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Abstract

Anomalous induced seismicity (AIS) is defined as the induced seismic events

larger than moment magnitude (Mw) 0. Moderate-sized seismicity (that is,

aroundMw 4) has the potential to be felt by humans and damage infrastructure.

Industrial operations such as hydraulic fracturing, have the potential of creating

AIS. A risk assessment before such an operation is important. It helps us

better understand, control and mitigate the risk of AIS. In this thesis, several

practices applied to the risk assessment of AIS are examined. This thesis

consists of three parts. First, refinements are made on the fault slip potential

(FSP) analysis to utilize more information and provide a more comprehensive

preliminary assessment of the risk. FSP analysis quantifies the likelihood of

fault reactivation under the current knowledge. Second, guidance is given on

choosing locations for additional samples because reducing the uncertainty in

key parameters with more samples improves the accuracy of the risk assessment.

Here the key parameter is the in situ stress. Simulations show that the optimal

locations for adding samples are in the least-sampled areas. Third, practical

tactics are applied to simplify the risk assessment process and make effective

decisions to mitigate the risk. Because giving quantitative measurements of the

risk of AIS is complex, the three-level risk evaluation system is implemented to

assess the risk qualitatively. This approach is applied to an operation in Fox

Creek, Alberta. The anticipated risk of AIS is transferred into an expected

loss in the decision tree analysis. Using the decision tree, how the anticipated

risk affects the decision-making process is demonstrated. The risk assessment

of AIS becomes more complete by adopting these suggestions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Anomalous induced seismicity

Anomalous induced sesimicity (AIS) is defined as induced seismic events that

are above moment magnitude (Mw) 0 (Eaton, 2018). Injecting fluids into for-

mations can cause AIS by reactivating adjacent faults (Atkinson et al., 2016;

Bao and Eaton, 2016; Ellsworth, 2013). The mechanisms of induced seismic-

ity from injection are summarized as the increase in the pore pressure and/or

change in the stress field (Healy et al., 1968; Raleigh et al., 1976; Atkinson

et al., 2016). Wastewater disposal, hydraulic fracturing and enhanced geother-

mal systems have led to AIS (e.g. Atkinson et al., 2016; Eaton et al., 2018;

Ellsworth, 2013; Snee and Zoback, 2016; Van der Baan and Calixto, 2017). AIS

has raised concerns and posed a risk of reducing the revenue, damaging the in-

frastructures and disturbing people’s life. The series of earthquakes happened

in Pohang, South Korea in November, 2017 is associated with an enhanced

geothermal system close to the epicenter of the earthquakes (Ellsworth, 2013).

These earthquakes caused human injuries and millions of infrastructure dam-

ages (Lee et al., 2019). The reactivation of the fault between the two injection

wells is considered as the cause of this disastrous earthquake (Woo et al., 2019).

To mitigate the risk of AIS, different protocols, such as the traffic light
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system, have been published (Kao, 2017; Shipman et al., 2018). While most

regulations focus on the mitigation of AIS, understanding the risk is as impor-

tant.

1.1.2 Risk assessment of anomalous induced seismicity

Risk assessment of AIS aims to understand the forthcoming risk associated with

the operation and prepare for response in advance. Generally, risk is divided

into possibility and impact (Aven, 2015). For AIS, the risk is controlled by

both the possibility of initiating a slip on the fault and the impact of that slip.

The Coulomb failure criterion (CFC) is a common criterion used in as-

sessing the failure of a fault (Bott, 1959; McKenzie, 1969; Jaeger et al., 2009;

Raleigh et al., 1976; Sibson, 1985, 1990). It states that a failure happens

on a fault when the normal and shear stresses on the fault exceed the fric-

tional forces and cohesion (Mohr, 1914; Twiss and Moores, 1992; Zoback,

2010). Based on the CFC, Sibson (1985, 1990) grouped the faults into favor-

ably orientated, unfavorably orientated and misorientated faults. Orientations

of faults in different stress regimes are indicative of whether the faults are

prone to be reactivated. Besides the fault orientation, the ratio between the

normal and shear stress is another indicator of the tendency to slip of a fault

(Worum et al., 2004).

On the other hand, there are notable and various sources of uncertainty

lying within the CFC parameters. It is appropriate to include different sources

of uncertainty in the analysis of fault failure. The uncertainty impedes having

a determined answer about fault failure using CFC. The fault slip potential

(FSP) analysis is proposed to calculate the likelihood of fault failure under the

current knowledge of the CFC parameters with uncertainty (Walsh and Zoback,

2016). The FSP analysis predicts the probability of fault reactivation based on

the CFC and the statistical relations amongst all parameters. The influence of

the uncertainty on the probability of fault reactivation is quantified via Monte

Carlo simulations. The advantage of this method is that it specifically addresses

the parameter uncertainty. A better constraint of the parameter uncertainty

improves the accuracy of the FSP analysis. The FSP analysis has been included
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in the risk assessment of AIS (Hennings et al., 2019; Zhang and van der Baan,

2019a,b).

Injecting fluids into formations perturbs the probability of fault reactivation.

One major source of perturbation is the pore pressure change from the injection

point. The pore pressure diffusion theory quantifies this change (Papoulis and

Pillai, 2002; Hsieh and Bredehoeft, 1981; Shapiro et al., 2002, 2003; Silin et al.,

2003; Song et al., 2004; Shapiro and Dinske, 2009; Eaton, 2011; McGarr, 2014;

Barthwal et al., 2017). The increase in the pore pressure makes the faults more

prone to failure according to the CFC. Various seismicity catalogues show that

both the intensity and magnitudes of the observed seismic events are related

to the injection volume and rate during operations (e.g. Atkinson et al., 2016;

Shapiro and Dinske, 2009; Shapiro et al., 2010; Langenbruch and Shapiro, 2010;

Keranen et al., 2013; Weingarten et al., 2015). Based on the pore pressure dif-

fusion theory, Shapiro (2018) proposes the Seismogenic index model to quantify

the influence of injection volume to the seismic susceptibility of an area. One

limitation of pore pressure diffusion theory is that the accuracy of the calcu-

lation depends on the hydrologic characterization of the porous medium. In

other words, the analysis should be site-specific. Langenbruch et al. (2018)

improve the Seismogenic index model by including regional hydrologic models.

By combining the CFC and the pore pressure diffusion theory, the likelihood

of the fault reactivation near injection sites is estimated.

After computing the probability, the next step is to understand the possible

impact of the failure. There are two ways to quantify the potential impact,

namely the magnitude of the earthquake and the ground motion caused by the

earthquake.

The magnitude is correlated with the fault size and the stress drop (Stein

and Wysession, 2009; Zoback and Gorelick, 2012; Walters et al., 2015). In

general, the magnitude of an earthquake is loosely correlated with the size of

the fault. However, the magnitude still varies because of the stress drop, which

is difficult to quantify (Stein and Wysession, 2009). Therefore, the fault size

can only qualitatively give insights on the possible magnitudes. Magnitudes of

seismic events in one area are also constrained by the total amount of seismic

events in that area during a certain amount of time, which is described as the
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Gutenberg and Richter law (Gutenberg and Richter, 1956). This law gives

the maximum magnitude that can occur in the area. The possible maximum

magnitude acts as an upper bound in the risk assessment as it is the worst case

(Baker, 2013).

The magnitude and ground motion are loosely related as well. The impact

is directly related to the ground motion. Infrastructures are built to with-

stand ground motions below a certain threshold. If the ground motion exceeds

the threshold, infrastructure damage could occur. Ground motion is predicted

using equations with the magnitude and the distance from the epicenter as vari-

ables. Again, the prediction equations are not precise in calculating the ground

motion due to various sources of uncertainty (Van Eck et al., 2006). Therefore,

probabilistic seismic hazard analysis (PSHA) is proposed. By adopting the

total probability theorem, PSHA gives the probability of the ground motion

exceeding the threshold at a specific location (Baker, 2013). Other methods

to assess the risk of AIS have been proposed. Bommer et al. (2006) propose

an improved real-time risk management of AIS by using a traffic light system

based on ground motion. Hybrid methods that combine the statistical predic-

tion approaches based on PSHA and the physics-based prediction approaches

based on rock models have also been applied to the risk assessment of AIS

(Gischig and Wiemer, 2013; Gaucher et al., 2015).

1.1.3 Understanding the in situ stress

Understanding the in situ stress state correctly plays an important part in the

risk assessment. The in situ stress state includes both the stress magnitude

and orientation of the three principal stresses. The in situ stress state is in-

fluenced by multiple factors, such as the topography, tectonic stresses, rock

properties, natural fracture networks, local geological and operational histories

(Jaeger et al., 2009; Zoback, 1992; Hillis and Reynolds, 2000; Cui et al., 2013;

Soltanzadeh et al., 2015). By knowing the in situ stress state, whether a fault is

at a critical stress state is analyzed using the CFC. Operators can avoid areas

with critically stressed faults when planning operations. In general, different

measurements of the stress take different amounts of time and effort, and also
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present different qualities of the data (Zoback, 1992). There are two major

sources of uncertainty in the stress measurements: first, the uncertainty comes

from the sparseness of the measurements. As the accuracy of the measurements

increases, the cost of the measurements increases as well. Hence the accurate

measurements are sparse. Second, all the measurements are limited by the

geographical locations of the wells, which vary spatially.

Interpolating the stress measurements shows how the in situ stress changes

within the area of interest (e.g. Soltanzadeh et al., 2015; Shen et al., 2018). In

this thesis, interpolation means both interpolation and extrapolation. Gener-

ally, the robustness of interpolation increases with the number of stress mea-

surements. Ideally, every location should be measured. But this is not achiev-

able. First, there are measurement errors (Sullivan, 2015). The stress measure-

ments might not represent the true values due to the limitation of the available

measurement approaches (Bell and Grasby, 2012; Shen et al., 2018). Second,

wells at the target depth are required for the measurements. This could be

time-consuming and expensive if the wells are deep.

There are multiple approaches to interpolate geological samples like the

stress measurements, such as trend surface, nearest-neighbor, splines, inverse

weighted distance and kriging (Ripley, 1981). Kriging has been used to in-

terpolate the in situ stress (Shen et al., 2018). Kriging considers the spatial

correlation and the variability of the samples.

Besides choosing an effective interpolation method, optimizing the sampling

design can improve the interpolation results as well. There are four common

spatial sampling schemes, random, stratified random, systematic and system-

atic random (Ripley, 1981; Delmelle, 2012; Wang et al., 2012). Since the stress

measurements are limited by the well locations, the four common sampling de-

signs are not applicable in this case. Here, the second-phase sampling design

is considered. The second-phase samples are additional stress measurements.

There are different types of uncertainty in the interpolation process (Kennedy

and O’Hagan, 2001). Sampling criteria are designed to either reduce the inter-

polation error variances or improve the spatial coverage of the samples (Arm-

strong, 1984; Wang et al., 2012). Wang et al. (2012) and Delmelle (2012) both

give detailed reviews on various sampling designs.

5



If the stress measurements used in the risk assessment contain too much un-

certainty, the effectiveness of the assessment is questionable. Additional stress

measurements reduce the uncertainty and hence improve the risk assessment.

However, as mentioned above, the locations of the stress measurements are

limited by the well locations, and the accuracy of the measurements is posi-

tively related to the cost. In addition, the available wells might not necessarily

be at the optimal locations for additional sampling. Under these limitations,

the optimal locations for additional stress measurements might be difficult to

choose. To recreate the real situation when choosing which wells for additional

stress measurements, a premise is set. The premise here is that the available

wells are pre-determined and only part of these wells can actually be measured.

This premise is crucial in the guidance of determining the optimal locations for

additional stress measurement. By choosing the optimal locations for stress

measurements, the understanding of the in situ stress is improved.

1.1.4 Decision analysis and risk assessment

The impact of AIS is another part to consider when assessing the risk. The

risk assessment of AIS proposed in recently years has started to assess the

risk qualitatively rather than quantitatively as the impact can be difficult to

characterize precisely with numbers. Walters et al. (2015) propose a project-

based risk tolerance matrix to analyze factors affecting the risk based on a traffic

light system. This workflow uses the traffic light system to mark the level of

the risk. It requires the analysts to have a comprehensive understanding of

the variables related to the exposure of the operation. Canadian Association of

Petroleum Producers (CAPP) (2019) publish an industry shared practice about

the risk assessment and management of AIS. Five factors, including historical

seismicity, in situ stress, geological fault mapping, operational risk factors and

consequences, should all be analyzed during the risk assessment of AIS.

Since the risk assessment is also a part of the decision making process of the

operation, techniques used in the decision analysis are adopted to improve the

risk assessment of AIS. Decision analysis has been implemented in the planning

process of petroleum exploration and production (Bratvold and Begg, 2010;
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Newendorp and Schuyler, 2000). It is a series of methodologies adopted from

decision theory to guide the practical decision-making processes (Newendorp

and Schuyler, 2000; Eidsvik et al., 2015; Bratvold et al., 2007).

1.2 Motivation and contribution

The motivation of this thesis is to provide practical solutions

that optimize the risk assessment of AIS.

In this thesis, the FSP analysis is expanded by including the variations in

principal stress and pore pressure gradients with depth. The modified FSP

analysis will show at which depth the fault is more prone to slip.

As mentioned above, interpolating the in situ stress correctly improves the

risk assessment. To achieve this goal, two sampling criteria for determining the

additional locations of stress measurements are proposed and compared. By

comparing the misfit reductions between the interpolated results and the true

data set, the better criterion to determine the additional locations for stress

measurements is known.

Implementing decision analysis to the risk assessment of AIS optimizes the

assessment and the decision-making process of the whole operation. Two com-

mon techniques from the decision analysis are used, the three-level risk evalu-

ation and the decision tree analysis.

Risk assessment cannot be accomplished perfectly since the future is unpre-

dictable. Therefore, this thesis proposes multiple solutions to improve the risk

assessment of AIS. Most of the methodologies in this thesis have been developed

but not yet been well applied to the risk assessment of AIS specifically.

The contribution of this thesis unfolds into three parts:

1. Modifying the FSP analysis to improve the calculation of the fault reac-

tivation likelihood;

2. Suggesting locations for additional stress measurements to reduce the

uncertainty in stress interpolation; and
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3. Adopting techniques in decision analysis to the risk assessment process

to provide a simple and clear risk assessment workflow.

1.3 Thesis structure

This thesis begins with an overview of the Coulomb failure criterion and the

Monte Carlo simulation in Chapter 2, which are the basic theories applied in

the FSP analysis.

Chapter 3 shows a comprehensive FSP analysis of a series of strike-slip

faults in Fox Creek, Alberta. principal stresses in the studied area are derived

from well logs. The vertical variations of the principal stresses and the pore

pressure are considered to conduct a 3D FSP analysis. The observed seismic

events during the operation are also analyzed and the 3D FSP analysis is up-

dated accordingly.

Chapter 4 explains the methodology of kriging in detail as it is the main

interpolation method used to estimate the in situ stress. Considering the differ-

ent sources of uncertainty in the kriging process, two sampling criteria targeting

two different sources are introduced. They are the Warrick-Myers sampling cri-

terion and the error-variance based criterion. Because the objective is to find

the optimal locations for additional measurements, the Warrick-Myers sampling

criterion is modified.

Chapter 5 compares the effectiveness of the two criteria in determining the

optimal locations for additional sampling with simulations. The robustness of

the two criteria are also tested through sensitivity tests.

Chapter 6 demonstrates the application of decision analysis to the risk

assessment of AIS. The same operation studied in Chapter 3 is analyzed

using the three-level risk evaluation system and the decision tree analysis.

Chapter 7 presents the conclusion and possible future work.
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Chapter 2

Fault slip potential analysis -

theory

Summary

In this chapter, the calculation of stresses on a fault plane is shown, the mecha-

nism of fault reactivation is explained, and the capability of using Monte Carlo

simulations to replace analytical calculation is proved. The fault slip potential

(FSP) analysis considers the uncertainty in related parameters as it plays an

important role in understanding the probability of fault reactivation. The idea

and workflow of FSP analysis are explained. Based on the CFC, FSP applies

Monte Carlo simulations to capture the influence of the uncertainties of the

parameters in the prediction of fault reactivation.

2.1 Introduction

The objective of this chapter is to explain the basic theories applied in the FSP

analysis, which calculates the likelihood of fault reactivation under the current

knowledge.

AIS, similar to natural earthquakes, is caused by the reactivation of existing

faults. Fault reactivation is the slip movement along the fault plane resulting

from the stresses applied to the fault (Twiss and Moores, 1992; Jaeger et al.,
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2009). Fault reactivation is also referred as fault failure in this thesis. The

chance is higher for a fault to fail again comparing to creating a new fault

(Bott, 1959; Alaniz-Álvarez et al., 2000). When perturbing the stress state of a

fault by injecting fluids, the change in the stress state on the fault plane could

lead to the fault failure (Ellsworth, 2013; Zoback, 2010).

By understanding the mechanism of fault reactivation, one can predict

whether a fault will slip again. To reactivate a fault, the critical shear stress

must equal or exceed the frictional resistance on the fault (Jaeger et al., 1969).

The most common and accepted criterion of fault reactivation is the Coulomb

failure criterion (CFC) (Yin and Ranalli, 1992; Lisle and Srivastava, 2004).

Using CFC, various analyses related to the fault reactivation are established

(e.g. Sibson, 1974, 1990; Morris et al., 1996; Worum et al., 2004; Walsh and

Zoback, 2016).

Multiple parameters are involved in the determination of fault reactivation,

including the fault geometry, the stress state on the fault plane, and the fric-

tional resistance of the fault. These parameters are either directly measured

or estimated. These measurement errors and estimations bring uncertainty to

the prediction of fault failure. The uncertainty in the prediction is a function

of all kinds of errors and can be calculated analytically once the errors are

known. But the complexity of a solution increases with the number of param-

eters. An alternative is to use the Monte Carlo simulations, which are based

on random sampling. It provides numerical solutions for statistical problems,

especially when the analytical solutions are too complex to calculate (Eidsvik

et al., 2015). Based on the Law of Large Numbers, the similarity between the

numerical results and the analytical results is proportional to sampling size.

Walsh and Zoback (2016) apply Monte Carlo simulations to predict the like-

lihood of fault reactivation considering the errors in all the CFC parameters.

The percentage of fault failures given all realizations is called the FSP. FSP

indicates the likelihood of fault reactivation given the current understanding

of the parameters. Since fault reactivation is a key point in seismic assessment

(Neves et al., 2009), FSP analysis helps the risk analysts anticipate the possi-

bility of the AIS. If the fault has a high possibility of reactivation without any

perturbation from the injection, the risk of AIS could be high.
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Figure 2.1: A plane in two dimensions. (a). Traction p and unit normal n of
a plane. (b). Normal and shear stresses, σ and τ , on the same plane in (a). σx
and σy are the principle stresses. They are in the same directions of the axes.
The other principle stress is parallel to the plane.

In this chapter, the mechanism of fault slip, the method of Monte Carlo

simulations, and the FSP analysis are explained in detail. The analytical results

of fault reactivation with uncertainties of the parameters are compared with

the results from Monte Carlo simulations.

2.2 Mechanism of fault reactivation

2.2.1 Traction and stress on a plane

In this section, the calculation of the normal and shear stresses on a plane

is explained. The problem is first set in two dimensions and then expanded

into three dimensions. The following explanation is adopted from Jaeger et al.

(2009).

The traction p on a plane is defined as the force applying on the plane

divided by its total area. A unit normal of a plane, n, points outward from the

plane. Both p and n are illustrated in Figure 2.1(a). If the plane is a fault, n

is the unit normal of the foot wall pointing outwards. Using the Pythagorean

theory, n = (nx, ny), where n2
x + n2

y = 1. The angle between n and the x-axis

is θ, as shown in Figure 2.1(a). Then nx = cosθ and ny = sinθ. The traction
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p is calculated using the stress tensor Σ and the unit normal n as

p = Σn =

σx τxy

τyx σy

nx
ny

 . (2.1)

If the principle stresses are in the same directions of x− and y−axis, then τxy =

τyx = 0. And Σ contains only the principal stresses, as shown in Figure 2.1(b).

Σ becomes

Σ =

σx 0

0 σy

 . (2.2)

The normal and shear stresses on the plane, σn and τ , then equal

σn = pTn =

σxnx
σyny

T nx
ny

 = σxn
2
x + σyn

2
y,

τ =
√
|p|2 − σ2

n = (σx − σy)nxny.

(2.3)

Equation 2.3 can be rewritten as

σn =
σx + σy

2
+
σx − σy

2
cos 2θ,

τ =
σx − σy

2
sin 2θ.

(2.4)

Based on Equation 2.4, we have

[σn − (
σx + σy

2
)]2 + τ 2 = (

σx − σy
2

)2. (2.5)

Equation 2.5 is a formula of a circle with the center at (σx+σy
2

, 0) and the radius

of σx−σy
2

. Therefore, the relation of σn and τ on the same plane is a circle. We

can plot the circle with a Cartesian coordinate system where the x-axis is σn

and the y-axis is τ . The circle is the Mohr diagram. In a compressive stress

field, both normal and shear stresses are positive.
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Figure 2.2: Traction and stress on a plane in three dimensions. (a). Traction
p and unit normal n of a plane. (b). Normal and shear stresses, σ and τ , on
the same plane in (a). σx, σy and σz are the principle stresses, which are in the
same directions of the axes.

In three dimensions, Σ is

Σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 . (2.6)

Again, in Figure 2.2(b), the principle stresses are in the same directions of the

x−, y− and z−axis, so the non-diagonal elements in Σ become zero. Hence p

shown in Figure 2.2(a) equals

p = Σn =


σx 0 0

0 σy 0

0 0 σz



nx

ny

nz

 . (2.7)
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Similar to Equation 2.3, in Figure 2.2(b), σn is

σn = pTn =


σxnx

σyny

σznz


T 

nx

ny

nz

 = σxn
2
x + σyn

2
y + σzn

2
z, (2.8)

and the shear stress τ

τ =
√
|p|2 − σ2

n =
√

(σx − σy)2n2
xn

2
y + (σx − σz)2n2

xn
2
z + (σy − σz)2n2

yn
2
z.

(2.9)

The two dimensional scenario is applicable to cases when one of the principal

stresses is parallel to the fault plane. And the three dimensional scenario deals

with cases when none of the principal stresses in parallel to the fault plane.

2.2.2 Coulomb failure criterion

With a low compressive normal stress, to create a shear fracture on the plane,

σn and τ on a fault plane satisfy (Twiss and Moores, 1992)

τ > µσn + S0, (2.10)

where µ is the frictional coefficient, and S0 is the cohesion of the rock. The

shear stress that equals µσn + S0 is called the critical shear stress.

2.2.3 Description of fault reactivation

The Coulomb failure criterion (CFC) is widely used to determine whether the

stress state is sufficient to cause a fault to slip as well (Twiss and Moores, 1992;

Worum et al., 2004; Walsh and Zoback, 2016). If the normal and shear stresses

on a fault plane satisfy the relation in Equation 2.10, the fault is considered to

be reactivated. Graphically, the line representing the Coulomb failure criterion

intersects with the Mohr diagram. As shown in Figure 2.3, failure is not limited

to the stress state σn and τn, but all planes within the shaded area will fail.
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Figure 2.3: Mohr diagrams intersect with the CFC. The Mohr diagrams are
the circles and the CFC is the straight line intersecting the outer circle. Faults
in the shaded area are expected to fail. σnf and τf represent one possible
combination of normal and shear stresses on a fault plane that is capable of
initiating a fault failure.

2.2.4 Slip direction

Bott (1959) establishes a theory about oblique slip faulting. The theory demon-

strates that the direction of the sliding plane does not need to be parallel to

any principal stresses. To calculate the slip vector, which are indicative of the

slip direction, the Wallace-Bott assumption is applied. The assumption states

that the slip vector v is in the direction of the shear stress on the fault plane

(Bott, 1959; Pollard et al., 1993; Michael, 1984). The slip vector v is calculated

by (Vavryčuk, 2014; Jia et al., 2018; Zhang et al., 2019)

v =


vx

vy

vz

 = N
[
σx σy σz τyz τxz τxy

]T
, (2.11)

where

N =



nx(1− n2
x) −nyn2

x −nzn2
x

−nxn2
y ny(1− n2

y) −nzn2
y

−nxn2
z −nyn2

z nz(1− n2
z)

−2nxnynz nz(1− 2n2
y) ny(1− 2n2

z)

nz(1− 2n2
x) −2nxnynz nx(1− 2n2

z)

ny(1− 2n2
x) nx(1− 2n2

y) −2nxnynz



T

,
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σi and τij are the elements of Σ where the principle stresses are not in the same

directions of the x−, y−, or the z−axis. ni are the elements of the unit normal

n.

2.2.5 Safety distance

The safety distance d is defined as the distance between the stress state of the

fault in the Mohr circle and the CFC line. The safety distance is illustrated as

the dashed line in Figure 2.4. d is calculated by

d =
|µσn − τ + S0|√

1 + µ2
, (2.12)

The calculation of the distance between a point and a line is adopted from

Ballantine and Jerbert (1952). If d is positive, the fault is stable. Otherwise,

Figure 2.4: Illustration of the safety distance d (the dashed line). The cross in
the Mohr Circles indicates the values of the normal and shear stresses on the
fault plane. The three half-circles are 3D Mohr circles and the straight line is
the CFC.

the fault slips. The FSP equals the percentage of cases where d is negative or

zero in the Monte Carlo simulations.

Equation 2.12 shows that d is a function of all the CFC parameters, as

d = f(σn, τ, µ, S0). (2.13)
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For each Monte Carlo simulation, the input values are generated based on the

distributions of the parameters. Whether the fault fails in this simulation is

determined based on Equation 2.10. The distribution of d is constrained by

the distributions of the parameters through Equation 2.13 (Papoulis and Pillai,

2002). The analytic expressions of the distribution of d, based on variations in

solely one or two parameters are explained in the following. By characterizing

the probability density function (pdf) of d derived from FSP analysis, how the

variances of all the parameters affect the FSP is represented.

2.3 Analytical and simulated solutions

2.3.1 Monte Carlo simulation

Monte Carlo simulation is an algorithm for calculating numerical results based

on random sampling. According to the Law of Large Numbers, the simulated

results from performing the same experiment a large number of times become

comparable to the analytical results.

2.3.2 Analytical solutions

The following analysis is based on Papoulis and Pillai (2002).

Assume two random variables x and y, and their relation is

y = g1(x). (2.14)

If the set of all values for x is X, the set of all values for y is calculated using

the relation between x and y and denoted as a set of Y . For a specific value y,

we have n real roots of Equation 2.14 as

y = g1(x1) = g1(x2) = ... = g1(xn). (2.15)

If the pdf of x is fx(x), the pdf of the output variable y, fy(y), can be calculated
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from Equation 2.15 as

fy(y) =
fx(x1)

| g′1(x1) |
+

fx(x2)

| g′1(x2) |
+ ...+

fx(xn)

| g′1(xn) |
. (2.16)

The detailed proof can be found in Papoulis and Pillai (2002).

If there are two random variables m and n, and another variable z is de-

scribed as

z = g2(m,n). (2.17)

To calculate the pdf of z for known pdf’s of m and n, the cumulative distribu-

tion function (Fz(z0)) (cdf) of z is computed first. Fz(z0) means the probability

of variable z being equal or smaller than a constant z0, Fz(z0) = P (z 6 z0).

Since z, m, and n satisfy the relation in Equation 2.17, Fz(z0) implies that m

and n that are in the region Dz0 satisfy the inequality g2(m,n) 6 z0. Thus

Fz(z0) can be calculated as

Fz(z0) =P (z 6 z0) = P (g2(m,n) 6 z0)

=P ((m,n) ∈ Dz0)

=

∫∫
m,n∈Dz0

fmn(m,n)dmdn, (2.18)

where fmn(m,n) is the joint pdf of m and n in Dz0 . Assume m and n are

independent, and g2(m,n) is

z = m + n, (2.19)

then the pdf of z is the convolution of fm(m) and fn(n). Denote set Mz0 and

set Nz0 are the sets of m and n that the union of Mz0 and Nz0 is Dz0 , we have

fz(z0) =

∫
Nz0

∫
Xz0

fm(z0 − n)fn(n)dmdn

= fm(m) ∗ fn(n).

(2.20)

where the symbol ∗ denotes convolution.
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2.3.3 Comparison between simulated and analytical re-

sults

In this section, the analytical and simulated pdf’s of d are compared. The

analytic results can be used to test if the Monte Carlo simulations are correct,

or the other way around. A 2D Mohr diagram is used here for simplicity. In

a 2D Mohr diagram, the stress on a fault plane can be calculated graphically

using Equation 2.4. d in Figure 2.4 is the distance between the stress point

calculated using Equation 2.4 and the CFC. The effect of pore pressure is also

included in the calculation. The three principal stresses are denoted as S1, S2

and S3 where S1 is the maximum stress and S3 is the minimum. S2 is parallel to

the fault plane so it is not included in the calculation. Therefore, the effective

principal stresses σx and σy in Equation 2.4 are

σx = S1 − pp, σy = S3 − pp, (2.21)

where pp is the pore pressure. Combining Equation 2.4 to Equation 2.21, d is

d =
µ(S1 + S3 − 2pp + (S1 − S3) cos 2θ)

2
√

1 + µ2

− (S1 − S3) sin 2θ + 2S0

2
√

1 + µ2
. (2.22)

To further illustrate how the analytical results are derived, assume the vari-

ables are uniformly distributed and independent.

One variable

If there is only one variable in Equation 2.22, and this variable is uniformly

distributed in [a, b], Equation 2.16 can be derived as

fy(y) =
1

| g′(x) |
1

b− a
. (2.23)

Furthermore, if x is linearly related to y, g′(x) is a constant value. Therefore

fy(y) is also uniformly distributed. On the other hand, if x is not linear related
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to y, fy(y) is determined by the derivative of g1(x). To calculate the derivatives

with different variables, first we can rewrite Equation 2.22 as

d = AS1 +BS3 + Cpp +DS0, (2.24)

where

A =
µ+ µ cos 2θ − sin 2θ

2
√

1 + µ2
, B =

µ− µ cos 2θ + sin 2θ

2
√

1 + µ2
,

C = − µ√
1 + µ2

, D =
1√

1 + µ2
.

Equation 2.22 can also be rewritten as

d =
1√

1 + µ2
[µ(

S1 + S3 − 2pp
2

+
(S1 − S3) cos 2θ

2
) + (S0 −

(S1 − S3) sin 2θ

2
)],

(2.25)

or

d =
µ(S1 − S3)

2
√

1 + µ2
cos 2θ − S1 − S3

2
√

1 + µ2
sin 2θ +

µ(S1 + S3 − 2pp) + 2S0

2
√

1 + µ2
. (2.26)

Equation 2.24 shows that S1, S3, pp and S0 all have linear relations with d in

a form as y = ax + b. Equation 2.25 and Equation 2.26 show that non-linear

relations exist between µ, θ and d.

Therefore, the pdf of d under the circumstance where one of the linearly

related parameters is the variable, is also uniformly distributed. In contrast,

the pdf of d when µ or θ is the variable is not uniformly distributed. g′(x) equals

A,B,C or D in Equation 2.23 when the variable is S1, S3, pp or S0 respectively.

When the variable is µ, g′(µ) is

g′(µ) =
J√

1 + µ2
− Jµ2 +Kµ

(1 + µ2)2
, (2.27)

where

J =
S1 + S3 − 2pp

2
+

(S1 − S3) cos 2θ

2
, K = S0 −

(S1 − S3) sin 2θ

2
.
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Similarly, g′(θ) is

g′(θ) = −2
µ(S1 − S3)

2
√

1 + µ2
sin 2θ − 2

S1 − S3

2
√

1 + µ2
cos 2θ. (2.28)

To include the uncertainty in the parameters, each parameter in Equa-

tion 2.22 is assigned with the mean and the range listed in Table 2.1. The

range is generated based on a uniform distribution with a standard deviation

of 0.15. The pdf’s of d are computed using Equation 2.22 and Equation 2.23,

with results shown as the red lines in Figure 2.5. Here each parameter in Equa-

tion 2.22 is uniformly distributed if considered as a variable, otherwise the mean

is used as the value. For Monte Carlo simulations, the results are shown in the

blue bars in Figure 2.5. The results are calculated using MATLAB® scripts.

The steps are:

1. Determine which parameter is the variable.

2. Create a for loop that repeats 5000 times. In each loop, the value of the

variable is randomly generated from a uniform distribution with the the

mean and the variance of the variable. The mean of each parameter when

it is treated as the variable is shown in Table 2.1. The variance is 0.152.

3. In each for loop, calculate the safety distance d using Equation 2.24.

4. Store the value of d in another array.

5. After the 5000 rounds, calculate and store the pdf of d.

6. Repeat step 2-5 for another 9 times. The final pdf of d is the average of

the 10 pdf’s.

The pdf’s of d using the Monte Carlo simulations are also shown in Figure 2.5.

Great similarities lie between the analytical results and the simulated results.

Two variables

There are four independent parameters in Equation 2.24 that are linearly re-

lated to d. If two of them are selected as uniformly distributed variables, d and
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Table 2.1: Means and ranges of all parameters in Equation 2.22. *: generated
based on a uniform distribution with a standard deviation of 0.15.

Variable Mean Range*
S1 60MPa 51-69MPa
S3 20MPa 17-23MPa
pp 10MPa 8.5-11.5MPa
θ 60◦ 42.5◦-57.5◦

µ 0.6 0.51-0.69
S0 5MPa 4.25-5.75MPa

Figure 2.5: Analytical and simulated results. Blue bars are the averaged his-
tograms from 10 rounds of 5000 Monte Carlo simulations. Red lines are the
analytic results. Red dashed lines show the ranges of the variables. Horizontal
axes are the values of d calculated from Equation 2.22 given the means and
ranges in Table 2.1. Title of each subplot is the variable of choice.

the two variables satisfy a relation similar to Equation 2.19 as

d = ax+ by + c, (2.29)

where x and y are the two variables of choice, a and b are the corresponding

coefficients in Equation 2.24, which are also constants. c is another constant

because, except for the variables, other parameters are constant. Based on
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Equation 2.20, the pdf of d is

fd(d) = (afx(x)) ∗ (bfy(y)). (2.30)

For instance, assume S1 and S3 are the two uniformly distributed and in-

dependent variables, fd(d) is

fd(d) =

∫ AS1max

AS1min

∫ d+C−D−AS1

BS3

1

(S1max − S1min)

× 1

(S3max − S3min)
dS1dS3, (2.31)

where A, B, C and D denote the same as in Equation 2.24. There are six

combinations of choosing two random variables that are linearly related to d

in Equation 2.24. Figure 2.6 illustrate the analytical and simulated pdf’s of d

using the same means and ranges in Table 2.1. Again, there is a strong consis-

tency between the analytical results and the simulated results. Comparing the

analytical and the Monte Carlo simulation methods, we can see that the sim-

ulation method requires less calculation of the mathematical relation between

the pdf of d and the variable. But it requires more computational time for the

computer to generate reasonable results because the Monte Carlo simulations

becomes more valid as the size of the simulations increases. As for analytical

expressions, once the distributions of the variables are known, the pdf of d is

easily calculated based on their relations. Unfortunately, the analytic expres-

sions of such relations become quite involved in particular if multiple variables

are considered that have non-linear relationships with d. In this case, Monte

Carlo simulations are preferred.

Tornado diagram

Figure 2.7 shows how the variability in each parameter affects the variability of

d in 2D scenario. Here we can see that with the same variance of 0.15, d is most

sensitive to the minimum principal stress S3. Such a tornado diagram illustrates

the uncertainty of which parameter has a lager impact on the uncertainty in d.
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Figure 2.6: Analytic and simulated results. Blue bars are the histograms from
Monte Carlo simulations and red lines are the analytic results. Title of each
subplot is the two variables of choice. Horizontal axes are the values of d
calculated from Equation 2.31 given the means and standard deviations in
Table 2.1. Dashed red lines indicate d = 0. Failure occurs for d < 0.

Figure 2.7: (a). Relation between each parameter and d with the parameter
changing between the range given in Table 2.1. (b). The tornado diagram of d
based on (a). d is calculated using Equation 2.22.

2.4 Fault slip potential analysis

CFC is easy to apply if all the parameters can be known with little to no

uncertainties. However, if the quantification of the parameters is imperfect,
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Figure 2.8: Workflow of FSP analysis. In one Monte Carlo simulation, values of
the CFC parameters are generated based on the given statistical distributions
as shown in the left part of the figure. Using the values, the stress state on the
fault is calculated and analyzed using the CFC, as shown on the right part of
the figure. Here three realizations are shown, circles are the 3D Mohr circles
and the straight lines are the CFC. The dots on the circles represent the stress
states. The FSP is the ratio between the number of realizations with fault
reactivation and the total number of realizations.

uncertainties would lie within the results. FSP is proposed if the parameters

have uncertainty (Walsh and Zoback, 2016). The idea behind this method is

to quantify the risk of fault reaction by including the uncertainties of the CFC

parameters via Monte Carlo simulations since analytical solutions become quite

complex with multiple variables.

Figure 2.8 illustrates the workflow of FSP analysis. First step is to char-

acterize the uncertainties in the input parameters. The uncertainties can be

characterized using various methods, such as bootstrapping. Bootstrapping

means resampling the variable based on the probabilistic distribution obtained

from the existing samples (Tibshirani and Efron, 1993). The resampled pop-

ulation is then used for further analyses. Next, Monte Carlo simulations are

conducted. In order to have a better result, a large number of realizations are

recommended. For each Monte Carlo realization, CFC is applied to determine

whether the fault will slip with the values generated based on the input param-

eters and their uncertainties. The FSP is the ratio of realizations with fault

reactivation over the total number of realizations as

FSP =
Fault reactivation events

Total realizations
. (2.32)
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2.5 Conclusion

This chapter explained the theories related to the FSP analysis. Stresses acting

on a fault plane can be vectorized into the normal and shear stresses. The

normal and shear stresses are calculated using the relations between the traction

on a plane and the plane normal. Then CFC determines if the fault plane fails

under certain normal and shear stresses.

Considering the uncertainty in the quantification process of the relevant

parameters, the FSP analysis is proposed to calculate the probability of fault

reactivation. This analysis is based on the CFC. Instead of having a certain

answer of if a fault will fail, the FSP analysis gives a likelihood of the fault

failure given the current knowledge.

The FSP analysis utilizes the Monte Carlo simulations to determine the im-

pact of the uncertainty on the probability of fault reactivation. The uncertainty

in each variable contributes to the ultimate probability of fault failure. The

impact can be known analytically. However, given the complexity of the numer-

ical relations between the variables and the fault failure, analytical solutions

in the FSP analysis are too difficult to solve. Hence Monte Carlo simulations

are introduced to simulate the analytical solutions based on the Law of Large

Numbers. Implementing Monte Carlo simulations makes the FSP analysis less

complex. A detailed case study of the application of the FSP analysis is in-

cluded in Chapter 3.
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Chapter 3

Fault slip potential analysis -

application

Summary

In this chapter, the original FSP analysis is modified by considering the depth

variation in the stress gradients. Methods explained in Chapter 2 are applied

and several faults identified in Fox Creek, Alberta are studied in detail. The

case study demonstrates the practicability of the FSP analysis. It can be up-

dated easily once more information is available. The slip direction and the

safety distance are included in the 3D FSP analysis as well. The analysis ex-

plained in this chapter utilizes more information and is more comprehensive.

The improved method helps better understand the likelihood of fault reactiva-

tion and how the uncertainty affects the likelihood.

3.1 Introduction

The original FSP method only considers constant stress gradients with depth.

Since the stress gradients can vary with depth (Prats et al., 1981; Roche and

van der Baan, 2017; Ma and Zoback, 2017; Zoback and Kohli, 2019), FSP

analysis including the variations in principal stress gradients and pore pressure

gradients with depth is proposed. The results from the FSP analysis show at
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which depth the fault is more prone to slip. Also, the safety distance is included

to study the variation of the FSP results. The slip direction of the fault is also

calculated to validate the FSP analysis. To demonstrate the application of

the FSP analysis, a case study in the Fox Creek region, Alberta, Canada is

shown. The focus is on understanding and quantifying the probability of fault

slip without addressing the potential impact associated with the slip.

In this chapter, the methodology of applying FSP analysis to assess the risk

of AIS is first explained. Then a field example involving a hydraulic fracturing

treatment and moderate-size seismicity with the maximum moment magnitude

of Mw 3.2 is investigated. This chapter demonstrates how FSP can be useful in

the risk assessment of AIS prior to treatment but also once more observations

become available.

3.2 Method

FSP analysis, slip direction and safety distance are explained in detail in Chap-

ter 2. Here, the approach applied for calculating the principal stresses is ex-

plained.

3.2.1 Principal stresses with depth

Principal stresses are required to determine the normal and shear stresses on a

fault plane. Often, stress gradients are used to describe the horizontal principal

stresses by dividing the stress measurements over depths (Shen et al., 2018).

Nevertheless, determining the stresses at different depths using the gradients

is not precise as measurements show that the minimum horizontal stress varies

along depth and does not have a constant gradient (Ma and Zoback, 2017; Prats

et al., 1981). Different explanations are proposed based on various assumptions,

such as the stress relaxation and creep (Sone and Zoback, 2013; Prats et al.,

1981), tectonic movements and rock properties (Roche and van der Baan, 2017;

Economides and Nolte, 2000; Prats et al., 1981), or temperature (Prats et al.,

1981). It is possible that a fault crossing multiple layers is under different stress

states. Including the stress variations in vertical direction in FSP analysis not
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only calculates the probabilities of reactivation of numerous faults, but also

the probabilities of fault reactivation at various depths. At the same time,

stress measurements at different depths in one region are limited, and most

stress measurements are done within the depth range of the reservoir (Higgins-

Borchardt et al., 2016). Different approaches are proposed for estimating the

gradient variations of principal stresses (Jaeger et al., 2009; Savage et al., 1992;

Economides and Nolte, 2000; Roche and van der Baan, 2017; Zoback and Kohli,

2019). Here the approach proposed by Roche and van der Baan (2017) is

applied for demonstration.

The methodology of this model consists of two steps. Firstly, it assumes a

state of uniaxial strain due to the overburden. The vertical effective stress σV

and the horizontal uniaxial stress σH̄ in the rock satisfy (Jaeger et al., 2009;

Savage et al., 1992; Roche and van der Baan, 2017)

σH̄
σV

=
ν

1− ν
, (3.1)

where ν is the Poisson’s ratio of the rock. Secondly, the effects of tectonic

stress and strain are included. A biaxial stress state is applied because only the

horizontal tectonic stresses are considered (Economides and Nolte, 2000). The

changes in the horizontal strains at the directions of maximum and minimum

horizontal stresses, ∆εH and ∆εh, are

∆εh =
∆σH
E
− ν∆σh

E
(3.2)

∆εH =
∆σh
E
− ν∆σH

E
, (3.3)

where ∆σH and ∆σh are the changes in the horizontal effective stresses, ∆εH

and ∆εh are the changes in the horizontal strains, and E is the Young’s mod-

ulus. A similar calculation of the effective horizontal stresses is proposed by

Higgins-Borchardt et al. (2016), in which the poroelastic effect is also consid-

ered. For simplicity, Biot’s coefficient, the indicator of how strong the poroe-

lastic value is within the rocks, is assumed to be 1 in all directions.

∆σH and ∆σh can be calculated by subtracting the uniaxial horizontal stress
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from the effective horizontal stresses as the following,

∆σh = Shm − pp − σH̄ , (3.4a)

∆σH = SHm − pp − σH̄ , (3.4b)

where pp is the pore pressure, SHm and Shm are the measured in situ maximum

and minimum horizontal stresses. Because in the uniaxial strain model, the

horizontal strains are zero, tectonic strains are the only strains considered in

the horizontal directions. In addition, since both maximum and minimum

horizontal strains are assumed constant in all layers, the variations in horizontal

stresses depend on the variances in E and ν according to Equation 3.2 and

Equation 3.3. Hence, horizontal stresses in other layers can be calculated using

the reciprocal versions of Equation 3.2 and Equation 3.3 as

∆σ′h =
E ′

1− ν ′2
∆εh +

E ′ν ′

1− ν ′2
∆εH , (3.5a)

∆σ′H =
E ′

1− ν ′2
∆εH +

E ′ν ′

1− ν ′2
∆εh. (3.5b)

The apostrophe (′) denotes the stresses and strains in the layers with different

E and ν. E and ν can be inverted using the relations between elastic moduli

and seismic wave velocities (Yilmaz, 2001),

ν =
1

2

(Vp/Vs)
2 − 2

(Vp/Vs)2 − 1
, G = ρV 2

s , E = 2G(1 + ν), (3.6)

where Vp and Vs are the velocities, G is the shear modulus. Velocities can be

obtained from well logs. ν and E calculated from seismic velocities are dynamic

properties, which should be compared with static moduli measured with core

samples. Static elastic moduli are different from the dynamic moduli. Static

moduli refer to the direct measurements of the moduli in laboratories, where

dynamic moduli are derived from the compressional (P-wave) and shear (S-

wave) wave velocities (Zoback, 2010). Because differences rise between static

and dynamic elastic properties, it is important to distinguish between these

two types. The static elastic properties describe the rock behaviours more ac-
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curately (Eissa and Kazi, 1988). The relations between the dynamic and static

moduli vary place by place and rock by rock. Often, laboratory tests are done

to quantify this relation (e.g. Mullen et al., 2007). The static moduli should

also be calibrated to match the condition of the confining pressure around the

rock in the ideal depth. When applying different confining pressure, the static

moduli of the same rock change (Najibi and Asef, 2013). The calibrated static

moduli are used for further calculations.

3.2.2 Measuring principal in situ stresses and pore pres-

sure

The strain model requires stress measurements at least in one formation for

calibration. The vertical stress Sv at a certain depth is calculated by integrating

the density with the depth (Zoback, 2010; Jaeger et al., 2009),

Sv =

∫
ρgdz, (3.7)

where ρ is the density from the well log, g is the gravitational acceleration, and

Sv is the vertical stress.

Shm, SHm and pp can be measured using hydraulic fracturing (Zoback, 2010;

Shen et al., 2018). With the measurements of Shm and maximum horizontal

Shm at the same depth, and the calculated elastic properties with well logs

using Equation 3.6, the horizontal stresses in depth can be calculated based on

Equation 3.4 and 3.5.

3.3 Case study

To demonstrate how the FSP analysis is implemented in the risk assessment

and management of AIS, an area located at the east of Fox Creek, Alberta,

Canada is studied. This area is also studied for other purposes in Zhang et al.

(2019); Eaton et al. (2018); Rodriguez-Pradilla (2018); Igonin et al. (2019) and

Poulin et al. (2019).
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3.3.1 Geological background

Lithological analysis

This region is known for the presence of unconventional resources in the Du-

vernay formation lying within the Western Canada Sedimentary basin. It is

an active area of hydraulic fracturing operations. Here seismic data, well logs,

microseismic data, stress measurements as well as core samples in this area are

studied.

Velocity logs, density logs and gamma-ray logs from the wells located in

the center of the study area are obtained to determine the depth and rock

properties of each formation. Figure 3.1(a) shows the well logs, along with the

interpretation of the formations. A detailed analysis of the same well logs is

included in Rodriguez-Pradilla (2018).

The interpretation of the well logs indicates that the Duvernay formation

is at about 3500m depth in the study area with a thickness around 70 me-

ters (Rodriguez-Pradilla, 2018). Above lie the Banff, Wabamum, Winterbum,

Upper and Lower Ireton formations. Formations below are interpreted from

seismic data. They are Swan Hill, Gilwood and Precambrian respectively. The

Duvernay formation is an organic and clay-rich formation, with average total

organic carbon (TOC) of 4.5 wt% (Preston et al., 2016; Dunn et al., 2012).

Above the Duvernay is the Ireton, containing mostly shale. The Ireton is di-

vided into two layers with increasing clay and decreasing carbonate content

from the Upper Ireton to the Lower Ireton (Switzer et al., 1994). The forma-

tions below Duvernay also transit from organic and clay-rich shale to mudstone.

The Precambrian basin consists of crystalline rocks at around 4000m below the

surface.

With the density logs and velocity logs, the dynamic E and ν are calculated

using Equation 3.6. As mentioned above, the Duvernay formation has a higher

organic and clay content where the formations above and below it have a lower

clay content. The lithological analysis means that the elastic properties would

change through these formations, as shown in Figure 3.1. E and ν decrease

with the increase in TOC (Sone and Zoback, 2013). The measurements of three

core samples retrieved from the Duvernay formations are listed in Table 3.1.
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Table 3.1: Triaxial compressing measurements of the core samples at the Du-
vernay retrieved from two wells in the study area. Data are available at the
geoSCOUT® QFind module with subscription.

No. Depth(m) Confining
Pressure(MPa)

Young’s Mod-
ulus (GPa)

Poisson’s Ratio

1 3615.28 5.6 21.17 0.23
2 3639.62 5.6 22.62 0.23
3 3632.94 5.6 21.95 0.23

In situ stresses

Because the well logs end at the Duvernay formation, values of velocities, den-

sities and other properties are assigned for the formations below the Duvernay.

In each identified formation, constant values are assigned. For formations with

well logs, for simplification, the means are used. Profiles of rock properties are

shown in Figure 3.1(b).

Since the confining pressures applied in the laboratory are lower than the

overburden calculated from the density log, the static elastic properties in the

in situ stress environment should be higher than the values listed in Table 3.1.

This is because higher confining pressure results in higher Young’s modulus and

Poisson’s ratio (Wu et al., 2019). A ratio of 0.8 between the static and dynamic

properties is applied according to the study conducted by Mullen et al. (2007).

Based on the stress analysis of the Western Sedimentary Basin (e.g. Bell

et al., 1990; Shen et al., 2018; Cui et al., 2013), the study area is located in

a strike-slip stress region. The principal stresses of the Duvernay formation,

as well as the rock properties (coefficient of friction µ and cohesion S0) at

the Duvernay formation in Alberta are obtained from Shen et al. (2018) and

Heidbach et al. (2016). Stress and rock measurements and their variances at

the Duvernay formation in the study area are shown in Table 3.2. Different

distributions are assigned. For principal stresses (Shm, SHm and Sv), pore

pressure pp and the azimuth of SHm β, a Gaussian distribution is used. For

rock mechanical properties µ and S0, a uniform distribution is used. Here

the bootstrapping method is not applied as used in the original paper from

Walsh and Zoback (2016). The reasons are the study area is relatively small

compared to that in the original paper, and there are limited published stress
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Table 3.2: Stress measurements and rock properties of the Duvernay within
the study area. Data are from Shen et al. (2018) and Heidbach et al. (2016).

SHm Shm Pp Azimuth of
SHm

µ S0

33±2 kPa/m 20.8-
21.5kPa/m

15.2-
17.9kPa/m

45±2(◦) 0.45-
0.65

0-1
MPa

measurements in this area.

Identification of faults

Figure 3.2 shows a seismic cross section of the study area. Most of the faults in

this area are difficult to locate since there is no vertical displacement, indicating

they are strike-slip faults. Figure 3.3 shows the faults in this area from the

Figure 3.2: Seismic cross section trending east-west. The section is compressed
in the lateral direction and flattened on the Wabamum horizon. Faults are
marked with black solid lines. Red and blue colors represent the positive and
negative seismic amplitude values. White dashed lines are formation bound-
aries. Figure from Eaton et al. (2018).

interpretation of the seismic data. A detailed analysis of the seismic data can

be found in Weir et al. (2018). Because most of these faults are strike-slip

faults, the chance of misinterpretation is relatively high compared to regions
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with normal or thrust faults.

Figure 3.3: Map view of the faults interpreted from the seismic data used in
Weir et al. (2018) and Eaton et al. (2018). Faults are represented by darker
gray planes with names in red capital letters. Light gray horizontal planes
are the formation boundaries with names on the left side. The Duvernay lies
between the Lower Ireton and the Swan Hill. Data offered by Dr. David Eaton
from the University of Calgary.

3.3.2 Results

Stress inversion

There are three states of pore pressure in rock, hydrostatic, overpressured and

underpressured (Zoback, 2010). Hydrostatic state exists in most of the rock.

An overpressured state is often observed in the unconventional reservoirs. In

this study, the Duvernay is overpressured due to the presence of the reservoir.

As for the pore pressure in the rest formations, two different cases are proposed,

namely Case 1 and Case 2. In Case 1, only the formation with the reservoir,

the Duvernay formation, is overpressured. In Case 2, the overpressured state

exists in the formation containing the source rock and the formations adjacent

36



to it, namely the Duvernay, the Lower Ireton and Swan Hill formations.

To calculate the stress profiles using the method proposed by Roche and

van der Baan (2017), which is mentioned above, measurements of the principal

stresses in at least one formation should be known. Here the measurements of

the horizontal stresses in the Duvernay formation in the study area are used.

They are listed in Table 3.2. Figure 3.4(a) shows the stress gradients calculated

based on the averaged well logs and static elastic moduli in Case 1, where only

the Duvernay formation is overpressured. The pore pressure is measured at

the Duvernay. The stress gradient shows a constant strike-slip stress regime

regardless of the changes in the gradients. Figure 3.4(b) lists the Mohr diagrams

at all formations. Figure 3.5 show the stress gradients calculated based on Case

2 and the corresponding Mohr diagram in each formation.

For formations with faults, the stress states on the faults are calculated

and colored with red, yellow and green based on the safety distances. Red

means close and green means far. The faults shown in red and yellow dots

can be considered as being at risk of reactivation. From Figure 3.4(b) and

Figure 3.5(b), we can see that more faults are at risk at the Lower Ireton and

Swan Hill in Case 2 than in Case 1, a result from the increased pore pressure

in these two formations. In addition, due to the overpressured stress state,

several faults are at a high risk (red dots) at the Duvernay in both cases. The

overpressured state decreases the safety distance between the fault and the

failure line, making the fault closer to reactivation. Because no uncertainty is

given in the Mohr diagrams, Figure 3.4(b) and Figure 3.5(b) are preliminary

analyses.

The pore pressure change can be calculated using the pore pressure diffusion

theory (Shapiro et al., 2002; Eaton, 2011). The closest fault to the planned

injection wells is fault E, which is within 100 − 150m of two injection wells.

The locations of the wells and the faults is shown in Figure 3.7(b). With the

assumption that the permeability of a typical shale gas reservoir is 50mD, the

pore pressure perturbation at the fault E is less than 0.2MPa. The detailed

explanation and analysis can be found in Appendix A. The increase in the

pore pressure is too small to reactivate the fault. It is even smaller than the

uncertainty assigned to the pore pressure. Therefore, the perturbation in the
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Figure 3.6: Projection of the slip directions on the surface. Faults are repre-
sented by light gray planes. Slip directions are shown in arrows. The length of
the arrow on the left corner is one unit, indicating a horizontal slip movement.

pore pressure due to injection is not included in the FSP analysis.

Slip direction

If the poroelastic effect is ignored, the ratios of the effective principal stresses

do not change, hence the slip directions remain the same before and after

the treatment. Based on Equation 2.11, the slip directions of all faults are

calculated using the stresses without uncertainty in the Duvernay, as illustrated

in Figure 3.6. Slips are predominantly strike-slips, which is expected since the

stress field is a strike-slip stress field (Cui et al., 2013; Bell and Grasby, 2012).

FSP analysis prior to the injection

For the FSP analysis, in each Monte Carlo simulation, the values of all the

parameters are generated based on the stresses and their variances at different

formations shown in Figure 3.4(a) and Figure 3.5(a) and the geomechanical

properties listed in Table 3.2. The stress state of each fault at each formation

are calculated based on Equation 2.3 and Equation 2.9. Then the CFC is
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Figure 3.7: FSP analysis and comparison with the observed AIS. (a). FSP of
all faults in Case 1. (b). Comparison between the FSP results in Case 1 and
the AIS during the treatment. The figure is in a map view. (c). FSP of all
faults in Case 2. (d). Comparison between the FSP results in Case 2 and the
AIS during the treatment. In (a) and (c), fault planes are colored based on
the FSP in each formation. The color bar on the right shows how the FSP is
colored. In (b) and (d), four horizontal wells are named 1-4. Blue dots are the
observed AIS. Red star is the location of the maximum AIS with Mw 3.2.

applied to determine whether the fault is considered being reactivation in this

simulation. Figure 3.7(a) and (c) show the FSP results of all faults in Case 1

and Case 2. Most of the faults have FSP’s smaller than 5%, indicated by the

color green. This means that the faults are stable and have low possibilities of

being reactivated under the current stress field without the injection. Similar

to the analysis of the Mohr circle plots in Figure 3.4(b) and Figure 3.5(b), most

of the faults are far from the failure line, indicated by green dots. Faults with
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yellow and red segments are more likely to be reactivated at those depths under

the current stress field and given uncertainty, such as faults C, E, K, and N in

Figure 3.7(a) and (c).

Distribution of the safety distance

The pdf of safety distance d is a combination of the contributions of all the

variances in the input parameters. The pdf give insights into the uncertainty

in the input parameters as well as the likely outcomes. A wider distribution

indicates a larger spread in possible outcomes.

Figure 3.8: Pdf of d of faults D and E in Case 1. FSP in each formation is
shown at the left of each plot. Red dashed lines are d = 0. The title of each
plot is the formation where the d is calculated during the FSP analysis.

Figure 3.8 shows the pdf’s of d of fault D and fault E in Case 1. The wide

distributions of d in all formations indicate poorly constrained input parame-

ters, which means a refinement is needed for a more precise prediction.

Figure 3.7(a) and (c) show the fault D as a green plane, indicating low

probabilities of reactivation of fault D in both Case 1 and Case 2. However, the

wide distributions of d in Figure 3.8(a) show the results from the FSP analysis

contain large uncertainty due to all the variances given to the input parameters.

Pdf’s of d of fault E also have wide distributions, as shown in Figure 3.8(b).

If fault E or D is near the operation area, then refining its geomechanical and

stress parameters prior to treatment may be advisable. Likewise, a reduction

in treatment volumes or skipping stages should be considered if fault E during
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stimulation begins to display sustained microseismicity that aligns along the

fault plane.

Comparison with recorded AIS during the operation

A hydraulic fracturing operation was conducted adjacent to faults D to H. The

operation consisted of injection in four south-north horizontal wells, named

Wells 1-4 from the west to east. The injection first started in Well 2. Then, Well

3 and Well 4 were hydraulic-fractured interchangeably. Well 1 was fractured

last. A series of AIS was recorded with the maximum moment magnitude (Mw)

of 3.2 (Eaton et al., 2018). To better study the FSP analysis, the recorded AIS

is plotted in Figure 3.7(b) and (d) with the FSP analysis of Case 1 and Case 2.

Here all the movements of the faults and fractures are assumed to be seismic.

Comparing the locations of AIS and the faults, part of the AIS lines up

with fault D and another cluster of AIS was at faults G and H. No indication

of any movement on fault E, which has a higher possibility of reactivation in

the FSP analysis. Meanwhile, the Mw 3.2 earthquake happened at the location

of fault D. It is reasonable to connect this earthquake with the reactivation of

fault D.

3.4 Discussion

3.4.1 Principal stress and pore pressure

To measure the in situ stresses, most techniques are usually more suitable

for shallow formations and strong rocks with low temperatures; the depths

of unconventional formations are usually too deep and hot to obtain accurate

measurements via these methods (Zoback, 2010). Therefore, other indirect cal-

culations can be applied, such as the focal mechanism (Zoback, 2010; Zhang

et al., 2019). At the same time, stress interpretation based on the critical stress

state is not suggested. This approach assumes the most optimally orientated

faults are at the edge of slip as the failure line is the tangent of the outer Mohr

circle (Zoback, 2010; Roche and van der Baan, 2017). If SHm is calculated

based on this assumption, the FSP results would be high as it already assumes
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a critically stressed state. This could be beneficial from the perspective of risk

assessment, yet it biases the judgments and decision-making processes as it

potentially magnifies the FSP. Therefore, the methodology proposed by Roche

and van der Baan (2017) to calculate the stress gradients in depth is applied.

This methodology uses a strain-driven model and assumes the horizontal layers

are not coupled. If other assumptions, such as stress-driven and coupled lay-

ers, are applied, the interpretation of the horizontal stress gradients could be

different. Because the focus in this thesis is not to compare different stress in-

terpretation methods, this method is adopted for demonstration. In addition,

uncertainty is included when conducting the FSP analysis. The uncertainty

could overcome the differences originated from using different assumptions and

methods to estimate in situ stress. According to Equation 3.4, the pore pres-

sure is also involved with the calculations of horizontal stress. Understanding

the pore pressure gradient is as important.

For unconventional reservoirs, the rock is usually both the source and reser-

voir, which indicates it can be overpressured due to the continuous maturation

of the kerogen (Higgins-Borchardt et al., 2016). Measurements have shown an

overpressured state in the Duvernay formation at the study area (Shen et al.,

2018). For other formations above and below the Duvernay, the pore pressure

is rarely measured. Alternative approaches for interpreting the pore pressure

gradients are proposed, such as calculating the pore pressure gradient using the

empirical relation between the pore pressure and the seismic velocities (Eaton,

1975; Bowers et al., 1995; Sayers, 2006; Zhang, 2011). Here the idea illustrated

by Higgins-Borchardt et al. (2016) is adopted, where the pore pressure is over-

pressured in the reservoir formation and transits to the hydrostatic state in

other formations, as shown in Figure 3.9.

Because of limited pore pressure measurements, how the pore pressure tran-

sits from an overpressured state to a hydrostatic state is unknown. Therefore

two possible cases to describe the pore pressure, Case 1 and Case 2, are pro-

posed. In Case 1, the overpressured state only exists in the Duvernay. In Case

2, overpressured states exist in the source rock layer, the Duvernay, and the

adjacent layers, the Lower Ireton and the Swan Hill. According to Shen et al.

(2018), the pore pressure in the Duvernay is 16.5kPa/m in the study area. In
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Figure 3.9: Pore pressure gradient change. Black dashed line indicates the
pore pressure gradient. Figure not drawn to scale. Figure created based on
Higgins-Borchardt et al. (2016).

Case 2, a pore pressure gradient of 15kPa/m is given to the other two adja-

cent layers. Comparing Figure 3.4(b) with Figure 3.5(b) we can see that the

overpressured state generally decreases the distances between the Mohr circles

and the failure line, making the stress state more critical for failure.

3.4.2 Comparison between the moment tensor inversion

and the slip direction prediction

Slip directions of the faults are calculated using the same parameters in the

FSP analysis. Therefore, the slip directions can be used to validate the input

values for FSP analysis once more microseismic and seismic data are acquired.

A contradiction between predicted slip directions and observed ones indicates

most likely incomplete or incorrect information in the stress states and/or fault

properties. If the microseismic and seismic data start to show alignment with

an observed fault, and the focal mechanism of the seismicities corresponds with

the predicted fault slip direction, this means:

1. The interpretation of the fault is correct.

2. The fault could be slipping.

3. The input values for the slip direction calculation are within the correct

range.

4. The FSP analysis based on the input values is reliable.
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Figure 3.10 shows the focal mechanisms of the seismic events in the area.

The beach balls show that the Mw 3.2 event was strike-slip trending north-

south. Our prediction of the slip direction of fault D also suggests the similar

strike-slip pattern and direction. This indicates that this event is likely resulted

from the reactivation of fault D. This could also validate that the stress regime

in this area is a strike-slip regime.

Figure 3.10: Focal mechanism analysis of the observed AIS during the treat-
ment. The beach ball on the left side is the focal mechanism of the maximum
AIS with Mw 3.2. Colored dots are recorded microseismic and seismic events
during the operation. Figure from Eaton et al. (2018).

3.4.3 Comparison between the seismic observations and

FSP results

The FSP analysis can be amended once passive-seismic data become available

during the treatment. With additional information, the FSP analysis is up-

dated. Comparisons of the moment tensor inversion, the seismic events and

the FSP results demonstrate that there are some discrepancies as well as some
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consistencies between the initial FSP analysis and the observations. As shown

in Figure 3.7(b) and d, AIS aligned with fault D, while no AIS was observed at

fault E. A cluster of AIS was observed at the the conjunction of faults G and

H, both of which have low possibility of reactivation in the initial FSP analysis.

Various causes exist and some of them are listed below.

1. There is no fault E. Most faults are strike-slip faults in this area that

are very hard to identify in seismic sections, as shown in Figure 3.2.

With highly compressed cross sections strike-slip faults are interpreted

by aligning topographic variations, but no slip or discontinuities in the

cross section are visible.

2. The impact of the uncertainty is too large. As discussed above, the wide

distributions of d show that the input parameters are poorly constrained.

The large uncertainty could also lead to imprecise FSP analysis.

3. The movements at fault E could be aseismic slips that were undetectable.

Aseismic movements are possible during the injection (Eyre et al., 2019).

Because only seismic movements can be recorded, aseismic movements

on faults are undetectable. If the movement on fault E is aseismic, no

seismic events would be shown around fault E.

4. The local stresses could be different around large faults. Faults F, G,

and H are connected and can be regarded as one large fault with three

segments. The azimuth of SHm could alter at this large fault, based on the

observations at other locations (Yale, 2003). Since a constant azimuth of

SHm is applied at the initial FSP analysis, it is possible that this azimuth

does not apply to the local stress azimuth around faults F, G, and H.

Though the FSP analysis does not match with the observations of AIS, this

example still illustrates the application of the FSP analysis in depth. More

importantly, the FSP analysis quantifies the possibility of fault reactivation.

This quantification can help operators be aware of the potential risk of pro-

ceeding the operation and be prepared if seismic events with larger magnitudes

do occur.
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3.4.4 Update of FSP analysis

The knowledge of the study area is updated with the observed microseismic

and seismic events during the operation. Therefore the FSP analysis is also

updated. Several changes are made to the FSP analysis.

1. Fault E is eliminated since its existence is not confirmed by the seismicity.

2. The pore pressure gradient is updated by combining Case 1 and Case 2.

The updated pore pressure state is called Case 3. In Case 3, the Lower

Ireton is overpressued while the Swan Hill is hydrostatic. This change is

based on the depths of observed seismic events. Both microseismic and

seismic events clustered in the Duvernay and Ireton (Igonin et al., 2019).

The patterns of recorded microseismic and seismic data demonstrate that

fluid pathways exist, for instance, due to the existence of a fracture network.

Igonin et al. (2019) propose the existence of a highly developed fracture network

in this area. The fracture network increases the permeability of the reservoir.

So the pore pressure perturbation due to fluid injection was 2MPa rather than

less than 0.2MPa as was initially calculated. The stress gradient profile and the

corresponding Mohr diagrams of Case 3 are shown in Figure 3.11. The Mohr

diagrams indicate that the stress states in the Lower Ireton and the Duvernay

are closer to the failure line than the stress state in the Swan Hills. This means

that both the Lower Ireton and the Duvernay are more critically stressed than

the Swan Hills. Therefore more seismic events are observed in the Ireton and

the Duvernay.

Figure 3.12(a) shows the updated FSP analysis with the stress profiles in

Case 3. In the updated results of the FSP analysis, fault D has a higher

probability of reactivation. Comparing the updated FSP analysis with the

recorded AIS, shown in Figure 3.12(b), there is a better consistency between

the updated FSP analysis and the observations.

3.5 Conclusion

This chapter demonstrates that the vertical stress variations could result in

changes of FSP with depth. FSP provides the likelihood of fault reactivation
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under the current understanding of relevant parameters. The slip direction is

a way to validate the inputs of the FSP analysis. The pdf’s of safety distance

d capture the influence of uncertainty on the FSP results.

The analysis can be done prior to a hydraulic fracturing treatment to obtain

a better understanding of the risk of AIS in one area. It can be easily updated

once new information becomes available during the treatment, as demonstrated

by the case study.

In a word, FSP is a fast and easy way to assess the likelihood of fault

reactivation. Along with the size and the location of the fault, people can

assess the risk of AIS by anticipating the possible magnitude and damage the

fault reactivation can lead to. The results of FSP analysis can also be used

during the economic assessment of the operation (Zhang and van der Baan,

2019a). Calculating the FSP is not complicated but the interpretation and

application of the results are important and should be done with caution. If

the impact of the uncertainty is too large, a sensitivity analysis would help to

determine which parameters are first to be refined for an improved prediction,

such as the tornado diagram in Figure 2.7. To refine the quantification of a

parameter, additional measurements of that parameter is reasonable. Chapter 4

and Chapter 5 explain how to determine the optimal locations for additional

measurements.
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Figure 3.12: Updated FSP analysis and comparison with the observed AIS.
(a). FSP of all faults in Case 3. Fault planes are colored based on the FSP
in each formation. The color bar on the right shows how the FSP is colored.
(b). Comparison between the FSP results in Case 1 and the AIS during the
treatment. The figure is in a map view. Four horizontal wells are named 1-4.
Blue dots are the observed AIS. Red star is the location of the maximum AIS
with Mw 3.2.
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Chapter 4

Kriging and sampling criteria

Summary

In this chapter, the theory of kriging is explained, followed by the introductions

of two sampling criteria for determining the optimal locations for additional

samples. One criterion is based on the error variance given by kriging. The

additional sampling takes place at where the error variances are the largest. The

second criterion is modified from the Warrick-Myers sampling criterion. This

criterion aims to increase the robustness of the variogram model estimation.

4.1 Introduction

In situ stress measurements are considered as one of the essential types of in-

formation in the risk assessment of AIS. By understanding the stress state of

a region, analysts can assess which areas and faults are under a critical stress

state. Measurements of in situ stress states are limited to the locations of wells,

making the quantification of regional in situ stress one of the main sources of un-

certainty in the risk assessment. Improving the strength of the knowledge used

in the risk assessment is beneficial. For areas with few stress measurements, in-

terpolation becomes important because it shows how the stress changes within

the area. In this thesis, kriging is adopted as the main interpolation approach

of in situ stress. Kriging is a common interpolation method in geostatistics.
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Kriging assumes the variable is first- and second-order stationarities, in which

the mean and the variance of the variable are constant through the whole area.

Kriging estimates how the in situ stress changes within the area of interest.

If there are more wells available for stress measurements, the interpolation is

updated with more samples. Given the fact that the in situ stress measure-

ments are both time-consuming and expensive, choosing the optimal wells for

additional sampling becomes crucial. On the other hand, sampling locations

are constrained by the locations of wells, which means that the wells might not

be located in the most desirable areas for improving interpolation. Therefore,

the objective is to determine the optimal sampling locations that can improve

the performance of kriging the most within the spatial limitation of well loca-

tions. For convenience, the sampling process is divided into two phases, where

the first-phase samples refer to the original samples and the second-phase sam-

ples refer to the additional samples. The second-phase sampling design is the

focus of this thesis. Two second-phase sampling criteria are proposed, namely

the modified Warrick-Myers sampling criterion and the error-variance sampling

criterion. The detailed explanations of the criteria are in the following sections

after the explanation of kriging.

4.2 Methodology

4.2.1 Variogram

The following explanations are based on Pyrcz and Deutsch (2014). For a

random variable Z in an area U (Figure 4.1(a)), suppose Z(ui) indicates the

spatial variability of Z with the location ui, where u = (uxi, uyi) and u ∈ U.

Define the mean and the variance of Z are m and σ2. Assume Z is a function

of the location u, the variogram is defined as the variance of Z at two different

locations, ui and uj,

2γ(h) = E{[Z(ui)− Z(uj)]
2}, (4.1)
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Figure 4.1: Example of calculating experimental variograms. (a). Map of the
variable (Z) in the study area. (b). 100 samples of the variable. (c). Calculated
experimental variograms γ̂(h) (red squares) and variogram model γ(h) (dashed
line) created based on γ̂(h).

where h denotes the distance vector between the two locations as h = ||ui−uj||.
h is also known as the lag. The semi-variogram is γ(h) and in this thesis,

variogram refers to semi-variogram for convenience.

Within the area of interest with k samples (Figure 4.1(b)), denote the set

of samples that have the distance of hl as L. The variogram γ̂(hl) is

γ̂(hl) =
1

2Nl

∑
[Z(ui)− Z(uj)]

2(i, j ∈ L), (4.2)

where Nl is the number of all the combinations of elements in set L. In the

same area, we can calculate the variogram between any two samples and plot

it in a figure with the lag distance as the x-axis and the variogram as the y-

axis (Figure 4.1(c)). The calculated variograms are denoted as γ̂(he) and called

the experimental variograms. The variogram represents the variance of samples

with a certain distance, and is negatively related to the spatial correlation of the

samples. In general, with the increase of the lag, the variogram becomes larger

as the samples become less correlated as the distance between them increases

spatially. The lag continues increasing to a value called the effective range.

For any lag that is greater than the effective range, samples are not spatially

correlated. The maximum of the variogram is called the sill, which equals the

variance of the random variable Z, σ2. In contrast, with the lag decreasing, the

variogram becomes smaller as the samples become more spatially correlated.

Ideally, the variogram reduces to zero when the lag is zero because the samples
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at the same location should be identical. However, the variogram does not

become zero at lag zero due to the measurement errors of the samples. The

non-zero variogram when the lag is zero is called the nugget. The nugget

represents the measurement errors.

Once all the experimental variograms γ̂(he) are calculated, a variogram

model γ(h) is created by fitting the experimental variograms with a function,

as the blue dashed line shown in Figure 4.1(c). With the variogram model, the

spatial correlation of all the locations in the area of interest, including sampled

and unsampled ones, are estimated.

Another parameter to describe the spatial relations between samples is the

covariance. It is defined as

Cov(Z(ui), Z(uj)) = E{[Z(ui)−m][Z(ui)−m]}(ui,uj ∈ U), (4.3)

where Cov is short for covariance.

From Equation 4.1 and Equation 4.3 we have

γ(h) = σ2 − Cov(h), (4.4)

where σ2 is the variance of Z. h is the vector containing all possible distances

between locations in U. Please see Appendix B for proof.

To describe a variogram, three parameters are used, the sill σ2, the range η

and the nugget τ 2. Because sill also refers to the variance of the variable, the

same notation σ2 is used to represent both sill in a variogram model and the

variance of the variable. Because the covariance and variogram are interchange-

able, the parameters are also used to describe the covariance. Table 4.1 lists

three common variogram and covariance models, the Matern 3/2, exponential

and Gaussian models. Figure 4.2 show the corresponding plots of the variogram

models on the left diagram and the corresponding plots of covariance models

on the right diagram. Note in Figure 4.2, the variogram models do no reach

the sill at the range, this is because the range given by the variogram model

is different than the effective range where the samples are no longer correlated

(Mälicke et al., 2018).
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Table 4.1: Common variogram and covariance models. τ 2 is the nugget effect,
σ2 is the sill and η is the range.

Model Variogram (γ(h)) Covariance (Cov(h))
Matern
3/2

τ 2+(σ2−τ 2)(1−(1+3h/η)e−3h/η) (σ2 − τ 2)(1 + 3h/η)e−3h/η)

Expon-
ential

τ 2 + (σ2 − τ 2)(1− e−3h/η) (σ2 − τ 2)e−3h/η

Gaussian τ 2 + (σ2 − τ 2)(1− e−h2/η2) (σ2 − τ 2)e−h
2/η2

Figure 4.2: (a). Variogram models. (b). Covariance models. In all three
models, the sill σ2 = 1, the range η = 1.2, and the nugget effect τ 2 = 0.1.

Declustering

Before kriging, it is important to define a grid in the study area. The samples

are declustered based on the grid. Only one datum can represent one grid. If

multiple samples are in the same grid, the value of that grid is the average of

all samples in that grid as,

z̄ =
1

n

n∑
i=1

zi, (4.5)

where zi represents one sample in the grid, n is the total number of samples

in the grid, and z̄ is the average of all values in the grid. Declustering reduces

the data redundancy, if two samples that are very close to each other are

treated individually, this could affect the accuracy of the final results (Pyrcz
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and Deutsch, 2014). If there are in total U grids, we have

U = k + u, (4.6)

where k and u are the numbers of samples after declustering and unsampled

locations.

4.2.2 Kriging

The first proposal of kriging was by Krige in the 1950s (Krige, 1951). Cressie

(1990) examines the development of kriging. The advantage of kriging is that

it considers the spatial variance in the samples. Thus it is useful to study the

spatial distribution of the variable. The following explanation about kriging is

adopted from Pyrcz and Deutsch (2014) and Davis (2002).

Following the notations in Equation 4.6, use U to denote all the locations in

the area of interest. There are k locations that are sampled and u locations that

are not sampled. For the unsampled locations, the values of those locations

are estimated using kriging. Assume one of the unsampled locations is u0, the

value at this location is Z(u0). By the definition of simple kriging, Z(u0) is

calculated as

Ẑ(u0) = m+
k∑
i=1

λi[Z(ui)−m], (4.7)

where m is the mean of the variable Z and λi is the weight of the value at the ith

sampled location. Kriging is based on least square optimization. The idea is to

minimize the squared error between the estimated result and the true value. To

get the least estimation error, the weights in Equation 4.7 are calculated using

the covariances between the sampled locations and the unsampled location u0.

Define

Λ =


λ1

λ2

...

λk

 , (4.8)
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Cs =


Cov(u1,u1) Cov(u1,u2) . . . Cov(u1,uk)

Cov(u2,u1) Cov(u2,u2) . . . Cov(u2,uk)
...

...
. . .

...

Cov(uk,u1) Cov(uk,u2) . . . Cov(uk,uk)

 , (4.9)

and

M =


Cov(u1,u0)

Cov(u2,u0)
...

Cov(uk,u0)

 . (4.10)

Then we have

Λ = C−1
s M. (4.11)

If

Y =


Z(u1)−m

Z(u2)−m
...

Z(uk)−m

 , (4.12)

then the estimated value Ẑ(u0) equals

Ẑ(u0) = m+ YTΛ = m+ YTC−1
s M. (4.13)

The detailed explanation of simple kriging can be found in Davis (2002) and

Pyrcz and Deutsch (2014).

4.3 Error-variance based sampling criterion

In this section, the sampling criterion based on the kriging error variance is

explained. The idea is straightforward. The additional samples should be

located at where the error variances are the greatest.
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The error variance of the estimated value σ2
E(u0) is

σ2
E(u0) = σ2 +

k∑
i=1

k∑
j=1

λiλjCov(ui,uj)−
k∑
i=1

λiCov(ui,u0). (4.14)

The three parts in Equation 4.14 represent three types of variances that con-

tribute to σ2
E(u0). According to Pyrcz and Deutsch (2014), the three parts

are

1.
∑k

i=1

∑k
j=1 λiλjCov(ui,uj). This is called the redundancy. It represents

the spatial redundancy of the samples. The redundancy increases with

the decrease in the distances among samples. If the samples are clustered

in a small part of the study area, the error variance could become high

as the redundancy in the samples is large.

2.
∑k

i=1 λiCov(ui,u0). This is called the closeness. This closeness is the

distance between the samples and unsampled location u0. The error

variance decreases as the samples become closer to u0.

3. σ2. This is the variance of the variable in the study area.

With the second-phase samples, both the sample redundancy and the closeness

change, and hence σ2
E(u0) changes.

The error-variance based sampling criterion determines the additional sam-

pling locations based on σ2
E(u0) at each unsampled location. After decluster-

ing, there are in total U locations in the study area. The objective is to reduce∑U
i σ

2
E(ui) as much as possible by the second-phase samples. σ2

E(ui) at the ith

sampled location is zero. σ2
E(ui) at one of the unsampled locations is calcu-

lated using Equation 4.14. The change in the error variance, based on Delmelle

(2012), is measured as

∆σ2
E =

1

U
(
U∑
i=1

σ2
E1(ui)−

U∑
i=1

σ2
E2(ui)), (4.15)

where footnotes 1 and 2 represent the error variance before and after the addi-

tional samples.
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To maximize ∆σ2
E, we need to minimize

∑U
i=1 σ

2
E2(ui) with additional sam-

ples. Because the error variances at the sampled locations are zero,
∑U

i=1 σ
2
E2(ui)

reaches its minimum when the locations with the highest error variances are

measured. Therefore, the error-variance based method is to sample at locations

where the error variances are the largest.

4.4 Warrick-Myers sampling criterion

In this section, the modified Warrick-Myers sampling criterion that generates

a robust variogram model for kriging is explained.

4.4.1 Concept

Proper estimations of the experimental variograms and a good variogram model

are important (Armstrong, 1984). In general, a decent construction of the vari-

ogram model requires a sufficient number of experimental variograms calculated

with existing samples (Davis and Borgman, 1979, 1982; Warrick and Myers,

1987). In other words, the sampling should be designed in a way that the ex-

perimental variograms are calculated from as many lags as possible. Figure 4.3

illustrates how the distribution of experimental variograms affects the construc-

tion of the variogram model. With samples covering the whole area, various

lags can be used to build the variogram model, as shown in Figure 4.3(a) and

(c). On the other hand, if samples are clustered in parts of the area, the vari-

ability of the lags is limited, as shown in Figure 4.3(b) and (d). In Figure 4.3(d),

more uncertainty is created when fitting a variogram model to the experimen-

tal variograms. To reduce the uncertainty, a series of properly distributed

experimental variograms are better than poorly scattered ones. Therefore, the

sampling criterion is designed to improve the variability of lags.

Based on this idea, the Warrick-Myers sampling criterion is adopted. First,

optimal numbers of experimental variograms within different lag intervals are

assigned. Then the criterion calculates the differences between the number of

the experimental variograms in each interval with the assigned optimal number

(Warrick and Myers, 1987; Delmelle, 2009; Wang et al., 2012). The sampling

60



Figure 4.3: Comparison between the variograms from properly distributed sam-
ples and poorly distributed samples. There are 50 samples in both cases. (a).
Samples cover the whole area; (b). Samples only cover parts of the area; (c).
Experimental variograms from samples in (a); (d). Experimental variograms
from samples in (b). The dashed line in (c) and (d) indicates one possible
variogram model by fitting the experimental variograms.

design is evaluated based on the closeness between the assigned optimal number

and the actual number of sample pairs. Because the original criterion focuses

on the first-phase sampling, the original evaluation equation is modified to solve

the second-phase sampling problem.

4.4.2 Methodology

The Warrick-Myers sampling criterion is explained in the following section

with an example. Suppose there are k = 20 first-phase samples in a 1 × 1

square, as shown in Figure 4.4(a). There are in total
(
k
2

)
= k(k − 1)/2 = 190

pairs of samples. The maximum lag is equally divided into 15 intervals. The

experimental variograms are calculated using Equation 4.2. Then within one
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lag interval (hi−1, hi] (i = 1, 2, ..., 15;h0 = 0), the number of pairs of samples

with the lag within that interval is counted. Denoted the number of pairs of

samples in the ith interval as N s
i , as shown in blue bars in Figure 4.4(b). Since

the variogram model is based on the experimental variograms, there should be

as many pairs of samples as possible in each lag interval. The optimal number

of pairs of samples within the interval is assigned as N o
i , as shown in green bars

in Figure 4.4(b). It is obvious that

15∑
i=1

N s
i =

15∑
i=1

N o
i =

(
15

2

)
= 190. (4.16)

Figure 4.4: Demonstration of N o
i and N s

i . (a). 20 first-phase samples in a 1×1
square. Blue dots represent the samples. Samples connected with the black
arrow is one pair of samples with lag distance of h. (b). Numbers of pairs of
samples within intervals. The lag h is divided into 15 intervals. N s

i and N o
i

are the actual and the optimal numbers of pairs of samples with lag distances
in the ith interval respectively. The dashed gray curve is a possible variogram
model. A detailed analysis of this figure is in the context.

From Figure 4.4(b) we can see that most of the experimental variograms of

the first-phase samples have intermediate lag distances. N s
i is greater at inter-

mediate lag intervals comparing to N s
i at small or large intervals. When fitting

the experimental variograms with a variogram model, there is less uncertainty

in the middle of the variogram model than that in the beginning or the end of
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the variogram model. This is because more experiment variograms, indicated

by N s
i , lead to a more robust estimation of the variogram model. For instance,

in Figure 4.4(b), the number of pairs in the first interval N s
1 (the first blue bar)

is small, meaning that the estimations of the nugget and of how the variogram

model changes at very small lags are poor. Therefore, the idea is to design the

sampling locations that makes N s
i as similar to N o

i as possible. Based on this,

Warrick and Myers (1987) propose a criterion called the Sum of Squares(SS).

The SS is defined as

SS = s1

15∑
i=1

wi(N
s
i −N o

i )2 + s2

15∑
i=1

m1i + s3

15∑
i=1

m2i, (4.17)

where wi is the weight given to each internal. s1, s2 and s3 are the assigned

coefficients. m1i and m2i are two parameters that also characterize the samples

but are not our focus. Hence s2 = s3 = 0. The detailed explanation of these

two parameters can be found in the original work by Warrick and Myers (1987).

Equation 4.17 focuses on how different first-phase sampling designs affect SS.

Since the focus in this study is the second-phase sampling design, Equation 4.17

is modified. If No = [N o
1 , N

o
2 , ..., N

o
15] and Ns = [N s

1 , N
s
2 , ..., N

s
15], we can denote

f(No) and f(Ns) as the discrete pdf’s of No and Ns. Based on Equation 4.17,

we have

f(No) =
No

k(k − 1)/2
, f(Ns) =

Ns

k(k − 1)/2
. (4.18)

Therefore, the modified criterion evaluates the similarity of f(No) and f(Ns),

which is represented by the Bhattacharyya coefficient. The Bhattacharyya

coefficient determines the overlap between two probability distributions (Bhat-

tacharyya, 1943). Define the similarity as R, the modified version of Equa-

tion 4.17 is

R =
k∑
i

√
f(No)f(Ns)

=
k∑
i

√
N s
iN

o
i

(N(N − 1)/2)2
.

(4.19)

When f(No) = f(Ns), R reaches its maximum as 1. R represents the robust-
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ness of the variogram model built based on the sampling design. With second-

phase samples, R changes. Similar to the error-variance based criterion, there

are
(
na

nc

)
combinations of additional sample locations with na available loca-

tions and nc samples that can be added. Denote the combinations as a, then

R becomes a function of a as R(a). The best alternative ab satisfies

R(ab) = max(R(a)). (4.20)

4.4.3 Demonstration

For example, suppose 3 out of 7 locations can be picked for the second-phase

sampling, the 20 first-phase samples (blue dots) and the available locations

(pink dots) are shown in Figure 4.5(a). There are in total
(

7
3

)
= 35 combinations

of locations that can be selected for additional sampling. The combination with

the highest R is shown as orange dots in Figure 4.5(b). The longest lag distance

is
√

12 + 12 =
√

2, the lag is divided into 15 intervals, as indicated by the

vertical dashed lines in Figure 4.5(c). Assume the optimal distribution of No

is uniform, indicating all the 15 lag intervals are equally important, so the pdf

of No should be f(No) = 1/15, as shown in the green dashed line in Figure 4.5.

The corresponding pdf’s of Ns with and without second-phase samples are

shown in Figure 4.5(c). From Figure 4.5(c) we can see that by adding three

more samples, f(Ns) becomes more similar to the assigned uniform distribution

of No, indicating the estimation of the variogram model becomes more robust.

4.5 Conclusion

Interpolation of the in situ stress is vital because it helps to understand how

stress changes in the area of interest. The accuracy of the estimation of the in

situ stress affects the validity of the risk assessment of AIS. Kriging is applied

to interpolate the in situ stress. In this chapter, two second-phase sampling cri-

teria are introduced. They are the modified Warrick-Myers sampling criterion

and the error-variance based sampling criterion.

64



Figure 4.5: (a). 20 first-phase (blue dots) and 7 available sample locations for
additional sampling (pink dots). (b). Second-phase samples presented by dots.
Additional samples are selected based on the modified Warrick-Myers sampling
criterion (orange dots). Unselected locations are shown in cross. (c). Pdf’s of
Ns from the first-phase samples in (a) and the first- and second-phase samples
in (b). The horizontal dashed line is the assigned f(No). Vertical dashed lines
indicate the 15 intervals.

Kriging is based on the spatial relations between the samples, which are

represented by a variogram model. Therefore, it is crucial to build a robust var-

iogram model that describes the spatial relations correctly. The Warrick-Myers

sampling criterion is aimed at improving the robustness of the variogram model

by having ideal pairs of samples in each lag interval. This criterion is modified

to apply to the second-phase sampling situation. By adding the second-phase

65



samples based on this criterion, the robustness of the variogram model is in-

creased. Therefore, the kriging results based on the improved variogram model

are improved as well.

The second sampling criterion is the error-variance based criterion. Ac-

cording to the definition of kriging, the error variances of the kriging results

are also calculated. The error variances at the sampled locations equal zero.

The error-variance based sampling criterion is to add second-phase samples at

the locations where the error variances are the greatest. So the sum of all

the error variances in the kriging results reaches its minimum by adding the

second-phase samples. Hence the kriging results are improved.

Before kriging, samples are declustered to reduce the data redundancy and

improve the kriging results. Another step often done before the kriging is called

the normal score transformation. It transforms the distribution of the samples

into a normal distribution with a mean of zero and variance of one. Since the

variance of the samples is also the sill of the variogram, after normal score

transformation, the sill of the variogram model is known as one. The detailed

explanation of the normal score transformation is in Appendix C.

The trend in the in situ stress should be removed before applying kriging

because the trend violates the first- and second-order stationarities that kriging

assumes. Another approach to include the trend in the interpolation is to use

a spatial regression model with kriging. This method is briefly discussed in

Appendix D.
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Chapter 5

Determination of the optimal

additional sampling locations

Summary

In this chapter, the two sampling criteria, the Warrick-Myers sampling criteria

and the error-variance sampling criterion, are compared. As mentioned in

Chapter 1, the premise is that the locations available for second-phase samples

are pre-determined and only part of these locations can be chosen. Under this

premise, synthetic data sets are created to test the effectiveness of the two

criteria. The examples show that the second-phase samples given by the error-

variance based sampling criterion yield a higher misfit reduction on average.

The sensitivity tests also show that the error-variance based sampling criterion

is more robust when the data variability, spatial correlation of the variable, the

measurement error or the first-phase sampling size changes.

5.1 Introduction

In Chapter 4, two criteria for second-phase sampling are introduced, namely

the modified Warrick-Myers sampling criterion and the error-variance based

sampling criterion. In this chapter, which criterion is better to determine

the optimal second-phase sampling locations is studied. For convenience, the
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Warrick-Myers sampling criterion is referred as WM-sampling or WM, and the

error-variance based sampling criterion is referred as EV-based or EV in the

following context.

5.2 Method

To evaluate the effectiveness of the two criteria, the misfit is adopted. It is

defined as the sum of the difference between the interpolated result and the

real data, that is,

δm =
U∑
i

|Ẑ(ui)− Z(ui)|2, (5.1)

where δm denotes the misfit, U is the number of locations after declustering,

Ẑ(ui) and Z(ui) are the estimated and true values at the ith location. In

general, with more samples, the misfit should be reduced (Sullivan, 2015). In

another word, the interpolation results will be closer to the real data as the

sample size increases.

5.3 Results

5.3.1 Example 1

To demonstrate how the two criteria are compared, a random data set within

a 1× 1 square is created. The workflow of this example is shown in Figure 5.1.

The real data set Z(U) is created based on a given variogram model. The

variogram model of choice is the Matern 3/2 variogram model. Denote θ as

the variogram parameter vector, and θ = (σ2, η, τ 2). The values of the three

parameters are listed in Table 5.1. Note here the true data set should not

contain the measurement error. Hence the nugget effect is zero. The real data

set is shown in Figure 5.2(a). Then 25 samples are randomly picked from

Z(U) as the first-phase samples. The 25 samples with no measurement error

are shown in Figure 5.2(b). Based on the first-phase samples, simple kriging is

applied. The variogram model parameters are estimated using the maximum
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Figure 5.1: Workflow of Example 1. θ is vector with variogram model param-
eters (θ = (σ2, η, τ 2)). Steps with dashed boxes are indicating the data are
randomly generated based on the data from the above step. Data within the
solid boxes are directly calculated. WM and EV are short for Warrick-Myers
sampling and error-variance based sampling criteria. More detailed explanation
of the workflow is in the context.
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likelihood. The kriging result Ẑ(U) and the error variance σ̂2
E from kriging are

shown in Figure 5.3. Using Equation 5.1, the misfit is 13.80.

Table 5.1: Parameters used to create the true data set.

σ η τ 2

0.5 0.33 0

Figure 5.2: (a). Data created based on the parameters given in Table 5.1. (b).
25 samples randomly picked from the data set in (a).

Table 5.2: Misfit reductions using WM-sampling and EV-based criteria for
second-phase sampling design. Misfit is calculated using Equation 5.1. The
kriging results are based on the original 25 samples with the 3 additional sam-
ples given by WM-sampling and EV-based criteria in Figure 5.4(b) and (c).

Criteria Misfit reduction

WM 3.83
EV 1.10

Then 7 sample locations are randomly generated as the available second-

phase sampling locations, as shown in Figure 5.4(a). Assume 3 out of the 7

samples can be chosen for measurement. Using the WM-sampling and the EV-

based criteria that are explained in section 4.3 and section 4.4, the 3 additional

sampling locations are shown in Figure 5.4(b) and (c) respectively. Here we can

see the optimal additional sampling locations given by the two criteria differ.
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Figure 5.3: (a). Interpolation result using simple kriging with samples in Fig-
ure 5.2(b). (b). Error variance of the interpolation result. The error variance
reaches zero at the sampled locations. Red circles in both figures are the sample
locations.

Figure 5.4: (a). 7 additional sampling locations represent by red squares. Sam-
ples are randomly picked. (b). 3 optimal sampling locations given by the WM-
sampling criterion. WM-sampling is short for Warrick-Myers sampling. (c).
3 optimal sampling locations given by the EV-based criterion. EV-based is
short for error-variance based sampling criterion. In (b) and (c), hollow squares
are the additional sampling locations that are not picked by the criterion, and
red dots represent the picked locations.

Figure 5.5(a) shows how the pdf’s of Ns change with the additional sam-

ples from the two criteria comparing with that the first-phase samples. The

maximum lag is
√

2. The lag is divided into 20 intervals. Here the optimal pdf

of the number of pairs ,f(No), is a uniform distribution. With the additional

samples, f(Ns) becomes more similar to a uniform distribution. Figure 5.5(b)
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Figure 5.5: (a). Pdf’s of the number of pairs of samples (f(Ns), please see
Chapter 4 for detailed explanations). The horizontal line is the pdf of the
optimal number of pairs of samples (f(No)). (b). Experimental variograms.
1st-phase indicates samples from the first-phase sampling. 2nd-phase indicates
the experimental variograms calculated after second-phase sampling. WM and
EV mean the criterion used for picking the second-phase samples.

shows the experimental variograms with the first-phase samples and the second-

phase samples given by two criteria. Note the experimental variograms with

the smallest lag are not zero but very close to zero. This is consistent with the

premise that the nugget is zero in Table 5.1. By fitting the experimental vari-

ograms with a Matern 3/2 variogram model, the sill, range and the nugget are

known. Comparing the estimated variogram model parameters with the true

values in Table 5.1, we can see that the experimental variograms calculated

from the samples given by WM-sampling have a sill that is closer to the real

sill. This indicates that the estimated variogram model based on them would

describe the true data set the best.

With the 3 additional samples given by both criteria, simple kriging is re-

conducted and the interpolation results, Ẑ(U)WM and Ẑ(U)EV , as well as the

error variances are shown in Figure 5.6. Misfits between the updated kriging

results and the real data are calculated again using Equation 5.1. With more
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samples, the misfits becomes smaller. The misfit reductions using the second-

phase samples given by the two criteria are listed in Table 5.2. In this example,

WM-sampling results in a greater misfit reduction than EV-based does. There-

fore, the WM-sampling is the better criterion for second-phasing sampling in

this example.

Figure 5.6: Interpolation results and error variances calculated with the first-
phase and the 3 additional samples given by the two criteria. Sample locations
are shown in red circles. (a) and (c). Samples are the same samples shown in
Figure 5.4(b). The second-phase samples are given based on the WM-sampling.
(b) and (d). Samples are the same samples shown in Figure 5.4(c). The second-
phase samples are given based on the EV-based.
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5.3.2 Example 2

To assure that the conclusion in Example 1 is not affected by the randomness

of the true data set and the sample locations, the same process is repeated

multiple times. Since both the real data set and the sampling locations are

randomly generated, the simulations are repeated by only randomly generating

one of them while fixing the other. The average misfit reductions from the

simulations are listed in Table 5.3. From Table 5.3 we can see that in average,

EV results in a greater misfit reduction than WM does. Therefore, EV-based

sampling criterion is a better criterion for determining the optimal additional

sampling locations.

Table 5.3: The averaged misfit reduction from simulations. Numbers in the
parenthesis are standard deviations. Criterion in bold means the better crite-
rion.

Randomly generated Criterion Misfit reduction
Sampling
locations

WM 8.59(2.79)
EV 12.3(2.71)

Real
data set

WM 5.39(1.60)
EV 8.33(2.55)

5.4 Sensitivity tests

Next a series of sensitivity tests are conducted to determine which criterion is

more robust. The parameters included in the sensitivity tests are the first-phase

sampling size, the sill, the range and the nugget. When changing the sampling

size, the real data set ,Z(U) is fixed and the same as shown in Figure 5.2(a).

When changing one of the kriging parameters, the sampling locations are fixed,

and Z(U) is randomly generated based on the given parameters of the vari-

ogram model during each simulation. Except for the variogram parameter that

is varied during the sensitivity tests, the remaining parameters stay unchanged

as shown in Table 5.1. For the second-phase sampling, it remains as picking 3

out of 7 locations. And the 7 locations are fixed in all sensitivity tests. Both

the first-phase and additional sampling locations are the same as shown in

Figure 5.2(b) and Figure 5.4(a).
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Figure 5.7: Sensitivity tests of the misfit reduction. The y-axis in each plot is
the misfit reduction. The error bars are based on the standard deviations of
the misfit reductions from the simulations. (a). Sensitivity test of the sample
size. (b). Sensitivity test of the nugget τ 2. Here the x−axis is the square root
of the nugget. (c). Sensitivity test of the sill σ2. Here the x-axis is the square
root of the sill. (d). Sensitivity test of the range η.

From Figure 5.7 we can see that the misfit reduction is sensitive to all the

parameters. Nevertheless, in all sensitivity test, EV always has a higher misfit

reduction than WM does, indicating EV is the more robust criterion.

When increasing the first-phase sample size from 15 to 50, the means and

the variances of the misfit decrease because the performance of the first-phase

kriging improves as there are more samples to begin with (Figure 5.7(a)).

The measurement error (the nugget) affects the accuracy of the kriging

results. As the nugget τ 2 increases, the misfit reduction decreases because the
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error with the additional samples also add uncertainty in Ẑ(U). The variances

of the misfit reductions decrease significantly at the beginning of Figure 5.7(b).

This indicates that when the measurement error is small, the greater source of

uncertainty in the misfit reduction comes from the variance of the true data set

Z(U). As τ 2 increases, the impact of the randomness in Z(U) on the variances

of the misfit reduction reduces. In addition, with larger measurement errors

(τ > 0.06), the misfit reductions and their variances do not change significantly.

This could indicate that with the increase in the measurement error, the misfit

reduction is mainly affected by the measurement error.

The sill represents the variability of the Z(U) itself. As the variance in Z(U)

increases, the misfit reductions increases, as shown in Figure 5.7(c). Because

with more variability of Z(U), the additional samples become more influential

for improving the performance of kriging. The variances of the misfit reduction

also increase due to the increase of the variability.

The range indicates the maximum distance between samples that have a

spatial correlation. The increase in the range means that more samples in

the area are related. The additional samples become less influential on the

misfit reduction as the first-phase samples are sufficient for the estimation of

the variogram model and the spatial relations of samples in the whole area.

The same reason is applicable to the reduction of the variances in the misfit

reduction. Figure 5.7(d) also shows that EV is more effective than WM when

the range η is small.

5.5 Discussion

By comparing the averaged misfit reductions in different simulations, the cri-

terion that provides the better second-phase sampling locations is EV-based

sampling criterion. Though in Example 1, the second-phase samples given by

WM-sampling has a higher misfit reduction, the averaged results in Example

2 show that EV-based is the better criterion for determining the second-phase

sampling locations.

The misfit between the interpolation results and the real data set is in-

fluenced by the first-phase sample size and the spatial relation between the
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samples, as shown in the sensitivity tests. The misfit reduction decreases with

the increase in the first-phase samples. The size of the first-phase samples

determines the value of the second-phase samples. If there is a large size of

first-phase samples, adding several second-phase sample might not affect the

interpolation results significantly. Hence the misfit reduction reduces as the

size of the first-phase samples increases. The misfit increases with the increase

of the sill of the real data set and the measurement error, and decreases with

the increase of the range of the real data set.

The sill and the measurement error represent two sources of the uncertainty,

the parametric variability and the experimental uncertainty. Increasing either

of them would results in the increase in the uncertainty in the interpolation

results. The range indicates the spatial correlation of the samples. A larger

range means the samples are more correlated within a certain radius, hence

decreasing the misfit.

The sensitivity tests show that on average, using the EV-based criterion has

a higher misfit reduction when changing the variogram parameters. This proves

that the EV-based criterion is more robust. Therefore, EV-based criterion is a

better and more robust criterion than WM-sampling criterion.

Because the two sampling criteria aim at reducing different sources of uncer-

tainty during interpolation, it is worth discussing the sources of uncertainty that

affect the interpolation. Uncertainty can be divided into six groups, namely

parameter uncertainty, parametric variability, model inadequacy, algorithmic

uncertainty, measurement uncertainty, and interpolation uncertainty (Kennedy

and O’Hagan, 2001). For interpolating spatial samples, such as the stress mea-

surements, with kriging, the six sources of uncertainty can be interpreted as

follows.

1. Parameter uncertainty comes from the estimated variogram model pa-

rameters.

2. Parametric variability comes from the variability of the variable. For

stress measurements, this is the spatial variance of the stress.

3. Model inadequacy refers to the limitation of variogram modeling. Kriging

is based on the given variogram model. However, it is difficult to prove
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that the variogram model is able to correctly describe the spatial correla-

tion of the samples. The choice of the variogram model also contributes

to this type of uncertainty. There are multiple variogram models, such

as the Gaussian model. Table 4.1 lists three common variogram models.

More variogram models can be found in Pyrcz and Deutsch (2014). If the

model is chosen incorrectly, the interpolation results would be incorrect.

4. Algorithmic uncertainty comes from the limitation of kriging. Kriging

assumes the samples obey the first- and second-order stationarities. At

the same time, this assumption could be faulty and create uncertainty.

If there is a trend in the data, the assumption does not hold true any

more. In this case, the trend should be removed before performing krig-

ing. However, identifying and removing the trend correctly are difficult.

5. Experimental uncertainty means the measurement error.

6. Interpolation uncertainty is the error variance given by kriging. Since

there are limited samples, interpolation and extrapolation are conducted

during kriging, which brings uncertainty.

Here we can see that the WM-sampling criterion focuses on reducing the param-

eter uncertainty while EV-based criterion tackles the interpolation uncertainty.

The six sources are listed, yet which sources contribute more on the ultimate

uncertainty that leads to the misfit has not been studied in this thesis. Nev-

ertheless, because the EV-based criterion is more robust, it is possible that for

kriging, the interpolation uncertainty has a greater impact. Another possible

explanation is that while the EV-based criterion focuses on reducing the inter-

polation uncertainty, it also reduces other sources of uncertainty, including the

parameter uncertainty and parametric variability.

On the other hand, since the comparisons are made with multiple simula-

tions and the conclusions are made based on the averaged simulated results. It

is possible that there are times when the WM-sampling criterion outperforms

the EV-based criterion.
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5.6 Conclusion

In this chapter, the effectiveness and the robustness of both the WM-sampling

and the EV-based criteria are tested. From the simulation results we can see

that both criteria are able to achieve a misfit reduction with second-phase sam-

pling while the EV-based is more effective. The results of the sensitivity tests

indicate that the EV-based criterion is more robust when the data variability

changes. The possible reasons could be that the EV-based criterion reduces

more sources of uncertainty than WM-sampling criterion does, and the inter-

polation uncertainty represented by the kriging error variances has a larger

impact on the misfit.

Another way of describing the EV-based sampling criterion is to sample

at the least-sampled locations, which is intuitively the choice to make when

designing second-phase sampling locations. Nevertheless, through the exami-

nations in this chapter, this simple criterion is proven to be the more effective

criterion. It is possible that by locating second-phase samples at the sparsely

sampled locations, most sources of uncertainty are reduced.

At the same time, only two sampling criteria are analyzed here, which means

that both criteria could fail to give the optimal additional sampling locations.

For future work, sampling criteria that focus on other sources of uncertainty

can be included. On the other hand, for in situ stress, it is possible that there

is a trend in the stress. The effect of the trend is excluded in this study. The

trend and the spatial variability can both be included in the interpolation.

Additional sampling criterion could be proposed to focus on interpreting the

trend in the data.

In a word, if only EV-based and WM-sampling criteria are considered for

second-phase sampling locations, EV-based criterion should give the optimal

second-phase sampling locations.
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Chapter 6

Decision analysis in the risk

assessment of AIS

Summary

In this chapter, the risk assessment of AIS with the three-level evaluation sys-

tem is demonstrated using the same data set analyzed in Chapter 3. Risk

consists of the possibility and the impact. In the example, the possibility and

impact of the AIS are decomposed into 8 and 4 independent factors respec-

tively. The three-level evaluation system is a qualitative way to analyze the

potential risk because quantitative approaches are too complex or contain too

much uncertainty. Based on the evaluations, the risk can be anticipated and

used in decision tree analyses regarding several possible decisions of an oper-

ation, including should the operation proceed, should mitigation be conducted

and should mild mitigation or rigorous mitigation be chosen. The example is

aimed to demonstrate that decision analysis techniques can lead to a practical

risk assessment and give decision makers a better understanding of how the

benefit and cost of each decision affect the potential risk and the revenue.
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6.1 Introduction

This chapter discusses the approaches to conduct the risk assessment of AIS

in detail. Analyzing the risk of AIS is similar to analyzing the risk of natural

earthquakes. Therefore, the risk of AIS is interpreted as the possibility of AIS

causing unfavorable impacts. Unfavorable impacts refer to the temporary or

permanent suspension of operations through to infrastructure damage. The

suspension of operations leads to the loss of the revenue and the infrastructure

damage leads to repairs and unforeseen expenses. In addition to the mone-

tary loss, there could also be negative social impacts and other uncontrollable

consequences.

The ultimate goal of the risk assessment of AIS is to help managers make

effective decisions that maximize the production while avoiding triggering AIS.

Approaches such as the FSP analysis and the PSHA quantify the risk of AIS.

However, the uncertainties in these quantitative approaches are difficult to

measure. Therefore, the three-level evaluation system, a quantitative analysis

of the risk, is adopted. First, the risk is decomposed into multiple factors. Each

factor is an independent variable that affects the risk of AIS. Then each factor

is evaluated with a three-level system. The overall risk of AIS is a combined

influence from all the evaluated factors. Decision tree analysis is also applied

to connect the possibility of AIS with the impact of AIS, which is interpreted

as monetary values. Decision tree analysis is especially helpful when dealing

with cost-benefit problems.

In this chapter, risk factors related to the risk of AIS are listed and evalu-

ated with the three-level system. The decision tree analysis is explained. The

same operation studied in Chapter 3 is analyzed for demonstration here. The

example shows that the proposed techniques consider both the possibility and

impact of AIS while simplifying the process by adopting qualitative analyses.
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6.2 Theory

6.2.1 Estimation of risk with risk factors

Analyzing the risk of AIS means understanding the possibility of AIS and

the potential impact of the events simultaneously. Both the possibility and the

impact can be decomposed into multiple independent factors. The independent

factors are analyzed separately. The possibility of AIS can either be analyzed

quantitatively, such as the FSP analysis and the PSHA analysis, or qualitatively

with the analysts’ experience and expertise using a level-based system. The

levels should at least be two, as low and high. A more common system is to

have three levels as low, medium and high (Newendorp and Schuyler, 2000),

similar to a traffic light system. The quantification of the possibility, such as

the FSP analysis, can also be categorized into the three levels (e.g. Walsh and

Zoback, 2016). Scores are used to represent the risk levels. 0, 1, 2 and 3 are

assigned to none, low, medium and high. Then the possibility is the ratio of

the given scores and the maximum score, as

P =

∑Nr

i si
3Nr

, si = 0, 1, 2, 3, (6.1)

where P is the possibility, si is the score of each risk factor, and Nr is the total

number of risk factors that are evaluated. In cases where some risk factors

cannot be evaluated due to the lack of data, these risk factors are not included

in the calculation of the possibility of the risk. Therefore, by assessing the level

of each factor, the possibility of AIS is known.

6.2.2 Decision tree and expected value

The decision tree analysis is a common technique in decision analysis (Clemen,

1996; Bratvold et al., 2007). In a decision tree, square nodes mean decisions and

circle nodes mean uncertain events (Figure 6.1). Branches after a square or a

circle lead to alternatives of a specific decision or possible outcomes. At the end

of the decision tree, corresponding consequences are listed after each outcome.

All consequences are assigned with values. The probability of each outcome
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and the extra costs when choosing certain alternatives are also included in the

decision tree.

In a decision tree, the alternative with the highest expected value is the

best alternative. The expected monetary value (EMV ) is defined as

EMV =
o∑
i

pi × Vi (6.2)

where o is the total number of all outcomes, pi is the probability of the ith

outcome and Vi is the value of the outcome. EMV can be interpreted as

the average value of one alternative after many repetitions of choosing that

alternative. In a decision tree, the alternative with a higher EMV is considered

as the better choice to make.

Figure 6.1 is a simple decision tree that shows one decision with two alter-

natives and two outcomes. Outcome 1 costs 200K$ while Outcome 2 brings

1000K$ profit. Numbers in parentheses are the probability of each outcome by

choosing the alternative. While choosing Alternative 2 has a higher possibility

of Outcome 2, it also costs an extra 20K$. To determine which alternative is

better, the EMV of each alternative is calculated as follows

EMV1 =(0.24)× (−200K$) + (0.76)× (1000K$) = 712K$,

EMV2 =(0.20)× (−200K$) + (0.80)× (1000K$) = 760K$,

where footnotes 1 and 2 denote Alternative 1 and Alternative 2. Also, any extra

costs of alternatives are subtracted from the EMV . This reduces the EMV2

to 740K$. Then at the decision node, the branch with the highest EMV

is the alternative to be chosen, which is the number in red at the square in

Figure 6.1. The decision tree shows that Alternative 2 has an EMV of 740K$

and Alternative 1 has an EMV of 720K$. Therefore, Alternative 2 has the

highest EMV , meaning it is the better alternative to choose.

With the three-level evaluation of each risk factor, the probabilities of the

outcomes in a decision tree can be represented by the possibility of the risk

and the consequence of each outcome is anticipated by the evaluation of the
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Figure 6.1: A decision tree analysis. Numbers in parentheses are the proba-
bilities of the outcomes. Numbers in red are the EMV s. Word in bold is the
alternative with the highest EMV . The notations are the same in the following
decision trees.

impact of the risk.

6.3 Risk factors of AIS

The possibility of AIS is controlled by factors listed below, which are mainly

based on the industrial shared practice (Canadian Association of Petroleum

Producers (CAPP), 2019) and Walters et al. (2015).

1. Prior seismicity (natural and induced): Previous seismic activities are an

indicator of the stress state and possible existence of faults and fracture

networks. In addition, seismic records also point out which areas are

non-seismogenic but prone to AIS under the influence of industry activi-

ties. For instance, increase seismic events in the central Oklahoma after

2009 are linked with the increased wastewater disposal activities (Kera-

nen et al., 2014). In this case, the Prior seismicity (natural and induced)

in the central Oklahoma should be evaluated as high.

2. Proximity to specific geological structures : There is a relation between

the locations of AIS and other large-scale geological structures, such as

the crystalline basement and the reef margins (Zhang et al., 2013; Bao

and Eaton, 2016; Schultz et al., 2017).
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3. Fracture network : A fracture network reduces the permeability in the

formation. The fracture network acts as conduits between the injection

wells and the fault, increasing the pore pressure at the fault (Shapiro

et al., 2002, 2003; Igonin et al., 2019).

4. Fault size: The magnitude of an earthquake depends on the rupture

area and stress drop on the fault during the slip (Stein and Wysession,

2009). In general, the rupture area is correlated with the fault size,

and the rupture area affects the magnitude of the earthquake (Stein and

Wysession, 2009; Zoback and Gorelick, 2012).

5. Fault slip potential (FSP): The FSP analysis is discussed in detail in

Chapter 3. This analysis is a combination of the stress state, the pore

pressure state and the fault, as well as their uncertainties.

6. Adjacent operations : It has been observed that adjacent operations might

increase the risk of AIS because the perturbation of the in situ stress and

the pore pressure from other operations can be cumulative.

7. Concurrent observed seismicity - clustering : Monitoring the induced seis-

micity during the operation is important. The observed seismicity points

out the direction of the fracturing propagation. The hydraulic fractures

should propagate along the direction of the maximum principal stress

(Zoback, 2010; Eaton, 2018). Discrepancies between the observed propa-

gation direction and the direction of the maximum principal stress denote

the existence of other geological structures. For instance, the lineation

of the observed seismicity could indicate possible reactivation of a fault

(see the example in Chapter 3).

8. Concurrent observed seismicity - magnitude: The increase in the mag-

nitude of the observed seismicity during the operation is a precursor of

AIS. The mitigation method implemented by most of regulators around

the world, the traffic light system, uses the magnitude of sesimicity as

thresholds (Shipman et al., 2018; Kao, 2017). Studies have observed a

continuous increase in the magnitudes of observed seismicity before the
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magnitude reaches the predetermined thresholds (Atkinson et al., 2016;

Lee et al., 2019).

All factors can be updated as more information is obtained. Note here no

factors related to the operation, such as injection volume and rate, are listed.

Because those factors do not directly affect the possibility of AIS but influence

the risk factors listed above. For instance, high injection rate and volume

increase the pore pressure at the pre-existing fault, and the FSP increases,

hence the possibility of AIS increases. Therefore, the injection parameters are

indirectly included in the analysis.

The impact of AIS is perceived as the expected losses caused by AIS (Tya-

gunov et al., 2004). Since AIS is a type of earthquake, the impact of AIS is

analyzed in the same way as natural earthquakes. Four factors are recognized

(Walters et al., 2015):

1. Population: The population near the area of interest is a crucial factor

associated with the impact. If the area is close to a populated area, the

impact of AIS becomes high as more people are exposed.

2. Critical facilities : AIS, like natural earthquakes, could cause damage to

critical facilities. The analysts should be aware of any critical facility,

such as major dams and nuclear power plants, that are adjacent to the

area of interest.

3. Structures : It is important to be aware of how structures and infrastruc-

tures near the proposed operation would be influenced by the AIS. The

possible damage to the equipment on site and wellbore integrity should

also be considered.

4. Environment : Analysts should search for any conservation sites and pro-

tected areas near the operation. Earthquakes can trigger landslides and

fire (Silva et al., 2017), which could lead to severe environmental damages.

Analysts can conduct evaluations of the factors to calculate the possibility

of AIS and quantify the expected loss of the AIS. Interdisciplinary cooperation

is encouraged to increase the accuracy of the evaluations with all available
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knowledge. At the same time, due to the lack of knowledge, some factors

might not be evaluated prior to the operation. If there is no recorded previous

seismicity, or observed fracture networks, no evaluations should be assigned

to these factors. The same idea works for concurrent observed seismicity -

clustering and concurrent observed seismicity - magnitude. Because there is

no operation yet, there may not be any observed seismicity. All factors can be

re-evaluated once more information becomes available.

6.4 Example

The following is an example of the risk assessment of an operation. The same

operation is studied for FSP analysis in Chapter 3. Here the risk assessment is

done both before and during the operation. Results from the risk assessments

are used in decision tree analyses to demonstrate how the the anticipated risk

affects the decision-making process. There are four risk assessments and three

decision tree analyses. The risk assessments are

1. The assessment of the initial risk of AIS prior to the operation.

2. The risk assessment assuming the worst-case scenario where the possibil-

ity of AIS is 100%.

3. The risk assessment during the operation with observed seismic events.

4. The risk assessment with proposed mitigation methods.

Along with the risk assessments, decision tree analyses are done considering

the following decisions:

1. Based on the risk assessment prior to the operation, should the operation

proceed?

2. During the operation, with the risk increasing, should the operation be

mitigated?

3. If there are two available mitigation methods, and the more effective

mitigation method costs more money, which one should be chosen?
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The less effective mitigation is referred to as mild mitigation and the more

effective mitigation as rigorous mitigation. Before doing the risk assessment,

three assumptions are made:

1. Injecting fluids into formations increases the risk of AIS.

2. Any form of mitigation would reduce the risk of AIS.

3. The decision makers are risk-neutral.

6.4.1 Prior to the operation

The workflow of the risk assessment prior to the operation is

1. Calculate the possibility and the impact of AIS by evaluating the risk

factors.

2. Apply the decision tree analysis to decide if the operation should proceed.

The operation took place in the west of Fox Creek, Alberta in 2016, as

shown in Figure 6.2. The risk of AIS is assessed based on the evaluations of

the risk factors. Each factor is analyzed with the available knowledge of the area

prior to the operation. Published studies in the Fox Creek area are considered

as the available information prior to the operation. Earthquakes with local

magnitude (Ml) greater than 2 have occurred in the Fox Creek area before

the operation. Some of them were induced by industrial activities (Schultz

et al., 2015). Hence the Prior seismicity (natural and induced) is evaluated

as medium. The operation aims at the tight shale reservoir in the Duvernay

formation, which is approximately 500m above the Precambrian basement,

which is a critical component affecting the occurrence of AIS. Therefore the

factor Proximity to geological structures is evaluated as medium as well. The

seismic cross section shows multiple strike-slip faults in the area, as well as the

fault sizes (Figure 3.3). Because there are no public seismic data, the existence

of a fracture network is unknown. Hence this factor cannot be evaluated before

the operations. The FSP analysis is done in Chapter 3. The results indicate

that the FSP’s of multiple faults in this area are low (see Figure 3.7(a) and

(c)). During the proposed operation time range, there were no other operations
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within a 5km radius (Eaton et al., 2018). So factor Adjacent operations is

evaluated as none. Table 6.1 lists the analyses and evaluations of all risk factors

contributing to the possibility of AIS. Factors that cannot be evaluated due to

lack of data are labeled as Unknown. The risk factors related to the concurrent

observed seismicity during the operation are not evaluated and labeled as N/A.

Factors that are labeled as unknown and N/A are excluded in the calculation of

possibility of AIS in Equation 6.1. After the evaluations, the possibility of AIS

is calculated using Equation 6.1. The possibility of AIS prior to the operation is

53%, as shown in Figure 6.4(a). An additional risk evaluation is done assuming

the worst-scenario. The possibility of AIS in the worst-case scenario is set to

100%.

Figure 6.2: Map view of the location of the operation site (green rectangles in
both maps). Figure modified from Zhang et al. (2019).

The impact of the risk is also determined by the evaluations of relevant

factors. The closest town near the operation is Fox Creek with a population of

about 2,000 people. There are no buildings exceeding 10m and all the buildings

could withstand light ground shaking. And there are no major facilities or

conservation sites around the operation site. The detailed analyses are shown

in Table 6.2. Based on the evaluations, the impact of the AIS of this operation

is considered as low to moderate and casualties are not anticipated as part of
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Figure 6.3: Depth of the operations. Black line indicated the horizontal well.
The depth of the basement is indicated by the red line with BSMT. Figure
modified from Poulin et al. (2019).

the impact of the AIS. Therefore, the expected loss of AIS is smaller than the

expected revenue of the operation.

With the risk assessment done prior to the operation, the decision, should

the operation proceed, is analysed using the decision tree, as shown in Fig-

ure 6.4(b). In this decision tree analysis, two outcomes are identified, AIS and

no AIS. The monetary values of the two outcomes are given based on the im-

pact evaluation of the risk. When there is no operation, the profits are 0 in

both outcomes. Based on the analysis of the risk factors related to the impact,

the monetary loss of an operation with AIS is assigned as −200K$ and there

is no monetary loss with the outcome no AIS. Meanwhile, the alternative op-

eration comes with the revenue of 1000k$. These are just illustrative values

based on the anticipated impact of AIS and the production of the wells. From

Figure 6.4(b), we can see that the alternative operation has a higher EMV,

hence the operation should proceed.

6.4.2 During operation

The workflow of the risk assessment during the operation is

1. Re-assess the possibility and impact of AIS with the observed seismic

data.

2. Apply the decision tree analysis to determine if voluntary mitigation is
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Table 6.1: Evaluations of risk factors related to possibility of AIS prior to the
operation.

Variable Analysis Evaluation
Prior seis-
micity
(natural and
induced)

A correlation between the observed seismic
events (> Ml 0 ) and previous hydraulic op-
erations have been found in the Fox Creek
area (Schultz et al., 2015). Several induced
seismic events were above Ml 2.

Medium

Proximity
to geological
structures

The operation site is about 7km to the reefs
(based on the map shown in Figure 6.2) and
about 500m above the basement (Figure 6.3).

Medium

Fracture
network

Due to the lack of data, the presence of frac-
ture networks are unknown.

Unknown

Fault size The seismic data show there are several
strike-slip faults in the area (Fault D, E, F, G
and H in Figure 3.7(a)). Faults are between
2km to 6km long.

High

Fault slip
potential

The fault slip potential analysis shows the
faults have low slip potentials (Figure 3.7).

Low

Adjacent op-
erations

There are no other operations operating at
the same time within a 5km radius (Eaton
et al., 2018).

None

Concurrent
observed
seismicity -
clustering

No operation yet. N/A

Concurrent
observed
seismicity -
magnitude

No operation yet. N/A

needed.

3. Re-assess the possibilities of AIS assuming applying different mitigation

methods.

4. Apply the decision tree analyses to determine which mitigation method

to implement.

During the operation, with more information acquired, evaluations of the

risk factors should be updated. The operation started on October 29, 2016.

Suppose the risk assessment is conducted on November 09, 2016. Observed
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Table 6.2: Evaluations of risk factors related to the impact of AIS. The evalu-
ations are applicable to the risk assessments prior to the operation and during
the operation.

Variable Analysis Evaluation
Population 1720 (Statistics Canada, 2017). Low
Critical
facilities

None within 5km radius. The closest dam is
the Iosegun Lake Stabilization Dam, 15km
north of Fox Creek, with consequence classi-
fication as low (Alberta Government, 2020).

None

Structures Based on the National Building Code seis-
mic hazard calculator (Natural Resources
Canada, 2019), the probability of exceed-
ing 0.079g Peak Ground Acceleration in Fox
Creek is less than 2%. The 0.079g Peak
Ground Acceleration corresponds to the light
ground shaking according to the Mercalli
intensity scale. Given the fact that AIS
has exceeded Ml 4 near Fox Creek area
(Schultz et al., 2017), it is reasonable to in-
fer that buildings in Fox Creek could expe-
rience shaking when AIS with large magni-
tudes (e.g. > Ml 4) happens. Also, since
the maximum building height in Fox Creek
is 10m (Town of Fox Creek, 2016), damages
to the structures are possible due to AIS with
large magnitudes. Moreover, AIS can cause
damage to the equipment on site and well-
bore integrity, which is expensive to repair.

Medium.

Environment The operation is not within 10km radius of
near any conservation sites, protected area
nor national parks. The closest conservation
site is 62km northwest of Fox Creek (Alberta
Conservation Association, 2016).

None

seismic events from the beginning of the operation to the time the risk assess-

ment is conducted are used. The observed seismic data are from Eaton et al.

(2018), shown in Figure 6.5.

From Figure 6.5(a) we can see that the observed seismic events do not

propagate along the direction of the maximum principal stress, which is the

maximum horizontal stress (SHm) in this area (Bell and Grasby, 2012). The

difference between the propagation direction of the seismic events and SHm
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indicate the possibility of the presence of fracture networks. The FSP analysis is

updated because the fracture network connects the fault with the injection wells

and the pore pressure at the fault increases more than first anticipated. The

calculation of the updated FSP is explained in Chapter 3. The detailed analysis

of the presence of the fracture network can be found in Igonin et al. (2019). The

faults close to the injection wells have high FSP’s with the new understanding of

the fracture network. Therefore, the risk factor fault slip potential change from

low to high. In addition, the seismic events in the red oval appear to lineate

along a fault, which is fault D in Figure 3.3. The distribution of the observed

seismic events cause the change of the risk factor concurrent observed seismicity

- clustering from unknown to high. With the operation proceeding, more fluids

are injected in to the Duvernay formation. In Figure 6.5(b) we can see that

as the amount of fluids in the Duvernay formation increases, the magnitudes

of the seismic events are increasing, especially towards the end of the figure.

Meanwhile all concurrent seismic events are below moment magnitude (Mw)

1.5. The risk factor concurrent observed seismicity - magnitude is evaluated as

medium. The updated evaluations are listed in Table 6.3.

The possibility of the AIS is re-calculated, as shown in Figure 6.6(a). Facing

the increased possibility of AIS, the decision tree analysis is conducted about

the question of mitigation or not. The impact remains unchanged during the

operation because the additional information does not affect the description of

the impact. The evaluations are shown in Table 6.2. Therefore, in the decision

tree analysis, two outcomes, AIS and no AIS, still result in 200k$ loss and no

loss respectively. The decision tree analysis is shown in Figure 6.6(b). Suppose

the alternative mitigation means using the mild mitigation, which has an extra

cost of −20k$. With the mild mitigation method, the risk level of fault slip

potential changes from high to low and the risk level of concurrent observed

seismicity - clustering changes from high to medium. The possibility of AIS

with the mild mitigation is shown in Figure 6.6(a). From Figure 6.6(b) we can

see choosing to do the mitigation still has a higher EMV than not doing the

mild mitigation.

Mitigation can be mild or rigorous depending on the anticipated risk. Deci-

sion tree analysis can also be applied when choosing among different mitigation
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Table 6.3: Evaluations of risk factors related to possibility of AIS during the
operation with the observed seismic data.

Variable Analysis Evaluation
Prior seis-
micity
(natural and
induced)

Same as the evaluation prior to the operation
in Table 6.1.

High

Proximity
to geological
structures

Same as the evaluation prior to the operation
in Table 6.1.

Medium

Fracture
network

The observed seismic events indicate the pos-
sible existance of a fracture network (Igonin
et al., 2019).

High

Fault size Same as the evaluation prior to the operation
in Table 6.1.

High

Fault slip
potential

The fault slip potential analysis is updated
by removing fault E and including a pre-
existane fracture network. The updated FSP
results are shown in Figure 3.12(a).

High

Adjacent op-
erations

Same as the evaluation prior to the operation
in Table 6.1.

None

Concurrent
observed
seismicity -
clustering

Lineation at the west side of the most-left
well means the possible reactivation of a fault
as shown in Figure 6.5(a).

High

Concurrent
observed
seismicity -
magnitude

Magnitudes of the observed seismicity show
an increasing pattern but all the seismic
events are below Mw 1.5 as shown in Fig-
ure 6.5(b).

Medium

methods. Here, two alternatives, mild mitigation and rigorous mitigation, are

analyzed using the decision tree. If applying the rigorous mitigation method,

the risk levels of fault slip potential, concurrent observed seismicity - clustering

and concurrent observed seismicity - magnitude all change from high to low.

The possibility of AIS with the rigorous mitigation are calculated and shown

in Figure 6.6(a). In Figure 6.6(c), the EMV of the operation with the rigorous

mitigation is higher. Therefore, it is logic to do the mitigation and choose the

rigorous method if possible.
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6.5 Discussion

In the example, the possibility and the impact of AIS are decomposed into

multiple factors. Each factor is evaluated based on the three levels, being low,

medium and high. If the factor does not exist, it is labeled as none. If the factor

is not known or applicable to be evaluated, it is labeled as unknown or N/A.

The evaluations are then used in the decision tree analyses. The possibility of

AIS is the lowest prior to the operation, and increases with the operation. With

mitigation, the possibility decreases. The possibilities of AIS under different

circumstances are listed in Table 6.4. The assessment of the impact of AIS is

low to moderate, indicating the expected loss of AIS from this operation is low.

Table 6.4: Probabilities of the AIS under different scenarios.

Scenario Probability of AIS
Prior to the operation 53%

Worst-case 100%
During the operation 75%
With mild mitigation 63%

With rigorous mitigation 54%

The risk assessment prior to the operation provides insights on what the

initial risk is in the area of interest given the current knowledge. Risk of AIS

should be assessed prior to the operation without considering the influence of

the operation, as well as assuming the worst-case scenario. The initial risk af-

fects the plan of the operation. Calculating the worst-case scenario is important

because it is a conservative and simple approach to anticipate the risk (Silva

et al., 2017). The decision tree analysis of should the operation proceed shows

that the better alternative is to do the operation. Even assuming the worst-

case scenario, the EMV of doing the operation still outweighs the EMV of not

doing the operation. This is because the impact of AIS during the operation is

anticipated as the low to moderate.

With the ongoing operation, risk is increased and should be re-evaluated

with more available information. The updated risk assessment is used in the de-

cision tree analyses of the decisions, mitigation or not and which mitigation to

choose. Here, either the mild mitigation or the rigorous mitigation is assumed
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to be effective in reducing the possibility of AIS. In this operation, implement-

ing voluntary mitigation reduces the possibility of AIS and the EMV of the

operation is increased despite the extra cost of the mitigation. Furthermore,

the rigorous mitigation gives a greater EMV even with a higher cost. Decision

tree analyses are very helpful when resolving cost-benefit situations.

It is worth mentioning that EMV s in the example are not the exact mon-

etary values of the operation by choosing those alternatives. They are the

weighted average values. In other words, if the operation is conducted for many

times, which could never be true, the averaged monetary values of choosing dif-

ferent alternatives are EMV s.

Comparing to the FSP analysis, this approach includes both the possibility

and impact of the risk. Instead of assessing the risk as a whole, analyzing indi-

vidual risk factors and combining the evaluations together afterwards simplify

the process of a risk assessment. However, it is crucial to define independent

factors, because the risk can only be calculated using Equation 6.1 if the vari-

ables are independent. Under this assumption, correct evaluations of factors

are supposed to give us a relatively precise assessment of the risk.

Another advantage of this approach is that the analysis process is easy and

requires little computational effort. Unlike PSHA, decomposing the risk of AIS

and assessing multiple risk factors qualitatively do not require complex quan-

tification of the uncertainty or sophisticated equations to predict the ground

motions. The risk can be easily re-assessed once more information is obtained

during the operation. Re-assessing the risk shows how the operation alters the

risk. Utilizing the decision tree analysis helps understand how the risk and

different mitigation methods affect the consequences of the operation.

At the same time, this approach is subjective to a certain degree. Evalu-

ating risk factors depends on the analysts’ personal judgements and expertise.

Therefore, though the decision analysis is a subject related to economy and

engineering, geological and geophysical experts should also be the analysts or

at least work closely with the analysts conducting the risk assessment of AIS.

In addition to subjectivity, this approach ignores the time factor. Taking the

third decision tree analysis, mild or rigorous mitigation, for example, though

the rigorous mitigation should be the better choice to make as it results in a
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higher EMV . Sometimes, the decision makers might be reluctant to do so.

There are several reasons. First, in this decision tree, only the monetary values

representing the expected revenue and loss are included. In a real operation, the

time spent on the operation also affects the revenue. This is accounted for by

including a negative amount for postponed revenues. If the rigorous mitigation

is more effective but delays the operation, the extra time spent on the operation

is not included in this analysis. On the contrary, the mild mitigation might

not be as effective, but it is fast and costs less. In this case, the postponed

revenues need to be included for a more accurate decision tree analysis.

The outcomes in the decision tree analyses in the example are described

based on the anticipated impact of AIS. Here the non-monetary factors, such

as public opinions are not included. Including these factors is difficult yet

achievable (Clemen, 1996).

Moreover, the decision tree analyses assume the decision makers are risk-

neutral. In fact, decision makers can be either risk-averse, risk-neutral or

risk-seeker. Different choices are made with different attitudes towards the

risk. How the decision makers anticipate the risk should be discussed with the

analysts at the very beginning of the risk assessment of AIS (Bratvold et al.,

2007; Newendorp and Schuyler, 2000; Clemen, 1996).

In addition, data analysis is helpful when determining the individual risk

factors. Pawley et al. (2018) combine machine learning algorithm with PSHA

and identify different factors related to the induced seismic events in the Duver-

nay play and their importance respectively. With sufficient data, data analysis

can also be applied to understand which mitigation methods are more effective

under specific geological environments.

6.6 Conclusion

This chapter demonstrates the workflow of a complete risk assessment of AIS

with a case study. The risk consists of the possibility and the impact of AIS.

These two aspects are analyzed separately. The anticipated risk is utilized in

the decision-making process of the operation through the several decision tree

analyses.
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Because the possibility of AIS is affected by various factors, these factors

are considered as the risk factors and evaluated independently. Instead of us-

ing quantitative evaluations like the FSP analysis and the PSHA, a qualitative

method called the three-level evaluation system is applied here. Each factor

is assessed and labeled low, medium and high. If the factor does not exist,

the factor is evaluated as none. If the information for evaluating certain fac-

tors is missing, the factor is considered as unknown and is excluded in the

calculation of the possibility. Here two factors, concurrent observed seismicity

- clustering and concurrent observed seismicity - magnitude, are not applica-

ble when assessing the risk prior to the operation. Hence they are labeled as

N/A. Using this qualitative evaluation system requires less computation and

can be updated easily once more information is available. It is a practical risk

assessment approach.

By implementing the decision tree analysis, both the possibility and the

impact of AIS are included in the decision-making process. This is necessary

because the objective of the risk assessment is to make better decisions with

the understanding of the risk. Instead of interpreting the risk assessment intu-

itively, the decision tree analysis specifically illustrates how the anticipated risk

affects the expected values of the operation by making certain decisions. More

costly decisions may statistically lead to better results (revenues) if they reduce

the possibilities of negative outcomes. In this case, the negative outcome is the

occurrence of AIS.

It is important to emphasize that in this case only monetary values are

considered. Decision makers should routinely take additional influences into

consideration such as the cost of the operation delay, political and/or societal

impact of their decisions. Yet the values of these factors are more difficult to

assess statistically.
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Figure 6.4: (a). Risk evaluations prior to the operation. Factors labeled as
Unknown and N/A are excluded in the calculation of the possibility of AIS. The
evaluations in the prior to the operation scenario are the same as in Table 6.1.
In the worst-case scenario, all risk factors that can be evaluated prior to the
operation are considered as high and the possibility of AIS is 100%. (b). The
decision tree analysis of should the operation proceed? The possibilities of the
outcomes are based on the possibilities in (a). The monetary value of each
outcome is based on the assessment of the impact of the AIS (Table 6.2).
Detailed analyses are in the main context.
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Figure 6.5: Observed seismic events (blue dots) at the operation site from
October 26, 2016 to November 09, 2016. Data from Eaton et al. (2018). (a).
Map view of the observed seismic events and the locations of the four horizontal
wells. The dashed blue line represents the propagation direction of the seismic
events in the blue dashed box. The maximum horizontal stress is the maximum
principal stress in the area, which is 45◦ to the north (Bell and Grasby, 2012).
The seismic events in the dashed red oval indicates the possible reactivation of
a fault. The shaded area indicates the stages that have been fractured. (b).
Magnitudes of the observed seismic events shown in (a).
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Figure 6.6: (a). Evaluation of each risk factor during the operation. Evalu-
ations in the during the operation scenario are the same as in Table 6.3. In
the with mild mitigation scenario, risk factor, concurrent observed seismicity
- clustering is changed from high to medium. In the with rigorous mitigation
scenario, both concurrent observed seismicity - clustering and concurrent ob-
served seismicity - magnitude are evaluated as low. (b). The decision tree
analysis of should the operation be mitigated. The possibilities of AIS under
the during the operation and the with mild mitigation scenarios are used. (c).
The decision tree analysis of should mild or rigorous mitigation be implemented.
The possibilities of AIS under the with rigorous mitigation and the with mild
mitigation scenarios are used. In (b) and (c), the monetary values are based
on the evaluation of the impact of AIS in Table 6.2.
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Chapter 7

Conclusions and suggested

future research

Risk assessment of AIS is vital as long as the industrial activities have the

potential of causing AIS. Through this thesis, multiple aspects of the risk as-

sessment are analyzed extensively.

In Chapter 2 and Chapter 3, the fault slip potential (FSP) analysis is

studied. The FSP analysis calculates the likelihood of fault reactivation with

the available knowledge. The 3D FSP analysis proposed in this thesis is based

on the consideration of the depth variations of in situ stress and pore pressure.

These two chapters shows how the current knowledge of relative parameters

affects the accuracy of FSP and the importance of using additional information

to update the FSP analysis whenever we can.

The contributions of Chapter 2 and Chapter 3 are

1. Proving the Monte Carlo simulations are capable of replacing analytical

solutions in the FSP analysis;

2. Including the horizontal stress variances in depth in the FSP analysis;

3. Introducing the safety distance to understand the influence of the uncer-

tainty on the FSP results;

4. Including the slip direction analysis to validate the input parameters of

the FSP analysis; and
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5. Updating the FSP analysis with additional information to create a better

FSP analysis.

This project demonstrates that

1. Both the horizontal in situ stresses and pore pressures can vary from layer

to layer. They are not well described by a constant depth gradient.

2. The FSP analysis calculates the likelihood of fault reactivation based on

the current knowledge. Including the stress variations in depth in the

FSP analysis shows at which depth the fault is more likely to fail.

3. Besides the 3D FSP analysis, the analyses of the slip directions and the

safety distance are alternative approaches to utilize the available knowl-

edge. Comparing the slip directions with the focal mechanism analyses

verifies the inputs of the FSP analysis. The histograms of the safety

distance represent the uncertainty in the results of the FSP analysis.

4. Comparing the 3D FSP analysis with the analysis of the recorded seismic

events, the current knowledge of the stress regime and other geomechan-

ical parameters is tested and updated if necessary. The discrepancies

between these two analyses indicate the limited or incorrect knowledge

of the FSP parameters.

5. Because of the simplicity and minimum computational requirements of

the 3D FSP analysis, the same analysis can be updated once more infor-

mation available. This is an effective and proactive approach of utilizing

the observed seismic data besides using them as an indicator of the AIS.

The updated knowledge and 3D FSP analyses can be implemented in

future risk assessments in the same area.

At the same time, the 3D FSP analysis has several limitations that can be

addressed in future studies.

1. The FSP analysis only studies the possibility of fault reactivation. Be-

cause there is not a clear correlation between the possibility of reactiva-

tion and the resulting magnitude. Thus a high FSP does not necessarily
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mean a high risk of AIS. How the FSP is linked to the impact needs to

be further investigated.

2. Only the spatial locations of the observed seismic events are compared

with the 3D FSP results. Neither the depth nor the magnitude of each

event is included in the FSP analysis in Chapter 3. These two pa-

rameters are suggested to be included in future studies. The depths of

seismic events can justify the proposed vertical pore pressure gradient

variations and the estimation of the in situ stress. The magnitudes of

seismic events can further indicate the pattern of induced seismic events

and their relations with the reactivation of a possible fault.

The next objective of the thesis is to provide the optimal additional stress

sampling locations, which is discussed in Chapter 4 and Chapter 5. First in

Chapter 4, the main interpolation method studied in this thesis, kriging, is

explained. Then two sampling criteria aimed to improve the kriging results are

listed, namely the modified Warrick-Myers(WM) sampling criterion and the

error-variance(EV) based sampling criterion.

The contributions of Chapter 4 and Chapter 5 are

1. Proposing two different sampling criteria that are suitable for second-

phase sampling; and

2. Demonstrating that when sampling at the locations with the highest error

variances, the additional samples are most valuable as they bring the

largest misfit reduction in the prediction.

The comparisons these two criteria show that

1. There are six different sources of uncertainty in the interpolated results

using kriging. WM-sampling criterion focuses on reducing the uncertainty

generated during the creation of the variogram model. The EV-based cri-

terion is based on the error variance given by kriging. This error variance

is considered as the interpolation uncertainty.

2. Additional samples improve the interpolation results and reduce the mis-

fit. When the second-phase samples given by the two criteria respectively
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differ, the misfit reduction is higher on average by adding the second-

phase samples given by the EV-based criterion. This means that when

designing the second-phase sampling locations, adding samples based on

their kriging error variances would result in the greatest reduction on the

misfit.

3. EV-based criterion is more robust when the spatial relations of the sam-

ples (the sill, the range and the nugget) or the sample size changes.

Again, there are many opportunities for future studies.

1. In this study, two criteria targeting two sources of uncertainty are dis-

cussed. More criteria focusing on the other four sources of uncertainty

could be included and studied as well.

2. For using kriging to interpolate the in situ stress, it is reasonable to

take the spatial trend of the stress into consideration, especially when

interpolating the regional in situ stress. Kriging specifies the exclusion of

any spatial trend in the samples. Therefore, it is suggested to combine a

spatial regression model with the kriging when doing the interpolation of

the regional stress.

3. Here only the stress measurements are considered. Incorporating other

types of data, such as seismic data and well data, and conducting co-

kriging are also recommended. These types of data are also able to illus-

trate the change of the in situ stress within one area.

The last part of the thesis proposes to adopt techniques from the decision

analysis to the risk assessment of AIS. The main techniques mentioned here are

the three-level risk evaluation system and the decision tree analysis. Including

these techniques improves the understanding of the actual risk and assists the

decision making process.

The contributions of Chapter 6 are

1. Identifying the limitations of using quantitative approaches, such as the

FSP analysis and PSHA, to measure the risk of AIS;

2. Listing multiple independent factors related to the risk of AIS;
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3. Proposing to use a three-level evaluation system to assess different risk

factors qualitatively;

4. Implementing the decision tree analysis to solve the cost-benefit problems

during an operation;

5. Conducting a complete risk assessment of a hydraulic fracturing operation

in Fox Creek using the techniques mentioned above; and

6. Updating the risk assessment during the operation with observed seis-

micity and using the updated version to better assist with the decision-

making process.

Chapter 6 illustrates that

1. The three-level risk evaluation is a qualitative assessment of the risk. This

system requires the understanding of all types of risk factors of the AIS

and considers both the possibility and the impact of the risk of AIS.

2. Two outcomes are considered here, namely no AIS and causing AIS. The

influence of the anticipated risk of AIS on the expected monetary values

of different outcomes is shown with the decision tree. The decision tree

analysis also shows how different decisions affect the risk and the expected

values.

For future studies, it is suggested that

1. The outcomes are only divided as no AIS and AIS. Other descriptions of

the outcomes can be included. For example, the outcomes can be grouped

by the magnitude of AIS.

2. The risk assessment of AIS should be conducted routinely. Considering

the risk during the planning stage and updating the risk with more infor-

mation show how the anticipated risk affects the decision-making process.

Understanding this impact can increase the effectiveness and efficiency of

the operation and reduce the risk of AIS.
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In conclusion, this thesis studies three parts of the risk assessment of AIS

and proposes several improvements. During the course of this whole project,

one great obstacle is the lack of geological and geophysical understanding of

the detailed process of triggering AIS with injection. The mechanism is well-

developed but there are still some questions remaining unanswered, such as

1. Why are some areas more prone to AIS than other areas?

2. How does the injection process trigger AIS exactly?

3. Is it possible to detect forewarning of AIS with real-time monitoring?

Early observations of AIS due to injection was in the 1960s (Healy et al.,

1968), yet AIS is still a risk with limited understanding and assessments. With

constant research and interdisciplinary cooperation, the risk of AIS will be

better assessed.
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Marroqúın, and J. Rivas, 2006, Control of hazard due to seismicity induced

by a hot fractured rock geothermal project: Engineering Geology, 83, 287–

306.

Bott, M. H. P., 1959, The mechanics of oblique slip faulting: Geological Mag-

azine, 96, 109–117.

Bowers, G. L., et al., 1995, Pore pressure estimation from velocity data:

Accounting for overpressure mechanisms besides undercompaction: SPE

Drilling & Completion, 10, 89–95.

Bratvold, R., and S. Begg, 2010, Making good decisions: Society of Petroleum

Engineers.

Bratvold, R., J. Bickel, and H. Lohne, 2007, Value of information in the oil

andgas industry: Past, present and future: Paper SPE 110378 presented

at the SPE Annual Conference and Exhibition, Anaheim, California, USA,

11–14.

Canadian Association of Petroleum Producers (CAPP), 2019, Hydraulic frac-

turing industry shared practices: Anomalous induced seismicity due to hy-

draulic fracturing.

Clemen, R. T., 1996, Making hard decisions: an introduction to decision anal-

ysis, 2nd ed.: Brooks/Cole.

Cressie, N., 1990, The origins of kriging: Mathematical geology, 22, 239–252.

Cui, A., R. Brezovski, K. Glover, et al., 2013, Controls of anisotropic in-situ

stress and permeability in optimization of wells and hydraulic fractures for

unconventional reservoirs: examples from the Western Canada Sedimentary

Basin: Presented at the 47th US Rock Mechanics/Geomechanics Sympo-

sium, American Rock Mechanics Association.

Davis, B. M., and L. E. Borgman, 1979, Some exact sampling distributions for

variogram estimators: Journal of the International Association for Mathe-

110



matical Geology, 11, 643–653.

——–, 1982, A note on the asymptotic distribution of the sample variogram:

Journal of the International Association for Mathematical Geology, 14, 189–

193.

Davis, J. C., 2002, Statistics and data analysis in geology, 3 ed.: John Wiley

& Sons, Inc.

Delmelle, E., 2009, Spatial sampling: The SAGE handbook of spatial analysis,

183, 206.

Delmelle, E. M., 2012, Spatial sampling: Handbook of Regional Science, 1385.

Do, C. B., 2008, Stanford University CS229 : Machine Learning, Lecture notes:

The multivariate Gaussian distribution.

Dunn, L., G. Schmidt, K. Hammermaster, M. Brown, R. Bernard, E. Wen, R.

Befus, and S. Gardiner, 2012, The Duvernay Formation (Devonian): sedi-

mentology and reservoir characterization of a shale gas/liquids play in Al-

berta, Canada: Presented at the Canadian Society of Petroleum Geologists

- Annual Convention, Canadian Society of Petroleum Geologists.

Eaton, B. A., 1975, The equation for geopressure prediction from well logs:

Presented at the Fall meeting of the Society of Petroleum Engineers of AIME,

Society of Petroleum Engineers.

Eaton, D. W., 2011, 2-D finite-difference modelling of pore-pressure diffusion

in heterogeneous anisotropic porolelastic media: Implications for induced

microseismicity: Presented at the Recovery – 2011 CSPG CSEG CWLS

Convention, Canadian Society of Exploration Geophysicists.

——–, 2018, Passive seismic monitoring of induced seismicity: Fundamen-

tal principles and application to energy technologies: Cambridge University

Press.

Eaton, D. W., N. Igonin, A. Poulin, R. Weir, H. Zhang, S. Pellegrino, and

G. Rodriguez, 2018, Induced seismicity characterization during hydraulic-

fracture monitoring with a shallow-wellbore geophone array and broadband

sensors: Seismological Research Letters, 89, 1641–1651.

Economides, M. J., and K. G. Nolte, 2000, Reservoir stimulation: John Wiley

& Sons Chichester, NY.

Eidsvik, J., T. Mukerji, and D. Bhattacharjya, 2015, Value of information

111



in the Earth sciences: Integrating spatial modeling and decision analysis:

Cambridge University Press.

Eissa, E., and A. Kazi, 1988, Relation between static and dynamic young’s

moduli of rocks: International Journal of Rock Mechanics and Mining &

Geomechanics Abstracts, 25.

Ellsworth, W. L., 2013, Injection-induced earthquakes: Science, 341, 1225942.

Eyre, T. S., D. W. Eaton, D. I. Garagash, M. Zecevic, M. Venieri, R. Weir, and

D. C. Lawton, 2019, The role of aseismic slip in hydraulic fracturing–induced

seismicity: Science advances, 5, eaav7172.

Gaucher, E., M. Schoenball, O. Heidbach, A. Zang, P. A. Fokker, J.-D. van

Wees, and T. Kohl, 2015, Induced seismicity in geothermal reservoirs: A re-

view of forecasting approaches: Renewable and Sustainable Energy Reviews,

52, 1473–1490.

Gischig, V. S., and S. Wiemer, 2013, A stochastic model for induced seismicity

based on non-linear pressure diffusion and irreversible permeability enhance-

ment: Geophysical Journal International, 194, 1229–1249.

Gutenberg, B., and C. F. Richter, 1956, Magnitude and energy of earthquakes:

Science, 83, 183–185.

Healy, J., W. Rubey, D. Griggs, and C. Raleigh, 1968, The Denver earthquakes:

Science, 161, 1301–1310.

Heidbach, O., M. Rajabi, K. Reiter, M. Ziegler, W. team, et al., 2016, World

stress map database release 2016: GFZ Data Services, 10.

Hennings, P. H., J.-E. Lund Snee, J. L. Osmond, H. R. DeShon, R. Dommisse,

E. Horne, C. Lemons, and M. D. Zoback, 2019, Injection-induced seismicity

and fault-slip potential in the Fort Worth Basin, Texas: Bulletin of the

Seismological Society of America, 109, 1615–1634.

Higgins-Borchardt, S., J. Sitchler, and T. Bratton, 2016, Geomechanics for un-

conventional reservoirs, in Unconventional Oil and Gas Resources Handbook:

Elsevier, 199–213.

Hillis, R., and S. Reynolds, 2000, The Australian stress map: Journal of the

Geological Society, 157, 915–921.

Hsieh, P. A., and J. D. Bredehoeft, 1981, A reservoir analysis of the Denver

earthquakes: A case of induced seismicity: Journal of Geophysical Research:

112



Solid Earth, 86, 903–920.

Igonin, N., J. P. Verdon, J.-M. Kendall, and D. W. Eaton, 2019, The impor-

tance of pre-existing fracture networks for fault reactivation during hydraulic

fracturing: Earth and Space Science Open Archive.

Jaeger, J., et al., 1969, Behavior of closely jointed rock: Presented at the

The 11th US Symposium on Rock Mechanics (USRMS), American Rock

Mechanics Association.

Jaeger, J. C., N. G. Cook, and R. Zimmerman, 2009, Fundamentals of rock

mechanics: John Wiley & Sons.

Jia, S. Q., D. W. Eaton, and R. C. Wong, 2018, Stress inversion of shear-

tensile focal mechanisms with application to hydraulic fracture monitoring:

Geophysical Journal International, 215, 546–563.

Kao, H., 2017, in Induced Seismicity Workshop [Powerpoint slides]: Office of

the Regulator of Oil and Gas Operations.

Kennedy, M. C., and A. O’Hagan, 2001, Bayesian calibration of computer mod-

els: Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 63, 425–464.

Keranen, K. M., H. M. Savage, G. A. Abers, and E. S. Cochran, 2013, Po-

tentially induced earthquakes in Oklahoma, USA: Links between wastewater

injection and the 2011 Mw 5.7 earthquake sequence: Geology, 41, 699–702.

Keranen, K. M., M. Weingarten, G. A. Abers, B. A. Bekins, and S. Ge, 2014,

Sharp increase in central Oklahoma seismicity since 2008 induced by massive

wastewater injection: Science, 345, 448–451.

Krige, D. G., 1951, A statistical approach to some mine valuation and allied

problems on the Witwatersrand: PhD thesis, University of the Witwater-

srand.

Langenbruch, C., and S. A. Shapiro, 2010, Decay rate of fluid-induced seis-

micity after termination of reservoir stimulations post injection seismicity:

Geophysics, 75, MA53–MA62.

Langenbruch, C., M. Weingarten, and M. D. Zoback, 2018, Physics-based fore-

casting of man-made earthquake hazards in Oklahoma and Kansas: Nature

communications, 9, 1–10.

Lee, K.-K., W. L. Ellsworth, D. Giardini, J. Townend, S. Ge, T. Shimamoto,

113



I.-W. Yeo, T.-S. Kang, J. Rhie, D.-H. Sheen, et al., 2019, Managing injection-

induced seismic risks: Science, 364, 730–732.

Lisle, R. J., and D. C. Srivastava, 2004, Test of the frictional reactivation theory

for faults and validity of fault-slip analysis: Geology, 32, 569–572.

Ma, X., and M. D. Zoback, 2017, Laboratory experiments simulating poroelas-

tic stress changes associated with depletion and injection in low-porosity sed-

imentary rocks: Journal of Geophysical Research: Solid Earth, 122, 2478–

2503.
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Appendix A

Pore pressure change due to

injection

Pore pressure diffusion describes the behavior of injected fluids in a porous

media. The diffusive behavior of fluids is one of the typical mechanisms of

injection-induced microseismicity. The following explanations are adopted from

Shapiro et al. (2003) and Eaton (2011).

In a homogeneous, isotropic and poroelastic porous medium, at the direction

of the x-axis, the pore pressure behaves as

∂p(t, x)

∂t
= Dx

∂2p(t, x)

∂x2
, (A.1)

where Dx is the hydraulic diffusivity in the x-axis, t is the time of diffusion, x is

the distance from the observation point, and p is the pore pressure perturbation,

a function of time t and distance x.

The diffusivity Dx is defined as

Dx =
αKx

ζ
, (A.2)

where Kx is the permeability along the x-axis, ζ is the pore-fluid dynamic

viscosity and α is the poroelastic modulus. α is defined as

α =
TPd
H

, (A.3)
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Table A.1: Values of diffusion parameters in a typical shale gas reservoir.

Parameter Value Parameter Value
φ 10% Kx 50mD
ζ 0.00019Pa · s Gd 22.5GPa
Kd 49GPa Kg 75GPa
Kf 2.2GPa

where

T = (
φ

Kf

+
ξ − φ
Kg

)−1;

ξ = 1− Kd

Kg

;H = Pd + ξ2T ;

Pd = Kd +
4Gd

3
.

Here Kf,d,g are the bulk moduli of the fluid, dry frame and the grain material.

Because the medium is assumed as homogeneous and isotropic, the moduli are

the same in all directions. Gd is the shear modulus of the dry frame and φ is

the porosity.

For a typical shale gas reservoir, the pore pressure perturbation from injec-

tion is calculated using the values listed in Table A.1

Assume the maximum height of the hydraulic fracture is 100m and the

width 200m, and the injection rate and pressure are 10m3/min and 5MPa

respective. If the injection continues for 60min, then the pore pressure change

at the injection point in 30min after the end of the injection is 3MPa. However,

because of the low permeability, the pore pressure perturbation reduces to zero

at approximate 20m away form the injection point, as shown in Figure A.1a.

After the injection, because of diffusion, the pore pressure at the center of the

fracture decreases and fluids propagate outwards. Figure A.1b shows the pore

pressure perturbation around the hydraulic fracture with injection duration of

5h and computation duration of 5d. The maximum pore pressure perturbation

reduces to 0.4MPa at the center of the fracture. Figure A.1 illustrate that

with a longer injection time and computation duration, the area affected by

the injection fluids increases with the decrease of maximum perturbation in

pore pressure. If a fault is more than 100m away from the hydraulic fracture,
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Figure A.1: Pore pressure perturbation at a 100m× 200m hydraulic fracture.
Red star indicate the center of the hydraulic fracture. Color bars show the pore
pressure in Pa. (a). Injection time is 60min and total computation duration
90min. (b) Injection time is 5h and total computation duration of 5d.

based on the simple model, the pore pressure perturbation at the fault would

be smaller than 0.2MPa.
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Appendix B

Relation between variogram and

covariance

The variogram between two samples at location ui and location uj are

2γ(Z(uj), Z(ui) = E{[Z(uj)− Z(ui)]
2}

= E{Z(uj)
2 + Z(ui)

2 − 2Z(uj)Z(u)i}

= E{Z(uj)
2) + E{Z(ui)

2)− 2E{Z(uj)Z(ui)}.

(B.1)

For a random variable Z with m as the mean and σ as the variance, we have

σ2 = E{(Z −m)2}

= E{Z2 +m2 − 2Zm}

= E{Z2}+ E{m2} − 2E{Zm}

= E{Z2} −m2.

(B.2)
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For the covariance of the random variables Z with lag h, based on the first-

and second-order stationarities we have

Cov(Z(uj), Z(ui)) = E{(Z(uj)−m)(Z(ui)−m)}

= E{Z(uj)Z(ui)−mZ(uj)−mZ(ui) +m2}

= E{Z(uj)Z(ui)}

−mE{Z(u)j} −mE{Z(ui)}+ E{m2}

= E{Z(uj)Z(ui)} −m2 −m2 +m2,

= E{Z(uj)Z(ui)} −m2.

(B.3)

Combine Equation B.2, Equation B.3, and Equation B.1 we have,

2γ(Z(uj), Z(ui)) = σ2 +m2 + σ2 +m2 − 2Cov(Z(uj), Z(ui))− 2m2

= 2σ2 − 2Cov(Z(uj), Z(ui)).
(B.4)

If the distance between uj and ui is h, we can replace Cov(Z(uj), Z(ui)) and

γ(Z(uj), Z(ui)) with Cov(h) and γ(h). Therefore,

γ(h) = σ2 − Cov(h). (B.5)
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Appendix C

Normal score transformation

Before kriging, the data set is transformed from the original distribution to a

normal distribution with a mean of zero and variance of 1, which is called the

normal score transformation. The methodology of the normal score transfor-

mation is adopted from Pyrcz and Deutsch (2014).

Denote the data as Z. Z should firstly be standardized by calculating the

standard residual Zr, which is defined as

Zr =
Z −m
σ

, (C.1)

where m and σ are the mean and variance of Z.

The basic idea of the normal score transformation is that the p-quantile, or

the percentile, stays unchanged before and after the transformation. We have

zr = F−1
zr (FZ(z)), (C.2)

where F represents the cdf of the variable. The steps of normal score transfor-

mation are as follows,

1. Create the cdf FZ(z) of the variable Z;

2. For the value of ith datum zi, find the corresponding probability FZ(zi);

3. Find the corresponding value zri with the same Pi;
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Figure C.1: Demonstration of normal score transformation. FZ(z) is the cdf
in the original domain and FY (y) is the cdf in the normal distribution domain.
The figure is read from the bottom of the left figure to the right figure, following
the arrows. Before and after the normalscore transformation, the percentiles
of the data remain unchanged. This figure corresponds to the explanation of
Step 2-4 of the normalscore transformation in the context.

4. Assign the value zri as the new value for the ith datum;

5. repeat steps 2 − 4 until all the data are assigned with corresponding

values.

Steps 2-4 are also shown in Figure C.1. To transfer the data back to the original

distribution after analysis, which is called the backscore transformation, the

methodology remains the same. Only the arrows in Figure C.1 point to the

opposite direction.
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Appendix D

Spatial regression model

If there is a spatial trend, the local mean could vary site by site in the area,

and neither first- nor second-order stationarity holds true. In this case, a

spatial regression model is used for interpolation. The following explanations

are adopted from Eidsvik et al. (2015).

To capture the spatial trend in the variable, the variable is divided into

the trend and the residual. The trend can be described with a function of

the spatial location u. For a particular location ui, ui = (uxi, uyi). Without

the trend, the residual satisfies the first- and second-order stationarity. The

residual can be calculated using simple kriging. Denote the spatial variable

with a trend as Zt(u), we have

Zt(u) = t(u) + w(u), (D.1)

where t(u) denotes the trend and w(u) the residual. The residual is assigned

with a normal distribution function as

w(u) = N(0,C). (D.2)

where C is the covariance matrix of u, which can be obtained with a proper

covariance model. C is described by range η, sill σ2, and nugget τ 2. The

covariance parameters are denoted as θ = (σ2, η, τ 2).

Since w(u) has a Gaussian distribution, Zt(u) also has a Gaussian distri-
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bution model (Do, 2008). Therefore,

p(Zt(u)) = N(t(u),C). (D.3)

To estimate the trend t(u) and the covariance parameter vector θ that fit

the data the best, the maximum likelihood estimation is applied.

The trend t(u) can be written as the regression parameters times combina-

tions of the locations. For example, a simple linear trend of u can be written

as

t(u) = Gβ = [1 ux uy]


β0

β1

β2

 . (D.4)

For more complex trends, G and β can be changed accordingly. Denote α =

(t(u),C), which are the mean and the variance of Ztu). To find the optimal

parameters that describe Ztu), the maximum likelihood estimation is applied.

The idea of maximum likelihood estimation is to find α̂(Ztu)) that maxi-

mizes LZtu)(α) as

α̂(Ztu)) = max{p(Zt(u)),α) : α ∈ α̂}

= max{LZt(u)(α) : α ∈ α̂}.
(D.5)

α̂ is the set containing all possible values of α. One pitfall of maximum likeli-

hood estimation is that the estimated results do not necessarily give the global

maximum. This is called the local maxima problem (Myung, 2003).

Since the residual can be calculated with simple kriging, the covariance

matrix C is determined by a variogram model with three parameters, the sill

(σ2), the range (η) and the nugget (τ 2). Here we use θ to denote the three

parameters as θ = (σ2, η, τ 2). θ determines C.

With G predetermined, the values of β and θ are estimated. The log-

likelihood function is

L(θ,β) = −m
2
log(2π)− 1

2
log(|C|)− 1

2
Zt(u)TC−1Zt(u), (D.6)
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where m is the number of different locations. The estimated parameters θ̂

should give the arguments of maxima of l(θ) as,

θ̂ = argmax{L(θ)}. (D.7)

Therefore, the partial differential equations should equal zero as

∂L(θ)

∂θ
= 0. (D.8)

With a fixed θ, the derivative of L(θ) with respect to β is

dL(θ)

dβ
= GTC−1Zt(u)−GTC−1Gβ = 0. (D.9)

The solution of θ to Equation D.8 can be solved numerically. Denote θi as

the ith component of θ. Using Equation D.8, the derivative of l with respect

of θi is

dL(θ)

dθi
= −1

2

dlog|C|
dθi

− 1

2

dZt(u)TC−1Zt(u)

dθi

= −1

2
trace(C−1

dC

dθi
) +

1

2
Zt(u)TC−1

dC

dθi
C−1Zt(u)

(D.10)

To solve Equation D.10, the Fisher scoring algorithm is used. The derivative

of l with respect of θ, dL(θ)/dθ, is the score. For m+ 1th iteration, we have

θm+1
i = θmi + E

{
d2l

dθmi dθ
m
i

}
θmi , (D.11)

where E{∗} stands for the expected Hessian, which is

E

{
d2L(θ)

dθmi dθ
m
i

}
= −1

2
trace

(
C−1

dC

dθmi
C−1

dC

dθmi

)
. (D.12)

The initial values of θ0 should be given. And the algorithm is iterated until

the score becomes less to a given value or the number of iterations reaches the

given number.
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Based on the maximum likelihood estimation and fisher scoring algorithm,

θ̂ that satisfy Equation D.7 can be estimated. The detailed steps are shown in

Figure D.1.

Related scripts run in MATLAB®, which can be found in the supplement

of Eidsvik et al. (2015).

Figure D.1: Estimating θ̂ using maximum likelihood estimation with Fisher
scoring.
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