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Abstract

This thesis investigates detection technologies for mlgtinput multiple-output
(MIMO) systems and cooperative communications. The ekqion of detection
methods and relay strategies to achieve near-optimal ipeafacce (measured by
symbol error rate or minimum mean squared error) and reshgf the running
time of detection methods are the main focus of this thesisigAal-to-noise ratio
(SNR)-dependent radius control sphere detector (SD) ithgor a general frame-
work of statistical pruning SD, and an improved K-best SD @n@posed. These
SD algorithms reduce the detection running time in termshefaverage number
of visited nodes, with negligible performance loss comgamith that of optimal
maximum likelihood (ML) detection. In order to optimize tMdMO relay perfor-
mance, an estimate-and-forward (EF) relay strategy isddseloped. The emerg-
ing trend towards large MIMO and cooperative communicasipgstems makes the
development of low running time strategies with near-optiperformance more
important. Thus, an EF list generated by SD is also propasegbiuce the number
of computational operations for the EF scheme in large MIMy networks; this
method is called list EF.

Overall, the research findings should help to reduce theimgrtrme and im-
prove the reliability of detection algorithms, to achievelesirable trade-off be-
tween running time and performance, and to provide effiiantplementable

MIMO and cooperative detection algorithms.
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Chapter 1

Introduction

1.1 The Growth of Wireless Communications

Wireless communications is one of the most vibrant areakencommunication
field today. A topic of study since the 1960s, it has seen aesoirgesearch activity
in the past decade. Two fundamental challenges are to iraghevreliability and
spectral efficiency of wireless networks. The reliabilifytloe delivery of messages
to the intended recipients may be measured by the bit ertes,ravhile spectral
efficiency refers to the delivered bit rate for a given barditvi The improvement

in these metrics has helped the growth of wireless traffic.

Exabytes per Month
12
e MW Other Portable Devices
% Non-Smartphones

B M2M

- W Tablets
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Figure 1.1: Mobile data traffic of wireless communicatioesides[1]

One of the primary contributors to traffic growth is the irasgng number of

wireless devices accessing mobile networks worldwide,hasvs in the mobile

1
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Figure 1.2: Average demand per user and average capacitseel2]

wireless traffic forecast by Cisco systems ([fig] 1.1). Tha dae demand and the
system capacity (Fig._1.2) drive the need for more soplaitgit communications
technologies.

Two such technologies under consideration for the wirelesworks are

e Multiple-input multiple-output (MIMO) technology [3], wibh uses multi-
ple antennas at both the transmitter and receiver to improm@nunication
performance. MIMO offers significant increases in dataulgtgput and link

range without additional bandwidth or increased transimitgr.

e Cooperative communication|/[4], which most commonly inasdvmultiple-
hop techniques. The basic idea is to have one or more intéateedodes
(relays) that will repeat or retransmit the signal from om&a@ (sender) to

another (destination).

These two technologies are introduced next.

1.1.1 MIMO Technology

As mentioned above, MIMO technology has attracted attardie to its significant
improvements in the spectral efficiency and/or reliahilfig.[1.3 shows a MIMO
system that uses multiple antennas to create multiple lat&een the transmit-

ter and receiver. These multiple links create the space e, which can be



exploited for reliability and/or efficiency gains. MIMO tegology is exploited
in the latest WiFi (IEEE 802.11n[5]) data communicatiomstard, 3rd-generation
partnership project (3GPP) long-term evolution (LTE) gief communication stan-
dard [6], and in the IEEE 802.16e (WiMAX) metropolitan aregtvimorks (MAN)
standard [7].

MIMO Channel Receiver

Transmitter

Figure 1.3: MIMO Channel

MIMO can be used to mitigate wireless channel impairmentisrasource con-
straints. This mitigation is possible by exploiting the éinfrequency, and spatial
dimensions. The resulting MIMO performance gains are ageay, spatial diver-

sity gain, spatial multiplexing gain and interference retean [3]:

e Array gain means a power gain of the transmitted signalsisrethieved by
using multiple-antennas at the transmitter and/or receni¢h respect to the
single-input single-output case. It can be simply calledgbwer gain result-
ing from a coherent combining effect of the wireless sigralthe receiver.
It improves resistance to noise, thus improving the cowermaiga wireless

network.

e Spatial diversity gain refers to the ability to mitigate nipgith fading by using
multiple antennas to improve the quality and reliabilityaofvireless link.
This gain arises because the multiple links created by MINf€r @ receiver

several observations of the same transmitted signal.



e Spatial multiplexing, a special case of MIMO, transmits tiplé independent
data signals, so-called streams, from each of the multipfestnit antennas.
Thus, the space dimension is reused, or multiplexed, maredhce. Spatial

multiplexing gain refers to the increased data rate duedasie of MIMO.

e Interference reduction refers to the ability of MIMO to eaiplthe spatial
dimension to increase the separation between users whe simar and fre-
guency resources.

In general, simultaneously exploiting all the benefits axmight be impossible.
However, using some combination of the benefits across desgaetwork will

result in improved capacity, coverage and reliability.

1.1.2 Coded MIMO

MIMO systems use digital modulations and codes to be abledover from errors
made during the transmission. Channel codes, also knowmascerrection codes
(ECCs) [8]9], play an indispensable role in all modern vessl communication
systems.

The ECC encoder computes additional bits (also called cbésk from the
original information bits. In a block ECC, information biéd the additional re-
dundant bits form a block of bits called a codeword. This eautd is transmitted
to the receiver, whose decoder exploits the redundancyeimeiteived data to de-
termine the original data bits.

Therefore, over unreliable or noisy communication chasnehannel codes
(ECCs) provide redundancy for guarding against burstynfadinterference, and
additive receiver noise. Receiver design for channel-d@ystems dates from the
1960s, while that for multiple-antenna channels begarelgrig the 1980s [3].

By using channel codes, the reliability of a MIMO channel ¢&nimproved,
leading to the development of coded MIMO systems with sietaletection and
decoding techniques. For instance, the iterative MIMO ixerd10] enables high-
throughput transmission at low signal-to-noise ratiosRSN Such transmission

approaches the theoretical capacity limit.



1.1.3 Cooperative Relays

The additional constraints posed by limited power and sciierjuency bandwidth
make the task of designing high-data-rate, high-religbilireless communication
systems challenging. Because even with MIMO technolog@glifficulties of meet-
ing the demands and expectations on wireless communicatgiams (e.g., over a
10-fold increase in data rates) are challenging, additioreans to enhance wire-
less performance are necessary. Consequently, coopesgationg wireless nodes
that enables intermediate nodes (relays) to forward messagm source to des-
tination is potentially very useful. Such cooperative ysland MIMO are being
considered for next-generation wireless systems such BsAdvanced [[11], 12]
and IEEE 802.11ad [13].

In cooperative communications, several independent fstvgeen the source
and the destination are created using relay channelspagdted in Fig[_1l4. The
relay channels can be thought of as providing independeiltaay channels to the

direct channel between the source and destination.

R \\'§\
A —
// Destination

Relay Relay

Figure 1.4: Relay channels

These relay channels improve wireless performance duedpetation diver-
sity. That is, the destination receives independent copigle transmit signal,
which can be combined to achieve performance gains suchvassitly and mul-
tiplexing gains. These gains may translate into decreaserhission powers,

higher capacity or better cell coverageé [4].
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A key aspect of the cooperative relays is the processingeo§itgnal received
from the source node. While different relaying schemeslrasualifferent system
performance, they can be categorized generally into aynahtl-forward (AF) and

decode-and-forward (DF) relaying schemies [4].

e An AF relay simply scales the received signal and transmitammplified
version to the destination. Although this relay process ldi@p noise, the

destination receives multiple versions of the transmisigdal.

e A DF relay decodes the received signal, re-encodes, and¢temsmits to
the receiver. In this case, if the relay makes decoding €rtbe digital errors
will propagate to the destination.

Sectiorl 2.4 provides more discussion of relays.

1.2 Motivation

As mentioned in Sectidn 1.1, extraordinary wireless groi@800% between 2012
and 2017 as shown in Fig._1.1) has driven the need for MIMO aoperative
relays. Reliability and spectral efficiency are the mairf@enance gains. How-
ever, these gains depend critically on the detection dlyos employed by the re-
ceiver. In particular, guaranteeing statistically optip@rformance requires max-
imum likelihood (ML) detection. However, ML detection forIMO and relays
is significantly more complicated than that for single-anie systems. Naive de-
tection algorithms require computational complﬂiﬂlyat increases exponentially
with the number of transmit antennas and the order of theab@mstellation. Con-
sequently, the optimal detection algorithms at the receavel require very high
computing power, which typically exceeds the capabilitEthe typical integrated
circuits currently being used in wireless communicatiofi [1
Therefore, this thesis focuses on the development of lawptexity MIMO

and/or relay detection algorithms. Low-complexity andragatimal detection al-

gorithms have the potential for adoption in emerging wsslstandards. Their

1Computational complexity is a functional form that is infsst by observing the run-times of a
series of solutions to successively larger problem inganc

6



reduced computational complexity can simplify hardwar@lamentation, with-
out compromising the higher data rates and quality of sererwisioned for future
wireless networks. Moreover, the algorithms and the irtsighined while design-

ing them may be used elsewhere in wireless communication.

1.3 Thesis Outline & Contributions

Chaptef 2 presents the background techniques relatedtihésis, including MIMO
detection techniques and conventional relaying methadefay networks. Chap-
terd 3£6 deal with either uncoded/coded MIMO detection layrforwarding strate-
gies, establishing a background and framework for futuseaech. Chaptdr] 7

presents the conclusions and future research.

e Chapter B introduces a novel sphere detector (SD) algoyithinich is called
SNR-dependent radius control sphere detector (SRC-SD)rfooded/coded
spatial multiplexing MIMO systems. The SRC-SD overcomes drawbacks
of traditional SDs, which are variable running time and hrghning time in
low SNRs. The main idea of the SRC-SD is to scale the seardhsrdy a
heuristic SNR-dependent factor. Due to this scaling, teis 8RC-SD offers a
near-ML performance over the entire range of SNRs, whilg@kegits running
time roughly constant. This new algorithm also incorpasateannel ordering to

save running time and is also extended for MIMO-relay neksor

e In Chaptef ¥, node-pruning strategies based on probadiktyibutions are de-
veloped for ML detection for MIMO systems. Uniform prunirgggometric prun-
ing, threshold pruning, hybrid pruning and depth-depehgeaning are thus
developed in detail. The desirable diversity order of umifgruning and the
threshold level for threshold pruning are derived. Thréshpouning is shown
to save running time compared to popular SD algorithms ssdk-best, fixed
complexity and probabilistic tree-pruning sphere dete(®d P-SD), especially
for high SNRs and large antenna MIMO systems. Furthermbesgpplication to

other systems, including coded MIMO systems and relay nétsyds discussed.



e Chapter b investigates a breadth-first SD algorithm, whiehoalled the im-
proved K-best sphere detector (IKSD). At each iteratiorg #igorithm retains
the bestK’ nodes and all the nodes whose costs are within a certain marthe
cost of theK -th best node. Three IKSD variants — fixed threshold, nozedli
threshold and adaptive threshold IKSD — are developed. Towoged IKSD re-
quires a smalleK (indicating lower running time) while achieving near-MLrpe
formance compared to the conventional K-best SD. Thesa gagnconfirmed by
simulation results. The IKSD is also extended as a hybrid I§Drahm, which
uses full enumeration in the top layers of the search tre@pplies the IKSD for
the remaining layers. The IKSD is also extended as a list $[jofot iterative

detection and decoding of coded MIMO.

e MIMO relay networks are the main focus in Chapter 6. An estavend-forward
(EF) scheme is proposed and analyzed. This relay schemariswhe uncon-
strained minimum mean squared error (MMSE) estimate ofdhece data to the
destination. The relay thus performs like AF and DF for tivedmd high SNR re-
gions, respectively, and achieves the conventional AF @agddformance across
all SNRs without the need to switch algorithms for differ&MRs. Its number
of computational operations is, however, high for relaythva relatively large
number of antennas (large MIMO) and/or high-order coratieihs. Two ap-
proximate EF schemes for large MIMO relay networks are thop@sed. The
first one, called list EF, computes a list SD-based MMSE esnand retains
the advantages of the exact EF relay at a negligible perfiocsboss, while the
second one computes a Gaussian estimate. For parallelmetasprks, the EF

scheme achieves increased performance gains.



Chapter 2

Background

This thesis develops new signal detection and transmissmiques for MIMO
systems and relay networks. The basic background techeameeeviewed in this
chapter: MIMO detection, sphere detection, coded MIMOaystand cooperative

relay networks.

2.1 Basic Concepts

2.1.1 Detection vs. Decoding

Signal detection[[15] is broadly concerned with the analysireceived signals
to determine the presence or absence of signals of intéoeslassify the signals
present, and to extract useful information included in ¢hgignals. Specifically,
for this thesis, the process of retrieving transmitted ffata a noise-corrupted and
faded signal is called detection.

To enable detection, the data bits are modulated into trateshsymbols using a
modulation schem@. For example, in a quadrature amplitude modulation (QAM),

the signal constellation is given by
Q=A{kr(a+bi)|a,be{ ..—3,-1,1,3,...}}, (2.1)

wherei = y/—1, andk is an energy-normalizing constant. Thuszife QO is
transmitted and signal vectgris received, detection refers to the recovering:of
from y.

In a coded system, the recovery of data bits from the transdwniersion of the



coded bit sequence is called decoding. Note that, decodfegsrto the recovery of
coded data while detection refers to the recovery of uncodéal
However, for uncoded MIMO systems, many authors have udsetspletection

and decoding interchangeably. In this thesis, sphere tiletear detector is used.

2.1.2 Complexity

Currently, ove®0% of the energy consumption of wireless communications is con
sumed in the outdoor cellular network, of whi¢h% is consumed by base sta-
tions [16]. The complexity of applied techniques signifitammpacts the power
consumption of communication systems. The time complectiigracterizes the
amount of time an algorithm will take to solve successivalgér instances of a
problem. This can be used to evaluate its time efficiency ameep consumption.
Therefore, the measure of running timel[17] is a very impurissue described as
follows.

The running time of hardware implementation is evaluatedngynumber of
floating-point operations per second (FLOPS). Typical apens are addition, sub-
traction, multiplication, division, square root, expotiehand so on. The amount of
energy being consumed per operation is determined by thempoanmsumption of
a designl[1B]. This factor impacts critical design decisimuch as those involving
the power-supply capacity and the battery lifetime. Thaesfpower dissipation is
an important property of a design that affects feasibilitg aeliability, and energy
costs will be much greater for high running time algorithms.

Therefore, to save energy, low-complexity algorithms aeded. In computer
science, the analysis of algorithms is the determinatiah@f&mount of resources
(such as time and storage) necessary to execute them. Imision to estimate
their running time in the asymptotic sense. Big O notationgsed to specify an
asymptotic upper bound [19] of running time, and it is a coneet way to express
the worst-case scenario for a given algorithm. For a givertion g(n) (n is the

input size),O(g(n)) denotes the set of functions that satisfy

O(g(n)) ={f(n) : there exist positive constant&ndn,
(2.2)
such that) < f(n) < cg(n) foralln > ng}.
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For example(n?) means that the running time is asymptotically no worse than
cn?.

However, for sphere detection algorithms in communicatias running time
is evaluated by the expected number of nodes visited in theclsdree([20]. The
reasons for this measure are (1) the detection problem éeestarch problem, (2)
the number of floating-point operations is constant for ladl hodes at the same
layer [21], and (3) running time is in proportion to the numbg&nodes visited by
the algorithm. Since the detector algorithms eliminate asymodes as possible,
this number is a random variable. Hence, the average nunilbedes visited by
the sphere decoder is referred to as the measure of the egpeaaning time of the

detection algorithm.

2.2 MIMO Detection

MIMO appears in three main categories [3]:

e Spatial multiplexing MIMO partitions a high-rate signatarmultiple lower-
rate streams, and then each stream is transmitted from exemff transmit

antenna.

e Beamforming MIMO attempts to maximize the diversity gainl&mus reduce

the error rate.

e MIMO space-time coding involves coding across space and torgain di-

versity and/or capacity benefits.

Among these three MIMO categories, spatial multiplexingWll achieves the
highest data rates|[3].

As spatial multiplexing MIMO systems are capable of prorglenormous ca-
pacity improvements without increasing the bandwidth erttital transmit power,
these systems are the focus of this thesis. An uncoded pafi@plexing system
is considered withV; > 1 transmit antennas andlz; > 1 receive antennas (Fig.

). A rich scattering memoryless (flat fading) chanFels assumed [3].H is

11
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Figure 2.1:Nr x Nz MIMO system

assumed to be full rank. At the receiver, the received sigeetor can be written
as [3]
y =Hs+n, (2.3)

wheres = (54, 3o, ..., 5n,)7 is the transmitted symbol vectat, € Q (a complex
constellation such a8/?-QAM), ¥ = (1,72, ---,0Un,)", andyg; is the signal re-
ceived at the-th antennai( = 1,2,..., Nz). H denotes anV; x Ny Rayleigh
fading channel matrix with independent and identicallyribsited (i.i.d.) elements
hi; ~ CN(0,1), whereCAN(0,1) denotes a complex Gaussian distribution with
zero mean and unit varianc@. = (7, fig, . .., iy, )” is the vector of i.i.d. addi-
tive white Gaussian noise (AWGN) whefig ~ CN(0,0?). It is assumed that the
channel matrid is perfectly known by the receiver. Following a common agsum
tion in the literature, we will assum&, = N = N. For Ny # Ng cases, ML

detection is also feasible, however, generalized spheeetien will be needed [22]

12



2.2.1 ML Detection

The detection process determines the original bits seguessed on the signal re-
ceived over the channel. For statistically optimal detecperformance (minimum
error rate), a MIMO system requires an optimal detectorydjich minimizes the
average error probability. In other words, given a receivectory, the optimal
receiver select§ = §; corresponding to the constellation symbol vedpthat
satisfiep(s;|y) > p(§,|y), Vj # i. By the Bayes rule [23],
e p(¥Is:)p(8:)
p(8ily) = O (2.4)

Assuming equally likely messagess;) = @ for all 4, the detected symbol

vector must satisfy

5 = argmax p(¥|3;). (2.5)
scoN

Because ofi ~ CN(0, 02), the conditional probability density function (PDF) may

be written as

S _ Hs|I2
P(F[E:) = 12>N exp (—u> | (2.6)

(ro o
Therefore, by taking the log likelihood df (2.6), the optinhL detection rule is
given as|[24]
5 = argmin ||y — HS||?, (2.7)
scQN

where||z|| denotes the Frobenius norm of and Q" is the set of all possibléV-
dimensional transmitted symbol vectors for constellatibn

This detection rulel(217) is formulated by using complexnalg and matrices.
However, real versions of these quantities are somewhatreashandle. Fortu-
nately, the complex channel matrix can be transformed imeabmatrix represen-
tationy = Hs + n, wherey,n € R", H € R"*™, ands € R withm = n = 2N;
that is,

[33@] _ rreaj{) —s@{)} [%@] . [%@} | 2.8)

@) |s@E) RE) | [SGE)| T [S(H)

whereR(-) and(-) are the real and the imaginary parts9f respectively.
Therefore, for the equivalent real constellation, theroptiML detection rule

is given by

§ = arg min||y — Hs||?, (2.9)
seqm
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whereQ™ is all possiblem-dimensional transmit symbol vectors for the real con-
stellation2, ands is the element if2™ which minimizes||y — Hs||%. We take the
real and imaginary parts @ to form 2. For example16-QAM in (2.3) can be
transformed into twol-pulse amplitude modulation (PAM) = {-3,—1,1, 3}.
The naive ML detector exhaustively searches|(2.9) and itgobexity is

C=0(Q") = o@2"), (2.10)

wheren,. = log, | Q| is the order of constellation. Thus, the detection runnimgt
grows exponentially with the number of transmit antennabwaith the order of the

signal constellation.

2.2.2 Sphere Detection

Because of the exponential running time of naive ML detec{®a10), the SD al-
gorithm [25] and its variants are designed to reduce theingnime of the search.
The main idea of the SD is to restrict the search space foctietefrom all the
constellation points to a hypersphere with a certain radiasound a preliminary
signal vector estimated from the received signal. This idedficiently realized by
the Fincke-Pohst (FP) SD and Schnorr-Euchner (SE) SD [26H&fe, before dis-
cussing these two SDs, we briefly introduce the basic pri@afthe SD algorithm.
Based on the QR factorization 8 (H = QR), whereR is an upper-triangular
matrix andQ is an unitary matrix, and letting = Qy (Q denotes the Hermitian

of matrix Q), (2.9) is equivalent to

§ = argmin||z — Rs|?, (2.11)

sed

where ® should be the set of all points which satigfy — Rs||*> < d2. Here,
||z — Rs||? is the total cost metric of signal vecter

The SD detector restricts the search space to this hypeesphe/Ne use the
real-system formulatiori_ (2.8) to briefly explain the corvemal FP and SE SDs
(depth-first). To generate the candidate pointdsedll pointss = (sq,55...,8m)%

such thaf|z — Rs||? < d? can be expanded as

m m 2
Z <Zz — Zri7j8j> S d2. (212)
—1 =i

7 =1
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Since the cost metric if_(2.112) involves a sumoterms, a tree withn layers
can be used to represent the search problem. Themil be a set of leaf hodes

(layer1) in the tree.

root
partial cost

(24 — r4.454)

layer= 4 54
2
4
<Z3 — Z 7’37j8j>
j=3
layer= 3 83
layer= 2
layer=

Figure 2.2: An example of tree search

For example, a search tree foR & 2 4-QAM system is given in Fig. 212. The
search process starts from layido layer1 because matriR is an upper-triangular
matrix, and by convention the SD algorithm first detectsithth element,, in the
transmitted signal vectas = [sy,so,...,s,|T. The accumulated cost of the

nodes at the-th layer is given by

m m 2
= Z (zk — Zrk,jsJ) , (2.13)

k=i+1 j=k
wheres; € {—1, 1} for 2-PAM. In this example, there are = 4 layers, called the
depth of the search tree, and each node2hasld nodes. Following (2.12), when
the SD algorithm visits a nodieand its partial cost; exceedsi?, then the partial
tree emanating from the node is removed totally from furtearches. That is, the

partial tree is discarded without further searching, andefer to this activity as
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the pruning of nodé. Clearly, this pruning process does not discard the optimal
solution and it certainly saves running time.
The two main categories of SD algorithms are depth-first apddth-first SD.

The basic ideas of these SDs are given in the following.

Depth-first SD

The depth-first algorithm traverses the tree from layeftop) to layerl (bottom)
and backtracks as necessary. For example, in the convahEnSD (Pohst enu-
meration [28]), given the symbols, 1, ..., s,,, the element; can be chosen from

the range of

1 T 1 m
{E (Zi - Z TiiS; — d2>“ <s; < \‘a (Zi — Z Ti7S; —i—di)J , (2.14)
’ Jj=i+1 ’ j=i+1

2
m

m
whered? = d* — kzl 2 — Zkrk,jsj , ;.; is the element in theé-th row and
=i+ j=

the j-th column of matrixR, [x] is the smallest integer greater than or equait,to
and|z] is the largest integer less than or equatto

In the SE SD (SE enumeration |29]), the admissible pointssasgched in a
zig-zag order from the midpois; ,,,;a = [% <zk — E;?:kﬂ rwsj)J , where[s]
is the nearest integer arourd The spannihg order S mid, Sk.mid + 1y Skmid —
1, Skmid+2, - - -, Whenz, —dy —ry xSg.mia > 0 (di = dQ—Z;‘:kH lp;j(s)? =di 1 —
1Dk (Skt1s - -+ $0) %), @NASk midy Sk.mid — 1y Skomid + 1y Skmia — 2, - - ., Otherwise.
Further, the SE SD updates the radiito be the new cost of the currently found

solution (leaf node). This method is more efficient than tReSb [27].

Breadth-first SD

Instead of a depth-first traversing, a SD can process thesnmde breadth-first
basis. The K-best SD [14] is an example, which searchesdkddyer by layer and
keeps only the begk candidates at each layer. This SD sorts all the child nodes
based on their partial costs and selectsihbest paths. Finally, when the bottom

layer is reached, the leaf node with the minimum cost is sedeas the solution.
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Thus, the search running time of the K-best algorithm is fixed depends only on
K and the number of layers in the tree.

The K-best SD search procedure is briefly described as fell@d) Initialize
the partial cost to b@ at the root of the search tree; (2) Expand all the nodes at
the current layer and compute the partial costs for all tipesential successors; (3)
Sort these nodes in the ascending order of their costs, &id the best{ nodes
with the smallest costs; (4) Prune all other nodes and uplkateartial cost for each
candidate; (5) Check if the bottom layer is reached; if yleentthe leaf node with

the smallest cost is the estimate; or if no, reduce the layerer, and go to (2).

Fixed SD

The fixed SD algorithm, proposed in [|30], is a derivative of t-best SD algo-
rithm. It introduces a parameter s@ty, ..., k..., k,), wherek; refers to the
number of visited nodes per surviving parent node at-tielayer andl <! < m.
For example, in the first layek,, = |©2|, more candidates need to be considered for
the top layer; while the number of candidates will be reducettie last layers. In
this case, an exhaustive search is performed in the top; lHyes full enumeration
is required in the top layer, and all nodes are concurrendiyed. Therefore, the
running time of this Fixed SD is less than that of the convedl K -best SD, given
the same number of visited nodes.

The K-best and Fixed SD are hardware-friendly because theg predeter-
mined visited node and constant throughput. However, eetghthem can guaran-

tee the ML solution when the number of visited nodes is séyemnstrained.

2.3 Coded MIMO Systems

Consider the coded MIMO system in Fig. 2.3). The informatieatorb is a frame
of M, bits encoded by the ECC module, whose outpgibes through an interleaver
I1. The interleaver rearranges the input data in a noncontigutanner such that
consecutive data are spaced apart. The interleaver hareesrstatistical indepen-
dence. The ECC can be a convolutional code or a turbo codecwdlt rateR?; thus,

the length of the coded sequencis M. = M,/R. The interleaved bits are mod-
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Figure 2.3: The system model of iterative detection and diecp

ulated to channel symbodsand transmitted)M, and M, are the frame length of
ands, respectively, wher@d/, = M, log,(|Q|). Therefore, a frame af/, symbols
requires the transmission af., = M, /N blocks of data whereV is the number
of transmit antennas, corresponding\iy, different channel realizations.

At the receiver, several iterations of soft information lexiege [[10] occur be-
tween the ECC decoder and MIMO detector. The MIMO detectathia case
generates so#t posterioriinformationL p; by processing the received sigiyaand
the a priori informationL 4, from the ECC decoder. This reliability information
is expressed by posterioriprobability (APP) in the form of log-likelihood ratios
(LLR). For example, The LLR of bit;;(i = 1,2, ..., M,) is defined as

Prlz; = +1]

L(z;) = log Priz, = 1]

(2.15)

Note that the amplitude levelsl and+1 represent binarg and1, respectively.

For the first iteration, thd. 4, is initialized to0, and the extrinsic information
Lz = Lpi — Ly, generated by the MIMO detector is deinterleavediby to
serve as tha priori information for the ECC decoder. The ECC decoder then gen-
erates the extrinsic information for the next iterationisIrocess continues until
a stopping criterion is met, such as a predefined iterationb®u or a performance
bound. In the final iteration, the ECC decoder obtainsatip@sterioriinformation

L2, on the uncoded bits [31], which is sent to the slicer that outputs the final bit

18



estimates.

As discussed above, soft information needs to be exchangekbn the de-
tector and decoder. The naive SD algorithm can be modifiedddyce the re-
quired soft information. The running time of this process baen widely inves-
tigated [10, 32, 33]. One jointly iterative detection andalding method has been
proposed [10], which generates soft information by a lissi of the SD (LSD).
In this scheme, the ECC can be any code that could be decodesiriy soft in-
puts and outputs, such as a convolutional code or a turbo [8dje Many SDs,
for example, the K-best SD [14] and a list fixed-complexity [85], are capable of

providing the necessary soft outputs in LSD.

2.4 Cooperative Relays

Source Destination

T

Figure 2.4: MIMO relay network

The MIMO relay network is illustrated in Fid._2.4, where theusce has\/,
transmit antennas, all the relays haVereceive antennas arid, transmit antennas,
and the destination has, receive antennas. In this network, the data signals from
the source to the destination travel via the relays. Assgrthiere areV,, relays
receiving the transmitted signal from the source, the wecksignalr, at thek-th

(k=1,2,...,N,)relay can be given as

Iy = HkX + nig, (216)
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whereH,;, = [h;;] € C¥~*M: denotes the MIMO channel between the source
and thek-th relay, and the elements &1, are i.i.d. complex Gaussiarh{ ~
CN(0,1)); nyy = [n11, 12, ..., )T andny; ~ CN(0,03) (i = 1,2,...,N,) is

an AWGN with mean zero and varianeg¢. The transmitted signal is denoted by
X = [, T9,..., 2. ]7, assuming i.i.d. elements i It is also assumed that each
transmitted symbol is chosen from the same constellatien;2; € Q, and the
average transmitted powerd$||x||?| = P,, whereP; is the source power art{ x)

is the expectation of.

A memoryless relay receives the source signal from the sogenerates and
transmits the processed signal to the destination, anelég functionG(r) uses the
current received signal only. The assumption is that the average relay poier
of the transmitted signa(r) should satisfy the power constrat|G(r)|*] = P,.
Therefore, ifV,, relays retransmit their processed signals, the receiggrikat the

destination may be written as

Nyq

y =Y GiG(rs) +mz, (2.17)
k=1

whereG,, = [g;;] € CY*Mr (kK = 1,2,..., N,4) denotes the MIMO channel be-
tween thek-th relay and the destination, and the elemeni&pfire also i.i.d. com-
plex Gaussiang; ~ CN(0,1)), andng = [na1, nag, . . . nan,|” (na; ~ CN(0,03)
andi =1,2,...,N,).

The performance of MIMO memoryless relay networks depemidisally on
the relay function. Relay strategies have thus been studigt] 36--44]. Several
relay functions of memoryless forwarding strategies folM¥l relay systems are

discussed next.

2.4.1 Amplify-and-Forward

Pure AF: Among the classical relay strategies, AF relaying is thetrhasic relay
strategy[45]. For each transmit symbol, the relay retratssenscaled version of
the received signal to the destination. Thus, a linear rielagtion is used. Further-

more, to satisfy the average power constraint, the AF ralagtion can be given
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as

P,
Tl mon s \/S[HHH?]PS TN (219)

whereq is the scaling factor, andis derived by[(2.16)°, and P, are the source

and the relay average power levels, respectively. Thensdhked version of the
received signal is sent pér (2]18).

Because it it easy to implement, the AF relaying is one of tlistrattractive
cooperative diversity schemes. While the absence of atitmtgorocess at the relay
facilitates the use of simple relay units, this simple pssteg enables full spatial
diversity at high SNRs |4, 36]. However, the main disadvgats the performance
loss due to the noise amplification at the relay.

LMMSE AF: Pure AF[(2.1B) can be viewed as a linear estimation schenhe wit
the scaling factoty being normalized to satisfy the relay power constraint.dn-c
trast, LMMSE AF begins with a scaling factor derived from ME$rinciples and
performs the required power normalization. Thus, an LMMSHEngator may be
given asl[3,46]

Kpmwrse = (HTH + N,o?T) ™ H'r. (2.19)

However the estimated signal must be scaled by a facter;sz under the relay
power constraint. Thus, the relay function for the LMMSE Adfaly may be given

as

gLMMSE(I') = arMMSEXLMMSE, (2-20)

S A
whereayvse = E(IxLmmsel?)

2.4.2 Decode-and-Forward

This relay method has attracted much attention recentlgiseeit outperforms AF
in the high-SNR region. It detects data from the incomingaigremodulates the
detected data and forwards them to the destination. Thieodahay use an ML
detection of data from the incoming signal. The detectedadigector may be given
as

X = arg min ||r — Hx||%. (2.21)

x€QMs

wherearg min, f(x) denotes the value afthat minimizesf(x).
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The SD [22, 47, 48] may be employed to perfofm (2.21) to redhealetection
running time. Althoughk can be directly transmitted, the relay power constraints

must be satisfied. Thus, the DF relay function may be given as

| P P, .
Gpr(r) = g(HiHZ)X:\/;SX. (2.22)

However, when the source-relay link suffers from deep fadihe decoding errors

at the relay propagate to the destination.

Besides AF and DF, EF [49] strategies have been proposednigiesantenna
cooperative networks. The EF relay generates an uncamsttdMMSE estimate of
the received signal and then transmits a scaled versiontotite destination. EF
MIMO relays will be developed in Chapter 6, the details wil rovided there.

2.5 Conclusions

The optimal MIMO detection method is ML detection. Full orandVIL detection
is possible with the SD algorithm and its variants. Two maitegories (depth-first
and breadth-first search) of the SD algorithm were discusstinils chapter. Coded
MIMO, iterative detection and decoding schemes, were alsoudsed. Finally,
the relay network model was given, followed by a review ofvantional relay

strategies.
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Chapter 3

SNR-Dependent Radius Control
Sphere Detector

This chapter introduces a new MIMO SD algorithm for uncodgstems. The
main new idea is to scale the search radius by using a heu8stR-dependent
factor. The use of this scaling offers near-ML performaneerdhe entire range
of SNRs, while keeping the running time roughly constant.isTdigorithm also
incorporates channel ordering to save running time. As asuareaof the variability
of the running time, its normalized variance is evaluatetlis Rlgorithm is also
extended for joint iterative detection and decoding in cbe#MO systems and for
MIMO-relay networks. Simulation results and theoretiaadlysis demonstrate the

benefits of the proposed algorithin.

3.1 Introduction

As mentioned in Section 2.2.2, while the SD algorithm sigaifitly reduces the
running time compared to that of naive ML detection, its riagrtime is quite high

in the low-SNR region and decreases significantly as the SidReases. These
drawbacks make the very-large-scale integration (VLSplementation of the con-
ventional SD algorithm infeasible. To address these chg#le, many variants of
SD have been developed [14]22,/30/32, 48,50-58]. For exarfid] uses condi-

tional probabilities to select more reliable candidates,tbe running time is still

1A version of this chapter has been published in Trans. Emgrgiel. Tech. (2013),
doi:10.1002/ett.2620.
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high for near-ML performance and for high-order constallad. Statistical prun-
ing approaches [48,53,54] sacrifice performance to obtaining time reduction.
K-best [14], also known as the M-algorithin [59] or as beanrdea the Artifi-
cial Intelligence literature [17], and the fixed-complgxiEixed) [30/60] SD have
also been proposed. K-best traverses the search spacedaditifirst manner and
retains only the several best nodes in each layer. Despifiexéd running time,
K-best requires higher running time than that of the naivef@Dexact ML per-
formance([14]. Although Fixed SD ensures a fixed running tiragardless of the
noise level and channel conditions, it has higher runnimg tihan that of SE in the
high SNR regime [30]. Many adaptive methods have also beegl@ged including
search radius adjustments [61+64], channel-adaptive MiMt@ction|[[65] and an
early-pruned K-best algorithm [66].

SD is also required to provide soft information for coded MdMystems. Soft
information is needed for jointly iterative detection aretdding of coded systems
[10]. This information is provided by using a list version 8D (LSD). In this
scheme, the ECC can be any code that can be decoded by usingpst$é and
outputs, such as convolutional codes or turbo codes. Mayorithms are capable
of supporting soft outputs in LSD. For example, K-best hamnbextended for use
in an iterative MIMO receiver [14], and a list Fixed SD has i@eoposed [35] as
a list extension of the Fixed SD algorithm [30] for coded MINgstems.

SD is also required for MIMO-relay networks. As mentionediectior 1.1.3,
the benefits of relays [4] are (1) increased diversity, (2yéased code rates, (3)
reduction of transmit power and (4) extension of coveraga.afrhe relay detection
problem has thus been considered! [67] for DF relaying and é&ying. Low-
complexity detection by applying zero-forcing at the retagminals [68] fails to
achieve ML performance. To achieve near-ML performancedai®n at DF relays
is computationally intensive; thus, cooperative partieledtion (CPD) has been
proposed[43]. The relay in this case detects a subset ofahenit symbols, and
only these are relayed to the destination. Although the ingntime is low, this
method performs poorly when the number of detected symbaisiall [43].

In this chapter, a new SNR-dependent radius control SD isqa®d|[69], which
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is also applied for soft MIMO detection and MIMO-relay ddten. The main

contributions are as follows:

1. A new SRC-SD is proposed with a low and roughly fixed leveturfning
time over the whole SNR region and near-ML performance. Biisscales
the search radius by using a heuristic SNR-dependent fadiarh approaches
one in the high-SNR region, guaranteeing that SRC-SD’sopmidnce con-
verges to that of the conventional SD; however, in the lowR3Ngion, this
factor is less than unity, resulting in more aggressive ipgiof nodes and

thereby significantly reducing the running time.

2. The SRC-SD is modified to generate soft information forecbMIMO sys-
tems. This modified version is called the list SRC-SD (LSR®Q);Swhich
generates a list of candidates and further reduces thengitime of iterative

detection at a negligible performance loss.

3. To leverage the benefits of the new SRC-SD, its use in MIMOaA#& DF

relays is developed by deriving the ML detection rules.

4. By considering the average number of visited nodes as aureaf running
time, an upper bound to the running time of the proposed SRG 8erived.
This theoretical result along with the simulation resutisforms the running

time savings of SRC-SD.

5. A measure) of the variability of the running time for the range of SNR &-d
fined. Ifn is zero, then the running time is fixed, creating the idealagion.
Then values of the proposed SRC-SD and the conventional SDs emeetty

amined, and the very low variability of the proposed alduoritis established.

This chapter is organized as follows:Sectior 3.2 briefly outlines the conven-
tional SD and derives the new SRC-SD. Sectioh 3.3 derivesdtbdMO detection
and the ML rules for MIMO-relay networks. Sectibn 3.4 praesda brief running
time analysis. Simulation results for both performance aretage number of vis-
ited nodes are presented in Secfiod 3.5, followed by thelasions in Sectioh 316.
The proof of [3.1F) is presented in Appendik A.
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3.2 SNR-Dependent Detection

This section proposes the new SRC-SD, discusses its rutiniegand quantifies
the variability in running time.

For the original FP SD, the initial radius can be selectecetham the noise
level [21]. The initial radius for SE is typically set ds= oo [50]. More results for
SDs are presented in [14,22]30,32/48/51-58].

3.2.1 SNR-Dependent Scaling Function

As discussed in Sectidn 3.1, although the traditional FPSB®&Ds save running
time compared to the naive ML detector, their running timeaigable and high in
the low-SNR region. These two problems are mitigated by thpgsed SRC-SD
at a negligible performance loss.

The traditional SDs achieve running time savings by prumiodes, but the
pruning is limited to the nodes that can be identified earlthmsearch to be not
on the ML path. Because such nodes are few, their prunindtseawonly modest
running time reduction, especially in the low-SNR regiomu$, more nodes need
to be pruned in order to achieve more substantial running savings. To this end,
the main idea is to scale the search radius of the hypersibiasesi on the SNR,
which is defined as a scaling functigip) based on the SNR. The requirements

for the scaling factor are the following:
1. ¢(p) has to be a positive value for all the SNR$p) > 0.

2. ¢(p) should be smaller thahin order to obtain more running time savings

than the conventional SD provides; thatd$p) < 1.

3. In order to prune more nodes in the low-SNR region and tp kiee optimal
performance in the high-SNR regiofi(p) should be an increasing function

of p.

4. When the SNR is high enough, the scaling factor shouldcagmpr ; that is,
lim,_,« ¢(p) = 1, which guarantees an optimal performance in the high-SNR

region.
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The many different possible scaling functions inclugéexp(—p) + 1) and
p/(p+ Cy). Based on numerical experiments, the specific scaling fomdB.1)
is proposed, which is a conveniently simple function of tidRSand efficiently

achieves an acceptable performance and running time trfade-

3.2.2 SNR-Dependent Radius Control (SRC) Sphere Detector

This detector uses the scaling function to get the new radéus
2 = o(p) x 2= —L— x &2 3.1
src—sp = (p) 1 Co ) (3.1)
wheredsrc_sp IS the radius in the new SRC-SD,is the SNR of the MIMO
system,d is the radius used in the original FP or the SE, &nids a predefined
constant. This scaling function satisfies the conditionstinaed above. Due to

the limit

lim (3.2)

p—oop+ Co
the performance of the proposed algorithm reverts to thétebriginal SD when
the SNR is sufficiently high. Here, SNR is assumed to be kndwimeareceiver and
it can be derived by parameter estimation algorithm [70].

When this idea is applied to the original FP, denoted by SRt initial radius

P 2
d2 = X d
SRC—-FP CO

= p—i—pC'o x ano?
anm
_ o _amm 3.3
10+ Co) 59

wherem = n = 2N, the noise variance in the real MIMO systerh = "—22 and
o? is the additive noise variance. The last step forl(3.3) itam the fact that

the SNR in a complex MIMO system is given py— 22U

, Where the average
energy of each symbdi(|s|?) = 1 is assumed.

Because SE has lower running time compared to FP, the foebosen as the
building block of SRC-SD (Algorithrl1). Thus, SRC-SD is dexdl by augmenting
the SE SD with the SNR-dependent radius. Once one leaf node fthe searching

radius is updated by (3.1).
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Algorithm 1: The SRC-SD Algorithm

Input :p, Co,z, H
Output: s

1 Iteratively order then columns of the channel matrid. The steps of the
ordering are:for i + mto 1 do

2 | CalculateH! = (H”H,)""H, whereH,; is the channel matrix with

the columns selected in previous iterations zeroed;

3 The signal to be detected, is obtained by

p= argmin |(H);|? (3.4)

Je{l,...m}—{pit1}

where(H!); denotes thg-th row of H!, andp; , is the columns

selected in previous iterations;

4 end

5 Order the channdll by the index vectop, and get the matriR by QR
factorization;

6 Initialize the radiusisrc_sp = oo and take the root, (layerk = m) as

the start node;

for depthk < mto 1 do

8 Expand the Current Node, generating all its succesgarsthe k-th

layer satisfying

2
2 m
(Z’f = D jmk TkJSJ‘) < d%po_sp— 2 1 (Zi — Zri,jsj> : Prune
j=i

~

i=k+
other successors;
9 Sort the components ifi by the increasing order of all the branch

2
weightsc; in this layer, where; = <zz — TS — Yy ri7js]—> and

Jj=i+1
Si € T’

10 for every element; do

11 if s; is not a leaf nodethen sets; as the Current Nodé, = k — 1
and go back to line 3;

12 elseif s; is a leaf nodeX = 1), and if its cost is lower than
d%sc_sp, keep it as the best solution and updéte._ ., by
(3.3).

13 end

14 end
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In order to further improve the proposed SRC-SD, the ordeointhe channel
matrix is included in the proposed algorithm. In lines 1kg algorithm iteratively
reorders then columns of the channel matrix. The main idea of reorderirthas
the signals suffering the smallest noise amplification &hbe selected in every
iteration, as discussed in [30, 71].

As Algorithm[1 reveals, the proposed SRC-SD is a variant efdbnventional
SE [50] and achieves a critical improvement in running timtalevmaintaining

near-ML performance (Section 3.5).

3.2.3 Running Time Analysis for SRC-SD

An exact running time analysis of the SRC-SD algorithm appé@#ractable be-
cause of the updating of the radius and the zig-zag seardrionggd which is re-
tained from SE[[50]. Fortunately, the running time of SE ssléhan that of the FP
because of the radius update during searching process, fheusinning time of
the SRC-FP SD can be evaluated and will be an upper bound aarheng time
of SRC-SD.

A proxy of the running time of an SD may be taken as the averageber of
nodes visited. This average depends on the number of arstetiainitial radius
and the noise variance [21]. By considering the number otradkited at all the

layers, the expected running time of SD is evaluated by
C(m,o? d*) = Z Oks (3.5)

wherey,, is the number of nodes visited at theh layer within the hypersphere of
radiusd.

Furthermore, here only the theoretical result {6rQAM is shown, which is
equivalent to two real-PAM constellations. Other constellations may be analyzed
similarly, but are omitted for the sake of brevity. For catency with the results
of [21], the average energy of the transmitted signals issabtol. Therefore, by
using [21, Theorem 2] and the SNR-dependent radiys. ., (3:3), the expected
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number of visited nodes of SRC-FP is given as

Csre—rr(m, p, Co) ZZ Z()ngl

= (3.6)
anp n—m-+k
v 24 ' 9 )
(p+00)(1+ m(L2— 1))
whereg,,(q) is the coefficient of:? in the polynomial1 + = + 2* + 2°)/(1 + 22 +
_ m 2_
z)H!, ando? = 2 x LZL (for 4-PAM, L = 4).

Variability of C: SinceC'is a random variable, its variability for different SNRs

is of interest. Fixed’ for all SNRs is beneficial for hardware implementation. Thus
the variability index is thus proposed as the ratio between the variance amd

square mean af":
E(C - C)?
77 = C_Q Y
whereC' denotes the average number of nodes visited by@Bnd E(C) denote

(3.7)

the mean and the expectation@ffor all the SNRs, respectively.

Therefore, the smaller the index, the less ¢hearies. For example, from the
above theoretical analysis, the FP and SRCP 5 as an example) SDs achieve
n = 1.78 andn = 0.69, respectively. The reduced valyesuggests that SRC-FP
achieves a more constant level of running time than theroaldgtP.

Some remarks on the proposed SRC-SD are as follows:

1. It has lower running time than the basic SD, especialijhalow-SNR re-
gion, while maintaining a near-ML performance in the highFSregion. The
channel ordering method in line 1-4 of Algorithmh 1 is incldde further re-

duce the running time.

2. It effectively reduces the variability index which is particularly helpful for

hardware implementation.

3. This idea of a SNR-dependent radius can also be applieth&r types of
tree-search algorithms for MIMO detection, such as many 8ibauts [52]

[54] or different stopping criteria [72].
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4. The effects of the constadt, in (3.1) have not been discussed in detail.
This constant should be adjusted for different systems. dequstingCy,
the conventional SE can be used as a guide. When the SNR ésdaayigh,
say20 dB, it has a very low running time, and further running time retthns
do not appear possible. Thus, a smatlgrmay be chosen so that SRC-SD

performs close to SE in the high SNR regime.

3.3 Detection Strategies

This section introduces the coded MIMO detection and MIMi&y detection strate-
gies. For both AF and DF relays, the ML rule for combining theeaived signals

from the relays and the source is derived.

3.3.1 Soft MIMO Detection

As discussed in Sectidn 2.3, the most important step in ctiBtD systems is to
compute the output information for the MIMO detector and E@coder. Thus,
thea posterioriinformation for each bit in the transmitted frames can beveer
In this section, for simplicity, a block of bitg with Nz = Nlog,(|Q]) is

considered, wheré/p is the number of bits in one block. The optimal detector
obtains the exact APP for each bit. TheposterioriLLRs of the bitsz, (kK =
1,2,..., Np) conditioned on the received signal vecyofl0] is

Prlz, = +1[y]
" Prfa, = —1ly)
= Lai(zy,) + Lp1(z,]y)- (3.8)

Lpi(z,ly) =1

Here, the Bayes’ theorem and the independence of the pdse to the interleaver
are used to obtain the priori LLRs L4 (z;) and theextrinsicLLRS Lp:(z,]y).

From [10], theextrinsicinformation can be denoted by

1 1
L ~— I L — ——|ly — Hs||? » —
palady) ~5 o {xliTn — —sly - Bl o
1 1 .
izg&fl {X%me] — 02—/2||X - H§||2} :
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(3.9) is obtained by applying the definition of the extrinsiformation [10] and
the Max-log approximatior [73]. Heré&; ., andX; _; denote the sets of the bit
vectorsx = (z,,2,,...,zy,)" havingz, = +1 andz;, = —1, respectively.xy,
represents the subvectorothat omits thes-th bitsz,; L 4, denotes the subvector
of Luy = (La1(zy), Lai(xy), ..., Lai(zy,))" by omitting theL 4, (z;,).

In spite of these simplifications, the computinglof; (z, |y) (3.9) has an expo-
nential complexityO(|Q|") and is prohibitively complex for systems with a large
number of antennas and with high-order modulations. Thesef list version of
SRC-SD is developed.

LSRC-SD generates a ligt of N, candidates by searching the tree by using
a rule. This list includes the ML estimate, but the size of libesatisfies] <
N; < 2NN whereN, = log, (|Q|) is the number of bits per modulated symbol.
Therefore, in order to compute thg: (x,|y), the search space in (8.9) is limited

in the list £, and the extrinsic information can be rewritten as

1 1
L ~— T L o —H 20
E1(2]y) 5 Keg}%};ﬂ {X[k} Al[k] 02/2||X s|| } 510
1 . ] 2 .
2 xeliky {KMLW ~ o2y — Hsl } :

wherel N X, 11 andL N X, _; represent the subset of vectdtdavingz, = +1
andz, = —1, respectively.

LSRC-SD, a soft extension of SRC-SD, generates a set of daedi that can
be exploited to calculate the soft extrinsic informatibBjFor iterative detection
and decoding. The running time of generating the candidsit€ lcan be reduced
by adopting several properties of the classical LSD [1Qjstfthe radius is updated
whenever a better candidate than the worst candidate inutiient list is found.
Second, the candidate list is not generated for every iteratOnce computed, it
is stored in the memory and used by every iteration. Theeefor every iteration,
the only information that needs to be updated isalgiori information from the
channel decoder.

Similar to thea posterioriinformation of the MIMO detector, that of the chan-
nel decoder can also be decomposed intoalgiori information andextrinsic

information for the iterative detection and decoding. Hfiere, the details of the
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channel decoder are not shown here.

3.3.2 MIMO-Relay Detection

A basic system model for a multi-branch dual-hop relay netws considered as
shown in Fig[3.1L, which portrays the sour&g, (V.. relays R ) and the destination
(D), whereN,. is the number of relays in the network. The number of antennas
at the source, the relays and the destination terminal aretelé asVN,, N, and

Ny, respectively. All nodes are half-duplex (data can be tratted back and forth
between two nodes, but not simultaneously) and use orttadgdrannels, and a
direct link also exists from the source to the destinatioelalR protocols operate

in two time slots. In the first time slot, the source broadcasmessage to all the
relays and the destination. In the second time slot, thgsdlansmit the received

and/or processed signals to the destination.

Figure 3.1: System model for multi-branch dual-hop MIMQasehetwork.

The channels between the source andiitierelay, thei-th relay and the desti-
nation, the source and the destination are denotdd oy CV-*Vs, G, € CNexNr
(i € {1,2,...N,.}) andH,; € CYo*N: whereC is the set of complex numbers.
For the first time slot, the received signal vector atitierelay ¢ = 1,2,..., N,.)

and the destination are given by

r, = Hix+n1i, (311)

Ysda = Hsdx—i—nsd, (312)

wherex andn;;,n,; ~ CN(0,1) are the transmitted signal at the source, the

AWGN at thei-threlay ¢ = 1,2, ..., V,.) and the destination, respectively.
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As before, the channel matrix entries are assumed to be éndiept elements.

i (1)
To be exact, the entries afB\ (0, SN]$§7')), CN(0, SN]?T“), CN (0, 5t=2) for H,

G; andH,,, respectively. The SNRs are defined to be consistent withtpiBe

puP  (-pP pupP
(@$)e? (dlye 7 (dsa)®”

of the transmit power between the source and the relays gingaent power and

respectively, wherg € (0, 1] denotes the proportion factor

distance to the source at all the relays are assurai@d;dfﬁ and d,,; denote the
distance between the source andithie relay, thei-th relay and the destination, the
source and the destination, respectivéhis the total power for the source and the
relays, andv € [2, 6] is the path loss exponent.

Detect-and-Forward Relaying: Perfect channel state information (CSI) is as-
sumed available at all the nodes, and it can be derived franstnitted pilot sym-
bols [56]. Similar to the system model demonstrated in [413&, errors resulting
from the detection at the relays have not been considerexder to compare the
proposed method with the method in [43].

The relays process and forward the received signall(3.&f) the source to the
destination. Thus, at the end of the second time slot, theiwved signal vector at

the destination from thethrelay ¢ = 1,2, ..., N,.) is given as

wherex!” is the signal detected at thieh relay by using SD, andy; ~ CN(0,1)
is an AWGN sample.

The detection problem at each relay is equivalent to thedstaMIMO detec-
tion problem [(2.B). For the first step at tith relay ¢ = 1,2,..., N,.), the ML
detection rule is thus given by

x" = arg min||r; — H;x||?, (3.14)

T
x€QNs

where Q”: is the set of constellation symbols in thé dimensional constellation
Q. The running time is significantly reduced by using SD. Usimg QR factoriza-
tion of H; (H; = Q;R;) andz; = Qr;, (3.13) is equivalent to

x" = arg min||z; — Ryx||?. (3.15)

T
xed

34



® should be the set of all points within the hypersphere widlusd, which satisfies
|z; — Rix;||* < d?.

In the second step, the relays transmit to the destinatiencel the destination
receives a total ofV,. + 1 signals, including the direct source signal. All these

signals are combined via the ML rule as
NTE
% = arg min (Z ly: — Gix||* + ||ya — Hsdx||2> : (3.16)
xeQNs i=1
By expanding each of the norms and regrouping some termsgthiealent channel

matrix H' and the equivalent received signalare derived as (see Appendix A)

Nre 1/2
H = (Z GG, + HiéHsd) : (3.17a)
i=1
Nre
y = M) (Z Gy + Hiﬁm) . (3.17b)
=1

The ML rule is then derived by (3.14).
The difference is that SD at the destination is performedbynewly combined
matrix of the channel matrix and received signal vector ff@m7a) and(3.17b).
Amplify-and-Forward Relaying: The relays only amplify the received signals
(3.11) from the source during the first time slot and retrahtnthe destination dur-
ing the second time slot. Thehrelay ¢ = 1,2,..., N,.) amplifieSyg? by a fixed
gain parametedy; [36], which is chosen to satisfy the power constraint. Tieee

the received signal at the destination from tkth relay,i = 1,2, ..., N,., iS

yi = Gy(air;) +ny
= OéiG'iHiX + n/, (318)

where the noise term’ = «,;G;ny; + no;.
The relays simply retransmit a scaled version of the redesignal. Similar

to the DF relaying case (AppendiX A), the equivalent chammatrix and received
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signal at the destination in AF relaying are given by

Nre 2
H, = <Z ((XZGZHZ)H(OZZGZHZ) —+ Hngsd>

i=1

Nre
y =H)"! (Z(aiGiHi)Hyi + Hﬁysd> :

i=1

To sum up, SD is appropriate for the receiver in both DF relg@nd AF relay-
ing networks to reduce the running time with near-ML perfanoe.

Therefore, SRC-SD works for both DF and AF systems. Thus/ ihaing
time at both the relays and the destination can be reduceslio®sly, the Fixed
SD algorithm[[30] was applied to obtain the fixed running timéhe MIMO-relay
networks. In the results section, both the Fixed SD and SR@I§orithms will be

compared.

3.4 Running Time Analysis

The average running time for coded MIMO and MIMO-relay dé&tetis analysed
here.

Coded MIMO System: For the proposed LSRC-SD, the running time of gen-
erating the candidate list is evaluated to allow for a congpar of the proposed
LSRC-SD and the original LSD [10].

MIMO-Relay Networks: SD can perform the signal detection needed in both
DF and AF relays networks. For AF relays, because relay kidgtaction is not
required, the running time is the same as that of a poinwiatfMIMO link (B.5).
However, the DF relays require signal detection at both ¢feeys and the destina-

tion, so the average number of nodes visited by SD algoriiergsen by

N're
Can = Z Ci + Cy, (3.20)
=1
whereC; is the number of visited node evaluated atthlerelay ¢ = 1,2, ..., N,.),

C, is the number of visited nodes of detection at the destinatindC; andC; are

given by [3.5).
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3.5 Results and Discussions

MIMO Detection: This section evaluates the performance and running timleeof t
proposed SRC-SD (Algorithid 1). An uncodéd< 4 MIMO 16-QAM system is
considered over a flat Rayleigh fading channel. In order tdywéhe advantages
of SRC-SD, both the performance as measured by the errofeate the symbol
error rate (SER)) and the running time as measured by thage@umber of nodes
visited by the new SRC-SD are compared with those of the FE-BR K-best[14]
and Fixed[[30] SDs. The first two require the choice of an ahitadius, and the
method of[21] is used to set the probability of the latticenpmside the sphere at
1 —¢e =0.9999. The K-best algorithm with'’ = 4 [14], and the Fixed SD with
p = 1 (p is the number of layers with full enumeration apd> N — 1) [30],
for achieving the same diversity as that of ML detection anapared here() is

chosen to bé( for the proposed SRC-SD where necessary.

o Theoretical FP
{ —— Simulation FP
s [|—¢—Theoretical SRC-FPR
10" | - Simulation SRC-FP
| —=-SE

o SE (SNR=5dB)

| ——SRC-SD

¢ SRC-SD (SNR=5dE

[EY
=8

[
om

Average Number of Nodes visited
|_\
O(J'1

5 6
Number of Antennas (N)

Figure 3.2: Running time (16-QAM) as a function of the numifeantennas, where
SNR = 0dB except where stated otherwise.

Running time comparison: Because of its importance for implementation, run-
ning time is compared for the FP, SRC-FP, SE and SRC-SD #hgasifor different
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numbers of antennas (Fig._B.2). The two main observatiatstdn be made about

this figure are as follows:

1. The simulation and theoretical results of both FP and ER&gree, confirm-
ing the theoretical analysis df (3.6). Clearly, SRC-FP ewbs lower running
time than the original FP. Furthermore, the running time egveen these
two algorithms increases with the number of antennas. Fameie, when the
number of antennas increases fréno 5, the running time gap increases by
a factor of200. This result shows that augmenting the traditional FP S wit

the SNR-dependent scalirig (3.1) achieves substantialrgtime gains.

2. The running time of the proposed SRC-SD is also shown Hemchieves
the lowest running time for all the antenna numbers. For gtenfor an
8 x 8 MIMO system at an SNR df dB, the SRC-SD, SE and FP SDs search
on average abo@t4 x 102, 10° and10?, respectively. Thus, over six orders
of magnitude of running time savings are achieved, confignire high ef-
ficiency in the low-SNR region of SRC-SD and affirming its abitity for
large MIMO systems. Furthermore, the running time savirgygedd on the

operating SNR and they diminish for high SNRs.

How running time varies as a function of the SNR is an impdrntansideration
(Fig. [3.3). In Fig.[3.B, the SRC-SD with/without channel enidg are compared
with the FP, SE, K-best and Fixed SDs. The SRC-SD with chaonalelring obtains
a running time saving compared to that obtained without nhhurderin. Fig.
[3.3 reveals that the proposed SRC-SD has the following adges:

1. SRC-SD significantly reduces the running time comparéddd@onventional
SE and FP SDs. For example, for an SNR@fIB, SRC-SD saves about an
order of magnitude running time compared to FP, and thisiganicreases to
4 orders of magnitude @dB. In contrast to SE, which visits x 102 nodes,
SRC-SD visits onlyl6 nodes ab dB. This advantage may, however, vanish

if the SNR increases, as pér (3.2).

2In the following figures, SRC-SD denotes the algorithm witlarnel ordering.
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Figure 3.3: Running time of different SDs forlax 4 16-QAM MIMO system.
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Figure 3.4: Error performance fordax 4 16-QAM MIMO system.
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2. More importantly, SRC-SD also has even lower running tthren the K-
best [14] and Fixed [30] SDs.

3. Notice how flat the running time curve of SRC-SD is; the afility index
n of 0.14 for SRC-SD verifies the roughly fixed running time accordiog t
(3.7). SRC-SD thus achieves a roughly fixed and reduced mgrtithe.

Because of the trade-off between running time and perfooatme performance
of SRC-SD is examined next.

SER performance: Pruning the nodes by using SNR-dependent scaling of the
hypersphere radius in the proposed SRC-SD results in a sotamletection per-
formance. The impact of this suboptimality is quantified ig.8.4. Note that the
SER curves of SRC-SD (with/without ordering), FP and SE #&reost identical.
The FP, Fixed and SE SDs are full ML detectors. Clearly, SRCa&hieves a near-
ML performance, and also outperforms K-best, especialthénhigh-SNR region.
For instance at an SER af)—2, SRC-SD gaing dB over K-best. Consequently,
based on performance and running time, the new SRC-SD doitper the Fixed
and K-best SDs.

Detection for Coded MIMO system: The advantages of SRC-SD in a coded
4 x 4 MIMO system are assessed next. The bit error rate (BER) pedoce and
the running time are investigated. The naive LSD is compuaiigid LSRC-SD for
several values of the parametgs. The systematic recursive convolutional code
with rate R = 1/2 is exploited to encode the transmitted bits sequdnedth a
frame lengthl/, = 8192, where the feed-forward and feedback-generating polyno-
mials areGG (D) = 1 + D? andGy(D) = 1 + D + D? with memory lengtte [10].

A random interleaver is exploited here. The SNR is used abdhigontal axis as
defined byE, /Ny.

In order to choose the best, the performance and running time comparison of
LSRC-SD for different values af'y is shown. An increased|, leads to more node
pruning in the searching process, which achieves loweringrtime. However, the
BER performance is degraded by such pruning. Thus, a pr@ee YorC, may be

found to attain a suitable trade-off between performanckranning time. From
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Table[3.1, by using iterations, the performance gets closer to that of the N8
when(Cj decreases. To maintain the performance, a smaller valugdshe chosen
for C,.

Table 3.1: Bit error rate comparison for differefif for a4 x 4 16-QAM coded
MIMO system withM, = 8192 transmitted bits and a maximum of 4 iterations.

SNR LSD LSRC-SD| LSRC-SD| LSRC-SD| LSRC-SD| LSRC-SD
(Co=1) | (Co=2) | (Co=3) | (Co=5) | (Cy =10)
8dB | 0.1201 0.1180 0.1398 0.1317 0.1356| 0.1659
8.5dB | 0.0639 0.0635 0.0632 0.0708 0.0799| 0.1005
9dB | 0.0147 0.0146 0.0194 0.0279 0.0284| 0.043
9.5dB | 0.0044 0.0045 0.006 0.0079 0.0093| 0.0176
10dB | 0.0019 0.0020 0.0029 0.0037 0.0048| 0.0081

Table 3.2: Comparison of the average number of visited ntmtedifferent C, for
a4 x 4 16-QAM coded MIMO system withd/, = 8192 transmitted bits.

SNR LSD LSRC-SD| LSRC-SD| LSRC-SD| LSRC-SD | LSRC-SD
(Co=1) | (Co=2) | (Ch=3) | (Co=5) | (Cy=10)
8dB | 4280.2 2561.6 2111.8 1860.5 1571.9| 1199.9
8.5dB | 4243.4 2624.9 2192.4 1914.4 1633.4| 1257.5
9dB | 4241.3 2675.8 2240.8 1982.0 1688.6| 1314.1
05dD | 4196.4|  2736.7] 2302.7| 2043.9| 1737.8| 13816
10dB | 4190.7| 2767.1] 2374.7| 2121.6] 1804.6] 14357

The running time for LSRC-SD with differertt; is given in Tablé 32. A€,
increases, the running time decreases more. For examplayvdrage number of
nodes visited is about.7 x 103 for C, = 5, around2 x 10% with C;, = 3, and
approximately2.2 x 10® with C, = 2. Therefore, to maintain the performance
and reduce the running timé; = 2 should be chosen in this case. Similarly, an
appropriate’, for other MIMO configurations can be found after severaldria

Detection for MIMO-Relay Networks: To confirm the benefits of SRC-SD for
MIMO-relay networks, its performance and running time avaleated for both
DF and AF relays. The number of relays is one or two. The pregp@&RC-SD
is compared with Fixed SD, the original SE, and CPD [43]. Iratollows, it is
assumed that,, = d'% + d") with f;—; = 0.2, i € {1,2,...N,.}, the path loss
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exponenty = 3, andyp = 0.5.
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Figure 3.5: Error performance fordax 4 16-QAM MIMO-relay network.
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Fig. [3.5 shows the SER performance of Fixed, SRC-SD and SE Bibsct

source-to-destination transmissions also occur. Thebotal axis is the transmit
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power. p = 1 and(C, = 10 are set for Fixed SD_[30] and the new SRC-SD,
respectively. For CPD, the expansion factor is chosen 8 [48]. Note that for
both the one-relay case and the two-relay case with DF, tli& SR, SE and Fixed
SDs perform identically. This finding confirms the near-MLfpemance of SRC-
SD. In contrast, CPD incurs performance penalties. For el@for the one-relay
case, at an SER dfo—3, CPD loses> dB relative to SRC-SD. Clearly, since the
SER performance improves when the number of relays incsedlse benefit of
using relays to increase the reliability is clear.

The running time comparison for the same set-up shown inFEis depicted
in Fig.[3.6. For the single-relay case, SRC-SD reduces theimg time compared
to the CPD, Fixed and SE SDs, and approaches the running fi®E when the
power increases (to higher thahdB). For example, at an SNR 6fdB, SRC-SD
visits only 19 nodes, while the CPD, Fixed SD and SE algorithms Misit, 128
and 130 nodes, respectively. SRC-SD also achieves lower running than that
of the direct link with SE and Fixed SD for the lower power @gi while SRC-
SD has slightly higher running time than that of the direahmission when the
power is larger tha1 dB. This result is caused by the path loss due to the long
distance. For the two-relay network, SRC-SD reduces theimgrtiime compared to
that of SE. In order to check the variability of the runningé here, notice that for
both one-relay and two-relay networks, SRC-SD obtains ghiyuflat running time
curve as a function of the SNR. For these two cases, it candvershy using[(3.I7)
that the variability indexes of SRC-SD & x 10~° and5.7 x 1073, respectively.
The results demonstrate the effectiveness of SRC-SD fdi-ionalnch MIMO-relay
networks, with the advantage of roughly fixed, low runnimgei

Both the DF and AF cases are considered in Figs. 3.7 ahd 3}83Hi compares
the performances of the SRC-SD, SE and Fixed algorithms @érelay AF and
DF systems. In AF relaying, both the SRC-SD and Fixed SDsopariclose to
that of SE, which provides the optimal detection. In DF relgy SE achieves a
performance gain of.5 dB higher than that in AF.

Fig.[3.8 shows a running time comparison for the same setHup AF SRC-SD

system has lower running time than the SE and Fixed SDs, $uist BF relaying
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case (Fig[ 3)6). Especially in the low-power region, SRCs&ihificantly reduces
the running time. For example @B, it is only 6% of that of SE. Thus, systems
that operate in the low-SNR region may particularly beneditf the use of SRC-
SD. As expected, however, both the SRC-SD and SE algoritlanesthe same level
of running time in the high-SNR region-(20 dB). It is interesting to compare the
DF SE and AF SRC-SD systems. The running time saving varas %3.6%
to 52%. The variability indexn is found to bel.9 x 10~* for SRC-SD, which
demonstrates roughly fixed running time. These resultsagmifirm that SRC-SD

reduces the running time and its variability.

3.6 Conclusions

This chapter proposed an SNR-dependent radius control 8braduced running
time, reduced variability of running time, and near-ML merhance. By tighten-
ing the search radius by a heuristic SNR-dependent fatisrSD outperforms the
existing K-best and Fixed SDs in terms of SER but also savesimg time. For
coded MIMO systems, a soft extension called LSRC-SD wasqseq. It further
improves the running time of detection and decoding at aigieg performance
loss. Signal detection for AF and DF MIMO-relay networks va#so investigated
by deriving the ML detection rules. The simulation resulbmfirmed the bene-
fits of the proposed SRC-SD, which provided a near-ML pertoroe and roughly

constant running time.
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Chapter 4

Statistical Pruning-Based Detector

In this chapter, node-pruning strategies based on pratyabistributions are de-

veloped. Uniform pruning, geometric pruning, thresholdmpng, hybrid pruning

and depth-dependent pruning are developed in detail. Thieatie diversity or-

der of uniform pruning and the threshold level for threshotdning are derived.
Simulation results comparing the proposed rules with pap8D algorithms such
as K-best SD, fixed complexity SD and probabilistic treeromg sphere detector
(PTP-SD) are providetdl.

4.1 Introduction

As discussed in Sectidn 2.2.2, the conventional SD prunbstba nodes whose
partial costs exceed the cost of the current best solutioice$his process does not
discard the optimal solution, the pruned nodes are calledassential nodes. That
is, a nodei is non-essential if its accumulated cost, sayexceeds the cost of the
current best solution denoted by Such pruning of these nodes not only eliminates
large areas of the search tree, thereby reducing runnireg bat also preserves the
optimality of the SD. On the other hand,df < c¢,, thei-th node is an essential
node, whose pruning can potentially discard the ML solutiblowever, pruning

of essential nodes creates algorithms that are not optiotdtdve lower running
time, leading to a class of detectors with different runniinge and performance

trade-offs.
A version of this chapter has been published in IEEE Trank. Vechnol., 62: 1586-1596 (2013).
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Thus, unless otherwise stated, the tgnmning throughout this chapter refers
to the pruning oessentialnodes.

Several SD variants with such pruning have been developk®(1 32, 53, 54,
74-+82]. In [74], an increasing radii algorithm (IRA) choesegradually increased
radius from the top layer to the bottom layer. Thus, excespiuning may be
needed to restart the IRA several times, resulting in amfthti running time. In ad-
dition, the IRA cannot attain different diversity orc@emd achieve a flexible per-
formance and running time trade-off. To extend the IRA] [BR]poses a PTP-SD,
which prunes more nodes by adding a probabilistic noisetcaing on top of the
sphere constraint. Then, [54] extends the PTP-SD and pswigither improve-
ment of the running time with minimal extra cost and a negligiperformance
penalty. Additional pruning methods are proposed in([7}h, R&éferences |77, 79]
combine the PTP-SD and a Fixed SD[[30] to preserve the adyastaf branch
pruning by using an adaptively updated PTP-SD thresholghriline more nodes, a
new probabilistic sorting rule is developed by exploitihg properties of the path
metric to yield more effective sorting [80]. The K-best SBfJlwhich prunes all
but the K best nodes in each layer, traverses the search space indihbfiest
manner.

Many SD algorithms have been proposed([14,30,32,53,5Z.7/49-82] to im-
plement different node-pruning strategies, with diffenearformance and running
time trade-offs. A general framework for such pruning isiddse. For this pur-
pose, a statistical pruning sphere detector (SPSD) is peapand developed [83].

The main contributions in this chapter are summarized d@visl

e The key idea is that each essential node, say madeassigned a probability
f (@) that indicates the likelihood of being pruned. For examglg) = 0
meansi-th node is retained, anfli) = 1 means-th node is eliminated. For
other cases, given the probability distributifi), this algorithm randomly
generates a pruning decision for nadeased onf (). f(i) could be chosen
based on experimental results or common statistical bigtans. For exam-

ple, f(i) may be set small for the nodes in the top layers of the seazehgo

2If the error probability decays proportionally &NR ~¢, thend is called the diversity order
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that more such nodes are retained, and the ML solution is fkalg to be
found. Alsof (i) may be varied to achieve different performance and running
time trade-offs. Performance and running time are measbyeSER and
the number of nodes visited. The SER in the high-SNR regiphas/ever,
closely related to the diversity order. Thus, a flexible ¢radf between the
diversity order and running time reduction is achievablanylexisting SDs
(such as those in [14, 27,74]) can be cast as special cashs pfaposed

approach.

Based on several classical probability distributions fthlewing node prun-
ing rules are proposed: (1) uniform pruning: all the childles of a node
except the first one are pruned independently with equalaiitity; (2) ge-
ometric pruning: the child nodes are pruned dependentlyavtie pruning
probability agrees with the geometric distribution; (3)etbhold pruning: the
child nodes are pruned if their cost exceeds a thresholdhy#jid prun-
ing: this combines the threshold rule with the uniform ormetric rule; and
(5) depth-dependent pruning: the pruning probability aelseon the search

depth. Three cases of this rule are investigated in thistehap

The performance of the proposed SPSD is also analysed inithger. The
upper bounds for the frame error rate (FER) of the uniform #meshold
pruning rules are derived. These two pruning rules are shovathieve a
desired diversity order by specifically setting the prungmgbability for the
former and the threshold for the latter according to diffiér@NR. Further-
more, the pruning probability of the uniform rule is analysehen a full di-
versity order is needed. It is also shown that the FER uppeandba the full
diversity case could be affected by the predesignated SE&dad that the
achievable diversity orders or SNR gains could be contlddiethe choice of
pruning probability and the threshold. For example, forfamm pruning, to
reduce running time, a large pruning probability should besen based on
the achievable diversity order, and vice versa. This ppiecalso applies to

the threshold rule. With a smaller desired diversity orties,threshold could
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be chosen to be a smaller value resulting in lower running.tim

e The performance and running time of all the proposed rulesthose of
the existing SDs such as PTP-SD [[53], Fixed SD [30] and K-B&s{14]
as a function of the number of transmit antennas and receitenaas are
compared by using simulations. The simulations show thamtdges of the
proposed approach for large MIMO systems at high SNRs. lbisworthy
that the proposed threshold rule obtains significant runtime savings than

those achieved by other SD algorithms.

This chapter is organized as follows:The SPSD is developed in Sectionl4.2.
Five pruning rules are proposed in Secfiod 4.3. Performandeunning time anal-
ysis of the proposed SPSD is given in Secfiod 4.4. The sinonlaésults are pre-
sented in Section 4.5, followed by the conclusions in Saeélié. The proof of the
FER of the uniform pruning and threshold pruning rules isspréed in Appendix
Bl

4.2 Statistical Pruning

Before describing specific pruning rules, a generic detestalescribed. For a
search tree witln layers, this detector is given in AIgorith%,Z\Nherek (k =
n,n — 1,...1) denotes the current layer in the search tggas a vector which
includes the pruning probabilities that are designed totheepruning rules for
the nodes in thé-th layer, andd? is the current partial upper bound obtained by
the radius minus the current accumulated partial cost. Tgwithm is invoked as
SPSD-decode, g, 42, z, R), whered,, is the initial radius, and: is the received
signal. The initial radiugl,, can be selected based on the noise level [21] for the
original FP SD, while it also can be typically setds= +oo for the conventional
SE SD [27].

Note that Algorithni 2 is built on the top of the SE SD [29] alamigh additional
pruning of essential nodes based on heuristic rules. Thpruhing ruleg may be

dependent on the search layer. This property allows fufliability to implement,

3A complete MATLAB-like SD algorithm description can be fadim [26].
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Algorithm 2: Statistical Pruning Sphere Detection
SPSD-decodék, g, d3, z, R)

Input :k, g, d2,z, R
Output: s,.in

1 Generate all thé, successordl in the k-th layer satisfying
(zx — rrxa;)? < di by eliminating non-essential nodes;

2 Let [~, temp] = sort(c), wherec = [¢y,¢a, ..., ¢4y ..., ] AN
¢ = (zx — rrxa;)?; and thend = A(temp);

3 for i+ 1to|A|do

4 | p=rand(l),

5 if p < g(i) then

6 | discard the-th node;

7 else

8 | keep thei-th node inA4;

9 end

10 end

11 | = length(A);

12 for i < 1to [ (every element itd) do

13 §k = a,;,

14 if a; is not a leaf nodehen

15 Letz, 1 = 2,1 — Z;L:k Tk—l,jgj;

16 SPSD-decodék — 1, g, di — ¢;, z, R);

17 else

18 if a; is a leaf nodef = 1) and its cost is smaller than the current
best costhen

19 The best solutios,,,;,, = S;

20 Updated? = ||z — Rs|*and alld?,i =n —1,...,1;

21 end

22 end

23 end
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say, more aggressive/conservative pruning strategiaffertetht search layers. Re-
call that the pruning of non-essential nodes (i;e> c.) preserves the optimality of
the algorithm. The pruning of essential nodes by the praiséibirules, however,

is the main concern of this chapter. Specifically, considetr®| nodes that are the

children of a node. Their pruning probabilities may be giasn

9(i) = { f(z'; ﬁf: 1C>tc ! (4.1)
wherei € {1,2,...]|9|}, c. and¢; are the current best cost and the partial cost of
the current node, respectivelyis the number of nodes whose partial cost is below
Cy.

Note that pruning probability always refers to the secoediff (i) in (4.1),
which defines the probability of pruning for the nodes with< ¢, (the essential
nodes). This simple but critical difference from the SD nsattee SPSD terminate
sooner than the latter, hopefully with the ML solution. The.4 is sorted in line
of Algorithm[2 because smaller cost nodes are more likelyite high-quality
solutions. Experimentally, it is known that pruning at diffnt layers of the search
tree will affect the performance and running time tradedifferently. Thus, in
Algorithm [2, the heuristic rules may vary for different lage Thus, the pruning
rule can be strong in the first few layers since the batjnitself is not tight enough
to identify nonessential nodes, and can be weak in the lastdgers when the
boundd; is tight.

A search algorithm i€ompleteif it is guaranteed to return at least one valid
solution. That is, at least the Babai-point [26] or decisieedback equalization
point [3] is guaranteed. To ensure this condition, in Alori[2 at least one child
node is always kept. Thus, the pruning probability assigndtie child node with
minimum cost is always zero.

To clarify these ideas, consider a simple example where a had four essen-
tial child nodes. Assume the child nodes are sorted by isargacost and then
assigned the pruning probabilitiés 0.2, 0.5,0.8]. That is, the first child node is
never pruned, and others have more chance of being prunaeddmethey are less

likely to lead to the ML solution. Similarly, with differergrobability distributions,
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existing SDs can be cast as special cases of the proposeelmakn Some exam-

ples are as follows:

1. The SE SDI[27]: this case arises when the pruning prolalili) for all the

child nodes i9). That is, SE SD does not use statistical pruning.

2. The IRA [74]: the nodes with the costs smaller than theusdre retained,;
that is, their pruning probabilities afe while the pruning probabilities are
for the other nodes, which are pruned. This case is an exashifle uniform

pruning rule.

3. The K-best SD.[14]: at each layer of the search tree, theipguprobability
of the bestK nodes id), while the pruning probability of all the remaining

(K+1,K+2,...)nodes is one.

In the next section, several specific pruning rules are mepo

4.3 Pruning Rules

Five specific heuristic pruning rules are developed in thissection: uniform, ge-

ometric, threshold, hybrid and depth-dependent prunitegsru

4.3.1 Pruning Probability Distribution Basics

To keep the statistical framework simple, the pruning pbaliig of the k-th layer
is initially defined to bef (i, k),i = 1,...tandk = 1,2, ...n. The value off (i, k)
can be chosen to execute a strong or weak pruning regime arat dependent
on the layer number in the first several depth-independdes rdenoted by (7).
However, f(i, k) can also be chosen to vary with the layer. In the followindyon
the nodes that do not exceed the current best«c@ste considered. The set of such
nodes is4 and its size ig (seel(4.11)).

The probability that node; will be pruned isf (i), andf (i) is a non-decreasing
function iné with f(1) = 0 and0 < f(i) < 1. As mentioned in Sectidn 4.2, the
boundary conditiorf (1) = 0 ensures the completeness of the SPSD). is chosen

as a non-decreasing functionirbecause, intuitively, a child with a smaller cost
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is more likely to lead to the optimal solution. Based on thiéedent probability

distributions, several pruning rules are proposed next.

4.3.2 Pruning Rules

In the following, several specific pruning rules are givetdthat, the search tree
is expanded from layer (top) to layerl (bottom).

Uniform Pruning Rule: f(i) =1 —p,for2 <i <t,andf(i) =0, fori =1,

All child nodes except the first one are pruned with equal abdlly and in-
dependently. This rule is rational when a priori informatie not available as to
which child will lead to the optimal solution and which ond®sald be pruned.

Geometric Pruning Rule: f(i) = 1 — p=t.

Because all the child nodes are ordered by increasing dustyule assigns
geometrically pruning probabilities to the nodeés<1, 2, ..., 1).

Sincef(i),7 > 2, in the geometric pruning rule is greater than that in the uni-
form pruning rule, the former rule eliminates more nodesttiee latter. In both
pruning rules, the strength of pruning is controlled thioupg

These two pruning rules are derivatives of two well-knowassical probability
distributions. However, the pruning probability distritmin considering the cost
of nodea; may be designed. For example, a child node whose cost idisayntiy
larger than its parent may not lead to an optimal solutionis Tdea leads to the
following threshold pruning rule.

Threshold Pruning Rule: In the conventional SD, the current node is pruned
if its cost exceeds the current best cost. A variation of ithés is proposed here.
In order to further prune nodes, a threshéldis applied at the:-th layer. As
mentioned beforey,; is never prunedf((1) = 0) for the completeness of the SPSD.
Fori = 2,...,t, if the costc; of a child nodes; is larger thany, a, is pruned; that
is, f(i) = 1 whenc; > 0.

Here, threshold,, is associated with the-th layer. SinceA is in a nondecreas-
ing order of cost, if node; is pruned, all the children; for ; > ¢ are pruned. The
strength of pruning varies inversely with. For example, i, = +oo, it simply

reduces to the SD.
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Hybrid Pruning Rule: The threshold rule can also be combined with the uni-
form or geometric rules to possibly take advantage of boghcibst information
and probabilistic pruning. Thus, the hybrid pruning ruleilcbbe constructed as
f@@) =1-— p\/g_l or f(i) = min{“=%(1 — p), 1}, wherec; is the minimum
cost in thek-th layer. For these two examples, if the cosbf the child nodes; is
less than or equal tg (threshold rule)q; is not pruned. Otherwise, the nodes are
pruned byf (i) (uniform or geometric rule).

Depth-dependent Pruning Rule: In the search process, if the pruning probabil-
ity f(7) at the early search layers is too high, the probability ofakiding the ML
solution increases. In order to keep the ML solution un#l fottom search layer,
f(i) may be defined depending on different tree layers (deptlestignt pruning
rule) denoted by (i, k), k = 1,2, ...n. In the following, three cases are given.

Caset f(i,k) =1 —exp(—k),2 <i <t

The children at each layer are pruned by the probabjflity%), a non-increasing
function ink. For largek, the pruning probability decreases. This result helps to
avoid discarding the ML solution. Once the node atkkté layer is pruned, all the
children of this node are pruned.

Case ll: f(i, k) = 2(7;—‘_’3, 1 <k <nwhere2 <i <t. The pruning probability
increases linearly with the layer. For the first layer, thenimg probability is zero,

and for the bottom layer, it i/2.
Case lll:f(i, k) = { . | <k<mn
1 < t. The nodes at the early search layers € k£ < n) are all kept and expanded,

,wherel < n; < nand2 <

and the remaining nodes are pruned by probabilitfl < & < n; — 1). That
is, full enumeration at the beginning of the search processed to improve the
probability of finding the ML solution. However, in the latteearch layers, nodes
are pruned with probability, to reduce the running time. Note thatif = 0, this
rule is the conventional SD; ii; = n, uniform pruning becomes one special case
with 1 — pi. = po.

In these three cases, the first node at each layer is neveeg(fifi, k) = 0)
for the detection completeness. Because the pruning pitipab Case Il is larger

than in Case | for each layer, the former is stronger thandtterl Only these
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three cases are given in this chapter, and the many othes ttasdepth-dependent
pruning rules are not discussed here.

Remarks:

e The idea of probability-distribution-based node pruniram de used with
other tree search algorithms, e.g., best-first searchdthrdamst search and
iterative deepening [17].

e More importantly, the same idea can also be applied to theprvalued
SDs, such as in [30], in order to achieve a flexible perforreaarad running
time trade-off.

e The IRA in [74] is a special case of Algorithm 2. The IRA chossesmaller
radius for the lower layers of the search tree (see detajigd]). However, if
the IRA cannot find a point, the radius is increased and theekseasumes.
The threshold pruning rule obtains at lease one point asollaéi@n, and the

threshold for each layer is different with the IRA.

e Threshold pruning rule can be readily incorporated into $iie algorithm
by replacingd; = di., — |pk+1(zks1, ..., 2,)|> in Chapte 2 withd; =
min{dy, = |prt1(Ts1, - - -, )% 0k} If df returns anull sey, = [py /s 1]
is kept inA. In fact,d, can be considered as a local bound as opposed to the
global boundi? in SD.

e The K-best SD is a special case of the depth-dependent grunie (Case
lIl). Whenn; =0,py=0for2 <i:< K,andp, =1for K +1 <i<t,the
K-best SD is obtained.

4.4 Performance Analysis

Here, the performance of the uniform and threshold rulesadyaed. The param-
etersp andJ,, are determined to achieve different diversity orders antbpmance
gains. To make the analysis tractable, detection ordesimgniored. The radius is

assumed infinite, and the effect of decreasing radius asgor&hm[2 is ignored.
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The results in this section can be considered as upper bdantsse cases with
column reordering.

Proposition I: The upper bound on the FER of uniform pruning is

Pf<<1—p>ZQdQ)Z+< < ) (4.2)

d2.
=l (1 + 2 1+ o

whered,;, is the minimum Euclidean distance ¢f, ando? is the variance of the
noise. Proof: see AppendixB.1.

In the high-SNR region, the symbol error rate can be approximated b,
P, ~ Py/n, where a frame error is caused by a single symbol error wigh hi
probability.

From (4.2), ifp is fixed for all SNRs, angh # 1 (uniform pruning), the first
term dominate$’;. As (4.2) is only an upper bound, this equation suggeststtleat
diversity order of uniform pruning is at least one. The siatian results indicate
that the diversity order of the uniform rule is indeed at teage. Since geometric
pruning is more aggressive than uniform pruning, the dityecsder in geometric
pruning is also at least one for fixed(4.2) also indicates that, to achieve a diversity

ordern with uniform pruning,l —p must at least decrease as faszlaszi2 ;4 T
+ o

min

Thereforep must vary according to the SNR of. Thus,

1 Ko—1
r=1-¢(rrqm) “9

min

where¢ is a constant. By substituting (4.3) info (4.2), (4.2) cardbeved as

Pr<ey ] 2‘Q| +< ‘QJ ) (4.4)
i=1 202

Ko+i—1 .
d . 1
(1+%2) L

If Ky < n, the first term dominateB; in the high-SNR region, and the other terms

can be neglected. Therefore, uniform pruning achievesast ke diversity order
K. (4.4) reveals thag controls the SNR gain of statistical pruning.

In order to achieve the full diversity order one can choose

s (12 Y s
ME\T+ &2, /40? ’ '
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where P, is the FER of the ML detector. By substitutiig (4.5) info 4.@.2)
can be derived as

PfgﬁPMLZ—H_‘_(‘idQ.) ) (4.6)
(1+%)7 \1+%e

where s controls the SNR loss incurred by the statistical pruningngared with
the ML detector.

From [84], when SNR becomes high, the asymptotic fornPgf, can be ex-

Pu = a(n, Q) ( 217) (2:__11), (4.7)

wherey denotes SNRx(n, Q) is a coefficient that depends erand the constella-

pressed as

tion. Let{d;} denote the set of vectors with € () as theirl-th element, andd, }
denote the set of vectors that differ in théith element fromd;. The« is given
by [84]

a =

ZZZ('d d”) (4.8)

|Q‘n sREQ i
whereE; is the average symbol energy @f Since [(4.l7) scales ag', from (4.6),
statistical pruning by using (4.5) can still achieve a dstsrordern. Note that the
performance analysis in this subsection considers onlyea fpruning probability
forall s;, k = 1,...,n. Adifferent pruning probability for different,, may also be
assigned.

Proposition Il : The FER of threshold rule is bounded as

P<Y /+Oof‘(x)dx+< <] ) (4.9)
f - 572 ‘ 1_'_ dr2nin ’ '
i=1 7 52

where f;(x) denotes the probability density function of the chi-squdistribution
X*(2(n — i+ 1)) [23]. Proof: see AppendixBl.2

In order to achieve a diversity order of at le&st, ; may be chosen such that

+o0 5

5, filz)de= 1+ &2,

min
o2

T (4.10)

where¢ is a constant that controls the SNR gain. Siige’) is known, [4.10D) can
be solved numerically. At each SNR, (4.10) needs to be salwgdonce.); = 0
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fori <n — K, + 1 is simply set. In this case, the upper boundinis also given

by (4.9).
With the sam@, it can be easily verified that

“+oo “+oo

N fi(z)dx < N fi(z)dx (4.11)

52 o2

fori > j. Therefore, with the samg the first term in[(4.9) always dominat&s. A
simplified rule to achieve a diversity order of at le&%tcan be obtained by setting
9 as the solution of

o\ _ §
1—7 (1, @) BTN (4.12)

min

Similarly, 9; = d fori > n — Ko+ 1 andd; = 0 fori < n — Ky + 1 are simply set.
By using [4.9), it can be readily verified that this choicelpfichieves a diversity
order of K. Interestingly, the cost threshodddepends only on SNR and,, but
not ons.

Remarks:

e The upper bound if_(4.2) may not be tight. Theiven in (4.3) and(415) may
achieve a better performance than that suggested by (4t2$. r@sult also

holds ford; in (4.10) and[(4.12).

e The simulation results (Sectidn 4.5) show that the perfoceadifference
between the uniform and geometric rules is small when udiegsamep
defined in[(4.B) and (4.5). For the sameauniform pruning has only an SNR
gain over geometric pruning even though the latter is s&otitan the former,
as remarked in Section 4.3. The valuedfiven by [4.8) and (4]5) along with
geometric pruning achieves the same diversity order. Hewdélre diversity

order analysis for this case seems intractable.

4.5 Simulation Results

In this section, the SPSD is simulated for an uncoded MIMQesysover a flat
Rayleigh fading channel. The modulation form&@AM and 16-QAM are used.

Both the performance and running time of any SD are compdieel running time
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is measured by the average number of nodes visited. Thengitime of the pre-
processing stage is not included. The ML curve, which is fitemal performance,
is obtained with the conventional SE SD. The initial radifishe SPSD is chosen
to be infinity and is updated whenever the search reache$rdéa (Algorithn2).
In hybrid pruning,f(i) = 1 — p\/g_l, wherec; is the minimum cost in thé-th
layer. For the depth-dependent rule, only the result of Casgiven.

Comparison of Different Pruning Rules. Here, 4-QAM with 8 transmit and

...
=
=

~, o
~.,
~

2 _e_KO:Z, Geometric Pruning
KO:4, Uniform Pruning
+Ko:4' Threshold Pruning
'"A"Ko:4' Hybrid Pruning
_o_‘KO:8, Threshold Pruning

—— Depth-dependent Pruning Cas
-4 = ML

0 5 10
SNR (dB)

Figure 4.1: Error performance for @&nx 8 4-QAM MIMO system. The ML curve
is given by the simulation of SE SD.

8 receive antennas are used in Figs] 4.1[and 4.2, whisrset to be).8 (¢ is the
constant in[(4.3)); the achievable diversity ordgris set to be2 and4 for uniform
pruning, geometric pruning and hybrid pruningjs chosen to bd; and K, is
chosen to be or 8 for threshold pruning.

Fig.[4.1 shows the SER performance of the SPSD with diffesteistical prun-
ing rules. As shown, the depth-dependent pruning Case éaebia near-ML per-
formance, indicating that the pruning probabilities foistiule are small for all
the layers. For other rules, the derivation of achievablerdity orderk in (4.3)
and [4.12) is validated here. At the desirable diversityeord, of 2, geometric
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pruning achieves a diversity order Likewise, with the achievable diversity order
4, the uniform, threshold and hybrid pruning could achieweedsity order4. All
these rules achieve the desirable diversity order corretipg to the value of{,
proving that the results for the uniform and threshold r@esalso applicable for
the geometric and hybrid rules. Another interesting oletéon is that by setting a
greater desirable diversity ordéf,, the threshold rule performs closer to optimal
ML detection. For example, at an SER «f 3, the threshold rule with a diversity

order K of 8 attains3 dB more gain than the case with diversity order
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—SE SD i

Average number of nodes visited
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Figure 4.2: Running time for a# x 8 4-QAM MIMO system.

Fig. [4.2 compares the running time of different pruning suléth that of the
optimal SE SD, which has the highest running time compareal tine proposed
rules. The only exception is the depth-dependent pruniteg which has almost
the same running time as the SE SD, but does achieve the HepeNbrmance
(Fig. [4.1). An immediate observation is that the achievaliersity orderk)
has a significant effect on running time. With a smaller akidiversity order
Ky, the running time is lower. This finding shows that lower rungntime can be
achieved by sacrificing the desirable diversity order or $IERormance. All the

rules, excluding the depth-dependent rule, obtain moreingntime savings in the
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low-SNR region; however their running time savings over 3k r8duces when
SNR increases. For example, at an SNR) dB, the threshold pruning (diversity
order 8) obtains abouB6% of the running time savings with respect to SE SD.
This number reduces t&% at 10 dB. Furthermore, the threshold pruning obtains
running time savings for very high SNRs, suchasiB,S because the SE SD visits
several unnecessary nodes during the early stages of tiah ggacess. However,
for threshold pruning, the local bound prevents visits testhnodes, especially
when the cost thresholi is chosen to bé for : < n — K, + 1. Therefore, only a

single node is visited at layets. .., n — Ky + 1.

- | o K =2, Uniform Pruning
I -a-K =3, Geometric Pruning
—Q—KO:3, Threshold Pruning

10 E |
; _>_KO:4, Threshold Pruning . ]
- | K,=3, Hybrid Pruning 5
Ty "y
10_4 T T T I vt
0 5 10 5 30

15 20
SNR (dB)

Figure 4.3: Error performance fordax 4 16-QAM MIMO system. The ML curve
is obtained by the SE SD.

The performance of the SPSD for different MIMO systems, &6 and4 x 4
MIMO system, is next assessed in Figs.14.3 4.4, wheredfraneter setting
is the same as that for tleex 8 4-QAM MIMO system, except thak’y = 2, 3, 4.
The SER of the SPSD for different statistical pruning rutegiven in Fig[4.B. As
stated in the discussion of Fig. 4.1, by varying the achikvdiversity orderk,
different diversity orders are achieved. For example, hiheshold rule achieves the

full diversity order when the desirable diversity orderes ©4.
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'°"K0:2’ Uniform Pruning
+K0:3, Geometric Pruning
—Q—KOZS, Threshold Pruning |
_>_K0:4, Threshold Pruning -
-HAF‘KO:S, Hybrid Pruning
—SE SD

Average number of nodes vVisited

Figure 4.4: Running time for & x 4 16-QAM MIMO system.

Fig.[4.4 shows the average number of nodes visited withreiffigoruning rules.
Trends similar to those shown in Fig. 4.2 are observed. Allrthes save running
time compared to the SE SD for low SNRs, but the running tinvngareduces
with increasing SNR. However, in the high-SNR region, tho#d pruning attains
lower running time than the SE SD.

Figs.[4.1-4.%4 show that for achieving the full diversity erdthreshold pruning
obtains the lowest running time compared to the other rulds:eshold pruning
is therefore the best choice for near optimal performandk significant running
time savings.

Comparison with other Detectors. It is interesting to compare the proposed
SPSD with other detectors that use node pruning. Thus, EYE5S], Fixed SD
and the K-best SO [14] are considered. For the PTPs5[3; set to be).1, where
p’ is the pruning probability; for the Fixed SD, the case withchannel ordering is
used in this chapter, and the distribution of nodes kept ai dayer is[1, 1, 1, 16],
while K is chosen to bé and16 for the K-best SD (mode 1 in [14] without channel
ordering is used for fair comparison). Figs.14.5 4.6 camaplifferent detectors
for a4 x 4 16QAM MIMO system. Only the geometric and threshold rules ar
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shown because uniform pruning performs close to geometiitipg, and threshold
pruning performs better than hybrid pruning.

10 ¢
E ——K-Best, K=4
I -+ K-Best, K=16
: ~4-pTP-SD, p=0.1
10 <~ Fixed SD I
i —a—KO=3, Geometric Pruning
——K,=4, Threshold Prunin
e
L L
o 10
10_3§ :
7I'
—4 \ . . |
1 | O
%10 15 2 30 35

0 25
SNR (dB)

Figure 4.5: Error performance fordax 4 16-QAM MIMO system. The ML curve
is obtained by the SE SD.

Fig.[4.5 shows the SER performance comparison. The progbseshold rule
with desirable full diversity orded, the PTP-SD, and the K-best SIX (= 16)
achieve a near-ML performance. However, although the F8@das a fixed run-
ning time because of the full enumeration in the first layed pruning all but the
first node with the minimum cost in the following layers, at@ER of10~*, the
Fixed SD has$ dB performance loss compared to the threshold rule. To belfés
gap is due to not using channel matrix reordering. Like the®iSD, the K-best
SD also obtains fixed running time; however, the K-best Sireg a largek to
achieve a full diversity order [14]. Thus, the cagé £ 4) achieves only a diversity
order of one.

Fig. [4.6 shows the running time, i.e., the average numbendés visited by
different detectors. As mentioned before, the choice of allemdesired diversity
order K, leads to lower running time. For example, the geometric (llg = 3)

has lower running time than that of the threshold rulg (= 4). Moreover, the
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Figure 4.6: Running time for & x 4 16-QAM MIMO system.

threshold rule has lower running time than the PTP-SD indlae$NR region; for
example, at an SNR ofdB, the former obtaing8% of the running time savings of
the latter because the threshold rule prunes more nodeshed@ T P-SD. Another
observation is that both the geometric and threshold rudes Bignificantly lower
running time than the K-best SD, which performs a bread#t-$earch and always
prunes all but the< best nodes at each layer. Even so, the running time of the
threshold rule is only.5% of the K-best SD I = 16) on average, while obtaining
72% more running time savings than the Fixed SD as well. To sunzeawith
near optimal SER performance, threshold pruning achide®tvest running time
compared to PTP-SD, Fixed SD and K-best SD.

To show the advantages of the proposed approach for a larlygOMilystem
at high SNRs, a performance and running time comparison asaibn of the
number of transmit antennas and receive antennas (16-Q#&&hawn in Figd, 417
and4.8, wheréV is the number of transmit or receive antennas. The SNR is fixed
at20dB.

Fig. [4.7 shows that the proposed threshold rule with fulledsity order N

and the PTP-SD always achieves a near-ML performance fiareift numbers of
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Figure 4.7: Error performance for a 16-QAM MIMO system witfierent numbers
of transmit and receive antenn&s SNR=20 dB.

transmit antennas. However, the geometric rule with thelfashievable diversity
order4 does not reach the optimal performance for large MIMO systefror the
same reason, the K-best SD with= 4 and K = 16 also does not achieve a near-
ML performance. This finding means that with an increasingnber of antennas
N, the achievable diversity ordéf, for the geometric rule and th€ for the K-best
SD should be larger.

The running time comparison with the same set-up as in [Eig.isAgiven in
Fig.[4.8. The running time of the PTP-SD is almost the sambatof the SE SD,
which grows exponentially witv. Thus, PTP-SD does not achieve running time
savings compared to SE SD for large MIMO systems and high SNHRsvever,
the running time of threshold pruning obtains more significanning time savings
than the above two SDs. Further, the running time savings@se with the number
of transmit antennas. For example, fr = 10 and N = 14, the threshold rule
obtains1l and2 orders of magnitude of running time savings compared to SE SD
and PTP-SD. Although the K-best SD has less running time whemumber of

antennas is large, it could not achieve the near-ML perfonea Therefore, for
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Figure 4.8: Running time for a 16-QAM MIMO system with diféstt numbers of
transmit and receive antenn&s SNR=20 dB.

high SNRs, the threshold pruning rule significantly redubesrunning time while
preserving near-optimal performance, especially for MIlg§3tems with a large

number of transmit antennas.

4.6 Conclusions

Probability-distribution-based statistical pruning SBrevproposed. Uniform prun-
ing, geometric pruning, threshold pruning, hybrid pruneamgd depth-dependent
pruning were developed. The SER performance of uniform aneshold prun-
ing rules was analysed, and the pruning probability andHteshold for achievable
diversity orderK, were derived.

All of these rules achieved lower running time than the cotie@al SD in the
low-SNR region. In particular, the threshold pruning rubdasned the most signif-
icant running time savings while achieving the full divéysirder. For example, in
low SNR, 80% and95% running time savings were possible over the PTP-SD and
K-best SD, while also achieving a slightly better SER perfance. Moreover, a

running time saving was also obtained for high SNRs (©dB), and this saving
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increased with the number of transmit antennas as well.
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Chapter 5

Improved K-best Sphere Detector

This chapter proposes an improved K-best sphere dete®8D(l. At each layer
of the search tree, this SD keeps the hi€shodes and all the nodes whose costs
are within a certain margin of the cost of theth best node. Three IKSD variants,
named fixed-threshold, normalized-threshold and adafhireshold, are investi-
gated. By leveraging the IKSD, a hybrid SD algorithm is pregub by using full
enumeration in the upper layers of the search tree and aygptiie IKSD for the
remainder of the search tree. The IKSD is also extended fbed®IMO systems

as a list SD for joint iterative detection and deCO(Hng.

5.1 Introduction

For spatial multiplexing MIMO detection, Sectign 2.2.2 deéised the K-best SD
[14], which has received significant attention recentlysaese of its fixed through-
put, fixed detection running time and parallel implemenpotati

Despite these advantages, the K-best SD does not guarakiieperformance
[14]. To do so, the K-best SD typically requires very largkrea of X', which result
in a higher running time than that of the conventional SD. éttheless, due to the
advantages of the K-best SD, several variants have beengedjo further reduce
its running time or/and improve its performance, elq.|68)35+-88].

Since the performance loss of the K-best SD may be due tokbkhibod of
inadvertently discarding the ML solution, in this chapter,IKSD is proposed [32]

1A version of this chapter has been published in IEEE WireBzssimun. Lett., 1: 472 -475 (2012).
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that replaces the strict valu€ in the conventional K-best SD with a hypersphere
radius determined by the cost of theth best node and a threshald The IKSD
achieves a near-ML performance with a much lower running tinan that of the
conventional K-best SD.

The proposed algorithm, a general framework, also inclaudegvi-algorithm
[89] and T-algorithm|[[90] as special cases. These two dlyms are the special
cases when the parametéxsaand K equal to0 and1, respectively.

Main Contributions:

1. An IKSD is proposed, which expands the fix&dnodes at each layer in the
conventional K-best SD to a slightly bigger list, which indes all the nodes
with a partial cost off equal to or less than th€-th node cosfx plus a small
valueA (f < fx + A). This A could be derived by off-line computation.
The likelihood of discarding the ML solution is thus smallean that with

the conventional K-best SD.

2. Three specific IKSDs are proposed in this chapter witredkffit choices of
the threshold\ (fixed-threshold, normalized threshold and adaptivesthoéd
IKSD). The parametef controls the extra number of nodes visited by the
IKSD. Furthermore, the closed-form expression/fis obtained for the

normalized-threshold.

3. By leveraging the IKSD, a general hybrid SD algorithm isgmsed, which
expands all the nodes at the upper layers of the search ttegsdhese nodes
as an increasing partial cost, and then uses the proposéal fik$he search
of each subtree. This hybrid SD always updates the cost bauneth one
subtree search is finished and the new cost is less than thentiound,

resulting in more pruned nodes.

4. The soft extension of the IKSD for coded MIMO systems i algrived
in this chapter. This method increases the possibility ef dandidate list
including the ML point, and reduces the running time withsel@erformance

to that of conventional soft K-best SD detection/[14].
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This chapter is organized as follows:Sectior 5.2 presents the new IKSD, in-
troduces three specific IKSD, and discusses how to derivehtieshold. A hybrid
IKSD is developed in Sectidn 5.3. The soft IKSD detectionaded MIMO sys-
tems is proposed in Sectign 5.4. Simulation results andudg&@ons for both the
performance and the running time are given in Sedtioh 5ralfy conclusions are
drawn in Section 5]6.

5.2 Improved K-best Sphere Detector

The K-best SD has fixed running time only for every symbol di&b@, making
it convenient for hardware implementation. However, adakj is necessary in
order to approach a near-ML performance. This requirengsntlts in an increased
running time (even higher than that of the naive SE SD). Thianmeason for the
performance gap is the likelihood that the K-best SD mayatsthe ML solution

early. Mitigating this problem is the main idea in this senti

5.2.1 Improved K-best SD

The conventional K-best SD keeps nodes for each layer, as mentioned in Sec-
tion[2.2.2. However, the proposed IKSD searches the fiXedodes and all the
nodes with a partial cost equal to or less thanihéh node cost plus a small value
A. Thus, the probability of finding the ML solution is incredssompared to the
probability of doing so with the conventional K-best SD. TH&D is described in
Algorithm[3.

When the initial sphere radius is sufficiently large, the algorithm achieves
its maximal running time. When it is smaller, the running dins reduced with
the degradation in performance due to the lost lattice paatside the radius. In
simulation results@*> = ~yno? [14] is chosen, where = 2N, o2 is the noise
variance, and' > 1 is chosen to guarantee the lattice point can be captured.

In this chapter, only the standard QR matrix decomposit®oagplied. The
channel matrix ordering (e.g!, [30]) is not included; hoemut can improve the

performance of the proposed IKSD.
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Algorithm 3: The IKSD Algorithm
Input : A, K,z H,d
Output: s

1 Initialize the sphere radiusand the partial cosf,.,; = 0, and take the
root sy (layerk = m) as the start node. ;
2 for p < 1to length(fres) do
3 Expand thep-th node, generate all its successéss= €2, and
calculate the partial costg; = fiest + fit, Where
frt = (Zk,p — Tk,kS)Q;
end
Sort all the components gfin an ascending order;
if The number of the elements is less tiiathen
\ Keep all the candidates with < d? to obtain7T;
else
| Only keep the elements whose cost indexes safisfy fx + A in T;
10 end
11 Replace the..; with the adjusted;
12 if k # 1then Calculatez; =z, — R.xs; (Vs; € T),k =k —1and goto
step 2;
13 elseReturn the first element i as the estimatest

© 00 N o g b

For the tree search process, the conventional K-best SBabthe child nodes
based on their partial costs, and selects khbest paths. In the proposed IKSD,
instead of choosing exactli nodes, the additional nodes are kept, whose costs
are close to the cost of th&€-th node, f;. For example, at théth layer (where
1 =1,2,...,m,m = 2N, and N is the number of transmit antennas), supposing
that the nodes are also sorted, if the cost difference betees -th node and the
(K +r)thnode ¢ = 1,2...)is less than\, then all K + r nodes are retained.

5.2.2 Threshold Rules

The choice ofA is the main challenge of the IKSD, i is too large, then more
nodes are visited and the running time increases; while i too small, the per-
formance improvement is limited compared to that of the eotional K-best SD.
Depending on the parameterization®f a flexible performance and running time
trade-off could be achieved. Based on different choicehefthreshold), three

types of IKSD are proposed next.
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Fixed-Threshold IKSD: Intuitively, A could be a predefined constant, resulting
in the fixed-threshold IKSD. This choice is motivated by theed to prune less
aggressively in the early stage. A fixéd can perfectly serve this purpose. The
value of A can be determined off-line through calculation, e.g., ydhalysis in
Section 5.2.3. For example, for the proper value for4he 4 16-QAM MIMO
system with noise variane€’, A could be set to b6.2502, which is obtained by
both theoretical and numerical analysis.

Normalized-Threshold IKSD: The threshold can be defined to depend on the
cost of theK -th node at each layer. The theoretical analysis in SeCt@/3 Shows
that this threshold will correspond to reducing the prolighbof pruning the true
solution by a constant ratio compared to the K-best SD. Timesthreshold can be
given as

A=Tfg. (5.1)

This IKSD is called the normalized-threshold IKSD, whictaptvely updates\ in

the searching process. The closed-forrd\adindr will be derived in Sectioh 5.2.3.
Adaptive-Threshold IKSD: If the SNR is known or can be estimated, an SNR-

dependent\ may be defined as

0.2

=" 5.2
logp+1’ (5:2)

wheres? is the noise variance, andis the SNR in the MIMO system. With this
adaptive-threshold IKSD)\ decreases with increasing SNR. The motivation for this
threshold choice is that the cumulative costs are largdramaw-SNR region while
they are smaller in the high-SNR region. Therefore, a laxgehould be chosen in
the former case, and a small value for the latter case.

Other choices of the threshold may be possible. Howevethallproposed
threshold rules reduce the probability of dropping the Mlugon early when
traversing the search tree, resulting in performance gaingared to the conven-
tional K-best SD with the same value aAf. Furthermore, the proposed IKSD with
K outperforms the K-best SD with¥(, while the former also obtains lower running
time than the latter. This result will be shown in Secfion. 5.5
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5.2.3 Theoretical Analysis

Since the elements, ..., n,, in the noise vecton are values from independent

identical distributed Gaussian noisg,", n? becomes the chi-square random vari-
2

able withm — k+1 degrees of freedom. Becauge= > " (zl - ri,jsj) =

S n?, the probability of the new cost of nodes being greater thatt-th node

costis
PK:PT(ft>fK):1—PT(ft§fK):1—F(fK;m—/{Z+1), (53)

whereF (fi;m — k + 1) = y(=ktt Loy (m=ktl) s the cumulative distribution
function (CDF) off,, andy(k, ) andI'(k) are the incomplete Gamma function and
Gamma function, respectively.

In order to reduce the probability of discarding the ML smlnt the probability

in (5.3) can be decreased by a predefined ra{i® < \ < 1), which is given as
Pa = Pr(f, > fx +A) = APk, (5.4)

where) could be set to be a number closeltm order to constrain the incremental
running time, such as = 0.9.
Therefore, the probability of, < fx + Ais1 — APg. Thus,A can be defined
as
A=F 11— APx;m—k+1)— fx. (5.5)

For the fixed-threshold IKSD)\ can be predefined to be a deterministic value
according to the above equation. By calculating the valded,oan interesting
result is found. For example indax 4 MIMO system, whem = 0.9, A is always
betweerp.2to0.3forall 1, ..., m degrees of freedom, as calculated[byl(5.5). Thus,
it is appropriate to choos& = 0.25 for a4 x 4 MIMO system. Similarly, a proper
fixed threshold can also be derived by using this simpleioé-¢alculation for other
MIMO systems.

For the normalized-threshold IKSD, based lonl(5.1) (5.8 shown as

T:F_l(l—)\PK;m—k—i‘l)—fK. (56)
fx
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When SNR is sufficiently high”, can be approximated as

2 2
o2—0 oz—0

Whenx — 0, the probability density function of the chi-squared disition is

1 k 1 k
r k) = z2 Lexp(—2/2) & x2 L. 5.8
k) = et e/ ~ oy 58)
Then, the CDH(x; k) is
x 1 .Z’k/Q
F(x; k :/ Y T e — (5.9)
R = ) g (k2277 (%)

andF~Y(P; k) = <§2§P(§)P>E. Therefore, in the high-SNR regiof, (5.6) can be

derived by the closed-form as

-1 (f )(m—k+1)/2 .
F [1 — A (1 - ((m_k+1)/2)2€{m*k“)/2F((m—k+1)/2)) Tm — k + 1} _ fK
T =
fx
2
[M2wr<(m—k+l)) (1 Y <1 _ (fK)M ))} 2
= 2 2 (W)z(&z@r(w)
fx
— 1.
(5.10)
Remarks:

1. The improvements of the proposed IKSD depend on the srelalkation
of the number of retained nodes at each search layer. Thagetaxation
increases the probability that the ML solution is not digear at the early
search layers. Consequently, the proposed IKSD has a nptighdl running

time and outperforms the conventional K-best SD with muchlenik .

2. According to the characteristics of the partial cost getwkeeni-th andK +
1-th node,A is defined by three specific rules to obtain the new candidates
at each layer for the IKSD. WhefAA = 0, the proposed IKSD becomes the
conventional K-best SD. Thia may have other definitions, but it always
coincides with a rule — the performance is closer to the ogitperformance

when theA is increasing.
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3. The running time of the proposed IKSD also depends on tligima. When
A decreases, the average number of nodes visited by the IKg§Bttisg
closer to that of the conventional K-best SD.Afis sufficiently large, the
search space spans the whole tree, yielding near-ML pegiocen Thus, the
index A provides a flexible performance and running time for the pseol
IKSD.

4. Because the proposed IKSD is intended to relax the stiketbt X nodes for
the conventional K-best SD, it may be used in the variante@briginal K-
best SD to improve the performance with a smalleisuch as [30,85,86,91].
It also can be extended to soft MIMO detection and MIMO relayedtion
[78].

5.3 Hybrid Sphere Detection

In this section, the fixed-threshold IKSD is extended intg/arid SD, as the spe-
cific IKSD of the three proposed threshold IKSDs.

In the conventional K-best SD, since only K nodes are kepaelh éayer of the
search tree, discarding the ML solution at the early layethus likely. The IKSD
is proposed in order to reduce this probability. Moreovell, énumeration of the
early layers can also reduce this probability! [65]. In thastgn, a general hybrid
SD is proposed by combing the full enumeration and the pregph&sSD.

Hybrid SD algorithm: A general hybrid SD is proposed here, which performs

two main steps in the search process.

1. Inthe first step, the hybrid SD expands all the branchdseoéarlyK - layers
in the search tree, i.e., performs full enumeration, whegeis the number
of layers being fully expanded. The choice & depends on the number
of antennas (the layers of the search tree) in MIMO systemisitively, K »
may be greater when the number of antennas increases. THzenofall
the child nodes after the first step A& = |Q|V#. All these child nodes
are ordered by an increasing accumulative partial costpbaodme the new

roots of all the generated subtrees with— K layers. By this process, the
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probability of keeping the ML solution is increased. Moregyvhe hybrid SD

becomes the naive IKSD when no layer is fully expanded; Ke.= 0.

2. In the second step, the proposed IKSD is applied for eablrej and it
updates the radius by the new cost of the estimate for themusubtree
when finishing the search process of this subtree. By usisggw radius
as the cost bound of the next search, the proposed IKSD is hiefg to
prune more nodes or discard a whole subtree. Moreover, bedhe costs
of the roots of all subtrees are already in an increasingrooiee thei-th
subtree is pruned, all the followin§|"* — i subtrees will be pruned. From
the discussion in Sectidn 5.2, it follows that the propo$€8D needs only
a smallerK than the conventional K-best SD for a similar performancs. A
well, the proposed IKSD provides reduced running time far gnoposed
hybrid SD.

The ordering of the channel matrix in the proposed hybrid Shtroduced in
the following. In the first step of the hybrid SD, the signalshathe largest noise
amplification are detected. For the second step, the signtdighe smallest noise
amplification are detected.

Fori+ mto1l

1. Calculatéd! = (H7H,)~'H”, whereH; is the channel matrix with columns

selected in previous iterations zeroed;

2. The signal to be detectesl,f is obtained by

p= argmax |(HD,]> for i=m,...m—Kp (5.11)
Jje{l,...om}—{pi+1}

while

p= argmin |(H);|? for i=m-Kp—1,...1, (5.12)

Je{l,..m}—{pit1}

where(H!); denotes the-th row of H!, andp,,, is the columns selected in

previous iterations;
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An SD algorithm has been proposéd|[85], which uses tree deesition and
pruning constraint updates to reduce the requiednd terminate the search pro-
cess early. This algorithm fully expands the first layer & earch tree and uses
the conventional K-best SD for the search of all the subtrdéss SD algorithm
is a special case of the proposed hybrid SD algorithm wkign= 1 and uses the
conventional K-best SD for the search of all subtrees.

Running time Measurement: The average number of nodes visited is also used
to measure the running time of the proposed hybrid SD algoritHowever, the
hybrid SD counts all the nodes visited by full enumeratiod eire search of all the
subtrees.

By the full enumeration of thé& layers, the expanded nodas- are directly
obtained:Ny = |Q|%r. Therefore, the whole expected number of visited nodes of
the hybrid SD is given by

|QIXF m—Np

Cr(m, p, Kp) = Q"+ > > v, (5.13)
=1 k=1

whereyp; ;, is the number of nodes visited at theh layer of thej-th subtree within
the hypersphere of radius The second item of the above equation is the sum of

all the nodes visited by searchif@|“* subtrees.

5.4 Soft Extension of the IKSD

For coded MIMO systems, the conventional K-best SD suppatisoutputs([14],
where the besk” nodes left at the last iteration form the candidate list usethe
iterative detection and decoding. However, the conveati#ibest SD in coded
MIMO systems results in an increasing running time in ordea¢hieve the near-
optimal performance by a sufficiently largé Therefore, the list IKSD is proposed
by extending the proposed IKSD as a list SD for coded MIMOayst.

The list IKSD generates a ligt of Nz candidates when searching the tree. This
list includesN; = K + N, estimates, and the size of the list satisfies N; <
2NN "whereN, = log, (|Q]) is the number of bits per modulated symbol, aid

is the number of extra nodes visited by the list IKSD compadcethe list K-best
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SD. The coded MIMO system model and the details of the MIM@cketr and the
channel decoder are presented.in [10].

5.5 Simulation Results and Discussions

MIMO detection: In this section, the performance and running time of the IKSD
(Algorithm [3) are assessed. Both the symbol error rate (S&R)the average
number of nodes (the running time) visited by the new IKSD @mmpared with
those of the conventional K-best SD [14]. Although the threesions of the IKSD
outperform the conventional K-best SD, in this chapter ahly fixed-threshold
IKSD and the normalized-threshold IKSD are shown due to geees limitation.
The ML curve is from the conventional SE SD. In order to corephe proposed
IKSD with the K-best SD fairly, the initial radius for bothdtproposed IKSD and
K-best SD is chosen to be the same={ 10). Furthermore, in order to highlight
the advantage of the proposed IKSD, the channel detectd®riog is not included
for all the algorithms.

|| —e—K-best SD (K=1)
| —~—K-best SD (K=2)
10°3|-v-K-best SD (K=16)

|| —+—Fixed Threshold IKSD (K=21=0.25)

Ll ——Normalized Threshold IKSD (K=2,=0.9)
r—ML

10, 5 10 15 20 25 30
SNR (dB)

Figure 5.1: Error performance for an uncoded 4 MIMO 16-QAM system.

Fig. [5.1 shows the impact of the SER performance of the pegptsSD. An
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uncoded! x 4 MIMO system with16-QAM is simulated over a flat Rayleigh fading
channel §2 = 1). Note that the performance of the IKSD by the fixed-threghol
(K = 2,A = 0.25) is very close to the ML curve, while the conventional K-best
SD needs to seék = 16 to achieve a similar SER. Furthermore, the fixed-threshold
IKSD outperforms the normalized-threshold & 2, A = 0.9).
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Figure 5.2: Running time for an uncodéd 4 MIMO 16-QAM system.

A running time comparison between the IKSD and the K-best $S&lso pro-
vided in Fig.[5.2. The running time of the proposed fixed-¢had IKSD is lower
than that of the K-best SD when achieving the near-ML pertoroe. For exam-
ple, the conventional K-best SOK( = 16) searches about x 10? nodes, while
the fixed-threshold IKSD needs to visit orh) nodes on average — &0% run-
ning time savings. Moreover, fdk = 2, with a30% increase in running time, the
fixed-threshold IKSD providesadB gain (at an SER of0~2) over the K-best SD.
Note that, as expected, the running time curves for the cuioreal K-best SD are
flat as a function of SNR; similarly, the fixed-threshold IK®Rs a virtually flat
running time curve. To quantify such flatness, a running thar@ability index was
introduced in[[47]. This index i§ x 1073, affirming that the fixed-threshold IKSD

has a virtually constant running time.
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Figure 5.3: Error performance for an uncoded 8 MIMO 16-QAM system.
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Figure 5.4: Running time for an uncodedc 8 MIMO 16-QAM system.
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In order to show the advantages of the proposed IKSD, the adegn with
other algorithms (Fixed SD [30], EP K-be5t [66], AFE-FCSB]8and simplified
Fixed SD [87]) is shown in Figs[_5.3 anhd 5.4. Achieving therrmatimal SER
performance, the running time of the proposed IKSD is @sl¥, 27% and59.5%
of that of the Fixed SD, EP K-best and simplified Fixed SD, eesipely. Although
the AFE-FCSD obtains lower running time than the proposesDKvhenSNR, >
18 dB, the latter gaing.5 dB more than the former at an SER 1f~*. Above all,
the proposed IKSD achieves the best trade-off between npesfice and running
time among all these algorithms.

Hybrid Sphere Detection: In order to verify the improvements of the proposed
hybrid SD, the performance and the running time of the hylifeD and the SD
algorithm [85] (the hybrid K-best SD in this section) aregstigated in Fig. 5|5 and
Fig.[5.6. In the simulations, the number of full enumeratayers K is set to bel
in order to compare the proposed hybrid IKSD with the hybridést SD proposed
by [85]. Moreover4 x 4 16-QAM and 64-QAM MIMO systems are considered
here.

| | ——16-QAM IKSD (K=2, A=0.05)
2| | —+—16-QAM IKSD (K=1, A=0.05)
10 7 o 16-QAM IKSD (K=1, A=0.1)
[ | = 16-QAM IKSD (K=1, A=0.25)
-O-16-QAM KSD K=1
-+ 16-QAM KSD K=2
10 °F | -4 16-QAM KSD K=4

F | —A—64-QAM IKSD (K=2, A=0.01)
—#+— 64-QAM IKSD (K=1, A=0.1)
| | —e—64-QAM IKSD (K=1, A=0.01)
-4 -0~ 64-QAM KSD K=4

£ | =0~ 64-QAM KSD K=16

—*— 16-QAM ML
—% 64-QAM ML

SER

-5 7 i i i i ‘
10 5 10 15 20 25 30 35

SNR (dB)

Figure 5.5: Error performance fdrx 4 MIMO systems.

Let us first evaluate the SER performance. Eigl 5.5 showsyheclKSD and
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the hybrid K-best SD with different values &f. Clearly, for thel 6-QAM system,
the proposed hybrid IKSD achieves a near-ML performancemiequalsl, and
A equals0.25, while the hybrid K-best SD needs to choase= 4 in order to
obtain a near-ML performance. Interestingly, when chapsire same value for
K, the proposed hybrid IKSD acquires more performance g&ias the hybrid
K-best SD. For example, at an SER «f 3, the hybrid IKSD gains.5dB over
the hybrid K-best SD with' = 2 and obtains a gain of more than dB than the
latter with K = 1. Although the hybrid IKSD [ = 1) cannot achieve a near-
ML performance for all the SNRs, it still performs very clasethe optimal one.
Fig[5.5 also shows the performance fo64aQAM MIMO system. Similarly, the
proposed hybrid IKSD achieves a near-ML performance witmalker X than that
of the hybrid K-best SD. For example, the hybrid IKSD with = 1,A = 0.1
performs almost identically to the hybrid K-best SD with= 16. In this figure,
the performances with different values &xfare also shown. Whea gets larger,

the performance gains more.

10 = T T T
. ——16-QAM IKSD (K=2, A=0.05)
——16-QAM IKSD (K=1, A=0.05)
—5—16-QAM IKSD (K=1, A=0.1)
—9— 16-QAM IKSD (K=1, A=0.25)
~+ 16-QAM KSD K=2
-A-16-QAM KSD K=4
—A—64-QAM IKSD (K=2, 4=0.01) | -~ 4
—%—64-QAM IKSD (K=1, A=0.1) ]
—6—64-QAM IKSD (K=1, A=0.01)
-0~ 64-QAM KSD K=4
-0~ 64-QAM KSD K=16

Average Number of Nodes Visited

SNR (dB)

Figure 5.6: Running time fot x 4 MIMO systems.

A running time comparison for the same set-up is shown inlE§g. For thel 6-
QAM system, with a similar performance shown in Hig.1 5.5, hlgbrid IKSD with
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K =1,A = 0.25 searches3 nodes on average for the whole SNR region, while
the hybrid K-best SD with' = 4 searches aboutx 10 nodes (the former saves
about60% more than the latter). Running time savings are also actigve 64-
QAM system. For example, the running time of the hybrid IK3D£ 1, A = 0.1)

is 3.6 x 10%, butis2.2 x 103 for the hybrid K-best SD = 16); i.e., the proposed
hybrid IKSD obtains approximately4% running time savings over the hybrid K-
best SD.

Detection for Coded MIMO systems. The advantages of the IKSD are now
accessed in & x 4 coded MIMO system. The performance measured by BER, and
the running time of generating the candidate list are ingastd. The systematic
recursive convolutional code with rafé = 1/2 is used to encode the transmitted
bits sequencd with the frame length\/, = 8192, where the feed-forward and
feedback-generating polynomials &¥¢(D) = 1 + D? andGy(D) = 1+ D + D?
with memory lengti [10], respectively. A random interleaver is used here.

r1-o-K-best SD Iter=0, K=51
| |——IKSD lter=0, K=256
10° | * K-best SD Iter=4, K=512
" | —<—1KSD lter=4, K=256
L | —+—IKSD Iter=4, K=128
| —<—IKSD lIter=4, K=64

8 8.5 9 9.5 10 10.5 11
SNR (dB)

10

Figure 5.7: Error performance for a codéc 4 MIMO 16-QAM system.

In order to show the effects d@f, the performance and running time for different
K are shown in Figd. 5.7 and 5.8. By increasiigmore nodes are visited in the
search process, resulting in the increasing running tinttesoterative detection and
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decoding. However, the BER performance improves wiias larger. As shown in
the left axis, by using maximum iterations, the proposed list IKSD with= 256

achieves the performance of the conventional K-best SD With 512.
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Figure 5.8: Running time for a codddx 4 MIMO 16-QAM system.

As shown in Fig[ 518, whellk' decreases, the degradation of the running time
increases. For example, the average number of nodes visisgdund4.5 x 103
with K = 256, approximately2.4 x 103 with K = 128, and aboutl.4 x 103
with K = 64, respectively. However, the conventional list K-best SBitsiabout
7.5 x 10® nodes withK = 512. The proposed list IKSD gaind)% running time

savings with the same performance.

5.6 Conclusions

This chapter proposed an improved K-best SD (IKSD), whidfieaed a near-ML
performance at a reduced and roughly fixed running time.Kdrthe conventional
K-best SD, which retains a fixed numberigfnodes per layer, the proposed IKSD
expanded this number to all the nodes whose cost was lesgtham\. The con-

ventional K-best SD is thus a special case whes 0. The motivation for keeping
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additional nodes is to further reduce the likelihood that¢bnventional K-best SD
will discard the ML solution early. The proposed IKSD wasthar extended to
propose a general hybrid SD in order to further improve théopmance, verify-

ing that the main idea of the IKSD could be adopted with déférvariants of the
conventional K-best SD. For coded MIMO systems, a soft esitenof the IKSD

was developed as the list IKSD. It used the IKSD to generaedmdidate list for
joint iterative detection and decoding, resulting in rungntime savings over the

conventional list K-best SD.
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Chapter 6

Estimate-and-Forward Relay
Strategy

Sphere detection algorithms are also needed for MIMO re&dwaorks to reduce
the detection running time. This chapter proposes and seslgn EF scheme for
MIMO relay networks. The EF relay forwards the MMSE estimatéhe source
data to the destination and performs like AF and DF for the & high SNR
regions, respectively. Further, two approximate EF sclsdimelarge MIMO relay
networks are proposed to reduce the number of computatapeiations. The
first one, called list EF, computes a list-SD-based MMSEnestie and retains the
advantages of the exact EF relay at a negligible performisse while the second

one computes a Gaussian estimate.

6.1 Introduction

The conventional AF and DF relays were introduced in Se@idn At the relay
nodes, AF simply amplifies the received signal, while DF dstéhe transmit sig-
nal depending on the received signal. Another relay styatedjed EF [49] is a
powerful approach for uncoded single antenna relay netsvddnlike the AF and
DF relays, the EF relay computes and transmits an unconstt&MSE estimate,
resulting in an optimized relay function for all SNRs. Dueit®advantages, the
single-antenna EF relay has been investigated [92—-98]. Arddkiver for EF re-

laying was derived in [92]; moreover, [93] extended EF redgyinto coded single

LA version of this chapter has been submitted to IEEE Transel#¥s Commun. (2013).
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antenna relay networks. However, EF relaying has not betsnméad to MIMO
relays, and the high number of computational operationsFofde large MIMO
networks with high-order constellations and/or a large benof antennas has also
not been investigated.

The joint source-to-relay signal transmission design wasgstigated in[[99,
100], and [[101-103] worked on proposing relay/antennactele techniques for
performance improvements. In this chapter, we focus orglagsignal-processing
algorithm design and propose the MIMO EF relay strategy[[104

The main contributions of this chapter are summarized as follows.

1. The concept of the MIMO EF relay is developed. It forwardsaled version
of an unconstrained MMSE estimate of the source-transthgignal. The
scaling factor is chosen to satisfy the relay average powaastcaint. Unlike
AF and DF, the proposed EF works equally well for both low aightSNRS,

and thus no algorithm switching is required.

2. Tolllustrate the proposed EF relay function, two exarsple provided. They
involve a single antenna relay an@ & 2 MIMO relay. Both examples show
the convergence of EF to AF and DF for low and high SNRs. lespby
these two examples, we analyse and prove the convergendetof A and
DF for general MIMO relay networks with an arbitrary numbéaatennas.
Thus, in the low and high SNR regions, the EF converges to AF iR

respectively.

3. To provide a quality measure, the mean square error (M§atessions of
AF, DF and EF are derived. Moreover, as expected, the MSE aosgm
reveals that EF achieves the lowest MSE for all SNRs. Thperforms best
across all SNRs and eliminates the need for switching betatgmrithms for
different SNRs.

4. To reduce the number of computational operations whee #re high-order
constellations and/or a large number of antennas (large ®)IM/e propose

a list EF relay, which computes MMSE estimate by using a spldecoder
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(such as([22, 25, 47, 48]) to generate a list of candidateovectA 2 x 2
16-QAM MIMO relay system is examined.

5. To reduce the number of computational operations of theS#Mstimate,
the discrete sum of the terms in the exact MMSE estimate isoappately
a Gaussian integral, which can be evaluated in a closed-féms resulting
relay strategy is called Gaussian EF.

6. To compute the error rates of AF, DF and EF, extensive nigaleand simu-
lation results are generated. Both high-order constet@id-QAM and2 x 2
16-QAM systems are evaluated for a single relay network. Mesedo ver-
ify the advantages of the proposed list EF, a parallel (tiay)eand a hybrid
relay network are also simulated. The simulation resultdica our EF anal-

ysis, which found that the proposed EF outperforms AF andddilf SNRs.

This chapter is organized as follows: Section[6.2 describes MIMO relay
strategies including AF, DF and EF. Sectionl 6.3 presentptbposed list EF and
Gaussian EF. The proposed EF relays are extended to MIMOMayorelay net-
works in Sectioh 6]4. Simulation results and discussioagyaren in Section 615.
Finally, conclusions are drawn in Sectionl6.6.

6.2 Relay Strategies

Throughout this chapter, we assume that the channel stateniation is available
at the relay and the destination, and can be, for examplenasid by using the
transmitted pilot symbols [56]. Single-relay networks emeestigated first, and for
multiple relays networks, we assume identical relays tloahot cooperate. Our
simulation results will be discussed in Sectlon]6.5. Dueh taluable spatial
diversity arising from a direct link [105, 106], collaborag relaying with a direct
link outperforms that of the case without a direct link. Omawdation example is
given in Section 6]5.
The performance of MIMO memoryless relay networks depemdisally on

the relay function. In this section, only single-relay netls are considered for
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analysis, and thuH andG denote the source-relay and relay-destination channels
and have the same definition Hg andG,, in (2.16) and[(2.17), respectively. Sev-
eral memoryless relay functions for MIMO are discussed .n€ke system model
is as given in Fig[_2]4.

From the discussion of AF and DF relay schemes in Seéfioni2fdllows
that AF outperforms DF for low SNRs while the reverse is traeHigh SNRs.
Therefore, adaptive forwarding strategies [107,/108] Hasen developed, which
switch between AF and DF for different SNRs. We develop ther&iy as an
alternative. It achieves the advantages of AF and DF fordRSwithout switching

between the algorithms.

6.2.1 Estimate-and-Forward

This section presents the main idea of this chapter. Unlikedday, which trans-
mits the hard decisions, the EF relay transmits soft infeiona The soft informa-
tion which helps data detection at the destination is a daateonstrained MMSE
estimate of the transmitted signalat the relay. The MMSE estimate is the con-
ditional mean ofk, given the received signaland channeH, and may be stated
as

erQMs Xf(I"X, H>P(X>
ZXEQMS f(rlx, H)P(x) 7

where P(x) is the priori probability of the transmitted signa) and f (r|x, H) is

x=Ex|r,H) = (6.1)

the PDF ofr conditional onx and H. Because the addition noise vector is i.i.d

Gaussian, the PDF(r|x, H) may be written as

_ 2
f(rjx,H) = W exp (—M) . (6.2)

Assuming equal priori probabilities for all transmittedhsyols, the EF relay com-

putes the MMSE estimate

lr—Hx||?
S e, X exp (- L=HL

7 ZXEQMS eXp <—”r_0@> . ©3
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To satisfy the relay power constraint, the scaling factoE&® relaying, like that for

AF and DF relaying, is given by

AT T \/f DI ©4)

By using the total probability law [23], the PDF of receivegrsalr can be obtained

as

B . O 1 o |l - Hx|)? 1
- Z f(| vH)P( ) Z (WU%)MS p( U% ) M

x€QMs x€QMs
(6.5)

Thus, the relay retransmits the scaled version of the MMSHnate gx to the

destination. The EF relay function is therefore
[l —Hx|?
Pr EXEQMS X €Xp (_ 72 )
QEF(r) = 5 =12 X Hl 2 . (66)
S X2 f (r)dr > o €XP <_Hr_a§XH )

To demonstrate the EF relay scheme, two examples are destnest.
Example 1 (BPSK andM, = N, = M, = Ny = 1): Begin from the simplest

case of a signal antenna system using BPSK modulation. $rcise, the MMSE

estimate in[(6.13) can be written as

& = &(x|r, h) = tanh <h—2) : (6.7)
71

—x

wheretanh (z) = & —
To investigate the behaviour of this relay, thes discussed for low and high
SNRs, respectively. In the low-SNR region (the region widihhnoise power), by

expandinganh (x), the estimate at the relay becomes

exp(L%) — exp(~1%)

h by
T o
z = lim tanh (—2) = lim hl s
0%—)00 01 01—>oo exp(—g) + eXp(—o—%)
(1+5%)—-(1-1) h
= lim - = hm —Z, (6.8)
02—00 (1—|—0—§)—|—( —U—g) 0200 07

where the fact that* ~ 1+ whenz — 0is used. This MMSE estimate resembles

AF relaying with an amplify factorcf—z.
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In the high-SNR region, the MMSE estimation of the receivigpghal can be

written as

A . r .
7 = lim tanh(—) = lim
020 o1 02—0 exp

-1 %<O hr
=0 1 s =)

where the fact thalim, , ., e* = 0, and sgir) is an odd mathematical function
that extracts the sign of a real number is uséd.] (6.9) retkatsMMSE relaying

approaches DF when SNR is high enough.
To further confirm the advantages of the EF relay, the powahefMMSE

estimatef (||2||?) is also discussed here. This power is given by
excpy [ 22 Y —axn (2 )
p 20_2 oo eXp 2 eXp 0_2 T2
Iz —— =t [ e (—ga )
e (i) +ew (<)
( 2 T T
oo i) o o) er( )2 (~2)m
2\/27m% -0 2 p 207
wheno? — oo

f_oooo 12 x ST ; . (exp (—(T hy? ) +6Xp< (T+h) )) dr
7r0'1

whena1 — 0

(6.9)

2./2no?

Q

e wheno? — oo
] 1 wheno? — 0
(6.10)

This equation shows that the power of the MMSE estimate sedio being a scaled
transmit power at low SNR and approaches the power of haidideat the relay
at high SNR. Therefore[ (6.8) and (6.9) are affirmed. Thisrgda theoretically
verifies and agrees with the numerical results of the relagtfan (shown as Fig. 1
in [49])

Example 2 (BPSK andM, = N, = M, = Ny = 2): Next, a2 x 2 MIMO relay
system with BPSK inputs is considered. A real-valued MIM@yesystem and

constellation vectoR? = {( j ) , < _11 ) , < _11 ) , < 1 )} are assumed.

The received signal at the relay is
™ hir hio T1 ny
= = + ) 6.11
=)=l )] 61
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Thus, the relay function of the MMSE estimate can be deriwe(bLH).

34 ElDr
EF SNR = -10dB - A

(.| /EEEF SNR = 0dB /
EF SNR = 10dB ,

Relay output at 1st antenna

Figure 6.1: Relay function at different SNRs for the = 2, BPSK system.

The relay functions can be shown by Hig.16.1, where only thesimitted signal
at one antenna is shown, and the MIMO chanHek CAN/(0,1) is a randomly
generated Gaussian variatle= [—1.1756+0.77714, —0.7670+4-1.6233i; 1.3744+
0.10414,0.1604+1.9464:]. Note that the EF relay function is almost linear for small
values ofjr| like AF. Its slope gradually decreases and finally becométikiathe
slope of DF. Another observation is that EF performs siryilay AF for low SNR
(—10dB) and closer to DF for high SNR( dB).

6.2.2 Relationships among AF, DF and EF

Examples 1 and 2 indicate that EF approximates AF and DF iftotheSNR and
high SNR regions. In this subsection, it is theoreticallgwh that this relationship
indeed holds in general MIMO relay networks with an arbyrammber of antennas.
The constellation is assumed to be symmetric; ez, Q < —x € Q.

Low SNR Case: When the receive SNR at the relay is low, by usingl(6.3), the
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MMSE estimate can be derived as

||1'—Hx||2
S eou. xexp (LI
lim x = lim

2 2 [[r—Hx||?
o} —00 0} —00 _
! ! ZXGQMS exXp < o?

(_ —xHHHr—rHHx—l-xHHHHx)

I D xegMs X €XP 2

= 1m .
2 —xHHH r—rHHx+x7HHHx

o100 ZXGQJWS eXp <_ O'% )

(6.12)

Because the constellation is symmetric, and thus f(z) = 0 if f(z) is an even

function inzx, the above equality can be derived as

Z v X (1 _ —xHHHr—rHHx-‘,-xHHHHx)

. R . x€QMs o?

lim x = lim ! .

g%—}oo 0'%—}00 Z " <1 _ —xHHHr—rHHx—l-xHHHHx)
x€QMs

2
o1

Furthermore, it is known thaiim 2L = ( with probability one andim,, o e =

0200 g2
lim,_,o 1 + z; thus,

Z XxHHHr+rHHx
x€eQMs 0%

Ms xHHHHx
# ZXGQA{S o'%

1
= = Z xx? | Hr + Z xx! | H " | .
01|Q| ® x€QMs xEQMs

Finally, based on the property of the constellation, thees>a

2
02 =00 ot—oo |Q

:Bl,:BQEQ'Il'T; =
0,and ), .,co 172 = 0. Therefore, the limitation of the MMSE estimation in

the low-SNR region can be derived by

1
lim x = —— HY H v+ 6.13
U%gnoox 70] <Z\x| r—i—Zx r, ( )

z€Q z€Q

(6.13) shows that EF converges to AF in the low-SNR regionjrba slightly
different form than that of the pure AF ib_(2]18). (6.13) canfbrther simplified
for different constellations. For the real-valued MIMOagkystem, such as BPSK,
(6.13) can be rewritten as

2 x? x?
hm )f\( — Z:BEQ HTr — ZIEGQ

of o0 207|Q| at|Q|

WhenM, = N, =1, (6.14) become$ (6.8).

R (H"r). (6.14)
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For complex-valued modulations, such®sQAM, "~ _, 2> = 0 according to
the symmetric characteristi¢. (6113) becomes

2
X

lim % = Lﬁgd e

O’%—)OO O'1|Q|

(6.15)
Let us definex,;» = Hr. Then, EF becomes a matched filter AF when the
transmitted power is very low. Thus, this AF is called the chat filter AF, and
the relay function can defined as

P,
E(lIxmrl?)

High SNR Case: It is assumed that the ML detectionxs,;,, which can be
obtained by[(2.21). For high SNR, by splitting out the ML ga@uo, the MMSE

estimate can be derived as
_ 2
121m X = 121m "
020 020 erQMS exp (_ r U%x )
lr—Hxarr |2 lr—Hx||?
) X/ €Xp <_T + D xea Xexp — -
= 11m

0250 _ llr—Hxpp 2 _ llr—Hx]|?
i exp o7 + D e €XP =

[l —Hx||* — [[r —Hxpsp ||
ot

Gur(r) Hr. (6.16)

Xmr + ExeAXeXp <_
= lim

020 _lIr=Hx||2—|r—Hx || ’
e 1+ erA €xXp 2
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(6.17)

whereA = {x € QM: exceptx,,}. For allx € A, it can be found that # x,;;,
and the||r — Hx||? — ||r — Hx,,||* must be greater thain In other words, it is
lower bounded by > 0 with probability one as SNR goes to infinity. Therefore,

lim,2_,q exp (_|‘P—Hxl\2—llg—HXML||2) = 0 is derived. The MMSE estimate thus

approximates to
lim x = XMLy (618)
cr%—>0

which is in fact DF relaying. Consequently, in the high-SN#gion, EF and DF

converge.

6.2.3 MSE Analysis

The error rate at the destination is greatly affected by tbegssed signal of the re-
lay, and the MSE can efficiently indicate the quality of thexfarded signal. There-
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fore, the MSE of different relay strategies is analyzed hererder to facilitate the

MSE analysis, the system model is assumed to be

r =

]\ZS Hx + n, (6.19)

where the noise variane€ = 1, andp denotes the SNR of the MIMO system.
AF relaying: As the AF relay transmits a scaled version of the receivediasig
as shown in[(2.18), the MSE of AF relay is given as

r—,/]\ZSHX

LMMSE AF relaying: The MSE for this relay can be derived as

2

MSE.;r = & [ =& [|n|*] = N.. (6.20)

MSErvmse = HGI" —x|| }

e[l

-1
whereG = (£ HH+1) -, [£H.

DF relaying: According to [2.2]1), the MSE may be expressed as the Euclidea

distance between the detected symbol and the transmitteblady

GH—I

P+ (|G N, (6.21)

MSEpr =& [HfCML - XHZ} ) (6.22)

wherex,,, is the symbol detected by the ML algorithm according(to (. 2or
MIMO systems, the transmitted symhwlbelongs toQ":. Assumes, ; € QM:,
wherei = 1,2,..., M;andj = 1,2,...,|Q|. From the union bounding technique
[23], the MSE for DF relaying can be derived as

MSEDF = S[H)ACML—XHz}
M, 19| M, |29

= D22 lsi —sil*Plsiy — i)

i=1 j=1 j=1 j=1
M, 19l M, |9 3

P(s;;
-y ey el ey

i=1 j=1 j=1 j=1

wheres;,s; € Q. In order to obtain the pairwise error probability (PEP) th

symbolzx is assumed to be drawn from a real constellatthnThe closed form of
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this PEP is

. M,—-1-k
P(si; — §;;) = ' Z ( I ) (1= ", (6.24)

plls;1*+ls;1%)

Ms Q] M, Q| Ms—1

MSEpr = M‘Q|ZZZZHS — ]2 Z

W) By plugging [6.24) into[(6.23), the MSE
closed-form for DF relaying can be rewritten as
M,—1-k
( k ) (1 - M)k
=1 j=1 ;1 j=1 k=1
12 Q] M;—1

o oMl = sl Y (MR Y-

=1 j=1 k=1
(6.25)
EF relaying: Based on[(6]3) the MSE at the relay can be derived as
MSEEF = 8 [H)A(—XH2:|
2 ?
Spcon xemp (-2

S e (e
xeQMs ©XP o?

{ Mz””f?QH'HHr—xM g0

Ellxar —x|] . p— oo

= &

Q

Based on the cyclic permutations property of the trace
& [Rx"H"x)] = £ [Rx"H"x)] = € [R(Tr(H"xx"))] = 0. (6.26)

MSEgr is then derived as

MSEEF ~

01—>oo 1‘Q‘

Sacolol pym, 2
hmE H + P, p— 0

E [l = xI*], p = o0

{ MSE 4z, p— 0 6.27)

MSEpp, p = 00 °
Therefore, the MSEs of EF and AF relays converge in the loir $&gion, while
those of EF and DF relays converge in the high-SNR region.s Dehaviour is
anticipated in Section 6.2.2.
Example 3 (BPSK and)M, = N, = 2): In this case, for 2 x 2 MIMO channel,
the MSEs of all the relays are compared in Hig.] 6.2. As expedE€ is the best
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MSE at the relay

= AF
10 7+ ——EF
; —-DF
I —-4-LMMSE AF
10_4 I I I I I

-20 -15 -10 -5 15 20

0
SNR (dB)
Figure 6.2: MSE at different SNRs for the, = N, = 2 BPSK system.

performing scheme. DF performs the worst in the low-SNRaedat less than
—5dB) but close to the EF scheme in the high-SNR region; the revierfound
for the AF relay scheme. As well, the LMMSE AF relay schemepetbrms
AF. Above all, due to its small MSE, the EF relay is expectegliedd an optimal

performance at the destination.

6.3 Approximate Estimate-and-Forward

According to [6.8), if|Q|*: is small, it is easy to compute. However, when
|Q|M: is large, the direct computation &fin (6.3) is expensive. In this section, two

approximate EF relays are proposed for large MIMO systems.

6.3.1 List Estimate-and-Forward

Before introducing list EF, the motivation for this idea Mok explained. First the
termy = exp <—”‘"‘U$”2> in (6.3) is analysed. As, is an AWGN, =2

x*(M,), which is a chi-square distribution with/, degrees of freedom. Therefore,
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the PDF ofy) can be derived as

1 (logu) ™/ exp(gY)
W QMS/2F(MS/2) ’

fo(¥) = (6.28)

where Gamma functiohi(3) = ﬁ% Thus, the probability of) > a can be

obtained as

Fuwza)= [ fu(w)iv. (6.29)

For example, whed/; = 2, Fyy () > a) = 1;(\1/)5 If @ is @ number close tb, then
the tail probabilityFy (¢ > a) would be small value, suggesting that the probability
of a largey is very small. The above is the main motivation for develggist EF.

Consequently, most of the terms in the sum[of](6.3) are smdllcantribute
very little to the sum, especially in the high-SNR regiortuitively, one can find a
subset 0f0™: to compute the sum i (8.3). Assume that this subset can seten
by £, and then[(6.3) can be approximated to be

e xexp (L)
%~ N (6.30)

S exp (L2
xEL p cr%

In this chapter, the size of the li$f, is used to obtain the trade-offs between

the computational accuracy and operations. WNgns small,x is computed with
low running time. In the high-SNR region, because of thetliofithe exponential
function (im,_,_,, e* = 0),

_HEl2 T A
lim exp (—w) = lim exp (—w) =0, (6.31)

Py—-oo o3 720 o3

wherex # x. This result means the realplays a uniquely important rule in the
computation of the MMSE estimate. Specifically, wh€p = 1, list EF becomes
DF. Therefore, list EF can achieve the exact computatiomeMMSE estimate
even with a very small set for the high-SNR region.

Computing list£ is the main challenge. The SD [25] reduces the number of
computational operations of MIMO detection by performingearch limited to a

hypersphere. This approach can also be used to significattlyce the running
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time of detection for coded MIMO systems by adapting the3iBt to generate a
small list for the iterative detection and decoding pro¢&6s

In this chapter, list SD is utilized for the EF MIMO relay. T generates
a list of x satisfying||r — Hx||?> < d?. Intuitively, the constraint radiug®> can be
defined to be> = —0?1Ina, (0 < a < 1) based on[(6.29). Therefore, the list size
can be controlled via, which gives a trade-off between the estimation accuracy
and running time. Another more effective method of coninglithe list size is to
predefine the list siz&/,. This method is used in this chapter.

The process of generating the list is similar to that for iee3$D in [10]32].

This process is shown below for completeness:

1. Setthe initial radius to beo, keep the firstV, nodes in the lisC, and update
the radius to be the smallest cost of the existing leaf nodes.

2. When the list is full, compare the cumulative cost of th&trmeode in the
hypersphere with the largest cost in the list; then keep dloke mvith a smaller

cost; otherwise, remove the node from the list.

3. At the end of the search process, a list Wi nodes having the smallest

costs is obtained.

After obtaining thex by using [6.30), the relay function can be given as

r—Hx||? ’
2 xer OXP (‘%)
wheref can be derived by using (6.4). Thus, the scaled MMSE estimati the
relay will be retransmitted to the destination.
Example4 (16-QAM and M, = N, = M, = Ny = 2): In this case, the list size

is assumed to b6 for the proposed list EF. However, for the exact MMSE at the

Ger(r) = (6.32)

relay, there ar@s = 162 = 256 elements, where this-QAM constellation

o {%(w bi), abe{=3—1, 1,3}} |

By using the sphere decoder, list EF chooses only the sizitiet of QM-
having the smaller costs dfr — Hx||>. For a random generated channel ma-
trix H = %[hn,hlg; hgl,hgg], Wherehij ~ CN(O, 1) with Z,j S {1,2} (H =
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Figure 6.3: The real part of relay functions at one of theyrelatennas when
SNR = 10dB for the N, = 2, 16-QAM system.

[1.0036 — 0.56887,0.1398 4 0.59044; 0.2061 + 0.49257, 1.1226 — 0.17234]), the re-
lay functions of list EF and exact EF for an SNR1#fdB are shown in Fig[ 613,
where the y-axis is the real part of the transmitted sign#tafirst antenna of the
relay. Fig.[6.8 shows that list EF and exact EF have virtudigntical relay func-
tions. This observation confirms that our proposed list Ei€iehtly computes the

MMSE estimation while achieving the performance of the ekdcrelay.

6.3.2 Gaussian EF

To reduce the number of computational operations of the MMSimnation at the
relay, another approximate method is proposed here. Therignber of com-

putational operations is due to the discrete suniin (6.3)lingg Q|+ terms to

be computed. Instead of computirgn (6.3) vector-by-vector, it is proposed to

computex = [y, Zo, ... Za] €ntry-by-entry for large systems. Thus, the MMSE
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estimation at the relay can be rewritten as

ineg € inieglwsf1 exp <_%>
Zmieg foiengﬂ exXp (—%)

ineg T; iniegl\lsfl exp (— ”r_H*i’;i—hiiviHQ)

_ - (6.33)
r—H_;x_i—hjz;
2 0 2ox_jeQMs1 €XP <_ o7 )

wherex_; denotes the vector containing all the other entries except

i'i = E(.Z'Z'|I',H):

The sums in the numerator and denominator are hard to confpi@- is
large. In this chapter, the second sum in the denominatonantkrator of[(6.33)
can be approximated by an integral. This approximation esadourate, especially
for high-order constellations and large antenna systéfu33) is thus approximated
as

Eq: coTi fexp ( M) exp (_|‘P_H7i);72i_hixi|‘2)dx_l
Il |T lr—H_; '1—h- |12 . (6.34)
2aico Jexp ( X_) P <_ - 7):% = )dX_i

The conventional MMSE estimation requires the sum oveihal| ©|: terms,

~
€X; ~

while only |Q| elements in the constellation are summed by using the peapos
integral approximation as shown [n(6134). In a MIMO systeitinw large constel-
lation, Gaussian approximations are common [109], allgwor the closed-form
evaluation of the integrals. Assumirg; to be a Gaussian vector with mean zero
and matched varianeg derived from the constellation, the finite sum[in(6.33) can
be replaced by an integration as showrin (6.34), where tegral can be derived
by using the vector integration.

For Gaussian vectoy, it is known that

/ exp [—%(x —m)?E 1 (x - m)} dx = /det(27X). (6.35)

By using the integration of the Gaussian vectorlin (6.35) dedomposition and
combination of the vectors, the integration [in_(6.34) candbaved in a closed-

form, which leads to

- [hizi]|> _ C—(A” 1BH A-1BH)
&= 2o ™ Ndet (motoz A1) exp (‘ i 72 ﬂ
L H
Emieg [\/det (ro?02 A1) exp <_Hhio-$%i”2 _ C—(A- 1BI: A(A-1BH) )}
(6.36)
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where

A = oI+ 02H_ {"H_;
B = o2(r—hz)"H,
C = o) (r"r—r"hz; — (hyz)"r). (6.37)

Similarly, all the estimations of the symb@)] in thex = [#, 2o, ...2,]7 can be

derived by using (6.36). After deriving, the relay function can be given as
Grr(r) = BX, (6.38)

whereg is a scaling factor satisfying the transmit power constrairthe relay and
can also be derived according o (6.4).

Example 5 (BPSK andM, = N, = M, = N, = 2): In this example, the relay
function of Gaussian approximation EF is discussed. It ssia®d that? = 1,
H = [h;, hy] = I,, Q = {—1, 1} and a real-valued system. As shown[in (6.11),
the received signal at the relay is

r=[h hz}{x1]+["1], (6.39)

no

0 1
from of EF function is given by

_ H _
2w i [\/det (2moto? A=) exp <—Hxi!2 _ C-(AT1BY) AA 1BH))]

whereh; = [ 1 },hz = { 0 } andr = { :1 } According to [(6.36), the closed-
2

v 207 207
o Z \/d t (2 2 2A_1) _H%H2 _ C—(AleH)HA(AleH)
z,€Q e TO10; exp 207 207
2 D
Lri4ry—2r — J%il 142472 42rp— J%lﬂ
eXp | — 20% —exp | — 20%
3 2 ) (640)
1+T%+T%_2T1_o’%il 1+r%+r§+2r2_0%1+1
exp | — 207 +exp | — 557
where

A=c?+1, B=r", C=r?+ri—ri(z;+a2").

Example 6 (16-QAM and M, = N, = M, = N, = 2): Fig. [6.4 compares
the relay functions of the proposed Gaussian EF and the &fadbr a10dB
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S
a

Figure 6.4: The relay functions at one of the relay antennaasmgNR = 10dB
for the N, = 2, BPSK system.

SNR and a random generated channel matix= [0.0852 — 0.3322,0.8470 —
0.9795¢; —0.7000 + 0.6268:, —0.4191 — 1.3836:]. Note that the Gaussian EF ap-
proximately coincides with the exact EF relay, while compgitonly 16 summa-

tions instead oi62 = 256 for the exact EF.

6.4 EF in Two-Way Relay Networks

Figure 6.5: A two-way relay system model.

A two-way relay network[[110=113] is illustrated in Fig_b:&here the first
terminal nodel; hasN7; > 1 antennas, the reldy hasN, > 1 receive antennas,

and M, > 1 transmit antennas, and the second terminal ibdbas Ny, > 1
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antennas. For simplicity, we assume only one relay in theisway relay network,
where the two terminals exchange information via the relay.

In the first time slot, the two terminals send the transmisigdal to the relay at
the same time. The relay receives the transmitted signal frathT; andT,. This
signal can be given as

r=H;x; + Gix5 +n, (6.41)

whereH; = [h;] € CY*¥11 and G, = [hy] € CY*N12 denotes the MIMO
channel betweefh; andR and betweefM, andR, respectively. The elements Hf;
andG, are i.i.d. complex Gaussian(, g;; ~ CN(0,1)); n = [ny,ny,...ny,]7,
andn; ~ CN(0,02) (i = 1,2,...,N,) is an AWGN with mean zero and variance
o?; The transmitted signals &; andR, are denoted by, = [z11, T12, - - ., T1ny, |
andxy = [wa1, T2, ..., Tan,,] , respectively. We also assume each transmitted
symbol is chosen from the same constellation; irg.,€ Q (i = 1,2), and the
average transmitted powerd§||x;||*] = P;, whereP, is the transmitted power, and
&(x) is the expectation of.

In the second time slot, a memoryless relay receives thalsigromT; and
T, and generates and transmits the processed signal to thsitpmyminal. Its
relay functiongG(r) uses the current received sigmabnly. With the assumption
of the relay average powét,, the transmitted signa&l(r) should satisfy the power
constrainte[||G(r)||?] = P.. Therefore, after the relay retransmits the processed

signals, the received signal&t andT,; may be written as
y1 = HaoG(r) + ny, (6.42)

y2 = G2G(r) + ng, (6.43)

respectively, wherdl, = [h;;] € CY*M and Gy = [g;;] € CNr2*Mr denote
the MIMO channel betweeR andT; and betweemR andT,, respectively. The
elements of, andG, are i.i.d. complex Gaussian, ang = [ny1, n12, . . . 1Ny, |
andng = [na1, nag, - . - Nang, |’ (ni; ~ CN(0,0%).

EF Relay Function: Based on Section 6.2.1, the MMSE estimate of the re-
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ceived signat at the relay may be given as
r :5(H1X1 + G1X2|I')

= Z (H1X1 -+ G1X2) P(H1x1 + G1X2|I')
A

(6.44)
E (H1X1 + G1X2) f(I'|X1, X9, Hla Gl)

A
Ef(r|X1,X2,H1,G1) ’
A

whereA is the set of satisfying; € OVt andx, € QN2 f(r|x;, %2, Hi, Gy) is
the PDF ofr conditional onx,, x,, H; andG,. Because the addition noise vector
is i.i.d Gaussian, the PDF(r|x;, x2, Hy, G1) may be written as

f(rlx1,x2, Hi, Gy)

_ 1 b (_ v — Hyx; — G1X2H2) . (6.45)

B (71-0-2)NT1+NT2 o2

The EF relay computes the MMSE estimate

Z (H1X1 + G1X2) €xXp <_ Hr_HlX;Q_GlmIIQ)
A A
Ir—

S exp (‘ Hr_Hlxclrz_Glx2||2>

A

As with AF and DF relaying, to satisfy the relay power constiiahe scaling factor

P, P,
— T - . 6.
P= Ve \/fiufuzﬂr)dr (©47

By using the total probability law, the PDF of the receiveghsilr can be derived

(6.46)

is given by

as

fr) = flrx)P(x)
A

_ 1 Jx — Hix|? (6.48)
_Z (71-0-2‘Q|)NT1+NT2 Xp |\~ o2 !

A

wherex = [x; x| andH = [H;G;]. Thus, the relay retransmits the scaled version

of MMSE estimate5x to the destination. The EF relay function is therefore

P. .
Ger(r) = \/ T el <" (6.49)

Similarly, the list EF can also be extended and applied togedhe running

time in large MIMO two-way relay networks. In this thesis, Wwave omitted the

details.
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6.5 Simulation Results

In this section, the performance measured by SER is comparreiifferent strate-
gies (the proposed list EF, DF, AF, LMMSE AF, and matchedrfiltE), where the
power at the source and the relay are eq®al€ P,) and noise variance? = o3.

At the destination, the received signal (2.17) is decodedsiyg the SD[[21]. The

list size of the proposed list EF is chosen todder comparison where necessary.

One-way Relay Networks:
10° ¢ 1 : : :
: —*—List EF
[ —e—Exact EF
L +DF 1
10} AR -
f o LMMSE AF ]
-0~ Matched Filter AR]
—A—Gaussian EF
o 52
o 10 *
10_3§
—4 3
10 L L L L
0 5 10 15 20 25 30 35

SNR (dB)

Figure 6.6: Error performance indax 4 MIMO relay system withi-QAM.

Firstly, The SER performance of different relay strategsegiven for a4 x 4
4-QAM MIMO relay network in Fig.[6.6. The three proposed EFasebchemes
are compared with the classical DF and AF schemes. Accotdisgction 6.2]1,
exact EF needs to compute all thie = 256 terms inQ™-. In contrast, list EF4
terms) and Gaussian EEFterms) significantly reduce the number of computational
operations. Interestingly, list EF outperforms Gaussi&n FEurther, in the low-
SNR region, list EF achieves a similar performance to th&fLMMSE AF and
the matched filter AF, and this finding agrees with the resulfgl1%). Both AF
and matched filter AF achieve the full diversity ordem the high-SNR region.
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Moreover, the full diversity order is also achieved by ligt, Exact EF and the
DF relay. However, the full diversity order cannot be ob¢airoy LMMSE and
Gaussian AF, both of which obtain diversity orderThis loss may be caused by
the low quality of the forwarded signal at the relay. Intéiregy, Gaussian EF
outperforms LMMSE AF by dB. However, the proposed List EF outperforms all
the AFs. For example, at an SERI0f 3, list EF gainss.5 dB, 9 dB and18 dB over
the pure AF, matched filter AF and LMMSE AF, respectively. S&@bservations

confirm the benefits of the list EF relay.

—=—AF
——DF
——Exact EF
—+*—List EF

ANAGAN
AR
b\

102 & \x\\ \
® R

SER

N\
N\
AR
AN\
0 5 10 5 20 25 30

SNR (dB)

Figure 6.7: Error performance in a paralkek 2 MIMO relay network with16-
QAM.

In this chapter, the advantages of single EF relay netwoake been shown,
but their extension to parallel multiple EF relay networksiraightforward. Fur-
thermore, while DF suffers severe performance degradatiersoft EF provides a
better performance. In order to verify this performancengtiie simulation results
for a two-relay network are provided in Fig._6.7, which comgsathe SER of list
EF, Exact EF, AF and DF. Note that list EF performs very clasexact EF. Fur-
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thermore, at an SER dfd—3, both the exact and list EF gaindB and2 dB over
the DF and AF relay strategies, respectively. Reliable isbfirmation thus helps
to achieve performance gains even over AF and DF in paralay metworks, and

this advantage will increase with the number of relays.

10

s ;’ ;’
——AF
:’\ el

> N

10-1 —>—Exact EF
=X —*—List EF
R
AN
® N
e‘ea@ N\
N\
AN
-4
10 0 5 10 15 20 25 30

SNR (dB)

Figure 6.8: Error performance in a paratkek 2 MIMO relay network with direct
link and 16-QAM.

As an example of a collaborative relay network, a two-relayafiel network
with direct link is represented in Fid._6.8. The two relays assumed to be at
the middle point between the source and destinatibn € d,.; = 0.5 X dg),
and the path loss exponent = 3. As discussed in Sectidn 6.2, the case with
a direct link outperforms the case without a direct link (F®7). However, the
achieved performance gain by the proposed EF scheme isesntfadin that for
the case without a direct link. That is, for an SER16f 3, both the exact EF
and list EF obtair).5 dB and1.3 dB performance gains over the DF and AF relay
case, respectively, because the direct link brings moiahiel information for the

destination here.
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Figure 6.9: Error performance in a hybtick 2 MIMO relay network with16-QAM.

For a collaborative relaying case (a hybrid relay netwaitk®, SER of the pro-
posed EF is demonstrated in Fig. 16.9. The system now has plaradlel paths,
and the last path consists ®&erial relay nodes. Clearly, from this figure, the pro-
posed list EF and exact EF perform identically, and outperf&F and DF with
2.5dB and1dB at an SER ofl0~3, respectively. Furthermore, AF performs better
than DF in the low-SNR regiorb(NR. < 19 dB), while the reverse is true for high
SNRs. However, the proposed EF and list EF strategies alaey®ve a better
performance than AF and DF for all SNRs.

The above simulation results show that the exact EF relgyesidrms DF and
AF in all SNRs for the large MIMO relay networks. Moreovergevthe proposed
list EF performs almost identically to exact EF. Althougle throposed Gaussian
EF performs below list EF, it offers another option for reithgcthe number of
computational operations of the relay. Finally, the adagatof EF is that switching
between AF and DF as SNR changes is unnecessary. A unifiedtiaigavorks for
all cases.

EF in two-way relays: In this section, the performances measured by SER for
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different strategies (the proposed list EF, EF, DF, and AE)ampared in SISO
and MIMO two-way relay networks, where the power at the seuwncd the relay
are equal ©; = P,), and the noise variane€ = o} = ¢2. Atthe second terminal,
the received signdl(6.42) is decoded by using the spheeetitat method [24]. We

choose the list size of the proposed list EF totbe
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Figure 6.10: Error performance in a single antenna two-vedgyr network with
16-QAM.

First, the SER performance for a SISO two-way relay systeth ai6 QAM
is given in Fig. [6.1D, which compares the proposed EF reldf tiie classical
relays (AF and DF) for different SNRs. As expected, both Eistand exact EF
all achieve performance gains over DF and AF. For examplan&8ER = 1072,
the proposed exact EF gaingB and3 dB over the DF and AF relay, respectively.
Furthermore, the proposed exact EF needs to compute albthe 256 terms in
QNmi+Nr2 while list EF computes only terms. Nevertheless, list EF performs
approximately the same as exact EF over all SNRs. Theredtttegugh list EF
generates only an approximate MMSE estimate, its perfoce@excellent, and
its number of computational operations is low. Anotherrnesting observation is
that AF outperforms DF in the low-SNR region, while it perftg worse than DF
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in the high-SNR region. However, the proposed two EF strasegbtain the best
SER performance for all SNRs without switching algorithms.

% 10 % —— AF
f DF
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10_3§
—4
1 L L L L L L L
0 0 5 1 25 30 35

15 20
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Figure 6.11: Error performance irax 2 two-way relay network, withH 6-QAM.

In order to evaluate the benefits of the proposed EF relay fdd®two-way
relay networks. The SER performance of different relaytstias for & x 2 16-
QAM relay network is given in Fig[_6.11. The two proposed ERyeschemes
are compared with the classical DF and AF schemes. Exact &ffsrte compute
all 16>"2 = 65536 terms. In contrast, list ER4(terms ) significantly reduces the
number of computational operations. Note that EF outperfothe DF and AF
strategies. For example, at 8RR = 10~?, EF gainsl.5 dB and3 dB over DF and
AF, respectively. Furthermore, with a small list siXg = 4, list EF approaches the

performance of exact EF witN; = 65536 with negligible performance loss.

6.6 Conclusions

For MIMO one-way and two-way relay networks, this chaptepgmsed an estimate-
and-forward (EF) relay strategy. The transfer charadtesi®f the EF relay and its

MSE were analysed, showing its minimum MSE compared to thatFoand DF
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for all SNRs. It was shown that this relay performed simylad AF and DF in
the low and high SNR regions. With a large number of antenndfahigh-order
constellations, two approximate EF relays were also pregptsreduce the number

of computational operations:

1. List EF: This relay uses the sphere decoder for generating the eddist.
Thus, its number of the computational operations is reduesgecially for
large MIMO relay networks, while it attains nearly the penfiance of the
exact EF relay. Consequently, it offers a flexible tradebeffiveen accuracy

and computational operations.

2. Gaussian EF In exact EF, the estimaté (6.3) is based on all the vectors
x € QM and the computing of this estimate involves high numberoofic
putational operations. To overcome this issue, the Gaugdtareduces the
M,-dimensional estimation to an one-dimensional MMSE sotutiThis re-

duction is achieved by replacing the discrete sum with a &ansntegral.

Both the proposed list EF and Gaussian EF significantly redlube number
of computational operations, especially for the MIMO retetworks with a high-
order constellation and/or a large number of antennas. inmalation results con-
firmed that the proposed EF outperformed AF and DF for all tNRS& Moreover,
for multiple parallel networks, the performance gains of @er AF and DF are

expected to increase with an increasing number of relaysiode
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Chapter 7

Conclusions and Future Work

Next-generation wireless communication systems mustigeedvigh data rates and
improved reliability. These goals are achieved by: (1) MIN®2hnology based
on multiple-antenna transmitter and receiver terminats(@hcooperation between
wireless nodes enabling intermediate nodes (relays) teafiak messages from source
to destination. Both MIMO and cooperative communicatichidve the potential
for tremendous improvements in coverage area, data ratesility and transmit
power reduction.

This thesis developed MIMO and cooperative detection élgois that achieved
near-optimal performance with low running time. These atgms may thus lead
to the development of networks with large signal consteltest and large numbers
of antennas, which are prohibitively complex with convendl strategies despite
their great potential to improve spectral efficiency. Theesrch outcomes may
permit the implementation of a simpler and cheaper hardwaa&ing the commu-
nication systems easy to develop and saving unnecessatgl agpenses (energy
costs, as discussed in Section 2.1.2).

e ChaptefBintroduced an SRC-SD, which achieved a reduceihgitime and
a reduced variability for near-ML performance. This SD tegied the radius
of the conventional SD by a heuristic SNR-dependent fadtsmpplication
in coded MIMO and relay networks was also investigated tdfioonthat
the proposed SRC-SD indeed had a near-optimal performantca eoughly

constant running time.
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e A probability-distribution-based SPSD was developed ia@hi4. Uniform
pruning, geometric pruning, threshold pruning, hybridrpng and depth-
dependent pruning were proposed and analysed. All of thése achieved
lower running time than the conventional SD in the low-SN&aa. In par-
ticular, the threshold pruning rule obtained the most gigaunt running time
savings while achieving the full diversity order, and thenming time savings

increased with the number of transmit antennas.

e In Chapter 5, an IKSD was proposed, which had lower runningg tthan
the conventional K-best SD. The proposed IKSD, which acddevnear-ML
performance at a reduced and roughly fixed running time,rekgéthe fixed
K nodes and all the additional nodes whose cost was within 4 gmeshold
value A of the cost of the:-th node. This algorithm was extended to create
a hybrid SD by combining the full enumeration with the progebsKSD.

Finally, a soft version of the IKSD was also developed asigtéKSD.

e Chapter b proposed an EF relay and investigated forwardiragegies in
MIMO one-way and two-way relay networks. Analysis and siatian re-
sults verified that EF outperformed the conventional AF aRdsDategies for
all SNRs without switching algorithms. Furthermore, thefpenance gains

increased with the number of relays.

Further research could focus on developing and examininglmelay functions

and sphere detection technologies for multiple-antenliag reetworks:

e Coded MIMO Relay Networks: Soft information relaying/ [114, 115] com-
bines the advantages of the classical relay protocols AP&n@®F achieves
a coding gain, but suffers from propagation of the errorshef decoder at
the relay. AF lacks the benefits of channel coding, but avertdsr prop-
agation and preserves reliability information. Chapler@ealoped optimal
relay functions and the resulting performance analysig rioning time and
enhanced relay strategies and detection process for uthddtO. These

algorithms could be readily extended for coded MIMO.
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e Systemswithout Perfect Channel Information: Since wireless channels are
time-varying, the relay and the destination need accuradeip-to-date CSI.
While relay strategies and detection algorithms take pe@&I for granted,
the available CSl in actual systems is generally imperfebg[117], resulting
in suboptimal performance. Hence, further research coeNeldp robust re-
laying methods and signal detection algorithms and stuplyia performance

of the developed strategies.

Furthermore, when perfect CSl is not available, the relal/the destination
need to update past (imperfect) CSI. This refinement coulddbéeved by
advanced signal processing techniques, relying on anglation of CSI at
a given time instant with its past values (e.g., as in an agtesssive model).
Iterating between such channel estimation and detectagestwould thus

enable better symbol detection.

115



Bibliography

[1] (2013, Feb.) Cisco visual networking index: Global mebdata traffic
forecast update. [Online]. Available: http://www.cisoom/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/ns827 /wpaperc11-520862.html

[2] “Mobile broadband capacity constraints and the needdptimization,”

Rysavy research, Tech. Rep., Feb. 2010.

[3] E. Biglieri, R. Calderbank, A. Constantinides, A. Gataigh, A. Paulraj, and
H. V. Poor,MIMO Wireless Communications New York, NY, USA: Cam-
bridge University Press, 2007.

[4] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperativ@amunication in
wireless networks,JEEE Commun. Magvol. 42, no. 10, pp. 74 — 80, Oct.
2004.

[5] Wireless LAN Medium Access Control (MAC)and Physical LgHY)
Specifications Amendment 5: Enhancements for Higher ThpuglEEE
Std 802.11n Std., Oct. 2009.

[6] Technical Specification Group Radio Access Network; Evolyaiversal
Terrestrial Radio Access (E-UTRA); LTE physical layer; &exh descrip-
tion (Release 93GPP 3GPP TS 36.201 V9.1 Std., Mar. 2010.

[7] “IEEE standard for local and metropolitan area netwaqplast 16: Air in-
terface for fixed and mobile broadband wireless accessrmgsaenendment
2: Physical and medium access control layers for combined fiad mobile
operation in licensed bands and corrigendumBEE Std 802.16e-2005 and

116


http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

IEEE Std 802.16-2004/Cor 1-2005 (Amendment and CorrigenttulEEE
Std 802.16-2004)pp. 1 822, 2006.

[8] F. J. MacWilliams and N. J. A. Sloandhe Theory of Error-Correcting
Codes North Holland, Jun. 1988.

[9] T.-D. Chiueh and P.-Y. TsaQDFDM Baseband Receiver Design for Wireless
Communications Wiley Publishing, 2007.

[10] B. Hochwald and S. ten Brink, “Achieving near-capacdy a multiple-
antenna channellEEE Trans. Communvol. 51, no. 3, pp. 389 — 399, Mar.
2003.

[11] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, andhbras, “LTE-
advanced: next-generation wireless broadband techndimgted paper],”
IEEE Wireless Commuyvol. 17, no. 3, pp. 10 —-22, Jun. 2010.

[12] Q. Li, R. Hu, Y. Qian, and G. Wu, “Cooperative communioat for wire-
less networks: techniques and applications in LTE-adwdsgstems,|IEEE
Wireless Communvol. 19, no. 2, pp. 22 —29, Apr. 2012.

[13] “IEEE Standard for Information technology—Telecommuations and infor-
mation exchange between systems—Local and metropolinreatworks—
Specific requirements-Part 11: Wireless LAN Medium Accesmitl
(MAC) and Physical Layer (PHY) Specifications Amendment 8h&nce-
ments for Very High Throughput in the 60 GHz BantEEE Std 802.11ad-
2012 (Amendment to IEEE Std 802.11-2012, as amended by IHEE S
802.11ae-2012 and IEEE Std 802.11aa-20pp) 1-628, 2012.

[14] Z. Guo and P. Nilsson, “Algorithm and implementatiortioé K-best sphere
decoding for MIMO detection,JEEE J. Sel. Areas Commuynwol. 24, no. 3,
pp. 491 — 503, Mar. 2006.

[15] B. C. Levy, Principles of Signal Detection and Parameter Estimation

Springer Publishing Company, Incorporated, 2008.

117



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W. Guo and T. OFarrell, “Reducing energy consumptiowméless commu-

nications,” 2011.

W. Zhang,State Space Search: Algorithms, Complexity and Applinatio
New York: Springer-Verlag, 1999.

J. M. Rabaey, A. Chandrakasan, and B. Nikadbgital integrated circuits-
A design perspectiv@nd ed. Prentice Hall, 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéaitroduction to
Algorithms 3rd ed. The MIT Press, 2009.

J. Jalden and B. Ottersten, “On the complexity of splie@oding in digital
communications, IEEE Trans. Signal Processvol. 53, no. 4, pp. 1474 —
1484, Apr. 2005.

B. Hassibi and H. Vikalo, “On the sphere-decoding aitlon I. expected
complexity,” IEEE Trans. Signal Processvol. 53, no. 8, pp. 2806 — 2818,
Aug. 2005.

T. Cui and C. Tellambura, “An efficient generalized sgghéecoder for rank-
deficient MIMO systems JEEE Commun. Lettvol. 9, no. 5, pp. 423 — 425,
May 2005.

A. Papoulis and S. PillaRrobability, Random Variables and Stochastic Pro-

cesses McGraw-Hill Education, Dec. 2001.

O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice codecdeer for space-
time codes, JTEEE Commun. Lettvol. 4, no. 5, pp. 161-163, May 2000.

E. Viterbo and J. Boutros, “A universal lattice code déer for fading chan-
nels,”IEEE Trans. Inf. Theoryol. 45, no. 5, pp. 1639-1642, Jul. 1999.

E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closgxiint search in lat-
tices,”IEEE Trans. Inf. Theoryvol. 48, no. 8, pp. 2201 — 2214, Aug. 2002.

118



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Damen, H. El Gamal, and G. Caire, “On maximum-likeldd detection
and the search for the closest lattice poitEEE Trans. Inf. Theoryvol. 49,
no. 10, pp. 2389 — 2402, Oct. 2003.

U. Fincke and M. Pohst, “Improved methods for calculgtvectors of short
length in a lattice, including a complexity analysisfath. Comput.vol. 44,
pp. 463—471, Apr. 1985.

C. P. Schnorr and M. Euchner, “Lattice basis reductiomproved practical
algorithms and solving subset sum problenMdth. Programmingvol. 66,
pp. 181-191, 1994.

L. Barbero and J. Thompson, “Fixing the complexity of ttphere decoder
for MIMO detection,” IEEE Trans. Wireless Commuynol. 7, no. 6, pp.
2131-2142, Jun. 2008.

M. Tuchler and A. C. Singer, “Turbo equalization: An oview,” IEEE
Trans. Inf. Theoryvol. 57, no. 2, pp. 920 -952, Feb. 2011.

S. Han, T. Cui, and C. Tellambura, “Improved K-Best gghéetection for
uncoded and coded MIMO system&?EE Wireless Commun. Lettol. 1,
no. 5, pp. 472 —475, Oct. 2012.

S. Han and C. Tellambura, “Soft-output extension of BiiRSadaptive sphere
decoder for coded MIMO systems,” Proc. 2012 IEEE Canadian Conf. on
Elect. and Comput. EngMontreal, Quebec, Apr. 29-May 2 2012.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near 8han limit error-
correcting coding and decoding: Turbo-codes. 1,Pimoc. IEEE Int. Conf.
on Commun.(ICC), Geneywol. 2, May 1993, pp. 1064-1070.

L. Barbero and J. Thompson, “Extending a fixed-compiesphere decoder
to obtain likelihood information for turbo-MIMO systemd$EEE Trans. Veh.
Technol, vol. 57, no. 5, pp. 2804 —2814, Sep. 2008.

119



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. Laneman, D. Tse, and G. Wornell, “Cooperative diigia wireless net-
works: Efficient protocols and outage behavidEEE Trans. Inf. Theory
vol. 50, no. 12, pp. 3062 — 3080, Dec. 2004.

G. Amarasuriya, C. Tellambura, and M. Ardakani, “Penfance analysis
framework for transmit antenna selection strategies opecative MIMO
AF relay networks, IEEE Trans. Veh. Technolvol. 60, no. 7, pp. 3030 —
3044, Sep. 2011.

——, "Asymptotically-exact performance bounds of AF iop relaying
over Nakagami fadingJEEE Trans. Communvol. 59, no. 4, pp. 962 —967,
Apr. 2011.

Y. Jing and B. Hassibi, “Distributed space-time codingvireless relay net-
works,” IEEE Trans. Wireless Communol. 5, no. 12, pp. 3524 —3536, Dec.
2006.

G. Amarasuriya, C. Tellambura, and M. Ardakani, “Jaielay and antenna
selection for dual-hop Amplify-and-Forward MIMO relay natrks,” IEEE
Trans. Wireless Commuyrvol. 11, no. 2, pp. 493 —499, Feb. 2012.

G. Sharma, V. Ganwani, U. Desai, and S. Merchant, “Rerémce analysis
of maximum likelihood detection for decode and forward MiViay chan-
nels in Rayleigh fading,JEEE Trans. Wireless Commurol. 9, no. 9, pp.
2880 —2889, Sep. 2010.

G. Amarasuriya, C. Tellambura, and M. Ardakani, “Penfiance analysis
of hop-by-hop beamforming for dual-hop MIMO AF relay netwsy IEEE
Trans. Communyvol. 60, no. 7, pp. 1823 —1837, Jul. 2012.

K. Amiri, M. Wu, J. Cavallaro, and J. Lilleberg, “Coogive partial detec-
tion using MIMO relays,"IEEE Trans. Signal Processrol. 59, no. 10, pp.
5039 -5049, Oct. 2011.

120



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Sabharwal and U. Mitra, “Bounds and protocols for gereonstrained
relay channelIEEE Trans. Inf. Theoryol. 53, no. 7, pp. 2616 —2624, Jul.
2007.

A. Scaglione, D. Goeckel, and J. Laneman, “Cooperatoramunications in
mobile ad hoc networksJEEE Signal Process. Magvol. 23, no. 5, pp. 18
— 29, Sep. 2006.

D. Gesbert, “Robust linear MIMO receivers: a minimunrograte ap-
proach,”IEEE Trans. Signal Process/ol. 51, no. 11, pp. 2863 — 2871, Nov.
2003.

S. Han and C. Tellambura, “A complexity-efficient sphdecoder for MIMO
systems,” irProc. IEEE Int. Conf. on CommurKyoto, Japan, Jun. 2011, pp.
1-5.

T. Cui, T. Ho, and C. Tellambura, “Statistical pruningr near maximum
likelihood detection of MIMO systems,” iRroc. of IEEE Int. Conf. on Com-
mun. (ICC) Jun. 2007, pp. 5462 -5467.

K. S. Gomadam and S. A. Jafar, “Optimal relay functigtydior SNR max-
imization in memoryless relay networkslEEE J. Sel. Areas Commuyn.
vol. 25, no. 2, pp. 390 —401, Feb. 2007.

A. Murugan, H. El Gamal, M. Damen, and G. Caire, “A unifiedmework
for tree search decoding: rediscovering the sequentialdé¢ IEEE Trans.
Inf. Theory vol. 52, no. 3, pp. 933 —953, Mar. 2006.

T. Cui and C. Tellambura, “Generalized feedback de&tedbor spatial mul-
tiplexing multi-antenna systemslEEE Trans. Wireless Communol. 7,
no. 2, pp. 594 —603, Feb. 2008.

J.-S. Kim, S.-H. Moon, and |. Lee, “A new reduced comjiie¥L detection
scheme for MIMO systemslEEE Trans. Communvol. 58, no. 4, pp. 1302—-
1310, Apr. 2010.

121



[53] B. Shim and I. Kang, “Sphere decoding with a probabdistee pruning,”
IEEE Trans. Signal Process/ol. 56, no. 10, pp. 4867-4878, Oct. 2008.

[54] ——, “On further reduction of complexity in tree prunifgased sphere
search, TEEE Trans. Communvol. 58, no. 2, pp. 417-422, Feb. 2010.

[55] K. Suand I. Wassell, “A new ordering for efficient sphdexoding,” inProc.
IEEE Int. Conf. on Commun.(ICCYol. 3, May 2005, pp. 1906 — 1910.

[56] T. Cui and C. Tellambura, “Joint data detection and clehrstimation for
OFDM systems,|IEEE Trans. Communvol. 54, no. 4, pp. 670 — 679, Apr.
2006.

[57] —, “Generalized feedback detection for MIMO systerirs Proc. of IEEE
GLOBECOM 2005, pp. 3077-3081.

[58] A. Wiesel, X. Mestre, A. Pages, and J. Fonollosa, “Efitiimplementa-
tion of sphere demodulation,” iRroc. IEEE Workshop on Signal Process.
Advances in Wireless Commuydun. 2003, pp. 36 — 40.

[59] J. Anderson and S. Mohan, “Sequential coding algorgh® survey and
cost analysis, IEEE Trans. Communyol. 32, no. 2, pp. 169 — 176, Feb.
1984.

[60] L. Barbero and J. Thompson, “A fixed-complexity MIMO detor based
on the complex sphere decoder,”®Pmnoc. of IEEE 7th Workshop on Signal
Process. Advances in Wireless Commaal. 2006, pp. 1 -5.

[61] R. Gowaikar and B. Hassibi, “Efficient statistical pm@ for maximum like-
lihood decoding,” inProc. IEEE Int. Conf. on Acoustics Speech and Signal
Process. (ICASSPYol. 5, Apr. 2003, pp. 49-52.

[62] W. Zhao and G. Giannakis, “Sphere decoding algorithritb inproved ra-
dius search,1IEEE Trans. Communyol. 53, no. 7, pp. 1104 — 1109, Jul.
2005.

122



[63] Z. Guo and P. Nilsson, “Reduced complexity Schnorrithwer decoding al-
gorithms for MIMO systems,JEEE Commun. Lettvol. 8, no. 5, pp. 286 —
288, May 2004.

[64] A. Younis, R. Mesleh, H. Haas, and P. Grant, “Reduced merity sphere
decoder for spatial modulation detection receivers,Pinc. IEEE Global
Commun. ConfDec. 2010, pp. 1 -5.

[65] I.-W. Lai, G. Ascheid, H. Meyr, and T.-D. Chiueh, “Effemt channel-
adaptive MIMO detection using just-acceptable error talEEE Trans.
Wireless Communvol. 10, no. 1, pp. 73 =83, Jan. 2011.

[66] Y. H. Wu, Y. T. Liu, H.-C. Chang, Y.-C. Liao, and H.-C. Chg, “Early-
pruned K-best sphere decoding algorithm based on radiustreamts,” in
Proc. IEEE Int. Conf. on Commun.(ICC)9-23 2008, pp. 4496 —4500.

[67] Y. Fan and J. Thompson, “MIMO configurations for relayaohels: Theory
and practice,IEEE Trans. Wireless Commuynol. 6, no. 5, pp. 1774-1786,
May 2007.

[68] J. Chen, X. Yu, and C.-C. Kuo, “V-BLAST receiver and pmrhance in
MIMO relay networks with imperfect CSI,” iRroc. IEEE Int. Conf. on Com-
mun.(ICC) May 2008, pp. 4436 —4440.

[69] S.Han, C. Tellambura, and T. Cui, “SNR-dependent rmdantrol sphere de-
tection for MIMO systems and relay network3fans. Emerging Tel. Tecgh.
Feb. 2013.

[70] T. Cui, J. Tang, F. Gao, and C. Tellambura, “Moment-blagsarameter es-
timation and blind spectrum sensing for quadrature angwitonodulation,”
IEEE Trans. Communvol. 59, no. 2, pp. 613-623, 2011.

[71] P. Wolniansky, G. Foschini, G. Golden, and R. Valenau&V/-BLAST: an
architecture for realizing very high data rates over thie-gcattering wireless
channel,” inProc. URSI Int. Symposium on Signals, Systems and Elestonic
(ISSSE)Sep. 1998, pp. 295 —300.

123



[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Z.Ma, B. Honary, P. Fan, and E. Larsson, “Stopping dotefor complexity
reduction of sphere decodindEEE Commun. Lettvol. 13, no. 6, pp. 402
—404, Jun. 2009.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparisd optimal and
sub-optimal MAP decoding algorithms operating in the logxdm,” in Proc.
IEEE Int. Conf. on Commun.(ICC), Seatthel. 2, Jun. 1995, pp. 1009 -1013

vol.2.

R. Gowaikar and B. Hassibi, “Statistical pruning forangnaximum likeli-
hood decoding,JEEE Trans. Signal Processiol. 55, no. 6, pp. 2661 -2675,
Jun. 2007.

A. Ghaderipoor and C. Tellambura, “A statistical pnuistrategy for
Schnorr-Euchner sphere decodindgEE Commun. Lettvol. 12, no. 2, pp.
121 -123, Feb. 2008.

J. Ahn, H.-N. Lee, and K. Kim, “Schnorr-Euchner spheeeader with sta-
tistical pruning for MIMO systems,” ilProc. the 6th Int. Symposium on Wire-
less Commun. Systems (ISWCEp. 2009, pp. 619 —623.

S. Lei, Q. Tu, D. Yang, and J. Chen, “Probabilistic trearpng for fixed-
complexity sphere decoder in MIMO systems,’Rroc. Int. Conf. on Wire-
less Commun. and Signal Process. (WGE&R}. 2010, pp. 1 —6.

S. Han and C. Tellambura, “Complexity-efficient detestfor MIMO re-
lay networks,” inProc. 12th IEEE Canadian Workshop on Inform. Theory
Kelowna, Canada, May 2011, pp. 126 —129.

S. Lei, X. Zhang, C. Xiong, and D. Yang, “An efficient ssdical pruning
algorithm for fixed-complexity sphere decodeEICE Trans. Communvol.
E94.B, no. 3, pp. 834-837, 2011.

R. Y. Chang and W.-H. Chung, “Efficient tree-search MIM&Xection with
probabilistic node ordering,” ifroc. of IEEE ICC Jun. 2011, pp. 1 -5.

124



[81] J. Maurer, G. Matz, and D. Seethaler, “On the diversibyaplexity tradeoff
in MIMO spatial multiplexing systems,” iRroc. Fortieth Asilomar Conf. on
Signals, Systems and Computédsv. 2006, pp. 2077 —2081.

[82] J. Maurer, J. Jalden, D. Seethaler, and G. Matz, “Adhg\a continuous
diversity-complexity tradeoff in wireless MIMO systemsavpre-equalized
sphere-decoding/EEE J. Sel. Topics Signal Procesgol. 3, no. 6, pp. 986
—999, Dec. 20009.

[83] T. Cui, S. Han, and C. Tellambura, “Probability-dibtrtion-based node
pruning for sphere decodingEEE Trans. Veh. Technolol. 62, no. 4, pp.
1586-1596, May 2013.

[84] X. Zhu and R. D. Murch, “Performance analysis of maximiikelihood
detection in a MIMO antenna systemEEE Trans. Communvol. 50, pp.
187-191, Feb. 2002.

[85] C.-A. Shen and A. Eltawil, “A radius adaptive K-best dder with early
termination: Algorithm and VLSI architecturd EEE Trans. Circuits Syst. |,
Reg. Papersvol. 57, no. 9, pp. 2476 —2486, Sep. 2010.

[86] T.-H. Kim and I.-C. Park, “Small-area and low-energybést MIMO detec-
tor using relaxed tree expansion and early forwardigEE Trans. Circuits
Syst. |, Reg. Papersol. 57, no. 10, pp. 2753 -2761, Oct. 2010.

[87] C. Xiong, X. Zhang, K. Wu, and D. Yang, “A simplified fixecbmplexity
sphere decoder for V-BLAST system&#EE Commun. Lettvol. 13, no. 8,
pp. 582 —584, Aug. 2009.

[88] K.-C. Lai, C.-C. Huang, and J.-J. Jia, “Variation of theed-complexity
sphere decoder[EEE Commun. Lettvol. 15, no. 9, pp. 1001 -1003, Sep.
2011.

[89] P. Bengough and S. Simmons, “Sorting-based VLSI agchiires for the M-
algorithm and T-algorithm trellis decoder$EEE Trans. Communvol. 43,
no. 3, pp. 514 -522, Mar. 1995.

125



[90] S. Simmons, “Breadth-first trellis decoding with adepteffort,” IEEE
Trans. Communyvol. 38, no. 1, pp. 3-12, Jan. 1990.

[91] N. Heidmann, T. Wiegand, and S. Paul, “Architecture aRBGA-
implementation of a high throughput K+-best detector,”Hroc. Europe

Conf. Exhibition in Design, Automation Tebtar. 2011, pp. 1 —6.

[92] P. Weitkemper and G. Dietl, “Maximum likelihood receivfor MMSE re-
laying,” in Proc. of IEEE ICC, (ICC)Jun. 2011, pp. 1 -5.

[93] P. Weitkemper, D. Wubben, and K.-D. Kammeyer, “MinimM&E relaying
for arbitrary signal constellations in coded relay netvejrkn Proc. IEEE
69th Veh. Technol. Conf. (VTC Springyr. 2009, pp. 1 5.

[94] C. Serediuc, J. Lilleberg, and B. Aazhang, “MAP detectwith soft infor-
mation in an estimate and forward relay network,Froc. the Forty Fourth
Asilomar Conference on Signals, Systems and Computierg 2010, pp.
121 -125.

[95] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Pratiqguantizer de-
sign for half-duplex estimate-and-forward relayindEEE Trans. Commun.
vol. 59, no. 1, pp. 74 -83, Jan. 2011.

[96] R. Dabora and S. Servetto, “On the role of estimatefandard with time
sharing in cooperative communicationBZEE Trans. Inf. Theoryvol. 54,
no. 10, pp. 4409 —4431, Oct. 2008.

[97] W. Li and J. Lilleberg, “Optimized discrete-estimatad-forward relaying
strategy,” inProc. IEEE Wireless Commun. and Networking Conf. (WCGNC)
Apr. 2012, pp. 963 —967.

[98] R. Thobaben and E. Larsson, “Sensor-network-aideditiwg radio: On
the optimal receiver for estimate-and-forward protocqiglied to the relay
channel,” inProc. Forty-First Asilomar Conference on Signals, Systant
ComputersNov. 2007, pp. 777 —781.

126



[99] O. Munoz-Medina, J. Vidal, and A. Agustin, “Linear tisaeiver design in
nonregenerative relays with channel state informatitieZE Trans. Signal
Process.vol. 55, no. 6, pp. 2593 —2604, Jun. 2007.

[100] F.-S. Tseng, W.-R. Wu, and J.-Y. Wu, “Joint sourc&ygbrecoder design in
nonregenerative cooperative systems using an MMSE aitgtEEE Trans.
Wireless Communvol. 8, no. 10, pp. 4928 —4933, Oct. 2009.

[101] G. Amarasuriya, C. Tellambura, and M. Ardakani, “Joilay and antenna
selection for dual-hop amplify-and-forward MIMO relay netks,” IEEE
Trans. Wireless Commuyrvol. 11, no. 2, pp. 493-499, 2012.

[102] ——, “Two-way amplify-and-forward MIMO relay netwoskwith antenna
selection,” inproc. IEEE Global Telecommunications Conference (GLOBE-
COM), 2011, pp. 1-5.

[103] ——, “Transmit antenna selection strategies for coapee MIMO AF relay
networks,” inproc. IEEE Global Telecommunications Conference (GLOBE-
COM), 2010, pp. 1-5.

[104] S. Han, T. Cui, and C. Tellambura, “Estimate-and-Faodwelay strategy for
MIMO relay networks,"IEEE Trans. Wireless Commuyi2013, revised.

[105] Y. Rong, “Optimal joint source and relay beamformiray MIMO relays
with direct link,” IEEE Commun. Lettvol. 14, no. 5, pp. 390-392, 2010.

[106] H. Wan, W. Chen, and J. Ji, “Efficient linear transmissstrategy for MIMO
relaying broadcast channels with direct linKEEE Wireless Commun. Lett.
vol. 1, no. 1, pp. 14-17, 2012.

[107] J. Fricke, M. Butt, and P. Hoeher, “Quality-orientethptive forwarding for
wireless relaying, JTEEE Commun. Lettvol. 12, no. 3, pp. 200 —202, Mar.
2008.

127



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Q. Li, S. Ting, A. Pandharipande, and Y. Han, “Adaptiwe-way relaying
and outage analysidEEE Trans. Wireless Communol. 8, no. 6, pp. 3288

—3299, Jun. 2009.

H. El Gamal and J. Hammons, A.R., “Analyzing the turlezadder using the
Gaussian approximationlEEE Trans. Inf. Theoryvol. 47, no. 2, pp. 671

—686, Feb. 2001.

Q. You, Z. Chen, and Y. Li, “A multihop transmission gthe with detect-
and-forward protocol and network coding in two-way relagifey channels,”
IEEE Trans. Veh. Technolol. 61, no. 1, pp. 433 —438, Jan. 2012.

T. Cui, F. Gao, T. Ho, and A. Nallanathan, “Distributggiace time coding
for two-way wireless relay networkslEEE Trans. Signal Processtol. 57,
no. 2, pp. 658 —671, Feb. 2009.

S. Bagheri, F. Verde, D. Darsena, and A. Scaglionent®aized decode-
and-forward strategies for two-way relay network&EEE Trans. Wireless
Commun.vol. 10, no. 12, pp. 4214 —4225, Dec. 2011.

R. Vaze and R. Heath, “On the capacity and diversitytiplexing tradeoff
of the two-way relay channelfJEEE Trans. Inf. Theoryvol. 57, no. 7, pp.
4219 -4234, Jul. 2011.

J. Du, M. Xiao, and M. Skoglund, “Cooperative networkding strategies
for wireless relay networks with BackhaulEEE Trans. Communvol. 59,
no. 9, pp. 2502 -2514, Sep. 2011.

D. Kim, H.-M. Kim, and G.-H. Im, “Improved network-cedl cooperative
transmission with low-complexity adaptation to wirelesgignels,”|IEEE
Trans. Communyvol. 59, no. 10, pp. 2916 —2927, Oct. 2011.

P. Ubaidulla and A. Chockalingam, “Relay precodeimopation in MIMO-
relay networks with imperfect CSIJEEE Trans. Signal Processvol. 59,
no. 11, pp. 5473 -5484, Nov. 2011.

128



[117] B. Chalise and L. Vandendorpe, “MIMO relay design foultipoint-to-
multipoint communications with imperfect channel stateimation,”|EEE
Trans. Signal Processvol. 57, no. 7, pp. 2785 —-2796, Jul. 2009.

129



Appendix A

Proof of the ML Rule in MIMO
Relay Networks

Proof: According to the norm expansidgfH||? = H”H, (3.18) is expanded as

Nre
Xy = argmin (Z lly: — Gix|]* + ||lya — Hsdss||2> .

Ns
xe€QNs i=1

Nre Nre
= arg min [Z yiHyZ- + yfl{yd — XH (Z Gf{yl + Hglyd>
i=1

N,
x€QNs i=1

Nre Nre
- <Z vIGi+yl Hsd> x4 xt <Z GIG; + Hﬁ{led> x| .

i=1 1=1
(A.1)

Assumingy andH' are derived, the ML expression can be expanded similarly

as

%, = argmin|ly — Hx|[?
x€QNs
= argmin (y/Hy/ —xTH'y' — y"PH'x + XHH,HH/X) . (A.2)

x€QNs

By comparing[(A.1) and(Al2), it is clear that

NTE

H"H =) GI'G,+HIH,,, (A.3a)
i=1
NTE

H"y =) Glly; + Hiya. (A.3b)

i=1
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Nye H N,
Further, because df Y~ GIG; + Hﬁled) = > GIG; + HIH,,, (A.33)
=1 i=1

can be shown to yielc_l

Nre B/ Nee 2
HAH — <Z GI'G; + Hfdﬂsd> <Z GI'G; + Hfdﬂsd>

i=1 =1

- o . (A.4)
Nire 2 Nye 2
= (Z GG+ Hﬁ&Hsd> (Z GIG; + HZHsd>
=1 =1
Thus, the equivalent channel matfk is
Nye 1/2
H — (Z GG, + Hg{lﬂsd> : (A.5)
=1

whereH' = H'Z,

According to the equivalent channel matrix (A.1) ahd (AtPg equivalent re-

ceived signay are derived as

N're Nre
y = HHT) (Z Gy, + HZst) = (H)! (Z Gly, + Hﬁlysd> :
i=1 i=1
(A.6)
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Appendix B

Proof of the FER of Statistical
Pruning SD

B.1 Proof for Uniform Pruning

Proof: In order to derive the FER upper bound for the uniform rule, ean
let s = [sﬁl), e sfﬁr denote the transmitted vector afid= [3;,...,38,]"
denote the vector returned by the SPSD. It can be derivedjhatPr(s # sV).
DenoteA as the event that) is visited. By using the total probability theorem

[23], the FER can be expressed as
Py =Pr(8 # sW|A°) Pr(A°) + Pr (s # sV |A) Pr (4)
(B.1)
=Pr(A°) +Pr (s #sV|A) Pr(A),

wherePr(s # s(M|A°) = 1. FirstPr(A°) (or 1 — Pr(A)) is derived and then
the second term of (Bl1) is analysed. lset [54,...,3,]" be the temporary
value fors = [sy, ..., s,|T during the statistical pruning search as in Algorithm
I, which corresponds to a leaf node in the search treadenotes the event that
s\ is visited. Note thaPr(A) = Pr(s = s(), the probability that the leaf node
corresponding te'!) is visited and is given by
Pr(A) =Pr(s = sW|35, = sV Pr(5, = sV)
+ Pr(s = sW|5, # sM) Pr(5, # sV) (B.2)
=Pr(s =sW|3, = s\V) Pr(4,),
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wherePr(3, = s\)) = Pr(4,), andPr(s = sV|3, # si') = 0. By a similar

argument,[(B.R) can be expanded as

n—1
Pr(A) = Pr(A,) [[ Pr(Ailsis = sih, ., 5, = s, (B.3)
=1

Let B; denote the event thafl) is not the first element ofl in Algorithm 1. It
can be derived as
Pr(A;) =Pr(A;|B,) Pr(B,) + Pr(A;|B;) Pr(B;)
=(1 —p) Pr(B,),

wherePr(A¢|B,) = 1 — p, andPr(A¢|B:) = 0. The union bound foPr(B5,,)

(B.4)

is given by

Pr(B,) <E,, ,E o) Z Pr <}zn — s ?
" NEINES (B.5)

r)],

wheres'? is the nearest neighbor of". From [23], the squared norm of the

‘ 2

< ‘zn — sy

entries of upper-triangular matriR. havey? distribution with different degrees
of freedom without column reordering, specifically,;|* ~ x*(2(n—i+1)), for
i=1,...,nand|r;;|* ~ x*(2), for j > i, wherex?(k) denotes the chi-squared
distribution with% degrees of freedom. It can be obtained as

¢ r00)

Pr (}zn — Tnmsn)‘Q < ‘Zn - rn,nsg)\z

= (\/ Tnn (sg) - 31(11)> ‘2 /202> .

whereQ(+) is the Q-function. Using the Chernoff bound for the Q-fuanti

(B.6)

Pr(B,) can be bounded as

2 @ of
Pr(B,) <E,, .Eqa | Y exp —=
) Sn o
s sV (B.7)
1 2|
_ESS) Z ‘57(12)_857’1)‘2 S 1 + d?nln/ll(j'z’

st 1+

402
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whered,,;, is the minimum Euclidean distance ¢f, and the equality comes
from the moment generating functionwf,,, M, . (t) = E{e""~}. Therefore,
Pr(A¢) can be bounded as

Pr(A7) < (1 _p)l—l—dL—Q|/40'2' (B.8)

min

Similarly, the conditional probability is bounded as

Pr(Af|8;41 = sl(-i)l, ey 8y = 3511))
B.9
<(1-p) < = t=1...,n—1 (B.9)
(14 dfyn/40?)
Finally, an upper bound oRr(A¢) is obtained as
Pr(A°) =1 — Pr(A)
n—1
=1 — Pr(A,) [ Pr(Ailsis = s, 50 = )
=1
n—1
=1- (1 - Pr(Afl)) H (1 - Pr(Aﬂgl-‘rl = Sz('.lg.)h sy Sp = 32”)) .
=1

In the high-SNR regionPr(AS) and Pr(A¢|3;.1 = sﬁ)l,...,fs”n = sﬁf)), i =

1,...,n— 1are smallPr(A°) can be well approximated as
n—1
Pr(A°) ~Pr(AS) + Z Pr(Af|S;41 = 55’217 )
e o (B.11)
Q
<(1— -,
S e

Pr (8 # s|A) in (BJ) is then bounded in the following. Denote the set of
all the visited leaf nodes b¥, which is the candidate set for the output of the
statistical pruning detection. Since some leaf nodes mayrineed,|Z| < |Q|".

In case of4, s!) € Z. The union bound foPr (s # s(M|A) is given by

P s s S Y

s(MeQn s(2) T s(2)£s(1) (812)
Pr (2~ R < 12— Rst|")
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By using the Chernoff bound for the Q-function to the summan(B.12), it
can be readily obtained that

PR SR D —

| Q‘TL dmin "
s(l)EQ” 5(2)6175(2)7és(1) 1 Ao2

n (B.13)
1 Q|
§|I‘ d2- n S d2» N
(1+) N1+

Combining [B.18) and(B.11), the frame error rate can be Hedras
Py =Pr(A°) + Pr (8 #sW|A) Pr(4)

<1-pY |de| )+< |Qd|2 ) (B.14)

i=1 (1+?i; T+ 2
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B.2 Proof for Threshold Pruning

Proof: For threshold rule, the approach is similar to the analysisiform rule.
All the events are defined the same as before. For the theephahing rule, the
union bound forP(AS) is given by

P(A}) <E,,,E o [Pr(|n.|* > d,)]
+00

= fo(x)de =1—~ (1, 5—”) ,

8 202

o2

(B.15)

whered,, controls the strength of pruning as in Pruning Rul¢,Z;) is the pdf

of x*(2), and~y(a, ) is the incomplete gamma function. Similarly, it can be
obtained as
1 ee
Pr(Af|8i41 = Sz(-i-)lv 8y = Sg)) < fi(z)dz (B.16)

= 5
o2

wheref;(z) is the pdf ofy*(2(n — i + 1)). The FER is upper bounded as

n +o0 n
peY fi<x>das+< = ) - (8.17)
i=1 "7 58 1

min

402
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