
 

 

University of Alberta 
 

 

 

LOW COMPLEXITY DETECTION TECHNIQUES FOR MIMO AND 

COOPERATIVE NETWORKS 

 
by 

 

Shuangshuang Han 
 

 

 

 

A thesis submitted to the Faculty of Graduate Studies and Research  

in partial fulfillment of the requirements for the degree of  

 

 

Doctor of Philosophy 

in 

Communications 
 

 

 

 

Department of Electrical and Computer Engineering 
 

 

 

 

 

©Shuangshuang Han 

Fall 2013 

Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 

users of the thesis of these terms. 

 

The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 

otherwise reproduced in any material form whatsoever without the author's prior written permission. 



Abstract

This thesis investigates detection technologies for multiple-input multiple-output

(MIMO) systems and cooperative communications. The exploitation of detection

methods and relay strategies to achieve near-optimal performance (measured by

symbol error rate or minimum mean squared error) and reductions of the running

time of detection methods are the main focus of this thesis. Asignal-to-noise ratio

(SNR)-dependent radius control sphere detector (SD) algorithm, a general frame-

work of statistical pruning SD, and an improved K-best SD areproposed. These

SD algorithms reduce the detection running time in terms of the average number

of visited nodes, with negligible performance loss compared with that of optimal

maximum likelihood (ML) detection. In order to optimize theMIMO relay perfor-

mance, an estimate-and-forward (EF) relay strategy is alsodeveloped. The emerg-

ing trend towards large MIMO and cooperative communicationsystems makes the

development of low running time strategies with near-optimal performance more

important. Thus, an EF list generated by SD is also proposed to reduce the number

of computational operations for the EF scheme in large MIMO relay networks; this

method is called list EF.

Overall, the research findings should help to reduce the running time and im-

prove the reliability of detection algorithms, to achieve adesirable trade-off be-

tween running time and performance, and to provide efficiently-implementable

MIMO and cooperative detection algorithms.
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Chapter 1

Introduction

1.1 The Growth of Wireless Communications

Wireless communications is one of the most vibrant areas in the communication

field today. A topic of study since the 1960s, it has seen a surge of research activity

in the past decade. Two fundamental challenges are to improve the reliability and

spectral efficiency of wireless networks. The reliability of the delivery of messages

to the intended recipients may be measured by the bit error rates, while spectral

efficiency refers to the delivered bit rate for a given bandwidth. The improvement

in these metrics has helped the growth of wireless traffic.

Figure 1.1: Mobile data traffic of wireless communications devices [1]

One of the primary contributors to traffic growth is the increasing number of

wireless devices accessing mobile networks worldwide, as shown in the mobile
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Figure 1.2: Average demand per user and average capacity peruser [2]

wireless traffic forecast by Cisco systems (Fig. 1.1). The data rate demand and the

system capacity (Fig. 1.2) drive the need for more sophisticated communications

technologies.

Two such technologies under consideration for the wirelessnetworks are

• Multiple-input multiple-output (MIMO) technology [3], which uses multi-

ple antennas at both the transmitter and receiver to improvecommunication

performance. MIMO offers significant increases in data throughput and link

range without additional bandwidth or increased transmit power.

• Cooperative communication [4], which most commonly involves multiple-

hop techniques. The basic idea is to have one or more intermediate nodes

(relays) that will repeat or retransmit the signal from one node (sender) to

another (destination).

These two technologies are introduced next.

1.1.1 MIMO Technology

As mentioned above, MIMO technology has attracted attention due to its significant

improvements in the spectral efficiency and/or reliability. Fig. 1.3 shows a MIMO

system that uses multiple antennas to create multiple linksbetween the transmit-

ter and receiver. These multiple links create the space dimension, which can be

2



exploited for reliability and/or efficiency gains. MIMO technology is exploited

in the latest WiFi (IEEE 802.11n [5]) data communication standard, 3rd-generation

partnership project (3GPP) long-term evolution (LTE) cellular communication stan-

dard [6], and in the IEEE 802.16e (WiMAX) metropolitan area networks (MAN)

standard [7].

Transmitter

ReceiverMIMO Channel

Figure 1.3: MIMO Channel

MIMO can be used to mitigate wireless channel impairments and resource con-

straints. This mitigation is possible by exploiting the time, frequency, and spatial

dimensions. The resulting MIMO performance gains are arraygain, spatial diver-

sity gain, spatial multiplexing gain and interference reduction [3]:

• Array gain means a power gain of the transmitted signals thatis achieved by

using multiple-antennas at the transmitter and/or receiver, with respect to the

single-input single-output case. It can be simply called the power gain result-

ing from a coherent combining effect of the wireless signalsat the receiver.

It improves resistance to noise, thus improving the coverage of a wireless

network.

• Spatial diversity gain refers to the ability to mitigate multipath fading by using

multiple antennas to improve the quality and reliability ofa wireless link.

This gain arises because the multiple links created by MIMO offer a receiver

several observations of the same transmitted signal.
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• Spatial multiplexing, a special case of MIMO, transmits multiple independent

data signals, so-called streams, from each of the multiple transmit antennas.

Thus, the space dimension is reused, or multiplexed, more than once. Spatial

multiplexing gain refers to the increased data rate due to the use of MIMO.

• Interference reduction refers to the ability of MIMO to exploit the spatial

dimension to increase the separation between users who share time and fre-

quency resources.

In general, simultaneously exploiting all the benefits above might be impossible.

However, using some combination of the benefits across a wireless network will

result in improved capacity, coverage and reliability.

1.1.2 Coded MIMO

MIMO systems use digital modulations and codes to be able to recover from errors

made during the transmission. Channel codes, also known as error correction codes

(ECCs) [8, 9], play an indispensable role in all modern wireless communication

systems.

The ECC encoder computes additional bits (also called checkbits) from the

original information bits. In a block ECC, information bitsand the additional re-

dundant bits form a block of bits called a codeword. This codeword is transmitted

to the receiver, whose decoder exploits the redundancy in the received data to de-

termine the original data bits.

Therefore, over unreliable or noisy communication channels, channel codes

(ECCs) provide redundancy for guarding against bursty fading, interference, and

additive receiver noise. Receiver design for channel-coded systems dates from the

1960s, while that for multiple-antenna channels began largely in the 1980s [3].

By using channel codes, the reliability of a MIMO channel canbe improved,

leading to the development of coded MIMO systems with suitable detection and

decoding techniques. For instance, the iterative MIMO receiver [10] enables high-

throughput transmission at low signal-to-noise ratios (SNRs). Such transmission

approaches the theoretical capacity limit.
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1.1.3 Cooperative Relays

The additional constraints posed by limited power and scarce frequency bandwidth

make the task of designing high-data-rate, high-reliability wireless communication

systems challenging. Because even with MIMO technology, the difficulties of meet-

ing the demands and expectations on wireless communicationsystems (e.g., over a

10-fold increase in data rates) are challenging, additional means to enhance wire-

less performance are necessary. Consequently, cooperation among wireless nodes

that enables intermediate nodes (relays) to forward messages from source to des-

tination is potentially very useful. Such cooperative relays and MIMO are being

considered for next-generation wireless systems such as LTE-Advanced [11, 12]

and IEEE 802.11ad [13].

In cooperative communications, several independent pathsbetween the source

and the destination are created using relay channels, as illustrated in Fig. 1.4. The

relay channels can be thought of as providing independent auxiliary channels to the

direct channel between the source and destination.

Source Destination

Relay

Relay Relay

Figure 1.4: Relay channels

These relay channels improve wireless performance due to cooperation diver-

sity. That is, the destination receives independent copiesof the transmit signal,

which can be combined to achieve performance gains such as diversity and mul-

tiplexing gains. These gains may translate into decreased transmission powers,

higher capacity or better cell coverage [4].
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A key aspect of the cooperative relays is the processing of the signal received

from the source node. While different relaying schemes result in different system

performance, they can be categorized generally into amplify-and-forward (AF) and

decode-and-forward (DF) relaying schemes [4].

• An AF relay simply scales the received signal and transmits an amplified

version to the destination. Although this relay process amplifies noise, the

destination receives multiple versions of the transmittedsignal.

• A DF relay decodes the received signal, re-encodes, and thenretransmits to

the receiver. In this case, if the relay makes decoding errors, the digital errors

will propagate to the destination.

Section 2.4 provides more discussion of relays.

1.2 Motivation

As mentioned in Section 1.1, extraordinary wireless growth(1300% between 2012

and 2017 as shown in Fig. 1.1) has driven the need for MIMO and cooperative

relays. Reliability and spectral efficiency are the main performance gains. How-

ever, these gains depend critically on the detection algorithms employed by the re-

ceiver. In particular, guaranteeing statistically optimal performance requires max-

imum likelihood (ML) detection. However, ML detection for MIMO and relays

is significantly more complicated than that for single-antenna systems. Naive de-

tection algorithms require computational complexity1 that increases exponentially

with the number of transmit antennas and the order of the signal constellation. Con-

sequently, the optimal detection algorithms at the receiver end require very high

computing power, which typically exceeds the capabilitiesof the typical integrated

circuits currently being used in wireless communication [14].

Therefore, this thesis focuses on the development of low-complexity MIMO

and/or relay detection algorithms. Low-complexity and near-optimal detection al-

gorithms have the potential for adoption in emerging wireless standards. Their

1Computational complexity is a functional form that is inferred by observing the run-times of a
series of solutions to successively larger problem instances.
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reduced computational complexity can simplify hardware implementation, with-

out compromising the higher data rates and quality of service envisioned for future

wireless networks. Moreover, the algorithms and the insights gained while design-

ing them may be used elsewhere in wireless communication.

1.3 Thesis Outline & Contributions

Chapter 2 presents the background techniques related to this thesis, including MIMO

detection techniques and conventional relaying methods for relay networks. Chap-

ters 3–6 deal with either uncoded/coded MIMO detection or relay forwarding strate-

gies, establishing a background and framework for future research. Chapter 7

presents the conclusions and future research.

• Chapter 3 introduces a novel sphere detector (SD) algorithm, which is called

SNR-dependent radius control sphere detector (SRC-SD), for uncoded/coded

spatial multiplexing MIMO systems. The SRC-SD overcomes the drawbacks

of traditional SDs, which are variable running time and highrunning time in

low SNRs. The main idea of the SRC-SD is to scale the search radius by a

heuristic SNR-dependent factor. Due to this scaling, this new SRC-SD offers a

near-ML performance over the entire range of SNRs, while keeping its running

time roughly constant. This new algorithm also incorporates channel ordering to

save running time and is also extended for MIMO-relay networks.

• In Chapter 4, node-pruning strategies based on probabilitydistributions are de-

veloped for ML detection for MIMO systems. Uniform pruning,geometric prun-

ing, threshold pruning, hybrid pruning and depth-dependent pruning are thus

developed in detail. The desirable diversity order of uniform pruning and the

threshold level for threshold pruning are derived. Threshold pruning is shown

to save running time compared to popular SD algorithms such as K-best, fixed

complexity and probabilistic tree-pruning sphere detector (PTP-SD), especially

for high SNRs and large antenna MIMO systems. Furthermore, the application to

other systems, including coded MIMO systems and relay networks, is discussed.

7



• Chapter 5 investigates a breadth-first SD algorithm, which we called the im-

proved K-best sphere detector (IKSD). At each iteration, this algorithm retains

the bestK nodes and all the nodes whose costs are within a certain margin of the

cost of theK-th best node. Three IKSD variants – fixed threshold, normalized

threshold and adaptive threshold IKSD – are developed. The proposed IKSD re-

quires a smallerK (indicating lower running time) while achieving near-ML per-

formance compared to the conventional K-best SD. These gains are confirmed by

simulation results. The IKSD is also extended as a hybrid SD algorithm, which

uses full enumeration in the top layers of the search tree andapplies the IKSD for

the remaining layers. The IKSD is also extended as a list SD for joint iterative

detection and decoding of coded MIMO.

• MIMO relay networks are the main focus in Chapter 6. An estimate-and-forward

(EF) scheme is proposed and analyzed. This relay scheme forwards the uncon-

strained minimum mean squared error (MMSE) estimate of the source data to the

destination. The relay thus performs like AF and DF for the low and high SNR re-

gions, respectively, and achieves the conventional AF and DF performance across

all SNRs without the need to switch algorithms for differentSNRs. Its number

of computational operations is, however, high for relays with a relatively large

number of antennas (large MIMO) and/or high-order constellations. Two ap-

proximate EF schemes for large MIMO relay networks are thus proposed. The

first one, called list EF, computes a list SD-based MMSE estimate and retains

the advantages of the exact EF relay at a negligible performance loss, while the

second one computes a Gaussian estimate. For parallel relaynetworks, the EF

scheme achieves increased performance gains.

∼

8



Chapter 2

Background

This thesis develops new signal detection and transmissiontechniques for MIMO

systems and relay networks. The basic background techniques are reviewed in this

chapter: MIMO detection, sphere detection, coded MIMO systems and cooperative

relay networks.

2.1 Basic Concepts

2.1.1 Detection vs. Decoding

Signal detection [15] is broadly concerned with the analysis of received signals

to determine the presence or absence of signals of interest,to classify the signals

present, and to extract useful information included in these signals. Specifically,

for this thesis, the process of retrieving transmitted datafrom a noise-corrupted and

faded signal is called detection.

To enable detection, the data bits are modulated into transmitted symbols using a

modulation schemeQ. For example, in a quadrature amplitude modulation (QAM),

the signal constellation is given by

Q = {κ(a+ bi) | a, b ∈ {. . .− 3,−1, 1, 3, . . .}} , (2.1)

wherei =
√
−1, andκ is an energy-normalizing constant. Thus, ifx ∈ Q is

transmitted and signal vectory is received, detection refers to the recovering ofx

from y.

In a coded system, the recovery of data bits from the transmitted version of the

9



coded bit sequence is called decoding. Note that, decoding refers to the recovery of

coded data while detection refers to the recovery of uncodeddata.

However, for uncoded MIMO systems, many authors have used sphere detection

and decoding interchangeably. In this thesis, sphere detection or detector is used.

2.1.2 Complexity

Currently, over90% of the energy consumption of wireless communications is con-

sumed in the outdoor cellular network, of which75% is consumed by base sta-

tions [16]. The complexity of applied techniques significantly impacts the power

consumption of communication systems. The time complexitycharacterizes the

amount of time an algorithm will take to solve successively larger instances of a

problem. This can be used to evaluate its time efficiency and power consumption.

Therefore, the measure of running time [17] is a very important issue described as

follows.

The running time of hardware implementation is evaluated bythe number of

floating-point operations per second (FLOPS). Typical operations are addition, sub-

traction, multiplication, division, square root, exponential and so on. The amount of

energy being consumed per operation is determined by the power consumption of

a design [18]. This factor impacts critical design decisions, such as those involving

the power-supply capacity and the battery lifetime. Therefore, power dissipation is

an important property of a design that affects feasibility and reliability, and energy

costs will be much greater for high running time algorithms.

Therefore, to save energy, low-complexity algorithms are needed. In computer

science, the analysis of algorithms is the determination ofthe amount of resources

(such as time and storage) necessary to execute them. It is common to estimate

their running time in the asymptotic sense. Big O notation isused to specify an

asymptotic upper bound [19] of running time, and it is a convenient way to express

the worst-case scenario for a given algorithm. For a given functiong(n) (n is the

input size),O(g(n)) denotes the set of functions that satisfy

O(g(n)) = {f(n) : there exist positive constantsc andn0

such that0 ≤ f(n) ≤ cg(n) for all n ≥ n0} .
(2.2)
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For example,O(n2) means that the running time is asymptotically no worse than

cn2.

However, for sphere detection algorithms in communications, its running time

is evaluated by the expected number of nodes visited in the search tree [20]. The

reasons for this measure are (1) the detection problem is a tree-search problem, (2)

the number of floating-point operations is constant for all the nodes at the same

layer [21], and (3) running time is in proportion to the number of nodes visited by

the algorithm. Since the detector algorithms eliminate as many nodes as possible,

this number is a random variable. Hence, the average number of nodes visited by

the sphere decoder is referred to as the measure of the expected running time of the

detection algorithm.

2.2 MIMO Detection

MIMO appears in three main categories [3]:

• Spatial multiplexing MIMO partitions a high-rate signal into multiple lower-

rate streams, and then each stream is transmitted from a different transmit

antenna.

• Beamforming MIMO attempts to maximize the diversity gain and thus reduce

the error rate.

• MIMO space-time coding involves coding across space and time to gain di-

versity and/or capacity benefits.

Among these three MIMO categories, spatial multiplexing MIMO achieves the

highest data rates [3].

As spatial multiplexing MIMO systems are capable of providing enormous ca-

pacity improvements without increasing the bandwidth or the total transmit power,

these systems are the focus of this thesis. An uncoded spatial multiplexing system

is considered withNT ≥ 1 transmit antennas andNR ≥ 1 receive antennas (Fig.

2.1). A rich scattering memoryless (flat fading) channelH̃ is assumed [3].H̃ is

11
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Figure 2.1:NT ×NR MIMO system

assumed to be full rank. At the receiver, the received signalvector can be written

as [3]

ỹ = H̃s̃+ ñ, (2.3)

wheres̃ = (s̃1, s̃2, . . . , s̃NT
)T is the transmitted symbol vector,s̃i ∈ Q (a complex

constellation such asM2-QAM), ỹ = (ỹ1, ỹ2, . . . , ỹNR
)T , andỹi is the signal re-

ceived at thei-th antenna (i = 1, 2, . . . , NR). H̃ denotes anNR × NT Rayleigh

fading channel matrix with independent and identically distributed (i.i.d.) elements

h̃ij ∼ CN (0, 1), whereCN (0, 1) denotes a complex Gaussian distribution with

zero mean and unit variance.̃n = (ñ1, ñ2, . . . , ñNR
)T is the vector of i.i.d. addi-

tive white Gaussian noise (AWGN) wherẽni ∼ CN (0, σ2). It is assumed that the

channel matrix̃H is perfectly known by the receiver. Following a common assump-

tion in the literature, we will assumeNT = NR = N . ForNT 6= NR cases, ML

detection is also feasible, however, generalized sphere detection will be needed [22]
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2.2.1 ML Detection

The detection process determines the original bits sequence based on the signal re-

ceived over the channel. For statistically optimal detection performance (minimum

error rate), a MIMO system requires an optimal detector [3],which minimizes the

average error probability. In other words, given a receivedvector ỹ, the optimal

receiver selectŝ̃s = s̃i corresponding to the constellation symbol vectors̃i that

satisfiesp(̃si|ỹ) > p(̃sj |ỹ), ∀j 6= i. By the Bayes rule [23],

p(̃si|ỹ) =
p(ỹ|̃si)p(̃si)

p(ỹ)
. (2.4)

Assuming equally likely messagesp(̃si) = 1
|Q|N , for all i, the detected symbol

vector must satisfy

ˆ̃s = argmax
s̃∈QN

p(ỹ|̃si). (2.5)

Because of̃n ∼ CN (0, σ2), the conditional probability density function (PDF) may

be written as

p(ỹ|̃si) =
1

(πσ2)N
exp

(

−‖ỹ − H̃s̃‖2
σ2

)

. (2.6)

Therefore, by taking the log likelihood of (2.6), the optimal ML detection rule is

given as [24]

ˆ̃s = argmin
s̃∈QN

‖ỹ− H̃s̃‖2, (2.7)

where‖x‖ denotes the Frobenius norm ofx, andQN is the set of all possibleN-

dimensional transmitted symbol vectors for constellationQ.

This detection rule (2.7) is formulated by using complex signals and matrices.

However, real versions of these quantities are somewhat easier to handle. Fortu-

nately, the complex channel matrix can be transformed into areal matrix represen-

tationy = Hs+ n, wherey,n ∈ Rn,H ∈ Rn×m, ands ∈ Rm withm = n = 2N ;

that is,
[

<(ỹ)
=(ỹ)

]

=

[

<(H̃) −=(H̃)

=(H̃) <(H̃)

] [

<(̃s)
=(̃s)

]

+

[

<(ñ)
=(ñ)

]

, (2.8)

where<(·) and=(·) are the real and the imaginary parts of(·), respectively.

Therefore, for the equivalent real constellation, the optimal ML detection rule

is given by

ŝ = argmin
s∈Ωm

‖y −Hs‖2, (2.9)
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whereΩm is all possiblem-dimensional transmit symbol vectors for the real con-

stellationΩ, andŝ is the element inΩm which minimizes‖y −Hs‖2. We take the

real and imaginary parts ofQ to form Ω. For example,16-QAM in (2.3) can be

transformed into two4-pulse amplitude modulation (PAM)Ω = {−3,−1, 1, 3}.
The naive ML detector exhaustively searches (2.9) and its complexity is

C = O(|Q|N) = O(2ncN ), (2.10)

wherenc = log2 |Q| is the order of constellation. Thus, the detection running time

grows exponentially with the number of transmit antennas and with the order of the

signal constellation.

2.2.2 Sphere Detection

Because of the exponential running time of naive ML detection (2.10), the SD al-

gorithm [25] and its variants are designed to reduce the running time of the search.

The main idea of the SD is to restrict the search space for detection from all the

constellation points to a hypersphere with a certain radiusd around a preliminary

signal vector estimated from the received signal. This ideais efficiently realized by

the Fincke-Pohst (FP) SD and Schnorr-Euchner (SE) SD [26,27]. Here, before dis-

cussing these two SDs, we briefly introduce the basic principle of the SD algorithm.

Based on the QR factorization ofH (H = QR), whereR is an upper-triangular

matrix andQ is an unitary matrix, and lettingz = QHy (QH denotes the Hermitian

of matrixQ), (2.9) is equivalent to

ŝ = argmin
s∈Φ

‖z−Rs‖2, (2.11)

whereΦ should be the set of all points which satisfy||z−Rs||2 ≤ d2. Here,

||z−Rs||2 is the total cost metric of signal vectors.

The SD detector restricts the search space to this hypersphere Φ. We use the

real-system formulation (2.8) to briefly explain the conventional FP and SE SDs

(depth-first). To generate the candidate point setΦ, all pointss = (s1, s2 . . . , sm)
T

such that‖z−Rs‖2 ≤ d2 can be expanded as

m
∑

i=1

(

zi −
m
∑

j=i

ri,jsj

)2

≤ d2. (2.12)
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Since the cost metric in (2.12) involves a sum ofm terms, a tree withm layers

can be used to represent the search problem. Then,Φ will be a set of leaf nodes

(layer1) in the tree.

layer= 1

layer= 2

layer= 3

layer= 4

root
partial cost

(z4 − r4,4s4)
2

(

z3 −
4
∑

j=3
r3,jsj

)2

s4

s3

Figure 2.2: An example of tree search

For example, a search tree for a2 × 2 4-QAM system is given in Fig. 2.2. The

search process starts from layer4 to layer1 because matrixR is an upper-triangular

matrix, and by convention the SD algorithm first detects them-th elementsm in the

transmitted signal vectors = [s1, s2, . . . , sm]
T . The accumulated costci of the

nodes at thei-th layer is given by

ci =
m
∑

k=i+1

(

zk −
m
∑

j=k

rk,jsj

)2

, (2.13)

wheresj ∈ {−1, 1} for 2-PAM. In this example, there arem = 4 layers, called the

depth of the search tree, and each node has2 child nodes. Following (2.12), when

the SD algorithm visits a nodei and its partial costci exceedsd2, then the partial

tree emanating from the node is removed totally from furthersearches. That is, the

partial tree is discarded without further searching, and werefer to this activity as
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the pruning of nodei. Clearly, this pruning process does not discard the optimal

solution and it certainly saves running time.

The two main categories of SD algorithms are depth-first and breadth-first SD.

The basic ideas of these SDs are given in the following.

Depth-first SD

The depth-first algorithm traverses the tree from layerm (top) to layer1 (bottom)

and backtracks as necessary. For example, in the conventional FP SD (Pohst enu-

meration [28]), given the symbolssi+1, . . . , sm, the elementsi can be chosen from

the range of
⌈

1

ri,i

(

zi −
m
∑

j=i+1

ri,jsj − di
)⌉

≤ si ≤
⌊

1

ri,i

(

zi −
m
∑

j=i+1

ri,jsj + di

)⌋

, (2.14)

whered2i = d2 −
m
∑

k=i+1

(

zk −
m
∑

j=k

rk,jsj

)2

, ri,j is the element in thei-th row and

thej-th column of matrixR, dxe is the smallest integer greater than or equal tox,

andbxc is the largest integer less than or equal tox.

In the SE SD (SE enumeration [29]), the admissible points aresearched in a

zig-zag order from the midpointsk,mid =
⌈

1
rk,k

(

zk −
∑n

j=k+1 rk,jsj

)⌋

, wheredsc
is the nearest integer arounds. The spanning order issk,mid, sk,mid + 1, sk,mid −
1, sk,mid+2, . . ., whenzk−dk−rk,ksk,mid ≥ 0 (d2k = d2−∑n

j=k+1 |pj(s)|2 = d2k+1−
|pk+1(sk+1, . . . , sn)|2), andsk,mid, sk,mid − 1, sk,mid + 1, sk,mid − 2, . . ., otherwise.

Further, the SE SD updates the radiusd2 to be the new cost of the currently found

solution (leaf node). This method is more efficient than the FP SD [27].

Breadth-first SD

Instead of a depth-first traversing, a SD can process the nodes on a breadth-first

basis. The K-best SD [14] is an example, which searches the tree layer by layer and

keeps only the bestK candidates at each layer. This SD sorts all the child nodes

based on their partial costs and selects theK best paths. Finally, when the bottom

layer is reached, the leaf node with the minimum cost is selected as the solution.
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Thus, the search running time of the K-best algorithm is fixedand depends only on

K and the number of layers in the tree.

The K-best SD search procedure is briefly described as follows: (1) Initialize

the partial cost to be0 at the root of the search tree; (2) Expand all the nodes at

the current layer and compute the partial costs for all thesepotential successors; (3)

Sort these nodes in the ascending order of their costs, and retain the bestK nodes

with the smallest costs; (4) Prune all other nodes and updatethe partial cost for each

candidate; (5) Check if the bottom layer is reached; if yes, then the leaf node with

the smallest cost is the estimate; or if no, reduce the layer number, and go to (2).

Fixed SD

The fixed SD algorithm, proposed in [30], is a derivative of the K-best SD algo-

rithm. It introduces a parameter set(k1, . . . , kl, . . . , km), wherekl refers to the

number of visited nodes per surviving parent node at thel-th layer and1 ≤ l ≤ m.

For example, in the first layer,km = |Ω|, more candidates need to be considered for

the top layer; while the number of candidates will be reducedin the last layers. In

this case, an exhaustive search is performed in the top layer; thus full enumeration

is required in the top layer, and all nodes are concurrently visited. Therefore, the

running time of this Fixed SD is less than that of the conventional K -best SD, given

the same number of visited nodes.

The K-best and Fixed SD are hardware-friendly because they have predeter-

mined visited node and constant throughput. However, neither of them can guaran-

tee the ML solution when the number of visited nodes is severely constrained.

2.3 Coded MIMO Systems

Consider the coded MIMO system in Fig. 2.3). The informationvectorb is a frame

ofMb bits encoded by the ECC module, whose outputc goes through an interleaver

Π. The interleaver rearranges the input data in a noncontiguous manner such that

consecutive data are spaced apart. The interleaver here ensures statistical indepen-

dence. The ECC can be a convolutional code or a turbo code withcode rateR; thus,

the length of the coded sequencec isMc =Mb/R. The interleaved bitsx are mod-
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Figure 2.3: The system model of iterative detection and decoding

ulated to channel symbolss and transmitted.Mx andMs are the frame length ofx

ands, respectively, whereMx = Ms log2(|Q|). Therefore, a frame ofMs symbols

requires the transmission ofMch = Ms/N blocks of data whereN is the number

of transmit antennas, corresponding toMch different channel realizations.

At the receiver, several iterations of soft information exchange [10] occur be-

tween the ECC decoder and MIMO detector. The MIMO detector inthis case

generates softa posterioriinformationLD1 by processing the received signaly and

the a priori informationLA1 from the ECC decoder. This reliability information

is expressed bya posterioriprobability (APP) in the form of log-likelihood ratios

(LLR). For example, The LLR of bitxi(i = 1, 2, . . . ,Mx) is defined as

L(xi) = log
Pr[xi = +1]

Pr[xi = −1]
. (2.15)

Note that the amplitude levels−1 and+1 represent binary0 and1, respectively.

For the first iteration, theLA1 is initialized to0, and the extrinsic information

LE1 = LD1 − LA1 generated by the MIMO detector is deinterleaved byΠ−1 to

serve as thea priori information for the ECC decoder. The ECC decoder then gen-

erates the extrinsic information for the next iteration. This process continues until

a stopping criterion is met, such as a predefined iteration number or a performance

bound. In the final iteration, the ECC decoder obtains thea posterioriinformation

LD2,b on the uncoded bitsb [31], which is sent to the slicer that outputs the final bit
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estimateŝb.

As discussed above, soft information needs to be exchanged between the de-

tector and decoder. The naive SD algorithm can be modified to produce the re-

quired soft information. The running time of this process has been widely inves-

tigated [10, 32, 33]. One jointly iterative detection and decoding method has been

proposed [10], which generates soft information by a list version of the SD (LSD).

In this scheme, the ECC can be any code that could be decoded byusing soft in-

puts and outputs, such as a convolutional code or a turbo code[34]. Many SDs,

for example, the K-best SD [14] and a list fixed-complexity SD[35], are capable of

providing the necessary soft outputs in LSD.

2.4 Cooperative Relays

Source Destination

Relays

Figure 2.4: MIMO relay network

The MIMO relay network is illustrated in Fig. 2.4, where the source hasMs

transmit antennas, all the relays haveNr receive antennas andMr transmit antennas,

and the destination hasNd receive antennas. In this network, the data signals from

the source to the destination travel via the relays. Assuming there areNsr relays

receiving the transmitted signal from the source, the received signalrk at thek-th

(k = 1, 2, . . . , Nsr) relay can be given as

rk = Hkx+ n1k, (2.16)
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whereHk = [hij ] ∈ CNr×Ms denotes the MIMO channel between the source

and thek-th relay, and the elements ofHk are i.i.d. complex Gaussian (hij ∼
CN (0, 1)); n1k = [n11, n12, . . . n1Nr ]

T andn1i ∼ CN (0, σ2
1) (i = 1, 2, . . . , Nr) is

an AWGN with mean zero and varianceσ2
1. The transmitted signal is denoted by

x = [x1, x2, . . . , xMs]
T , assuming i.i.d. elements inx. It is also assumed that each

transmitted symbol is chosen from the same constellation; i.e., xi ∈ Q, and the

average transmitted power isE [‖x‖2] = Ps, wherePs is the source power andE(x)
is the expectation ofx.

A memoryless relay receives the source signal from the source, generates and

transmits the processed signal to the destination, and its relay functionG(r) uses the

current received signalr only. The assumption is that the average relay powerPr

of the transmitted signalG(r) should satisfy the power constraintE [‖G(r)‖2] = Pr.

Therefore, ifNrd relays retransmit their processed signals, the received signal at the

destination may be written as

y =

Nrd
∑

k=1

Gk G(rk) + n2, (2.17)

whereGk = [gij ] ∈ CNd×Mr (k = 1, 2, . . . , Nrd) denotes the MIMO channel be-

tween thek-th relay and the destination, and the elements ofGk are also i.i.d. com-

plex Gaussian (gij ∼ CN (0, 1)), andn2 = [n21, n22, . . . n2Nd
]T (n2i ∼ CN (0, σ2

2)

andi = 1, 2, . . . , Nd).

The performance of MIMO memoryless relay networks depends critically on

the relay function. Relay strategies have thus been studiedin [4, 36–44]. Several

relay functions of memoryless forwarding strategies for MIMO relay systems are

discussed next.

2.4.1 Amplify-and-Forward

Pure AF: Among the classical relay strategies, AF relaying is the most basic relay

strategy [45]. For each transmit symbol, the relay retransmits a scaled version of

the received signal to the destination. Thus, a linear relayfunction is used. Further-

more, to satisfy the average power constraint, the AF relay function can be given
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as

GAF (r) = αr =

√

Pr
E [‖H‖2]Ps +Nrσ2

1

r, (2.18)

whereα is the scaling factor, andr is derived by (2.16);Ps andPr are the source

and the relay average power levels, respectively. Then, thescaled version of the

received signal is sent per (2.18).

Because it it easy to implement, the AF relaying is one of the most attractive

cooperative diversity schemes. While the absence of a detection process at the relay

facilitates the use of simple relay units, this simple processing enables full spatial

diversity at high SNRs [4,36]. However, the main disadvantage is the performance

loss due to the noise amplification at the relay.

LMMSE AF: Pure AF (2.18) can be viewed as a linear estimation scheme with

the scaling factorα being normalized to satisfy the relay power constraint. In con-

trast, LMMSE AF begins with a scaling factor derived from MMSE principles and

performs the required power normalization. Thus, an LMMSE estimator may be

given as [3,46]

x̂LMMSE =
(

HHH+Nrσ
2
1I
)−1

HHr. (2.19)

However the estimated signal must be scaled by a factorαLMMSE under the relay

power constraint. Thus, the relay function for the LMMSE AF relay may be given

as

GLMMSE(r) = αLMMSE x̂LMMSE, (2.20)

whereαLMMSE =
√

Pr

E(‖x̂LMMSE‖2) .

2.4.2 Decode-and-Forward

This relay method has attracted much attention recently because it outperforms AF

in the high-SNR region. It detects data from the incoming signal, remodulates the

detected data and forwards them to the destination. This method may use an ML

detection of data from the incoming signal. The detected signal vector may be given

as

x̂ = arg min
x∈QMs

‖r−Hx‖2. (2.21)

whereargminx f(x) denotes the value ofx that minimizesf(x).
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The SD [22,47,48] may be employed to perform (2.21) to reducethe detection

running time. Althougĥx can be directly transmitted, the relay power constraints

must be satisfied. Thus, the DF relay function may be given as

GDF (r) =

√

Pr
E(‖x̂‖2) x̂ =

√

Pr
Ps

x̂. (2.22)

However, when the source-relay link suffers from deep fading, the decoding errors

at the relay propagate to the destination.

Besides AF and DF, EF [49] strategies have been proposed for single-antenna

cooperative networks. The EF relay generates an unconstrained MMSE estimate of

the received signal and then transmits a scaled version of itto the destination. EF

MIMO relays will be developed in Chapter 6, the details will be provided there.

2.5 Conclusions

The optimal MIMO detection method is ML detection. Full or near-ML detection

is possible with the SD algorithm and its variants. Two main categories (depth-first

and breadth-first search) of the SD algorithm were discussedin this chapter. Coded

MIMO, iterative detection and decoding schemes, were also discussed. Finally,

the relay network model was given, followed by a review of conventional relay

strategies.

∼
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Chapter 3

SNR-Dependent Radius Control
Sphere Detector

This chapter introduces a new MIMO SD algorithm for uncoded systems. The

main new idea is to scale the search radius by using a heuristic SNR-dependent

factor. The use of this scaling offers near-ML performance over the entire range

of SNRs, while keeping the running time roughly constant. This algorithm also

incorporates channel ordering to save running time. As a measure of the variability

of the running time, its normalized variance is evaluated. This algorithm is also

extended for joint iterative detection and decoding in coded MIMO systems and for

MIMO-relay networks. Simulation results and theoretical analysis demonstrate the

benefits of the proposed algorithm.1

3.1 Introduction

As mentioned in Section 2.2.2, while the SD algorithm significantly reduces the

running time compared to that of naive ML detection, its running time is quite high

in the low-SNR region and decreases significantly as the SNR increases. These

drawbacks make the very-large-scale integration (VLSI) implementation of the con-

ventional SD algorithm infeasible. To address these challenges, many variants of

SD have been developed [14, 22, 30, 32, 48, 50–58]. For example, [52] uses condi-

tional probabilities to select more reliable candidates, but the running time is still

1A version of this chapter has been published in Trans. Emerging Tel. Tech. (2013),
doi:10.1002/ett.2620.
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high for near-ML performance and for high-order constellations. Statistical prun-

ing approaches [48, 53, 54] sacrifice performance to obtain running time reduction.

K-best [14], also known as the M-algorithm [59] or as beam search in the Artifi-

cial Intelligence literature [17], and the fixed-complexity (Fixed) [30, 60] SD have

also been proposed. K-best traverses the search space in a breadth-first manner and

retains only the several best nodes in each layer. Despite its fixed running time,

K-best requires higher running time than that of the naive SDfor exact ML per-

formance [14]. Although Fixed SD ensures a fixed running time, regardless of the

noise level and channel conditions, it has higher running time than that of SE in the

high SNR regime [30]. Many adaptive methods have also been developed including

search radius adjustments [61–64], channel-adaptive MIMOdetection [65] and an

early-pruned K-best algorithm [66].

SD is also required to provide soft information for coded MIMO systems. Soft

information is needed for jointly iterative detection and decoding of coded systems

[10]. This information is provided by using a list version ofSD (LSD). In this

scheme, the ECC can be any code that can be decoded by using soft inputs and

outputs, such as convolutional codes or turbo codes. Many algorithms are capable

of supporting soft outputs in LSD. For example, K-best has been extended for use

in an iterative MIMO receiver [14], and a list Fixed SD has been proposed [35] as

a list extension of the Fixed SD algorithm [30] for coded MIMOsystems.

SD is also required for MIMO-relay networks. As mentioned inSection 1.1.3,

the benefits of relays [4] are (1) increased diversity, (2) increased code rates, (3)

reduction of transmit power and (4) extension of coverage area. The relay detection

problem has thus been considered [67] for DF relaying and AF relaying. Low-

complexity detection by applying zero-forcing at the relayterminals [68] fails to

achieve ML performance. To achieve near-ML performance, detection at DF relays

is computationally intensive; thus, cooperative partial detection (CPD) has been

proposed [43]. The relay in this case detects a subset of the transmit symbols, and

only these are relayed to the destination. Although the running time is low, this

method performs poorly when the number of detected symbols is small [43].

In this chapter, a new SNR-dependent radius control SD is proposed [69], which
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is also applied for soft MIMO detection and MIMO-relay detection. The main

contributions are as follows:

1. A new SRC-SD is proposed with a low and roughly fixed level ofrunning

time over the whole SNR region and near-ML performance. ThisSD scales

the search radius by using a heuristic SNR-dependent factor, which approaches

one in the high-SNR region, guaranteeing that SRC-SD’s performance con-

verges to that of the conventional SD; however, in the low-SNR region, this

factor is less than unity, resulting in more aggressive pruning of nodes and

thereby significantly reducing the running time.

2. The SRC-SD is modified to generate soft information for coded MIMO sys-

tems. This modified version is called the list SRC-SD (LSRC-SD), which

generates a list of candidates and further reduces the running time of iterative

detection at a negligible performance loss.

3. To leverage the benefits of the new SRC-SD, its use in MIMO AFand DF

relays is developed by deriving the ML detection rules.

4. By considering the average number of visited nodes as a measure of running

time, an upper bound to the running time of the proposed SRC-SD is derived.

This theoretical result along with the simulation results confirms the running

time savings of SRC-SD.

5. A measureη of the variability of the running time for the range of SNR is de-

fined. If η is zero, then the running time is fixed, creating the ideal situation.

Theη values of the proposed SRC-SD and the conventional SDs are then ex-

amined, and the very low variability of the proposed algorithm is established.

This chapter is organized as follows:Section 3.2 briefly outlines the conven-

tional SD and derives the new SRC-SD. Section 3.3 derives coded MIMO detection

and the ML rules for MIMO-relay networks. Section 3.4 provides a brief running

time analysis. Simulation results for both performance andaverage number of vis-

ited nodes are presented in Section 3.5, followed by the conclusions in Section 3.6.

The proof of (3.17) is presented in Appendix A.
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3.2 SNR-Dependent Detection

This section proposes the new SRC-SD, discusses its runningtime and quantifies

the variability in running time.

For the original FP SD, the initial radius can be selected based on the noise

level [21]. The initial radius for SE is typically set asd =∞ [50]. More results for

SDs are presented in [14,22,30,32,48,51–58].

3.2.1 SNR-Dependent Scaling Function

As discussed in Section 3.1, although the traditional FP andSE SDs save running

time compared to the naive ML detector, their running time isvariable and high in

the low-SNR region. These two problems are mitigated by the proposed SRC-SD

at a negligible performance loss.

The traditional SDs achieve running time savings by pruningnodes, but the

pruning is limited to the nodes that can be identified early inthe search to be not

on the ML path. Because such nodes are few, their pruning results in only modest

running time reduction, especially in the low-SNR region. Thus, more nodes need

to be pruned in order to achieve more substantial running time savings. To this end,

the main idea is to scale the search radius of the hyperspherebased on the SNR,

which is defined as a scaling functionφ(ρ) based on the SNRρ. The requirements

for the scaling factor are the following:

1. φ(ρ) has to be a positive value for all the SNRs,φ(ρ) ≥ 0.

2. φ(ρ) should be smaller than1 in order to obtain more running time savings

than the conventional SD provides; that is,φ(ρ) ≤ 1.

3. In order to prune more nodes in the low-SNR region and to keep the optimal

performance in the high-SNR region,φ(ρ) should be an increasing function

of ρ.

4. When the SNR is high enough, the scaling factor should approach1; that is,

limρ→∞ φ(ρ) = 1, which guarantees an optimal performance in the high-SNR

region.
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The many different possible scaling functions include1/(exp(−ρ) + 1) and

ρ/(ρ+ C0). Based on numerical experiments, the specific scaling function (3.1)

is proposed, which is a conveniently simple function of the SNR and efficiently

achieves an acceptable performance and running time trade-off.

3.2.2 SNR-Dependent Radius Control (SRC) Sphere Detector

This detector uses the scaling function to get the new radiusvia

d2SRC−SD = φ(ρ)× d2 = ρ

ρ+ C0
× d2, (3.1)

wheredSRC−SD is the radius in the new SRC-SD,ρ is the SNR of the MIMO

system,d is the radius used in the original FP or the SE, andC0 is a predefined

constant. This scaling function satisfies the conditions mentioned above. Due to

the limit

lim
ρ→∞

ρ

ρ+ C0
= 1, (3.2)

the performance of the proposed algorithm reverts to that ofthe original SD when

the SNR is sufficiently high. Here, SNR is assumed to be known at the receiver and

it can be derived by parameter estimation algorithm [70].

When this idea is applied to the original FP, denoted by SRC-FP, its initial radius

d2SRC−FP =
ρ

ρ+ C0
× d2

=
ρ

ρ+ C0

× αnσ2
r

=
αnm

4(ρ+ C0)
, (3.3)

wherem = n = 2N , the noise variance in the real MIMO systemσ2
r = σ2

2
, and

σ2 is the additive noise variance. The last step for (3.3) is based on the fact that

the SNR in a complex MIMO system is given byρ = NE(|s|2)
σ2

, where the average

energy of each symbolE(|s|2) = 1 is assumed.

Because SE has lower running time compared to FP, the former is chosen as the

building block of SRC-SD (Algorithm 1). Thus, SRC-SD is derived by augmenting

the SE SD with the SNR-dependent radius. Once one leaf node found, the searching

radius is updated by (3.1).
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Algorithm 1: The SRC-SD Algorithm
Input : ρ, C0, z, H
Output : ŝ

1 Iteratively order them columns of the channel matrixH. The steps of the
ordering are: for i← m to 1 do

2 CalculateH†
i = (HH

i Hi)
−1HH

i , whereHi is the channel matrix with
the columns selected in previous iterations zeroed;

3 The signal to be detected (ŝp) is obtained by

p = argmin
j∈{1,...,m}−{pi+1}

‖(H†
i)j‖2, (3.4)

where(H†
i)j denotes thej-th row ofH†

i , andpi+1 is the columns
selected in previous iterations;

4 end
5 Order the channelH by the index vectorp, and get the matrixR by QR

factorization;
6 Initialize the radiusdSRC−SD =∞ and take the roots0 (layerk = m) as

the start node;
7 for depthk ← m to 1 do
8 Expand the Current Node, generating all its successorsT in thek-th

layer satisfying
(

zk −
∑m

j=k rk,jsj

)2

≤ d2SRC−SD −
m
∑

i=k+1

(

zi −
m
∑

j=i

ri,jsj

)2

; Prune

other successors;
9 Sort the components inT by the increasing order of all the branch

weightsci in this layer, whereci =
(

zi − ri,isi −
∑m

j=i+1 ri,jsj

)2

and

si ∈ T ;
10 for every elementsi do
11 if si is not a leaf node,then setsi as the Current Node,k = k − 1

and go back to line 3;
12 elseif si is a leaf node (k = 1), and if its cost is lower than

d2SRC−SD, keep it as the best solution and updated2SRC−SD by
(3.1).

13 end
14 end
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In order to further improve the proposed SRC-SD, the ordering of the channel

matrix is included in the proposed algorithm. In lines 1-4, the algorithm iteratively

reorders them columns of the channel matrix. The main idea of reordering isthat

the signals suffering the smallest noise amplification should be selected in every

iteration, as discussed in [30,71].

As Algorithm 1 reveals, the proposed SRC-SD is a variant of the conventional

SE [50] and achieves a critical improvement in running time while maintaining

near-ML performance (Section 3.5).

3.2.3 Running Time Analysis for SRC-SD

An exact running time analysis of the SRC-SD algorithm appears intractable be-

cause of the updating of the radius and the zig-zag search ordering, which is re-

tained from SE [50]. Fortunately, the running time of SE is less than that of the FP

because of the radius update during searching process. Thus, the running time of

the SRC-FP SD can be evaluated and will be an upper bound on therunning time

of SRC-SD.

A proxy of the running time of an SD may be taken as the average number of

nodes visited. This average depends on the number of antennas, the initial radius

and the noise variance [21]. By considering the number of nodes visited at all the

layers, the expected running time of SD is evaluated by

C(m, σ2
r , d

2) =
m
∑

k=1

ϕk, (3.5)

whereϕk is the number of nodes visited at thek-th layer within the hypersphere of

radiusd.

Furthermore, here only the theoretical result for16-QAM is shown, which is

equivalent to two real4-PAM constellations. Other constellations may be analyzed

similarly, but are omitted for the sake of brevity. For consistency with the results

of [21], the average energy of the transmitted signals is notset to1. Therefore, by

using [21, Theorem 2] and the SNR-dependent radiusd2SRC−SD (3.3), the expected
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number of visited nodes of SRC-FP is given as

CSRC−FP (m, ρ, C0) =

m
∑

k=1

∑

q

1

2k

k
∑

l=0

(

k

l

)

× gkl(q)

γ

(

αnρ

2(ρ+ C0)(1 +
12ρq

m(L2−1)
)
,
n−m+ k

2

)

,

(3.6)

wheregkl(q) is the coefficient ofxq in the polynomial(1 + x+ x4 + x9)l(1 + 2x+

x4)k−l, andσ2
r =

m
ρ
× L2−1

12
(for 4-PAM,L = 4).

Variability ofC: SinceC is a random variable, its variability for different SNRs

is of interest. FixedC for all SNRs is beneficial for hardware implementation. Thus,

the variability indexη is thus proposed as the ratio between the variance ofC and

square mean ofC:

η =
E(C − C̄)2

C̄2
, (3.7)

whereC denotes the average number of nodes visited by SD;C̄ andE(C) denote

the mean and the expectation ofC for all the SNRs, respectively.

Therefore, the smaller the index, the less theC varies. For example, from the

above theoretical analysis, the FP and SRC-FP (C0 = 5 as an example) SDs achieve

η = 1.78 andη = 0.69, respectively. The reduced valueη suggests that SRC-FP

achieves a more constant level of running time than the original FP.

Some remarks on the proposed SRC-SD are as follows:

1. It has lower running time than the basic SD, especially in the low-SNR re-

gion, while maintaining a near-ML performance in the high-SNR region. The

channel ordering method in line 1-4 of Algorithm 1 is included to further re-

duce the running time.

2. It effectively reduces the variability indexη, which is particularly helpful for

hardware implementation.

3. This idea of a SNR-dependent radius can also be applied to other types of

tree-search algorithms for MIMO detection, such as many SD variants [52]

[54] or different stopping criteria [72].
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4. The effects of the constantC0 in (3.1) have not been discussed in detail.

This constant should be adjusted for different systems. ForadjustingC0,

the conventional SE can be used as a guide. When the SNR is large enough,

say20 dB, it has a very low running time, and further running time reductions

do not appear possible. Thus, a smallerC0 may be chosen so that SRC-SD

performs close to SE in the high SNR regime.

3.3 Detection Strategies

This section introduces the coded MIMO detection and MIMO-relay detection strate-

gies. For both AF and DF relays, the ML rule for combining the received signals

from the relays and the source is derived.

3.3.1 Soft MIMO Detection

As discussed in Section 2.3, the most important step in codedMIMO systems is to

compute the output information for the MIMO detector and ECCdecoder. Thus,

thea posterioriinformation for each bit in the transmitted frames can be derived.

In this section, for simplicity, a block of bitsx with NB = N log2(|Q|) is

considered, whereNB is the number of bits in one block. The optimal detector

obtains the exact APP for each bit. Thea posterioriLLRs of the bitsxk (k =

1, 2, . . . , NB) conditioned on the received signal vectory [10] is

LD1(xk|y) = ln
Pr[xk = +1|y]
Pr[xk = −1|y]

= LA1(xk) + LE1(xk|y). (3.8)

Here, the Bayes’ theorem and the independence of the bitsxk due to the interleaver

are used to obtain thea priori LLRs LA1(xk) and theextrinsicLLRs LE1(xk|y).
From [10], theextrinsicinformation can be denoted by

LE1(xk|y) ≈
1

2
max

x∈Xk,+1

{

xT[k]LA1[k] −
1

σ2/2
‖y−Hs‖2

}

−

1

2
max

x∈Xk,−1

{

xT[k]LA1[k] −
1

σ2/2
‖y −Hs‖2

}

.

(3.9)
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(3.9) is obtained by applying the definition of the extrinsicinformation [10] and

the Max-log approximation [73]. Here,Xk,+1 andXk,−1 denote the sets of the bit

vectorsx = (x1, x2, . . . , xNB
)T havingxk = +1 andxk = −1, respectively.x[k]

represents the subvector ofx that omits thek-th bitsxk; LA1[k] denotes the subvector

of LA1 = (LA1(x1), LA1(x2), . . . , LA1(xNB
))T by omitting theLA1(xk).

In spite of these simplifications, the computing ofLE1(xk|y) (3.9) has an expo-

nential complexityO(|Q|N) and is prohibitively complex for systems with a large

number of antennas and with high-order modulations. Therefore, a list version of

SRC-SD is developed.

LSRC-SD generates a listL of NL candidates by searching the tree by using

a rule. This list includes the ML estimate, but the size of thelist satisfies1 ≤
NL < 2Nc·N , whereNc = log2 (|Q|) is the number of bits per modulated symbol.

Therefore, in order to compute theLE1(xk|y), the search space in (3.9) is limited

in the listL, and the extrinsic information can be rewritten as

LE1(xk|y) ≈
1

2
max

x∈L∩Xk,+1

{

xT[k]LA1[k] −
1

σ2/2
‖y −Hs‖2

}

−

1

2
max

x∈L∩Xk,−1

{

xT[k]LA1[k] −
1

σ2/2
‖y −Hs‖2

}

,

(3.10)

whereL ∩ Xk,+1 andL ∩ Xk,−1 represent the subset of vectorsL havingxk = +1

andxk = −1, respectively.

LSRC-SD, a soft extension of SRC-SD, generates a set of candidates that can

be exploited to calculate the soft extrinsic information (3.9) for iterative detection

and decoding. The running time of generating the candidate list L can be reduced

by adopting several properties of the classical LSD [10]. First, the radius is updated

whenever a better candidate than the worst candidate in the current list is found.

Second, the candidate list is not generated for every iteration. Once computed, it

is stored in the memory and used by every iteration. Therefore, for every iteration,

the only information that needs to be updated is thea priori information from the

channel decoder.

Similar to thea posterioriinformation of the MIMO detector, that of the chan-

nel decoder can also be decomposed into thea priori information andextrinsic

information for the iterative detection and decoding. Therefore, the details of the
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channel decoder are not shown here.

3.3.2 MIMO-Relay Detection

A basic system model for a multi-branch dual-hop relay network is considered as

shown in Fig. 3.1, which portrays the source (S),Nre relays (R ) and the destination

(D ), whereNre is the number of relays in the network. The number of antennas

at the source, the relays and the destination terminal are denoted asNs, Nr and

Nd, respectively. All nodes are half-duplex (data can be transmitted back and forth

between two nodes, but not simultaneously) and use orthogonal channels, and a

direct link also exists from the source to the destination. Relay protocols operate

in two time slots. In the first time slot, the source broadcasts a message to all the

relays and the destination. In the second time slot, the relays transmit the received

and/or processed signals to the destination.
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Figure 3.1: System model for multi-branch dual-hop MIMO relay network.

The channels between the source and thei-th relay, thei-th relay and the desti-

nation, the source and the destination are denoted byHi ∈ CNr×Ns, Gi ∈ CNd×Nr

(i ∈ {1, 2, . . .Nre}) andHsd ∈ CNd×Ns , whereC is the set of complex numbers.

For the first time slot, the received signal vector at thei-th relay (i = 1, 2, . . . , Nre)

and the destination are given by

ri = Hix+ n1i, (3.11)

ysd = Hsdx+ nsd, (3.12)

wherex and n1i,nsd ∼ CN (0, 1) are the transmitted signal at the source, the

AWGN at thei-th relay (i = 1, 2, . . . , Nre) and the destination, respectively.
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As before, the channel matrix entries are assumed to be independent elements.

To be exact, the entries areCN (0, SNR
(i)
sr

Ns
), CN (0,

SNR
(i)
rd

Nr
), CN (0, SNRsd

Ns
) for Hi,

Gi andHsd, respectively. The SNRs are defined to be consistent with [43] to be
µP

(d
(i)
sr )α

, (1−µ)P
(d

(i)
rd )

α
, µP
(dsd)α

, respectively, whereµ ∈ (0, 1] denotes the proportion factor

of the transmit power between the source and the relays; the equivalent power and

distance to the source at all the relays are assumed;d
(i)
sr , d(i)rd anddsd denote the

distance between the source and thei-th relay, thei-th relay and the destination, the

source and the destination, respectively;P is the total power for the source and the

relays, andα ∈ [2, 6] is the path loss exponent.

Detect-and-Forward Relaying: Perfect channel state information (CSI) is as-

sumed available at all the nodes, and it can be derived from transmitted pilot sym-

bols [56]. Similar to the system model demonstrated in [43],the errors resulting

from the detection at the relays have not been considered, inorder to compare the

proposed method with the method in [43].

The relays process and forward the received signal (3.11) from the source to the

destination. Thus, at the end of the second time slot, the received signal vector at

the destination from thei-th relay (i = 1, 2, . . . , Nre) is given as

yi = Gix
(i)
r + n2i, (3.13)

wherex(i)
r is the signal detected at thei-th relay by using SD, andn2i ∼ CN (0, 1)

is an AWGN sample.

The detection problem at each relay is equivalent to the standard MIMO detec-

tion problem (2.9). For the first step at thei-th relay (i = 1, 2, . . . , Nre), the ML

detection rule is thus given by

x(i)
r = argmin

x∈QNs

||ri −Hix||2, (3.14)

whereQNs is the set of constellation symbols in theNs dimensional constellation

Q. The running time is significantly reduced by using SD. Usingthe QR factoriza-

tion ofHi (Hi = QiRi) andzi = QH
i ri, (3.14) is equivalent to

x(i)
r = argmin

x∈Φ
||zi −Rix||2. (3.15)
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Φ should be the set of all points within the hypersphere with radiusd, which satisfies

||zi −Rixi||2 ≤ d2.

In the second step, the relays transmit to the destination. Hence, the destination

receives a total ofNre + 1 signals, including the direct source signal. All these

signals are combined via the ML rule as

x̂d = argmin
x∈QNs

(

Nre
∑

i=1

||yi −Gix||2 + ||yd −Hsdx||2
)

. (3.16)

By expanding each of the norms and regrouping some terms, theequivalent channel

matrixH
′

and the equivalent received signaly
′

are derived as (see Appendix A)

H
′

=

(

Nre
∑

i=1

GH
i Gi +HH

sdHsd

)1/2

, (3.17a)

y
′

= (H
′

)−1

(

Nre
∑

i=1

GH
i yi +HH

sdysd

)

. (3.17b)

The ML rule is then derived by (3.14).

The difference is that SD at the destination is performed by the newly combined

matrix of the channel matrix and received signal vector from(3.17a) and (3.17b).

Amplify-and-Forward Relaying: The relays only amplify the received signals

(3.11) from the source during the first time slot and retransmit to the destination dur-

ing the second time slot. Thei-th relay (i = 1, 2, . . . , Nre) amplifiesy(i)
sr by a fixed

gain parameterαi [36], which is chosen to satisfy the power constraint. Therefore,

the received signal at the destination from thei-th relay,i = 1, 2, . . . , Nre, is

yi = Gi(αiri) + n2i

= αiGiHix+ n
′

, (3.18)

where the noise termn
′

= αiGin1i + n2i.

The relays simply retransmit a scaled version of the received signal. Similar

to the DF relaying case (Appendix A), the equivalent channelmatrix and received
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signal at the destination in AF relaying are given by

H
′

=

(

Nre
∑

i=1

(αiGiHi)
H(αiGiHi) +HH

sdHsd

)
1
2

y
′

= (H
′

)−1

(

Nre
∑

i=1

(αiGiHi)
Hyi +HH

sdysd

)

.

To sum up, SD is appropriate for the receiver in both DF relaying and AF relay-

ing networks to reduce the running time with near-ML performance.

Therefore, SRC-SD works for both DF and AF systems. Thus, therunning

time at both the relays and the destination can be reduced. Previously, the Fixed

SD algorithm [30] was applied to obtain the fixed running timein the MIMO-relay

networks. In the results section, both the Fixed SD and SRC-SD algorithms will be

compared.

3.4 Running Time Analysis

The average running time for coded MIMO and MIMO-relay detection is analysed

here.

Coded MIMO System: For the proposed LSRC-SD, the running time of gen-

erating the candidate list is evaluated to allow for a comparison of the proposed

LSRC-SD and the original LSD [10].

MIMO-Relay Networks: SD can perform the signal detection needed in both

DF and AF relays networks. For AF relays, because relay signal detection is not

required, the running time is the same as that of a point-to-point MIMO link (3.5).

However, the DF relays require signal detection at both the relays and the destina-

tion, so the average number of nodes visited by SD algorithmsis given by

Call =

Nre
∑

i=1

Ci + Cd, (3.20)

whereCi is the number of visited node evaluated at thei-th relay (i = 1, 2, . . . , Nre),

Cd is the number of visited nodes of detection at the destination, andCi andCd are

given by (3.5).
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3.5 Results and Discussions

MIMO Detection: This section evaluates the performance and running time of the

proposed SRC-SD (Algorithm 1). An uncoded4 × 4 MIMO 16-QAM system is

considered over a flat Rayleigh fading channel. In order to verify the advantages

of SRC-SD, both the performance as measured by the error rate(e.g., the symbol

error rate (SER)) and the running time as measured by the average number of nodes

visited by the new SRC-SD are compared with those of the FP, SRC-FP, K-best [14]

and Fixed [30] SDs. The first two require the choice of an initial radius, and the

method of [21] is used to set the probability of the lattice point inside the sphere at

1 − ε = 0.9999. The K-best algorithm withK = 4 [14], and the Fixed SD with

p = 1 (p is the number of layers with full enumeration andp ≥
√
N − 1) [30],

for achieving the same diversity as that of ML detection are compared here.C0 is

chosen to be10 for the proposed SRC-SD where necessary.
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Figure 3.2: Running time (16-QAM) as a function of the numberof antennas, where
SNR = 0 dB except where stated otherwise.

Running time comparison: Because of its importance for implementation, run-

ning time is compared for the FP, SRC-FP, SE and SRC-SD algorithms for different
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numbers of antennas (Fig. 3.2). The two main observations that can be made about

this figure are as follows:

1. The simulation and theoretical results of both FP and SRC-FP agree, confirm-

ing the theoretical analysis of (3.6). Clearly, SRC-FP achieves lower running

time than the original FP. Furthermore, the running time gapbetween these

two algorithms increases with the number of antennas. For example, when the

number of antennas increases from3 to 5, the running time gap increases by

a factor of200. This result shows that augmenting the traditional FP SD with

the SNR-dependent scaling (3.1) achieves substantial running time gains.

2. The running time of the proposed SRC-SD is also shown here.It achieves

the lowest running time for all the antenna numbers. For example, for an

8× 8 MIMO system at an SNR of0 dB, the SRC-SD, SE and FP SDs search

on average about2.4 × 102, 105 and109, respectively. Thus, over six orders

of magnitude of running time savings are achieved, confirming the high ef-

ficiency in the low-SNR region of SRC-SD and affirming its suitability for

large MIMO systems. Furthermore, the running time savings depend on the

operating SNR and they diminish for high SNRs.

How running time varies as a function of the SNR is an important consideration

(Fig. 3.3). In Fig. 3.3, the SRC-SD with/without channel ordering are compared

with the FP, SE, K-best and Fixed SDs. The SRC-SD with channelordering obtains

a running time saving compared to that obtained without channel ordering2. Fig.

3.3 reveals that the proposed SRC-SD has the following advantages:

1. SRC-SD significantly reduces the running time compared tothe conventional

SE and FP SDs. For example, for an SNR of20 dB, SRC-SD saves about an

order of magnitude running time compared to FP, and this saving increases to

4 orders of magnitude at0 dB. In contrast to SE, which visits3× 102 nodes,

SRC-SD visits only16 nodes at0 dB. This advantage may, however, vanish

if the SNR increases, as per (3.2).

2In the following figures, SRC-SD denotes the algorithm with channel ordering.
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Figure 3.3: Running time of different SDs for a4× 4 16-QAM MIMO system.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

S
E

R

 

 

FP
SE 
Fixed 
K−best 
SRC−SD no ordering
SRC−SD
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2. More importantly, SRC-SD also has even lower running timethan the K-

best [14] and Fixed [30] SDs.

3. Notice how flat the running time curve of SRC-SD is; the variability index

η of 0.14 for SRC-SD verifies the roughly fixed running time according to

(3.7). SRC-SD thus achieves a roughly fixed and reduced running time.

Because of the trade-off between running time and performance, the performance

of SRC-SD is examined next.

SER performance: Pruning the nodes by using SNR-dependent scaling of the

hypersphere radius in the proposed SRC-SD results in a suboptimal detection per-

formance. The impact of this suboptimality is quantified in Fig. 3.4. Note that the

SER curves of SRC-SD (with/without ordering), FP and SE are almost identical.

The FP, Fixed and SE SDs are full ML detectors. Clearly, SRC-SD achieves a near-

ML performance, and also outperforms K-best, especially inthe high-SNR region.

For instance at an SER of10−3, SRC-SD gains7 dB over K-best. Consequently,

based on performance and running time, the new SRC-SD outperforms the Fixed

and K-best SDs.

Detection for Coded MIMO system: The advantages of SRC-SD in a coded

4 × 4 MIMO system are assessed next. The bit error rate (BER) performance and

the running time are investigated. The naive LSD is comparedwith LSRC-SD for

several values of the parameterC0. The systematic recursive convolutional code

with rateR = 1/2 is exploited to encode the transmitted bits sequenceb with a

frame lengthMb = 8192, where the feed-forward and feedback-generating polyno-

mials areG1(D) = 1 +D2 andG2(D) = 1 +D +D2 with memory length2 [10].

A random interleaver is exploited here. The SNR is used as thehorizontal axis as

defined byEs/N0.

In order to choose the bestC0, the performance and running time comparison of

LSRC-SD for different values ofC0 is shown. An increasedC0 leads to more node

pruning in the searching process, which achieves lower running time. However, the

BER performance is degraded by such pruning. Thus, a proper value forC0 may be

found to attain a suitable trade-off between performance and running time. From
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Table 3.1, by using4 iterations, the performance gets closer to that of the naiveLSD

whenC0 decreases. To maintain the performance, a smaller value should be chosen

for C0.

Table 3.1: Bit error rate comparison for differentC0 for a 4 × 4 16-QAM coded
MIMO system withMb = 8192 transmitted bits and a maximum of 4 iterations.

SNR LSD
LSRC-SD
(C0 = 1)

LSRC-SD
(C0 = 2)

LSRC-SD
(C0 = 3)

LSRC-SD
(C0 = 5)

LSRC-SD
(C0 = 10)

8 dB 0.1201 0.1180 0.1398 0.1317 0.1356 0.1659
8.5 dB 0.0639 0.0635 0.0632 0.0708 0.0799 0.1005
9 dB 0.0147 0.0146 0.0194 0.0279 0.0284 0.043
9.5 dB 0.0044 0.0045 0.006 0.0079 0.0093 0.0176
10 dB 0.0019 0.0020 0.0029 0.0037 0.0048 0.0081

Table 3.2: Comparison of the average number of visited nodesfor differentC0 for
a4× 4 16-QAM coded MIMO system withMb = 8192 transmitted bits.

SNR LSD
LSRC-SD
(C0 = 1)

LSRC-SD
(C0 = 2)

LSRC-SD
(C0 = 3)

LSRC-SD
(C0 = 5)

LSRC-SD
(C0 = 10)

8 dB 4280.2 2561.6 2111.8 1860.5 1571.9 1199.9
8.5 dB 4243.4 2624.9 2192.4 1914.4 1633.4 1257.5
9 dB 4241.3 2675.8 2240.8 1982.0 1688.6 1314.1
9.5 dB 4196.4 2736.7 2302.7 2043.9 1737.8 1381.6
10 dB 4190.7 2767.1 2374.7 2121.6 1804.6 1435.7

The running time for LSRC-SD with differentC0 is given in Table 3.2. AsC0

increases, the running time decreases more. For example, the average number of

nodes visited is about1.7 × 103 for C0 = 5, around2 × 103 with C0 = 3, and

approximately2.2 × 103 with C0 = 2. Therefore, to maintain the performance

and reduce the running time,C0 = 2 should be chosen in this case. Similarly, an

appropriateC0 for other MIMO configurations can be found after several trials.

Detection for MIMO-Relay Networks: To confirm the benefits of SRC-SD for

MIMO-relay networks, its performance and running time are evaluated for both

DF and AF relays. The number of relays is one or two. The proposed SRC-SD

is compared with Fixed SD, the original SE, and CPD [43]. In what follows, it is

assumed thatdsd = d
(i)
sr + d

(i)
rd with d

(i)
sr

dsd
= 0.2, i ∈ {1, 2, . . .Nre}, the path loss
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exponentα = 3, andµ = 0.5.
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Figure 3.5: Error performance for a4× 4 16-QAM MIMO-relay network.
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Figure 3.6: Running time for a4× 4 16-QAM MIMO-relay network.

Fig. 3.5 shows the SER performance of Fixed, SRC-SD and SE SDs. Direct

source-to-destination transmissions also occur. The horizontal axis is the transmit
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power. p = 1 andC0 = 10 are set for Fixed SD [30] and the new SRC-SD,

respectively. For CPD, the expansion factor is chosen to be3 [43]. Note that for

both the one-relay case and the two-relay case with DF, the SRC-SD, SE and Fixed

SDs perform identically. This finding confirms the near-ML performance of SRC-

SD. In contrast, CPD incurs performance penalties. For example, for the one-relay

case, at an SER of10−3, CPD loses5 dB relative to SRC-SD. Clearly, since the

SER performance improves when the number of relays increases, the benefit of

using relays to increase the reliability is clear.

The running time comparison for the same set-up shown in Fig.3.5 is depicted

in Fig. 3.6. For the single-relay case, SRC-SD reduces the running time compared

to the CPD, Fixed and SE SDs, and approaches the running time of SE when the

power increases (to higher than15 dB). For example, at an SNR of0 dB, SRC-SD

visits only 19 nodes, while the CPD, Fixed SD and SE algorithms visit190, 128

and130 nodes, respectively. SRC-SD also achieves lower running time than that

of the direct link with SE and Fixed SD for the lower power region, while SRC-

SD has slightly higher running time than that of the direct transmission when the

power is larger than21 dB. This result is caused by the path loss due to the long

distance. For the two-relay network, SRC-SD reduces the running time compared to

that of SE. In order to check the variability of the running time here, notice that for

both one-relay and two-relay networks, SRC-SD obtains a roughly flat running time

curve as a function of the SNR. For these two cases, it can be shown by using (3.7)

that the variability indexes of SRC-SD are6.5× 10−5 and5.7× 10−3, respectively.

The results demonstrate the effectiveness of SRC-SD for multi-branch MIMO-relay

networks, with the advantage of roughly fixed, low running time.

Both the DF and AF cases are considered in Figs. 3.7 and 3.8. Fig. 3.7 compares

the performances of the SRC-SD, SE and Fixed algorithms in one-relay AF and

DF systems. In AF relaying, both the SRC-SD and Fixed SDs perform close to

that of SE, which provides the optimal detection. In DF relaying, SE achieves a

performance gain of1.5 dB higher than that in AF.

Fig. 3.8 shows a running time comparison for the same set-up.The AF SRC-SD

system has lower running time than the SE and Fixed SDs, just as in DF relaying
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case (Fig. 3.6). Especially in the low-power region, SRC-SDsignificantly reduces

the running time. For example at0 dB, it is only 6% of that of SE. Thus, systems

that operate in the low-SNR region may particularly benefit from the use of SRC-

SD. As expected, however, both the SRC-SD and SE algorithms have the same level

of running time in the high-SNR region (> 20 dB). It is interesting to compare the

DF SE and AF SRC-SD systems. The running time saving varies from 93.6%

to 52%. The variability indexη is found to be1.9 × 10−4 for SRC-SD, which

demonstrates roughly fixed running time. These results again confirm that SRC-SD

reduces the running time and its variability.

3.6 Conclusions

This chapter proposed an SNR-dependent radius control SD with reduced running

time, reduced variability of running time, and near-ML performance. By tighten-

ing the search radius by a heuristic SNR-dependent factor, this SD outperforms the

existing K-best and Fixed SDs in terms of SER but also saves running time. For

coded MIMO systems, a soft extension called LSRC-SD was proposed. It further

improves the running time of detection and decoding at a negligible performance

loss. Signal detection for AF and DF MIMO-relay networks wasalso investigated

by deriving the ML detection rules. The simulation results confirmed the bene-

fits of the proposed SRC-SD, which provided a near-ML performance and roughly

constant running time.

∼

45



Chapter 4

Statistical Pruning-Based Detector

In this chapter, node-pruning strategies based on probability distributions are de-

veloped. Uniform pruning, geometric pruning, threshold pruning, hybrid pruning

and depth-dependent pruning are developed in detail. The desirable diversity or-

der of uniform pruning and the threshold level for thresholdpruning are derived.

Simulation results comparing the proposed rules with popular SD algorithms such

as K-best SD, fixed complexity SD and probabilistic tree-pruning sphere detector

(PTP-SD) are provided.1

4.1 Introduction

As discussed in Section 2.2.2, the conventional SD prunes only the nodes whose

partial costs exceed the cost of the current best solution. Since this process does not

discard the optimal solution, the pruned nodes are called non-essential nodes. That

is, a nodei is non-essential if its accumulated cost, say,ci exceeds the cost of the

current best solution denoted byc∗. Such pruning of these nodes not only eliminates

large areas of the search tree, thereby reducing running time, but also preserves the

optimality of the SD. On the other hand, ifci < c∗, the i-th node is an essential

node, whose pruning can potentially discard the ML solution. However, pruning

of essential nodes creates algorithms that are not optimal but have lower running

time, leading to a class of detectors with different runningtime and performance

trade-offs.
1A version of this chapter has been published in IEEE Trans. Veh. Technol., 62: 1586-1596 (2013).
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Thus, unless otherwise stated, the termpruning throughout this chapter refers

to the pruning ofessentialnodes.

Several SD variants with such pruning have been developed [14, 30, 32, 53, 54,

74–82]. In [74], an increasing radii algorithm (IRA) chooses a gradually increased

radius from the top layer to the bottom layer. Thus, excessive pruning may be

needed to restart the IRA several times, resulting in additional running time. In ad-

dition, the IRA cannot attain different diversity orders2 and achieve a flexible per-

formance and running time trade-off. To extend the IRA, [53]proposes a PTP-SD,

which prunes more nodes by adding a probabilistic noise constraint on top of the

sphere constraint. Then, [54] extends the PTP-SD and provides further improve-

ment of the running time with minimal extra cost and a negligible performance

penalty. Additional pruning methods are proposed in [75, 76]. References [77, 79]

combine the PTP-SD and a Fixed SD [30] to preserve the advantages of branch

pruning by using an adaptively updated PTP-SD threshold. Toprune more nodes, a

new probabilistic sorting rule is developed by exploiting the properties of the path

metric to yield more effective sorting [80]. The K-best SD [14], which prunes all

but theK best nodes in each layer, traverses the search space in a breadth-first

manner.

Many SD algorithms have been proposed [14,30,32,53,54,74–77,79–82] to im-

plement different node-pruning strategies, with different performance and running

time trade-offs. A general framework for such pruning is desirable. For this pur-

pose, a statistical pruning sphere detector (SPSD) is proposed and developed [83].

The main contributions in this chapter are summarized as follows.

• The key idea is that each essential node, say nodei, is assigned a probability

f(i) that indicates the likelihood of being pruned. For example,f(i) = 0

meansi-th node is retained, andf(i) = 1 meansi-th node is eliminated. For

other cases, given the probability distributionf(i), this algorithm randomly

generates a pruning decision for nodei based onf(i). f(i) could be chosen

based on experimental results or common statistical distributions. For exam-

ple,f(i) may be set small for the nodes in the top layers of the search tree, so

2If the error probability decays proportionally toSNR−d, thend is called the diversity order
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that more such nodes are retained, and the ML solution is morelikely to be

found. Alsof(i) may be varied to achieve different performance and running

time trade-offs. Performance and running time are measuredby SER and

the number of nodes visited. The SER in the high-SNR region is, however,

closely related to the diversity order. Thus, a flexible trade-off between the

diversity order and running time reduction is achievable. Many existing SDs

(such as those in [14, 27, 74]) can be cast as special cases of the proposed

approach.

• Based on several classical probability distributions, thefollowing node prun-

ing rules are proposed: (1) uniform pruning: all the child nodes of a node

except the first one are pruned independently with equal probability; (2) ge-

ometric pruning: the child nodes are pruned dependently where the pruning

probability agrees with the geometric distribution; (3) threshold pruning: the

child nodes are pruned if their cost exceeds a threshold; (4)hybrid prun-

ing: this combines the threshold rule with the uniform or geometric rule; and

(5) depth-dependent pruning: the pruning probability depends on the search

depth. Three cases of this rule are investigated in this chapter.

• The performance of the proposed SPSD is also analysed in thischapter. The

upper bounds for the frame error rate (FER) of the uniform andthreshold

pruning rules are derived. These two pruning rules are shownto achieve a

desired diversity order by specifically setting the pruningprobability for the

former and the threshold for the latter according to different SNR. Further-

more, the pruning probability of the uniform rule is analysed when a full di-

versity order is needed. It is also shown that the FER upper bound in the full

diversity case could be affected by the predesignated SNR loss and that the

achievable diversity orders or SNR gains could be controlled by the choice of

pruning probability and the threshold. For example, for uniform pruning, to

reduce running time, a large pruning probability should be chosen based on

the achievable diversity order, and vice versa. This principle also applies to

the threshold rule. With a smaller desired diversity order,the threshold could
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be chosen to be a smaller value resulting in lower running time.

• The performance and running time of all the proposed rules and those of

the existing SDs such as PTP-SD [53], Fixed SD [30] and K-bestSD [14]

as a function of the number of transmit antennas and receive antennas are

compared by using simulations. The simulations show the advantages of the

proposed approach for large MIMO systems at high SNRs. It is noteworthy

that the proposed threshold rule obtains significant running time savings than

those achieved by other SD algorithms.

This chapter is organized as follows:The SPSD is developed in Section 4.2.

Five pruning rules are proposed in Section 4.3. Performanceand running time anal-

ysis of the proposed SPSD is given in Section 4.4. The simulation results are pre-

sented in Section 4.5, followed by the conclusions in Section 4.6. The proof of the

FER of the uniform pruning and threshold pruning rules is presented in Appendix

B.

4.2 Statistical Pruning

Before describing specific pruning rules, a generic detector is described. For a

search tree withn layers, this detector is given in Algorithm 23, wherek (k =

n, n − 1, . . . 1) denotes the current layer in the search tree,g is a vector which

includes the pruning probabilities that are designed to usethe pruning rules for

the nodes in thek-th layer, andd2k is the current partial upper bound obtained by

the radius minus the current accumulated partial cost. The algorithm is invoked as

SPSD-decode(n, g, d2n, z,R), wheredn is the initial radius, andz is the received

signal. The initial radiusdn can be selected based on the noise level [21] for the

original FP SD, while it also can be typically set asd2n = +∞ for the conventional

SE SD [27].

Note that Algorithm 2 is built on the top of the SE SD [29] alongwith additional

pruning of essential nodes based on heuristic rules. The full pruning ruleg may be

dependent on the search layer. This property allows furtherflexibility to implement,

3A complete MATLAB-like SD algorithm description can be found in [26].
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Algorithm 2: Statistical Pruning Sphere Detection
SPSD-decode(k, g, d2k, z, R)

Input : k, g, d2k, z, R
Output : smin

1 Generate all thel0 successorsA in thek-th layer satisfying
(zk − rk,kai)2 ≤ d2k by eliminating non-essential nodes;

2 Let [∼, temp] = sort(c), wherec = [c1, c2, . . . , ci, . . . , cl0] and
ci = (zk − rk,kai)2; and thenA = A(temp);

3 for i← 1 to |A| do
4 p = rand(1);
5 if p ≤ g(i) then
6 discard thei-th node;
7 else
8 keep thei-th node inA;
9 end

10 end
11 l = length(A);
12 for i← 1 to l (every element inA) do
13 s̃k = ai;
14 if ai is not a leaf nodethen
15 Let zk−1 = zk−1 −

∑n
j=k rk−1,j s̃j;

16 SPSD-decode(k − 1, g, d2k − ci, z, R);
17 else
18 if ai is a leaf node (k = 1) and its cost is smaller than the current

best costthen
19 The best solutionsmin = s̃;
20 Updated2n = ‖z−Rs̃‖2 and alld2i , i = n− 1, . . . , 1;
21 end
22 end
23 end
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say, more aggressive/conservative pruning strategies at different search layers. Re-

call that the pruning of non-essential nodes (i.e.ci > c∗) preserves the optimality of

the algorithm. The pruning of essential nodes by the probabilistic rules, however,

is the main concern of this chapter. Specifically, consider the|Q| nodes that are the

children of a node. Their pruning probabilities may be givenas

g(i) =

{

1 if ci > c∗
f(i) i = 1, . . . t

, (4.1)

wherei ∈ {1, 2, . . . |Q|}, c∗ andci are the current best cost and the partial cost of

the current node, respectively.t is the number of nodes whose partial cost is below

c∗.

Note that pruning probability always refers to the second item f(i) in (4.1),

which defines the probability of pruning for the nodes withci ≤ c∗ (the essential

nodes). This simple but critical difference from the SD makes the SPSD terminate

sooner than the latter, hopefully with the ML solution. The setA is sorted in line

2 of Algorithm 2 because smaller cost nodes are more likely togive high-quality

solutions. Experimentally, it is known that pruning at different layers of the search

tree will affect the performance and running time trade-offdifferently. Thus, in

Algorithm 2, the heuristic rules may vary for different layers. Thus, the pruning

rule can be strong in the first few layers since the boundd2k itself is not tight enough

to identify nonessential nodes, and can be weak in the last few layers when the

boundd2k is tight.

A search algorithm iscomplete if it is guaranteed to return at least one valid

solution. That is, at least the Babai-point [26] or decision-feedback equalization

point [3] is guaranteed. To ensure this condition, in Algorithm 2 at least one child

node is always kept. Thus, the pruning probability assignedto the child node with

minimum cost is always zero.

To clarify these ideas, consider a simple example where a node has four essen-

tial child nodes. Assume the child nodes are sorted by increasing cost and then

assigned the pruning probabilities[0, 0.2, 0.5, 0.8]. That is, the first child node is

never pruned, and others have more chance of being pruned because they are less

likely to lead to the ML solution. Similarly, with differentprobability distributions,
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existing SDs can be cast as special cases of the proposed framework. Some exam-

ples are as follows:

1. The SE SD [27]: this case arises when the pruning probability f(i) for all the

child nodes is0. That is, SE SD does not use statistical pruning.

2. The IRA [74]: the nodes with the costs smaller than the radius are retained;

that is, their pruning probabilities are0, while the pruning probabilities are1

for the other nodes, which are pruned. This case is an exampleof the uniform

pruning rule.

3. The K-best SD [14]: at each layer of the search tree, the pruning probability

of the bestK nodes is0, while the pruning probability of all the remaining

(K + 1, K + 2, . . .) nodes is one.

In the next section, several specific pruning rules are proposed.

4.3 Pruning Rules

Five specific heuristic pruning rules are developed in this subsection: uniform, ge-

ometric, threshold, hybrid and depth-dependent pruning rules.

4.3.1 Pruning Probability Distribution Basics

To keep the statistical framework simple, the pruning probability of the k-th layer

is initially defined to bef(i, k), i = 1, . . . t andk = 1, 2, . . . n. The value off(i, k)

can be chosen to execute a strong or weak pruning regime and isnot dependent

on the layer number in the first several depth-independent rules, denoted byf(i).

However,f(i, k) can also be chosen to vary with the layer. In the following, only

the nodes that do not exceed the current best costc∗ are considered. The set of such

nodes isA and its size ist (see (4.1)).

The probability that nodeai will be pruned isf(i), andf(i) is a non-decreasing

function in i with f(1) = 0 and0 ≤ f(i) ≤ 1. As mentioned in Section 4.2, the

boundary conditionf(1) = 0 ensures the completeness of the SPSD.f(i) is chosen

as a non-decreasing function ini because, intuitively, a child with a smaller cost
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is more likely to lead to the optimal solution. Based on the different probability

distributions, several pruning rules are proposed next.

4.3.2 Pruning Rules

In the following, several specific pruning rules are given. Note that, the search tree

is expanded from layern (top) to layer1 (bottom).

Uniform Pruning Rule: f(i) = 1− p, for 2 ≤ i ≤ t, andf(i) = 0, for i = 1.

All child nodes except the first one are pruned with equal probability and in-

dependently. This rule is rational when a priori information is not available as to

which child will lead to the optimal solution and which ones should be pruned.

Geometric Pruning Rule: f(i) = 1− pi−1.

Because all the child nodes are ordered by increasing cost, this rule assigns

geometrically pruning probabilities to the nodes (i = 1, 2, . . . , t).

Sincef(i), i ≥ 2, in the geometric pruning rule is greater than that in the uni-

form pruning rule, the former rule eliminates more nodes than the latter. In both

pruning rules, the strength of pruning is controlled through p.

These two pruning rules are derivatives of two well-known classical probability

distributions. However, the pruning probability distribution considering the costci

of nodeai may be designed. For example, a child node whose cost is significantly

larger than its parent may not lead to an optimal solution. This idea leads to the

following threshold pruning rule.

Threshold Pruning Rule: In the conventional SD, the current node is pruned

if its cost exceeds the current best cost. A variation of thisidea is proposed here.

In order to further prune nodes, a thresholdδk is applied at thek-th layer. As

mentioned before,a1 is never pruned (f(1) = 0) for the completeness of the SPSD.

For i = 2, . . . , t, if the costci of a child nodeai is larger thanδk, ai is pruned; that

is, f(i) = 1 whenci > δk.

Here, thresholdδk is associated with thek-th layer. SinceA is in a nondecreas-

ing order of cost, if nodeai is pruned, all the childrenaj for j ≥ i are pruned. The

strength of pruning varies inversely withδk. For example, ifδk = +∞, it simply

reduces to the SD.
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Hybrid Pruning Rule: The threshold rule can also be combined with the uni-

form or geometric rules to possibly take advantage of both the cost information

and probabilistic pruning. Thus, the hybrid pruning rule could be constructed as

f(i) = 1 − p

√

ci
c1

−1
or f(i) = min{ ci−c1

c1
(1 − p), 1}, wherec1 is the minimum

cost in thek-th layer. For these two examples, if the costci of the child nodeai is

less than or equal toc1 (threshold rule),ai is not pruned. Otherwise, the nodes are

pruned byf(i) (uniform or geometric rule).

Depth-dependent Pruning Rule: In the search process, if the pruning probabil-

ity f(i) at the early search layers is too high, the probability of discarding the ML

solution increases. In order to keep the ML solution until the bottom search layer,

f(i) may be defined depending on different tree layers (depth-dependent pruning

rule) denoted byf(i, k), k = 1, 2, . . . n. In the following, three cases are given.

Case I: f(i, k) = 1− exp(−k), 2 ≤ i ≤ t.

The children at each layer are pruned by the probabilityf(i, k), a non-increasing

function ink. For largek, the pruning probability decreases. This result helps to

avoid discarding the ML solution. Once the node at thek-th layer is pruned, all the

children of this node are pruned.

Case II: f(i, k) = n−k
2(n−1)

, 1 ≤ k ≤ n where2 ≤ i ≤ t. The pruning probability

increases linearly with the layer. For the first layer, the pruning probability is zero,

and for the bottom layer, it is1/2.

Case III:f(i, k) =

{

0 n1 + 1 ≤ k ≤ n
p0 1 ≤ k ≤ n1

, where1 ≤ n1 ≤ n and2 ≤
i ≤ t. The nodes at the early search layers (n1 ≤ k ≤ n) are all kept and expanded,

and the remaining nodes are pruned by probabilityp0 (1 ≤ k ≤ n1 − 1). That

is, full enumeration at the beginning of the search process is used to improve the

probability of finding the ML solution. However, in the latter search layers, nodes

are pruned with probabilityp0 to reduce the running time. Note that ifn1 = 0, this

rule is the conventional SD; ifn1 = n, uniform pruning becomes one special case

with 1− pk = p0.

In these three cases, the first node at each layer is never pruned (f(1, k) = 0)

for the detection completeness. Because the pruning probability in Case II is larger

than in Case I for each layer, the former is stronger than the latter. Only these
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three cases are given in this chapter, and the many other cases for depth-dependent

pruning rules are not discussed here.

Remarks:

• The idea of probability-distribution-based node pruning can be used with

other tree search algorithms, e.g., best-first search, breadth-first search and

iterative deepening [17].

• More importantly, the same idea can also be applied to the complex-valued

SDs, such as in [30], in order to achieve a flexible performance and running

time trade-off.

• The IRA in [74] is a special case of Algorithm 2. The IRA chooses a smaller

radius for the lower layers of the search tree (see details in[74]). However, if

the IRA cannot find a point, the radius is increased and the search resumes.

The threshold pruning rule obtains at lease one point as the solution, and the

threshold for each layer is different with the IRA.

• Threshold pruning rule can be readily incorporated into theSD algorithm

by replacingd2k = d2k+1 − |pk+1(xk+1, . . . , xn)|2 in Chapter 2 withd2k =

min{d2k+1−|pk+1(xk+1, . . . , xn)|2, δk}. If d2k returns a null set,a1 = dρk/rk,kc
is kept inA. In fact,δk can be considered as a local bound as opposed to the

global boundd2 in SD.

• The K-best SD is a special case of the depth-dependent pruning rule (Case

III). Whenn1 = 0, p0 = 0 for 2 ≤ i ≤ K, andp0 = 1 for K + 1 ≤ i ≤ t, the

K-best SD is obtained.

4.4 Performance Analysis

Here, the performance of the uniform and threshold rules is analysed. The param-

etersp andδk are determined to achieve different diversity orders and performance

gains. To make the analysis tractable, detection ordering is ignored. The radius is

assumed infinite, and the effect of decreasing radius as in Algorithm 2 is ignored.
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The results in this section can be considered as upper boundsfor those cases with

column reordering.

Proposition I: The upper bound on the FER of uniform pruning is

Pf ≤ (1− p)
n
∑

i=1

|Q|
(

1 +
d2min

4σ2

)i +

(

|Q|
1 +

d2min

4σ2

)n

, (4.2)

wheredmin is the minimum Euclidean distance ofQ, andσ2 is the variance of the

noise. Proof: see Appendix B.1.

In the high-SNR region, the symbol error ratePs can be approximated byPf ,

Ps ≈ Pf/n, where a frame error is caused by a single symbol error with high

probability.

From (4.2), ifp is fixed for all SNRs, andp 6= 1 (uniform pruning), the first

term dominatesPf . As (4.2) is only an upper bound, this equation suggests thatthe

diversity order of uniform pruning is at least one. The simulation results indicate

that the diversity order of the uniform rule is indeed at least one. Since geometric

pruning is more aggressive than uniform pruning, the diversity order in geometric

pruning is also at least one for fixedp. (4.2) also indicates that, to achieve a diversity

ordern with uniform pruning,1−pmust at least decrease as fast as 1

(1+d2min/4σ
2)

n−1 .

Therefore,p must vary according to the SNR orσ2. Thus,

p = 1− ξ
(

1

1 + d2min/4σ
2

)K0−1

, (4.3)

whereξ is a constant. By substituting (4.3) into (4.2), (4.2) can bederived as

Pf ≤ ξ

n
∑

i=1

|Q|
(

1 +
d2min

4σ2

)K0+i−1
+

(

|Q|
1 +

d2min

4σ2

)n

(4.4)

If K0 < n, the first term dominatesPf in the high-SNR region, and the other terms

can be neglected. Therefore, uniform pruning achieves at least the diversity order

K0. (4.4) reveals thatξ controls the SNR gain of statistical pruning.

In order to achieve the full diversity ordern, one can choose

p = 1− βPML

( |Q|
1 + d2min/4σ

2

)−1

, (4.5)
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wherePML is the FER of the ML detector. By substituting (4.5) into (4.2), (4.2)

can be derived as

Pf ≤ βPML

n
∑

i=1

1
(

1 +
d2min

4σ2

)i−1 +

(

|Q|
1 +

d2min

4σ2

)n

, (4.6)

whereβ controls the SNR loss incurred by the statistical pruning compared with

the ML detector.

From [84], when SNR becomes high, the asymptotic form ofPML can be ex-

pressed as

PML = α(n,Q)
(

1

2γ

)n(
2n− 1

n− 1

)

, (4.7)

whereγ denotes SNR.α(n,Q) is a coefficient that depends onn and the constella-

tion. Let{dj} denote the set of vectors withsk ∈ Q as theirl-th element, and{di}
denote the set of vectors that differ in theirl-th element fromdj . Theα is given

by [84]

α =
1

|Q|n
∑

sk∈Q

∑

i

∑

j

(‖di − dj‖2
2Es

)−n
, (4.8)

whereEs is the average symbol energy ofQ. Since (4.7) scales asγn, from (4.6),

statistical pruning by using (4.5) can still achieve a diversity ordern. Note that the

performance analysis in this subsection considers only a fixed pruning probability

for all sk, k = 1, . . . , n. A different pruning probability for differentsk may also be

assigned.

Proposition II : The FER of threshold rule is bounded as

Pf ≤
n
∑

i=1

∫ +∞

δi
σ2

fi(x)dx+

(

|Q|
1 +

d2min

4σ2

)n

, (4.9)

wherefi(x) denotes the probability density function of the chi-squaredistribution

χ2(2(n− i+ 1)) [23]. Proof: see Appendix B.2

In order to achieve a diversity order of at leastK0, δi may be chosen such that
∫ +∞

δi
σ2

fi(x)dx =
ξ

(1 + d2min/4σ
2)K0

, (4.10)

whereξ is a constant that controls the SNR gain. Sincefi(x) is known, (4.10) can

be solved numerically. At each SNR, (4.10) needs to be solvedonly once.δi = 0
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for i ≤ n−K0 + 1 is simply set. In this case, the upper bound onPf is also given

by (4.9).

With the sameδ, it can be easily verified that
∫ +∞

δ
σ2

fi(x)dx <

∫ +∞

δ
σ2

fj(x)dx (4.11)

for i > j. Therefore, with the sameδ, the first term in (4.9) always dominatesPf . A

simplified rule to achieve a diversity order of at leastK0 can be obtained by setting

δ as the solution of

1− γ
(

1,
δ

2σ2

)

=
ξ

(1 + d2min/4σ
2)K0

. (4.12)

Similarly, δi = δ for i > n−K0 + 1 andδi = 0 for i ≤ n−K0 + 1 are simply set.

By using (4.9), it can be readily verified that this choice ofδi achieves a diversity

order ofK0. Interestingly, the cost thresholdδ depends only on SNR andK0, but

not oni.

Remarks:

• The upper bound in (4.2) may not be tight. Thep given in (4.3) and (4.5) may

achieve a better performance than that suggested by (4.2). This result also

holds forδi in (4.10) and (4.12).

• The simulation results (Section 4.5) show that the performance difference

between the uniform and geometric rules is small when using the samep

defined in (4.3) and (4.5). For the samep, uniform pruning has only an SNR

gain over geometric pruning even though the latter is stronger than the former,

as remarked in Section 4.3. The value ofp given by (4.3) and (4.5) along with

geometric pruning achieves the same diversity order. However, the diversity

order analysis for this case seems intractable.

4.5 Simulation Results

In this section, the SPSD is simulated for an uncoded MIMO system over a flat

Rayleigh fading channel. The modulation formats4-QAM and16-QAM are used.

Both the performance and running time of any SD are compared.The running time
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is measured by the average number of nodes visited. The running time of the pre-

processing stage is not included. The ML curve, which is the optimal performance,

is obtained with the conventional SE SD. The initial radius of the SPSD is chosen

to be infinity and is updated whenever the search reaches a leaf node (Algorithm 2).

In hybrid pruning,f(i) = 1 − p
√

ci
c1

−1
, wherec1 is the minimum cost in thek-th

layer. For the depth-dependent rule, only the result of CaseI is given.

Comparison of Different Pruning Rules: Here, 4-QAM with 8 transmit and
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Figure 4.1: Error performance for an8 × 8 4-QAM MIMO system. The ML curve
is given by the simulation of SE SD.

8 receive antennas are used in Figs. 4.1 and 4.2, whereξ is set to be0.8 (ξ is the

constant in (4.3)); the achievable diversity orderK0 is set to be2 and4 for uniform

pruning, geometric pruning and hybrid pruning;ξ is chosen to be1; andK0 is

chosen to be4 or 8 for threshold pruning.

Fig. 4.1 shows the SER performance of the SPSD with differentstatistical prun-

ing rules. As shown, the depth-dependent pruning Case I achieves a near-ML per-

formance, indicating that the pruning probabilities for this rule are small for all

the layers. For other rules, the derivation of achievable diversity orderK0 in (4.3)

and (4.12) is validated here. At the desirable diversity order K0 of 2, geometric
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pruning achieves a diversity order2. Likewise, with the achievable diversity order

4, the uniform, threshold and hybrid pruning could achieve diversity order4. All

these rules achieve the desirable diversity order corresponding to the value ofK0,

proving that the results for the uniform and threshold rulesare also applicable for

the geometric and hybrid rules. Another interesting observation is that by setting a

greater desirable diversity orderK0, the threshold rule performs closer to optimal

ML detection. For example, at an SER of10−3, the threshold rule with a diversity

orderK0 of 8 attains3 dB more gain than the case with diversity order4.
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Figure 4.2: Running time for an8× 8 4-QAM MIMO system.

Fig. 4.2 compares the running time of different pruning rules with that of the

optimal SE SD, which has the highest running time compared toall the proposed

rules. The only exception is the depth-dependent pruning rule, which has almost

the same running time as the SE SD, but does achieve the near-ML performance

(Fig. 4.1). An immediate observation is that the achievablediversity orderK0

has a significant effect on running time. With a smaller desired diversity order

K0, the running time is lower. This finding shows that lower running time can be

achieved by sacrificing the desirable diversity order or SERperformance. All the

rules, excluding the depth-dependent rule, obtain more running time savings in the

60



low-SNR region; however their running time savings over SE SD reduces when

SNR increases. For example, at an SNR of0 dB, the threshold pruning (diversity

order 8) obtains about86% of the running time savings with respect to SE SD.

This number reduces to50% at 10 dB. Furthermore, the threshold pruning obtains

running time savings for very high SNRs, such as20 dB,S because the SE SD visits

several unnecessary nodes during the early stages of the search process. However,

for threshold pruning, the local bound prevents visits to these nodes, especially

when the cost thresholdδi is chosen to be0 for i ≤ n −K0 + 1. Therefore, only a

single node is visited at layers1, . . . , n−K0 + 1.
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Figure 4.3: Error performance for a4× 4 16-QAM MIMO system. The ML curve
is obtained by the SE SD.

The performance of the SPSD for different MIMO systems, a 16-QAM and4×4
MIMO system, is next assessed in Figs. 4.3 and 4.4, where the parameter setting

is the same as that for the8 × 8 4-QAM MIMO system, except thatK0 = 2, 3, 4.

The SER of the SPSD for different statistical pruning rules is given in Fig. 4.3. As

stated in the discussion of Fig. 4.1, by varying the achievable diversity orderK0,

different diversity orders are achieved. For example, the threshold rule achieves the

full diversity order when the desirable diversity order is set to4.
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Figure 4.4: Running time for a4× 4 16-QAM MIMO system.

Fig. 4.4 shows the average number of nodes visited with different pruning rules.

Trends similar to those shown in Fig. 4.2 are observed. All the rules save running

time compared to the SE SD for low SNRs, but the running time saving reduces

with increasing SNR. However, in the high-SNR region, threshold pruning attains

lower running time than the SE SD.

Figs. 4.1-4.4 show that for achieving the full diversity order, threshold pruning

obtains the lowest running time compared to the other rules.Threshold pruning

is therefore the best choice for near optimal performance with significant running

time savings.

Comparison with other Detectors: It is interesting to compare the proposed

SPSD with other detectors that use node pruning. Thus, PTP-SD [53], Fixed SD

and the K-best SD [14] are considered. For the PTP-SD,p
′

is set to be0.1, where

p
′

is the pruning probability; for the Fixed SD, the case without channel ordering is

used in this chapter, and the distribution of nodes kept in each layer is[1, 1, 1, 16],

whileK is chosen to be4 and16 for the K-best SD (mode 1 in [14] without channel

ordering is used for fair comparison). Figs. 4.5 and 4.6 compare different detectors

for a 4 × 4 16QAM MIMO system. Only the geometric and threshold rules are
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shown because uniform pruning performs close to geometric pruning, and threshold

pruning performs better than hybrid pruning.
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Figure 4.5: Error performance for a4× 4 16-QAM MIMO system. The ML curve
is obtained by the SE SD.

Fig. 4.5 shows the SER performance comparison. The proposedthreshold rule

with desirable full diversity order4, the PTP-SD, and the K-best SD (K = 16)

achieve a near-ML performance. However, although the FixedSD has a fixed run-

ning time because of the full enumeration in the first layers and pruning all but the

first node with the minimum cost in the following layers, at anSER of10−4, the

Fixed SD has6 dB performance loss compared to the threshold rule. To be fair, this

gap is due to not using channel matrix reordering. Like the Fixed SD, the K-best

SD also obtains fixed running time; however, the K-best SD requires a largeK to

achieve a full diversity order [14]. Thus, the case (K = 4) achieves only a diversity

order of one.

Fig. 4.6 shows the running time, i.e., the average number of nodes visited by

different detectors. As mentioned before, the choice of a smaller desired diversity

orderK0 leads to lower running time. For example, the geometric rule(K0 = 3)

has lower running time than that of the threshold rule (K0 = 4). Moreover, the
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Figure 4.6: Running time for a4× 4 16-QAM MIMO system.

threshold rule has lower running time than the PTP-SD in the low-SNR region; for

example, at an SNR of0 dB, the former obtains78% of the running time savings of

the latter because the threshold rule prunes more nodes thanthe PTP-SD. Another

observation is that both the geometric and threshold rules have significantly lower

running time than the K-best SD, which performs a breadth-first search and always

prunes all but theK best nodes at each layer. Even so, the running time of the

threshold rule is only4.5% of the K-best SD (K = 16) on average, while obtaining

72% more running time savings than the Fixed SD as well. To summarize, with

near optimal SER performance, threshold pruning achieves the lowest running time

compared to PTP-SD, Fixed SD and K-best SD.

To show the advantages of the proposed approach for a large MIMO system

at high SNRs, a performance and running time comparison as a function of the

number of transmit antennas and receive antennas (16-QAM) is shown in Figs. 4.7

and 4.8, whereN is the number of transmit or receive antennas. The SNR is fixed

at20dB.

Fig. 4.7 shows that the proposed threshold rule with full diversity orderN

and the PTP-SD always achieves a near-ML performance for different numbers of
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Figure 4.7: Error performance for a 16-QAM MIMO system with different numbers
of transmit and receive antennasN , SNR=20 dB.

transmit antennas. However, the geometric rule with the fixed achievable diversity

order4 does not reach the optimal performance for large MIMO systems. For the

same reason, the K-best SD withK = 4 andK = 16 also does not achieve a near-

ML performance. This finding means that with an increasing number of antennas

N , the achievable diversity orderK0 for the geometric rule and theK for the K-best

SD should be larger.

The running time comparison with the same set-up as in Fig. 4.7 is given in

Fig. 4.8. The running time of the PTP-SD is almost the same as that of the SE SD,

which grows exponentially withN . Thus, PTP-SD does not achieve running time

savings compared to SE SD for large MIMO systems and high SNRs. However,

the running time of threshold pruning obtains more significant running time savings

than the above two SDs. Further, the running time savings increase with the number

of transmit antennas. For example, forN = 10 andN = 14, the threshold rule

obtains1 and2 orders of magnitude of running time savings compared to SE SD

and PTP-SD. Although the K-best SD has less running time whenthe number of

antennas is large, it could not achieve the near-ML performance. Therefore, for
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Figure 4.8: Running time for a 16-QAM MIMO system with different numbers of
transmit and receive antennasN , SNR=20 dB.

high SNRs, the threshold pruning rule significantly reducesthe running time while

preserving near-optimal performance, especially for MIMOsystems with a large

number of transmit antennas.

4.6 Conclusions

Probability-distribution-based statistical pruning SD were proposed. Uniform prun-

ing, geometric pruning, threshold pruning, hybrid pruningand depth-dependent

pruning were developed. The SER performance of uniform and threshold prun-

ing rules was analysed, and the pruning probability and the threshold for achievable

diversity orderK0 were derived.

All of these rules achieved lower running time than the conventional SD in the

low-SNR region. In particular, the threshold pruning rule obtained the most signif-

icant running time savings while achieving the full diversity order. For example, in

low SNR,80% and95% running time savings were possible over the PTP-SD and

K-best SD, while also achieving a slightly better SER performance. Moreover, a

running time saving was also obtained for high SNRs (e.g.,20 dB), and this saving
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increased with the number of transmit antennas as well.

∼
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Chapter 5

Improved K-best Sphere Detector

This chapter proposes an improved K-best sphere detector (IKSD). At each layer

of the search tree, this SD keeps the bestK nodes and all the nodes whose costs

are within a certain margin of the cost of theK-th best node. Three IKSD variants,

named fixed-threshold, normalized-threshold and adaptive-threshold, are investi-

gated. By leveraging the IKSD, a hybrid SD algorithm is proposed by using full

enumeration in the upper layers of the search tree and applying the IKSD for the

remainder of the search tree. The IKSD is also extended for coded MIMO systems

as a list SD for joint iterative detection and decoding.1

5.1 Introduction

For spatial multiplexing MIMO detection, Section 2.2.2 described the K-best SD

[14], which has received significant attention recently because of its fixed through-

put, fixed detection running time and parallel implementation.

Despite these advantages, the K-best SD does not guarantee aML performance

[14]. To do so, the K-best SD typically requires very large values ofK, which result

in a higher running time than that of the conventional SD. Nevertheless, due to the

advantages of the K-best SD, several variants have been proposed to further reduce

its running time or/and improve its performance, e.g., [30,66,85–88].

Since the performance loss of the K-best SD may be due to the likelihood of

inadvertently discarding the ML solution, in this chapter,an IKSD is proposed [32]

1A version of this chapter has been published in IEEE WirelessCommun. Lett., 1: 472 -475 (2012).
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that replaces the strict valueK in the conventional K-best SD with a hypersphere

radius determined by the cost of theK-th best node and a threshold∆. The IKSD

achieves a near-ML performance with a much lower running time than that of the

conventional K-best SD.

The proposed algorithm, a general framework, also includesthe M-algorithm

[89] and T-algorithm [90] as special cases. These two algorithms are the special

cases when the parameters∆ andK equal to0 and1, respectively.

Main Contributions:

1. An IKSD is proposed, which expands the fixedK nodes at each layer in the

conventional K-best SD to a slightly bigger list, which includes all the nodes

with a partial cost off equal to or less than theK-th node costfK plus a small

value∆ (f ≤ fK + ∆). This∆ could be derived by off-line computation.

The likelihood of discarding the ML solution is thus smallerthan that with

the conventional K-best SD.

2. Three specific IKSDs are proposed in this chapter with different choices of

the threshold∆ (fixed-threshold, normalized threshold and adaptive-threshold

IKSD). The parameter∆ controls the extra number of nodes visited by the

IKSD. Furthermore, the closed-form expression of∆ is obtained for the

normalized-threshold.

3. By leveraging the IKSD, a general hybrid SD algorithm is proposed, which

expands all the nodes at the upper layers of the search tree, orders these nodes

as an increasing partial cost, and then uses the proposed IKSD for the search

of each subtree. This hybrid SD always updates the cost boundwhen one

subtree search is finished and the new cost is less than the current bound,

resulting in more pruned nodes.

4. The soft extension of the IKSD for coded MIMO systems is also derived

in this chapter. This method increases the possibility of the candidate list

including the ML point, and reduces the running time with close performance

to that of conventional soft K-best SD detection [14].
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This chapter is organized as follows:Section 5.2 presents the new IKSD, in-

troduces three specific IKSD, and discusses how to derive thethreshold. A hybrid

IKSD is developed in Section 5.3. The soft IKSD detection in coded MIMO sys-

tems is proposed in Section 5.4. Simulation results and discussions for both the

performance and the running time are given in Section 5.5. Finally, conclusions are

drawn in Section 5.6.

5.2 Improved K-best Sphere Detector

The K-best SD has fixed running time only for every symbol detection, making

it convenient for hardware implementation. However, a large K is necessary in

order to approach a near-ML performance. This requirement results in an increased

running time (even higher than that of the naive SE SD). The main reason for the

performance gap is the likelihood that the K-best SD may discard the ML solution

early. Mitigating this problem is the main idea in this section.

5.2.1 Improved K-best SD

The conventional K-best SD keepsK nodes for each layer, as mentioned in Sec-

tion 2.2.2. However, the proposed IKSD searches the fixedK nodes and all the

nodes with a partial cost equal to or less than theK-th node cost plus a small value

∆. Thus, the probability of finding the ML solution is increased compared to the

probability of doing so with the conventional K-best SD. TheIKSD is described in

Algorithm 3.

When the initial sphere radiusd is sufficiently large, the algorithm achieves

its maximal running time. When it is smaller, the running time is reduced with

the degradation in performance due to the lost lattice points outside the radius. In

simulation results,d2 = γnσ2
n [14] is chosen, wheren = 2N , σ2

n is the noise

variance, andγ ≥ 1 is chosen to guarantee the lattice point can be captured.

In this chapter, only the standard QR matrix decomposition is applied. The

channel matrix ordering (e.g., [30]) is not included; however, it can improve the

performance of the proposed IKSD.
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Algorithm 3: The IKSD Algorithm
Input : ∆,K, z, H, d
Output : ŝ

1 Initialize the sphere radiusd and the partial costfbest = 0, and take the
roots0 (layerk = m) as the start node. ;

2 for p← 1 to length(fbest) do
3 Expand thep-th node, generate all its successors∀s ∈ Ω, and

calculate the partial costs:ft = fbest + fk,t, where
fk,t = (zk,p − rk,ks)2;

4 end
5 Sort all the components off in an ascending order;
6 if The number of the elements is less thanK then
7 Keep all the candidates withf ≤ d2 to obtainT ;
8 else
9 Only keep the elements whose cost indexes satisfyf ≤ fK +∆ in T ;

10 end
11 Replace thefbest with the adjustedf ;
12 if k 6= 1 then Calculatezt = zt − R:,kst (∀st ∈ T ), k = k − 1 and go to

step 2;
13 elseReturn the first element inT as the estimated̂s;

For the tree search process, the conventional K-best SD sorts all the child nodes

based on their partial costs, and selects theK best paths. In the proposed IKSD,

instead of choosing exactlyK nodes, the additional nodes are kept, whose costs

are close to the cost of theK-th node,fK . For example, at thei-th layer (where

i = 1, 2, . . . , m, m = 2N , andN is the number of transmit antennas), supposing

that the nodes are also sorted, if the cost difference between theK-th node and the

(K + r)th node (r = 1, 2 . . .) is less than∆, then allK + r nodes are retained.

5.2.2 Threshold Rules

The choice of∆ is the main challenge of the IKSD, If∆ is too large, then more

nodes are visited and the running time increases; while if∆ is too small, the per-

formance improvement is limited compared to that of the conventional K-best SD.

Depending on the parameterization of∆, a flexible performance and running time

trade-off could be achieved. Based on different choices of the threshold∆, three

types of IKSD are proposed next.

71



Fixed-Threshold IKSD: Intuitively,∆ could be a predefined constant, resulting

in the fixed-threshold IKSD. This choice is motivated by the need to prune less

aggressively in the early stage. A fixed∆ can perfectly serve this purpose. The

value of∆ can be determined off-line through calculation, e.g., by the analysis in

Section 5.2.3. For example, for the proper value for the4 × 4 16-QAM MIMO

system with noise varianceσ2
n, ∆ could be set to be0.25σ2

n, which is obtained by

both theoretical and numerical analysis.

Normalized-Threshold IKSD: The threshold can be defined to depend on the

cost of theK-th node at each layer. The theoretical analysis in Section 5.2.3 shows

that this threshold will correspond to reducing the probability of pruning the true

solution by a constant ratio compared to the K-best SD. Thus,the threshold can be

given as

∆ = τfK . (5.1)

This IKSD is called the normalized-threshold IKSD, which adaptively updates∆ in

the searching process. The closed-form of∆ andτ will be derived in Section 5.2.3.

Adaptive-Threshold IKSD: If the SNR is known or can be estimated, an SNR-

dependent∆ may be defined as

∆ =
σ2
n

log ρ+ 1
, (5.2)

whereσ2
n is the noise variance, andρ is the SNR in the MIMO system. With this

adaptive-threshold IKSD,∆ decreases with increasing SNR. The motivation for this

threshold choice is that the cumulative costs are larger in the low-SNR region while

they are smaller in the high-SNR region. Therefore, a large∆ should be chosen in

the former case, and a small value for the latter case.

Other choices of the threshold may be possible. However, allthe proposed

threshold rules reduce the probability of dropping the ML solution early when

traversing the search tree, resulting in performance gainscompared to the conven-

tional K-best SD with the same value ofK. Furthermore, the proposed IKSD with

K outperforms the K-best SD with2K, while the former also obtains lower running

time than the latter. This result will be shown in Section 5.5.
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5.2.3 Theoretical Analysis

Since the elementsn1, . . . , nm in the noise vectorn are values from independent

identical distributed Gaussian noise,
∑m

i=k n
2
i becomes the chi-square random vari-

able withm−k+1 degrees of freedom. Becauseft =
∑m

i=k

(

zi −
∑m

j=i ri,jsj

)2

=
∑m

i=k n
2
i , the probability of the new cost of nodes being greater than theK-th node

cost is

PK = Pr(ft > fK) = 1− Pr(ft ≤ fK) = 1− F (fK ;m− k + 1), (5.3)

whereF (fK ;m− k + 1) = γ(m−k+1
2

, fK
2
)Γ(m−k+1

2
) is the cumulative distribution

function (CDF) offt, andγ(k, x) andΓ(k) are the incomplete Gamma function and

Gamma function, respectively.

In order to reduce the probability of discarding the ML solution, the probability

in (5.3) can be decreased by a predefined ratioλ (0 < λ < 1), which is given as

P∆ = Pr(ft > fK +∆) = λPK , (5.4)

whereλ could be set to be a number close to1 in order to constrain the incremental

running time, such asλ = 0.9.

Therefore, the probability offt ≤ fK +∆ is 1− λPK . Thus,∆ can be defined

as

∆ = F−1(1− λPK ;m− k + 1)− fK . (5.5)

For the fixed-threshold IKSD,∆ can be predefined to be a deterministic value

according to the above equation. By calculating the values of ∆, an interesting

result is found. For example in a4 × 4 MIMO system, whenλ = 0.9, ∆ is always

between0.2 to0.3 for all 1, . . . , m degrees of freedom, as calculated by (5.5). Thus,

it is appropriate to choose∆ = 0.25 for a4× 4 MIMO system. Similarly, a proper

fixed threshold can also be derived by using this simple off-line calculation for other

MIMO systems.

For the normalized-threshold IKSD, based on (5.1) and (5.5), τ is shown as

τ =
F−1(1− λPK ;m− k + 1)− fK

fK
. (5.6)
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When SNR is sufficiently high,PK can be approximated as

lim
σ2n→0

PK = lim
σ2n→0

1− F (fK ;m− k + 1). (5.7)

Whenx→ 0, the probability density function of the chi-squared distribution is

f(x; k) =
1

2
k
2Γ(k

2
)
x

k
2
−1 exp(−x/2) ≈ 1

2
k
2Γ(k

2
)
x

k
2
−1. (5.8)

Then, the CDFF (x; k) is

F (x; k) =

∫ x

0

1

2k/2Γ(k
2
)
xk/2−1dx =

xk/2

(k/2)2k/2Γ(k
2
)

(5.9)

andF−1(P ; k) =
(

k
2
2

k
2Γ(k

2
)P
)

2
k
. Therefore, in the high-SNR region, (5.6) can be

derived by the closed-form as

τ =
F−1

[

1− λ
(

1− (fK)(m−k+1)/2

((m−k+1)/2)2(m−k+1)/2Γ((m−k+1)/2)

)

;m− k + 1
]

− fK
fK

=

[

(m−k+1)
2

2
(m−k+1)

2 Γ( (m−k+1)
2

)

(

1− λ
(

1− (fK)
(m−k+1)

2

(
(m−k+1)

2
)2

(m−k+1)
2 Γ(

(m−k+1)
2

)

))]
2
k

fK
− 1.

(5.10)

Remarks:

1. The improvements of the proposed IKSD depend on the small relaxation

of the number of retained nodes at each search layer. Thus, this relaxation

increases the probability that the ML solution is not discarded at the early

search layers. Consequently, the proposed IKSD has a roughly fixed running

time and outperforms the conventional K-best SD with much smallerK.

2. According to the characteristics of the partial cost gap betweenK-th andK+

1-th node,∆ is defined by three specific rules to obtain the new candidates

at each layer for the IKSD. When∆ = 0, the proposed IKSD becomes the

conventional K-best SD. This∆ may have other definitions, but it always

coincides with a rule – the performance is closer to the optimal performance

when the∆ is increasing.
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3. The running time of the proposed IKSD also depends on the margin∆. When

∆ decreases, the average number of nodes visited by the IKSD isgetting

closer to that of the conventional K-best SD. If∆ is sufficiently large, the

search space spans the whole tree, yielding near-ML performance. Thus, the

index∆ provides a flexible performance and running time for the proposed

IKSD.

4. Because the proposed IKSD is intended to relax the strictly keptK nodes for

the conventional K-best SD, it may be used in the variants of the original K-

best SD to improve the performance with a smallerK, such as [30,85,86,91].

It also can be extended to soft MIMO detection and MIMO relay detection

[78].

5.3 Hybrid Sphere Detection

In this section, the fixed-threshold IKSD is extended into a hybrid SD, as the spe-

cific IKSD of the three proposed threshold IKSDs.

In the conventional K-best SD, since only K nodes are kept at each layer of the

search tree, discarding the ML solution at the early layers is thus likely. The IKSD

is proposed in order to reduce this probability. Moreover, full enumeration of the

early layers can also reduce this probability [65]. In this section, a general hybrid

SD is proposed by combing the full enumeration and the proposed IKSD.

Hybrid SD algorithm: A general hybrid SD is proposed here, which performs

two main steps in the search process.

1. In the first step, the hybrid SD expands all the branches of the earlyKF layers

in the search tree, i.e., performs full enumeration, whereKF is the number

of layers being fully expanded. The choice ofKF depends on the number

of antennas (the layers of the search tree) in MIMO systems. Intuitively,KF

may be greater when the number of antennas increases. The number of all

the child nodes after the first step isNF = |Ω|NF . All these child nodes

are ordered by an increasing accumulative partial cost, andbecome the new

roots of all the generated subtrees withm −KF layers. By this process, the
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probability of keeping the ML solution is increased. Moreover, the hybrid SD

becomes the naive IKSD when no layer is fully expanded; i.e.,KF = 0.

2. In the second step, the proposed IKSD is applied for each subtree, and it

updates the radius by the new cost of the estimate for the current subtree

when finishing the search process of this subtree. By using this new radius

as the cost bound of the next search, the proposed IKSD is morelikely to

prune more nodes or discard a whole subtree. Moreover, because the costs

of the roots of all subtrees are already in an increasing order, once thei-th

subtree is pruned, all the following|Ω|NF − i subtrees will be pruned. From

the discussion in Section 5.2, it follows that the proposed IKSD needs only

a smallerK than the conventional K-best SD for a similar performance. As

well, the proposed IKSD provides reduced running time for the proposed

hybrid SD.

The ordering of the channel matrix in the proposed hybrid SD is introduced in

the following. In the first step of the hybrid SD, the signals with the largest noise

amplification are detected. For the second step, the signalswith the smallest noise

amplification are detected.

For i← m to 1

1. CalculateH†
i = (HH

i Hi)
−1HH

i , whereHi is the channel matrix with columns

selected in previous iterations zeroed;

2. The signal to be detected (ŝp) is obtained by

p = argmax
j∈{1,...,m}−{pi+1}

‖(H†
i)j‖2 for i = m, . . .m−KF , (5.11)

while

p = argmin
j∈{1,...,m}−{pi+1}

‖(H†
i)j‖2 for i = m−KF − 1, . . . 1, (5.12)

where(H†
i)j denotes thej-th row ofH†

i , andpi+1 is the columns selected in

previous iterations;
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An SD algorithm has been proposed [85], which uses tree decomposition and

pruning constraint updates to reduce the requiredK and terminate the search pro-

cess early. This algorithm fully expands the first layer of the search tree and uses

the conventional K-best SD for the search of all the subtrees. This SD algorithm

is a special case of the proposed hybrid SD algorithm whenKF = 1 and uses the

conventional K-best SD for the search of all subtrees.

Running time Measurement: The average number of nodes visited is also used

to measure the running time of the proposed hybrid SD algorithm. However, the

hybrid SD counts all the nodes visited by full enumeration and the search of all the

subtrees.

By the full enumeration of theKF layers, the expanded nodesNF are directly

obtained:NF = |Ω|KF . Therefore, the whole expected number of visited nodes of

the hybrid SD is given by

CH(m, ρ,KF ) = |Ω|KF +

|Ω|KF
∑

j=1

m−NF
∑

k=1

ϕj,k, (5.13)

whereϕj,k is the number of nodes visited at thek-th layer of thej-th subtree within

the hypersphere of radiusd. The second item of the above equation is the sum of

all the nodes visited by searching|Ω|KF subtrees.

5.4 Soft Extension of the IKSD

For coded MIMO systems, the conventional K-best SD supportssoft outputs [14],

where the bestK nodes left at the last iteration form the candidate list usedby the

iterative detection and decoding. However, the conventional K-best SD in coded

MIMO systems results in an increasing running time in order to achieve the near-

optimal performance by a sufficiently largeK. Therefore, the list IKSD is proposed

by extending the proposed IKSD as a list SD for coded MIMO systems.

The list IKSD generates a listL ofNI candidates when searching the tree. This

list includesNI = K + N∆ estimates, and the size of the list satisfies1 ≤ NI <

2Nc·N , whereNc = log2 (|Q|) is the number of bits per modulated symbol, andN∆

is the number of extra nodes visited by the list IKSD comparedto the list K-best
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SD. The coded MIMO system model and the details of the MIMO detector and the

channel decoder are presented in [10].

5.5 Simulation Results and Discussions

MIMO detection: In this section, the performance and running time of the IKSD

(Algorithm 3) are assessed. Both the symbol error rate (SER)and the average

number of nodes (the running time) visited by the new IKSD arecompared with

those of the conventional K-best SD [14]. Although the threeversions of the IKSD

outperform the conventional K-best SD, in this chapter onlythe fixed-threshold

IKSD and the normalized-threshold IKSD are shown due to the space limitation.

The ML curve is from the conventional SE SD. In order to compare the proposed

IKSD with the K-best SD fairly, the initial radius for both the proposed IKSD and

K-best SD is chosen to be the same (γ = 10). Furthermore, in order to highlight

the advantage of the proposed IKSD, the channel detection ordering is not included

for all the algorithms.
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Figure 5.1: Error performance for an uncoded4× 4 MIMO 16-QAM system.

Fig. 5.1 shows the impact of the SER performance of the proposed IKSD. An
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uncoded4×4 MIMO system with16-QAM is simulated over a flat Rayleigh fading

channel (σ2
n = 1). Note that the performance of the IKSD by the fixed-threshold

(K = 2,∆ = 0.25) is very close to the ML curve, while the conventional K-best

SD needs to setK = 16 to achieve a similar SER. Furthermore, the fixed-threshold

IKSD outperforms the normalized-threshold (K = 2, λ = 0.9).
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Figure 5.2: Running time for an uncoded4× 4 MIMO 16-QAM system.

A running time comparison between the IKSD and the K-best SD is also pro-

vided in Fig. 5.2. The running time of the proposed fixed-threshold IKSD is lower

than that of the K-best SD when achieving the near-ML performance. For exam-

ple, the conventional K-best SD (K = 16) searches about4 × 102 nodes, while

the fixed-threshold IKSD needs to visit only80 nodes on average – an80% run-

ning time savings. Moreover, forK = 2, with a30% increase in running time, the

fixed-threshold IKSD provides a7 dB gain (at an SER of10−2) over the K-best SD.

Note that, as expected, the running time curves for the conventional K-best SD are

flat as a function of SNR; similarly, the fixed-threshold IKSDhas a virtually flat

running time curve. To quantify such flatness, a running timevariability index was

introduced in [47]. This index is7× 10−3, affirming that the fixed-threshold IKSD

has a virtually constant running time.
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Figure 5.3: Error performance for an uncoded8× 8 MIMO 16-QAM system.
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Figure 5.4: Running time for an uncoded8× 8 MIMO 16-QAM system.
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In order to show the advantages of the proposed IKSD, the comparison with

other algorithms (Fixed SD [30], EP K-best [66], AFE-FCSD [88], and simplified

Fixed SD [87]) is shown in Figs. 5.3 and 5.4. Achieving the near-optimal SER

performance, the running time of the proposed IKSD is only23%, 27% and59.5%

of that of the Fixed SD, EP K-best and simplified Fixed SD, respectively. Although

the AFE-FCSD obtains lower running time than the proposed IKSD whenSNR ≥
18 dB, the latter gains1.5 dB more than the former at an SER of10−4. Above all,

the proposed IKSD achieves the best trade-off between performance and running

time among all these algorithms.

Hybrid Sphere Detection: In order to verify the improvements of the proposed

hybrid SD, the performance and the running time of the hybridIKSD and the SD

algorithm [85] (the hybrid K-best SD in this section) are investigated in Fig. 5.5 and

Fig. 5.6. In the simulations, the number of full enumerationlayersKF is set to be1

in order to compare the proposed hybrid IKSD with the hybrid K-best SD proposed

by [85]. Moreover,4 × 4 16-QAM and 64-QAM MIMO systems are considered

here.
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Figure 5.5: Error performance for4× 4 MIMO systems.

Let us first evaluate the SER performance. Fig. 5.5 shows the hybrid IKSD and

81



the hybrid K-best SD with different values ofK. Clearly, for the16-QAM system,

the proposed hybrid IKSD achieves a near-ML performance whenK equals1, and

∆ equals0.25, while the hybrid K-best SD needs to chooseK = 4 in order to

obtain a near-ML performance. Interestingly, when choosing the same value for

K, the proposed hybrid IKSD acquires more performance gains than the hybrid

K-best SD. For example, at an SER of10−3, the hybrid IKSD gains6.5 dB over

the hybrid K-best SD withK = 2 and obtains a gain of more than10 dB than the

latter withK = 1. Although the hybrid IKSD (K = 1) cannot achieve a near-

ML performance for all the SNRs, it still performs very closeto the optimal one.

Fig.5.5 also shows the performance for a64-QAM MIMO system. Similarly, the

proposed hybrid IKSD achieves a near-ML performance with a smallerK than that

of the hybrid K-best SD. For example, the hybrid IKSD withK = 1,∆ = 0.1

performs almost identically to the hybrid K-best SD withK = 16. In this figure,

the performances with different values of∆ are also shown. When∆ gets larger,

the performance gains more.
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Figure 5.6: Running time for4× 4 MIMO systems.

A running time comparison for the same set-up is shown in Fig.5.6. For the16-

QAM system, with a similar performance shown in Fig. 5.5, thehybrid IKSD with
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K = 1,∆ = 0.25 searches83 nodes on average for the whole SNR region, while

the hybrid K-best SD withK = 4 searches about2 × 102 nodes (the former saves

about60% more than the latter). Running time savings are also achieved in a64-

QAM system. For example, the running time of the hybrid IKSD (K = 1,∆ = 0.1)

is 3.6× 102, but is2.2× 103 for the hybrid K-best SD (K = 16); i.e., the proposed

hybrid IKSD obtains approximately84% running time savings over the hybrid K-

best SD.

Detection for Coded MIMO systems: The advantages of the IKSD are now

accessed in a4× 4 coded MIMO system. The performance measured by BER, and

the running time of generating the candidate list are investigated. The systematic

recursive convolutional code with rateR = 1/2 is used to encode the transmitted

bits sequenceb with the frame lengthMb = 8192, where the feed-forward and

feedback-generating polynomials areG1(D) = 1 +D2 andG2(D) = 1 +D +D2

with memory length2 [10], respectively. A random interleaver is used here.
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Figure 5.7: Error performance for a coded4× 4 MIMO 16-QAM system.

In order to show the effects ofK, the performance and running time for different

K are shown in Figs. 5.7 and 5.8. By increasingK, more nodes are visited in the

search process, resulting in the increasing running time ofthe iterative detection and
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decoding. However, the BER performance improves whenK is larger. As shown in

the left axis, by using4 maximum iterations, the proposed list IKSD withK = 256

achieves the performance of the conventional K-best SD withK = 512.
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Figure 5.8: Running time for a coded4× 4 MIMO 16-QAM system.

As shown in Fig. 5.8, whenK decreases, the degradation of the running time

increases. For example, the average number of nodes visitedis around4.5 × 103

with K = 256, approximately2.4 × 103 with K = 128, and about1.4 × 103

with K = 64, respectively. However, the conventional list K-best SD visits about

7.5 × 103 nodes withK = 512. The proposed list IKSD gains40% running time

savings with the same performance.

5.6 Conclusions

This chapter proposed an improved K-best SD (IKSD), which achieved a near-ML

performance at a reduced and roughly fixed running time. Unlike the conventional

K-best SD, which retains a fixed number ofK nodes per layer, the proposed IKSD

expanded this number to all the nodes whose cost was less thanfK +∆. The con-

ventional K-best SD is thus a special case when∆ = 0. The motivation for keeping
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additional nodes is to further reduce the likelihood that the conventional K-best SD

will discard the ML solution early. The proposed IKSD was further extended to

propose a general hybrid SD in order to further improve the performance, verify-

ing that the main idea of the IKSD could be adopted with different variants of the

conventional K-best SD. For coded MIMO systems, a soft extension of the IKSD

was developed as the list IKSD. It used the IKSD to generate the candidate list for

joint iterative detection and decoding, resulting in running time savings over the

conventional list K-best SD.

∼
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Chapter 6

Estimate-and-Forward Relay
Strategy

Sphere detection algorithms are also needed for MIMO relay networks to reduce

the detection running time. This chapter proposes and analyses an EF scheme for

MIMO relay networks. The EF relay forwards the MMSE estimateof the source

data to the destination and performs like AF and DF for the lowand high SNR

regions, respectively. Further, two approximate EF schemes for large MIMO relay

networks are proposed to reduce the number of computationaloperations. The

first one, called list EF, computes a list-SD-based MMSE estimate and retains the

advantages of the exact EF relay at a negligible performanceloss, while the second

one computes a Gaussian estimate.1

6.1 Introduction

The conventional AF and DF relays were introduced in Section2.4. At the relay

nodes, AF simply amplifies the received signal, while DF detects the transmit sig-

nal depending on the received signal. Another relay strategy called EF [49] is a

powerful approach for uncoded single antenna relay networks. Unlike the AF and

DF relays, the EF relay computes and transmits an unconstrained MMSE estimate,

resulting in an optimized relay function for all SNRs. Due toits advantages, the

single-antenna EF relay has been investigated [92–98]. A MLreceiver for EF re-

laying was derived in [92]; moreover, [93] extended EF relaying into coded single

1A version of this chapter has been submitted to IEEE Trans. Wireless Commun. (2013).
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antenna relay networks. However, EF relaying has not been extended to MIMO

relays, and the high number of computational operations of EF for large MIMO

networks with high-order constellations and/or a large number of antennas has also

not been investigated.

The joint source-to-relay signal transmission design was investigated in [99,

100], and [101–103] worked on proposing relay/antenna selection techniques for

performance improvements. In this chapter, we focus on the relay-signal-processing

algorithm design and propose the MIMO EF relay strategy [104].

The main contributions of this chapter are summarized as follows.

1. The concept of the MIMO EF relay is developed. It forwards ascaled version

of an unconstrained MMSE estimate of the source-transmitted signal. The

scaling factor is chosen to satisfy the relay average power constraint. Unlike

AF and DF, the proposed EF works equally well for both low and high SNRs,

and thus no algorithm switching is required.

2. To illustrate the proposed EF relay function, two examples are provided. They

involve a single antenna relay and a2× 2 MIMO relay. Both examples show

the convergence of EF to AF and DF for low and high SNRs. Inspired by

these two examples, we analyse and prove the convergence of EF to AF and

DF for general MIMO relay networks with an arbitrary number of antennas.

Thus, in the low and high SNR regions, the EF converges to AF and DF,

respectively.

3. To provide a quality measure, the mean square error (MSE) expressions of

AF, DF and EF are derived. Moreover, as expected, the MSE comparison

reveals that EF achieves the lowest MSE for all SNRs. Thus, itperforms best

across all SNRs and eliminates the need for switching between algorithms for

different SNRs.

4. To reduce the number of computational operations when there are high-order

constellations and/or a large number of antennas (large MIMO), we propose

a list EF relay, which computes MMSE estimate by using a sphere decoder

87



(such as [22, 25, 47, 48]) to generate a list of candidate vectors. A 2 × 2

16-QAM MIMO relay system is examined.

5. To reduce the number of computational operations of the MMSE estimate,

the discrete sum of the terms in the exact MMSE estimate is approximately

a Gaussian integral, which can be evaluated in a closed-form. This resulting

relay strategy is called Gaussian EF.

6. To compute the error rates of AF, DF and EF, extensive numerical and simu-

lation results are generated. Both high-order constellation64-QAM and2×2

16-QAM systems are evaluated for a single relay network. Moreover, to ver-

ify the advantages of the proposed list EF, a parallel (two relay) and a hybrid

relay network are also simulated. The simulation results confirm our EF anal-

ysis, which found that the proposed EF outperforms AF and DF for all SNRs.

This chapter is organized as follows: Section 6.2 describes MIMO relay

strategies including AF, DF and EF. Section 6.3 presents theproposed list EF and

Gaussian EF. The proposed EF relays are extended to MIMO two-way relay net-

works in Section 6.4. Simulation results and discussions are given in Section 6.5.

Finally, conclusions are drawn in Section 6.6.

6.2 Relay Strategies

Throughout this chapter, we assume that the channel state information is available

at the relay and the destination, and can be, for example, estimated by using the

transmitted pilot symbols [56]. Single-relay networks areinvestigated first, and for

multiple relays networks, we assume identical relays that do not cooperate. Our

simulation results will be discussed in Section 6.5. Due to the valuable spatial

diversity arising from a direct link [105, 106], collaborative relaying with a direct

link outperforms that of the case without a direct link. One simulation example is

given in Section 6.5.

The performance of MIMO memoryless relay networks depends critically on

the relay function. In this section, only single-relay networks are considered for
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analysis, and thusH andG denote the source-relay and relay-destination channels

and have the same definition asHk andGk in (2.16) and (2.17), respectively. Sev-

eral memoryless relay functions for MIMO are discussed next. The system model

is as given in Fig. 2.4.

From the discussion of AF and DF relay schemes in Section 2.4,it follows

that AF outperforms DF for low SNRs while the reverse is true for high SNRs.

Therefore, adaptive forwarding strategies [107, 108] havebeen developed, which

switch between AF and DF for different SNRs. We develop the EFrelay as an

alternative. It achieves the advantages of AF and DF for all SNRs without switching

between the algorithms.

6.2.1 Estimate-and-Forward

This section presents the main idea of this chapter. Unlike DF relay, which trans-

mits the hard decisions, the EF relay transmits soft information. The soft informa-

tion which helps data detection at the destination is a scaled unconstrained MMSE

estimate of the transmitted signalx at the relay. The MMSE estimate is the con-

ditional mean ofx, given the received signalr and channelH, and may be stated

as

x̂ = E(x|r,H) =

∑

x∈QMs xf(r|x,H)P (x)
∑

x∈QMs f(r|x,H)P (x)
, (6.1)

whereP (x) is the priori probability of the transmitted signalx, andf(r|x,H) is

the PDF ofr conditional onx andH. Because the addition noise vector is i.i.d

Gaussian, the PDFf(r|x,H) may be written as

f(r|x,H) =
1

(πσ2
1)
Ms

exp

(

−‖r−Hx‖2
σ2
1

)

. (6.2)

Assuming equal priori probabilities for all transmitted symbols, the EF relay com-

putes the MMSE estimate

x̂ =

∑

x∈QMs x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈QMs exp
(

−‖r−Hx‖2
σ21

) . (6.3)
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To satisfy the relay power constraint, the scaling factor for EF relaying, like that for

AF and DF relaying, is given by

β =

√

Pr
E(‖x̂‖2) =

√

Pr
∫∞
−∞ ‖x̂(r)‖2f(r)dr

. (6.4)

By using the total probability law [23], the PDF of received signalr can be obtained

as

f(r) =
∑

x∈QMs

f(r|x,H)P (x) =
∑

x∈QMs

1

(πσ2
1)
Ms

exp

(

−‖r−Hx‖2
σ2
1

)

1

|Q|Ms
.

(6.5)

Thus, the relay retransmits the scaled version of the MMSE estimateβx̂ to the

destination. The EF relay function is therefore

GEF (r) =
√

Pr
∫∞
−∞ ‖x̂‖2f(r)dr

×
∑

x∈QMs x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈QMs exp
(

−‖r−Hx‖2
σ21

) . (6.6)

To demonstrate the EF relay scheme, two examples are discussed next.

Example 1 (BPSK andMs = Nr = Mr = Nd = 1): Begin from the simplest

case of a signal antenna system using BPSK modulation. In this case, the MMSE

estimate in (6.3) can be written as

x̂ = E(x|r, h) = tanh

(

hr

σ2
1

)

, (6.7)

wheretanh (x) = ex−e−x

ex+e−x .

To investigate the behaviour of this relay, thex̂ is discussed for low and high

SNRs, respectively. In the low-SNR region (the region with high noise power), by

expandingtanh (x), the estimate at the relay becomes

x̂ = lim
σ21→∞

tanh

(

hr

σ2
1

)

= lim
σ21→∞

exp(hr
σ21
)− exp(−hr

σ21
)

exp(hr
σ21
) + exp(−hr

σ21
)

= lim
σ21→∞

(1 + hr
σ21
)− (1− hr

σ21
)

(1 + hr
σ21
) + (1− hr

σ21
)
= lim

σ21→∞

hr

σ2
1

, (6.8)

where the fact thatex ≈ 1+x whenx→ 0 is used. This MMSE estimate resembles

AF relaying with an amplify factorh
σ21

.
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In the high-SNR region, the MMSE estimation of the received signal can be

written as

x̂ = lim
σ21→0

tanh(
hr

σ2
1

) = lim
σ21→0

exp(hr
σ21
)− exp(−hr

σ21
)

exp(hr
σ21
) + exp(−hr

σ21
)

=

{

−1 : hr
σ21
< 0

1 : hr
σ21
> 0

= sgn

(

hr

σ2
1

)

,

(6.9)

where the fact thatlimx→−∞ ex = 0, and sgn(x) is an odd mathematical function

that extracts the sign of a real number is used. (6.9) revealsthat MMSE relaying

approaches DF when SNR is high enough.

To further confirm the advantages of the EF relay, the power ofthe MMSE

estimateE(‖x̂‖2) is also discussed here. This power is given by

E(‖x̂‖2) =
exp

(

− h2

2σ21

)

2
√

2πσ2
1

∫ ∞

−∞

(

exp
(

hr
σ21

)

− exp
(

−hr
σ21

))2

exp
(

hr
σ21

)

+ exp
(

−hr
σ21

) exp

(

− r2

2σ2
1

)

dr

≈































exp

(

− h2

2σ2
1

)

2
√

2πσ21

∫∞
−∞

exp

(

2hr

σ2
1

)

−exp

(

− 2hr

σ2
1

)

−2

2
exp

(

− r2

2σ21

)

dr

whenσ2
1 →∞

∫∞
−∞ 12 × 1

2
√

2πσ21

(

exp
(

− (r−h)2
2σ21

)

+ exp
(

− (r+h)2

2σ21

))

dr

whenσ2
1 → 0

=

{

h2

σ21
whenσ2

1 →∞
1 whenσ2

1 → 0

.

(6.10)

This equation shows that the power of the MMSE estimate is close to being a scaled

transmit power at low SNR and approaches the power of hard decision at the relay

at high SNR. Therefore, (6.8) and (6.9) are affirmed. This example theoretically

verifies and agrees with the numerical results of the relay function (shown as Fig. 1

in [49])

Example 2 (BPSK andMs = Nr =Mr = Nd = 2): Next, a2× 2 MIMO relay

system with BPSK inputs is considered. A real-valued MIMO relay system and

constellation vectorQ2 =

{(

−1
−1

)

,

(

−1
1

)

,

(

1
−1

)

,

(

1
1

)}

are assumed.

The received signal at the relay is

r =

[

r1
r2

]

=

[

h11 h12
h21 h22

] [

x1
x2

]

+

[

n1

n2

]

. (6.11)
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Thus, the relay function of the MMSE estimate can be derived by (6.6).

Figure 6.1: Relay function at different SNRs for theNr = 2, BPSK system.

The relay functions can be shown by Fig. 6.1, where only the transmitted signal

at one antenna is shown, and the MIMO channelH ∼ CN (0, 1) is a randomly

generated Gaussian variableH = [−1.1756+0.7771i,−0.7670+1.6233i; 1.3744+

0.1041i, 0.1604+1.9464i]. Note that the EF relay function is almost linear for small

values of|r| like AF. Its slope gradually decreases and finally becomes flat like the

slope of DF. Another observation is that EF performs similarly to AF for low SNR

(−10 dB) and closer to DF for high SNR (10 dB).

6.2.2 Relationships among AF, DF and EF

Examples 1 and 2 indicate that EF approximates AF and DF in thelow SNR and

high SNR regions. In this subsection, it is theoretically shown that this relationship

indeed holds in general MIMO relay networks with an arbitrary number of antennas.

The constellation is assumed to be symmetric; i.e.,x ∈ Q ⇔ −x ∈ Q.

Low SNR Case: When the receive SNR at the relay is low, by using (6.3), the
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MMSE estimate can be derived as

lim
σ21→∞

x̂ = lim
σ21→∞

∑

x∈QMs x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈QMs exp
(

−‖r−Hx‖2
σ21

)

= lim
σ21→∞

∑

x∈QMs x exp
(

−−xHHHr−rHHx+xHHHHx

σ21

)

∑

x∈QMs exp
(

−−xHHHr−rHHx+xHHHHx

σ21

) . (6.12)

Because the constellation is symmetric, and thus
∑

xf(x) = 0 if f(x) is an even

function inx, the above equality can be derived as

lim
σ21→∞

x̂ = lim
σ21→∞

∑

x∈QMs x
(

1− −xHHHr−rHHx+xHHHHx

σ21

)

∑

x∈QMs

(

1− −xHHHr−rHHx+xHHHHx

σ21

) .

Furthermore, it is known thatlimσ21→∞
n1

σ2
= 0with probability one andlimx→0 e

x =

limx→0 1 + x; thus,

lim
σ21→∞

x̂ = lim
σ21→∞

∑

x∈QMs x
xHHHr+rHHx

σ21

|Q|Ms −∑x∈QMs
xHHHHx

σ21

=
1

σ2
1|Q|Ms

((

∑

x∈QMs

xxH

)

HHr+

(

∑

x∈QMs

xxT

)

HTr∗

)

.

Finally, based on the property of the constellation, there are
∑

x1,x2∈Q x1x
∗
2 =

0, and
∑

x1,x2∈Q x1x2 = 0. Therefore, the limitation of the MMSE estimation in

the low-SNR region can be derived by

lim
σ21→∞

x̂ =
1

σ2
1|Q|

(

∑

x∈Q
|x|2HHr+

∑

x∈Q
x2HT r∗

)

, (6.13)

(6.13) shows that EF converges to AF in the low-SNR region, but in a slightly

different form than that of the pure AF in (2.18). (6.13) can be further simplified

for different constellations. For the real-valued MIMO relay system, such as BPSK,

(6.13) can be rewritten as

lim
σ21→∞

x̂ =
2
∑

x∈Q x
2

2σ2
1|Q|

HTr =

∑

x∈Q x
2

σ2
1 |Q|

<
(

HHr
)

. (6.14)

WhenMs = Nr = 1, (6.14) becomes (6.8).

93



For complex-valued modulations, such asM-QAM,
∑

x∈Q x
2 = 0 according to

the symmetric characteristic. (6.13) becomes

lim
σ21→∞

x̂ =

∑

x∈Q |x|2
σ2
1|Q|

HHr. (6.15)

Let us definex̂MF = HHr. Then, EF becomes a matched filter AF when the

transmitted power is very low. Thus, this AF is called the matched filter AF, and

the relay function can defined as

GMF (r) =
Pr

E(‖x̂MF‖2)
HHr. (6.16)

High SNR Case: It is assumed that the ML detection isxML, which can be

obtained by (2.21). For high SNR, by splitting out the ML solution, the MMSE

estimate can be derived as

lim
σ21→0

x̂ = lim
σ21→0

∑

x∈QMs x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈QMs exp
(

−‖r−Hx‖2
σ21

)

= lim
σ21→0

xML exp
(

−‖r−HxML‖2
σ21

)

+
∑

x∈A x exp
(

−‖r−Hx‖2
σ21

)

exp
(

−‖r−HxML‖2
σ21

)

+
∑

x∈A exp
(

−‖r−Hx‖2
σ21

)

= lim
σ21→0

xML +
∑

x∈A x exp
(

−‖r−Hx‖2−‖r−HxML‖2
σ21

)

1 +
∑

x∈A exp
(

−‖r−Hx‖2−‖r−HxML‖2
σ21

) , (6.17)

whereA = {x ∈ QMs exceptxML}. For allx ∈ A, it can be found thatx 6= xML,

and the‖r−Hx‖2 − ‖r −HxML‖2 must be greater than0. In other words, it is

lower bounded byε > 0 with probability one as SNR goes to infinity. Therefore,

limσ21→0 exp
(

−‖r−Hx‖2−‖r−HxML‖2
σ21

)

= 0 is derived. The MMSE estimate thus

approximates to

lim
σ21→0

x̂ = xML, (6.18)

which is in fact DF relaying. Consequently, in the high-SNR region, EF and DF

converge.

6.2.3 MSE Analysis

The error rate at the destination is greatly affected by the processed signal of the re-

lay, and the MSE can efficiently indicate the quality of the forwarded signal. There-
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fore, the MSE of different relay strategies is analyzed here. In order to facilitate the

MSE analysis, the system model is assumed to be

r =

√

ρ

Ms

Hx+ n, (6.19)

where the noise varianceσ2 = 1, andρ denotes the SNR of the MIMO system.

AF relaying: As the AF relay transmits a scaled version of the received signal

as shown in (2.18), the MSE of AF relay is given as

MSEAF = E
[

∥

∥

∥

∥

r−
√

ρ

Ms
Hx

∥

∥

∥

∥

2
]

= E
[

‖n‖2
]

= Nr. (6.20)

LMMSE AF relaying: The MSE for this relay can be derived as

MSELMMSE = E
[

‖Gr− x‖2
]

= E
[

∥

∥

∥

∥

√

ρ

Ms
GH− I

∥

∥

∥

∥

2
]

Ps + E
[

‖G‖2
]

Nr, (6.21)

whereG =
(

ρ
Ms

HHH+ I
)−1

·
√

ρ
Ms

HH .

DF relaying: According to (2.21), the MSE may be expressed as the Euclidean

distance between the detected symbol and the transmitted symbol:

MSEDF = E
[

‖x̂ML − x‖2
]

, (6.22)

wherex̂ML is the symbol detected by the ML algorithm according to (2.21). For

MIMO systems, the transmitted symbolx belongs toQMs . Assumesi,j ∈ QMs,

wherei = 1, 2, . . . ,Ms andj = 1, 2, . . . , |Q|. From the union bounding technique

[23], the MSE for DF relaying can be derived as

MSEDF = E
[

‖x̂ML − x‖2
]

=

Ms
∑

i=1

|Q|
∑

j=1

Ms
∑

î=1

|Q|
∑

ĵ=1

‖ŝî,ĵ − si,j‖2P (si,j → ŝî,ĵ)

=

Ms
∑

i=1

|Q|
∑

j=1

Ms
∑

î=1

|Q|
∑

ĵ=1

‖ŝĵ − sj‖2P (si,j → ŝî,ĵ)

Ms|Q|
, (6.23)

wheresj, sĵ ∈ Q. In order to obtain the pairwise error probability (PEP), the

symbolx is assumed to be drawn from a real constellationQ. The closed form of
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this PEP is

P (si,j → ŝî,ĵ) = µMs

Ms−1
∑

k=1

(

Ms − 1− k
k

)

(1− µ)k, (6.24)

whereµ = 1
2

(

1−
√

ρ(|sj |2+|sĵ|2)
4+ρ(|sj |2+|sĵ|2)

)

. By plugging (6.24) into (6.23), the MSE

closed-form for DF relaying can be rewritten as

MSEDF =
1

Ms|Q|
Ms
∑

i=1

|Q|
∑

j=1

Ms
∑

î=1

|Q|
∑

ĵ=1

‖ŝĵ − sj‖2µMs

Ms−1
∑

k=1

(

Ms − 1− k
k

)

(1− µ)k

=
1

|Q|

|Q|
∑

i=1

|Q|
∑

j=1

Ms‖ŝĵ − sj‖2µMs

Ms−1
∑

k=1

(

Ms − 1− k
k

)

(1− µ)k.

(6.25)

EF relaying: Based on (6.3) the MSE at the relay can be derived as

MSEEF = E
[

‖x̂− x‖2
]

= E







∥

∥

∥

∥

∥

∥

∑

x∈QMs x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈QMs exp
(

−‖r−Hx‖2
σ21

) − x

∥

∥

∥

∥

∥

∥

2






≈







E
[

∥

∥

∥

∑

x∈Q
|x|2

σ21 |Q| HHr− x

∥

∥

∥

2
]

, ρ→ 0

E
[

‖xML − x‖2
]

, ρ→∞
.

Based on the cyclic permutations property of the trace

E
[

<(xHHHx)
]

= E
[

<(xHHHx)
]

= E
[

<(Tr(HHxxH))
]

= 0. (6.26)

MSEEF is then derived as

MSEEF ≈







lim
σ21→∞

E
[

∥

∥

∥

∑

x∈Q
|x|2

σ21 |Q| HHr

∥

∥

∥

2
]

+ Ps, ρ→ 0

E
[

‖xML − x‖2
]

, ρ→∞

=

{

MSEAF , ρ→ 0
MSEDF , ρ→∞ . (6.27)

Therefore, the MSEs of EF and AF relays converge in the low-SNR region, while

those of EF and DF relays converge in the high-SNR region. This behaviour is

anticipated in Section 6.2.2.

Example 3 (BPSK andMs = Nr = 2): In this case, for a2× 2 MIMO channel,

the MSEs of all the relays are compared in Fig. 6.2. As expected, EF is the best
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Figure 6.2: MSE at different SNRs for theMs = Nr = 2 BPSK system.

performing scheme. DF performs the worst in the low-SNR region (at less than

−5 dB) but close to the EF scheme in the high-SNR region; the reverse is found

for the AF relay scheme. As well, the LMMSE AF relay scheme outperforms

AF. Above all, due to its small MSE, the EF relay is expected toyield an optimal

performance at the destination.

6.3 Approximate Estimate-and-Forward

According to (6.3), if|Q|Ms is small, it is easy to computêx. However, when

|Q|Ms is large, the direct computation ofx̂ in (6.3) is expensive. In this section, two

approximate EF relays are proposed for large MIMO systems.

6.3.1 List Estimate-and-Forward

Before introducing list EF, the motivation for this idea will be explained. First the

termψ = exp
(

−‖r−Hx‖2
σ21

)

in (6.3) is analysed. Asn1 is an AWGN, ‖r−Hx‖2
σ21

∼
χ2(Ms), which is a chi-square distribution withMs degrees of freedom. Therefore,
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the PDF ofψ can be derived as

fΨ(ψ) =
1

ψ
× (− logψ)Ms/2−1 exp( logψ

2
)

2Ms/2Γ(Ms/2)
, (6.28)

where Gamma functionΓ(n
2
) =
√
π (n−2)!!

2(n−1)/2 . Thus, the probability ofψ ≥ a can be

obtained as

FΨ(ψ ≥ a) =

∫ 1

a

fΨ(ψ)dψ. (6.29)

For example, whenMs = 2, FΨ(ψ ≥ a) = 1−√
a

Γ(1)
. If a is a number close to1, then

the tail probabilityFΨ(ψ ≥ a) would be small value, suggesting that the probability

of a largeψ is very small. The above is the main motivation for developing list EF.

Consequently, most of the terms in the sum of (6.3) are small and contribute

very little to the sum, especially in the high-SNR region. Intuitively, one can find a

subset ofQMs to compute the sum in (6.3). Assume that this subset can be denoted

byL, and then (6.3) can be approximated to be

x̂ ≈
∑

x∈L x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈L exp
(

−‖r−Hx‖2
σ21

) . (6.30)

In this chapter, the size of the listNL is used to obtain the trade-offs between

the computational accuracy and operations. WhenNL is small,x̂ is computed with

low running time. In the high-SNR region, because of the limit of the exponential

function (limx→−∞ ex = 0),

lim
Ps→+∞

exp

(

−‖r−Hx̃‖2
σ2
1

)

= lim
σ2→0

exp

(

−‖r−Hx̃‖2
σ2
1

)

= 0, (6.31)

wherex̃ 6= x̂. This result means the realx plays a uniquely important rule in the

computation of the MMSE estimate. Specifically, whenNL = 1, list EF becomes

DF. Therefore, list EF can achieve the exact computation of the MMSE estimate

even with a very small set for the high-SNR region.

Computing listL is the main challenge. The SD [25] reduces the number of

computational operations of MIMO detection by performing asearch limited to a

hypersphere. This approach can also be used to significantlyreduce the running
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time of detection for coded MIMO systems by adapting the listSD to generate a

small list for the iterative detection and decoding process[10].

In this chapter, list SD is utilized for the EF MIMO relay. TheSD generates

a list ofx satisfying‖r−Hx‖2 ≤ d2. Intuitively, the constraint radiusd2 can be

defined to bed2 = −σ2
1 ln a, (0 < a < 1) based on (6.29). Therefore, the list size

can be controlled viaa, which gives a trade-off between the estimation accuracy

and running time. Another more effective method of controlling the list size is to

predefine the list sizeNL. This method is used in this chapter.

The process of generating the list is similar to that for the list SD in [10, 32].

This process is shown below for completeness:

1. Set the initial radius to be∞, keep the firstNL nodes in the listL, and update

the radius to be the smallest cost of the existing leaf nodes.

2. When the list is full, compare the cumulative cost of the next node in the

hypersphere with the largest cost in the list; then keep the node with a smaller

cost; otherwise, remove the node from the list.

3. At the end of the search process, a list withNL nodes having the smallest

costs is obtained.

After obtaining thêx by using (6.30), the relay function can be given as

GEF (r) = β

∑

x∈L x exp
(

−‖r−Hx‖2
σ21

)

∑

x∈L exp
(

−‖r−Hx‖2
σ21

) , (6.32)

whereβ can be derived by using (6.4). Thus, the scaled MMSE estimation at the

relay will be retransmitted to the destination.

Example 4 (16-QAM andMs = Nr =Mr = Nd = 2): In this case, the list size

is assumed to be16 for the proposed list EF. However, for the exact MMSE at the

relay, there areQMs = 162 = 256 elements, where the16-QAM constellation

Q =

{

1√
10

(a+ bi), a, b ∈ {−3,−1, 1, 3}
}

.

By using the sphere decoder, list EF chooses only the size-16subset ofQMs

having the smaller costs of‖r−Hx‖2. For a random generated channel ma-

trix H = 1√
2
[h11, h12; h21, h22], wherehij ∼ CN (0, 1) with i, j ∈ {1, 2} (H =
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Figure 6.3: The real part of relay functions at one of the relay antennas when
SNR = 10 dB for theNr = 2, 16-QAM system.

[1.0036− 0.5688i, 0.1398 + 0.5904i; 0.2061 + 0.4925i, 1.1226− 0.1723i]), the re-

lay functions of list EF and exact EF for an SNR of10 dB are shown in Fig. 6.3,

where the y-axis is the real part of the transmitted signal atthe first antenna of the

relay. Fig. 6.3 shows that list EF and exact EF have virtuallyidentical relay func-

tions. This observation confirms that our proposed list EF efficiently computes the

MMSE estimation while achieving the performance of the exact EF relay.

6.3.2 Gaussian EF

To reduce the number of computational operations of the MMSEestimation at the

relay, another approximate method is proposed here. The high number of com-

putational operations is due to the discrete sum in (6.3) needing |Q|Ms terms to

be computed. Instead of computingx in (6.3) vector-by-vector, it is proposed to

computex̂ = [x̂1, x̂2, . . . x̂Ms ] entry-by-entry for large systems. Thus, the MMSE
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estimation at the relay can be rewritten as

x̂i = E(xi|r,H) =

∑

xi∈Q xi
∑

x−i∈QMs−1 exp
(

−‖r−Hx‖2
σ21

)

∑

xi∈Q
∑

x−i∈QMs−1 exp
(

−‖r−Hx‖2
σ21

)

=

∑

xi∈Q xi
∑

x−i∈QMs−1 exp
(

−‖r−H−ix−i−hixi‖2
σ21

)

∑

xi∈Q
∑

x−i∈QMs−1 exp
(

−‖r−H−ix−i−hixi‖2
σ21

) , (6.33)

wherex−i denotes the vector containing all the other entries exceptxi.

The sums in the numerator and denominator are hard to computeif |Q|Ms is

large. In this chapter, the second sum in the denominator andnumerator of (6.33)

can be approximated by an integral. This approximation can be accurate, especially

for high-order constellations and large antenna systems. (6.33) is thus approximated

as

x̂i ≈
∑

xi∈Q xi
∫

exp
(

−‖x−i‖2
σ2x

)

exp
(

−‖r−H−ix−i−hixi‖2
σ21

)

dx−i

∑

xi∈Q
∫

exp
(

−‖x−i‖2
σ2x

)

exp
(

−‖r−H−ix−i−hixi‖2
σ21

)

dx−i

. (6.34)

The conventional MMSE estimation requires the sum over all the |Q|Ms terms,

while only |Q| elements in the constellation are summed by using the proposed

integral approximation as shown in (6.34). In a MIMO system with a large constel-

lation, Gaussian approximations are common [109], allowing for the closed-form

evaluation of the integrals. Assumingx−i to be a Gaussian vector with mean zero

and matched varianceσ2
x derived from the constellation, the finite sum in (6.33) can

be replaced by an integration as shown in (6.34), where the integral can be derived

by using the vector integration.

For Gaussian vectorx, it is known that
∫

exp

[

−1
2
(x−m)HΣ−1(x−m)

]

dx =
√

det(2πΣ). (6.35)

By using the integration of the Gaussian vector in (6.35) anddecomposition and

combination of the vectors, the integration in (6.34) can bederived in a closed-

form, which leads to

x̂i =

∑

xi∈Q xi

[

√

det (πσ2
1σ

2
xA

−1) exp
(

−‖hixi‖2
σ21
− C−(A−1BH)

H
A(A−1BH)

σ2xσ
2
1

)]

∑

xi∈Q

[

√

det (πσ2
1σ

2
xA

−1) exp
(

−‖hixi‖2
σ21
− C−(A−1BH)HA(A−1BH)

σ2xσ
2
1

)] ,

(6.36)
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where

A = σ2
1I+ σ2

xH−i
HH−i

B = σ2
x (r− hixi)

H
H−i

C = σ2
x

(

rHr− rHhixi − (hixi)
Hr
)

. (6.37)

Similarly, all the estimations of the symbolx̂i in the x̂ = [x̂1, x̂2, . . . x̂Ms ]
T can be

derived by using (6.36). After derivinĝx, the relay function can be given as

GEF (r) = βx̂, (6.38)

whereβ is a scaling factor satisfying the transmit power constraint at the relay and

can also be derived according to (6.4).

Example 5 (BPSK andMs = Nr = Mr = Nd = 2): In this example, the relay

function of Gaussian approximation EF is discussed. It is assumed thatσ2
x = 1,

H = [h1,h2] = I2, Q = {−1, 1} and a real-valued system. As shown in (6.11),

the received signal at the relay is

r =
[

h1 h2

]

[

x1
x2

]

+

[

n1

n2

]

, (6.39)

whereh1 =

[

1
0

]

, h2 =

[

0
1

]

andr =

[

r1
r2

]

. According to (6.36), the closed-

from of EF function is given by

x̂i =

∑

xi∈Q xi

[

√

det (2πσ2
1σ

2
xA

−1) exp
(

−‖xi‖2
2σ21
− C−(A−1BH)

H
A(A−1BH)

2σ21

)]

∑

xi∈Q

[

√

det (2πσ2
1σ

2
xA

−1) exp
(

−‖xi‖2
2σ21
− C−(A−1BH)HA(A−1BH)

2σ21

)]

=

exp

(

−
1+r21+r

2
2−2r1−

r22
σ2
1
+1

2σ21

)

− exp

(

−
1+r21+r

2
2+2r2−

r21
σ2
1
+1

2σ21

)

exp

(

−
1+r21+r

2
2−2r1−

r2
2

σ2
1
+1

2σ21

)

+ exp

(

−
1+r21+r

2
2+2r2−

r2
1

σ2
1
+1

2σ21

)
, (6.40)

where

A = σ2
1 + 1, B = rH−i, C = r21 + r22 − ri(xi + xHi ).

Example 6 (16-QAM andMs = Nr = Mr = Nd = 2): Fig. 6.4 compares

the relay functions of the proposed Gaussian EF and the exactEF for a 10 dB
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Figure 6.4: The relay functions at one of the relay antennas whenSNR = 10 dB
for theNr = 2, BPSK system.

SNR and a random generated channel matrixH = [0.0852 − 0.3322i, 0.8470 −
0.9795i;−0.7000 + 0.6268i,−0.4191 − 1.3836i]. Note that the Gaussian EF ap-

proximately coincides with the exact EF relay, while computing only 16 summa-

tions instead of162 = 256 for the exact EF.

6.4 EF in Two-Way Relay Networks

T1T1
T2T2RRH1H1

H2H2

G1G1

G2G2

Figure 6.5: A two-way relay system model.

A two-way relay network [110–113] is illustrated in Fig 6.5,where the first

terminal nodeT1 hasNT1 ≥ 1 antennas, the relayR hasNr ≥ 1 receive antennas,

andMr ≥ 1 transmit antennas, and the second terminal nodeT2 hasNT2 ≥ 1
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antennas. For simplicity, we assume only one relay in this two-way relay network,

where the two terminals exchange information via the relay.

In the first time slot, the two terminals send the transmittedsignal to the relay at

the same time. The relay receives the transmitted signal from bothT1 andT2. This

signal can be given as

r = H1x1 +G1x2 + n, (6.41)

whereH1 = [hij ] ∈ CNr×NT1 andG1 = [hij ] ∈ CNr×NT2 denotes the MIMO

channel betweenT1 andR and betweenT2 andR, respectively. The elements ofH1

andG1 are i.i.d. complex Gaussian (hij, gij ∼ CN (0, 1)); n = [n1, n2, . . . nNr ]
T ,

andni ∼ CN (0, σ2) (i = 1, 2, . . . , Nr) is an AWGN with mean zero and variance

σ2; The transmitted signals atR1 andR2 are denoted byx1 = [x11, x12, . . . , x1NT1
]T

andx2 = [x21, x22, . . . , x2NT2
]T , respectively. We also assume each transmitted

symbol is chosen from the same constellation; i.e.,xij ∈ Q (i = 1, 2), and the

average transmitted power isE [‖xi‖2] = Pt, wherePt is the transmitted power, and

E(x) is the expectation ofx.

In the second time slot, a memoryless relay receives the signals fromT1 and

T2 and generates and transmits the processed signal to the opposite terminal. Its

relay functionG(r) uses the current received signalr only. With the assumption

of the relay average powerPr, the transmitted signalG(r) should satisfy the power

constraintE [‖G(r)‖2] = Pr. Therefore, after the relay retransmits the processed

signals, the received signal atT1 andT2 may be written as

y1 = H2G(r) + n1, (6.42)

y2 = G2G(r) + n2, (6.43)

respectively, whereH2 = [hij ] ∈ CNT1×Mr andG2 = [gij] ∈ CNT2×Mr denote

the MIMO channel betweenR andT1 and betweenR andT2, respectively. The

elements ofH2 andG2 are i.i.d. complex Gaussian, andn1 = [n11, n12, . . . n1NT1
]T

andn2 = [n21, n22, . . . n2NT2
]T (nij ∼ CN (0, σ2

1).

EF Relay Function: Based on Section 6.2.1, the MMSE estimate of the re-
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ceived signalr at the relay may be given as

r̂ =E(H1x1 +G1x2|r)

=
∑

A
(H1x1 +G1x2)P (H1x1 +G1x2|r)

=

∑

A
(H1x1 +G1x2) f(r|x1,x2,H1,G1)

∑

A
f(r|x1,x2,H1,G1)

,

(6.44)

whereA is the set of satisfyingx1 ∈ QNT1 andx2 ∈ QNT2 . f(r|x1,x2,H1,G1) is

the PDF ofr conditional onx1, x2, H1 andG1. Because the addition noise vector

is i.i.d Gaussian, the PDFf(r|x1,x2,H1,G1) may be written as

f(r|x1,x2,H1,G1)

=
1

(πσ2)NT1+NT2
exp

(

−‖r−H1x1 −G1x2‖2
σ2

)

.
(6.45)

The EF relay computes the MMSE estimate

r̂=

∑

A
(H1x1 +G1x2) exp

(

−‖r−H1x1−G1x2‖2
σ2

)

∑

A
exp

(

−‖r−H1x1−G1x2‖2
σ2

) . (6.46)

As with AF and DF relaying, to satisfy the relay power constraint, the scaling factor

is given by

β =

√

Pr
E(‖r̂‖2) =

√

Pr
∫∞
−∞ ‖r̂‖2f(r)dr

. (6.47)

By using the total probability law, the PDF of the received signalr can be derived

as

f(r) =
∑

A
f(r|x)P (x)

=
∑

A

1

(πσ2|Q|)NT1+NT2
exp

(

−‖r−Hx‖2
σ2

)

,
(6.48)

wherex = [x1;x2] andH = [H1G1]. Thus, the relay retransmits the scaled version

of MMSE estimateβx̂ to the destination. The EF relay function is therefore

GEF (r) =
√

Pr
∫∞
−∞ ‖r̂‖2f(r)dr

× r̂. (6.49)

Similarly, the list EF can also be extended and applied to reduce the running

time in large MIMO two-way relay networks. In this thesis, wehave omitted the

details.
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6.5 Simulation Results

In this section, the performance measured by SER is comparedfor different strate-

gies (the proposed list EF, DF, AF, LMMSE AF, and matched filter AF), where the

power at the source and the relay are equal (Ps = Pr) and noise varianceσ2
1 = σ2

2.

At the destination, the received signal (2.17) is decoded byusing the SD [21]. The

list size of the proposed list EF is chosen to be4 for comparison where necessary.

One-way Relay Networks:
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Figure 6.6: Error performance in a4× 4 MIMO relay system with4-QAM.

Firstly, The SER performance of different relay strategiesis given for a4 × 4

4-QAM MIMO relay network in Fig. 6.6. The three proposed EF relay schemes

are compared with the classical DF and AF schemes. Accordingto Section 6.2.1,

exact EF needs to compute all the44 = 256 terms inQMs. In contrast, list EF (4

terms) and Gaussian EF (4 terms) significantly reduce the number of computational

operations. Interestingly, list EF outperforms Gaussian EF. Further, in the low-

SNR region, list EF achieves a similar performance to that ofAF, LMMSE AF and

the matched filter AF, and this finding agrees with the result in (6.15). Both AF

and matched filter AF achieve the full diversity order4 in the high-SNR region.
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Moreover, the full diversity order is also achieved by list EF, exact EF and the

DF relay. However, the full diversity order cannot be obtained by LMMSE and

Gaussian AF, both of which obtain diversity order1. This loss may be caused by

the low quality of the forwarded signal at the relay. Interestingly, Gaussian EF

outperforms LMMSE AF by2 dB. However, the proposed List EF outperforms all

the AFs. For example, at an SER of10−3, list EF gains6.5 dB, 9 dB and18 dB over

the pure AF, matched filter AF and LMMSE AF, respectively. These observations

confirm the benefits of the list EF relay.
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Figure 6.7: Error performance in a parallel2 × 2 MIMO relay network with16-
QAM.

In this chapter, the advantages of single EF relay networks have been shown,

but their extension to parallel multiple EF relay networks is straightforward. Fur-

thermore, while DF suffers severe performance degradation, the soft EF provides a

better performance. In order to verify this performance gain, the simulation results

for a two-relay network are provided in Fig. 6.7, which compares the SER of list

EF, Exact EF, AF and DF. Note that list EF performs very close to exact EF. Fur-
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thermore, at an SER of10−3, both the exact and list EF gain1 dB and2 dB over

the DF and AF relay strategies, respectively. Reliable softinformation thus helps

to achieve performance gains even over AF and DF in parallel relay networks, and

this advantage will increase with the number of relays.
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Figure 6.8: Error performance in a parallel2 × 2 MIMO relay network with direct
link and16-QAM.

As an example of a collaborative relay network, a two-relay parallel network

with direct link is represented in Fig. 6.8. The two relays are assumed to be at

the middle point between the source and destination (dsr = drd = 0.5 × dsd),

and the path loss exponentα = 3. As discussed in Section 6.2, the case with

a direct link outperforms the case without a direct link (Fig. 6.7). However, the

achieved performance gain by the proposed EF scheme is smaller than that for

the case without a direct link. That is, for an SER of10−3, both the exact EF

and list EF obtain0.5 dB and1.3 dB performance gains over the DF and AF relay

case, respectively, because the direct link brings more reliable information for the

destination here.
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Figure 6.9: Error performance in a hybrid2×2MIMO relay network with16-QAM.

For a collaborative relaying case (a hybrid relay network),the SER of the pro-

posed EF is demonstrated in Fig. 6.9. The system now has threeparallel paths,

and the last path consists of2 serial relay nodes. Clearly, from this figure, the pro-

posed list EF and exact EF perform identically, and outperform AF and DF with

2.5 dB and1 dB at an SER of10−3, respectively. Furthermore, AF performs better

than DF in the low-SNR region (SNR ≤ 19 dB), while the reverse is true for high

SNRs. However, the proposed EF and list EF strategies alwaysachieve a better

performance than AF and DF for all SNRs.

The above simulation results show that the exact EF relay outperforms DF and

AF in all SNRs for the large MIMO relay networks. Moreover, even the proposed

list EF performs almost identically to exact EF. Although the proposed Gaussian

EF performs below list EF, it offers another option for reducing the number of

computational operations of the relay. Finally, the advantage of EF is that switching

between AF and DF as SNR changes is unnecessary. A unified algorithm works for

all cases.

EF in two-way relays: In this section, the performances measured by SER for
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different strategies (the proposed list EF, EF, DF, and AF) are compared in SISO

and MIMO two-way relay networks, where the power at the source and the relay

are equal (Pt = Pr), and the noise varianceσ2 = σ2
1 = σ2

2. At the second terminal,

the received signal (6.42) is decoded by using the sphere detection method [24]. We

choose the list size of the proposed list EF to be4.
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Figure 6.10: Error performance in a single antenna two-way relay network with
16-QAM.

First, the SER performance for a SISO two-way relay system with a16 QAM

is given in Fig. 6.10, which compares the proposed EF relay with the classical

relays (AF and DF) for different SNRs. As expected, both listEF and exact EF

all achieve performance gains over DF and AF. For example, atanSER = 10−2,

the proposed exact EF gains2 dB and3 dB over the DF and AF relay, respectively.

Furthermore, the proposed exact EF needs to compute all the162 = 256 terms in

QNT1+NT2 , while list EF computes only4 terms. Nevertheless, list EF performs

approximately the same as exact EF over all SNRs. Therefore,although list EF

generates only an approximate MMSE estimate, its performance is excellent, and

its number of computational operations is low. Another interesting observation is

that AF outperforms DF in the low-SNR region, while it performs worse than DF
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in the high-SNR region. However, the proposed two EF strategies obtain the best

SER performance for all SNRs without switching algorithms.
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Figure 6.11: Error performance in a2× 2 two-way relay network, with16-QAM.

In order to evaluate the benefits of the proposed EF relay for MIMO two-way

relay networks. The SER performance of different relay strategies for a2 × 2 16-

QAM relay network is given in Fig. 6.11. The two proposed EF relay schemes

are compared with the classical DF and AF schemes. Exact EF needs to compute

all 162+2 = 65536 terms. In contrast, list EF (4 terms ) significantly reduces the

number of computational operations. Note that EF outperforms the DF and AF

strategies. For example, at anSER = 10−3, EF gains1.5 dB and3 dB over DF and

AF, respectively. Furthermore, with a small list sizeNL = 4, list EF approaches the

performance of exact EF withNL = 65536 with negligible performance loss.

6.6 Conclusions

For MIMO one-way and two-way relay networks, this chapter proposed an estimate-

and-forward (EF) relay strategy. The transfer characteristics of the EF relay and its

MSE were analysed, showing its minimum MSE compared to that of AF and DF

111



for all SNRs. It was shown that this relay performed similarly to AF and DF in

the low and high SNR regions. With a large number of antennas and/or high-order

constellations, two approximate EF relays were also proposed to reduce the number

of computational operations:

1. List EF : This relay uses the sphere decoder for generating the reduced list.

Thus, its number of the computational operations is reduced, especially for

large MIMO relay networks, while it attains nearly the performance of the

exact EF relay. Consequently, it offers a flexible trade-offbetween accuracy

and computational operations.

2. Gaussian EF: In exact EF, the estimate (6.3) is based on all the vectors

x ∈ QMs, and the computing of this estimate involves high number of com-

putational operations. To overcome this issue, the Gaussian EF reduces the

Ms-dimensional estimation to an one-dimensional MMSE solution. This re-

duction is achieved by replacing the discrete sum with a Gaussian integral.

Both the proposed list EF and Gaussian EF significantly reduced the number

of computational operations, especially for the MIMO relaynetworks with a high-

order constellation and/or a large number of antennas. The simulation results con-

firmed that the proposed EF outperformed AF and DF for all the SNRs. Moreover,

for multiple parallel networks, the performance gains of EFover AF and DF are

expected to increase with an increasing number of relay nodes.

∼

112



Chapter 7

Conclusions and Future Work

Next-generation wireless communication systems must provide high data rates and

improved reliability. These goals are achieved by: (1) MIMOtechnology based

on multiple-antenna transmitter and receiver terminals and (2) cooperation between

wireless nodes enabling intermediate nodes (relays) to forward messages from source

to destination. Both MIMO and cooperative communication [4] have the potential

for tremendous improvements in coverage area, data rates, reliability and transmit

power reduction.

This thesis developed MIMO and cooperative detection algorithms that achieved

near-optimal performance with low running time. These algorithms may thus lead

to the development of networks with large signal constellations and large numbers

of antennas, which are prohibitively complex with conventional strategies despite

their great potential to improve spectral efficiency. The research outcomes may

permit the implementation of a simpler and cheaper hardware, making the commu-

nication systems easy to develop and saving unnecessary capital expenses (energy

costs, as discussed in Section 2.1.2).

• Chapter 3 introduced an SRC-SD, which achieved a reduced running time and

a reduced variability for near-ML performance. This SD tightened the radius

of the conventional SD by a heuristic SNR-dependent factor.Its application

in coded MIMO and relay networks was also investigated to confirm that

the proposed SRC-SD indeed had a near-optimal performance and a roughly

constant running time.
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• A probability-distribution-based SPSD was developed in Chapter 4. Uniform

pruning, geometric pruning, threshold pruning, hybrid pruning and depth-

dependent pruning were proposed and analysed. All of these rules achieved

lower running time than the conventional SD in the low-SNR region. In par-

ticular, the threshold pruning rule obtained the most significant running time

savings while achieving the full diversity order, and the running time savings

increased with the number of transmit antennas.

• In Chapter 5, an IKSD was proposed, which had lower running time than

the conventional K-best SD. The proposed IKSD, which achieved a near-ML

performance at a reduced and roughly fixed running time, expanded the fixed

K nodes and all the additional nodes whose cost was within a small threshold

value∆ of the cost of thek-th node. This algorithm was extended to create

a hybrid SD by combining the full enumeration with the proposed IKSD.

Finally, a soft version of the IKSD was also developed as the list IKSD.

• Chapter 6 proposed an EF relay and investigated forwarding strategies in

MIMO one-way and two-way relay networks. Analysis and simulation re-

sults verified that EF outperformed the conventional AF and DF strategies for

all SNRs without switching algorithms. Furthermore, the performance gains

increased with the number of relays.

Further research could focus on developing and examining novel relay functions

and sphere detection technologies for multiple-antenna relay networks:

• Coded MIMO Relay Networks: Soft information relaying [114, 115] com-

bines the advantages of the classical relay protocols AF andDF. DF achieves

a coding gain, but suffers from propagation of the errors of the decoder at

the relay. AF lacks the benefits of channel coding, but avoidserror prop-

agation and preserves reliability information. Chapter 6 developed optimal

relay functions and the resulting performance analysis, low running time and

enhanced relay strategies and detection process for uncoded MIMO. These

algorithms could be readily extended for coded MIMO.
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• Systems without Perfect Channel Information: Since wireless channels are

time-varying, the relay and the destination need accurate and up-to-date CSI.

While relay strategies and detection algorithms take perfect CSI for granted,

the available CSI in actual systems is generally imperfect [116,117], resulting

in suboptimal performance. Hence, further research could develop robust re-

laying methods and signal detection algorithms and studying the performance

of the developed strategies.

Furthermore, when perfect CSI is not available, the relay and the destination

need to update past (imperfect) CSI. This refinement could beachieved by

advanced signal processing techniques, relying on any correlation of CSI at

a given time instant with its past values (e.g., as in an autoregressive model).

Iterating between such channel estimation and detection stages would thus

enable better symbol detection.

∼
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Appendix A

Proof of the ML Rule in MIMO
Relay Networks

Proof: According to the norm expansion||H||2 = HHH, (3.16) is expanded as

x̂d = argmin
x∈QNs

(

Nre
∑

i=1

||yi −Gix||2 + ||yd −Hsdss||2
)

.

= argmin
x∈QNs

[

Nre
∑

i=1

yHi yi + yHd yd − xH

(

Nre
∑

i=1

GH
i yi +HH

sdyd

)

−
(

Nre
∑

i=1

yHi Gi + yHd Hsd

)

xH + xH

(

Nre
∑

i=1

GH
i Gi +HH

sdHsd

)

x

]

.

(A.1)

Assumingy
′

andH
′

are derived, the ML expression can be expanded similarly

as

x̂d = argmin
x∈QNs

||y′ −H
′

x||2

= argmin
x∈QNs

(

y
′Hy

′ − xHH
′Hy

′ − y
′HH

′

x+ xHH
′HH

′

x
)

. (A.2)

By comparing (A.1) and (A.2), it is clear that

H
′HH

′

=
Nre
∑

i=1

GH
i Gi +HH

sdHsd, (A.3a)

H
′Hy

′

=
Nre
∑

i=1

GH
i yi +HH

sdyd. (A.3b)
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Further, because of

(

Nre
∑

i=1

GH
i Gi +HH

sdHsd

)H

=
Nre
∑

i=1

GH
i Gi + HH

sdHsd, (A.3a)

can be shown to yield
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(A.4)

Thus, the equivalent channel matrixH
′

is

H
′

=

(

Nre
∑

i=1

GH
i Gi +HH

sdHsd

)1/2

, (A.5)

whereH
′

= H
′H .

According to the equivalent channel matrix (A.1) and (A.2),the equivalent re-

ceived signaly
′

are derived as

y
′

= (H
′H)−1

(

Nre
∑

i=1

GH
i yi +HH

sdysd

)

= (H
′

)−1

(

Nre
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)

.

(A.6)
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Appendix B

Proof of the FER of Statistical
Pruning SD

B.1 Proof for Uniform Pruning

Proof: In order to derive the FER upper bound for the uniform rule, we can

let s(1) =
[

s
(1)
1 , . . . , s

(1)
n

]T

denote the transmitted vector andŝ = [ŝ1, . . . , ŝn]
T

denote the vector returned by the SPSD. It can be derived thatPf = Pr(ŝ 6= s(1)).

DenoteA as the event thats(1) is visited. By using the total probability theorem

[23], the FER can be expressed as

Pf =Pr(ŝ 6= s(1)|Ac) Pr(Ac) + Pr
(

ŝ 6= s(1)|A
)

Pr (A)

=Pr(Ac) + Pr
(

ŝ 6= s(1)|A
)

Pr (A) ,
(B.1)

wherePr(ŝ 6= s(1)|Ac) = 1. FirstPr(Ac) (or 1 − Pr(A)) is derived and then

the second term of (B.1) is analysed. Lets̃ = [s̃1, . . . , s̃n]
T be the temporary

value fors = [s1, . . . , sn]
T during the statistical pruning search as in Algorithm

I, which corresponds to a leaf node in the search tree.Ai denotes the event that

s
(1)
i is visited. Note thatPr(A) = Pr(s̃ = s(1)), the probability that the leaf node

corresponding tos(1) is visited and is given by

Pr(A) =Pr(s̃ = s(1)|s̃n = s(1)n ) Pr(s̃n = s(1)n )

+ Pr(s̃ = s(1)|s̃n 6= s(1)n ) Pr(s̃n 6= s(1)n )

=Pr(s̃ = s(1)|s̃n = s(1)n ) Pr(An),

(B.2)
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wherePr(s̃n = s
(1)
n ) = Pr(An), andPr(s̃ = s(1)|s̃n 6= s

(1)
n ) = 0. By a similar

argument, (B.2) can be expanded as

Pr(A) = Pr(An)

n−1
∏

i=1

Pr(Ai|s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n ). (B.3)

Let Bi denote the event thats(1)i is not the first element ofA in Algorithm I. It

can be derived as

Pr(Acn) =Pr(Acn|Bn) Pr(Bn) + Pr(Acn|Bc
n) Pr(B

c
n)

=(1− p) Pr(Bn),
(B.4)

wherePr(Acn|Bn) = 1 − p, andPr(Acn|Bc
n) = 0. The union bound forPr(Bn)

is given by

Pr(Bn) ≤Ern,nE
s
(1)
n




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n 6=s(1)n

Pr
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∣

2
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∣

2
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∣
s(1)n , rn,n

)]

,

(B.5)

wheres(2)n is the nearest neighbor ofs(1)n . From [23], the squared norm of the

entries of upper-triangular matrixR haveχ2 distribution with different degrees

of freedom without column reordering, specifically,|ri,i|2 ∼ χ2(2(n−i+1)), for

i = 1, . . . , n and|ri,j|2 ∼ χ2(2), for j > i, whereχ2(k) denotes the chi-squared

distribution withk degrees of freedom. It can be obtained as

Pr
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∣
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2

/2σ2

)

.
(B.6)

whereQ(·) is the Q-function. Using the Chernoff bound for the Q-function,

Pr(Bn) can be bounded as

Pr(Bn) ≤Ern,nE
s
(1)
n







∑

s
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n 6=s(1)1
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2
,

(B.7)
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wheredmin is the minimum Euclidean distance ofQ, and the equality comes

from the moment generating function ofrn,n, Mrn,n(t) = E{etrn,n}. Therefore,

Pr(Acn) can be bounded as

Pr(Acn) ≤ (1− p) |Q|
1 + d2min/4σ

2
. (B.8)

Similarly, the conditional probability is bounded as

Pr(Aci |s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n )

≤ (1− p) |Q|
(1 + d2min/4σ

2)
n−i+1 , i = 1, . . . , n− 1.

(B.9)

Finally, an upper bound onPr(Ac) is obtained as

Pr(Ac) =1− Pr(A)

=1− Pr(An)
n−1
∏

i=1

Pr(Ai|s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n )

=1− (1− Pr(Acn))

n−1
∏

i=1

(

1− Pr(Aci |s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n )

)

.

(B.10)

In the high-SNR region,Pr(Acn) andPr(Aci |s̃i+1 = s
(1)
i+1, . . . , s̃n = s

(1)
n ), i =

1, . . . , n− 1 are small.Pr(Ac) can be well approximated as

Pr(Ac) ≈Pr(Acn) +
n−1
∑

i=1

Pr(Aci |s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n )

≤(1− p)
n
∑

i=1

|Q|
(1 + d2min/4σ

2)
i .

(B.11)

Pr
(

ŝ 6= s(1)|A
)

in (B.1) is then bounded in the following. Denote the set of

all the visited leaf nodes byI, which is the candidate set for the output of the

statistical pruning detection. Since some leaf nodes may bepruned,|I| ≤ |Q|n.

In case ofA, s(1) ∈ I. The union bound forPr
(

ŝ 6= s(1)|A
)

is given by

Pr
(

ŝ 6= s(1)|A
)

≤ 1

|Q|n
∑

s(1)∈Qn

∑

s(2)∈I,s(2) 6=s(1)

Pr
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∥

2
)

.

(B.12)
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By using the Chernoff bound for the Q-function to the summandin (B.12), it

can be readily obtained that

Pr
(

ŝ 6= s(1)|A
)

≤ 1

|Q|n
∑

s(1)∈Qn

∑

s(2)∈I,s(2) 6=s(1)

1
(

1 +
d2min

4σ2

)n

≤|I| 1
(

1 +
d2min

4σ2

)n ≤
(

|Q|
1 +

d2min

4σ2

)n

.

(B.13)

Combining (B.13) and (B.11), the frame error rate can be bounded as

Pf =Pr(Ac) + Pr
(

ŝ 6= s(1)|A
)

Pr (A)

≤(1− p)
n
∑

i=1

|Q|
(

1 +
d2min

4σ2

)i +

(

|Q|
1 +

d2min

4σ2

)n

(B.14)
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B.2 Proof for Threshold Pruning

Proof: For threshold rule, the approach is similar to the analysisof uniform rule.

All the events are defined the same as before. For the threshold pruning rule, the

union bound forP (Acn) is given by

P (Acn) ≤Ern,nE
s
(1)
n

[

Pr
(

|nn|2 > δn
)]

=

∫ +∞

δn
σ2

fn(x)dx = 1− γ
(

1,
δn
2σ2

)

,
(B.15)

whereδn controls the strength of pruning as in Pruning Rule 2,fn(x) is the pdf

of χ2(2), andγ(α, x) is the incomplete gamma function. Similarly, it can be

obtained as

Pr(Aci |s̃i+1 = s
(1)
i+1, . . . , s̃n = s(1)n ) ≤

∫ +∞

δi
σ2

fi(x)dx (B.16)

wherefi(x) is the pdf ofχ2(2(n− i+ 1)). The FER is upper bounded as

Pf ≤
n
∑

i=1

∫ +∞

δi
σ2

fi(x)dx+

(

|Q|
1 +

d2min

4σ2

)n

. (B.17)
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