accomplished by extending the observability concepts of switching linear and non-

linear discrete-time LPSs [161, 157] and non-switching linear continuous-time DPSs

[4, 42]. Based on that, we have provided the stability analysis of the proposed MHE

algorithm. A heat exchanger and a damped Rayleigh beam equation were taken as

two representative examples to verify the proposed algorithm.

In Chapter 5, this thesis proposed an online soft sensor algorithm (i.e., transfer

slow feature analysis (TSFA)) for dynamically predicting the quality variables of com-

plex industrial systems. In a transfer learning manner, the proposed algorithm can

dynamically transfer the model parameters of multiple source systems to the target

system that has limited output labels. As a prerequisite of TSFA, the probabilis-

tic slow feature analysis (PSFA) was applied to learn source domain models (with a

preference for slow features) based on the input and output measurements from each

source domain. More specifically, a linear discrete-time lumped parameter model

with Gaussian noises was considered in both algorithms. Variational Bayesian infer-

ence was deployed for dynamical model learning in PSFA and dynamical learning of

weighting functions in TSFA. Finally, we have demonstrated the applicability of the

proposed algorithm through a simulation example, a public dataset, and an industrial

SAGD process.

Chapter 6 is an extension of the proposed estimator design from Chapter 2. In

Chapter 6, we developed a hybrid estimator for pipeline condition monitoring and
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leak diagnosis. To be more precise, the model-based discrete Luenberger observer

and the data-driven support vector machine model were incorporated into the hybrid

estimator design. Stemming from the governing equations (i.e., two coupled nonlin-

ear first-order hyperbolic PDEs), a linear discrete-time infinite-dimensional pipeline

model was obtained using linearization and Cayley-Tustin transformation, based on

which, the discrete Luenberger observer design was carried out. By using the ob-

server, various normal working situations and different leakage cases were simulated.

Two support vector machine models (i.e., OCSVM and SVR) were trained and tested

for leak detection, localization, and size estimation. Through simulations on a large

scale pipeline system, the effectiveness of the proposed design was validated.

In Chapter 7, this thesis addressed discrete-time state and error feedback output

regulator designs for a class of linear distributed parameter systems with bounded

control and observation operators. Likewise, the Cayley-Tustin transformation was

deployed for model time discretization while no spatial approximation or model or-

der reduction was required. We formulated and proved the discrete-time regulator

equations for solving the discrete state and error feedback regulator designs by using

the PDE plant model and the exogenous system in discrete-time setting. Along this

line, the discrete- and continuous-time state and error feedback regulator designs were

shown to be equivalent under the Cayley-Tustin transformation. Moreover, we fur-

ther proved that the solvability of discrete- and continuous-time regulator equations

are equivalent under standard assumptions. Discrete-time Riccati equations were

proposed for stabilizing output injection gain determination (and its dual problem).

Finally, three examples on step-like, ramp-like and harmonic reference control of a

first-order transport equation and a heat equation demonstrated the proposed results.

Chapters 8-9 are extensions and applications of the proposed regulator design

from Chapter 7. In Chapter 8, we proposed the discrete-time output regulator de-

signs for fluid flow systems (i.e., spectral PDE models) with unbounded controlled

output operator. In particular, we considered the complex Ginzburg-Landau equation

(CGLE) and Kuramoto-Sivashinsky equation (KSE) as two representative fluid flow

PDE models. Similarly, the Cayley-Tustin time discretization method was utilized to

transform the continuous-time PDE model into the discrete-time model. Based on

that, we provided a link between discrete- and continuous-time closed-loop system
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stabilizing gains (and its dual problem). The analytic solutions of resolvent operators

and the discrete operators of CGLE and KSE were provided, which indicated that

both systems are well-posed regular systems. Two simulation examples validated the

developed regulator design.

In Chapter 9, we further extended the discrete-time output regulator designs

to networked hyperbolic PDE systems. More specifically, we have investigated the

continuous- and discrete-time modelling of gas flow pipeline network systems in terms

of linearized first-order coupled hyperbolic PDEs. In particular, we considered un-

bounded control and observation operators in the continuous-time model, and con-

verted them all into bounded operators in the discrete-time setting by using Cayley-

Tustin transformation. The regularity and stability of the pipeline network system

were proved. Similarly to Chapter 7, the discrete-time regulator equations were

proved and the discrete-time Riccati equation was used to solve for the discrete-time

output injection gain. Finally, the applicability of the proposed design was verified

through two numerical examples.

10.2 Future work

The observer, filter, estimator and soft sensor designs for state/output, parameter

and model estimation and soft sensing (output prediction) of linear distributed and

lumped parameter systems have been systematically investigated in this thesis. Nev-

ertheless, there are still some open questions in this important topic. For instance, soft

sensor designs for linear distributed parameter systems using variational approaches

have not been touched. In the cases of tubular reactors, online measurements of

species concentrations are usually not available, and hence how to address state esti-

mation of tubular reactor processes using limited, delayed or slow-rated measurements

can be interesting and challenging.

Considering that many practical systems are modelled by PDE-ODE coupled sys-

tems, state/output and parameter estimation of PDE-ODE coupled systems is of

practical and theoretical significance. For example, the vehicular traffic flow models

and flexible spacecraft models are generally modelled by PDE-ODE coupled systems.

The switching of dynamic parameters can happen in the ODE part and/or the PDE
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part that might involve temporal and/or spatial varying parameters, which deserves

more research in the future. Moreover, estimation of switching systems that are

composed of continuous-time models and discrete-time models could be investigated,

especially from the perspective of sampled-data systems with multi-rate measure-

ments.

By using the Cayley-Tustin transformation, the continuous-time internal model

control theory has been extended to the discrete-time infinite-dimensional systems.

There are some open questions that need to be further answered. First of all, the

Cayley-Tustin transformation follows an implicit midpoint rule, which has second-

order accuracy. Along this line, exploring advanced discretization schemes with higher

order accuracy is interesting and can be possibly done [119]. Moreover, research

on different types of controller designs of discrete-time infinite-dimensional systems

could be considered in future study, e.g., passivity/dissipativity based control, robust

control and etc.
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Appendix

The resolvent operator in Eq. (9.23) is shown as follows:
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∫ G

0
"21(G − [, B) (·)3[

=

2B
�0
4−

&G
2 sinh( H20G)

cosh( H20 ;) −
&0

H sinh( H20 ;)

×
∫ ;

0
4

&[

2

(
cosh( H

20
(; − [)) − &0

H
sinh( H

20
(; − [))

)
(·)3[

−
∫ G

0

2B

H0
4−

& (G−[)
2 sinh( H

20
(G − [)) (·)3[
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where � =
√
&202 + 4B2 + 4�B.

The resolvent operator in Eq. (9.32) is given as follows:

<11(B,A4) : = − "11(G, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0

(
1

02
"11(;, B)"12(; − [, B) +

W

02
"12(;, B)"22(; − [, B)

)
(·)3[

+
∫ G

0

1

02
"12(G − [, B) (·)3[

<12(B,A4) : = − "11(G, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
("11(;, B)"11(; − [, B) + W"12(;, B)"21(; − [, B)) (·)3[

+
∫ G

0
"11(G − [, B) (·)3[

<13(B,A4) : = −
"11(G, B)

∫ ;
0

1
02
"12(; − [, B) (·)3[

"2
11(;, B) + W"12(;, B)"21(;, B)

<14(B,A4) : = −
"11(G, B)

∫ ;
0
"11(; − [, B) (·)3[

"2
11(;, B) + W"12(;, B)"21(;, B)

<21(B,A4) : = − "21(G, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0

(
1

02
"11(;, B)"12(; − [, B) +

W

02
"12(;, B)"22(; − [, B)

)
(·)3[

+
∫ G

0

1

02
"22(G − [, B) (·)3[

<22(B,A4) : = − "21(G, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
("11(;, B)"11(; − [, B) + W"12(;, B)"21(; − [, B)) (·)3[

+
∫ G

0
"21(G − [, B) (·)3[

<23(B,A4) : = −
"21(G, B)

∫ ;
0

1
02
"12(; − [, B) (·)3[

"2
11(;, B) + W"12(;, B)"21(;, B)

<24(B,A4) : = −
"21(G, B)

∫ ;
0
"11(; − [, B) (·)3[

"2
11(;, B) + W"12(;, B)"21(;, B)

<31(B,A4) : = −"11(G, B)"11(;, B) + W"12(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
[ 1

02
"11(;, B)"12(; − [, B) +

W

02
"12(;, B)"22(; − [, B)] (·)3[
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+
∫ ;

0
[ 1

02
"11(G, B)"12(; − [, B) +

W

02
"12(G, B)"22(; − [, B)] (·)3[

<32(B,A4) : = −"11(G, B)"11(;, B) + W"12(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
["11(;, B)"11(; − [, B) + W"12(;, B)"21(; − [, B)] (·)3[

+
∫ ;

0
["11(G, B)"11(; − [, B) + W"12(G, B)"21(; − [, B)] (·)3[

<33(B,A4) : = −"11(G, B)"11(;, B) + W"12(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0

1

02
"12(; − [, B)3[ +

∫ G

0

1

02
"12(G − [, B)3[

<34(B,A4) : = −"11(G, B)"11(;, B) + W"12(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
"11(; − [, B)3[ +

∫ G

0
"11(G − [, B)3[

<41(B,A4) : = −"21(G, B)"11(;, B) + W"22(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
[ 1

02
"11(;, B)"12(; − [, B) +

W

02
"12(;, B)"22(; − [, B)] (·)3[

+
∫ ;

0
[ 1

02
"21(G, B)"12(; − [, B) +

W

02
"22(G, B)"22(; − [, B)] (·)3[

<42(B,A4) : = −"21(G, B)"11(;, B) + W"22(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

×
∫ ;

0
["11(;, B)"11(; − [, B) + W"12(;, B)"21(; − [, B)] (·)3[

+
∫ ;

0
["21(G, B)"11(; − [, B) + W"22(G, B)"21(; − [, B)] (·)3[

<43(B,A4) : = −"21(G, B)"11(;, B) + W"22(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

∫ ;

0

1

02
"12(; − [, B)3[

+
∫ G

0

1

02
"22(G − [, B)3[

<44(B,A4) : = −"21(G, B)"11(;, B) + W"22(G, B)"21(;, B)
"2

11(;, B) + W"12(;, B)"21(;, B)

∫ ;

0
"11(; − [, B)3[

+
∫ G

0
"21(G − [, B)3[

where we adopt the notation of "8 9 (G, B), where 8 = 9 = 1, 2, from the Eq. (9.22).
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