
Toward Practical Reinforcement Learning Algorithms:
Classification Based Policy Iteration and Model-Based

Learning

by

Bernardo Ávila Pires

A thesis submitted in partial fulfillment of the requirements for the degree
of

Doctor of Philosophy

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c⃝ Bernardo Ávila Pires, 2016

Abstract

In this dissertation, we advance the theoretical understanding of two fami-

lies of Reinforcement Learning (RL) methods: Classification-based policy

iteration (CBPI) and model-based reinforcement learning (MBRL) with

factored semi-linear models.

In contrast to generalized policy iteration, CBPI does not rely on value-

function estimates (value estimates for all states and actions). Instead, CBPI

uses a classifier to learn how to discriminate value-maximizing actions based

on value estimates for a set of observed states and actions. This creates the

potential for learning effective policies in settings where estimating value

functions is challenging, but where good value estimates can be obtained

and good actions can be distinguished from sub-optimal ones.

Previous theoretical work on CBPI has required classifiers that are com-

puted by solving a combinatorial problem, which we can expect to be

computationally hard (with minimization of the infamous 0-1 loss as a

special case). In contrast, classifiers that are computed by solving convex

minimization problems (which can be done efficiently) enjoy limited or no

performance guarantees, namely, bounds on the cost-sensitive generaliza-

tion of the misclassification probability, the so-called “true risk”. Therefore,

we only have instances of CBPI that enjoy theoretical guarantees but cannot

be used in practice, or vice-versa. We present a theoretical analysis of CBPI

that fills this gap, by providing theoretical guarantees for instances of CBPI

ii

that can be used in practice (by virtue of the classification methods used).

Our analysis extends an existing theoretical analysis of CBPI, and incor-

porates performance guarantees for classification methods that minimize

a cost-sensitive multiclass convex surrogate loss that generalizes the hinge

loss. The hinge loss has been widely used in the design of classification

methods, including the popular support vector machines (SVMs). As part of

our analysis, we also present results for cost-sensitive multiclass classifica-

tion: Novel expected surrogate loss (surrogate-risk) bounds, as well as tools

for converting surrogate risk bounds into true risk bounds. This is done

with the help of novel calibration functions that are specific to cost-sensitive

multiclass classification losses. Moreover, our analysis of CBPI can be easily

adjusted to accommodate for different classification methods, provided

that the corresponding surrogate risk bounds and calibration functions are

available.

We also present policy error bounds for MBRL methods that use factored

semi-linear models. The factored semi-linear model framework generalizes

the factored linear model framework and many existing MBRL methods.

Notably, factored semi-linear models generalize a recent trend of MBRL

methods that depart from learning “traditional” MDP models in order

to achieve flexibility, computational efficiency, data efficiency and good

empirical performance. As such, factored semi-linear models are both

flexible and geared toward efficient policy computation, with instances that

have been shown to be promising in practice.

The policy error bounds that we present improve the previously existing

bounds by relaxing conditions, refining the bounds themselves, and increas-

ing the scope of models that they apply to—namely, factored semi-linear

models. These bounds allow us to understand the policy error in norms

iii

other than the overly-harsh supremum norm. For example, our Lp(µ) norm

results allow us to see that policy error bounds for MBRL methods with

factored semi-linear models are less sensitive to covariate-shift than policy

error bounds for competing methods, such as approximate linear program-

ming or approximate dynamic programming methods. This robustness

suggests that MBRL methods with factored semi-linear models have much

potential to be a valid alternative to popular non-model-based RL methods.

iv

Preface

The introduction to reinforcement learning in Chapter 1 presents concepts
and ideas from Puterman (1994); Bertsekas and Tsitsiklis (1996); Sutton and
Barto (1998); Bertsekas (2007); Szepesvári (2010); Bertsekas (2016). The rest
of this dissertation is grounded on joint work with the author’s supervisor,
Csaba Szepesvári.

Chapter 2 is original to this dissertation, and the original results therein
have not been previously published. The results are closest to recent work
of the author, Csaba Szepesvári and Mohammad Ghavamzadeh (Ávila Pires
et al., 2013; Ávila Pires and Szepesvári, 2016a).

Chapter 3 is also original to this dissertation, and the original results
therein have not been previously published. The results build on those of
Chapter 2, and most closely on the work of Lazaric et al. (2016).

Chapter 4 is an updated version of a conference paper authored by the
author and Csaba Szepesvári (Ávila Pires and Szepesvári, 2016b). While
the text and comments are largely taken from the conference paper, in
Chapter 4 I fully develop an extension of factored linear models that was
only briefly discussed in the related work section (Section 6) of Ávila Pires
and Szepesvári (2016b): In the updated results, we are no longer required
to have a join-homomorphism assumption (cf. Theorems 11 and 12 of
Ávila Pires and Szepesvári, 2016b), and I generalize the factored linear
model framework to what we call factored semi-linear models.

v

To my lovely wife, Mahsa
To God

vi

Acknowledgments

I have had a great time at the University of Alberta. My time there has been
not just two graduate programs, MSc and PhD, but life: My experiences
at the University are part of who I am, and have dramatically shaped my
foreseeable future.

At the University of Alberta, during my PhD, I met my sweet, dear wife
Mahsa—without her support and love, I would have achieved nothing. She
is the joy of my days.

Although I have been physically distant from my beloved parents, Fer-
nando and Lélia, they have incessantly and warmly supported me, loving
me without reservation. All my achievements stems from their dedication
and love as parents and friends.

For these seven years that comprised the MSc and PhD, I have worked
with Prof. Csaba Szepesvári, who teaches and works with absolute pa-
tience, diligence and passionate devotion. Csaba is a fantastic supervisor,
researcher, mentor, colleague and friend, from whom I have learned im-
mensely, and to whom I am extremely grateful.

I must also extend my gratitude to all who have supported me through-
out these many years. I give especial thanks to

⋄ all my friends and family, in Canada, Brazil and elsewhere, in particu-
lar Levi, Estácio, Letícia (and their baby whom we all love, Helena),
Gabriel, Thaís, and Arthur;

⋄ the Basilian Fathers, in particular Frs. Glenn, Dave, Terry and Don, as
well as all the community and friends from St. Joseph’s College, where
I have grown in faith, and found hope and support in the difficult
times;

⋄ my Sensei, Sean Bowen, and my fellow karateka;

⋄ the University of Alberta faculty, in particular Prof. Dale Schuurmans;

⋄ the staff at the Department of Computer Science, the International
Centre, and the Counseling and Clinical Services, in particular Jason
Murray;

vii

Thanks be also, and above all, to God, from Whom flow all the generosity
and love that I have received from all around me, and from Whom comes
all that is good, and all the gifts that I have been given. May this work and
my work serve to further His love in this world.

This work was supported by Alberta Innovates Technology Futures and

NSERC. My special thanks to Professors Csaba Szepesvári, Dale Schuur-
mans, András György, Ivan Mizera and Ambuj Tewari for their valuable
assistance and feedback in the preparation of this work.

viii

Contents

1 Introduction 1
1.1 Reinforcement Learning . 2

1.1.1 Problem Definition . 2
1.1.2 Dynamic Programming 5

1.2 Contributions and Dissertation Outline 7

2 Cost-sensitive Multiclass Classification 12
2.1 Problem Definition . 13
2.2 Empirical Risk Minimization, Surrogate Risk, and Risk Bounds 15
2.3 Calibration Functions . 20

2.3.1 General Calibration Functions 20
2.3.2 Calibration Functions for LLLW 22
2.3.3 Calibration Functions for LZhang 23
2.3.4 Relaxing the Assumption of Non-negative Costs . . . 25
2.3.5 Calibration Functions by Reduction to Cost-Insensitive

Classification . 25
2.4 Surrogate Risk Bounds . 27

2.4.1 A Variant of the Classification Learning Problem . . . 28
2.4.2 Risk Bounds . 33
2.4.3 Discussion and Related Work 39

2.5 Conclusion . 40

3 Classification-Based Policy Iteration 44
3.1 A Unified View of CBPI . 46
3.2 An Extended Analysis of CBPI 50

3.2.1 Preliminaries . 50
3.2.2 True Risk Bounds . 53
3.2.3 Policy Error Bounds . 55

3.3 Conclusion . 57

4 Model-Based Reinforcement Learning with Factored Semi-Linear
Models 59
4.1 Preliminaries . 63
4.2 Factored Semi-Linear Models 64

ix

4.3 Assumptions . 69
4.4 Results . 74

4.4.1 A Viability Result . 74
4.4.2 Previous Results on the Policy Error 75
4.4.3 Bounds on the Policy Error in Factored Semi-linear

Models . 76
4.5 Conclusion . 84

5 Conclusion 89

Bibliography 91

A Proofs 100
A.1 Chapter 2 Proofs . 100

A.1.1 Section 2.3 Proofs . 100
A.1.2 Section 2.4 Proofs . 102

A.2 Chapter 3 Proofs . 109
A.3 Chapter 4 Proofs . 111

x

List of Figures

4.1 Commutative diagrams showing the operators and the spaces
that they act on. 66

xi

List of Symbols

X (Reinforcement Learning) State space of an MDP 2
A Action space of an MDP . 2
π A policy . 3
γ Discount factor underlying the expected discounted total

reward . 4
r Reward function of an MDP 4
P Transition probability kernel of an MDP 5
Vπ Value function of a policy π 5
V∗ Optimal value function . 5
Π Space of all stationary deterministic policies 5
π∗ An optimal policy . 5
V RX . 6
VA RX×A . 6
TP Bellman return operator . 7
M Maximum selection operator 7
G Greedy operator . 7
C (Classification) A cost vector 13
X (Classification) Input space 13
Y Set of labels . 13
I{ · } Indicator function . 14
1 All-ones vector (of appropriate dimension) 15
N Natural numbers {1, 2, . . .} 15
[n] {1, . . . , n} . 15
ϕ Feature extractor . 15
L A surrogate loss . 16
S Score set (of a surrogate loss) 16
H Set of score functions . 17
f (Classification) Maximum selector 17
δ Calibration function . 18
δ (In a bound) confidence parameter 18
Q The left factor of factored semi-linear models 64
R The right factor of factored semi-linear models 64
R′ The linear compression operator of factored semi-linear

models . 64

xii

List of Abbreviations

RL Reinforcement Learning . 1
MDP Markov Decision Process 1
DP Dynamic Programming . 1
w.r.t. with respect to . 2
w.p. with probability . 3
s.t. such that . 3
CBPI Classification-Based Policy Iteration 8
MBRL Model-Based Reinforcement Learning 8
DPL Direct Policy Learning . 8
GPI Generalized Policy Iteration 8
ERM Empirical Risk Minimization 12
SVM Support Vector Machine . 17

xiii

Chapter 1

Introduction

Consider an agent that interacts with the environment by taking an action

and then observing some information about the environment, along with

a numerical reward signal. Reinforcement learning (RL) is the problem of

constructing agents that interact with an unknown environment in the

described fashion and are capable of maximizing the amount of reward that

they collect on the long run.

Reinforcement Learning is well-suited for designing goal-oriented agents

with the potential to succeed in a variety of tasks without requiring too

much (though often benefiting from) prior knowledge about each specific

task. The field of RL has been subject of much research and the years have

seen many successful applications. From the theoretical point of view, RL is

related to a series of challenging and interesting problems, e.g., controlling

systems with complex dynamics, dealing with delayed feedback structure,

exploration, covariate shift, and even supervised learning (e.g., regression

and classification).

In this chapter, we will give a minimalistic introduction to the reinforce-

ment learning problem in its most studied setting, where the environment

is treated as a Markov Decision Process (MDP). We also introduce Dynamic

Programming (DP), the standard approach to “solve” MDPs. There is a

vast body of literature on various reinforcement learning methods that we

do not discuss in this dissertation, as well as variants of the basic MDP

framework. We refer the reader to the works of Puterman (1994); Bertsekas

1

and Tsitsiklis (1996); Sutton and Barto (1998); Bertsekas (2007); Szepesvári

(2010); Buşoniu et al. (2010b); Powell (2011); Wiering and van Otterlo (2012);

Bertsekas (2016), who give a comprehensive treatment of Reinforcement

Learning.

We will close this introductory chapter with an outline of this dissertation

and an overview of the scientific contributions presented in each of the

subsequent chapters.

1.1 Reinforcement Learning

In this section we define the reinforcement learning problem in the MDP

framework, and introduce dynamic programming. This section is derived

from the works of Puterman (1994), Bertsekas and Tsitsiklis (1996), Sutton

and Barto (1998), Szepesvári (2010) and Bertsekas (2010).

1.1.1 Problem Definition

We will treat the environment as a Markov Decision Process (MDP). An

MDP is a discrete-time sequential decision framework where at each time-

step t the agent is assumed to observe1 a random state2 Xt taking values

in a state space X , takes a (possibly-random) action At taking values in an

action space A, observers a random state Xt+1 ∈ X and a random reward
1 It may not always be the case that the agent is able to fully observe the state of the

environment, or that the environment is even Markovian. The framework of partially-
observable MDPs (POMDPs) (Spaan, 2012) allows us to consider scenarios where agents
do not fully observe the state of a finite MDP, and to account for these partial observations.
Hutter (2014) shows that if the environment (be it partially-observable, non-Markov,
adversarial, etc.) enjoys some regularities then we do not lose much by assuming that it is
an MDP and then using an optimal policy for this MDP to act in the environment.

2 In this dissertation, we omit technical details related to measurability, as they are
well-understood. We will assume that sets and functions are measurable with respect to
(w.r.t.) the underlying measure spaces. Moreover, predicates of the form [for any Z ′ ⊂ Z]
should be read as [for any measurable Z ′ ⊂ Z]. We will mention measurability explicitly
in the few situations where this technicality must be treated with care. To shorten notation,
for a random variable Z taking values in some Z and some random variable W, we will
treat P(Z|W) as a σ(W)-measurable distribution p such that p(Z ′) = P(Z ∈ Z ′|W) for
all measurable Z ′ ⊂ Z . This notation only clashes with standard notation when Z takes
values in {0, 1} (almost-surely), which will not happen in this dissertation. As usual,
conditioning on W should be read as conditioning on the sigma-algebra generated by W.

2

Rt+1 ∈ R, takes another action At+1 ∈ A, etc. The random variables

(Xt+1, Rt+1) (t ≥ 0) are assumed to be Markov, that is, they are conditionally

independent of the “past” (X0, A0, R1, X1, . . . , Xt−1, At−1) given the “present”

(Xt, At):

P(Xt+1, Rt+1|X0, A0, R1, X1, . . . , Xt, At) = P(Xt+1, Rt+1|Xt, At), (1.1.1)

where X0 ∼ α is a random initial state and α is the initial state distribution of

the MDP. We will refer to the sequence X0, A0, R1, X1, . . . , Xt for t ≥ 0 as a

trajectory.

In the MDP framework, agents are merely strategies for choosing

(A0, A1, . . .). A strategy for choosing actions is called a policy, which maps

trajectories to distributions over the set of actions A, that is

At ∼ π(X0, A0, R1, X1, . . . , Xt). (1.1.2)

Optionally, we may restrict the actions that policies may choose at each

state. In this straightforward extension of the MDP framework, there is a

function a : X → 2A and policies are restricted to satisfy At ∈ a(Xt) with

probability (w.p.) one. In this text, in order to simplify notation, we will

not use this extension, but the results do not depend on the simplifying

assumption that all actions are allowed at all states.

We say that a policy π is stationary if the actions At depend only on the

respective Xt, that is, if for all t ≥ 0

P(At|X0, A0, R1, X1, . . . , Xt) = P(At|Xt),

in which case we can write At ∼ π(Xt). We say that π is deterministic if

π(Xt) is degenerate, i.e., there exists f : X → A such that (s.t.) At = f (Xt)

w.p. one. In this case we will abuse notation and write At = π(Xt).

As mentioned before, the goal in the reinforcement learning problem is

to compute policies that are capable of maximizing the amount of reward

that they collect on the long run. The long-run aspect is important, as

normally we are not interested in policies that maximize only the expected

3

immediate reward E(R1), or E(Rt) in step t. Rather, we want a policy

π that chooses (A0, A1, . . .) so as to maximize the expected discounted total

reward, or expected return3

E

(
∞

∑
t=1

γt−1Rt

)
, (1.1.3)

where γ ∈ [0, 1) is a so-called discount factor. The closer γ is to one, the

greater the weight given to rewards in the distant future. We will assume

that the rewards are s.t. (1.1.3) is well-defined and finite, regardless of π and

α. As an example, it would be sufficient take uniformly bounded rewards:

supt|Rt| ≤ rmax w.p. one, for some constant rmax < ∞.

It is possible to impose additional assumptions so that (1.1.3) also holds

with γ = 1 (see Bertsekas and Tsitsiklis, 1996, Section 2.1, pp. 12–14 and

Szepesvári, 2010, Section 2.2, p. 11), leading to an undiscounted objective.

When γ = 1, the MDP is assumed to be episodic, in the following sense:

An MDP is episodic if it has a set of terminal states T ⊂ X satisfying

P(Xt+1 ∈ T , Rt+1 = 0|Xt ∈ T) = 1. In other words, terminal states are

absorbing and incur zero return for any agent acting in the MDP. An

additional restricting and simplifying assumption often made in literature

is that a terminal state is eventually always reached, regardless of how the

actions are chosen by the policy. Formally, for some t large enough we have

Xt ∈ T w.p. one.

It is also possible to have undiscounted (γ = 1) MDPs with a different

goal, such as maximizing the average reward (Bertsekas and Tsitsiklis, 1996,

Section 2.1, p. 15):

lim sup
t→∞

E

(
1

t + 1

t

∑
s=0

Rs+1

)
. (1.1.4)

Throughout this text, we will assume that maximizing the expected dis-

counted/undiscounted total reward is the objective of the agent.

From now on, we will assume that the action space is A is finite, and

that rewards Rt+1 are given by a reward function r : X ×A → R so that

3 We define γ0 .
= 1 if γ = 0.

4

r(Xt, At) = E(Rt+1|Xt, At) holds w.p. one. The assumption that rewards

are deterministic is a simplifying assumption that can be removed without

much effort. The MDP can then be written as a tuple (X ,A,P , r, α, γ),

where the only component that remains to be introduced is P , the transition

probability kernel of the MDP, defined such that

Xt+1 ∼ P(Xt, At)

w.p. one. Formally, P maps X ×A to probability measures over X and

satisfies that, for U ⊂ X , (x, a) ↦→ P(x, a)(U) is measurable. That such a

kernel exists follows from (1.1.1) under mild assumptions on X .

1.1.2 Dynamic Programming

Our goal is to construct a policy π so as to maximize the expected return

given in (1.1.3). Whether and under which circumstances we can succeed

will depend on a variety of factors, including the type and the amount of

information available to us. In the simplest setting, the MDP is known, in

which case we can choose π so as to maximize the value of each state x, i.e.,

the total expected discounted reward of π given that the initial state X0 is x:

Vπ(x) .
= E

(
∞

∑
t=1

γt−1Rt

⏐⏐⏐⏐⏐X0 = x

)
,

with (Xt, At) satisfying (1.1.1) and (1.1.2). Vπ is called the value function of

π. The largest possible value function is the optimal value function, defined

by

V∗(x) .
= sup

π
Vπ(x). (1.1.5)

A policy whose value function is optimal is called an optimal policy, and

will be denoted by π∗. Note that while the optimal value function is

unique, there may be multiple optimal policies (in which case π∗ will

denote an arbitrary optimal policy). Letting Π .
= AX be the set of stationary

deterministic policies, it is known that if γ < 1 then V∗(x) = supπ∈Π Vπ(x)

and an optimal stationary deterministic policy π∗ ∈ Π exists (Szepesvári,

5

2010, Section 2.3, p. 14). When γ = 1, similar statements can be made

under additional assumptions on the reward function (see Bertsekas, 2010,

Chapter 7: Corollary 2.2 and Proposition 3).

To find π∗, we can first solve the Bellman optimality equation (Szepesvári,

2010, Section 2.2, p. 15) for V∗. This equation states that V∗ must satisfy, for

all x ∈ X

V∗(x) = max
a

E(Rt+1 + γV∗(Xt+1)|Xt = x, At = a). (1.1.6)

Once V∗ is found, for each x we can simply take π∗(x) to be a maximizing

action in (1.1.6). Another powerful fact is that any V : X → R that satisfies

the fixed point equation (1.1.6) must be equal to V∗, i.e., (1.1.6) has a unique

fixed point. Therefore, we have a clear approach to find π∗: Find the fixed

point of (1.1.6) and take, for each x, π∗(x) as a maximizing action in (1.1.6).

This approach is known as dynamic programming.

We can re-write (1.1.6) compactly using operator notation, which we now

introduce (reproduced here from Ávila Pires and Szepesvári, 2016b, Section

2). Recall that “a Banach space is a normed [vector] space that is also a complete

metric space under the metric induced by its norm” (Aliprantis and Border, 2007,

Definition 6.1, p. 228). We let (V , ∥ · ∥V) be a Banach space of real-valued

functions over X , equipped with a given norm, and (VA, ∥ · ∥VA) be a

Banach space of functions mapping A to V . We assume V contains the value

functions of all deterministic stationary policies (all π ∈ Π), VA contains

the action-value functions4 of all π ∈ Π. Of course, since A is finite, VA

can also be identified with the set
{
(x, a) ↦→ (V(a))(x) : V ∈ VA

}
, which is

a set of X ×A → R functions. For V ∈ VA and a ∈ A, we will use Va as

an alternate notation to V(a) = x ↦→ V(x, a). Conveniently, Va ∈ V . With

4 The action-value function of a policy π is defined by

Vπ(x, a) .
= E

(
∞

∑
t=1

γt−1Rt

⏐⏐⏐⏐⏐X0 = x, A0 = a

)
,

for x ∈ X and a ∈ A, with At ∼ π(X0, A0, R1, X1, . . . , Xt) (t ≥ 1). Typically, action-value
functions are denoted by the symbol Qπ , but we use Vπ for both (state-) value functions
and action-value functions, and the distinction will be clear from the context.

6

a slight abuse of notation, we take P .
= (P a)a∈A where P a is the V → V

right linear operator defined by (P aV)(x) .
= E(V(Xt+1)|Xt = x, At = a)

with Xt+1 ∼ P(Xt, At) (we assume that V ∈ V implies integrability, so that

the integrals are well defined). We also treat P as a V → VA linear operator

defined by (PV)a .
= P(Va) for a ∈ A and V ∈ V . We also assume that

the reward function r is an element of VA, so ra(x) will be used to denote

r(x, a).

The Bellman return operator TP : V → VA, is defined by TPV .
= r + γPV.

and the so-called maximum selection operator M : VA → V is defined by

(MV)(x) .
= maxa Va(x). We can therefore write (1.1.6) in compact form:

V∗ = MTPV∗ (1.1.7)

and we can also define the greedy operator G : VA → Π, which selects the

maximizing actions chosen by M:

GV(x) .
= argmax

a
Va(x)

for all x ∈ X , with ties broken arbitrarily. As mentioned, under some

conditions (e.g., γ < 1) GTV∗ is an optimal policy.

The performance of a policy π will be given by the policy error

∥V∗ −Vπ∥V ,

and different choices of the norm ∥ · ∥V can be made. For example, a com-

mon choice is the supremum norm ∥V∥∞
.
= supx∈X |V(x)|. In Sections 3.2.3

and 4.4 we will look at policy error bounds with the supremum norm, as

well as other choices of ∥ · ∥V .

1.2 Contributions and Dissertation Outline

It is already known that DP allows us find an optimal stationary determin-

istic policy in an MDP, i.e., it essentially solves the MDP. It can be carried

out, for example, via linear programming (de Farias and Van Roy, 2003),

7

policy iteration, or value iteration (Szepesvári, 2010, Section 2.4, pp. 16–

17). However, DP requires that we know r and P , and, even if we do,

DP is intractable if the cardinality of X ×A is too large. As remarked by

Szepesvári (2010), DP is intractable in all but the simplest MDPs, and RL

methods (insofar as an optimal policy is being sought) one way or another

are approximately doing DP in settings where there is only “indirect access”

to P and maybe r, and where X ×A may be prohibitively large.

In this dissertation, we present advances in the theoretical understand-

ing of Classification-Based Policy Iteration (CBPI, Farahmand et al., 2014;

Lazaric et al., 2016) and Model-Based Reinforcement Learning (MBRL) with

factored semi-linear models. Our emphasis is on analyzing practical meth-

ods, that is, reinforcement learning methods that compute policies efficiently.

Evidently, we want practical algorithms to produce effective policies, and in

this text we focus on provable effectiveness, namely, theoretical guarantees

in the form of policy error bounds.

CBPI falls under the category of so-called Direct Policy Learning (DPL)

methods, which also includes, e.g., policy gradient (Sutton et al., 1999),

conservative policy iteration (Kakade and Langford, 2002), and classification-

based methods for learning non-stationary policies (Langford and Zadrozny,

2003; Bagnell et al., 2003; Langford and Zadrozny, 2005). The notable trait

of DPL methods is that they do not necessarily rely on estimating value-

functions, but only on value estimates at certain state-action pairs. In

contrast, many popular RL methods, e.g., SARSA, Q-learning, (Sutton and

Barto, 1998), approximate policy iteration (Scherrer, 2014) and fitted Q-

iteration (Antos et al., 2008a), are instances of Generalized Policy Iteration

(GPI, Sutton and Barto, 1998, Section 4.6, p. 106), and, as such, rely (at least

procedurally) on estimating value functions. While it is not clear whether

GPI inherently depends on “accurate” value-function estimates, the existing

performance guarantees (policy error bounds) for these methods do degrade

when value-function estimates are poor (see, for example Bertsekas, 2012,

Proposition 3.1).

8

It is important to emphasize that estimating value functions is different

from estimating values at a given set of state-action pairs—which DPL

methods do resort to. Accurate value function estimates should yield good

(greedy) policies, however, it is plausible to expect that such estimates not be

necessary for constructing effective policies. Therefore, one can anticipate

that there will be cases where accurate value function estimates cannot be

constructed and GPI may fail, but where DPL can succeed in constructing

effective policies. As a motivating example, in SZ-Tetris (Burgiel, 1997)

a simple set of features proposed by Bertsekas and Ioffe (1996) is likely

not expressive enough for representing value functions (parametrically),

as evidenced by poor performance of GPI methods (Bertsekas and Ioffe,

1996; Szita and Szepesvári, 2010). However, the features are still expressive

enough for good policies to be represented, as we can see from the per-

formance of local-search methods (Szita and Lörincz, 2006). Because DPL

methods may avoid estimating value functions, they hold the promise to

leverage the representation in order to learn good policies directly, using

value estimates only.

CBPI, at its core, makes use of a classification method, and therefore

has the potential to succeed where classifiers can be effective in using

value estimates to discriminate better actions (actions with higher value)

from sub-optimal ones, and where the representation allows generalizing

this “effective action discrimination” across the state space. Indeed, the

performance of a CBPI method is inherently tied to the performance of the

classification algorithm used, and in order to present policy error bounds

for CBPI, we need performance bounds classification.

The two existing analysis of CBPI (Farahmand et al., 2014; Lazaric et al.,

2016) rely on classification methods that solve a combinatorial problem,

which can often be computationally hard. In contrast, classification methods

that require solving convex minimization problems (which can often be

done efficiently) enjoy limited or no performance guarantees. Therefore, we

only have instances of CBPI that enjoy theoretical guarantees but cannot be

9

used in practice, or vice-versa. The theoretical analysis of CBPI presented

in this dissertation fills this gap, by providing theoretical guarantees for

instances of CBPI that can be used in practice (by virtue of the classification

methods used).

Our first analysis, therefore is not of reinforcement learning methods,

but of cost-sensitive multiclass classification algorithms. In Chapter 2, we

look at the popular approach of empirical risk minimization applied to

surrogate convex losses. This approach leads to what we informally call

practical classification methods, that is, methods that are efficient and can

be used in practice. We present novel surrogate risk bounds for these “em-

pirical surrogate risk minimizers” and a particular family of cost-sensitive

multiclass classification losses. We also present specific results for convert-

ing these surrogate risk bounds into true risk bounds. Our surrogate risk

bounds allow us to understand, as a special case, the performance of a

cost-sensitive generalization of the hinge loss, which has been used in the

design of many classification algorithms, including the popular support

vector machine (SVM, Hastie et al., 2009, Chapter 12, p. 417).

In Chapter 3, we then present our analysis of CBPI. The central result of

this analysis is a policy error bound derived from the work of Lazaric et al.

(2016), and which incorporates the results developed in Chapter 2.

In Chapter 4, we present policy error bounds for MBRL methods with

factored semi-linear models. MBRL methods have often been regarded as

inefficient or not scalable. However, they have recently been the subject

of a number of works that have focused on efficient methods with a great

potential to be competitive with other (“model-free”) methods (Ormoneit

and Sen, 2002; Barreto et al., 2011; Grünewälder et al., 2012; Kveton and

Theocharous, 2012; Lever et al., 2016). We present an updated version of the

work of Ávila Pires and Szepesvári (2016b), with policy error bounds for

MBRL methods that use what we call factored semi-linear models. Factored-

linear-model methods generalize many previously proposed model-based

reinforcement learning methods, including the efficient MBRL methods just

10

mentioned. Although factored semi-linear models are a mild generalization

of factored linear models, we are able to increase the scope of the policy

error bounds of Ávila Pires and Szepesvári (2016b), which, differently from

ours, did not apply to all factored-linear-model methods. Moreover, the

factored semi-linear model framework is flexible and allows the design of a

number of “practical” (i.e., computationally efficient) MBRL methods.

The policy error bounds presented in Chapter 4, besides having an

increased scope (i.e., factored semi-linear models), also improve on the

previously existing bounds by relaxing conditions and refining the bounds

themselves. The bounds allow us to understand the policy error in norms

other than the overly-harsh supremum norm, which has, nevertheless, been

a common choice for policy error bounds in the RL literature (and, to

the best of our knowledge, the only such choice for policy error bounds

concerning MBRL methods).

We conclude this dissertation with Chapter 5, where we have a final

discussion of CBPI and MBRL.

11

Chapter 2

Cost-sensitive Multiclass
Classification

In this chapter, we present some supervised-learning results, for the problem

of cost-sensitive multiclass classification (henceforth simply called classifi-

cation). We first introduce the classification problem (Section 2.1), as well

as Empirical Risk Minimization (ERM) with surrogate losses as a means to

solve the classification problem, and the concept of calibration functions

(Section 2.2). Calibration functions allow us to convert surrogate risk bounds

into true risk bounds for minimizers of the surrogate risk.

The first set of results that we present (Section 2.3) concerns bounds on

the true risk, i.e., the original risk in the classification problem, called the

cost-sensitive error. The cost-sensitive error generalizes the misclassification

probability of cost-insensitive multiclass classification. More specifically, we

present calibration functions for a family of novel cost-sensitive surrogate

loss based on the work of Zhang (2004) for multiclass classification.

The second set of results (Section 2.4) are surrogate bounds for classi-

fiers obtained by a specific classification method based on a cost-sensitive

surrogate loss proposed by Ávila Pires et al. (2013) as a generalization of a

cost-insensitive multiclass classification loss proposed by Lee et al. (2004).

Surprisingly, to the best of our knowledge, these are the first surrogate

risk bounds in the context of cost-sensitive multiclass classification, and the

first “calibration-compatible” bounds in the context of (cost-sensitive and

12

cost-insensitive) multiclass classification. By “calibration-compatible” we

mean that we are able to use calibration functions to convert these surrogate

risk bounds into true risk bounds.

We conclude this chapter (Section 2.5) with a discussion about extensions

of our result, most notably extensions that obtain so-called fast-rates by

incorporating the Mammen-Tsybakov noise condition (see Boucheron et al.,

2005).

The results in Sections 2.3 and 2.4 set the foundations for extending

the analysis of Lazaric et al. (2016) to what we call practical instances of

CBPI, that is, instances with classification methods that employ surrogate

empirical risk minimization with a convex loss. Interestingly, the extensions

discussed in Section 2.5 are quite pertinent to the analysis of CBPI presented

by Farahmand et al. (2014), suggesting that their analysis could be extended

to practical instances of CBPI, based on our analysis in Chapter 3 and

fast-rate extensions of our results in this chapter.

2.1 Problem Definition

In classification (in the formulation used by Ávila Pires et al., 2013) we

observe the jointly distributed random variables (X, C) taking values in X ×
R|Y| and distributed according to an unknown p. The set X is a measurable

set1 and the set Y is a finite set of labels2, here assumed to be (without

loss of generality) {1, . . . , |Y|}. Differently from multiclass classification, or

more conventional views of cost-sensitive multiclass classification, in our

framework there is no notion of a (random) “correct label” Y. The goal is to

find a classifier g : X → Y that minimizes the risk or classification cost:

R(g) .
= E

(
Cg(X)

)
,

1 Note that for now we are outside of the reinforcement learning setting outlined in
Chapter 1, but in Chapter 3 the set X will be both the “input space” in classification, and
the state space of the MDP.

2 We use “class” and “label” interchangeably, and the distinction from “class” in the
sense of a collection or set (e.g., a hypothesis class) will be clear from context.

13

or, alternatively, the excess risk w.r.t. a “baseline” set of classifiers G ⊂ YX

R(g)− inf
g′∈G

R(g′),

whenever
⏐⏐⏐infg′∈G R(g′)

⏐⏐⏐ < ∞.

Cost-sensitive classification with random costs has been studied by

Zadrozny and Elkan (2001); Brefeld et al. (2003); Zadrozny et al. (2003). If the

costs are fixed we recover “traditional” cost-sensitive classification (Shalev-

Shwartz and Ben-David, 2014, Section 17.2.2, p. 194). In cost-insensitive

classification, one starts from the pair (X, Y) of jointly-distributed X ×Y-

valued random variables, where Y is the random “true label” mentioned

earlier. Cost-insensitive classification can be seen as a special case of cost-

sensitive classification where the costs satisfy Ck = I{Y = k} (k ∈ Y) w.p.

one, where I{ · } is the indicator function. In binary classification we simply

have |Y| = 2.

In the classification learning problem, we observe a sample3

S .
= ((X1, C1), . . . , (Xn, Cn))

and our goal is to construct a classifier G depending on S that minimizes,

with high probability, the conditional risk given the sample:

R(G, S) .
= E

(
CG(X)

⏐⏐⏐ S
)

,

where ((X1, C1), . . . , (Xn, Cn), (X, C)) ∼ pn+1.

Additional notation. We let ∆|Y| be the |Y|-dimensional simplex. We

abuse notation and let ∆
R|Y| denote the set of all probability measures p

over R|Y| s.t. |E(Ck)| is well-defined and finite for all k ∈ Y when C ∼ p.

We call these distributions cost distributions. We will call cost distributions

for which the costs are non-negative w.p. one non-negative-cost distributions.

3 Note that a subscripted C will denote both a coordinate of C (Ck) and a cost-vector
observed in the sample S (Ci), and these two uses will be easy to distinguish from context.
The k-th coordinate of the i-th cost-vector in S will be denoted by Ci,k.

14

We let pC|X denote the conditional distribution of C given X, 1 and 0

denote, respectively, all-ones and all-zeros vectors of appropriate dimension,

N denote the natural numbers, [n] .
= {1, . . . , n} for n ∈ N, [0] .

= ∅,

a ∧ b .
= min(a, b) and a ∨ b .

= max(a, b). For simplicity, we assume that

argmin and argmax are singletons (which can be enforced by breaking

ties in some arbitrary, fixed way). We also assume that objectives with an

argmin do have a minimizer, but it is easy to re-do our derivations with

infima and approximate minimizers.

2.2 Empirical Risk Minimization, Surrogate Risk,
and Risk Bounds

ERM (Steinwart and Christmann, 2008, p. 8; Shalev-Shwartz and Ben-David,

2014, p. 15), a typical approach to solve classification, prescribes that we

take a minimizer Ĝ of the empirical risk

R̂(g, S) .
=

1
n

n

∑
i=1

Ci,g(X)

over the set of classifiers G, that is

Ĝ .
= argmin

g∈G
R̂(g, S).

ERM has been widely studied (see, for example, Koltchinskii, 2011; Vapnik,

2013) and enjoys performance guarantees in the form high-probability

bounds on R(Ĝ, S) (see, e.g. Vapnik, 2013, Chapter 3).

The empirical risk is not convex, however: Calculating Ĝ is a combina-

torial problem and can be computationally hard for typical choices of G
(Höffgen et al., 1995; Steinwart and Christmann, 2008, p. 59 and p. 62). One

such typical choice is
⋃∞

B=0 Gϕ,B, where

Gϕ,B
.
=

{
x ↦→ argmax

k
⟨ϕ(x, k), w⟩ : w ∈ Rd s.t. ∥w∥ ≤ B

}
,

is the set of bounded linear classifiers w.r.t. a feature extractor ϕ : X ×Y →
Rd, with B > 0 and some norm ∥ · ∥.

15

Following the approach of empirical surrogate-risk minimization (see

Steinwart and Christmann, 2008, Chapter 3), we introduce a convex cost-

sensitive surrogate loss L : S ×R|Y| → R, where S ⊂ R|Y| is a non-empty

set of scores compatible with the loss. While a number of losses for cost-

insensitive multiclass classification have been proposed (see Mason et al.,

2000; Crammer and Singer, 2003; Lee et al., 2004; Rifkin and Klautau, 2004;

Zhang, 2004; Zou et al., 2006; Gneiting and Raftery, 2007; Liu, 2007; Nock

and Nielsen, 2009; Reid and Williamson, 2010; Mroueh et al., 2012; Beijbom

et al., 2014; Shi et al., 2015), surrogate losses for cost-sensitive multiclass

losses are fewer in number (see, for example Tsochantaridis et al., 2005;

Guruprasad and Agarwal, 2012; Ávila Pires et al., 2013; Ramaswamy et al.,

2013). As we will see in Section 2.3.3, however, some general principles can

be used to generalize cost-insensitive losses to the cost-sensitive case.

As an example, L can be the cost-sensitive generalization (proposed by

Ávila Pires et al., 2013) of the loss of Lee et al. (2004)4, :

LLLW(s, c) .
=
|Y|

∑
k=1

ck φ(sk) (2.2.1)

where φ : R → R is a convex5 score transformation function, for example, the

hinge transformation function φhinge(t) .
= (1 + t)+. The score set for LLLW

is the set of sum-to-zero scores S0
.
=
{

s ∈ R|Y| : 1⊤s = 0
}

. Typical choices of

score sets for other losses include itself R|Y| (Zhang, 2004), R|Y|−1 (Mroueh

et al., 2012) and ∆|Y| (Reid and Williamson, 2010).

We wish to find a score function h : X → S that minimizes the surrogate

risk

Rsurr
L (h) .

= E(L(h(X), C)),

or, alternatively, the excess surrogate risk s.t. to a baseline set of score functions

4 The loss LLLW,CI : S ×Y → R proposed by Lee et al. (2004) is defined as LLLW,CI(s, y) .
=

∑k ̸=y φ(sk) and has score set S0, defined below.
5 The reader may notice that convexity of φ alone is not enough to ensure that LLLW is

convex (in the first argument), because the costs can be negative. For LLLW, assuming that
the costs are non-negative w.p. one addresses the convexity issue, and, as we will see in
Section 2.3.4, will create only mild limitations.

16

H ⊂ (R|Y|)X

Rsurr
L (g)− inf

h′∈H
Rsurr

L (h′),

whenever
⏐⏐infh′∈H Rsurr

L (h′)
⏐⏐ < ∞. Where the choice of L is clear from the

context, we will drop the subscript from the surrogate risks. We can use

empirical surrogate-risk minimization, so we take a minimizer Ĥ of the

empirical surrogate risk

R̂surr(h, S) .
=

1
n

n

∑
i=1

L(h(Xi), Ci)

over the set of score functions H, that is

Ĥ .
= argmin

h∈H
R̂surr(h, S). (2.2.2)

Then L, S and H are chosen so that Ĥ can be computed efficiently. A num-

ber of popular classification algorithms can be seen to perform empirical

surrogate-risk minimization—to mention a few, SVMs, ridge regression, the

Lasso, logistic regression, and AdaBoost (see Hastie et al., 2009, Table 21.1,

and Sections 3.4, 4.4.1 and 10.4).

Even though we attempt to minimize the surrogate risk using ERM,

our goal is still to minimize the true risk, that is, the classification cost. In

order to convert scores into class predictions, we use the maximum selector

f : R|Y| → Y defined by

f (s) .
= argmax

k
sk.

We can also hope to obtain high-probability bounds on the surrogate

Rsurr(Ĥ, S), but how can we obtain high-probability bounds on the true risk

R(f ◦ Ĥ, S)? One way to do so is to use calibration functions, which allow

us to convert surrogate risk bounds into true risk bounds. Definition 2.2.1

defines calibration functions as introduced by Steinwart (2007), and Theo-

rem 2.2.2 (due to Bartlett et al., 2006 for the binary case and to Steinwart,

2007 for the general case) shows how they can be used to obtain true risk

bounds.

17

Definition 2.2.1 (Calibration function, Definition 2.7 of Steinwart, 2007). A

function δ : (0, ∞)× ∆
R|Y| → [0, ∞] is a calibration function for a surrogate loss

L with score set S if δ(ε, p) > 0 for all ε > 0 and every cost distribution p, and if,

for all s ∈ S and ε > 0, the inequality

E(L(s, C))− inf
s′∈S

E(L(s, C)) < δ(ε, p)

implies that

E
(

C f (S)

)
− inf

k∈Y
E(Ck) < ε,

when C ∼ p.

Theorem 2.2.2 (Theorem 2.8 of Steinwart, 2007). Given a surrogate loss L with

score set S , assume that L and S have a calibration function δ. Assume also that

|E(Ck|X)| exists and is finite w.p. one for all k ∈ Y and that E(infs∈S L(s, C)|X)

is measurable. Then, for any δ ∈ (0, 1) and ε > 0, the following holds: If

Rsurr(Ĥ, S)− inf
h

Rsurr(h) < E
(

δ(ε, pC|X)
)

holds with probability at least 1− δ, then

R(f ◦ Ĥ, S)− inf
g

R(g) < ε

also holds with probability at least 1− δ.

Typically, the calibration function will be easy to invert; for example,

for LLLW with φhinge we can take δ(ε, p) = ε for every non-negative-cost

distribution6 p (Ávila Pires et al., 2013, Table 1). As another example, for

LLLW with φsquared(t) .
= (1 + t)2, if there is a constant c s.t. for every non-

negative-cost distribution p s.t. C ∼ p we have E(mink Ck + maxk Ck) ≤ c,

then we can take δ(ε, p) = ε2

c (Ávila Pires et al., 2013, Table 1). We can then

apply Theorem 2.2.2 by starting from a guarantee that

Rsurr(Ĥ, S)− inf
h

Rsurr(h) < t

6 In Section 2.3.4 we discuss how to obtain guarantees similar to those of Theorem 2.2.2
for cost distributions when the calibration function is only defined for to non-negative-cost
distributions.

18

for some t > 0 with probability at least 1− δ, to obtain that

R(f ◦ Ĥ, S)− inf
g

R(g) < δ−1(t)

with probability at least 1− δ, where δ−1(t) .
= inf

{
ε : infp∈P δ(ε, p) ≥ t

}
for

some P s.t. pC|X ∈ P w.p. one. Note that without constraints on P (for

example, the assumption on c above) we may have infp∈P δ(ε, p) = 0, in

which case the true risk bound is vacuous.

It is important to emphasize that the strategy for using Theorem 2.2.2 is

inherently non-parametric, that is, it involves bounds where we “compete”

against all score functions and classifiers, not just baselines. On the other

hand, surrogate risk guarantees often have the form

Rsurr(Ĥ, S)− inf
h∈H

Rsurr(h) < t

with high-probability, in which case Theorem 2.2.2 gives us

R(f ◦ Ĥ, S)− inf
g

R(g) < δ−1(t + Asurr(H)),

where Asurr(H) is the surrogate approximation error of H:

Asurr(H)
.
= inf

h∈H
Rsurr(h)− inf

h′
Rsurr(h),

where the second infimum is taken over all (measurable) score functions. In

such a non-parametric setting, one should trade off t and H in such a way

that δ−1(t + Asurr(H)) is minimized (see Steinwart and Christmann, 2008,

p. 8).

In Section 3.2, we will apply Theorem 2.2.2 following the steps outlined

above in order to obtain true risk bounds for classifiers computed by a

classification methods used in CBPI. In the remainder of this chapter, we

will take a closer look at existing and novel calibration functions for spe-

cific surrogate losses, as well as novel surrogate risk bounds for empirical

surrogate-risk minimization with LLLW as the surrogate loss.

19

2.3 Calibration Functions

In this section we present different cost-sensitive multiclass classification

surrogate loss functions and their respective calibration functions.

We start by instantiating the framework of Steinwart (2007) for the

specific case of classification in Section 2.3.1, as done by Ávila Pires et al.

(2013). In Section 2.3.2, we present a calibration function for LLLW derived

by Ávila Pires et al. (2013).

In Section 2.3.3, we present LZhang, a novel cost-sensitive generalization

of a multiclass loss studied by Zhang (2004) (which, in turn generalizes the

multiclass logistic regression loss and a number of so-called “decoupled”

losses). We reuse results of Ávila Pires and Szepesvári (2016a) for the cost-

insensitive decoupled losses proposed by Zhang (2004) to derive calibration

functions for decoupled versions of LZhang.

In order to be convex (and for the calibration functions to hold), the losses

LLLW and LZhang both require the costs to be non-negative. In Section 2.3.4,

we show that this limitation can be partially overcome: We can obtain true

risk bounds with real-valued costs by shifting these costs to be non-negative

and then using LLLW or LZhang.

Finally, for the sake of completeness, we also show how to construct

cost-sensitive losses from cost-insensitive losses that is similarly to the

strategy employed by Zadrozny et al., 2003 to solve cost-sensitive binary

classification using cost-insensitive binary classification algorithms. We also

show how to obtain calibration functions for these cost-sensitive losses, from

calibration functions of the cost-insensitive losses. While this approach is

relatively straightforward, we show that it can produce losses with poor

scaling, as well as calibration functions that introduce undesirable factors

into the true risk bounds.

2.3.1 General Calibration Functions

Steinwart (2007) defined a function δmax : [0, ∞) × ∆
R|Y| → [0, ∞) that

20

depends on the given surrogate loss and constitutes a key notion for cal-

ibration functions. δmax is special because no calibration function for the

given surrogate loss is larger than δmax (Steinwart, 2007). Hence, if δmax is

a calibration function, it is called the maximum calibration function. Conve-

niently, any positive lower bound to the maximum calibration function is

also a calibration function, which is a useful fact for understanding and

calculating calibration functions for specific surrogate losses.

In order to define δmax, we must define three useful concepts (see Defini-

tion 2.3.1): The set of scores in S whose maximum coordinate is j (M(S , j)),

the set of scores that give ε-sub-optimal class predictions (T (S , ε, c)), and

the set of ε-sub-optimal maximum-probability indices (J (ε, c)). A score

s ∈ S is ε-sub-optimal for a given c ∈ R|Y| if c f (s) −mink ck ≥ ε. Otherwise,

s is ε-optimal.

Definition 2.3.1. Given a set of scores S ⊂ R|Y| let, for ε ≥ 0 and c ∈ R|Y|

M(S , j) .
=

{
s ∈ S : sj = max

k
sk

}
, T (S , ε, c) .

=
⋃

j:cj−mink ck≥ε

M(S , ε, j),

J (ε, c) .
= argmax

j

{
cj : cj −min

k
ck ≥ ε

}
.

We will override notation and use Rsurr to denote the pointwise surrogate

risk Rsurr : S × ∆|Y| → R for a surrogate loss L : S ×Y → R with S ⊂ R|Y|,

defined by

Rsurr
L (s, p) .

= E(L(s, C)),

where C ∼ p (cf. Definition 2.2.1). As with the surrogate risk, where

the choice of L is clear from context, we will drop the subscript from the

pointwise surrogate risk.

In Definition 2.3.2, we present δmax(ε, p), which is the difference between

the smallest surrogate risk of any ε-suboptimal score and the optimal

surrogate risk, when C ∼ p. If any score has surrogate risk closer to the

optimal surrogate risk than δmax(ε, p), the score must be ε-optimal w.r.t.

E(C). Confronting this fact with Definition 2.2.1, we see that if δmax is

21

positive for all ε > 0, then it is a calibration function. It is, however, a

calibration function only for the pointwise surrogate risk defined in terms

of cost distributions p.

Definition 2.3.2. Given a surrogate loss L with score set S , let

δmax(ε, p) .
= inf

s∈T (S ,ε,E(C))
Rsurr(s, p)− inf

s∈S
Rsurr(s, p).

If δmax(ε) > 0 for all ε > 0, then it is called the maximum calibration function.

In the binary case, we can expect δmax to be easy to calculate, but this may

not be the case in the multiclass case. Thus, one strategy to obtain calibration

functions for multiclass losses is to lower-bound δmax by a function that

resembles δmax in the binary case. We will use the function δbinary given

in Definition 2.3.3 to do so. With some assumptions on the surrogate

loss, it is possible to show that δmax and δbinary coincide in the binary case

for non-negative-cost distributions (see Ávila Pires and Szepesvári, 2016a,

Proposition 15).

Definition 2.3.3. Given a surrogate loss L with score set S , let

δbinary(ε, p) .
= inf

s∈S :
s1=s2

Rsurr(s, p′)− inf
s∈S

Rsurr(s, p′),

where in the right-hand side S ⊂ R2 and p′ is the distribution of the random

variable (Cj0 , Cjε), with jε ∈ J (ε, E(C)) and j0 ∈ J (0, E(C)).

2.3.2 Calibration Functions for LLLW

Ávila Pires et al. (2013) proposed LLLW—defined in (2.2.1)—as a cost-

sensitive generalization of the loss of Lee et al. (2004), and lower-bounded

δmax by δbinary, as shown in Theorem 2.3.4. Ávila Pires et al. (2013, Table 1)

also calculated δbinary for different choices of φ. Theorem 2.3.4 only applies

to non-negative-cost distributions, but, as mentioned earlier, this limitation

will be addressed in Section 2.3.4.

22

Theorem 2.3.4 (Theorem 2.2, Ávila Pires et al., 2013). Consider L = LLLW

with φ convex and S = S0. For every non-negative-cost distribution p, if

inf
s∈S

Rsurr(s, p) > −∞,

then for all ε > 0 we have

δmax(ε, p) ≥ δbinary(ε, p′),

where p′ is the distribution of the random variable (Cj0 , Cjε), with jε ∈ J (ε, E(C))

and j0 ∈ J (0, E(C)) (breaking ties arbitrarily). Moreover, the above holds with

equality when |Y| = 2.

2.3.3 Calibration Functions for LZhang

Zhang (2004) investigated, among other surrogate losses, the loss

LZhang,CI(s, y) .
= ψ(sy) + F

(|Y|
∑
k=1

φ(sk)

)
,

with S = R|Y|, ψ non-decreasing, and with ψ, F and φ chosen so that

LZhang,CI is convex. As pointed out by Zhang (2004), LZhang,CI generalizes,

for example, the multiclass logistic regression loss (obtained by taking

ψ(t) = t, F(t) = ln t and φ(t) = φexp(t) .
= et). Apart from the difference

in score sets, we can also recover LLLW in the cost-insensitive setting from

LZhang,CI (by taking ψ(t) = −φ(t) and F(t) = t). Moreover, if F(t) = t, then

the loss is said to be decoupled, in the sense that the surrogate risk can be

written as a summation over k ∈ Y with unconstrained scores.

Our generalization of LZhang,CI to the cost-sensitive case, called LZhang,

is given in Definition 2.3.5. We use the surrogate risk as the basis for

generalizing the loss: In the cost-insensitive case, with Y ∼ p and p ∈ ∆Y ,

we have

E
(

LZhang,CI(s, Y)
)
=
|Y|

∑
k=1

pkψ(sk) + F

(|Y|
∑
k=1

φ(sk)

)
,

and we would like that if s ∈ S minimizes s′ ↦→ Rsurr
LZhang(s′, p), then p f (s) =

maxk pk holds. It is natural, therefore, that in LZhang we have a notion of

23

“gain” multiplying each ψ(sk) term. Using a negative cost −ck as gain is the

first idea that comes to mind, but we instead use maxk′ ck′ − ck. Because

this notion of “gain” is non-negative, we will able to re-use some results by

Ávila Pires and Szepesvári (2016a) concerning LZhang,CI when computing

calibration functions for LZhang. The term multiplying F
(

∑|
Y|

k=1 φ(sk)
)

is

chosen so that it dominates all the “gains” (as 1 dominates all pk) and

helps ensure that infs∈S LZhang(s, c) > −∞ for all c ∈ R|Y|. This lower-

boundedness is important so that δmax is well-defined. Other options for

dominating terms are available: For example, ∑|
Y|

k=1(maxk′ ck′ − ck), which is

explored in Section 2.3.5.

Definition 2.3.5. The loss LZhang : S × Y ×R|Y| → R is defined as

LZhang(s, c) .
=
|Y|

∑
k=1

(max
k′

ck′ − ck)ψ(sk) + (max
k′

ck′) F

(|Y|
∑
k=1

φ(sk)

)
,

and has score set S = R|Y|.

We can see that LZhang indeed generalizes LZhang,CI, by taking ck =

I{k ̸= y}, where y is the correct class.

In Theorem 2.3.6 we lower-bound δmax by δbinary for LZhang with ψ

non-decreasing, F(t) = t, and φ convex, and score set S = R|Y|. Both

the form and the proof techniques used are similar for Theorems 2.3.4

and 2.3.6. In particular, Theorem 2.3.6 also only applies to non-negative-cost

distributions.

Theorem 2.3.6. Consider L = LZhang convex with ψ non-decreasing and F(t) = t.

For every non-negative-cost distribution p, if

inf
s∈S

Rsurr(s, p) > −∞,

then for all ε > 0 we have

δmax(ε, p) ≥ δbinary(ε, p′),

where p′ is the distribution of the random variable (Cj0 , Cjε), with jε ∈ J (ε,−E(C))

and j0 ∈ J (0,−E(C)) (breaking ties arbitrarily). Moreover, the above holds with

equality when |Y| = 2.

24

Proof. See Appendix A.1.1, page 100.

2.3.4 Relaxing the Assumption of Non-negative Costs

As discussed earlier, Theorems 2.3.4 and 2.3.6 require the costs to be non-

negative w.p. one. Proposition 2.3.7 shows us how to convert surrogate

risk bounds into true risk bounds using calibration functions that requires

non-negative-cost distributions. More specifically, Proposition 2.3.7 instructs

to shift the costs to make them non-negative, and then use the surrogate

loss whose calibration function requires non-negative costs.

Proposition 2.3.7. Consider a cost-sensitive surrogate loss L with score set S .

Assume that there is a calibration function δ for L : S ×R|Y| → R and any non-

negative-cost distribution p. Then for all s ∈ S , ε > 0 and any cost distribution

p,

Rsurr(s, p′)− inf
s′∈S

Rsurr(s′, p′) < δ(ε, p′)

implies that

R(s, p)− inf
s′∈S

R(s′, p) < ε,

where p′ is the distribution of the random variable C− 1(mink Ck), and C ∼ p.

Proof. See Appendix A.1.1, page 101.

So far, we have reported a calibration function for LLLW, established one

for LZhang, and shown how to sidestep the requirement of these calibration

functions that the cost distribution be a non-negative-cost distribution. We

will conclude this section with a presentation on a different and simple

strategy to construct cost-sensitive surrogate losses and obtain calibration

functions for them.

2.3.5 Calibration Functions by Reduction to Cost-Insensitive
Classification

An alternative way to obtain calibration functions for cost-sensitive classi-

fication is to use losses that effectively reduce cost-sensitive classification

25

to cost-insensitive classification. This strategy was used by Zadrozny et al.

(2003) to solve cost-sensitive classification problems using cost-insensitive

classification algorithms. This reduction allows us to easily use calibration

functions for the cost-insensitive loss to construct calibration functions for

the cost-sensitive loss.

To perform the reduction, we are given a cost-insensitive surrogate loss

L : S × Y → R and we define the loss LRed : S ×R|Y| → R

LRed
L,u (s, c) .

=
|Y|

∑
k=1

(u(c)− ck)L(s, k), (2.3.1)

where u : R|Y| → R is an coordinate-wise upper-bound function satisfying

u(c) ≥ maxk ck for all c ∈ R|Y|. For convenience, we will use the shorthand

c .
= ∑|

Y|
k=1(u(c)− ck). We can see that taking L = LLLW,CI (resp. L = LZhang,CI)

and constructing LRed
L,u does not give us the same surrogate risk as LLLW

(resp. LZhang). Indeed, taking L = LZhang,CI gives us

Rsurr
LRed

L,u
(s, p) =

|Y|

∑
k=1

(max
k′

c′k − ck)ψ(sk)

+

(|Y|
∑
k=1

(max
k′

c′k − ck)

)
F

(|Y|
∑
k=1

φ(sk)

)
.

In addition, the scale of LRed
L,u (s, c) can be undesirably sensitive to large |Y|

and large costs. For example, with LRed
L,u obtained from L = LLLW,CI we have

LRed
u (0, c) = (|Y| − 1)cφ(0).

In contrast,

LLLW(0, c) = cφ(0).

Poor scaling is undesirable for risk bounds, since the scale will usually ap-

pear as a constant factor (for example, cf. the scale of LLLW and Lemma 2.4.8

in Section 2.4).

As an advantage of using a “reduction loss”, it is straightforward to

construct a calibration function for LRed
L,u from a calibration function for L, as

shown in Theorem 2.3.8. For example, Theorem 2.3.8 with L = LLLW,CI and

26

φhinge gives us δ(ε, p) = ε. However, using Theorem 2.3.8 for other losses

may introduce additional constant factors during the bound conversion:

For example, if δ(ε, q) = ε2

2 (for example, for LLLW,CI with φsquared, as seen

in Table 1 of Ávila Pires et al., 2013), we get an extra factor of
√

c in the true

risk bound.

Theorem 2.3.8. Let L be a cost-insensitive surrogate loss and LRed
L,u be the corre-

sponding cost-sensitive loss for reduction, as given in (2.3.1). If δ is a calibration

function for L, then for any cost-distribution p, the function (ε, p) ↦→ cδ
(

ε
c , q
)

is a

calibration function for LRed
L,u and the cost-distribution p, where

c = |Y|E(u(C))−
|Y|

∑
k=1

E(Ck),

C ∼ p and q ∈ ∆|Y| is given by qk =
1
c (E(u(C))−E(Ck)) (k ∈ Y).

Proof. See Appendix A.1.1, page 102.

2.4 Surrogate Risk Bounds

In this section, we present surrogate risk bounds for empirical risk min-

imizers of the cost-sensitive multiclass classification surrogate loss LLLW

(scaled by 1
|Y|). As we will discuss in Section 2.4.3, there are no surrogate

risk bounds that apply to cost-sensitive multiclass classification methods.

This section’s results are part of our effort toward an analysis of CBPI

with practical classification methods: Besides having the means to convert

surrogate risk bounds into true risk bounds (namely, calibration functions),

it is imperative that we establish surrogate risk bounds for some cost-

sensitive classification methods. Therefore, the setup of the classification

learning problem in this section will be slightly more general than the one

presented in Section 2.1, and substantially similar to the one considered in

Section 3.2.

To obtain the risk bounds, we will use a usual strategy for similar bounds

in cost-insensitive classification (and, more generally, the concentration of

27

some empirical processes, Pollard, 1984): Bound the deviation between the

empirical surrogate risk of an individual score function and its surrogate

risk, take a union-bound over an appropriately chosen covering of the

set of all score functions, and bound the size of the covering. A similar

strategy involves a Rademacher complexity appearing explicitly (following

Bartlett and Mendelson, 2002, Proof of Theorem 5, p. 228). A Rademacher

complexity does appear in the proofs of Lemmas 2.4.9 and 2.4.12, and

we further upper-bound it terms of covering numbers of the hypothesis

class, with the hope that such upper-bounding will be instructive, and will

address some of the challenges related to bounding surrogate risks in the

context of cost-sensitive multiclass classification.

The novel surrogate risk bounds for cost-sensitive classification presented

here are given in terms of ∞/∞-norm covering numbers of the set of score

functions restricted to the sample (Lemma 2.4.9), and in terms of Frobenius-

norm covering numbers (Lemma 2.4.12). We also bound these covering

numbers for well-known classes of linear score functions, and instantiate the

respective surrogate risk bounds. We start by introducing the cost-sensitive

classification setting for our bounds (Section 2.4.1), then we present our

results (Section 2.4.2), and last we discuss related work (Section 2.4.3).

Extensions of the results in this section will be discussed in Section 2.5.

2.4.1 A Variant of the Classification Learning Problem

We will introduce a variant of the classification learning problem with

m ∈N cost observations per instance Xi. This variant is strongly related to

the setting considered by Lazaric et al. (2016) for their analysis of CBPI, and

will allow us to apply the surrogate risk bounds developed in this section

in order to obtain our performance guarantees for CBPI in Section 3.2. With

an abuse of notation, we will override S and Ĥ defined in Section 2.1.

Fix a surrogate loss L : S ×R|Y| → R where S ⊂ R|Y| is its set of scores.

We are given a sample

S .
= ((X1, C′1,1, . . . , C′1,m), . . . , (Xn, C′n,1, . . . , C′n,m)), (2.4.1)

28

with each Xi ∈ X and C′i,j ∈ R|Y|; the statistical nature of S will be detailed

later in Assumption 2.4.2.

We want to calculate TL,H(n, δ) for a H ⊂ (R|Y|)X so that for all positive

δ small enough we have, with probability at least 1− δ,

Rsurr
L (Ĥ, S)− inf

h∈H
Rsurr

L (h) ≤ TL,H(n, δ),

where7

Ĥ .
= argmin

h∈H

1
nm

n

∑
i=1

m

∑
j=1

L(h(Xi), C′i,j) (2.4.2)

(cf. Ĥ in (2.2.2), Section 2.1).

Our first result, Proposition 2.4.1, can be easily obtained by looking at

the proof of Theorem 5 of Bartlett and Mendelson (2002). Proposition 2.4.1

gives us an excess risk bound provided that we can: i) bound the deviation

between the empirical surrogate risk of any individual score function in

H and its surrogate risk (the second term in the right-hand side of the

bound in Proposition 2.4.1); and ii) bound the same deviation for all score

functions in H simultaneously (the third term in right-hand side of the

bound in Proposition 2.4.1).

Proposition 2.4.1 (Adapted from the proof Theorem 5 of Bartlett and

Mendelson, 2002). For any surrogate loss L : S ×R|Y| → R and h ∈ H,

Rsurr
L (Ĥ, S) ≤ Rsurr

L (h, S)

+
⏐⏐⏐R̂surr

L (h, S)− Rsurr
L (h, S)

⏐⏐⏐+ sup
h′∈H

⏐⏐⏐R̂surr
L (h′, S)− Rsurr

L (h′, S)
⏐⏐⏐

holds with probability one.

The rest of this section is devoted to bounding the two terms in the

second line of the inequality in Proposition 2.4.1. There is a large number

of settings we can study, simply by making different choices for

1. the statistical nature of the sample S,

7 In our results, we will ensure that infh∈H Rsurr
L (h) > −∞, so that the excess surrogate

risk is well-defined.

29

2. the surrogate loss L that we minimize, and its components (e.g., φ for

LLLW, or ψ, F and φ for LZhang),

3. the set of score functions H.

We will present risk bounds in the following setting:

1. The sample S satisfies Assumption 2.4.2 8.

Assumption 2.4.2 (Statistical properties of the sample). The random

variables X1, . . . , Xn are i.i.d. For all i ∈ [n], j ∈ [m], k ∈ Y

1. (C′i,1,k, . . . , C′i,m,k) are conditionally independent given Xi

2. (C′1,j,k, . . . , C′n,j,k) are independent

3. (Xi, C′i,j) and (X, C) are i.i.d.

Furthermore, there exist non-negative constants Cmax and C′max s.t., with

probability one, maxk Ck ∈ [0, Cmax] and maxk E(Ck|X) ∈ [0, C′max].

2. We use the scaled surrogate loss (s, c) ↦→ 1
|Y|L

LLW(s, c) (with an abuse

of notation, we will call this loss 1
|Y|L

LLW), with score transformation

function φ : R → R satisfying Assumptions 2.4.3 and 2.4.4. As-

sumption 2.4.4 ensures that φ is Lipschitz in a specific interval (which

later will be the range of the scores). Lipschitzness in an interval (as

opposed to Lipschitzness in R) is used so that our results apply to

more choices of φ, including φexp, for example. For the remainder of

Section 2.4, the surrogate risks and empirical surrogate risks will all

be defined w.r.t. 1
|Y|L

LLW, unless subscripted to denote otherwise.

Assumption 2.4.3 (φ is non-negative-finite-valued). We have inft φ(t) ≥
0 and supt′≤t φ(t′) < ∞ for all t ∈ R.

8 We point out that (C′i,j,1, . . . , C′i,j,|Y|) (for any i ∈ [n] and j ∈ [m]) need not be indepen-
dent.

30

Assumption 2.4.4 (φ is Lipschitz in an interval). The function Lipφ :

[0, ∞)→ [0, ∞] upper-bounds the Lipschitz constant of φ in the interval

[−T, T] for all T ∈ R:

Lipφ(T) ≥ sup
t,t′∈[−T,T]:t ̸=t′

|φ(t)− φ(t′)|
|t− t′| .

3. Our risk bounds given in terms of covering numbers will hold for any

H ⊂ (R|Y|)X with bounded scores (see Assumption 2.4.5), but we will

only present covering-number bounds for linear score functions (with

bounded weights, w.r.t. a feature extractor) from

Hϕ,B
.
=
{
(x, k) ↦→ ⟨φ(x, k), w⟩ : w ∈ (Rd, ∥ · ∥) s.t. ∥w∥ ≤ B

}
for a norm ∥ · ∥ on Rd with dual ∥ · ∥∗, B ≥ 0 and a feature extractor

ϕ : X ×Y → (Rd, ∥ · ∥∗) satisfying Assumption 2.4.6. In particular, if

ϕ satisfies Assumption 2.4.5 and φ is non-decreasing, Assumption 2.4.5

is satisfied with φmax,HB,ϕ = φ(BB∗). If φ is finite-valued, Assump-

tion 2.4.5 is an assumption on H only, but at our convenience we use

a constant that bounds the transformed scores.

Assumption 2.4.5 (Scores are bounded). There exists a constant φmax,H

s.t.

sup
h∈H,x∈X ,k∈Y

φ(h(x)k) ≤ φmax,H.

Assumption 2.4.6 (Feature vectors have bounded norm). There exists

B∗ ≥ 0 s.t. supx∈X ,k∈Y∥ϕ(x, k)∥∗ ≤ B∗.

The structure we chose for the costs will allow us to analyze CBPI in the

setting studied by Lazaric et al. (2016) (detailed in Section 3.2). As a special

case, with m = 1 we recover our original classification learning problem

from Section 2.1 (although taking m = 1 in our bounds ahead will give

slightly worse constant factors than if we use m = 1 in the analysis from

the outset). The surrogate loss LLLW is amenable to our analysis due to its

simple structure. Moreover, Theorem 2.3.4 gives us calibration functions

31

for this loss if we impose some additional assumptions on H to ensure

that scores always sum to zero. As we discuss in Section 2.5, it would be

interesting to generalize our bounds beyond our specific choice of surrogate

loss.

To conclude these preliminaries, we present some additional definitions.

For p ≥ 1 the p-norm over Rd is defined by

∥v∥p
p

.
=

d

∑
l=1
|vl|p,

and ∥v∥∞
.
= maxl|vl| for v ∈ Rd. Definition 2.4.7 introduces coverings in

vector spaces equipped with a semi-norm.

Definition 2.4.7. Given a vector space F and a semi-norm ∥ · ∥F over F , we say

that a set C ⊂ F ′ ⊂ F is an ε-covering of F ′ in ∥ · ∥F if

sup
f ′∈F ′

inf
f∈C

 f − f ′

F < ε.

The F -norm-ε-covering number of F ′ is defined for all ε > 0 as

N∥ · ∥F (ε,F ′) .
= inf{|C| : C is an ε-covering of F ′ in ∥ · ∥F}.

In this section, we are interested in ∥ · ∥-covering numbers of the restric-

tion of score functions to n-sized samples, denoted by N∥ · ∥ : R+ ×N×
(R|Y|)X →N∪ {∞} (the ∥ · ∥ is a norm over Rn×|Y|) and defined by

N∥ · ∥(ε, n,H)
.
= sup

(x1,...,xn)∈X n
N∥ · ∥(ε, {(i, k) ↦→ h(xi)k : h ∈ H}). (2.4.3)

We also define φ ◦ H .
= {φ ◦ h : h ∈ H}. We will only consider two norms

over Rn×|Y|, the max-norm and the Frobenius norm, defined respectively

by

∥v∥∞/∞
.
= max

i∈[n],k∈Y
|vi,k|,

∥v∥F
.
=

√ n

∑
i=1

|Y|

∑
k=1

(vi,k)2,

for v ∈ Rn×|Y|, and we will write N∞/∞
.
= N∥v∥∞/∞

as well as NF
.
= N∥v∥F

.

32

2.4.2 Risk Bounds

Our first result, Lemma 2.4.8, gives an upper-bound on how fast the em-

pirical surrogate risk concentrates around the surrogate risk, with high

probability. We need to account for the fact that for each i ∈ [n] the cost

estimates C′i,1, . . . , C′i,m are not independent, albeit conditionally indepen-

dent given Xi. To do so, we follow the strategy used by Lazaric et al. (2016,

Lemmas 3 and 4): We first study the concentration of the empirical risk

around its expectation conditioned on X1, . . . , Xn, then we study the con-

centration of this quantity around the surrogate risk. However, differently

from Lazaric et al. (2016), who upper-bound the costs uniformly (using

only Cmax), we note that this two-step concentration analysis allows us to

have C′max appear multiplying the “slower” n−
1
2 term, with the potentially

bigger Cmax multiplying the “faster” (nm)−
1
2 term. Occasionally, we may

be able to choose m, in which case we can make a choice that minimizes

the upper-bound of Lemma 2.4.8 up to constant factors: m =
(

Cmax
C′max

)2
(cf.

m = 1 suggested by Lazaric et al., 2016, Theorem 5).

Lemma 2.4.8. For any H ⊂ H satisfying Assumption 2.4.5, φ satisfying As-

sumptions 2.4.3 and 2.4.4, δ ∈ (0, 1) and h ∈ H, if S satisfies Assumption 2.4.2

then we have with probability at least 1− δ that

⏐⏐⏐Rsurr(h)− R̂surr(h, S)
⏐⏐⏐ ≤ φmax,H

√
1

2n
ln

4
δ

(
C′max + Cmax

√
1
m

)
.

We can follow the steps of Pollard (1984, Symmetrization, pp. 14–15,

and Theorem 24, pp. 25–26) and use Lemma 2.4.8 to bound the con-

centration of the empirical risk for all score functions in H (simultane-

ously). Differently from Pollard (1984), we must account for dependen-

cies in the sample and make sure that the bound is given in terms of

a covering number of the set {(i, k) ↦→ φ(h(Xi)k) : h ∈ H}, rather than{
(i, j, k) ↦→ C′i,j,k φ(h(Xi)k) : h ∈ H

}
. Covering number bounds for the latter

set may be significantly looser than covering number bounds for the former

set.

33

Lemma 2.4.9 gives a bound on the concentration of empirical risks of

all score functions in H. We can see that the dependencies on n and m are

inherited from Lemma 2.4.8 (up to constant factors), and that the covering

number N∞/∞

(
2 φmax,H

nm , n,H
)

appears. As we will see in Lemma 2.4.10

and Theorem 2.4.11, for Hϕ,B, our upper-bound on the logarithm of this

covering number scales linearly with d (the number of features) and loga-

rithmically with m and n.

Lemma 2.4.9. For any H ⊂ H satisfying Assumption 2.4.5, φ satisfying As-

sumptions 2.4.3 and 2.4.4, and δ ∈ (0, 1), if S satisfies Assumption 2.4.2 then we

have with probability at least 1− δ that

sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h)
⏐⏐⏐

≤ φmax,H

√
32
n

ln
16N

δ

(
2C′max + Cmax

√
1
m

)
,

where

N = N∞/∞

(
2

φmax,H
nm

, n, φ ◦ H
)

.

Lemma 2.4.10 gives us a covering number bound for Hϕ,B. The result

relies on well-known bounds on the maximum size of a minimum-covering

of the d-dimensional ball of radius B. Indeed, we can transform such a

covering into a covering of {(i, k) ↦→ φ(h(Xi)k)) : h ∈ H}, by Lipschitzness

of w ↦→ ⟨ϕ(x, k), w⟩ and of φ in the interval [−BB∗, BB∗].

Lemma 2.4.10. With ϕ satisfying Assumption 2.4.6 and φ satisfying Assump-

tions 2.4.3 and 2.4.4, for any n ∈N, we have that

ln N∞/∞(ε, n, φ ◦ Hϕ,B) ≤ d ln
(

1 +
2BB∗

ε
Lipφ(BB∗)

)
We can plug Lemma 2.4.10 into Lemma 2.4.9 to get risk bounds for

empirical surrogate risk minimizers (of LLLW) in Hϕ,B, as seen in Theo-

rem 2.4.11. The scaling of the risk bound in Theorem 2.4.11 is the “usual”

in terms of n: proportional to
√

ln n
n , where the ln n factor comes from the

covering number bound (as we will mention in Section 2.5, the dependency

34

may be improved if refine the proof of Lemma 2.4.9). On the other hand, in

terms of m the bound in Theorem 2.4.11 scales with
√

ln m, since ultimately

the term 2C′max dominates Cmax

√
1
m . As a sanity check, we see that the risk

bound scales with the square-root of the number of features, which upper-

bounds the graph dimension of Hϕ,B (combine Daniely et al., 2013, Theorem

3.5 and Anthony and Bartlett, 2009, Theorem 3.5, p. 37). In this sense, the

right-hand side is somewhat similar to what we would obtain for empirical

true-risk minimization over linear classifiers. (Of course, Theorem 2.4.11

gives us a surrogate-risk bound for empirical surrogate risk minimizers in

Hϕ,B.)

Theorem 2.4.11. With φ satisfying Assumptions 2.4.3 and 2.4.4, ϕ satisfying

Assumption 2.4.6, for any δ ∈ (0, 1) if S satisfies Assumption 2.4.2 then we have

with probability at least 1− δ that

Rsurr(Ĥϕ,B, S)− inf
h∈Hϕ,B

Rsurr(h, S)

≤ 2φ(BB∗)

√
32d
n

ln
20c
δ

(
2C′max + Cmax

√
1
m

)

where

c =

(
1 +

BB∗Lipφ(BB∗)

φ(BB∗)
nm

)
.

In a non-parametric setting, we see that Theorem 2.4.11 allows us to

have B “grow” polynomially with n without affecting the risk bound by

more than a constant factor. This is convenient when the feature extractor

is expressive enough for the approximation error, the surrogate risk of the

best score function in Hϕ,B, to decrease significantly as B → ∞, in which

case one could choose B to trade off the risk bound and the approximation

error.

Because we are controlling the magnitude of the weights underlying

the score functions (via the constant B), we would expect risk bounds

with a better scaling in terms of d, as, for example, controlling the 1-norm

does (Bartlett et al., 2012, Theorem 1.2), rather than, for example,
√

d as in

35

Theorem 2.4.11. In this sense, can we improve over Theorem 2.4.11? Indeed

we can, if we use different covering numbers.

Lemma 2.4.12 is an analogue of Lemma 2.4.9 that uses Frobenius-norm

covering numbers instead of ∞/∞-norm covering numbers. The bound

in Lemma 2.4.12 is quite similar to the one in Lemma 2.4.9, except for the

covering number and the resolution of the covering (for an ε-covering, we

informally refer to 1
ε as its resolution). In Lemma 2.4.9, we need a covering

whose resolution scales with nm, whereas in Lemma 2.4.12 the resolution of

the covering scales with
√

m
|Y| . This scaling may be an artifact of the proof,

and the factor of
(√

1
m ∨

C′max
Cmax

)
in (2.4.4) may be avoidable, but we have

not been able to remove it. On its own, Lemma 2.4.12 does not necessarily

improve over Lemma 2.4.9. However, for Hϕ,B we can use a result by Zhang

(2002) to show an improvement over Theorem 2.4.11.

Lemma 2.4.12. For any H ⊂ H satisfying Assumption 2.4.5, φ satisfying As-

sumptions 2.4.3 and 2.4.4, and δ ∈ (0, 1), if S satisfies Assumption 2.4.2 then we

have with probability at least 1− δ that

sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h)
⏐⏐⏐

≤ φmax,H

√
32
n

ln
16N

δ

(
2C′max + Cmax

√
1
m

)
,

where

N = NF

(
φmax,H

√
|Y|
(√

1
m
∨ C′max

Cmax

)
, n, φ ◦ H

)
. (2.4.4)

Lemma 2.4.13 is the analogue of Lemma 2.4.10 for Frobenius-norm

covering numbers. The result itself is a simple consequence of covering

numbers bounds due to Zhang (2002, Theorem 3 and Corollary 3). We

can see that the bound on the logarithm of the covering number scales

quadratically with resolution of the covering, but only logarithmically with

the number of features—or, if the norm underlying the definition of Hϕ,B

is a Frobenius norm, the bound does not depend at all on the number of

36

features (but scales logarithmically with the sample size and the number of

classes).

Lemma 2.4.13. If ϕ satisfies Assumption 2.4.6, φ satisfies Assumptions 2.4.3

and 2.4.4, and the norm underlying the definition of Hϕ,B is ∥ · ∥p for p ≥ 1, then

for any n ∈N we have that

ln NF(ε, n, φ ◦ Hϕ,B) ≤

⎡⎢⎢⎢
(

Lipφ(BB∗)BB∗
ε

)2
⎤⎥⎥⎥ log2(2d + 1).

If, additionally, p = 2, then we also have

ln NF(ε, n, φ ◦ Hϕ,B) ≤

⎡⎢⎢⎢
(

Lipφ(BB∗)BB∗
ε

)2
⎤⎥⎥⎥ log2(n|Y|+ 1).

To conclude this section, we present Theorem 2.4.14, which is obtained

by combining Lemmas 2.4.12 and 2.4.13. We see that the bound in Theo-

rem 2.4.14 is the maximum of two bounds, and the condition (2.4.5) deter-

mines (up to constant factors) which one of the two is worse. Indeed, if

Equation (2.4.5) holds we have ε1 ∨ ε2 = ε1, otherwise we have ε1 ∨ ε2 ≤ 6ε2.

The bound in Theorem 2.4.14 does not scale with m, since for m large

enough the constant 2C′max dominates in ε1, and ε2 is constant w.r.t. m.

In contrast, the bound Theorem 2.4.11 scales with
√

ln m. Moreover, the

scaling of the bound in Theorem 2.4.14 in terms of d greatly improves over

Theorem 2.4.11, with a stronger dependence on the constants BB∗ (and the

Lipschitz constant of φ). In a non-parametric setting, in contrast to Theo-

rem 2.4.11, where we could scale B polynomially with n without affecting

the bound significantly, here we can scale d polynomially with n without

significant effects on the bound, for B constant. The most interesting aspect

of Theorem 2.4.14 is that the bound does not scale with the number of

classes—ultimately, as |Y| increases (and everything else is fixed), we will

have ε1 ≥ ε2. How is the the cost-sensitive classification problem in our

setting not statistically harder for |Y| very large? It is likely that even the

best hypothesis in Hφ,B cannot do well in challenging instances with too

37

many classes, since the hypotheses in Hφ,B have limited expressiveness

(constrained by d and B), so competing against the best hypothesis in Hφ,B

should not become more challenging with very large |Y|.

Theorem 2.4.14. With φ satisfying Assumptions 2.4.3 and 2.4.4, ϕ satisfying

Assumption 2.4.6, for any δ ∈ (0, 1) if S satisfies Assumption 2.4.2 then we have

with probability at least 1− δ that

Rsurr(Ĥ, S)− inf
h∈Hϕ,B

Rsurr(h, S) ≤ ε1 ∨ ε2,

where

ε1 = 2φ(BB∗)

√
32
n

ln
20(2d + 1)

δ

(
2C′max + Cmax

√
1
m

)
,

ε2 = 12Lipφ(BB∗)BB∗Cmax

√
32

n|Y| ln
20(2d + 1)

δ
.

Moreover, if √
1
m
∨ C′max

Cmax
≥

Lipφ(BB∗)BB∗
φ(BB∗)

√
1
|Y| . (2.4.5)

then ε1 ≥ ε2, otherwise ε1 ≤ 6ε2.

In the common setting where we have one d′-dimensional weight vector

for each class (“class-independent weights”), each constrained to have norm

at most some B′, the bound in Theorem 2.4.14 scales with
√

ln|Y|. To see

this, consider the setting where ϕ(x, k) = ϕ′(x)⊗ ek where ϕ′ : X → Rd′ is

a feature extractor over X only, ⊗ denotes the Kronecker product, and ek is

the k-th |Y|-dimensional elementary vector. If the norm underlying Hϕ,B

is the Frobenius norm, we can constrain the 2-norm of the weight vectors

for each class individually, to be at most B′, which gives us the hypothesis

class H
ϕ,
√
|Y|B′ . In this case, we still have suph∈H,x∈X ,k∈Y |h(x)k| ≤ B′B∗,

but d = |Y|d′. Therefore, ε1 in Theorem 2.4.14 scales with
√

ln|Y| and ε2

becomes

Rsurr(Ĥ, S)− inf
h∈Hϕ,B

Rsurr(h, S)

≤ 12Lipφ(B′B∗)B′B∗Cmax

√
32
n

ln
20(2d′|Y|+ 1)

δ
.

38

2.4.3 Discussion and Related Work

Comparison to other surrogate risk bounds. To the best of our knowl-

edge, there are no surrogate risk bounds in cost-sensitive multiclass classi-

fication. In binary classification, Vapnik (2013, p. 76) upper-bounded the

performance of the empirical true risk minimizer in the context of cost-

sensitive classification. The surrogate risk bound presented by Zadrozny

et al. (2003, Theorem 2.2) is about converting bounds on the cost-insensitive

true risk into bounds on the cost-sensitive true risk, whereas Scott (2011)

have explored bound conversion in cost-sensitive binary classification using

calibration functions.

Koltchinskii and Panchenko (2002), Mohri et al. (2012, Theorem 8.1,

p. 187), Kuznetsov et al. (2014), Lei et al. (2015) and Maximov and Reshetova

(2015) present surrogate bounds in the context of cost-insensitive multi-

class classification. The surrogate loss used is the margin loss, defined by

Lφ,z(s, y) .
= φ(z + maxy′ ̸=y sy′ − sy) for some φ s.t. φ(t) ≥ I{t ≥ 0} for all

t ∈ R, and z ≥ 0. There is some intersection of all those results and ours,

because in all cases the main challenge is bounding

sup
h∈H

⏐⏐⏐R̂surr(Ĥ, S)− Rsurr(Ĥ, S)
⏐⏐⏐

with high probability (see Proposition 2.4.1). However, the surrogate loss

we consider, 1
|Y|L

LLW in the cost-insensitive case, is substantially different

from the margin loss Lφ,z, so that we cannot meaningfully compare bounds

if the goal is minimizing the surrogate risk. Nevertheless, we could consider

comparing true risk bounds obtained from these surrogate risk bounds.

True risk bounds. While no |Y| appears in the surrogate risk bounds

given by Theorem 2.4.14, that is not the case for the true risk bounds

we can get from our surrogate risk bounds given by Theorem 2.4.11 or

Theorem 2.4.14 (see also Theorem 3.2.4). By reduction to Theorem 2.3.4, if

δ(ε) is a calibration function for LLLW, then 1
|Y|δ(ε) is a calibration function

for 1
|Y|L

LLW (see also Definition 2.2.1), so based on the current results we

39

need to scale surrogate risk bounds by |Y| before converting them into

true risk bounds. As we will discuss in Section 2.5, the appearance of this

undesirable factor of |Y| is a limitation of the calibration results.

Koltchinskii and Panchenko (2002), Mohri et al. (2012, Theorem 8.1,

p. 187), Kuznetsov et al. (2014), Lei et al. (2015) and Maximov and Reshetova

(2015) obtain true risk bounds for their surrogate risk bounds by using the

fact that for every score function h we have (w.p. one)

I{ f (h(X)) ̸= Y} ≤ inf
z≥0

Lφ,z(h(X), Y). (2.4.6)

It is possible to show (see Ávila Pires and Szepesvári, 2016a, Section 2)

that (2.4.6) can be hopelessly loose even if f ◦ h for some h ∈ H is optimal,

and that we should use calibration functions to perform bound conversion

instead. However, the margin loss is not amenable to a calibration argu-

ment: For example, if φ is non-decreasing, we can show that Lφ,z can be

transformed into an instance of the loss of Crammer and Singer (2003), for

which no calibration function exists9 (see Zhang, 2004).

2.5 Conclusion

In this chapter, we presented a novel cost-sensitive multiclass classification

loss, and a calibration function for it. This novel loss, LZhang, generalizes

the loss proposed by Zhang (2004), which in turn generalizes, among

other losses the multiclass logistic regression loss. We also described a

simple process to obtain cost-sensitive losses and calibration functions from

cost-insensitive losses and their calibration functions. Moreover, we have

also presented novel surrogate risk bounds for the cost-sensitive multiclass

9 Nevertheless, margin losses are popular choices in empirical studies (see, e.g. Bakir
et al., 2007), with evidence of good performance in low-noise settings (Doğan et al., 2016).
Moreover, the loss of Crammer and Singer (2003) in the cost-insensitive setting is known to
have a calibration function w.r.t. distributions of Y where some one label has probability
at least 1

2 (Zhang, 2004, p. 1233). It may be the case that under the Mammen-Tsybakov
Noise condition (Mammen and Tsybakov, 1999; Boucheron et al., 2005; Bartlett et al., 2006)
one can obtain calibration functions for the loss of Crammer and Singer (2003) (and other
margin losses), but to the best of our knowledge this line of work has not yet been pursued.

40

classification. These bounds apply to the loss LLLW. There is a number of

interesting refinements and extensions that we can consider to our bounds.

The calibration function in Theorem 2.3.6 applies to a decoupled variant

of the loss proposed by Zhang (2004). Ávila Pires and Szepesvári (2016a)

presents calibration functions to the cost-insensitive logistic regression loss

as well, so it would be interesting to have results for the coupled formulation,

at the very least for a cost-sensitive generalization of the logistic regression

loss.

Because we presented a calibration function for a decoupled LZhang (with

ψ non-decreasing and F(t) = t), we could think of surrogate risk bounds

for it as well, besides just LLLW. These results would be a standard exercise

of re-doing the analysis in Section 2.4 with a loss that, from the point of

view of the analysis, is similar to LLLW.

A more interesting endeavor would be to re-do the analyses in Sec-

tions 2.3 and 2.4 using the Mammen-Tsybakov Noise condition (Mammen

and Tsybakov, 1999; Boucheron et al., 2005; Bartlett et al., 2006). The

Mammen-Tsybakov noise condition, in binary classification, condition in-

terpolates between a noiseless-label (realizable) scenario and a scenario

with no assumptions on the marginal distributions of Y given X. The

rates of the true-risk upper-bounds obtained for empirical true-risk min-

imization interpolate between the usual
√

1
n -rates (in the no-assumption

scenario) and fast, 1
n -rates in the noiseless scenario (Boucheron et al., 2005).

Bartlett et al. (2006) presented similar results (interpolating rates for true-

risk upper-bounds) for empirical surrogate-risk minimizers in the case

of cost-insensitive binary classification with strictly convex margin-based

losses (that is, LLLW with φ strictly convex and |Y| = 2). Ávila Pires and

Szepesvári (2016a) extended the calibration results of Bartlett et al. (2006)

to the cost-insensitive multiclass case, but did not present surrogate risk

bounds as Bartlett et al. (2006) did. Farahmand et al. (2014) generalized the

Mammen-Tsybakov noise condition to the cost-sensitive multiclass classifica-

tion case, and presented true-risk bounds for empirical true-risk minimizers.

41

Therefore, what remains to be done is to: i) generalize the fast-rate calibra-

tion results of Bartlett et al. (2006); Ávila Pires and Szepesvári (2016a) to

the cost-sensitive case; ii) re-do the analysis in Section 2.4 with Bernstein’s

inequality (Steinwart and Christmann, 2008, Theorem 6.12, p. 213) instead

of Hoeffding’s inequality (see Boucheron et al., 2005, Section 5.2); and iii)

bound Var(L(h(X), C)− L(h′(X), C)) for any h, h′ ∈ H. The third step has

been done for the cost-insensitive binary case by Bartlett et al. (2006, see

Theorems 4 and 5), where it has been noted that, in order to obtain fast-rates,

strictly convex surrogate losses are recommended.

While the extensions of our results to LZhang do not seem very interesting,

the fast-rate extensions using the Mammen-Tsybakov noise condition with

strongly convex LZhang are much more appealing. For example, we could

take ψ(t) = −t, and φ = φexp, which give us losses related to logistic

regression (in particular, as mentioned before, with F(t) = ln t in the cost-

insensitive case we get the logistic regression loss).

We are also able to improve Lemmas 2.4.9 and 2.4.12. In the proofs of

these results, after a symmetrization step, we have used a union bound over

a covering of {(i, k) ↦→ φ(h(Xi)k : h ∈ H} to obtain the final result. Using

this union-bound is sub-optimal, and the bounds of Lemmas 2.4.9 and 2.4.12

can be improved (with better dependencies on covering numbers) if we

using chaining instead (see Koltchinskii, 2011, Chapter 3 and Steinwart and

Christmann, 2008, Chapter 7).

The techniques used for obtaining calibration functions also have room

for improvement. As claimed in Section 2.4.3 (and as we will see in Sec-

tion 3.2), when converting surrogate risk bounds using Theorem 2.3.4 (and

also Theorem 2.3.6), a factor of |Y| is introduced to the true risk bounds.

This is a flaw of results that lower-bound δmax by δbinary. We speculate that

a bound of the form δmax(ε, p) ≥ δbinary(ε, p′) (cf. Theorems 2.3.4 and 2.3.6)

is not possible (even up to constant factors) for 1
|Y|L

LLW or 1
|Y|L

Zhang, but at

the same time we may be able to improve Theorems 2.3.4 and 2.3.6.

While the focus of this chapter and, in fact, this dissertation, is theo-

42

retical, there is interesting empirical research where surrogate losses are

compared. For example, Doğan et al. (2016) experimentally compare differ-

ent cost-insensitive multiclass classification surrogate losses, where most

loss choices (including LLLW,CI) provide competitive results on the datasets

considered, except in seemingly low-noise scenario, where the loss pro-

posed by Crammer and Singer (2003) is preferable in both predictive and

computational performance. To the best of our knowledge, empirical com-

parisons in the cost-sensitive multiclass case have not been pursued, but,

in our opinion, they would be interesting. The cost-sensitive setting (with

random costs) can be quite different from the cost-insensitive setting. On

the one hand, misclassification (w.r.t. the label with lowest expected cost) is

not an issue if another low-cost label is chosen. On the other hand, noise on

the costs can affect classifiers in ways that are not understood (as observed

by Pires and Szepesvári, 2015, in the context of CBPI).

43

Chapter 3

Classification-Based Policy
Iteration

In this chapter, we present an extended analysis of Classification-Based Pol-

icy Iteration. As remarked in Section 1.2, CBPI falls under the category of

so-called direct policy learning (DPL) methods, which also includes policy

gradient (Sutton et al., 1999), conservative policy iteration (Kakade and Lang-

ford, 2002), and classification-based methods for learning non-stationary

policies (Langford and Zadrozny, 2003; Bagnell et al., 2003; Langford and

Zadrozny, 2005). The common feature of these methods is that they attempt

to learn a policy without estimating value functions. This creates the poten-

tial for DPL methods to perform well in scenarios where generalized policy

iteration (GPI) may fail, e.g., when the representation is expressive enough

for representing near-optimal policies, but not near-optimal value functions.

One such case is the (SZ-)Tetris scenario outlined in Section 1.2.

At the core of CBPI there is a classification method, whose performance

(the true risk) is determinant to the performance (the policy error) of the

policies computed by CBPI. The two existing analysis of CBPI (Farahmand

et al., 2014; Lazaric et al., 2016) apply to instances of CBPI that rely on

an “impractical” classification method (recall that by “practical” we mean

classification algorithms that can be executed efficiently and therefore used

in practice). The method used is empirical true-risk minimization, where

the true risk is the cost-sensitive classification error. Because the empirical

44

true risk is not convex, empirical true-risk minimization may require solving

a combinatorial problem that is often computationally hard (see Section 2.2).

Therefore, we have performance guarantees for CBPI methods that we

cannot use in practice, and we can define instances of CBPI that we can

use in practice, but which enjoy no performance guarantees. What we

do in this chapter is to extend the analysis of Lazaric et al. (2016), so that

we have performance guarantees for instances of CBPI that use a practical

classification method.

The classification algorithm that we consider in this chapter corresponds

to empirical surrogate-risk minimization with the surrogate loss LLLW and

φhinge over the set of linear score functions Hϕ,B. Not surprisingly, this is the

classification method for which we have presented surrogate risk bounds in

Section 2.4. Moreover, we can use calibration functions from Theorem 2.3.4

to convert these surrogate risk bounds into true risk bounds. These true

risk bounds can then be plugged into a result by Lazaric et al. (2016) that

gives us a bound on the policy error of the policy constructed by CBPI, as a

function of the performance of the classification method used.

The outline of this chapter is as follows. We start by introducing CBPI

through a novel, unified view of the method, in Section 3.1. This unified

view of CBPI encompasses the different variants of the method studied in

the literature, and allows us to really understand what is, in our opinion,

the essential structure of CBPI, and also to identify the components that

can be easily changed. In Section 3.2, we present the analysis of CBPI per se,

and in Section 3.3 we discuss future work.

While we do not develop an extension of the analysis of CBPI by Farah-

mand et al. (2014), the extensions discussed in Section 2.5 are much relevant

to their analysis of CBPI, and we discuss these connections in Section 3.3.

45

3.1 A Unified View of CBPI

The classification-based policy iteration algorithm is given in Algorithms 3.1.1

and 3.1.2. Each iteration in CBPI requires three (blackbox) components to

Algorithm 3.1.1 Classification-based policy iteration
input: An initial policy π0, a number of iterations K, a per-iteration number

of observed states n
output: A policy πK

procedure CBPI(K, π0, n)
for k ∈ [K] do

Set the state provider States

Set the cost estimator CostEstimate

Set the cost-sensitive multiclass classification method Classifier

(x1, . . . , xn)← States(n)
πk ← Iteration((x1, . . . , xn), CostEstimate, Classifier)

end for
end procedure

be set: a state provider States, a cost estimator CostEstimate, and a clas-

sification method Classifier (the components are named after what they

yield). Then CBPI constructs a policy using the Iteration procedure, which

is the defining trait of CBPI in comparison to other policy iteration methods.

Algorithm 3.1.2 gives a detailed description of Iteration. Different variants

Algorithm 3.1.2 Iteration routine for CBPI.
input: States (x1, . . . , xn) ∈ X n, a cost estimator CostEstimate, a cost-

sensitive classification method Classifier

output: A policy
procedure Iteration((x1, . . . , xn), CostEstimate, Classifier)

for all i ∈ [n], a ∈ A do
Ci,a ← CostEstimate(xi, a)

end for
return Classifier(x1, . . . , xn, C1, . . . , Cn) ▷ ∀i, xi ∈ X , Ci ∈ R|A|

end procedure

of CBPI have been analyzed and evaluated empirically (Bagnell et al., 2003;

Fern et al., 2003; Lagoudakis and Parr, 2003a; Lazaric et al., 2010; Gabillon

et al., 2011, 2013; Farahmand et al., 2014; Lazaric et al., 2016), and all these

46

methods are described by Algorithm 3.1.1 and Algorithm 3.1.2, with the dif-

ferences lying in which specific choices are made for the three components,

States, CostEstimate and Classifier.

Indeed, at each iteration these CBPI instances can be seen to execute

the following steps: i) for a given set of states and actions, a blackbox

CostEstimate produces an estimate of the cost associated with taking each

action at each given state; and ii) a Classifier produces an approximately

greedy policy from the costs estimates. Between iterations, as seen in Algo-

rithm 3.1.1, States, CostEstimate, Classifier and the states (x1, . . . , xn)

may change. For example, the CostEstimate blackbox may work as follows.

Monte Carlo value estimates are generated by performing rollouts with a

behavior policy π (which can change between iterations) and then these

value estimates are used to construct the cost estimates. For a given value

estimate V ∈ R|A| for a state x, at least two different cost-estimates can be

obtained: The negative value estimates −V and the estimated disadvantages

of the actions (maxa Va)1−V. The second option may be used if the costs

are required by the Classifier to be non-negative (as will be the case in

Section 3.2).

In practice, we may want to use Algorithm 3.1.2 with state-dependent

action spaces, which is typically an extension that can be easily incorporated

into common classification methods. We could further generalize Algo-

rithm 3.1.2 to allow a sequence of state-action pairs ((x1, a1), . . . , (xn, an)) ∈
(X ×A)n to be given as an argument. This generalization would require

Classifier to be able to generalize both across states and actions, which is to

the best of our knowledge unexplored in cost-sensitive classification, albeit

conceivable, based the structured prediction1 literature (see, e.g., Pérez-Cruz

et al., 2007; Bakir et al., 2007).

1 Structured prediction can be seen as cost-insensitive classification with an extremely
large number of classes where classes may be related under some notion of similarity,
and where minimizing typical classification losses cannot be done because the cost of
computing minimizers and evaluating these losses typically scales linearly with the number
of classes, as we can see from Table 3 in Ávila Pires and Szepesvári (2016a).

47

The nature of the value estimates underlying the cost estimates can vary

greatly. For example, Lazaric et al. (2010), Lazaric et al. (2016) and Bagnell

et al. (2003) use the average of Monte Carlo rollouts as the value estimator.

Farahmand et al. (2014), Gabillon et al. (2011) and Gabillon et al. (2013), in

contrast, use hybrid estimates that combine value-function estimates and

value estimates. Moreover, it is possible to have CostEstimate reuse obser-

vations (similarly to Lagoudakis and Parr, 2003b) over different iterations,

or to combine policies from previous iterations into a rollout policy (Bagnell

et al., 2003).

The state provider States is critical to the performance and analysis of

CBPI. Bagnell et al. (2003); Farahmand et al. (2014); Lazaric et al. (2016) as-

sume that States allows us to observe i.i.d. states from a given distribution.

Evidently, the nature of the distribution will affect the policy error guaran-

tees that we can obtain (see the concentrability coefficients in Theorem 3.2.7).

For example, a distribution that is closer to a stationary distribution of the

optimal policy can be expected to lead to better classifiers (that is, better

policies). Relaxations of the i.i.d. assumption, e.g. fast mixing, have been

explored in the context of other policy iteration methods (e.g. Antos et al.,

2008b), but not in CBPI, to the best of our knowledge.

As for Classifier, we can see it as an operator G′ : Rn|A| → Π, in which

case the k-th iteration of CBPI produces

πk = G′v

where va
i ≈ (TPVπ′k)a(xi) for a given sequence (x1, . . . , xn) ∈ X n, and π′k is

a policy underlying the cost estimates produced by CostEstimate (in some

instances we may have π′k = πk−1). For classifiers based on score functions,

we can further write

πk = GHv

where H : Rn|A| → VA gives us score functions over the whole state-action

space, and G is the greedy operator. In contrast, GPI outputs

πk = GV

48

at iteration k, where V ≈ TPVπk−1 and π0 is some initial policy. The fact

that Hv is a scores function (and not a value function estimate, such as V)

means that we can be much more flexible about its construction. Indeed, it

suffices for GHv ≈ π∗ for us to perform well, even if MHv is not close to

MTPV∗ at all. On the other hand, GPI relies on having V ≈ TPV∗, as we

can see from policy error bounds, which are given in terms of ∥V −V∗∥
(Bertsekas, 2012, Proposition 3.1).

The Classifier routine has seen different instantiations in the literature.

Fern et al. (2003) use rule-based classifiers. Lagoudakis and Parr (2003a)

take (with ties broken arbitrarily)

argmin
π∈Π′

1
n

n

∑
i=1

I

{
π(xi) ̸= argmin

k
Ci,k

}
,

which Li et al. (2007) show not to be a sensible objective for Classifier

because it is not cost-sensitive (thus underweighting errors that cause

large losses in terms of the return, and overweighting errors that do not

significantly affect the return). Lazaric et al. (2010); Farahmand et al. (2014);

Lazaric et al. (2016) propose taking

argmin
π∈Π′

1
n

n

∑
i=1

Ci,π(xi)
, (3.1.1)

with Π′ ⊂ Π given. Lazaric et al. (2010); Farahmand et al. (2014) use

disadvantages as the costs, whereas Lazaric et al. (2016) use negative values.

Objective (3.1.1) is the empirical classification cost (see Section 2.2), which is

non-convex and is usually not efficiently minimizable. This non-convexity

issue can be remedied by replacing the costs (C1, . . . , Cn) with a convex

cost-sensitive surrogate loss, as we have done in Section 2.2 Replacing the

costs with a convex loss in (3.1.1) solves a practical problem, but creates a

gap between instances of CBPI that can be used and instances that enjoy

the statistical guarantees presented by Farahmand et al. (2014); Lazaric et al.

(2016). Bridging this gap is the theme of the next section, and to do so we

will use the classification results established in Chapter 2.

49

3.2 An Extended Analysis of CBPI

With the cost-sensitive classification surrogate risk bounds from Section 2.4

and the ability to convert surrogate risk bounds into true risk bounds,

thanks to Section 2.3, we are able to extend the analysis of Lazaric et al.

(2016) so that it applies to practical instances of CBPI, i.e., instances that

rely on empirical surrogate-risk minimization. Once we have a true risk

bound for the classifier, we can simply plug it in the bound of Theorem

7 of Lazaric et al. (2016) (presented as Theorem 3.2.7 here), to get error

propagation results.

We will start this section by introducing the setting considered by Lazaric

et al. (2016) in a “single-iteration” manner, in Section 3.2.1. This will give

us single-iteration descriptions of States and CostEstimate, and simplify

the statement of our true risk bounds for Classifier, which are given in

Section 3.2.2.

At the end of this section, in Section 3.2.3, we will describe how States

and CostEstimate change at each iteration of CBPI and report Theo-

rem 3.2.7, the policy error bound shown by Lazaric et al. (2016) into which

we can plug our true risk bounds.

3.2.1 Preliminaries

Consider states (X1, . . . , Xn) ∈ X n and define, for j ∈ [m], a ∈ A and

t ∈ [h− 1]

Xi,j,a,0
.
= Xi, Ai,j,a,0

.
= a,

Xi,j,a,t ∼ P(Xi,j,a,t−1, Ai,j,a,t−1), Ai,j,a,t ∼ π(Xi,j,a,t)

Ti,j,a
.
= Xi,j,a,0, Ai,j,a,0, . . . , Xi,j,a,h−1, Ai,j,a,h−1.

(3.2.1)

where π is a given evaluation policy and h > 0 is a horizon. The sample

(X1, . . . , Xn) and the trajectories will be assumed to satisfy Assumption 3.2.1.

For convenience, we let (X, T) be jointly-distributed random variables that

share the common distribution and are independent of (Xi, Ti,j) (i ∈ [n], j ∈
[m]).

50

Assumption 3.2.1. The (X1, . . . , Xn) arei.i.d. For all i ∈ [n], j ∈ [m], a ∈ A,

1. (Ti,1,a, . . . , Ti,m,a) are conditionally independent given Xi,

2. (T1,j,a, . . . , Tn,j,a) are independent,

3. (Ti,j,1, . . . , Ti,j,|A|) need not be independent.

One can generate trajectories that satisfy Assumption 3.2.1 by using

Monte Carlo rollouts with common random numbers (Schruben, 2010)

shared among actions, but independent for each i ∈ [n] and j ∈ [m]. We

define the return along a trajectory

Ret(x0, a0, . . . , xh−1, ah−1)
.
=

h−1

∑
t=0

γtr(xt, at),

which provides a biased estimate of the value of the state-action pair (Xi, a).

Rather than assuming that this bias is bounded, as done by Lazaric et al.

(2016), we will require that the bias of the differences between the returns

along two trajectories (for the same state but different actions) be bounded,

as seen in Assumption 3.2.2. If the rewards are uniformly bounded in abso-

lute value by rmax, then Assumption 3.2.2 is satisfied with Bπ,h = 4 γh

1−γ rmax.

However, Assumption 3.2.2 can be satisfied with smaller values, depending

on the statistical nature of the trajectories. For example, informally, if the

rollout policy π is likely to recover from mistakes in a long trajectory (and

yield close returns for two long trajectories starting from the same state but

different actions), we can expect the bias in Assumption 3.2.2 to be much

smaller than 4 γh

1−γ rmax, especially for large γ. The truncation bias bounded

by Assumption 3.2.2 can help control the variance of the returns, which has

may negatively affect the performance of classifiers and CBPI (Pires and

Szepesvári, 2015).

Assumption 3.2.2. There exists a non-negative constant Bπ,h s.t.

E

(
max

a,a′
(Vπ(X, a)−Vπ(X, a′))− (Ret(Ta)− Ret(Ta′))

)
≤ Bπ,h.

51

In the instance of CBPI analyzed by Lazaric et al. (2016), the Classifier

procedure is required minimize the empirical classification cost, which

(as discussed in Section 2.2) can be computationally hard. Therefore, we

will resort to empirical surrogate-risk minimization with LLLW, so that we

can benefit from the guarantees from Chapter 2. We want to set up the

classification problem so that we can satisfy Assumption 2.4.2 (Section 2.4).

To that end, we the state space X as the input space, take Y = A, and define

C′i,j,a
.
= max

a′
Ret(Ti,j,a′)− Ret(Ti,j,a) (3.2.2)

and C .
= maxa′ Ret(Ta′)− Ret(Ta). (We need the costs to be non-negative,

so we cannot take C′i,j,a = −Ret(Ti,j,a) unless the returns are non-positive

with probability one.)

We also choose φ in LLLW to be φhinge, which has calibration function

δ(ε) = ε (Ávila Pires et al., 2013, Table 1). Choosing φhinge allows us to

satisfy Assumption 2.4.3, Assumption 2.4.4 with Lipφhinge(t) = 1 for all

t ≥ 0, and Assumption 2.4.5 with φmax,Hϕ,B = 1 + BB∗. In order to use

our calibration-function results (see Section 2.3.2) to convert surrogate risk

bounds into true risk bounds, we must ensure that all scores output by

score functions in HB,ϕ sum to zero, so we will impose Assumption 3.2.3

on ϕ.

Assumption 3.2.3. For all x ∈ X , ∑|
A|

a=1 ϕ(x, a) = 0d.

The policy output in an iteration of CBPI will be the output of the

Classifier procedure outlined in Algorithm 3.2.3, that is, the classifier

outputs π̂
.
= f ◦ Ĥ, where Ĥ is as given in (2.4.2) (page 29), with L = LLLW,

φ = φhinge and H = Hϕ,B. The sample given to the Classifier procedure

will be as given in (2.4.1) (page 28):

S .
= ((X1, C′1,1, . . . , C′1,m), . . . , (Xn, C′n,1, . . . , C′n,m)).

We can then use Theorems 2.4.11 and 2.4.14 to obtain true risk bounds for

the classifier π̂.

52

Algorithm 3.2.3 Classifier procedure analyzed in this section.

input: A sample ((x1, c1), . . . , (xn, cn)) ∈ (X ×R|A|)n, a set of score func-
tions H ⊂ (R|A|)X

output: A classifier f ◦ h
procedure Classifier((x1, c1), . . . , (xn, cn),H)

return

h ∈ argmin
h′∈H

1
n|A|

n

∑
i=1

|A|

∑
a=1

ci,a φ(h(xi)a) (3.2.3)

end procedure

3.2.2 True Risk Bounds

Our first result is Theorem 3.2.4, which is obtained by combining Theo-

rems 2.3.4 and 2.4.11. Differently from the surrogate risk bounds, which had

mild (or constant) scaling with |A|, the scaling of the true risk bounds in

Theorem 3.2.4 with |A| is linear. This scaling comes from a limitation of the

calibration analysis, as discussed in Section 2.5. The factor of |A| also scales

the approximation error, which in Theorem 3.2.4 is given in terms of LLLW,

not 1
|A|L

LLW. A choice of m that minimizes the bound in Theorem 3.2.4 (up

to constant factors) is m =
(

Cmax
C′max

)2
. In contrast, Lazaric et al. (2016) recom-

mend (based on their bounds) that one choose m = 1. The choice informed

by Theorem 3.2.4 is somewhat in line with some of the conclusions of Pires

and Szepesvári (2015), which stated that variance in the cost estimates could

negatively affect the performance of Classifier and CBPI. Although we did

not express the bounds in terms of variances, we carried out our analysis so

that we could understand whether there could be any benefit in using more

than one rollout (m > 1) for the cost estimates. Asymptotically, there is no

benefit, but m can be used to eliminate potentially large constant factors

from the bound, since Cmax could be much larger than C′max. The bias of

the truncated rollouts, Bπ,h, is also different from the one used by Lazaric

et al. (2016). Our choice emphasizes that truncation of the trajectories can

help, since we can trade-off Bπ,h, Cmax, and C′max. In the illustrative scenario

where π is likely to recover early from the forceful choice of A0 in the

53

rollouts, we would benefit from truncating the trajectories with a small h,

which would not produce a large bias Bπ,h, but would have the potential to

significantly decrease Cmax and C′max. Theorem 3.2.4 indicates that proper

rollout truncation may benefit performance.

Theorem 3.2.4. Consider a sample S satisfying Assumptions 3.2.1 and 3.2.2 ,

where costs defined as in (3.2.2) and trajectories as in (3.2.1)). Consider also ϕ

satisfying Assumptions 3.2.3 and 2.4.6. For any δ ∈ (0, 1) we have with probability

at least 1− δ that

sup
π′∈Π

E
(
Vπ(X, π′(X))

)
−E(Vπ(X, π̂(X))| S)

≤ inf
h∈H

Rsurr
LLLW(h)− inf

h∈(R|A|)X
Rsurr

LLLW(h) + Bπ,h

+ 2|A|(1 + BB∗)

√
32d
n

ln
20(1 + nm)

δ

(
2C′max + Cmax

√
1
m

)

We are also able to use our results based on Frobenius-norm coverings

to get Theorem 3.2.5. As expected from how Theorem 2.4.11 compares to

Theorem 2.4.14, we see a logarithmic dependence on the number of features

the bound of Theorem 3.2.5, as opposed to the square-root dependence seen

in Theorem 3.2.4. As in Theorem 3.2.4, the bound in Theorem 3.2.5 scales

with |A|, also as a result of the calibration function used. More importantly,

Theorem 3.2.5 informs us to the same choice of m as Theorem 3.2.4 to

minimize the bound in Theorem 3.2.5 (up to constant factors), that is

m =
(

Cmax
C′max

)2
. However, the impact of this choice is not as favorable as in

Theorem 3.2.4, because if the ratio C′max
Cmax

is too small in the sense of (3.2.4)

(which would mean a larger benefit in using the suggested m), the bound

in Theorem 3.2.5 will be given by ε2.

Theorem 3.2.5. Consider a sample S satisfying Assumptions 3.2.1 and 3.2.2 ,

where costs defined as in (3.2.2) and trajectories as in (3.2.1)). Consider also ϕ

satisfying Assumptions 3.2.3 and 2.4.6. For any δ ∈ (0, 1) we have with probability

54

at least 1− δ that

sup
π′∈Π

E
(
Vπ(X, π′(X))

)
−E(Vπ(X, π̂(X))| S)

≤ inf
h∈H

Rsurr
LLLW(h)− inf

h∈(R|A|)X
Rsurr

LLLW(h) + (ε1 ∨ ε2) + Bπ,h

where

ε1 = 2|A|(1 + BB∗)

√
32
n

ln
20(2d + 1)

δ

(
2C′max + Cmax

√
1
m

)
,

ε2 = 12|A|BB∗Cmax

√
32

n|A| ln
20(2d + 1)

δ
.

Moreover, if √
1
m
∨ C′max

Cmax
≥ BB∗

1 + BB∗

√
1
|A| . (3.2.4)

then ε1 ≥ ε2, otherwise ε1 ≤ 6ε2.

To conclude our analysis, we will present Theorem 7 of Lazaric et al.

(2016), which gives us policy error bounds for CBPI, and with which we

can immediately combine Theorems 3.2.4 and 3.2.5.

3.2.3 Policy Error Bounds

So far, we have described the setup for a single iteration of CBPI. For the

policy iteration with K ∈N iterations, we assume that we are given a policy

π0 ∈ Π, a sequence of measures ρ0, . . . , ρK−1 over X , and the Classifier

method. In Definition 3.2.6 we introduce the samples used by Classifier at

each iteration.

Definition 3.2.6. For each k ∈ [K], let πk
.
= A(Sk−1) and where each Sk is an

independent sample satisfying

Sk = ((X1, C′1,1, . . . , C′1,m), . . . , (Xn, C′n,1, . . . , C′n,m))

with (X1, . . . , Xn) ∼ ρn
k−1, the costs C′i,j defined as in (3.2.2), and the trajectories

as in (3.2.1), with π = πk−1.

55

We also define, for V ∈ V ,

∥V∥1,µ
.
=
∫
X
|V(x)|dµ(x),

and

∥V∥∞
.
= sup

x∈X
|V(x)|,

under the respective assumptions that value functions are bounded in norm.

Now that we have outlined the setting studied by Lazaric et al. (2016),

we are able to report their policy error bounds as a function of the true

risk of the classifiers used: Theorem 3.2.7 gives us policy error bounds for

the policy πK obtained after K iterations of CBPI, using Classifier at each

iteration. We can then immediately plug Theorems 3.2.4 and 3.2.5 as (3.2.7)

into Theorem 3.2.7 to obtain policy error bounds for our practical classifiers.

We see that the concentrability coefficients, the quality of the initial policy

π0 and γ affect our decision of when to stop the iteration, but if we have a

fixed “data budget” we need to look at the bound differently: It may seem

as though the bounds scale logarithmically on the number of iterations, but

the fact that the samples S1, . . . , SK are independent introduces a factor of
√

K to the bounds, since we would observe n√
K

states at each iteration.

Theorem 3.2.7 (Adapted from Theorem 7, Lazaric et al., 2016). Given K ∈N;

measures µ, ρ and ρ1 = . . . = ρK = ρ over X ; a cost-sensitive classification

algorithm Classifier; and π0 ∈ Π, assume that Classifier runs algorithm A at

each iteration with inputs S1, . . . , Sk defined as in Definition 3.2.6. Assume that

for any δ ∈ (0, 1) and k ∈ [K] we have with probability at least 1− δ

sup
π′∈Π

E
(
Vπk−1(X, π′(X))

)
−E(Vπk−1(X, π̂(X))| Sk−1) ≤ εk,δ

for some εk,δ, where X ∼ ρk−1 = ρ.

If the concentrability coefficient Cµ,ρ satisfies Assumption 1 of Lazaric et al.

(2016), then for any δ ∈ (0, 1) we have with probability at least 1− δ

∥V∗ −VπK∥1,µ ≤ γK∥V∗ −Vπ0∥1,µ +
Cµ,ρ

(1− γ)2 max
k∈[K]

εk, δ
K

,

56

Alternatively, if the concentrability coefficient C∞,ρ satisfies Assumption 2 of

Lazaric et al. (2016), then for any δ ∈ (0, 1) we have with probability at least 1− δ

∥V∗ −VπK∥∞ ≤ γK∥V∗ −Vπ0∥∞ +
C∞,ρ

(1− γ)2 max
k∈[K]

εk, δ
K

.

3.3 Conclusion

In this chapter, we have used the surrogate and true risk bounds presented

in Chapter 2 in order to extend the analysis of Lazaric et al. (2016) so that it

applies to classification methods that can be used in practice, in particular,

the empirical risk minimizer of LLLW with φhinge (a convex surrogate loss)

over Hϕ,B (a space of linear classifiers), which can be seen to correspond to

a cost-sensitive multiclass SVM.

In Section 2.5, we have touched on fast rates based on the Mammen-

Tsybakov noise condition and strongly convex surrogate losses. Bounds

of this nature are quite relevant to CBPI. Farahmand et al. (2014) have

used the Mammen-Tsybakov noise condition to obtain fast rates for the

empirical risk minimizer of classification cost. As remarked by them, large

gaps between optimal and sub-optimal actions should be detected by the

classifier, and taking sub-optimal actions is not really an issue where gaps

are small. This intuition translates as true risk bounds with faster rates, due

to the Mammen-Tsybakov noise condition.

Following the discussion in Section 2.5, if the Mammen-Tsybakov noise

condition can be leveraged to obtain cost-sensitive classification surrogate

and true risk bounds with faster rates, then it would be interesting to see

them applied in order to extend the analysis of Farahmand et al. (2014).

Also as mentioned in Section 2.5, refining the analysis of Section 2.4 to

incorporate the Mammen-Tsybakov noise condition would require replacing

Hoeffding’s inequality with Bernstein’s inequality. This would expose

the cost variances and help analyze some of the phenomena observed by

Pires and Szepesvári (2015)—in particular, that large cost variance could

render classification methods ineffective. An interesting development, then,

57

would be to seek a better understanding of the truncation bias Bπ,h (see

Assumption 3.2.2), in order to make a more informed bias-variance tradeoff.

One can also consider relaxing the i.i.d. assumption underlying the data

provided to the classifier, for example, introducing fast mixing (Antos et al.,

2008b) in (X1, . . . , Xn). Alternatively, fast mixing could be assumed for

the trajectories Ti,a, which could be a start for better understanding the

truncation bias Bπ,h. In particular, can fast-mixing trajectories make a case

in favor of having small h (trajectories truncated early) without incurring a

large return bias?

Directions pertaining to empirical evaluations of CBPI can also be pur-

sued. It remains to be understood the practical benefits of a particular

choice of surrogate loss in the context of CBPI. As mentioned in Section 2.5,

there are empirical comparisons between surrogate losses in the context of

cost-insensitive classification, but a comparison in the cost-sensitive case

is lacking. In particular, there is very little understanding (theoretical or

empirical) of the cost-sensitive case with random costs. Pires and Szepesvári

(2015) have shown a simple MDP where large variance in the cost estimates

lead to poor classifiers (classifiers with large true risk) and, as a conse-

quence, policies that do not perform well. Therefore, it would be interesting

to understand how to construct low-variance cost estimates that yield effec-

tive classifiers. One way to construct such estimates is the aforementioned

truncation of Monte Carlo rollouts, another are the hybrid cost estimates

(Gabillon et al., 2013; Farahmand et al., 2014).

58

Chapter 4

Model-Based Reinforcement
Learning with Factored
Semi-Linear Models

An alternative to approximately solving an MDP by policy iteration (e.g.

GPI, CPI, CBPI) is to learn a model of the MDP dynamics P , and somehow

use the model instead of P to perform dynamic programming. This is

called model-based reinforcement learning (MBRL).

According to Sutton and Barto (1998) (Section 9.1, p. 227), a model should

approximate P(x, a) for every (x, a) ∈ X ×A. While this requirement is

sufficient for dealing with the statistical challenges of DP, is often difficult to

satisfy and it does not address the potential intractability of DP. The recent

years have witnessed a renewed interest in MBRL, with the emergence of

approaches that did not necessarily try to approximate P(x, a) for every

(x, a) ∈ X × A, and eventually led to a quite flexible concept of what a

model should be.

Barreto et al. (2011); Kveton and Theocharous (2012) and Precup et al.

(2012), building on the seminal work of Ormoneit and Sen (2002), studied

various approaches to stochastic factorizations of the transition probability

kernel, while Grünewälder et al. (2012) proposed to use RKHS embeddings

to approximate the transition kernel, with further enhancements proposed

recently by Lever et al. (2016). A key common feature of these otherwise

distant-looking works is that once the model is set up, it leads to a policy in

59

a computationally efficient way (i.e., in polynomial time and space in the

size of the model). Having realized that this is not a mere coincidence, Yao

et al. (2014) introduced the concept of factored linear models, which keeps

the advantageous computational properties, while generalizing all previous

works. While efficient computation is a necessity, efficient learning and

good performance of the policy are equally important. In this chapter we

focus on the second of these criteria, namely the performance of the policy

derived from the model, more specifically, the policy error as a function of

model errors. The argument for omitting the learning part for the time being

is that one should better understand first what errors need to be controlled

because this will influence the choice of the learning objective and hence the

algorithms (we also note in passing that, in the above-mentioned examples,

the statistical analysis of the model learning algorithms is well understood

by now).

We are not the first to consider the performance of the policy (the policy

error) as a function of the model errors. Most of the previously mentioned

works also present policy error bounds of this nature. However, all these

works derive bounds that express model errors in a supremum norm. While

the supremum norm is a convenient choice when working with MDPs

(which give the theoretical foundations in these works), an observation that

goes back to at least Whitt (1978) is that the supremum norm is also known

to be a rather unforgiving metric: In learning settings, when data comes

from a large cardinality set, and the data may have an uneven distribution,

while the objects of interest lack appropriate smoothness, or other helpful

structural properties, we expect errors measured in the supremum norm

to decrease rather slowly. Furthermore, most learning algorithms aim to

reduce some weighted norms, hence deriving bounds for the supremum

norm is neither natural, nor desirable. Can existing bounds of the policy

error from the MBRL literature be extended to other norms? In the analogue

context of approximate dynamic programming methods, Munos (2003)

pioneered a technique to allow the use of weighted Lp-norms to bound the

60

policy error, while in the context of approximate linear programming (ALP),

de Farias and Van Roy (2003) proposed a different technique to allow the

use of weighted supremum norms, both leading to substantial further work

(Buşoniu et al., 2010a, 2012). While the use of weighted norms is a major

advance, these bounds do not come without any caveats. In particular, in

ALP, the bounds rely on the similarity of the so-called constraint sampling

distribution to the stationary distribution µ∗ of the optimal policy, while in

ADP they rely on the similarity of the data sampling distribution and the

start-state distribution, leading to hard to control error terms. Can this be

avoided by model-based approaches?

In this chapter, we present bounds on the policy error of policies de-

rived from factored semi-linear models in MBRL, following the work of

Ávila Pires and Szepesvári (2016b), but mildly generalizing the factored lin-

ear model framework. The policy error is bounded in supremum, weighted

supremum and weighted Lp norms (Theorems 4.4.3, 4.4.5 and 4.4.7). The

results hold under some conditions: the left factor of the approximate factor-

ization of the transition kernel must satisfy a mild boundedness condition

(Assumption 4.3.7), while the right is not constrained. Ávila Pires and

Szepesvári (2016b) assume that the right factor is a join-homomorphism1.

We introduce, however, a third component of the factored semi-linear mod-

els, which is restricted to be a collection of linear operators (which is, itself

an operator). In the work of Ávila Pires and Szepesvári (2016b), each opera-

tor in this collection coincided with the (linear) right factor of the model.

The last condition is that the product of the third-component operator and

the left factor satisfy a norm constraint. This last condition is not mild as

the others, but it i) generalizes the conditions used to derive previous policy

error bounds; and ii) can be easier to enforce as it constrains the norm of

a low-dimensional operator, unlike the analogue constraints in previous

works. In addition, relinquishing the join-homomorphism condition used

1 An operator J from a semi-lattice (U ,∨) into the semi-lattice (U ′,∨) is a join-
homomorphism if J(U ∨ U′) = (JU) ∨ (JU′) for any U, U′ ∈ U (see Ávila Pires and
Szepesvári, 2016b, Assumption 2)).

61

by Ávila Pires and Szepesvári (2016b) allows us to generalize essentially all

previous work on MBRL that uses the model to compute a policy using DP.

We recover results for unfactored semi-linear models that satisfy a

contraction assumption, including previously proposed supremum norm

bounds. In addition to being able to recover previous results, we also

provide a new type of analysis, which has interesting implications. The new

analysis shows that MBRL can in fact escape the sensitivities in ALP and

ADP (cf. Theorem 4.4.7, term ε1), answering the above major question on the

positive. In fact, the new bound also shows the potential for better scaling

with the discount factor, which is another surprising result. We attribute

this success to the systematic use of the language of Banach lattices, which

forced us to discover amongst other things a definition of mixed norms

for action-value functions which is general, yet makes the so-called value

selection operators non-expansions (cf. Proposition 4.3.2). For the skeptics

who believe that MBRL is “hard” because the derived policy cannot be good

before the model approximates “reality” uniformly everywhere, we point

out that already the first ever bound derived for policy error in MBRL (due

to Whitt, 1978) shows that the model has to be accurate only in an extremely

localized way. Our bounds also share this characteristic of previous bounds.

Our analysis builds on techniques borrowed from approximate policy

iteration (API) and approximate linear programming (ALP), and provide

new insights to existing results for ALP (Proposition 4.3.5). However, the

MBRL setup we consider is nevertheless different from API and ALP, so the

connections in our proofs are not a mere translation of API or ALP results

to MBRL, as we will explain in Section 4.5, which is also attested by the

novel features of our bounds.

In Section 4.2, we will introduce factored semi-linear models. After

this, we state our assumptions in Section 4.3, present our main results in

Section 4.4, and close with placing our work in the context of existing work,

and providing an outlook for future work in Section 4.5. The novel proofs

can be found in Appendix A.3, whereas the proofs of accessory results from

62

Ávila Pires and Szepesvári (2016b) are not presented here.

4.1 Preliminaries

In this section, we build on the definitions given in Section 1.1.2. There,

we have introduced the Banach spaces (V , ∥ · ∥V) and (VA, ∥ · ∥VA), which

have been assumed to contain the value functions and action value functions,

respectively, of all deterministic stationary policies. In this chapter, we will

choose ∥ · ∥V to be supremum, weighted supremum, or Lp(µ) norms. The

choice of ∥ · ∥VA will in general depend on that of ∥ · ∥V , but this will

be made clear in the actual context. As mentioned in Chapter 1, VA can

also be identified with the set of real-valued functions with domain X ×A
(since A is finite). Recall that we are using Va as an alternate notation to

V(a), and that we denote by P a the V → V right linear operator defined

by (P aV)(x) .
= E(V(Xt+1)|Xt = x, At = a) (we have assumed that V ∈ V

implies integrability, so the integrals are well defined). We also view P a

as a left linear operator, acting over the space of probability measures

defined over X : P a :M1(X)→M1(X), (µP a)(X ′) =
∫

dµ(x)dP a(X ′|x),
µ ∈ M1(X), X ′ ⊂ X . In what follows, whenever a norm is uniquely

identifiable from its argument, we will drop the index of the norm denoting

the underlying space.

We extend Bellman return operator defined in Section 1.1.2 to accept

any linear operator J : V → VA by defining: TJV .
= r + JV (V ∈ V).

Then TP is the Bellman return operator originally defined in Section 1.1.2.

Recall that the maximum selection operator M : VA → V is defined by

(MV)(x) .
= maxa Va(x).

Then MTP corresponds to the Bellman optimality operator and the optimal

value function is known to satisfy V∗ = MTPV∗ (Puterman, 1994, Section

6.2). a non-linear fixed-point equation, which is known as the Bellman

optimality equation. The greedy operator G : VA → Π, which selects the

maximizing actions chosen by M, is defined by GV(x) .
= argmaxa Va(x)

63

(x ∈ X , with ties broken arbitrarily). Recall that GTV∗ is an optimal policy

(Puterman, 1994, Section 6.2.4).

As we have postulated in the introduction, RL methods are, one way or

another, trying to perform DP efficiently. In this chapter, we will do so with

online planning. In the online planning problem, we wish to compute, at any

given state x, an action that a near-optimal policy would take. The attribute

“online” signifies that one is allowed some amount of calculation for each

state. By collecting all actions at all states, a planning method defines a

policy π̂. Apart from computation, planning methods are compared by how

good the policy they return is, i.e., by the policy error of π̂. One approach

to efficient online planning is to use an abstract model which i) contains

relevant information about the MDP, ii) can be efficiently constructed, and

iii) allows π̂(x) to be computed efficiently at any state x. The online

planning we are interested in uses a special type of abstract models, called

factored semi-linear models.

4.2 Factored Semi-Linear Models

In this section, we define factored semi-linear models, the core of our MBRL

approach. We also show examples of MBRL approaches that use factored

linear models. We are not aware of methods that rely on non-linear factored

semi-linear models, so the generalization from factored linear models, which

were introduced by Yao et al. (2014), and factored semi-linear models is

mild and technical.

In a factored linear model we approximate the MDP’s stochastic kernel P
as the product of two operators, QR. Similarly to factored linear models,

Yao et al. (2014), we have Q .
= (Qa)a∈A, with each Qa :W → VA linear, and

also a collection of linear operators R′ .
= (R′a)a∈A and each R′a :W → V

linear. The operator R :W → V (withW defined below), differently from

the one proposed by Yao et al. (2014), need not be linear or equal to each

R′a. The term “semi-linear” refers to the fact that each (Q)a is linear, but

64

not R. While only Q and R form the approximation of P , we will see that

the operator R′ is also essential to the factored semi-linear model approach

we use, and to the construction of π̂.

The spaceW = (W , ∥ · ∥W) is a Banach space of functions with (mea-

surable) domain I , and WA is a Banach space of A → W (cf. V , VA, W
and VA). We will refer toW andWA as the compressed spaces, and, occa-

sionally, the spaces V and VA will be called uncompressed. These names

come from the fact that often we will want to choose I to be “small”. In

fact, for computational reasons one should choose I to be finite, in which

caseW will be a finite-dimensional Euclidean space. We also allow infinite

I , so that we can then use I = X and compare the tightness of our results

to existing results that consider unfactored linear models.

In this work, for simplicity, we assume that the reward function r remains

the same in the factored linear model (the extension of our results to the

case when the reward function is also approximated is routine). Formally,

we will call a tuple of the form ⟨X ,A,Q,R,R′, r⟩ a factored semi-linear

model, where Q, R and R′ are as above. While a factored linear model

defines a pseudo-MDP (Yao et al., 2014), a factored semi-linear model defines

a generalization of pseudo-MDPs where the transition dynamics are non-

linear.

We must define some additional operators in order to describe how we

use factored linear models to derive policies. We define the shorthands

TR′Q
.
= R′TQ = R′r + γR′Q (the equality holds by linearity of R′) and

TQR
.
= TQR = r + γQR (by definition of the Bellman return operator).

Finally, M′ : WA → W , the compressed counterpart of the maximum

selection operator M, is defined by (M′w)(i) = maxa∈A wa(i) (i ∈ I),

and the compressed counterpart of the greedy operator is G′, mapping

elements ofWA to policies over I . (i.e., M′G
′ww = M′w for w ∈ WA). The

relationship between these operators is shown on Figure 4.1.

The factored semi-linear model approach to reinforcement learning is as follows:

65

V

W WA

VA Π

R
TR′Q

TQ
M′

M

G

W VA

V WA
MTQ

R′Q

M′TR′Q
Q

R′R

MTQR

Figure 4.1: Commutative diagrams showing the operators and the spaces
that they act on.

Given the factored linear model ⟨X ,A,Q,R,R′, r⟩, we take the policy

π̂
.
= GTQu∗, (4.2.1)

where

u∗ = M′TR′Qu∗ . (4.2.2)

that is, the policy π̂ does a Bellman lookahead with TQ from u∗ ∈ W , a

function that satisfies a fixed-point equation. Note that even when X is

very large, or infinite, W can be finite dimensional, in which case a good

approximation to u∗ can often be found in a computationally efficient

manner, for example by iterating uk+1 = M′TR′Quk, which can be seen as

a form of value iteration (Yao et al., 2014). The dashed lines on the left

subfigure on Figure 4.1 show that this computation can be done over the

compressed spaces W and WA. The diagram also shows that once u∗

is found, TQ extends this function to VA, from where using the greedy

operator G one obtains a policy. Note that in the applications the policy

itself does not need to be explicitly represented, but the actions that the

policy takes in a particular state x ∈ X can be computed “on demand”

given u∗ and the Bellman return operator TQ. (The right-hand side figure

shows some more useful relationships between the operators involved.) We

will say that this approach is viable when u∗ is well-defined. In our bounds,

we will make use of an additional policy, π̂′ : I → A, defined by

π̂′
.
= G′TR′Qu∗, . (4.2.3)

66

This is a policy over I derived from u∗ and its use is merely technical.

Factored semi-linear models (presently, also factored linear models)

allow one to analyze modeling errors in seemingly distant model-based

planning methods in a unified manner. This will be illustrated soon by de-

scribing how models proposed in numerous previous works can be written

in a factored form (this was also shortly mentioned by Yao et al., 2014).

Before describing these previous models, we need some more definitions,

to be able to describe the differences and similarities between them. In

particular, the models will differ in terms of whether R is stochastic, or

more specifically R is also a point-evaluator. Recall that the operator R is

stochastic if infV≥0 infx(RV)(x) ≥ 0 and R1V = 1W where 1V (x) = 1 for

all x ∈ X and (1W)i = 1 for all i ∈ I . Here, we started to use wi instead of

w(i) to reduce clutter. Also, we say that R is a point-evaluator if I indexes

elements of X and (RV)i = V(xi) for all i ∈ I , V ∈ V . Note that point

evaluators are stochastic. Choosing I = X allows us to choose R to be the

identity, which becomes a point evaluator when choosing xi = i, i ∈ I .

When R is a point selector and R′a = R for all a ∈ A, a short direct

calculation shows that RM = M′R′, which means that on Figure 4.1 the

solid cycle and the dashed cycle starting from W are equivalent and we

can interweave solid and dashed lines. For example, starting from V :

MTQM′TR′QR = (MTQR)2. The equivalence M′TR′Q = RMTQ gives that

U∗ .
= MTQu∗ is a fixed point of MTQR, and that the identity u∗ = RU∗

also holds (see Theorem 4.4.1). It also follows that if M′TR′Q is a contraction

(though MTQR may not be), the factored semi-linear model approach (now

a factored linear model approach due to the choice of R) is viable. To the

best of our knowledge, Ávila Pires and Szepesvári (2016b) were the first

to make this observation. In all previous works, viability was achieved by

assuming that Q and R are both stochastic, or that R is a point evaluator

andQR is a non-expansion in supremum norm. (In both cases, both MTQR′

and M′TR′Q are contractions in supremum norm, so u∗ is well-defined and

the factored linear model approach is viable.)

67

With this, we are ready to present different instances of the factored

linear model approach:

Example 4.2.1 (Kernel-based reinforcement learning). In kernel-based rein-

forcement learning (KBRL), introduced by Ormoneit and Sen (2002), I is

indexing elements of X , and Q is a stochastic operator constructed from

kernel functions at elements of S .
= {xi : i ∈ I}. Moreover,

(a) S is an i.i.d. sample from X .
= Rd andR is a point evaluator (Ormoneit

and Sen, 2002); or

(b) S is a set of reference states and R is stochastic (Barreto et al., 2011;

Kveton and Theocharous, 2012; Precup et al., 2012).

KBRL is viable because Q and R are stochastic, so R′Q is also stochastic.

Example 4.2.2 (Pseudo-MDPs). Pseudo-MDPs (Yao et al., 2014) are factored

linear models with a point evaluator R. In pseudo-MDPs, Q is no longer

stochastic, but QR is assumed to be a non-expansion in supremum norm

(Grünewälder et al., 2012; Yao et al., 2014; Lever et al., 2016). It can be shown

that under this assumption both MTQR and M′TR′Q are contractions. In

the approach of these authors, one should take π̃
.
= GTQRU∗, where U∗ is

the fixed point of MTQR. Our formulation still applies, though, because we

can show that u∗ = RU∗ is the fixed point of M′TR′Q (see Theorem 4.4.1),

so that π̃ = GTQRU∗ = GTQu∗ = π̂. Here, Q is essentially learned using a

penalized least-squared approach.

Example 4.2.3 (State aggregation). State aggregation (Whitt, 1978; Bertsekas,

2011) in MBRL generalizes KBRL. Here, too, I is an index set over X , and

{xi : i ∈ I} is the set of reference states. In hard aggregation, R is a point

evaluator, while in soft aggregation (Singh et al., 1995) it is stochastic.

Example 4.2.4 (MDP homomorphisms). MDP homomorphisms (Ravindran,

2004; Sorg and Singh, 2009) can be used for transfer learning in reinforce-

ment learning. Here, I is not identified with an index set over X . If R is a

point-evaluator, we recover MDP homomorphisms per se (Ravindran, 2004),

68

and the more general case of R stochastic yields soft MRP homomorphisms

(Sorg and Singh, 2009).

Example 4.2.5 (Unfactored linear models). It is possible to recover unfactored

linear models as a special case of factored linear models by takingW = V ,

and R to be the identity mapping. For the approach to be viable, it is

sufficient for Q to be stochastic, which is often assumed with unfactored

linear models.

4.3 Assumptions

The purpose of this section is to state and discuss the assumptions that will

be used in our subsequent results.

Our first assumption states that the operators M : VA → V , M′ :WA →
W , and the related policy based value selector operators Mπ : VA → V and

M′π
′

:WA →W to be defined soon are non-expansions. The operator Mπ is

defined by (MπV)(x) .
= Vπ(x)(x) (x ∈ X , π ∈ Π), while (M′π

′
w)i

.
= wπ′(i)

i

(i ∈ I , π′ : I → A). Now, recall that an operator J : E → F mapping

between Banach spaces E = (E , ∥ · ∥E), F = (F , ∥ · ∥F) is called a non-

expansion when its Lipschitz constant does not exceed one. The Lipschitz

constant of J is defined by

Lip(J) .
= sup

e,e′∈E :e ̸=e′

∥Je− Je′∥
∥e− e′∥ ,

where we follow the convention that the identity of the norm is derived

from what space the argument belongs to. Note the dependence of Lip on

the norms of E and F , which we suppressed. The definition implies that

for any e, e′, ∥Je− Je′∥ ≤ Lip(J)∥e− e′∥. Useful properties of Lip include

that it is submultiplicative (Lip(J J′) ≤ Lip(J)Lip(J′)), it is invariant to

constant shifts of operators (Lip(J + e) = Lip(J), where J + e is defined

by (J + e)e′ = e + Je′) and when J is a linear operator, Lip(J) = ∥J∥, the

induced operator norm of J, which is defined by

∥J∥ .
= sup

e∈E ,e ̸=0

∥Je∥
∥e∥ .

69

Again, the induced norm depends on the norms that the operator acts

between, but we suppress this dependence.

Let us now formally state the aforementioned assumption:

Assumption 4.3.1 (Non-expanding selectors). We have Lip(M) ≤ 1, and

Lip(M′) ≤ 1. For any π1 ∈ Π, π2 : I → A, we have Lip(Mπ1) ≤ 1 and

Lip(M′π2) ≤ 1.

Note that this assumption constrains what norms can be selected for the

spaces VA, V , WA and W . Assumption 4.3.1 will be helpful to establish

that various operators involving M are Lipschitz with a factor strictly below

one, i.e., that they are contractions. For example, to establish that MTP is

a contraction, one can use Lip(MTP) ≤ Lip(M)Lip(TP) ≤ γ Lip(P) =

γ∥P∥, reducing the question to showing γ∥P∥ < 1. Similar arguments

work the other operators that will involve M′, Mπ, or M′π
′
.

As it was alluded to earlier, we will use a number of different norms.

However, in all cases we choose the norm for VA (WA) based on the norm of

V (respectively, the norm ofW) to be a mixed max-norm: In particular, for U
being either V orW , the norm of UA will be defined as ∥U∥UA = ∥M|·|U∥U
where M|·| : UA → U is defined by (M|·|U)(·) = maxa |Ua(·)|. We call the

resulting norm the mixed max-norm w.r.t. the norm of U .

The next proposition shows that this choice of the mixed norm makes

Assumption 4.3.1 hold whenever the underlying spaces are so-called Banach

lattices (Meyer-Nieber, 1991). Recall that a lattice is a non-empty set U with

a partial ordering ≤ such that every pair f , g ∈ U has a supremum (or least

upper bound), denoted by f ∨ g, and an infimum (greatest lower bound),

denoted by f ∧ g. Spaces of real-valued functions are lattices with the

componentwise ordering, our default choice in what follows when it comes

to V andW . Operator ∨ is also called a join, a terminology we will adopt.

A vector lattice U is a lattice that is also a vector space. In a vector lattice,

for f ∈ U , f+ = f ∨ 0, f− = (− f) ∨ 0 and | f | = f+ + f− (these generalize

the usual definitions of positive part, negative part and absolute value). A

70

Banach lattice U is a normed vector lattice where U is also a Banach space

and the norm satisfies that for any f , g ∈ V , | f | ≤ |g| =⇒ ∥ f ∥ ≤ ∥g∥.
Note that (V ,∨) is a semi-lattice (a lattice with only a join). With this we

are ready to restate and prove the said statement:

Proposition 4.3.2. Assume that V and W are Banach lattices. Then Assump-

tion 4.3.1 is satisfied.

Proof. See Appendix A.3, page 111.

Let us now define the norms we will use in this paper. The weighted

supremum norm of a function f : Z → R with respect to weight w : Z →
R+ is defined as ∥ f ∥∞,w = supz∈Z | f (z)|/w(z). When w = 1 (i.e., w(z) = 1

for all z ∈ Z), we drop w from the index and use ∥ f ∥∞. For p ≥ 1, the

Lp(µ)-norm of f is defined as ∥ f ∥p
µ,p

.
=
∫
Z | f (z)|

pdµ(z). By slightly abusing

notation, the mixed norm of space UA derived from ∥ · ∥∞,w, or ∥ · ∥p,µ will

be denoted identically (i.e., for V ∈ VA, ∥V∥∞,w is a mixed norm defined

using M|·|). Since these norms make their underlying spaces a Banach

lattice, we immediately get the following corollary to Proposition 4.3.2:

Corollary 4.3.3. Assume that the norms over V and W are supremum norms,

weighted supremum norms, or Lp(µ) and Lp(ρ) norms, and equip the spaces VA

andWA with the respective mixed norms. Then Assumption 4.3.1 is satisfied.

Proof. See Corollary 2, Ávila Pires and Szepesvári (2016b).

Our subsequent assumptions will ensure that certain operators are

contractions in appropriate norms. We start with the simplest of these

assumptions:

Assumption 4.3.4. The following holds for Q and R′: ∥R′Q∥ ≤ 1.

Note that R′Q is a (W , ∥ · ∥W)→ (WA, ∥ · ∥WA) operator and the norm

used in Assumption 4.3.4 is the respective operator norm. As mentioned

earlier, whenever Assumption 4.3.1 holds (which is the case for the norms

under which we bound the policy error, see Corollary 4.3.3), we have that

71

Lip(M′TR′Q) ≤ γ∥R′Q∥, and then Assumption 4.3.4 implies that M′TR′Q
is a γ-contraction (again, for the respective operator norm). That R′Q is a

map between the compressed spaces W and WA is significant: When W
is a finite dimensional space, Assumption 4.3.4 can be enforced during a

learning procedure as done, e.g., by Yao et al. (2014). In fact, Yao et al. (2014)

argue by means of some examples that enforcing this constraint as opposed

to enforcing ∥QR∥ ≤ 1 (which may be difficult to enforce as it constrains

the norm of an operator between potentially infinite dimensional spaces)

can lead to better results in some learning settings.

When the norms are specifically chosen to be weighted supremum

norms, the previous assumption can be replaced by a weaker one, to be

stated next. To state this assumption, we need to introduce the concept

of Lyapunov functions, building on a more specialized definition due to

de Farias and Van Roy (2003). As de Farias and Van Roy (2003) showed by

means of an example, using weighted supremum norms can greatly reduce

the error bounds. Intuitively, one achieves this by assigning large weights to

unimportant states, i.e., to states that are infrequently visited by any policy.

Indeed, one should not expect much data, or a good behavior at such states,

but since they are not visited often, the errors made at such states can be

safely discounted.

Given Z = (Z , ∥ · ∥∞,w), with w : Z → R+, and an operator J : Z → Z ,

first let us define

βw,J = γ sup
f :| f |=w

∥J f ∥∞,w .

Then, we say that the function w is γ-Lyapunov with respect to operator

J if βw,J < 1. We also extend the definition for operators of the form

K : Z → ZA, i.e., when K = (Ka)a∈A. In this case, we say that w is γ-

Lyapunov w.r.t. K if it is γ-Lyapunov w.r.t. each operator Ka for any a ∈ A.

If J satisfies J f ≤ J| f | for all f ∈ Z (e.g., if J is a stochastic operator), then

the definition of βw,J simplifies to γ∥Jw∥∞,w, coinciding with the definition

of de Farias and Van Roy (2003).

Lyapunov functions enable us to ensure that MTP , MπTP (π ∈ Π) and

72

M′TR′Q are contractions in the corresponding weighted supremum norms.

For this, notice that the following hold:

Proposition 4.3.5. Given (U , ∥ · ∥∞,ν) with ν : U → R+, and J : U → UA, if

each Ja is a linear operator, then γ Lip(J) = βν,J .

Now, if ν is γ-Lyapunov w.r.t. the probability kernel P , then we immedi-

ately get from Corollary 4.3.3 and Proposition 4.3.5 that MTP and MπTP

(for any π ∈ Π) are βν,P -contractions in ν-weighted supremum norm. Simi-

larly, if η is γ-Lyapunov w.r.t. R′Q, then M′TR′Q is a βη,R′Q-contraction in

η-weighted supremum norm.

With this, we can state the assumption that we will use to relax Assump-

tion 4.3.4 when the norms used the respective function spaces are weighted

supremum norms. In what follows we fix two functions, ν : V → R+ and

η :W → R+, which will act as weighting functions.

Assumption 4.3.6 (Lyapunov weights). The following hold for Q, R′, ν, and η:

(i) ν is γ-Lyapunov w.r.t. P ;

(ii) η is γ-Lyapunov w.r.t. R′Q.

Note that choosing the weight function ν to be the constant one function,

Assumption 4.3.6(i) is automatically satisfied, while choosing η to be the

constant one function, Assumption 4.3.6(ii) is equivalent to Assumption 4.3.4

when the norm used there is the supremum norm.

Some (but not all) of our bounds will have a dependency on Lip(TQ) =

γ∥Q∥. Therefore, we will also make Assumption 4.3.7 to avoid vacuous

bounds.

Assumption 4.3.7. We have that B .
= ∥Q∥ < ∞.

Note that this assumption is mild: Learning procedures would more

often than not guarantee finiteness of the objects they return. In fact, by

appropriate normalization, even ∥Q∥ ≤ 1 can be arranged (if necessary), as

done for example by Grünewälder et al. (2012).

73

4.4 Results

In this section we present our main results. We start with a viability result

(explaining why our minimal assumptions are sufficient for the existence

of the policy whose performance we are interested in), followed by a short

review of previous bounds on the policy error. These previous bounds

provide the context for our new results, which we present afterwards.

After each result we discuss their relative merits and present their proofs.

Differently from Ávila Pires and Szepesvári (2016b), we do not not assume

that R is a join-homomorphism, or that R′a = R for each a ∈ A.

4.4.1 A Viability Result

Theorem 4.4.1 formalizes that u∗ is well-defined (the MBRL approach with

factored semi-linear models is viable) under Assumption 4.3.4 or Assump-

tion 4.3.6 (ii), provided that the norm overWA is a mixed max-norm w.r.t.

the norm over W . Theorem 4.4.1 shows that M′TR′Q is a contraction (in

∥·∥W) and we can compute u∗ by value iteration. Therefore, as remarked

in Section 4.1, if the compressed space W is finite dimensional, we are

able to evaluate M′TR′Q and thus also approximate u∗ efficiently (up to the

desired accuracy). Evaluating π̂(x) can be done by computing (TQu∗)(x)

for each x as needed. As we have relinquished the join-homomorphism

assumption, we can no longer say that MTQ has a fixed point (which holds

if R is a join-homomorphism and R′a = R for each a ∈ A, cf. Theorem 4.4.1

Ávila Pires and Szepesvári, 2016b, Theorem 5).

The fixed point u∗, the contraction M′TQR, and the quantity2 U∗ .
=

MTQu∗, will play pivotal roles in our bounds.

Theorem 4.4.1. Assume that the norm over WA is the mixed max-norm w.r.t.

the norm overW , and let Assumption 4.3.4 or Assumption 4.3.6 (ii) hold. Then

M′TR′Q is a contraction w.r.t. the norm underlying W , M′TR′Q has a unique

2 If we define R to satisfy RU∗ = u∗, we get back that U∗ is a fixed point of MTQR,
although that does not seem to have any practical significance in our bounds.

74

fixed point u∗, and the iteration uk+1 = M′TR′Quk converges geometrically to u∗,

for any u0 ∈ W .

Proof. See the first part of the proof of Theorem 5 of Ávila Pires and

Szepesvári (2016b). In essence, this result is a simple application of Banach’s

fixed point theorem.

As pointed out in Section 4.1, to the best of our knowledge, all previous

works either assumed or imposed a contraction property on MTQR. In fact,

with the exception of Yao et al. (2014), all previous works required QR to be

stochastic, so Theorem 4.4.1 is a notable relaxation of viability requirements.

4.4.2 Previous Results on the Policy Error

The typical MBRL performance bound is a supremum-norm bound on the

policy error of π̃
.
= GTP̃ Ṽ, where P̃ is stochastic and Ṽ is the fixed point of

MTP̃ .

Theorem 4.4.2 (Baseline bound on MBRL policy error). Consider some tran-

sition probability kernel P̃ for the state and action spaces X and A. Let Ṽ be the

fixed point of MTP̃ , and π̃ = GTP̃ Ṽ. Then

V∗ −Vπ̃


∞ ≤
2γ

1− γ

(P − P̃)Ṽ
∞

.

This result is essentially contained in the works of Whitt (1978, Corol-

lary to Theorem 3.1), Singh and Yee (1994, Corollary 2)3, Bertsekas (2012,

Proposition 3.1), and Grünewälder et al. (2011, Lemma 1.1).

An important implication of this result, which we feel is often overlooked,

is that the approximation P̃ to P does not have to be precise everywhere

(at all functions V ∈ V), but only at Ṽ, the fixed point of the approximate

model—a self-fulfilling prophecy, prone to failure? To understand why this

works, consider the case when P̃Ṽ perfectly matches PṼ, i.e., when the

bound on the right-hand side is zero. In this case Ṽ = MTP̃ Ṽ = MTP Ṽ,

3 Singh and Yee (1994) correctly bound
V∗ −Vπ̃


∞, but their statement of Corollary 2

suggests that they are bounding a different quantity.

75

which implies that Ṽ = V∗ and, π̃ = GTP̃ Ṽ = GTPV∗ is optimal. The moral

is that models do not have to be precise everywhere; if PṼ can be estimated, the

above inequality can be used to derive a posteriori bounds on the policy error and

even form the basis of improving the model. This can be viewed as a major,

unexpected win for model-based RL.

Ormoneit and Sen (2002); Barreto et al. (2011); Barreto and Fragoso

(2011); Precup et al. (2012); Barreto et al. (2014b,a) bound ∥V∗ − Ṽ∥∞ rather

than the policy error. We emphasize (see Ávila Pires and Szepesvári, 2016b,

Appendix D) that ∥V∗ − Ṽ∥∞ is not the correct quantity to bound in order

to understand the quality of π̂, and that the policy error should be bounded.

As remarked by Ávila Pires and Szepesvári (2016b, Appendix D), in ADP

it is sufficient to bound the deviation between the optimal value function

and the value estimate that generates the policy, in order to understand the

policy error in supremum norm.

4.4.3 Bounds on the Policy Error in Factored Semi-linear
Models

Our first novel result is a supremum-norm bound for policy error when we

use factored semi-linear models: Theorem 4.4.3. Because we can recover

results for unfactored linear models by taking R and R′ to be the identity

mapping over X , we can use Theorem 4.4.3 to get a bound that is tighter

than Theorem 4.4.2. Strictly speaking, taking Q stochastic, R and each

R′a for a ∈ A as the identity mapping, and upper-bounding the right-

hand side of Theorem 4.4.3 by 2ε2 gives us Theorem 4.4.2. Ávila Pires

and Szepesvári (2016b, Proposition 16) show that Theorem 4.4.3 if R is a

join-homomorphism and R′a = R for each a ∈ A. is tight.

Theorem 4.4.3 (Supremum-norm bound with linear R′). Given linear R′, let

π̂ be the policy derived from the factored semi-linear model defined using (4.2.1)

and (4.2.2). If Assumptions 4.3.4 and 4.3.7 hold, thenV∗ −Vπ̂


∞
≤ ε(V∗) + ε(Vπ̂),

76

where

ε(V) = min(ε1(V), ε2) ,

ε1(V) = inf
R:V→W

(
γ∥PV −QRV∥∞ +

Bγ2

1− γ

R′(PV −QRV)


∞

+ ε3(V,R)
)

,

ε2 =
γ

1− γ

PU∗ −Qu∗


∞ ,

ε3(V∗,R) =
Bγ

1− γ

RMTPV∗ −M′R′TPV∗


∞ ,

ε3(Vπ̂,R) = Bγ

1− γ

RMπ̂TPVπ̂ −M′π̂
′R′TPVπ̂


∞ .

Proof. See Appendix A.3, page 114.

From Theorem 4.4.3, we see that it is enough if the model is good in the

sense of minimizing ε2, which depends on how the model interacts u∗. If

Qu∗ is close PU∗ = PMTQu∗ our model will be good. We can say that the

term with ε2 may lead to a posteriori bounds, while the ε1 terms are better

treated as a priori bounds, due to the presence of V∗ and Vπ̂, objects in the

true MDP.

A striking feature of Theorem 4.4.3 is the ε1(V) term. It means that if B

is not too big, and if the error of the model at V∗ and Vπ̂ in the compressed

spaceWA and the term ε3(V,R) are small, then the term that depends on
1

1−γ is small. Moreover, we can expect the error in the compressed space to

be easier to control than ∥PV −QRV∥∞, depending on the choice of R.

The term ε3(V,R) (cf. Theorem 4.4.3 and Theorem 8 of Ávila Pires and

Szepesvári, 2016b) is the price that we pay for not being able to use the

identity RM = M′R′. If the identity does hold, and if we define linear R
so that RU∗ = u∗, we immediately Theorem 8.

Perhaps more interestingly, one will notice that R is only used in the

bound, since π̂ = GTQu∗ and u∗ = M′TR′Qu∗, so we can make an oracle

choice of R that minimizes ε1(V) Moreover, a different choice of R can be

made for each individual bound, so different choices can be made for ε1(Vπ̂)

77

and ε1(V∗). In particular, because R may be non-linear, we may choose it

so that RMTPV∗ = M′R′TPV∗, which gives us (using that V∗ = MTPV∗)

ε1(V∗) ≤ γ
PV∗ −QM′R′TPV∗


∞ +

Bγ2

1− γ

R′(PV∗ −QM′R′TPV∗)


∞.

(4.4.1)

We are also able to compare Theorem 4.4.3 with Proposition 1 of Barreto

et al. (2014a), who study a factored linear model approach with stochastic

R′, finite-dimensional V and W , and
V∗


∞ ≤

C
1−γ for some C. In their

setting, the reward vector is not known, so R′r is replaced by an r′ ∈ WA.

Proposition 1 of Barreto et al. (2014a) gives usV∗ −MQM′(r′ +Qu∗)


∞ ≤
1

1− γ

r−Qr′


∞

+
γC

(1− γ)2

P −QR′∞

+
C

(1− γ)2 max
a,i

min
j
(1−Qa

i,j).

(4.4.2)

We can eliminate the first term in (4.4.2) by using an uncompressed guess

r′′ ∈ VA for r and bounding
V∗ −M(r′′ +Qu∗)


∞. Moreover, the factor

of C
1−γ can be avoided (see the discussion of Theorem 4.4.2 in Section 4.4).

If R′ is stochastic and B ≥ 1, in Theorem 4.4.3 we can upper-bound

ε1(V∗) ≤ inf
R:V→W

(
Bγ

1− γ
∥PV∗ −QRV∗∥∞ + ε3(V∗,R)

)
(4.4.3)

since Lip(R′) ≤ 1. We may choose R in (4.4.3) so that, for example,

ε3(V∗,R) = 0, although this choice may adversely affect the first term in

the right-hand side of (4.4.3). In contrast, the term in (4.4.2) greatly restricts

the choices of Q. Having maxa,i minj(1−Qa
i,j) = 0 in the setting of Barreto

et al. (2014a) but being able to chose R′ to be stochastic is comparable to, in

our setting, allowing Q to be stochastic, requiring R to be a point selector,

and having (R′)a = R for all a ∈ A.

The proof of Theorem 4.4.3 uses the triangle inequality

∥V∗ −Vπ̂∥ ≤ ∥V∗ −U∗∥+ ∥U∗ −Vπ̂∥, (4.4.4)

combined with Lemma 4.4.4 stated next. Though technical, Lemma 4.4.4 is

the cornerstone of our policy error bounds, just as Lemma 9 of Ávila Pires

78

and Szepesvári (2016b) is the cornerstone of theirs. Indeed, once we gener-

alize Lemma 9 to factored semi-linear models (thus obtaining Lemma 4.4.4),

the policy error bounds in this text follow with little extra effort: We simply

need to redo the proofs of each policy error bound by Ávila Pires and

Szepesvári (2016b)) with Lemma 4.4.4 instead of Lemma 9, which is a

straightforward task.

Lemma 4.4.4. Given linear R′, assume that γ Lip(R′Q) ≤ α < 1 and that

Assumptions 4.3.1 and 4.3.7 hold. The following holds with (V, N, N′, N′′) =

(V∗, M, M′, I) and with (V, N, N′, N′′) =
(

Vπ̂, Mπ̂, M′π̂
′
, Mπ̂

)
:

∥V −U∗∥ ≤ γ∥PV −Qu∗∥, (4.4.5)

and for any R : V → W (that may depend on V):

∥V −U∗∥ ≤ γ∥PV −QRV∥+ Bγ2

1− α

R′(PV −QRV)


+
Bγ

1− α

RNTPV − N′R′TPV
 (4.4.6)

Additionally, if γ Lip(N′′P) ≤ β < 1, we also have that

∥V −U∗∥ ≤ γ

1− β
∥PU∗ −Qu∗∥. (4.4.7)

Proof. See Appendix A.3, page 111.

Compared to Lemma 9, we also added an extra inequality to Lemma 4.4.4:

(4.4.5). This inequality is a simple observation that may be useful as a crite-

rion to minimize—we see that the ADMM objective used by Yao et al. (2014)

is related to minimizing the right-hand side of (4.4.5) subject to ensuring

that Assumption 4.3.4 is satisfied.

Lemma 4.4.4 (4.4.6) can be interpreted as the bound we get by doing a

Bellman lookahead with MTQ, followed by application of the well-known

bound for an α-contraction T with fixed point Ṽ (Bertsekas, 2007):V − Ṽ
 ≤ 1

1− α
∥V − TV∥ (4.4.8)

(with T = M′TR′Q in the case of Lemma 4.4.4). Similarly, taking T = MTP

(T = Mπ̂TP) in (4.4.8) combined with γ Lip(P) ≤ β < 1 (γ Lip(Mπ̂P) ≤

79

β < 1), allows us to see that MTP (Mπ̂TP) is a β-contraction, so (4.4.8) gives

us Lemma 4.4.4 (4.4.7) for V∗ (Vπ̂). Lemma 4.4.4 (4.4.6) is also interesting

in the special case of unfactored linear models (when R is the identity

mapping) with Q as a non-expansion (e.g., Q stochastic): Because B = 1

and α = γ, the bound becomes

∥V −U∗∥ ≤ γ

1− γ
∥(P −QR)V∥,

and in this case no looseness was introduced by doing a Bellman lookahead

and then applying (4.4.8), relative to applying (4.4.8) directly. This will

allow us to recover results for unfactored linear models from the bounds

we derive from Lemma 4.4.4.

Many of the remarks about Theorem 4.4.3 pertaining to R and ε3(V,R)
are in fact a consequence of the bounds in Lemma 4.4.4. As this is our

cornerstone lemma, we will be able to make similar remarks for the other

bounds as well. For example, we can see that ε3(V,R) from Theorem 4.4.3

appears in (4.4.6) as the price we pay for not having the identity RM =

M′R′. Moreover, in Lemma 4.4.4 we are able to make oracle choices of R
(different choices for V∗ and Vπ̂), and we can generalize (4.4.1) by choosing

R so that it gives ε3(V,R) = 0. Turning back to Theorem 4.4.3, we can use

it to crudely upper-bound the policy error in Lp(µ) norm, but the bound

we obtain this way is not very interesting. This is because supremum norm

bounds, though easy to prove, can be too harsh: V∗ and Vπ̂ can be close

in other meaningful norms, while not being close in supremum norm, in

which case the right-hand side of the bound in Theorem 4.4.3 can be large

even if the left-hand side is small (see Ávila Pires and Szepesvári, 2016b,

Proposition 17).

De Farias and Van Roy (2003) show that the harshness of the supremum

norm can be mitigated by considering the policy error in weighted supre-

mum norm. Intuitively, the error in states that are unlikely to be visited by

π∗ should be underweighted, as we discussed earlier. Thus, one alternative

to supremum norm bounds is to use a generalization of Theorem 4.4.3 for

80

the weighted supremum norm:

Theorem 4.4.5 (Weighted supremum norm bound with linear R′). Given

linear R′, let π̂ be the policy derived from the factored linear model defined using

(4.2.1) and (4.2.2). If Assumptions 4.3.6 and 4.3.7 hold, thenV∗ −Vπ̂


∞,ν
≤ ε(V∗) + ε(Vπ̂),

where

ε(V) = min(ε1(V), ε2) ,

ε1(V) = inf
R:V→W

(
γ∥PV −QRV∥∞,ν +

Bγ2

1− βη,R′Q

R′(PV −QRV)


∞,η

+ ε3(V,R)
)

,

ε2 =
γ

1− βν,P

PU∗ −Qu∗


∞,ν ,

ε3(V∗,R) =
Bγ

1− βη,R′Q

RMTPV∗ −M′R′TPV∗


∞,η ,

ε3(Vπ̂,R) = Bγ

1− βη,R′Q

RMπ̂TPVπ̂ −M′π̂
′R′TPVπ̂


∞,η .

Proof. See Appendix A.3, page 113.

Under Assumption 4.3.4 and Assumption 4.3.6 (i), Theorem 4.4.5 holds

with βη,R′Q = γ. The comments about ε1(V), ε2 and ε3(V,R) in Theo-

rems 4.4.2 and 4.4.3 are also valid for Theorem 4.4.5, but the dependencies

are, evidently, expressed in different norms. Moreover, by taking ν = x ↦→ 1

and η = i ↦→ 1, and by realizing that ν is γ-Lyapunov w.r.t. P and, under

Assumption 4.3.4, η is γ-Lyapunov w.r.t. R′Q, we recover Theorem 4.4.3

from Theorem 4.4.5. Previously, weighted-supremum norm bounds were

derived for ALP. However, the weakness of these bounds is that they are

sensitive to the measure-change between the “ideal constraint sampling

distribution” (which depends on unknown quantities whose knowledge

basically implies the knowledge of the optimal policy) and the actual one

used in the algorithm (de Farias and Van Roy, 2003).

81

Normally, we are interested in the policy error w.r.t. an initial state distri-

bution, or a stationary distribution of a policy (e.g., a stationary distribution

of π∗), and we can naturally consider the policy error in L1(µ) norm, where

µ is a measure over X that we are interested in. We can get an immediate

bound for the more general Lp(µ) norm (for any p ≥ 1) of the policy error,

using Theorem 4.4.5.

Theorem 4.4.6 (Weighted supremum norm bound for the policy error in

Lp(µ) norm, with linear R′). Given linear R′, let π̂ be the policy derived from

the factored linear model defined using (4.2.1) and (4.2.2). If Assumptions 4.3.6

and 4.3.7 holds for the weighted supremum norm over VA andWA, thenV∗ −Vπ̂


µ,p
≤ ∥ν∥µ,p

(
ε(V∗) + ε(Vπ̂)

)
,

where ε, ε1, ε2 and ε3 are as in Theorem 4.4.5.

Proof. See Appendix A.3, page 114.

However, we can also bound the policy error in Lp(µ) “directly”, i.e., in

terms of model errors in Lp(µ) norm, as Theorem 4.4.7, to be stated next,

shows. In order to state Theorem 4.4.7, we need to use a concentrability

coefficient Cπ̂,P ,µ,ξ (although part of our bound will be free of this coefficient).

Consider a measure ξ over X , and the operator I − γMπ̂P : (V , ∥ · ∥ξ,p)→
(V , ∥ · ∥µ,p). If I − γMπ̂P has no inverse (as an operator acting between the

above two spaces), define Cγ,π̂,P ,µ,ξ
.
= ∞, otherwise let the concentrability

coefficient be

Cγ,π̂,P ,µ,ξ
.
= (1− γ)Lip((I − γMπ̂P)−1) = (1− γ)

(I − γMπ̂P)−1
 .

(4.4.9)

(Note that here both Lip(·) and ∥·∥ hide a dependence on ξ, π and p.)

As opposed to previous uses of concentrability coefficients (Munos, 2003;

Farahmand et al., 2010), our coefficient depends only on the policy com-

puted, which makes it more suitable for the estimation of our bound. In

case the Cγ,π̂,P ,µ,ξ is not very large, we can get meaningful bounds from

82

Theorem 4.4.7 from ε2, but even if Cγ,π̂,P ,µ,ξ = ∞ and ε2 is vacuous, we

can still get a priori bounds with a dependence on ε1(Vπ̂), in addition to

the dependence on ε1(V∗). The ε1(V) term can be analyzed similarly to its

analogues in Theorems 4.4.3 and 4.4.5, modulo the norm differences. We

are flexible about the choice of ∥ · ∥W (which nonetheless affects Assump-

tions 4.3.4 and 4.3.7). One may think of choosing ∥ · ∥W = ∥ · ∥ρ,p for some

ρ, however with this norm choice, Assumption 4.3.4 becomes restrictive.

When it comes to satisfying Assumption 4.3.4, a weighted supremum norm

is reasonable, as discussed earlier, so we choose this norm as the norm over

the compressed space W in Theorem 4.4.7. We emphasize that ε1(V) is

independent of the concentrability coefficient. Further, as remarked before-

hand, its dependence on the discount factor can be quite mild (if the second

term in the definition of ε1 is small).

Theorem 4.4.7 (Lp(µ) norm bound with linear R′). Given linear R′, let π̂

be the policy derived from the factored linear model defined using (4.2.1) and

(4.2.2). Choose the norms so that ∥ · ∥V = ∥ · ∥µ,p and ∥ · ∥W = ∥ · ∥∞,η. If

Assumptions 4.3.4 and 4.3.7 hold, thenV∗ −Vπ̂


µ,p
≤ ε1(V∗) + min

(
ε1(Vπ̂), ε2

)
,

where

ε1(V) = inf
R:V→W

(
γ∥PV −QRV∥µ,p +

Bγ2

1− γ

R′(PV −QRV)


∞,η

+ ε3(V,R)
)

,

ε2 = Cγ,π̂,P ,µ,ξ
γ

1− γ
∥PU∗ −Qu∗∥ξ,p ,

ε3(V∗,R) =
Bγ

1− γ

RMTPV∗ −M′R′TPV∗


∞,η ,

ε3(Vπ̂,R) = Bγ

1− γ

RMπ̂TPVπ̂ −M′π̂
′R′TPVπ̂


∞,η .

where Cγ,π̂,P ,µ,ξ is defined in (4.4.9).

Proof. See Appendix A.3, page 113.

83

4.5 Conclusion

Our results in this chapter generalize the results of Ávila Pires and Szepesvári

(2016b), from which this chapter is largely derived. The results of Ávila Pires

and Szepesvári (2016b), in turn, unify, strengthen and extend previous works

The unifying framework of factored linear models was introduced by Yao

et al. (2014), and in this chapter we have mildly generalized it to a factored

semi-linear model framework. This generalization is not significant in terms

of coverage, as factored linear models already cover all previous work that

we are aware of and that is also covered by factored semi-linear models.

Nevertheless, having R non-linear adds flexibility to the framework.

Our focus has been the derivation of policy error bounds, and we have

put aside issues of designing and analyzing algorithms to learn models. We

believe that the when developing theories for reinforcement learning one

should start by figuring out what quantities control the policy error of a

given methods. Then, one is in a better position to design learning algo-

rithms which then control the said quantities (this is distantly reminiscent

to choosing surrogate losses in supervised learning).

Previous work that derives policy error bounds goes back to at least

Whitt (1978). In fact, looking at the literature we see that the results of Whitt

(1978) have been independently re-derived in part or as a whole multiple

times (often confounded with the issue of statistical questions), e.g., in the

works mentioned in Section 4.2. Compared to the work of Whitt (1978),

main advances in deriving policy error bounds have been the introduction

of norms other than the supremum norm, though this happened in different

contexts (e.g. de Farias and Van Roy, 2003; Munos, 2003), and breaking

down the bound of Whitt (1978) to more specialized models (e.g. Ormoneit

and Sen, 2002; Ravindran, 2004; Barreto et al., 2011; Sorg and Singh, 2009).

One of the main novelties of Ávila Pires and Szepesvári (2016b) presented

in this chapter is that previous techniques are imported to model-based

RL to obtain policy error bounds in norms other than (unweighted) supre-

84

mum norms. In particular, to derive policy error bounds that use weighted

supremum norms, we are building on the work of de Farias and Van Roy

(2003), and we bring Lyapunov analysis from the approximate linear pro-

gramming (ALP) methodology to model-based RL. At the same time, to

derive policy error bounds that use weighted Lp-norms we import ideas

from Munos (2003), who analyzed approximate dynamic programming

(ADP) algorithms. During this process we streamlined the definitions from

these works by sticking to the language of operator algebras (specifically,

Banach lattices). The use of this language has two main benefits: It allowed

us to present shorter and rather direct proofs, while it also shed light on

the algebraic and geometric assumptions that were key in the proofs. We

believe that our operator algebra approach could also improve previous

results in either ALP or ADP. An interesting avenue for further work is to

investigate the minimum set of assumptions under which our calculations

remain valid: At present it appears that we use very little of the rich struc-

ture of the function spaces involved. We speculate that the results can also

be proven in certain max-plus (a.k.a. tropical) algebras, leading to results

that may hold, e.g., for various versions of sequential games.

Another major novel aspect of the present work is that we tightened

previous bounds. In particular, our bounds come in two forms: One

form (the “ε1” term) tells us how model errors should be controlled in the

compressed space (with the compression depending on the choice ofR) and

traded off with the error incurred by us not being able to use the identity

RM = M′R′. The other form (the “ε2” term) tells us that it is enough if the

compressed fixed point applied to the model operator (Qu∗) approximates

the true model operator at U∗ (PU∗), with U∗ = MTQu∗ being a quantity

derived from the model.

While we shorten and improve previous results, we also managed to

relax the key condition of previous works that required that the Bellman

operator acting on uncompressed value functions and underlying the model

needs to be a contraction. While we are still relying on contraction-type

85

arguments, the contraction arguments are used with the compressed space,

as previously suggested (but not analyzed) by Yao et al. (2014). We feel that

it is more natural to require that the Bellman operator for the compressed

space be a contraction than to require the same for the respective operator

acting on the uncompressed space. Indeed, our bounds show that this

second assumption is entirely superfluous (cf. the “ε2” terms).

In this chapter, we have also relaxed the assumption used by Ávila Pires

and Szepesvári (2016b) that R is a join-homomorphism and that R′a = R
for each a ∈ A. This allows us to extend the scope of our results to

MBRL methods that use factored linear models, but where R and R′ can

be any linear operator (and different from each other). This family of

methods includes, for example, state-aggregation (soft or not) or stochastic

factorization Van Roy (2006); Barreto et al. (2011), where R and R′ are linear

(and stochastic) but not join-homomorphisms.

While Ávila Pires and Szepesvári (2016b) sketched a generalization

of their results to linear R, we have realized that R need not be linear

or known (so oracle choices can be made to optimize the bound). This

relaxation does not affect the error term additional error terms introduced

in Theorem 12 of Ávila Pires and Szepesvári (2016b) (cf. Theorem 4.4.7).

Our results (as a consequence of the cornerstone result, Lemma 4.4.4, and

similarly to Lemma 9 and the other results of Ávila Pires and Szepesvári,

2016b) show a curious scaling as a function of 1/(1− γ). In fact, the astute

reader may recall that policy error bounds typically scale with 1/(1− γ)2.

A little thinking reveals that our result may be subject to the same scaling:

Just like in Theorem 4.4.2, where Ṽ hides 1/(1− γ), in the above bounds the

value functions themselves bring in another 1/(1− γ), too. Is the scaling

with 1/(1− γ)2 necessary? The answer is no: Theorem 4.1 of Van Roy (2006)

shows that in some version of state-aggregation the policy error can scale

with 1/(1− γ) only (as a side-note, the only result so far with this property).

Thus, it may be worthwhile to look at the differences between Theorem 4.1

and the above result. First, recall that in his Theorem 4.1 Van Roy (2006)

86

bounds the error of the policy π̃ that is greedy with respect to the fixed point

Ũ∗ of MTQR, where R = Rπ̃ is chosen to depend on the policy (for some

policy π, Rπ is a weighted Euclidean projection to the compressed space

induced by the aggregation, where the weights depend on the stationary

distribution of π). Formally, the policy is defined by π̃ = GTQRπ̃
Ũ∗ where

Ũ∗ = MTQRπ̃
Ũ∗. Similar to our results (and differently from the ones in

Ávila Pires and Szepesvári, 2016b), U∗ = MTQu∗ is not necessarily the fixed

point of MTQR. In contrast, however, our result is proven for general R. At

this time it is not clear whether with a specific choice of R (like Rπ̂) the

terms involved in the definition of ϵ1 would cancel the additional 1/(1− γ)

factor. For what it is worth, we note that for the “counterexample” that

Van Roy (2006) presents, when R = Rπ̂, ϵ1 scales with 1/(1− γ) only (as

opposed to scaling with 1/(1− γ)2), showing that our bound has the ability

to exploit the benefits of a “good” choice of R. However, it remains to be

seen whether this, or some other systematic way of choosing R, or at the

very least some choice of R will always cancel the extra 1/(1− γ) factor.

Empirical studies can also clarify which specific instances of MBRL

with factored semi-linear models (perhaps, with factored linear models)

are preferable. We can mention successful applications in the context of

kernel-based reinforcement learning (Grünewälder et al., 2012; Yao et al.,

2014; Lever et al., 2016), where, however, scaling with the amount of data

available for constructing the model is still needs to be improved. Lever et al.

(2016) attack this scalability issue using compression techniques, and there

are a number of other works that provide potential tools for addressing

the scalability issue (see Le et al., 2013; Hsieh et al., 2014, and references

therein).

To summarize, this chapter advances our understanding of model errors

on policy error in reinforcement learning. We improve previous bounds

by using a versatile set of norms and introduce new bounds which has

the potential of better scaling with the discount factor, while at the same

time we extend the range of the models by relaxing previous assumptions.

87

These generalized results yield bounds for (to the best of our knowledge)

all previous MBRL works that rely on factored linear models. By effectively

using the language of Banach lattices, the proofs the results by Ávila Pires

and Szepesvári (2016b) are shorter, while at the same time hold the promise

of being generalizable beyond MDPs. We believe that our approach may

lead to advances in the analysis and design of alternate approaches to

reinforcement learning, namely both in approximate linear programming

and approximate dynamic programming.

88

Chapter 5

Conclusion

In this dissertation, we have analyzed CBPI with practical classifiers and

MBRL with factored semi-linear models. Both analyses have been an effort

toward the development of practical RL algorithms, i.e., algorithms that

can be executed with a small (polynomial) amount of computation, while

yielding effective policies in a number of scenarios.

We have presented results in the context of classification. Although these

results are also of independent interest, our aim was to establish supporting

results for policy error bounds referring to CBPI. We have also presented

policy error bounds for MBRL methods that use factored semi-linear models,

an abstract framework that generalizes many MBRL methods, including

promising approaches that have been subject of recent interested in the

community.

With these results, we have strengthened the theoretical foundations of

CBPI and MBRL methods, and with them we hope to encourage experimen-

tal studies both to validate our findings, and also reveal where the analyses

can be refined.

A number of experimental studies related to our theoretical work can be

carried out, concerning CBPI and MBRL with factored semi-linear models.

For example, empirical comparisons of different surrogate losses in the

contexts of cost-sensitive classification and of CBPI are lacking. One can

also investigate and compare, based on empirical evidence, specific instances

of MBRL methods with factored semi-linear (or linear) models.

89

We can also mention a interesting extensions of our reinforcement learn-

ing results to different settings. For example, the average reward setting and

MDPs with infinitely many actions. Extensions to infinite |A| seem more

plausible for the MBRL results, because classification methods are still often

quite dependent on finiteness of the number of actions, both statistically,

as we can see from the upper-bounds, and computationally, as we can see

from the structure of losses often considered and the need to evaluate the

maximum selector for score functions. The structured prediction literature

has made progress in the direction of handling a large number of classes,

but, to the best of of knowledge and in our opinion, there is still quite a

jump from finite to infinite A (Y).

A very interesting (and challenging!) direction for future work is to

understand the covariate-shift issues that affect the policy error bounds that

we have presented. In CBPI, we may be able to improve the policy error

bounds that we have used (Theorem 3.2.7). Clearly, the behavior policy used

to generate data at the beginning of each iteration has a determining effect

on the policy error bounds. MBRL with factored semi-linear models, on the

other hand, are more robust to covariate-shift effects. Is this a peculiarity of

factored semi-linear models, or can we obtain similar results for, say, CBPI?

90

Bibliography

Aliprantis, C. D. and Border, K. C. (2007). Infinite Dimensional Analysis: A
Hitchhiker’s Guide. Springer.

Anthony, M. and Bartlett, P. (2009). Neural Network Learning: Theoretical
Foundations. Cambridge University Press.

Antos, A., Csaba Szepesvári, and Munos, R. (2008a). Fitted Q-iteration in
continuous action-space MDPs. In Platt, J. C., Koller, D., Singer, Y., and
Roweis, S. T., editors, Advances in Neural Information Processing Systems 20,
pages 9–16. Curran Associates, Inc.

Antos, A., Szepesvári, C., and Munos, Munos, R. (2008b). Learning near-
optimal policies with Bellman-residual minimization based fitted policy
iteration and a single sample path. Machine Learning, 71(1):89–129.

Ávila Pires, B. and Szepesvári, C. (2016a). Multiclass classification calibration
functions. CoRR, arXiv:0902.0885.

Ávila Pires, B. and Szepesvári, C. (2016b). Policy error bounds for model-
based reinforcement learning with factored linear models. In Feldman,
V. and Rakhlin, A., editors, Proceedings of the 29th Annual Conference on
Learning Theory, volume 49, pages 1–31.

Ávila Pires, B., Szepesvári, C., and Ghavamzadeh, M. (2013). Cost-sensitive
multiclass classification risk bounds. In Dasgupta, S. and McAllester, D.,
editors, Proceedings of The 30th International Conference on Machine Learning,
volume 28 of JMLR: Workshop & Conference Proceedings (ICML’13), pages
1391–1399.

Bagnell, J. A., Kakade, S., Ng, A. Y., and Schneider, J. G. (2003). Policy
search by dynamic programming. In Thrun, S., Saul, L. K., and Schölkopf,
B., editors, Advances in Neural Information Processing Systems, volume 16,
pages 831–838, Cambridge, MA. MIT Press.

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwan-
tathan, S. V. N. (2007). Predicting Structured Data. Advances in neural
information processing systems. MIT Press.

Barreto, A., Precup, D., and Pineau, J. (2014a). Practical kernel-based
reinforcement learning. arXiv preprint arXiv:1407.5358.

91

Barreto, A. M. S. and Fragoso, M. D. (2011). Computing the stationary
distribution of a finite Markov chain through stochastic factorization.
SIAM Journal on Matrix Analysis and Applications, 32(4):1513–1523.

Barreto, A. M. S., Pineau, J., and Precup, D. (2014b). Policy iteration based on
stochastic factorization. Journal of Artificial Intelligence Research, 50:763–803.

Barreto, A. S. M., Precup, D., and Pineau, J. (2011). Reinforcement learning
using kernel-based stochastic factorization. In Shawe-Taylor, J., Zemel,
R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 24, pages 720–728. Curran Associates,
Inc.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classi-
fication, and risk bounds. Journal of the American Statistical Association,
101(473):138–156.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and Gaussian com-
plexities: Risk bounds and structural results. Journal of Machine Learning
Research, 3:463–482.

Bartlett, P. L., Mendelson, S., and Neeman, J. (2012). ℓ1-regularized linear
regression: persistence and oracle inequalities. Probability theory and related
fields, 154(1-2):193–224.

Beijbom, O., Saberian, M., Kriegman, D., and Vasconcelos, N. (2014). Guess-
averse loss functions for cost-sensitive multiclass boosting. In Xing, E. P.
and Jebara, T., editors, Proceedings of The 31st International Conference on
Machine Learning, volume 32 of JMLR: Workshop & Conference Proceedings
(ICML’14), pages 586–594.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume 2
of Athena Scientific optimization and computation series. Athena Scientific,
3rd edition.

Bertsekas, D. P. (2010). Dynamic programming and optimal control, volume 2.
Athena Scientific, 3rd edition.

Bertsekas, D. P. (2011). Approximate policy iteration: A survey and some
new methods. Journal of Control Theory and Applications, 9(3):310–335.

Bertsekas, D. P. (2012). Weighted sup-norm contractions in dynamic pro-
gramming: A review and some new applications. Dept. Elect. Eng. Comput.
Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep. LIDS-P-
2884.

Bertsekas, D. P. (2016). Noncontractive Total Cost Problems, volume 2 of Athena
Scientific optimization and computation series, chapter 4, Noncontractive
Total Cost Problems. Athena Scientific. Updated version http://web.
mit.edu/dimitrib/www/DP2_Chapter%204_UPDATED.pdf.

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy
iteration and applications in neuro-dynamic programming. Technical
Report LIDS-P-2349, Laboratory for Information and Decision Systems
Report, MIT, Cambridge, MA.

92

http://web.mit.edu/dimitrib/www/DP2_Chapter%204_UPDATED.pdf
http://web.mit.edu/dimitrib/www/DP2_Chapter%204_UPDATED.pdf

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic Programming.
Anthropological Field Studies. Athena Scientific.

Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of classification:
A survey of some recent advances. ESAIM: Probability and Statistics,
9:323–375.

Brefeld, U., Geibel, P., and Wysotzki, F. (2003). Support vector machines
with example dependent costs. In Lavrač, N., Gamberger, D., Blockeel,
H., and Todorovski, L., editors, Machine Learning: ECML 2003: Proceedings
of the 14th European Conference on Machine Learning, pages 23–34, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Burgiel, H. (1997). How to lose at tetris. Mathematical Gazette, 81:194–200.

Buşoniu, L., Babuška, R., Schutter, B. D., and Ernst, D. (2010a). Reinforcement
Learning and Dynamic Programming Using Function Approximators. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition.

Buşoniu, L., Babuška, R., Schutter, D., and Ernst, D. (2010b). Reinforce-
ment Learning and Dynamic Programming Using Function Approximators.
Automation and Control Engineering. CRC Press.

Buşoniu, L., Lazaric, A., Ghavamzadeh, M., Munos, R., Babuška, R., and
De Schutter, B. (2012). Least-squares methods for policy iteration, chapter 3,
pages 75–109. Springer.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for
multiclass problems. Journal of Machine Learning Research, 3:951–991.

Daniely, A., Sabato, S., Ben-David, S., and Shalev-Shwartz, S. (2013). Multi-
class learnability and the ERM principle. CoRR, arXiv:1308.2893.

de Farias, D. P. and Van Roy, B. (2003). The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–865.

Doğan, Ü., Glasmachers, T., and Igel, C. (2016). A unified view on multi-
class support vector classification. Journal of Machine Learning Research,
17(45):1–32.

Farahmand, A.-M., Precup, D., Barreto, A., and Ghavamzadeh, M. (2014).
Classification-based approximate policy iteration: Experiments and ex-
tended discussions. arXiv preprint arXiv:1407.0449.

Farahmand, A.-M., Szepesvári, C., and Munos, R. (2010). Error propagation
for approximate policy and value iteration. In Lafferty, J. D., Williams, C.
K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in
Neural Information Processing Systems, volume 23, pages 568–576. Curran
Associates, Inc.

Fern, A., Yoon, S. W., and Givan, R. (2003). Approximate policy iteration
with a policy language bias. In Thrun, S., Saul, L. K., and Schölkopf,
B., editors, Advances in Neural Information Processing Systems, volume 16,
pages 847–854, Cambridge, MA. MIT Press.

93

Gabillon, V., Ghavamzadeh, M., and Scherrer, B. (2013). Approximate
dynamic programming finally performs well in the game of Tetris. In
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems, volume 26,
pages 1754–1762. Curran Associates, Inc.

Gabillon, V., Lazaric, A., Ghavamzadeh, M., and Scherrer, B. (2011).
Classification-based policy iteration with a critic. In Getoor, L. and Schef-
fer, T., editors, Proceedings of the 28th International Conference on Machine
Learning, ICML’11, pages 1049–1056, New York, NY, USA. ACM.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, pre-
diction, and estimation. Journal of the American Statistical Association,
102(477):359–378.

Grünewälder, S., Baldassarre, L., Pontil, M., Gretton, A., and Lever, G.
(2011). Modeling transition dynamics in MDPs with RKHS embeddings
of conditional distributions. CoRR, arXiv:1112.4722.

Grünewälder, S., Lever, G., Baldassarre, L., Pontil, M., and Gretton, A.
(2012). Modelling transition dynamics in MDPs with RKHS embeddings.
In Langford, J. and Pineau, J., editors, Proceedings of the 29th International
Conference on Machine Learning, ICML’12, pages 535–542, New York, NY,
USA. Omnipress.

Guruprasad, H. and Agarwal, S. (2012). Classification calibration dimension
for general multiclass losses. In Bartlett, P. L., Pereira, F., Burges, C. J. C.,
Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems, volume 25, pages 2087–2095. Curran Associates, Inc.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.
Springer, 2nd edition.

Höffgen, K.-U., Simon, H.-U., and Horn, K. S. V. (1995). Robust trainability
of single neurons. Journal of Computer and System Sciences, 50:114–125.

Hsieh, C.-J., Si, S., and Dhillon, I. S. (2014). Fast prediction for large-scale
kernel machines. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems, volume 27, pages 3689–3697. Curran Associates, Inc.

Hutter, M. (2014). Extreme State Aggregation beyond MDPs, volume 8776 of
Lecture Notes in Computer Science, pages 185–199. Springer International
Publishing, Cham.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate
reinforcement learning. In Sammut, C. and Hoffmann, A. G., editors,
Proceedings of the Nineteenth International Conference on Machine Learning,
ICML’02, pages 267–274, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

94

Koltchinskii, V. (2011). Oracle Inequalities in Empirical Risk Minimization and
Sparse Recovery Problems: École d’Été de Probabilités de Saint-Flour XXXVIII-
2008. Lecture Notes in Mathematics. Springer Berlin Heidelberg.

Koltchinskii, V. and Panchenko, D. (2002). Empirical margin distributions
and bounding the generalization error of combined classifiers. Annals of
Statistics, pages 1–50.

Kuznetsov, V., Mohri, M., and Syed, U. (2014). Multi-class deep boosting.
In Advances in Neural Information Processing Systems, pages 2501–2509.

Kveton, B. and Theocharous, G. (2012). Kernel-based reinforcement learning
on representative states. In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, AAAI’12, pages 977–983. AAAI Press.

Lagoudakis, M. G. and Parr, R. (2003a). Approximate policy iteration using
large-margin classifiers. IJCAI’03 Proceedings of the 18th international joint
conference on Artificial intelligence, pages 1432–1434.

Lagoudakis, M. G. and Parr, R. (2003b). Least-squares policy iteration.
Journal of Machine Learning Research, 4:1107–1149.

Langford, J. and Zadrozny, B. (2003). Reducing T-step reinforcement learn-
ing to classification. In Proceedings of the Machine Learning Reductions
Workshop.

Langford, J. and Zadrozny, B. (2005). Relating reinforcement learning
performance to classification performance. In Proceedings of the 22nd

International Conference on Machine Learning, ICML’05, pages 473–480, New
York, NY, USA. ACM.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2010). Analysis of a
classification-based policy iteration algorithm. In Fürnkranz, J. and
Joachims, T., editors, Proceedings of the 27th International Conference on
Machine Learning, ICML’10, pages 607–614, Haifa, Israel. Omnipress.

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2016). Analysis of
classification-based policy iteration algorithms. Journal of Machine Learning
Research, 17(19):1–30.

Le, Q., Sarlós, T., and Smola, A. (2013). Fastfood–approximating kernel
expansions in loglinear time. In Dasgupta, S. and McAllester, D., edi-
tors, Proceedings of The 30th International Conference on Machine Learning,
volume 28 of JMLR: Workshop & Conference Proceedings (ICML’13), page
244–252.

Lee, Y., Lin, Y., and Wahba, G. (2004). Multicategory support vector ma-
chines: Theory and application to the classification of microarray data
and satellite radiance data. Journal of the American Statistical Association,
99(465):67–81.

95

Lei, Y., Dogan, U., Binder, A., and Kloft, M. (2015). Multi-class SVMs:
From tighter data-dependent generalization bounds to novel algorithms.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 28,
pages 2035–2043. Curran Associates, Inc.

Lever, G., Shawe-Taylor, J., Stafford, R., and Szepesvári, C. (2016). Com-
pressed conditional mean embeddings for model-based reinforcement
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI’16. AAAI Press.

Li, L., Bulitko, V., and Greiner, R. (2007). Focus of attention in reinforcement
learning. Journal of Universal Computer Science, 13(9):1246–1269.

Liu, Y. (2007). Fisher consistency of multicategory support vector machines.
Proceedings of the Eleventh International Conference on Artificial Intelligence
and Statistics, 2:289–296.

Mammen, E. and Tsybakov, A. B. (1999). Smooth discrimination analysis.
The Annals of Statistics, 27(6):1808–1829.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). Boosting
algorithms as gradient descent. In Solla, S. A., Leen, T. K., and Müller,
K., editors, Advances in Neural Information Processing Systems, volume 12,
pages 512–518, Cambridge, MA. MIT Press.

Maximov, Y. and Reshetova, D. (2015). Tight risk bounds for multi-class
margin classifiers. arXiv preprint arXiv:1507.03040.

Meyer-Nieber, P. (1991). Banach Lattices. Springer.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of
Machine Learning. MIT Press.

Mroueh, Y., Poggio, T., Rosasco, L., and Slotine, J.-J. (2012). Multiclass
learning with simplex coding. In Bartlett, P. L., Pereira, F., Burges, C. J. C.,
Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems, volume 25, pages 2798–2806. Curran Associates, Inc.

Munos, R. (2003). Error bounds for approximate policy iteration. In Fawcett,
T. and Mishra, N., editors, Machine Learning, Proceedings of the Twentieth
International Conference, ICML’03, pages 560–567. AAAI Press.

Nock, R. and Nielsen, F. (2009). Bregman divergences and surrogates for
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(11):2048–2059.

Ormoneit, D. and Sen, Ś. (2002). Kernel-based reinforcement learning.
Machine Learning, 49(2–3):161–178.

Pérez-Cruz, F., Ghahramani, Z., and Pontil, M. (2007). Predicting Structured
Data, chapter 12, Kernel Conditional Graphical Models. In Bakir et al.
(2007). Available at http://mlg.eng.cam.ac.uk/zoubin/papers/
CGM.pdf.

96

http://mlg.eng.cam.ac.uk/zoubin/papers/CGM.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/CGM.pdf

Pires, B. A. and Szepesvári, C. (2015). Pathological effects of variance on
classification-based policy iteration. In Workshops at the Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in
Statistics. Springer-Verlag New York.

Powell, W. (2011). Approximate Dynamic Programming: Solving the Curses of
Dimensionality. Wiley Series in Probability and Statistics. Wiley.

Precup, D., Pineau, J., and Barreto, A. S. (2012). On-line reinforcement learn-
ing using incremental kernel-based stochastic factorization. In Advances
in Neural Information Processing Systems 25, pages 1484–1492.

Puterman, M. L. (1994). Markov Decision Processes — Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc.

Ramaswamy, H. G., Agarwal, S., and Tewari, A. (2013). Convex calibrated
surrogates for low-rank loss matrices with applications to subset ranking
losses. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems, volume 26, pages 1475–1483. Curran Associates, Inc.

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement
learning. PhD thesis, University of Massachusetts Amherst.

Reid, M. D. and Williamson, R. C. (2010). Composite binary losses. Journal
of Machine Learning Research, 11:2387–2422.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification.
Journal of Machine Learning Research, 5:101–141.

Scherrer, B. (2014). Approximate policy iteration schemes: A comparison.
In Xing, E. P. and Jebara, T., editors, Proceedings of The 31st International
Conference on Machine Learning, volume 32 of JMLR: Workshop & Conference
Proceedings (ICML’14), pages 1314—-1322.

Schruben, L. W. (2010). Common random numbers. In Wiley Encyclo-
pedia of Operations Research and Management Science. John Wiley & Sons,
Inc. Retrieved from http://dx.doi.org/10.1002/9780470400531.
eorms0166.

Scott, C. (2011). Surrogate losses and regret bounds for cost-sensitive
classification with example-dependent costs. In Getoor, L. and Scheffer, T.,
editors, Proceedings of the 28th International Conference on Machine Learning,
ICML’11, pages 153–160, New York, NY, USA. ACM.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning:
From Theory to Algorithms. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Shi, Q., Reid, M. D., Caetano, T., Van den Hengel, A., and Wang, Z. (2015).
A hybrid loss for multiclass and structured prediction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(1):2–12.

97

http://dx.doi.org/10.1002/9780470400531.eorms0166
http://dx.doi.org/10.1002/9780470400531.eorms0166

Singh, S., Jaakkola, T., and Jordan, M. (1995). Reinforcement learning with
soft state aggregation. In NIPS-7, pages 361–368.

Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from
approximate optimal-value functions. Machine Learning, 16(3):227–233.

Sorg, J. and Singh, S. (2009). Transfer via soft homomorphisms. In Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent
Systems – Volume 2, pages 741–748. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Spaan, M. T. J. (2012). Partially Observable Markov Decision Processes, chap-
ter 12, pages 387–414. Springer.

Steinwart, I. (2007). How to compare different loss functions and their risks.
Constructive Approximation, 26(2):225–287.

Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999). Policy
gradient methods for reinforcement learning with function approximation.
In Solla, S. A., Leen, T. K., and Müller, K., editors, Advances in Neural
Information Processing Systems, volume 12, Cambridge, MA. MIT Press.

Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Morgan &
Claypool.

Szita, I. and Lörincz, A. (2006). Learning Tetris using the noisy cross-entropy
method. Neural computation, 18(12):2936–2941.

Szita, I. and Szepesvári, C. (2010). SZ-Tetris as a benchmark for studying
key problems of reinforcement learning. In Proceedings of the ICML 2010
Workshop on Machine Learning and Games.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large
margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6:1453–1484.

Van Roy, B. (2006). Performance loss bounds for approximate value iteration
with state aggregation. Mathematics of Operations Research, 31(2):234–244.

Vapnik, V. (2013). The Nature of Statistical Learning Theory. Springer New
York.

Whitt, W. (1978). Approximations of dynamic programs, I. Mathematics of
Operations Research, 3(3):231–243.

Wiering, M. and van Otterlo, M., editors (2012). Reinforcement Learning:
State-of-the-Art. Springer.

98

Yao, H., Szepesvári, C., Pires, B. A., and Zhang, X. (2014). Pseudo-MDPs and
factored linear action models. In IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL), 2014, pages 1–9. IEEE.

Zadrozny, B. and Elkan, C. (2001). Learning and making decisions when
costs and probabilities are both unknown. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 204–213. ACM.

Zadrozny, B., Langford, J., and Abe, N. (2003). Cost-sensitive learning
by cost-proportionate example weighting. In Third IEEE International
Conference on Data Mining, ICDM 2003, pages 435–442.

Zhang, T. (2002). Covering number bounds of certain regularized linear
function classes. Journal of Machine Learning Research, 2(Mar):527–550.

Zhang, T. (2004). Statistical analysis of some multi-category large margin
classification methods. Journal of Machine Learning Research, 5:1225–1251.

Zou, H., Zhu, J., and Hastie, T. (2006). The margin vector, admissible
loss and multiclass margin-based classifiers. Technical report, Statistics
Departement, Stanford University.

99

Appendix A

Proofs

A.1 Chapter 2 Proofs

A.1.1 Section 2.3 Proofs

To prove Theorem 2.3.6, we will use the following result by Ávila Pires and

Szepesvári (2016a).

Lemma A.1.1 (Adapted from Lemma 19 of Ávila Pires and Szepesvári,

2016a). Consider LZhang,CI convex with ψ non-decreasing and S = R|Y|. Then

for all p ∈ ∆|Y|, with Y ∼ p, and every ε > 0, we have that

inf
s∈T (S ,ε,−p)

E
(

LZhang,CI(s, Y)
)
= inf

s∈M(S ,jε)∩M(S ,j0)
E
(

LZhang,CI(s, Y)
)

.

Proof of Theorem 2.3.6, page 24. The this proof reuses Lemma A.1.1 and then

mirrors the proof of Lemma 20 of Ávila Pires and Szepesvári (2016a).

Fix the distribution p of C, any ε > 0, and pick jε ∈ J (ε, E(C)) and j0 ∈
J (0, E(C)) (breaking ties arbitrarily). Let ρk

.
= E(maxk′ ck′ − ck) (k ∈ Y),

ρ
.
= 1⊤|Y|ρ, qk

.
= ρ−1ρk (k ∈ Y), ε′

.
= ρ−1ε, j′ε′ ∈ J (ε′,−q) and j′0 ∈ J (0,−q)

(again, breaking ties arbitrarily). We have that q ∈ ∆|Y| and

Rsurr(s, p) =
|Y|

∑
k=1

ρkψ(sk) + E

(
max

k
ck

) |Y|
∑
k=1

φ(sk)

= ρ Rsurr(s, q),

where Rsurr is the surrogate risk w.r.t. LZhang,CI (and the same choices of ψ,

100

φ, but with F(t) = ρ−1E(maxk ck) t). Since for any j ∈ |Y|,

max
k
−ck + cj = (max

k
max

k′
ck′ − ck)− (max

k′
ck′ − cj) = ρ

(
max

k
qk − qj

)
,

we get that T (S , ε, E(C)) = T (S , ρ−1ε,−q) and J (t, E(C)) = J (ρ−1t,−q)

for every t ≥ 0.

We can now apply Lemma A.1.1, by recalling that ψ is non-decreasing

by assumption:

inf
s∈T (S ,ε,E(C))

Rsurr(s, p) = inf
s∈T (S ,ρ−1ε,−q)

Rsurr(s, p)

= ρ · inf
s∈T (S ,ρ−1ε,−q)

Rsurr(s, q)

= ρ · inf
s∈M(S ,j′

ε′)∩M(S ,j′0)
Rsurr(s, q)

= inf
s∈M(S ,j′

ε′)∩M(S ,j′0)
Rsurr(s, p)

= inf
s∈M(S ,jε)∩M(S ,j0)

Rsurr(s, p).

Letting p′ be the distribution of the random variable (Cj0 , Cjε), we get that

δmax(ε, p) = inf
s∈M(S ,jε)∩M(S ,j0)

sup
s′∈S

Rsurr(s, p)− Rsurr(s′, p)

≥ inf
s∈M(S ,jε)∩M(S ,j0)

sup
s′∈S :

s′k=sk,k/∈{jε,j0}

Rsurr(s, p)− Rsurr(s′, p)

= inf
s∈S :
s1=s2

sup
s′∈S

Rsurr(s, p′)− Rsurr(s′, p′)

= δbinary(ε, p).

The result for |Y| = 2 is follows from Definitions 2.3.2 and 2.3.3

combined with the result of Lemma A.1.1, since in this case M(S , jε) ∩
M(S , j0) = {s ∈ S : s1 = s2}.

Proof of Proposition 2.3.7, page 25. Then the result follows by combining Def-

inition 2.2.1 and the fact that

R(s, p′)− inf
s′∈S

R(s′, p′) = E

(
C f (s) −min

k
Ck

)
−min

k′
E

(
Ck′ −min

k
Ck

)
= E

(
C f (s)

)
−min

k′
E(Ck′)

= R(s, p)− inf
s′∈S

R(s′, p).

101

Proof of Theorem 2.3.8, page 27. We have that

Rsurr
LRed

u
(s, p) = cRsurr

L (s, q).

For all s ∈ S and every non-negative-cost distribution p and ε > 0, if

Rsurr
L (s, q)− inf

s′∈S
Rsurr

L (s, q) < δ
(ε

c
, q
)

(A.1.1)

then

max
k

qk − q f (s) <
ε

c
,

by the assumption that L has calibration function δ. Since

c
(

max
k

qk − q f (s)

)
= max

k
E(u(C))−E(Ck)−E(u(C)) + E

(
C f (s)

)
= E

(
C f (s)

)
−min

k
E(Ck),

it follows that (ε, p) ↦→ cδ
(

ε
c , q
)

is a calibration function for LRed and the

cost-distribution p.

A.1.2 Section 2.4 Proofs

Proof of Proposition 2.4.1, page 29. By simple algebra,

Rsurr(Ĥ, S) ≤ R̂surr(Ĥ, S) + sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h, S)
⏐⏐⏐

= inf
h∈H

R̂surr(h, S) + sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h, S)
⏐⏐⏐

≤ inf
h∈H

Rsurr(h, S) +
⏐⏐⏐R̂surr(h, S)− Rsurr(h, S)

⏐⏐⏐
+ sup

h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h, S)
⏐⏐⏐.

Proof of Lemma 2.4.8, page 33. Fix δ ∈ (0, 1). We have that

R̂surr(h, S) =
1

nm|Y|

n

∑
i=1

m

∑
j=1

|Y|

∑
i=1

C′i,j,k φ(h(Xi)k)

102

and also

E
(

R̂surr(h, S)
⏐⏐⏐X1, . . . , Xn

)
=

1
n|Y|

n

∑
i=1

|Y|

∑
k=1

E(Ci,k φ(h(Xi)k)|Xi),

for any j ∈ [m].

We will first study the concentration of the empirical risk of a single h ∈
H “with respect to” the cost estimates, that is, conditioned on (X1, . . . , Xn)

(in which case all Ci,j are independent). Then we will analyze the analogue,

not conditioned on (X1, . . . , Xn).

By Hoeffding’s inequality (Steinwart and Christmann, 2008, Theorem

6.10, p. 211), for any h ∈ H⏐⏐⏐R̂surr(h, S)−E
(

R̂surr(h, S)
⏐⏐⏐X1, . . . , Xn

)⏐⏐⏐
≤ Cmaxφmax,H

√
1

2nm
ln

4
δ

with probability at least 1− δ
2 , since for each i ∈ [n] and j ∈ [m] we have,

with probability one,

0 ≤ 1
|Y|

|Y|

∑
k=1

C′i,j,k φ(h(Xi)k) ≤ Cmaxφmax,H. (A.1.2)

Applying Hoeffding’s inequality once more to remove the conditioning on

(X1, . . . , Xn) gives us⏐⏐⏐E(R̂surr(h, S)
⏐⏐⏐X1, . . . , Xn

)
−E

(
R̂surr(h, S)

)⏐⏐⏐
≤ C′maxφmax,H

√
1

2n
ln

4
δ

,

with probability at least 1− δ
2 , where now

0 ≤ 1
|Y|

|Y|

∑
k=1

E
(

C′i,j,k φ(h(Xi)k)
⏐⏐⏐Xi

)
≤ C′maxφmax,H. (A.1.3)

The result follows by taking a union-bound over both uses of Hoeffding’s

inequality, and by realizing that, by Assumption 2.4.2, E
(

R̂surr(h, S)
)
=

Rsurr(h) for any h ∈ H.

103

Proof of Lemma 2.4.9, page 34. Fix δ ∈ (0, 1), as well as α > 0 and

0 < α′ ≤ α (A.1.4)

to be specified later.

Let

S′′ .
= ((X1, C′1,1, . . . , C′1,m), . . . , (X2n, C′2n,1, . . . , C′2n,m)),

S .
= ((X1, C′1,1, . . . , C′1,m), . . . , (Xn, C′n,1, . . . , C′n,m)),

S′ .
= ((Xn+1, C′n+1,1, . . . , C′n+1,m), . . . , (X2n, C′2n,1, . . . , C′2n,m)).

We will apply symmetrization in this proof), and let (σ1, . . . , σn) be i.i.d.

Rademacher ({−1, 1}-valued uniform) random variables. Define the vectors

ℓ(h, S) .
= vec((i, j, k) ↦→ φ(h(Xi, k))) and c(S) .

= vec((i, j, k) ↦→ 1
nm|Y|σi C′i,j,k),

and note that ∥c(S)∥1 ≤ Cmax with probability one.

Let C be a minimum α′
Cmax

-covering of {ℓ(h, S) : h ∈ H} in ∞-norm.

We first claim that |C| ≤ N∞/∞

(
α′

Cmax
, n,H

)
. We have that1 ℓ(h, S)i,j,k =

ℓ(h, S)i,j′,k for every h ∈ H, i ∈ [n], j, j′ ∈ [m] and k ∈ Y , so without loss of

generality we drop the second index in ℓ(h, S), and then it is easy to see

from (2.4.3) that |C| ≤ N∞/∞

(
α′

Cmax
, n,H

)
.

1 We abuse notation and denote let ℓ(h, S)(i,j,k) denote the appropriate coordinate of
ℓ(h, S) with the “flattened” index corresponding to (i, j, k).

104

By symmetrization (Pollard, 1984, pp. 14–15), we get that for some h′ ∈ C

P

(
sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h)
⏐⏐⏐ > 8α

)

≤ 2P

(
sup
h∈H

⏐⏐⏐R̂surr(h, S)− R̂surr(h, S′)
⏐⏐⏐ > 4α

)

= 2P

(
sup
h∈H

⏐⏐⟨c(S), ℓ(h, S)⟩ −
⟨
c(S′), ℓ(h, S′)

⟩⏐⏐ > 4α

)

≤ 4P

(
sup
h∈H
|⟨c(S), ℓ(h, S)⟩| > 2α

)

≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐+ sup

h∈H

⏐⏐⟨c(S), ℓ(h, S)− ℓ(h′, S)
⟩⏐⏐ > 2α

)

≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐+ ∥c(S)∥1 sup

h∈H

ℓ(h, S)− ℓ(h′, S)


∞ > 2α

)

≤ 4P
(⏐⏐⟨c(S), ℓ(h′, S)

⟩⏐⏐ > α
)
+ 4P

(
∥c(S)∥1 sup

h∈H

ℓ(h, S)− ℓ(h′, S)


∞ > α

)
= 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐ > α

)
.

In order to perform the symmetrization, we must use (in the first line above)

Lemma 2.4.8 with δ = 1
2 , which imposes a restriction on α:

4α ≥ φmax,H

(
C′max

√
1

2n
ln 8 + Cmax

√
1

2nm
ln 8

)
. (A.1.5)

Moreover, in the symmetrization we can only “swap” the observations

(Xi, C′i,1, . . . , C′i,m) with their counterparts in S′, but not each individual C′i,j
and their counterparts in S′, hence the Rademacher variables (σ1, . . . , σn)

appear.

Similar to Pollard (1984, Theorem 24, pp. 25–26), we use the union bound

to get that

P

(
sup
h′∈C

⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐ > α

)
≤ ∑

h′∈C
P
(⏐⏐⟨c(S), ℓ(h′, S)

⟩⏐⏐ > α
)
,

and then we bound each summand on the right-hand side individually2.

2 We have to be mindful that the supremum over h′ ∈ C can be shown to be measurable,

105

By realizing that for every h′ ∈ C we have

E
(⟨

c(S), ℓ(h′, S)
⟩⏐⏐ S

)
= 0,

and adapting the proof of Lemma 2.4.8 with minor modifications, we can

see that for all h′ ∈ C we have, with probability at least 1− δ
4N(α′) ,⏐⏐⟨c(S), ℓ(h′, S)

⟩⏐⏐
≤ 2φmax,HC′max

√
1

2n
ln

16N(α′)

δ

+ φmax,HCmax

√
1

2nm
ln

16N(α′)

δ
.

(A.1.6)

In contrast to the result of Lemma 2.4.8, a factor of 2 appears multiply-

ing the first term in the right-hand side of (A.1.6), because the range of

σi E
(

Ci,j,k
⏐⏐Xi, σi

)
is [−C′max, C′max]. The factor of two does not appear on

the second term of the right-hand side of (A.1.6) because for all i ∈ [n], the

range of
⏐⏐σiCi,j,k

⏐⏐ is [0, Cmax] with probability one. Take

α′ = 2
Cmaxφmax,H

nm
,

and

α = 8φmax,H

(
2C′max

√
1

2n
ln

16N(α′)

δ
+ Cmax

√
1

2nm
ln

16N(α′)

δ

)
.

We can see that both (A.1.4) and (A.1.5) are satisfied, and the result follows

by simple algebra.

Proof of Lemma 2.4.10, page 34. Fix any (x1, . . . , xn) ∈ X n and define the

shorthand V .
=
{
(i, k) ↦→ h(xi)k : h ∈ Hϕ,B

}
. For any v, v′ ∈ V , we have

that φ(v)− φ(v′)


∞/∞ = max
i,k

⏐⏐φ(vi,k)− φ(v′i,k)
⏐⏐

≤ Lipφ(BB∗)max
i,k

⏐⏐vi,k − v′i,k
⏐⏐

= Lipφ(BB∗)
v− v′


∞/∞.

because we can assume that C is finite (otherwise N∞

(
α′

Cmax
, n,H

)
= ∞ and the lemma

holds vacuously). Then the supremum is just a maximum, which is measurable as long as
H is a set of measurable score functions, which is assumed.

106

Above, we have used that suph∈H,x∈X ,k∈Y |h(x)k| ≤ BB∗ (by Hölder’s in-

equality). Moreover, each v ∈ V corresponds to at least one w ∈ Rd s.t.

∥w∥ ≤ B and vi,k = ⟨ϕ(xi, k), w⟩ for all i ∈ [n] and k ∈ Y , so for any

v, v′ ∈ V we have w, w′ ∈ Rd s.t.

v− v′


∞/∞ = max
i,k

⏐⏐⟨ϕ(xi, k), w− w′
⟩⏐⏐ ≤ B∗∥w− w′∥.

Therefore, the ε-covering number of the d-dimensional unit ball in ∥·∥ gives

us an ε
Lipφ(BB∗)BB∗

-covering number of φ ◦ V in ∞/∞-norm. It is well-known

that there exists an ε-covering of the d-dimensional unit ball in ∥·∥ with size

at most (1 + 2
ε)

d, which gives the result.

Proof of Theorem 2.4.11, page 35. This result follows by combining Proposi-

tion 2.4.1 and Lemmas 2.4.8 to 2.4.10. We take Lemma 2.4.8 to hold with

probability at least 1− 1
5 δ and Lemma 2.4.9 with probability at least 1− 4

5 δ,

and we upper-bound the left-hand side of Lemma 2.4.8 by the left-hand

side of Lemma 2.4.9.

We point out that Assumptions 2.4.2 to 2.4.4 and 2.4.6 are assumed to

hold and that Assumption 2.4.5 is satisfied with φmax,Hϕ,B = BB∗, so the

assumptions of Lemmas 2.4.8 and 2.4.9 are satisfied.

Sketch of proof, Lemma 2.4.12, page 36. Lemma 2.4.12 follows from some (care-

ful) modifications to the proof of Lemma 2.4.9, and different choices of

α, α′ and, of course, the covering C. Let C be a
√

nm|Y|
Cmax

α′-covering of

{ℓ(h, S) : h ∈ H} in 2-norm.

In the symmetrization step, we use the Cauchy-Schwarz inequality

107

(instead of Hölder’s inequality with ∥·∥1 and ∥·∥∞) to see that

P

(
sup
h∈H

⏐⏐⏐R̂surr(h, S)− Rsurr(h)
⏐⏐⏐ > 8α

)

≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐+ sup

h∈H

⏐⏐⟨c(S), ℓ(h, S)− ℓ(h′, S)
⟩⏐⏐ > 2α

)

≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐+ ∥c(S)∥2 sup

h∈H

ℓ(h, S)− ℓ(h′, S)


2 > 2α

)

≤ 4P
(⏐⏐⟨c(S), ℓ(h′, S)

⟩⏐⏐ > α
)
+ 4P

(
∥c(S)∥2 sup

h∈H

ℓ(h, S)− ℓ(h′, S)


2 > α

)
≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐ > α

)
+ 4P

(
α′ > α

)
≤ 4P

(⏐⏐⟨c(S), ℓ(h′, S)
⟩⏐⏐ > α

)
,

where we have used that

∥c(S)∥2 ≤
Cmax√
nm|Y|

and that α′ ≤ α. We observe that j ↦→ ℓ(h, S)(i, j, k) is constant for all i ∈ [n]

and k ∈ Y , so an ε√
m -covering of {(i, k) ↦→ φ(h(Xi)k : h ∈ H} in Frobenius

norm immediately gives us an ε-covering of {ℓ(h, S) : h ∈ H} in 2-norm,

and vice-versa.

Choosing α as in the proof of Lemma 2.4.9 and

α′ = φmax,H

√
1
n

(
Cmax√

m
∨ C′max

)
ensures that α′ ≤ α, and gives the result.

Proof of Lemma 2.4.13, page 37. Fix any (x1, . . . , xn) ∈ X n and define the

shorthand V .
=
{
(i, k) ↦→ h(xi)k : h ∈ Hϕ,B

}
. For any v, v′ ∈ V , we have

that φ(v)− φ(v′)


F = Lipφ(BB∗)
v− v′


F ,

since suph∈H,x∈X ,k∈Y |h(x)k| ≤ BB∗ (by Hölder’s inequality). Thus,

NF(ε, n, φ ◦ Hϕ,B) ≤ N2

(
ε

Lipφ(BB∗)
, {vec(v) : v ∈ V}

)
.

108

To obtain the first bound in Lemma 2.4.13, we use Theorem 2 of Zhang

(2002), which gives us covering number bounds for V :

log2 N2(ε, {vec(v) : v ∈ V}) ≤
⌈

B2B2
∗

ε2

⌉
log2(2d + 1).

For the second result, we use Corollary 3 of Zhang (2002), which tells us

that if p = 2 then

log2 N2(ε, {vec(v) : v ∈ V}) ≤
⌈

B2B2
∗

ε2

⌉
log2(2n|Y|+ 1),

since vec(v) is n|Y|-dimensional for v ∈ V .

A.2 Chapter 3 Proofs

Proof of Theorem 2.4.14, page 38. This result follows by combining Proposi-

tion 2.4.1 and Lemmas 2.4.8, 2.4.12 and 2.4.13. Assumptions 2.4.2 to 2.4.4

and 2.4.6 are assumed to hold and Assumption 2.4.5 is satisfied with

φmax,Hϕ,B = BB∗, so the assumptions of Lemmas 2.4.8 and 2.4.12 are satis-

fied. With simple algebra, we can verify the the claim that if (2.4.5) then

ε1 ≥ ε2, otherwise ε1 ≤ 6ε2.

We take Lemma 2.4.8 to hold with probability at least 1 − 1
5 δ and

Lemma 2.4.12 with probability at least 1− 4
5 δ, and we upper-bound the

left-hand side of Lemma 2.4.8 by the left-hand side of Lemma 2.4.12. If

(2.4.5) holds, we also use

C′max√
n

(√
1
m
∨ C′max

Cmax

)−1

≤ Cmax√
n

,

and
Cmax√

nm

(√
1
m
∨ C′max

Cmax

)−1

≤ Cmax√
n

.

Then, if (2.4.5) holds,

Rsurr(Ĥ, S)− inf
h∈Hϕ,B

Rsurr(h, S),≤ ε1 = ε1 ∨ ε2,

otherwise,

Rsurr(Ĥ, S)− inf
h∈Hϕ,B

Rsurr(h, S) ≤ ε2.

109

The result follows by upper-bounding ε2 ≤ ε1 ∨ ε2, which is not too loose:

If Equation (2.4.5) fails to hold, then ε1 ∨ ε2 ≤ 6ε2.

Proof of Theorem 3.2.4, page 54. Let h be as in (3.2.3), which gives us h = Ĥ

(see (2.4.2) with L = 1
|A|L

LLW,CS and H = Hϕ,B) and π̂ = f ◦ Ĥ. We define

the shorthands

ε1
.
= 2|A|(1 + BB∗)

√
32d
n

ln
20(1 + nm)

δ

(
2C′max + Cmax

√
1
m

)
ε2

.
= inf

h∈Hϕ,B
Rsurr

1
|A| L

LLW(h)− inf
h∈(R|A|)X

Rsurr
1
|A| L

LLW(h).

The true risk of π′ ∈ Π in our setting corresponds to, for any i ∈ [n], j ∈ [m],

R(π′) = E

(
1
m

m

∑
j′=1

C′i,j′,π(Xi)

)
= E

(
Cπ(X)

)
.

Moreover, the true risk of π̂ conditioned on the sample S is

R(π̂, S) .
= E

(
Cπ̂(X)

⏐⏐⏐ S
)

.

The sample S satisfies Assumption 2.4.2, φhinge satisfies Assumption 2.4.3

as well as Assumption 2.4.4 with Lipφ(T) = 1 for all T ∈ R, ϕ has been

assumed to satisfy Assumption 2.4.6 and Hϕ,B satisfies Assumption 2.4.5

with φmax,Hϕ,B = 1 + BB∗. Thus, we can apply Theorem 2.4.11, so that

Rsurr
1
|A| L

LLW(Ĥ)− inf
h∈Hϕ,B

Rsurr
1
|A| L

LLW(h) ≤ ε1

with probability at least 1− δ, where we have also used that c ≤ (1 + nm).

Then

Rsurr
LLLW(Ĥ)− inf

h∈(R|A|)X
Rsurr

LLLW(h) ≤ |A|(ε1 + ε2).

Note that above the surrogate risks are w.r.t. the unscaled loss LLLW,CS,

which has calibration function δ(ε) = ε, as shown by Ávila Pires et al. (2013,

Table 1) provided that
{

h(x) : h ∈ Hϕ,B
}
⊂ S0 for all x ∈ X (that is, all

scores sum to zero), which is ensured by Assumption 3.2.3.

Therefore, by Theorem 2.2.2, we have

R(Ĥ, S)− inf
h∈(R|A|)X

R(h) ≤ |A|(ε1 + ε2)

110

with probability at least 1− δ. Let π′′ = GVπ (the greedy policy w.r.t. the

value-function of π). For all i ∈ [n] and j ∈ [m], we have

R(Ĥ, S)− inf
π′∈Π

R(π′) ≥ E
(

Cπ̂(X) − Cπ′′(X)

⏐⏐⏐ S
)

= E
(

Ret(Tπ′′(X))− Ret(Tπ̂(X))
⏐⏐⏐ S
)

≥ E
(
Vπ(X, π′′(X))

)
−E(Vπ(X, π̂(X))| S)− Bπ,h

= sup
π′∈Π

E
(
Vπ(X, π′(X))

)
−E(Vπ(X, π̂(X))| S)− Bπ,h.

Above, we have used Assumption 3.2.2.

Combining the derivations above, we get that for all π ∈ Π

E(Vπ(X, h(X)))−E(Vπ(X, π̂H(X))| S) ≤ |A|(ε1 + ε2) + Bπ,h,

which concludes the proof.

Sketch of the proof of Theorem 3.2.5, page 54. The proof of Theorem 3.2.5 fol-

lows the same arguments as Theorem 3.2.4, but we use Theorem 2.4.14

instead of Theorem 2.4.11.

A.3 Chapter 4 Proofs

Proof of Proposition 4.3.2, page 71. To see why this holds, take for example

M. Then for any U, V ∈ VA, MU − MV ≤ M|·|(U − V) (≤ denotes the

componentwise ordering) and by swapping the order of U, V, we also get

|MU −MV| ≤ M|·|(U −V). Now, since for any f , g ∈ V , | f | ≤ |g| implies

∥ f ∥ ≤ ∥g∥, we get ∥MU − MV∥ ≤ ∥M|·|(U − V)∥ = ∥U − V∥VA . For

Mπ, since it is a linear operator, Lip(Mπ) = ∥Mπ∥, and for any V ∈ VA,⏐⏐MπVA
⏐⏐ ≤ M

⏐⏐VA⏐⏐, so Lip(Mπ) ≤ Lip(M) ≤ 1. The statement is proven

for the other operators analogously.

Proof of Lemma 4.4.4, page 79. We start by recalling the definition of U∗,

U∗ .
= MTQu∗, and the identity u∗ = N′TR′Qu∗, which holds because

Lip(N′TR′Q) < 1 as a consequence of our assumptions. We also have

111

V = NTPV. Here, however, the identities RM = M′R′, U∗ = MTQRU∗

and RU∗ = u∗ do not necessarily hold.

Inequality (4.4.5) is a fairly simple observation:

∥V −U∗∥ = ∥NTPV − NTQu∗∥

≤ γ Lip(N)∥PV −Qu∗∥

≤ γ Lip(N)∥PV −Qu∗∥.

In order to prove (4.4.6), it suffices to use a variant of the proof of Lemma

15 of Ávila Pires and Szepesvári (2016b), as follows:

∥V −U∗∥ = ∥NTPV − NTQu∗∥

≤ ∥NTPV − NTQRV∥+ ∥NTQRV − NTQu∗∥

≤ γ Lip(N)∥PV −QRV∥+ Lip(NTQ)∥RV − u∗∥

≤ γ∥PV −QRV∥+ Bγ ∥RV − u∗∥.

Lemma 14 of Ávila Pires and Szepesvári (2016b) with T = N′TR′Q and

a = b = α < 1 gives us

∥RV − u∗∥ = inf
k≥1

1
1− αk

RV − (N′TR′Q)kRV


≤ 1
1− α

RNTPV − N′R′TQRV


≤ 1
1− α

(RNTPV − N′R′TPV


+
N′R′TPV − N′R′TQRV

)
≤ 1

1− α

(RNTPV − N′R′TPV
+ γ

R′(PV −QRV)
).

Note that linearity of R′ is used so that R′TPV −R′TQRV = R′(PV −
QRV). Hence, (4.4.6) holds.

To obtain (4.4.7), we first point out that Lip(MTP) ≤ γ Lip(P) and

that, since Mπ̂ is linear, Lip(Mπ̂TP) = γ Lip(Mπ̂P). We cannot use that

U∗ = MTQRU∗, so we just use Lemma 14 of Ávila Pires and Szepesvári

112

(2016b) with T = NTP and a = b = β < 1 instead:

∥V −U∗∥ = inf
k≥1

1
1− βk

U∗ − NTPU∗


≤ 1
1− β

∥NTQu∗ − NTPU∗∥

≤ γ

1− β
∥Qu∗ −PU∗∥.

Proof of Theorem 4.4.5, page 81. We start with the triangle inequality in (4.4.4).

To obtain ε1(V) we use Lemma 4.4.4-(4.4.6) with α = βη,R′Q. The conditions

of Lemma 4.4.4-(4.4.6) are fulfilled by Corollary 4.3.3 and Assumption 4.3.7,

and because η is γ-Lyapunov w.r.t. R′Q (via Assumption 4.3.6-(ii)).

Lemma 4.4.4-(4.4.6) gives ε2 after we realize that Lip(MTP) ≤ γ Lip(P) =
γβν < 1 and that Lip(Mπ̂TP) ≤ γ Lip(P) = γβν < 1, since ν is γ-Lyapunov

w.r.t. P by Assumption 4.3.6-(i).

Proof of Theorem 4.4.7, page 83. The first step is to use (4.4.4). Then we see

that Corollary 4.3.3 ensures that Assumption 4.3.1 is satisfied, and Assump-

tion 4.3.4 guarantees that ∥R′Q∥ ≤ 1. Thus, Lemma 4.4.4-(4.4.6) with α = γ

gives us ∥U∗ −V∥µ,p ≤ ε1(V) for V ∈
{

V∗, Vπ̂
}

.

To bound
U∗ −Vπ̂


µ,p ≤ ε2(Vπ̂) we proceed exactly as in the proof of

Theorem 4.4.7. If (I − γMπ̂P) is not invertible, then Cγ,π̂,P ,µ,ξ = ∞ and the

result holds vacuously, so assume otherwise. Since Vπ̂ = Mπ̂TPVπ̂,

(I − γMπ̂P)Vπ̂ = Mπ̂r.

Moreover,

U∗ − γMπ̂PU∗ −Mπ̂r = U∗ −Mπ̂TPU∗.

113

Hence,U∗ −Vπ̂


µ,p
=
(I − γMπ̂P)−1(I − γMπ̂P)(U∗ −Vπ̂)


µ,p

≤ Lip((I − γMπ̂P)−1)
(I − γMπ̂P)(U∗ −Vπ̂)


ξ,p

= Cγ,π̂,P ,µ,ξ
1

1− γ

U∗ −Mπ̂TPU∗


ξ,p

= Cγ,π̂,P ,µ,ξ
1

1− γ

Mπ̂TQu∗ −Mπ̂TPU∗


ξ,p

≤ Cγ,π̂,P ,µ,ξ Lip(Mπ̂)
γ

1− γ
∥PU∗ −Qu∗∥ξ,p

To conclude, we use that Lip(Mπ̂) ≤ 1 by Corollary 4.3.3.

Proof of Theorem 4.4.6, page 82. Since

∥V∥µ ≤ (µ(νp))
1
p ∥|V|p∥∞,νp = ∥ν∥µ,p ∥V∥∞,ν,

we can apply Theorem 4.4.5 to obtain the result.

Proof of Theorem 4.4.3, page 76. We start by verifying the assumptions of

Lemma 4.4.4, so that we can bound the terms on the right-hand side of

(4.4.4) with the help of this lemma. Lemma 4.4.4 needs: Assumption 4.3.1,

Assumption 4.3.7, γ Lip(R′Q) < 1, γ Lip(P) < 1 and γ Lip(Mπ̂P) < 1.

Assumption 4.3.1 holds by Corollary 4.3.3, whose assumptions are satisfied

because Theorem 4.4.3 uses supremum norms. Assumption 4.3.7 holds

by assumption. Next, Assumption 4.3.4 implies that γ Lip(R′Q) ≤ γ < 1.

Because Lip(P) = 1 in supremum norm, we get γ Lip(P) ≤ γ < 1. Finally,

Lip(P) = 1 and Assumption 4.3.1 imply together that Lip(Mπ̂P) ≤ γ < 1.

The result is obtained by using Lemma 4.4.4 (with α = β = γ) to bound the

terms on the right-hand side of (4.4.4).

114

	Introduction
	Reinforcement Learning
	Problem Definition
	Dynamic Programming

	Contributions and Dissertation Outline

	Cost-sensitive Multiclass Classification
	Problem Definition
	Empirical Risk Minimization, Surrogate Risk, and Risk Bounds
	Calibration Functions
	General Calibration Functions
	Calibration Functions for LLLW
	Calibration Functions for LZhang
	Relaxing the Assumption of Non-negative Costs
	Calibration Functions by Reduction to Cost-Insensitive Classification

	Surrogate Risk Bounds
	A Variant of the Classification Learning Problem
	Risk Bounds
	Discussion and Related Work

	Conclusion

	Classification-Based Policy Iteration
	A Unified View of CBPI
	An Extended Analysis of CBPI
	Preliminaries
	True Risk Bounds
	Policy Error Bounds

	Conclusion

	Model-Based Reinforcement Learning with Factored Semi-Linear Models
	Preliminaries
	Factored Semi-Linear Models
	Assumptions
	Results
	A Viability Result
	Previous Results on the Policy Error
	Bounds on the Policy Error in Factored Semi-linear Models

	Conclusion

	Conclusion
	Bibliography
	Proofs
	ch:classification Proofs
	ch:classification:calibration Proofs
	ch:classification:surrogateRiskBounds Proofs

	ch:cbpi Proofs
	ch:mbrl Proofs

