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Abstract 

 Bacterial taxonomy is an integral part of all disciplines within the field of microbiology, 

as it allows researchers to communicate results efficiently, streamlining global collaboration. The 

ultimate goal of bacterial taxonomy is to create groups of organisms based not only on shared 

phenotypic and genomic traits, but also a common evolutionary history. To achieve this goal, the 

polyphasic approach, which examines phenotypic, genomic and phylogenetic data, is favored. 

Although the three major components of polyphasic taxonomy remain unchanged since it was 

first proposed in 1968, the methods in which we assess these aspects have improved significantly 

due to the abundance of whole genome sequences (WGS) available. In addition, WGS has also 

served as the basis for developing high-resolution subspecies level classification techniques. The 

research presented in this thesis therefore focuses on both applying modern techniques to the 

polyphasic approach to taxonomy and developing a standardized, easy-to-use high-resolution 

subspecies typing technique. 

 Traditionally, the 16S rRNA gene has been used to assess genomic and phylogenetic 

relationships for taxonomic purposes. Although it is now widely known that 16S rDNA is not 

suitable for species, genus or even family level taxonomic classifications, it is still commonly 

used to fulfill the phylogenetic aspect of polyphasic taxonomy within the family 

Rhodobacteraceae. Consequently, taxonomic inconsistencies have been a reoccurring problem 

since the conception of this group in 2005. To resolve taxonomic inconsistencies within this 

family, over 300 type strains with high-quality genomes were analyzed. As type strains are 

important reference material for classification, resolving taxonomic inconsistencies among these 

strains will ultimately help guide future taxonomic efforts and prevent the propagation of errors. 

Based on genomic and core-genome phylogenetic data, three species, and 25 genus level 



 iii 

misclassifications were identified. Combining a meta-analysis of phenotypes with genomic 

techniques, distinguishing phenotypic traits useful for family level classification were predicted. 

Furthermore, a general approach to taxonomy based on genomic and phylogenetic analyses is 

proposed, to validate taxonomic classifications but also highlight potential misclassifications. 

 Subspecies level classification is an integral part of epidemiological and clinical research, 

as it is important to differentiate between closely related pathogenic and non-pathogenic strains 

within the same species. A high-resolution subspecies level typing method, known as core-

genome multilocus sequence typing (cgMLST) was developed for Vibrio cholerae, a bacterium 

best known as the causative agent of cholera. Traditionally, subspecies typing for V. cholerae 

was based on multilocus sequence typing (MLST), multilocus variable tandem repeats analysis 

(MLVA) or serotyping. These methods provided limited resolution, which restricted its use in an 

epidemiological setting. cgMLST, on the other hand, provides much greater resolution than any 

previously named method as it utilizes a significantly larger portion of the genome by analyzing 

all genes common to V. cholerae. An outbreak threshold capable of identifying outbreak related 

strains and potential sources of introduction is proposed. To help consolidate existing MLST 

information and also investigate large-scale ecological and epidemiological patterns, a 

sublineage threshold is defined which creates clusters similar to traditional MLST schemes. 

Using this threshold, a strong geographic signal is detected among environmental isolates not 

seen in clinical strains. This scheme, along with over 1,200 V. cholerae genomes and relevant 

provenance data, is currently available on PubMLST (https://pubmlst.org/vcholerae) for public 

access. 

 Research presented in this thesis demonstrates the importance of WGS-based analyses, 

not only for taxonomic classifications at the species level and above, but also at the subspecies 
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level. As next generation sequencing and bioinformatics techniques develop, WGS-based 

methods will inevitably become standard practices for bacterial classification.  
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Chapter 1 

1.1 Bacterial classifications  

 A standardized bacterial classification system is important for microbial research as 

without it defining biological organisms would be nearly impossible, let alone communicating 

higher-level scientific concepts. However, taxonomy is more than just assigning names to novel 

isolates. It describes the process of systematically creating groups of organisms based not only 

on shared phenotypic and genomic traits but also a common evolutionary history. 

Bacterial classification is a constantly evolving field. Each new technology allows us to 

study bacterial isolates in greater detail, making new ways of classifying organisms possible, in 

the hope of attaining a universal and stable method that can better achieve our goals in 

taxonomy. Unfortunately, with very few exceptions, there is rarely a set of well-defined 

standards that allows for consistent and stable classifications. There are multiple techniques that 

can be used for each level of classification, such as average amino acid identity, percentage of 

conserved protein, 16S-rRNA analyses, and DNA-DNA hybridization to name a few, but 

unfortunately, these techniques are not always consistent with one another. Despite this 

ambiguity, whole-genome sequences (WGS) and new bioinformatics techniques have provided 

some tangible criteria that can be used to make significant improvements to current practices. 

 

1.1.1 Practical implications of bacterial taxonomy: from a clinical and an epidemiological 

perspective 

Accurate bacterial classifications have important implications for both clinical and 

epidemiological practices. As is commonly the case, many species of bacteria known for their 
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pathogenicity harbour both dangerous and harmless strains. Vibrio cholerae for example, best 

known as the etiological agent of cholera, harbours a single lineage responsible for all major 

outbreaks since the early 19th century (Islam et al. 2017), the pandemic generating/phylcore (PG) 

lineage (Chun et al. 2009, Boucher 2016). Similarly, other pathogens such as Escherichia coli, 

Salmonella enterica, and Vibrio parahaemolyticus, also contain variants within the same species 

where some are pathogenic while others are not. S. enterica in particular contains six subspecies, 

but only one subspecies is responsible for nearly all infections in humans (Desai et al. 2013). 

Subspecies level classifications are therefore crucial to tracking the spread of illnesses by 

identifying pathogenic strains. The ability to identify pathogenic and non-pathogenic strains will 

also help us understand the emergence of pathogenic bacteria and their evolutionary history as 

comparative genomic and phylogenetic analyses can be performed on closely related strains to 

identify evolutionary events and/or genetic features that enabled some strains to become 

pathogenic while others to remain harmless or even beneficial (Wurtzel et al. 2012, Alavi et al. 

2014, Cesbron et al. 2015). 

 In addition to the ability to differentiate between pathogenic and non-pathogenic strains, 

it is also important to distinguish among closely related pathogenic strains. For example, a 

majority of the illnesses caused by S. enterica, are due to a single subspecies, within which there 

exist over 2,000 serovars that differ in host and the illness that is caused (Porwollik et al. 2004). 

Similarly, only one lineage of V. cholerae, the PG lineage, is responsible for all major cholera 

outbreaks. As a result, outbreak strains are expected to be closely related and therefore, simply 

knowing that a particular isolate belongs to the pathogenic lineage will not provide any useful 

epidemiological information. This level of resolution is especially important for pandemic and 

epidemic diseases, as closely related pathogenic strains can rapidly spread to different regions, 
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causing many local outbreaks. In the past, epidemiological records based on patient travel, 

contacts and time of infection were all that could be used to deduce the origin of local outbreaks. 

However, genomic techniques that allow for subspecies level classifications will be able to 

quickly identify outbreak related strains and potential sources of introduction. This is because 

although pathogenic strains of a particular species are closely related, outbreak related strains are 

even more closely related. The ability to assess genomic similarity at this level is needed to 

identify whether isolates belong to the same outbreak or not. Comparing these isolates to a global 

reference database and identifying the next closest neighbours will provide an idea of likely 

sources of introductions (Katz et al. 2013). 

 

1.1.2 Bacterial taxonomy as the fundamental component in understanding bacterial diversity 

and evolution 

It is without question that bacterial taxonomy is important to understanding bacterial 

diversity. Bacteria have traditionally been one of the more difficult organisms to study, as unlike 

other macro-organisms, most are difficult to cultivate and observe in a laboratory setting (Stanier 

and Van Niel 1941). The importance of bacterial taxonomy can be seen in the changes in our 

understanding of microbial diversity and evolution throughout the years. 

 Early taxonomic efforts for bacteria were based on shape, motility, behaviour and habitat, 

as microscopy was all that could be used for classification purposes (Murray and Holt 1989). 

This approach grossly underestimated bacterial diversity as all isolates were grouped into merely 

six genera, distinguished only by shape (Cohn 1875). The development of cultivation-based 

methods to characterize bacteria greatly increased our understanding of bacterial diversity as it 
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allowed us to classify isolates base on a larger selection of phenotypic traits (Zengler et al. 2002). 

However, it is important to note that cultivation alone is not able to reveal the true diversity due 

to the difficulty in cultivating majority of the environmental isolates (Harwani 2013). 

 Gene sequencing, and later genome sequencing, has allowed us to gain a more 

comprehensive view of bacterial diversity (Kroes et al. 1999), as the cultivation of isolates is no 

longer required. The availability of DNA sequences has also allowed us to study bacterial 

evolution in greater detail and more accurately reconstruct phylogenetic relationships. 16S rRNA 

was one of the first molecules used to study bacterial diversity and evolutionary relationships 

(Woese 1987). Now with the decreasing cost of genome sequencing and the ease of genomic and 

metagenomic analyses through the use of readily available bioinformatics tools, whole genome 

sequences (WGS) are progressively replacing 16S rDNA in studying bacterial diversity and 

evolution. 

 

1.2 Bacterial taxonomy at the species level and above 

1.2.1 Polyphasic taxonomy  

 Bacterial taxonomy has long been a much-debated topic as we aim to identify universal 

and standardized classification techniques and to this day, many of the details (e.g., genus, 

family boundaries) remain ambiguous (Godreuil et al. 2005). However, it is commonly agreed 

that polyphasic taxonomy, which classifies bacteria based on phenotypic, genomic and 

phylogenetic traits, is the ideal approach (Vandamme et al. 1996, Thompson et al. 2015). Unlike 

other classification techniques, such as the genomospecies or taxospecies concepts, it does not 

rely on a single hypothesis or metric when determining taxonomic boundaries, but instead aims 

to integrate all information possible to achieve a stable taxonomic classification that reflects the 
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true ecological and evolutionary history of organisms (Vandamme et al. 1996). Since it was first 

proposed in 1968 (Colwell 1968) for bacterial classification from the species level and above, it 

remains an integral part of bacterial taxonomy. Although the concept of polyphasic taxonomy 

remains unchanged in that phenotypic, genomic and phylogenetic coherence are still the focus of 

this approach, techniques with which we assess these aspects have evolved significantly over the 

years. 

 

1.2.2 Phenotypic aspects of the polyphasic approach 

 Phenotypic traits are the earliest criteria used for taxonomic classifications (Murray and 

Holt 1989) as they have been historically easier to evaluate than phylogenetic and genetic 

similarities, both of which require the ability to obtain genetic sequences. Phenotyping is 

important for a number of reasons. Firstly, accurate phenotypic descriptions at all levels of 

taxonomic classifications are required to understand the complex ecological roles different 

bacterial lineages play in the environment (Philippot et al. 2010). In addition, detail phenotypic 

descriptions of pathogenic strains highlighting important clinical characteristics such as 

antibiotic resistance and virulence phenotypes are also crucial for determining treatment 

strategies. Secondly, it is possible to correlate phenotypic data with genes presence, which may 

provide some insights into novel gene functions and annotations (Philippot et al. 2010). Lastly, 

phenotyping will allow us to provide accurate taxonomic descriptions of each bacterial lineage 

that highlights important unifying phenotypes that are also likely ancestral traits. The 

identification of ancestral characteristics will not only provide clues regarding the evolutionary 

paths taken, but also likely environmental conditions from which these isolates evolved. For 
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these reasons, although it is costly and time consuming, phenotyping is still an integral part of 

current taxonomic practice. 

 Ideally organisms belonging to the same groups, whether it be the same family, genus or 

species, will share some universal phenotypic traits, but this is not always the case and it is not 

uncommon for taxonomic descriptions to include phenotypes that are shared by some and not all 

(Wells et al. 1987, Garrity et al. 2015a, Orata et al. 2016). It is expected that as we examine 

higher -level taxonomic classifications, there will be fewer universally shared traits, as we are 

looking at a more diverse group of organisms. Therefore, instead of simply focusing on universal 

phenotypes, it is important to also identify unifying traits that are likely ancestral to the 

taxonomic group under study, as these will likely reflect a common evolutionary path and/or 

ecology (Philippot et al. 2010). 

 Despite the importance of phenotypic testing in bacterial taxonomy, it is not without 

limitations. Traditionally, 100 or more phenotypic tests are performed to identify a few defining 

characteristics. This unguided approach in phenotypic testing is not only costly, but also labour 

and time intensive. Although commercial microbial identification kits, such as the Biolog 

systems (https://www.biolog.com/products-portfolio-overview/microbial-identification/), are 

available allowing for more systematic and standardized phenotyping procedures, it is still 

difficult to scale up phenotypic testing to match the rate at which new genomes are sequenced. In 

addition, for some species with uncommon metabolisms or lifestyles, atypical phenotypic tests 

are required (Tindall et al. 2010), making it impossible to establish standardized phenotyping 

protocols. Another limitation to phenotyping in general is that it does not differentiate between 

ancestral and derived traits. Based on phenotypes alone, it is impossible to determine whether 
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isolates are phenotypically similar due to convergent evolution, lateral gene transfer or vertical 

descent.  

 Next generation sequencing (NGS) mitigated many of the limitations mentioned above. 

For one, using WGS, phenotyping no longer needs to be an unguided effort. There are now 

readily available tools that can annotate and predict potential phenotypes based only on WGS 

(Aziz et al. 2008, Goberna and Verdú 2016, Kanehisa et al. 2016). By first using in-silico 

methods to identify possible phenotypes, it can substantially reduce the number of phenotypic 

tests required to identify distinguishing traits.  

 

1.2.3 Phylogenetic aspects of the polyphasic approach 

As previously mentioned, some details regarding bacterial taxonomy remain ambiguous, 

but phylogenetic analyses do provide perhaps one of the few universally agreed upon rules for all 

levels of taxonomic classification: all taxonomic groups regardless of rank should be 

monophyletic (Rosselló-Móra and Amann 2015). Traditionally, 16S rDNA was used to 

reconstruct phylogenetic relationships. More recently, with the proliferation of WGS, higher 

resolution methods utilizing genome sequences, such as SNP-based and gene-by-gene-based 

methods for phylogenetic reconstruction, are becoming more common. 

One of the key objectives of polyphasic taxonomy is to create clusters of isolates with a 

shared evolutionary history. As mentioned before, phenotyping is unable to differentiate between 

convergent evolution, vertical descent and lateral gene transfer; however, by reconstructing 

phylogenetic relationships using the numerous genes found in all the organisms under study, we 

can have more confidence that organisms with shared evolutionary history will be grouped 
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together. Ultimately, phylogenetic and phenotypic data should be consistent with one another 

(Murray et al. 1990).  

 The 16S rRNA gene was widely used for taxonomic purposes in the past, primarily 

because it is universally present in all isolates. This means that all unknown isolates can be 

analyzed using the same protocol to identify the general phylogenetic relationships with known 

isolates. This was extremely helpful as knowing even just the broader taxonomic classifications 

(i.e., class or order) can immediately narrow down the list of phenotypic tests that should be 

done and will help guide subsequent more in-depth phylogenetic and genomic analyses. 

 16S rRNA gene sequence analysis works best at the phylum level and becomes 

increasingly less reliable as we move towards lower taxonomic ranks (Poretsky et al. 2014, 

Ranjan et al. 2016). In addition to the lack of resolution, some isolates also contain multiple 

intragenomic copies with sequences different enough to be grouped as separate genera 

(Klappenbach et al. 2001, Acinas et al. 2004, Boucher et al. 2004, Case et al. 2007), adding yet 

another reason as to why the 16S rRNA gene alone is not suitable for determining taxonomic 

classifications. Therefore, although analysis of this gene may be the first indication that an 

isolate is a novel species or genus, taxonomic classifications at these levels should not rely solely 

on it (Tindall et al. 2010).  

 Progressively, the 16S rRNA gene is being replaced by WGS in phylogenetic analyses. A 

common high-resolution method that utilizes WGS is the SNP-based approach. One of the main 

advantages of the SNP-based method is that it can work with complete, draft genomes or even 

just NGS reads, making this approach less computationally intensive (Hall 2016). In addition, by 

eliminating the assembly and gene annotation steps, it also eliminates associated errors such as 
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annotation errors. As a result, SNP-based methods are often times faster than the gene-by-gene 

approach for phylogenetic reconstruction. There are generally two methods for SNP-based 

phylogenetic analysis: alignment-based and alignment-free methods. 

 A popular alignment based method is Parsnp (Treangen et al. 2014), which does require 

the assembly of NGS reads into draft or complete genomes. Highly similar genomes (≥97% 

average nucleotide identity (ANI) are used as input sequence and Parsnp will first produce a 

core-genome alignment and then identify potential SNPs. Although in some studies, core-

genome alignments refer to the concatenation of multiple individual core gene alignments, here 

core genome simply refers to a collection of unique genomic sequences present in all organisms 

of interest. Once SNPs are identified, a series of quality filter parameters are required to remove 

SNPs present in recombinogenic regions, and poorly sequenced and/or assembled regions 

(Treangen et al. 2014). As alignment based methods for variant calling require the assembly of 

genomes, it is computationally more intensive than alignment free methods. However, alignment 

based methods often produce more reliable results as it is possible to easily identify indels and 

other structural mutations; therefore, are typically seen as the gold standard for SNP calling 

(Höhl and Ragan 2007, Treangen et al. 2014).  

  Although alignment-based methods produce more reliable results, because it is more 

computationally intensive, it is difficult to scale up for use in high-throughput analyses, which 

led to the development of numerous alignment free methods. A popular alignment-free method is 

the k-mer based approach where odd length short sequences, commonly known as k-mers, 

differing at only the central positions are identified among NGS reads of all isolates of interest 

(Gardner and Hall 2013). The flanking regions of these k-mers are then used to define the SNP 

locus (Gardner and Hall 2013). The advantage of this method is that the input files can be raw 
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reads, draft or complete genomes. This reduces the computational costs and can be used to 

effectively reconstruct the phylogenetic relationships of hundreds of isolates. Although some 

alignment free methods do require an assembled reference genome (Leekitcharoenphon et al. 

2012), this is not always the case (Gardner et al. 2015) 

 Regardless of the variant identification method used for phylogenetic reconstruction, they 

share a common limitation, which is that they only work with closely related organisms. Parsnp, 

as previously mentioned, is recommended for organisms sharing 97% or more average 

nucleotide identity (ANI) (Treangen et al. 2014), which is above the commonly accepted species 

threshold of 95% (Goris et al. 2007). In addition to having closely related organisms for SNP-

based phylogenetic analysis, there must also be stringent recombination detection parameters as 

single recombination events can result in numerous SNPs being created, which will impact the 

accuracy of phylogenetic reconstruction if not accounted for properly (Gardner and Hall 2013, 

Hall 2016). 

 Although a SNP-based phylogenetic approach can analyze hundreds of genomes with 

very minimal pre-processing (i.e., it does not require the assembly or annotation of genomes), it 

does only work with closely related organisms. To look at more distantly related organisms (i.e., 

within the same family), a gene-by-gene approach is required. Traditionally, only six to seven 

housekeeping genes are used for phylogenetic analyses as in multilocus sequence analysis 

(MLSA); however, advancements in NGS and bioinformatics tools have allowed for the 

inclusion of hundreds, if not thousands of genes, which can significantly improve the reliability 

and resolution of phylogenetic analyses. A common gene-by-gene approach is core-genome 

phylogeny, which in this context refers specifically to a collection of core genes. 



 12 

 Typically, next generation sequencing (NGS) reads are first assembled into draft or 

complete genomes before they are annotated. Core genes are then identified and individually 

aligned before concatenated into a single alignment that will be used for phylogenetic 

reconstruction (Chaudhari et al. 2016, Na et al. 2018). In addition to the ability of this method to 

work with more distantly related organisms, it is also possible to reconstruct phylogeny based on 

nucleotide or amino acid sequences depending on the group of organisms being studied. For 

more distantly related organisms, it is advisable to use amino acid sequences as it does not reach 

mutational saturation as quickly as nucleotides (Qin et al. 2014). On the other hand, nucleotide 

sequences are typically used for more closely related organisms, as it has a higher mutation rate 

providing greater level of resolution (Yamamoto and Harayama 1996). Although this core-

genome based method can examine more distantly related organisms, it is important to note that 

the resolution will decrease as diversity increases, as fewer number of core genes will be 

identified (Chaudhari et al. 2016).  

 

1.2.4 Genotyping in the polyphasic approach 

 Genomic similarities establish an efficient way to determine relatedness of hundreds of 

not thousands of isolates. In theory, genomically similar isolates should be descendants from the 

same ancestor and share similar phenotypic traits. Traditionally, genomic similarities can only be 

estimated through indirect methods, such as 16S rRNA gene sequence, single protein-coding 

gene, or changes in physical properties (e.g., DNA-DNA Hybridization and G+C content 

deviation). However, much like with phenotypic and phylogenetic analyses, whole-genome 

sequencing has allowed for the development of different direct and more accurate methods to 
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assess genomic similarities, including, among others, in-silico DNA-DNA hybridization 

(dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI). 

 In terms of taxonomic classifications, DNA-DNA hybridization (DDH) is the gold 

standard for evaluating genomic relatedness and is commonly used to delineate novel species 

(Stackebrandt and Ebers 2006, Tindall et al. 2010). Based on empirical experiments, 70% at 5oC 

melting temperature is suggested to serve as the species threshold where only isolates with 70% 

or more DDH values belong to the same species (Tindall et al. 2010). Although DDH is the gold 

standard for bacterial species taxonomy, it is a tedious process that is difficult to replicate, which 

makes it difficult to scale. This has led to the development of other metrics that aim to 

approximate or predict DDH experiment results. 

 One of the earliest methods to approximate DDH results is 16S rRNA gene sequence 

similarity. 16S rRNA genes, as previously mentioned, are conserved among all prokaryotes. 

Since this is also a relatively small molecule (~1.4kb) with conserved and variable regions, it can 

easily be partially or fully sequenced using traditional Sanger sequencing. It has been proposed 

that 97.5% (Stackebrandt and Goebel 1994), and later 98.7% sequence similarity (Stackebrandt 

and Ebers 2006), as the species cutoff; however, it should be noted that in all cases, 16S rDNA 

sequence similarity is not sufficient to confirm the identity of the species because even if isolates 

share high 16S rDNA sequence similarity (≥98.7%), it only suggests that there is a chance for 

DDH values to be above 70% (Tindall et al. 2010). 

Both 16S rRNA gene sequence similarity and DDH experiments are indirect way of 

assessing genomic similarities. In order to directly determine genomic similarities, WGS must be 

used. Two commonly used WGS-based methods that can directly assess genomic similarities are 
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in-silico DNA-DNA Hybridization (dDDH) (Meier-Kolthoff et al. 2013) and average nucleotide 

identity (ANI) (Konstantinidis and Tiedje 2005a, Goris et al. 2007). Both methods utilize WGS 

to assess genomic similarity and predict traditional DDH results, as 70% DDH value is still the 

accepted species threshold. However, unlike traditional DDH experiment these WGS-based 

methods are easy to do and gives reproducible results allowing for the establishment of a more 

stable and practical species level taxonomic classification.  

dDDH uses the same scale as traditional DDH experiment meaning that it retains the 70% 

threshold as the species cutoff (Meier-Kolthoff et al. 2013). On the other hand, ANI utilizes 95% 

as the species threshold as it was previously determined that isolates with 95% or more ANI will 

also have 70% or more DDH (Goris et al. 2007).  

 All previously mentioned methods, except for 16S rRNA sequencing, are primarily used 

for classification of species or lower taxonomic levels (Goris et al. 2007, Meier-Kolthoff et al. 

2013); but there are also genomic metrics that can be used for genus and higher level 

classifications. A popular method is average amino acid identity (AAI). AAI is similar to ANI in 

theory, but instead of looking at nucleotide sequences, it utilizes amino acid sequences of 

conserved genes. Depending on the organisms of interest within genera comparisons can have 

values ranging from 60%-80% (Orata et al. 2018) and as a result there are no standardized AAI 

cutoffs that can be used for universal and systematic genus level classification. Although AAI is 

not able to definitively identify wrongly classified organisms, it is able to highlight potential 

misclassifications by highlighting unusual AAI values within a dataset (Qin et al. 2014, Orata et 

al. 2018). 
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1.3 Bacterial classification at the subspecies level 

 Subspecies level classification is useful to understanding biodiversity and evolution, but 

we will examine it from an epidemiological perspective, as it is becoming an integral part of 

public health and medical research. Numerous subspecies classification techniques have been 

applied to different pathogenic bacteria such as Vibrio cholerae (Katz et al. 2013, Kirchberger et 

al. 2016), Listeria monocytogenes (Moura et al. 2016), and Salmonella enterica (Brenner et al. 

2000) in the aims of delineating between closely related bacterial strains. 

 Earlier methods for subspecies classification, such as serotyping or pulse-field gel-

electrophoresis (PFGE), assess genomic relatedness through indirect means. The inability of 

these methods to resolve closely related strains make these techniques not suitable for large-scale 

global surveillance. Serotyping for example, is routinely used for typing V. cholerae; however, 

despite over 200 serotypes identified, only two (O1 and O139) are responsible for all major 

outbreaks (Islam et al. 2017). Needless to say, serotyping provided minimal information to the 

epidemiological surveillance of cholera.  

Many of these methods are now replaced by sequence-dependent methods, such as 

multilocus sequence typing (MLST) and multilocus variable number tandem repeat analysis 

(MLVA), as these are usually less labour intensive and offer greater resolution. The ease of 

whole genome sequencing has caused yet another shift in the way we perform subspecies level 

classifications. A quick overview of sequence dependent subspecies classification techniques 

can, therefore, be largely split into the pre-genomic and the genomic era. 
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1.3.1 Subspecies level classifications in the pre-genomic era 

Multilocus sequence typing (MLST) is a popular subspecies classification method that 

looks at internal fragments of housekeeping gene sequences to approximate genome level 

differences (Maiden et al. 1998). Currently, there are no set standards to the number of genes that 

are required and the number of genes can differ between studies. However, six to seven 

housekeeping genes are typically used, as it is a reasonable balance between the amount of 

resolution obtained and the cost of sequencing (Sabat et al. 2013, Dingle and MacCannell 2015).  

It works by first assigning a unique number to each unique gene sequence. The specific 

combination of numbers then constitutes a MLST profile, which is given an arbitrary sequence 

type (ST) designation. Similarity between isolates can then be evaluated by looking at how many 

loci are identical between strains. Strains differing at one or two loci are also typically assigned 

to clonal complexes, which can often be associated with particular pathovar or biotypes (Enright 

2003, Forsythe et al. 2014). First proposed in 1998 (Maiden et al. 1998), MLST has now been 

applied to numerous bacterial species (Baldo and Werren 2007, Margos et al. 2008, Boonsilp et 

al. 2013, Octavia et al. 2013), most of which are publicly available on PubMLST 

(https://pubmlst.org).  

There are a number of advantages to MLST that make it favourable for subspecies 

classification. One such benefit is the ease at which results can be easily communicated and 

standardized as it is based on sequences of well-defined housekeeping genes. As long as the 

genes are known, the same analysis can be easily repeated across laboratories. In addition, DNA 

sequences, allele profiles and ST designations can be easily stored on public servers such as 

PubMLST allowing researchers to analyze their dataset in a global context. Another advantage of 
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MLST is that any sequence level changes will be assigned a novel allele designation. As it is 

often difficult to determine whether changes are the result of recombination or a series of 

different mutations, by giving all new sequence a new allele designation, it reduces the effect of 

recombination events (Enright and Spratt 1999). By utilizing housekeeping genes, MLST also 

creates groups that are more likely to reflect the true evolutionary history as housekeeping genes 

are less likely to be horizontally transferred (Baldo and Werren 2007).  

As with any typing methods, there are benefits and limitations. For MLST, one of the 

biggest limitations is that multiple individualized schemes may exist for different subgroups 

within the same species. This is because it is unreasonable to expect the same combination of six 

to seven housekeeping genes to resolve all subgroups within the same species equally well as 

different lineages may be under different selective pressure especially if the species contains 

pathogenic and non-pathogenic strains. As a result, some species such as Staphylococcus 

epidermidis (Wang et al. 2003, Wisplinghoff et al. 2003, Thomas et al. 2007) and Vibrio 

cholerae (Garg et al. 2003, Kotetishvili et al. 2003, Octavia et al. 2013) have more than one 

MLST scheme. This limits national and international collaboration, as results from different 

laboratories will not be comparable if they are using different schemes. Another important 

limitation of MLST is the lack of resolution due to the conservative nature in allele identification 

(i.e., any change whether it is 1 SNP or 100 SNPs is considered the same and given a new allele 

designation) means MLST cannot distinguish between closely related isolates, which limits its 

use in outbreak studies (Antwerpen et al. 2015). To exacerbate this problem, often times, only 

fragments of housekeeping genes are used and not the full length sequence (Maiden et al. 1998).  

 Multilocus variable number tandem repeats (VNTR) analysis (MLVA) is another pre-

genomic era method that retains some of the benefits of MLST but provides greater resolution 
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than other commonly used methods such as MLST (Marsh et al. 2010, Lam et al. 2012, Chenal-

Francisque et al. 2013, Martín et al. 2018) and PFGE (Keim et al. 2000). Generally, MLVA 

utilizes eight regions containing variable number tandem repeats (VNTR) (Keim et al. 2000). 

VNTR regions are PCR amplified and the number of repeats in each region is determined. A 

unique combination of repeats across all loci represents a MLVA type, which is used to 

distinguish between different strains.  

MLVA was first proposed in 2000 to study Bacillus anthracis (Keim et al. 2000). Similar 

to MLST, it also provides reliable results that lend itself well to the establishment of global 

reference database and online tools (Guigon et al. 2008, Volpe Sperry et al. 2008, Grissa et al. 

2008) because information can be easily coded and stored. MLVA can also be standardized by 

defining the specific VNTR loci used for particular schemes, and is one of the few relatively low 

cost methods that can be implemented globally without any specialized equipment (Martín et al. 

2018). Together with the increase in resolution relative to previous methods (e.g., MLST and 

PFGE), it is frequently used in epidemiological research and was applied to numerous human 

pathogens such as Vibrio cholerae (Garrine et al. 2017, Bwire et al. 2018), Salmonella 

Typhimurium (Torpdahl et al. 2007), and Clostridium difficile (Marsh et al. 2010). 

 However, MLVA is not without limitations. The first major drawback is the detection of 

VNTRs. There are, in general, two ways to detect VNTRs; PCR-based methods and sequencing 

based methods. The easiest PCR-based method is perhaps multiplex PCR, where all loci can be 

analyzed at once (Sabat et al. 2013). The problem with this method is that it is impossible to 

determine which band corresponds to which locus. As a result, multiplex PCR will only produce 

a banding pattern that can be used to distinguish between strains, but will not produce a MLVA 

profile that can be easily stored and communicated. To circumvent this problem, it is possible to 
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perform single PCR reactions for each locus, which allows for the determination of the number 

of repeats based on band sizes. The problem with determining the number of repeats based only 

band size, whether it be through traditional gel electrophoresis or high-resolution capillary 

electrophoresis, is difficult and will produce variable results (Martín et al. 2018). In addition, 

there are also other mutations that can cause changes in band size without changing the number 

of repeats (Sabat et al. 2013). Ultimately, to obtain the true MLVA profile, we must sequence 

this region. Unfortunately, sequencing VNTR regions is notoriously difficult and prone to error 

whether through traditional Sanger sequencing or next generation sequencing techniques. In both 

cases, additional quality filter criteria are required to eliminate unreliable results (Kieleczawa 

2006, Bartels et al. 2014). All PCR methods and also some sequencing methods also rely on the 

development of universal primers for these VNTR regions, which makes having a representative 

initial dataset crucial; however, often this is not possible resulting in primers that cannot be used 

when additional isolates are examined (Lindstedt 2005). 

Another common limitation of MLVA is size homoplasy (Chenal-Francisque et al. 2013) 

where isolates share the same MLVA profile through convergent evolution and not by vertical 

descent. As a result, MLVA profiles may not reflect the true phylogenetic relationship and 

organisms may appear more closely related than they truly are. Although increasing the number 

of loci may partially compensate for this problem (Vergnaud and Pourcel 2009), this does not 

work in all cases and at times, accurate mutation rates are required to assess the quality of VNTR 

data (Kalvisa et al. 2016).  
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1.3.2 Bacterial subspecies level classification in the genomic era 

 Methods in the pre-genomic era were limited by sequencing technology, which is why 

both MLVA and MLST focused on only a limited number of loci. Just as the introduction of 

Sanger sequencing had a tremendous impact on bacterial typing, the introduction of next 

generation sequencing (NGS) also led to major innovations in subspecies typing techniques 

available for bacteria. Two primary methods are the gene-by-gene approach (Maiden et al. 2013) 

and single nucleotide polymorphism (SNP)-based method. 

The gene-by-gene method is an extension of the traditional MLST approach. It works on 

the same concept as MLST, but instead of looking at six to seven genes, it utilizes thousands of 

genes. It retains the intuitive classification methods as traditional MLST; however, by increasing 

the number of genes considered, it has significantly increases the resolution. A commonly used 

gene-by-gene method is core-genome MLST (cgMLST). 

 cgMLST relies on the identification of a set of core genes, which are defined as genes 

shared by all isolates of interest. Typically, a diverse dataset of limited number of isolates are 

used to establish the scheme before evaluating its applicability on a larger sample set as it is 

computationally easier to do so. Although, strictly speaking, core genes must be present in all 

isolates within the data, due to limitations in sequencing technology, annotations and subsequent 

bioinformatic analyses, a more relaxed cutoff has sometimes been used for initial scheme 

development (Moura et al. 2016, Neumann et al. 2019), although not always (Ruppitsch et al. 

2015, de Been et al. 2015). Since its introduction in 2013 (Maiden et al. 2013), cgMLST has 

been applied to numerous pathogenic bacteria highlighting its applicability in an epidemiological 
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setting (Antwerpen et al. 2015, Mellmann et al. 2016, Moura et al. 2016, Gonzalez-Escalona et 

al. 2017, Pearce et al. 2018). 

One of the major advantages of cgMLST is the increased resolution allowing us to 

distinguish between closely related strains (Gonzalez-Escalona et al. 2017, Cody et al. 2017), 

while maintaining the intuitive classification system of traditional MLST. Although it has been 

known since MLST was initially introduced that the inclusion of greater number of genes will 

increase the resolution, it was not feasible due to time and cost constraints (Maiden et al. 1998). 

However, as whole-genome sequencing is becoming a routine practice in laboratories around the 

world and with readily available genome annotation software, this is no longer a limitation. In 

fact, cgMLST has been shown to be technically feasible and cost effective for real-time tracking 

of multi-drug resistant bacteria (Mellmann et al. 2016). Another important advantage of cgMLST 

is that it is compatible with traditional MLST methods. As MLST has been commonly used to 

study a wide range of organisms, ideally, new typing methods can be used to build on top of that 

information. Since MLST uses housekeeping genes, which are included in the core genome, any 

genes used in traditional MLST schemes should also be present in current cgMLST schemes. 

This means that by performing a single cgMLST analysis, it is possible to extract MLST data for 

all currently available MLST schemes. This increased in resolution, standardizability together 

with its compatibility with traditional MLST make cgMLST the preferred method for 

epidemiological research. 

 Despite its advantage, cgMLST also has important limitations. One of them is the 

reliance on the initial dataset for scheme development, sequencing technology and assembly 

software. As mentioned before, numerous cgMLST schemes were developed from an initial 

dataset containing a limited number of isolates. Although this approach reduces the 
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computational cost, it does require the initial dataset to be a representative sample as otherwise, 

it will result in a significant number of genes that are wrongly labeled as core genes, when in fact 

they are only present in a subset of the population. Sequence quality and assembly software also 

have a significant impact on core gene identification. Poorly sequenced and/or assembled 

genomes will result in gaps in the assemblies, which will reduce the number of core genes 

detected, lowering the resolution of the scheme. As a result, often there are quality filter criteria 

for genomes that can be used for cgMLST analysis (Moura et al. 2016). However, these 

limitations are primarily due to current limitations in technology whether at the sequencing step 

or any subsequent bioinformatics analyses. These are currently avoidable problems by ensuring 

schemes are developed and applied to reasonable quality data. In the future as these techniques 

mature, it is expected that these issues will become less significant. 

 Various commercial software, such as BioNumerics (http://www.applied-

maths.com/bionumerics) and SeqSphere+ (https://www.ridom.de/seqsphere/), and open-source 

software such as BIGSdb (Jolley and Maiden 2010) are available to implement cgMLST. All are 

capable of storing gene sequences, metadata, and identify allelic profiles. These tools will help 

standardize and automate the process of developing cgMLST schemes and further promote its 

use internationally. BIGSdb in particular is a web-application that is able to host many MLST, 

cgMLST and any variants of the gene-by-gene approach, allowing for the centralization of gene-

based typing methods and the facilitation of global communication (Jolley and Maiden 2010). 

Open-source programs such as OrthoMCL, USearch and BPGA (Li et al. 2003, Edgar 2010, 

Chaudhari et al. 2016) can also help identify core genes with more customizable parameters. The 

increased flexibility in gene identifications provided by these tools will allow for the 
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development of more customized cgMLST schemes based on known ecology and evolutionary 

patterns. 

 One of the limitations of gene-by-gene method is the requirement for assembled 

genomes. SNP-based methods on the other hand, allow researchers to work with raw NGS reads 

thereby effectively reducing computational costs and associated errors. The SNP identification 

process is the same as to those used for reconstructing SNP-based phylogeny (section 1.2.3). 

Regardless of the variant calling method used, the post processing of SNPs is the same. 

 It has been shown that SNP-based methods have comparable resolution to gene-based 

methods (Chen et al. 2013, Qin et al. 2016). Development of online analysis tools have allowed 

researcher to process raw NGS reads and produce meaningful SNP data in as little as two hours 

making SNP-based method a feasible tool for routine clinical practice (Chen et al. 2013). SNP-

based analysis have also been applied to various pathogens and have shown to be able to identify 

outbreaks (Chen et al. 2013, Katz et al. 2013, Kanagarajah et al. 2016, Qin et al. 2016). Another 

benefit of SNP based analysis is that the number of SNPs considered can be modified to achieve 

the best balance between cost and resolution. In Salmonella enterica, for example, as a little as 

68 out of 22,000 SNPs can differentiate between major pathogenic strains (Wong et al. 2016), 

and in theory, one can choose any number between 68 and 22,000 SNPs to achieve the desired 

level of resolution. 

A limitation to SNP-based methods, whether it is reference-free or reference-based, is 

that they are highly dependent on the programs used and the parameters chosen (Pightling et al. 

2014, Schürch et al. 2018). Different programs and protocols have different quality filters and 

SNP calling criteria, which will produce different results; standardization is therefore required 
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for global participation. In comparison to gene-by-gene methods, SNP based methods are also 

more prone to biases caused by recombination and horizontal gene transfer as each event can 

create multiple SNPs and these must be dealt with accordingly (Schürch et al. 2018). Ultimately, 

this means that the number of SNP differences may not correlate to true evolutionary distance. 

Extra precaution is therefore required to avoid SNPs that are the result of recombination and in 

some organisms, anywhere from 30% to 97% of SNPs identified must be removed (Chen et al. 

2013, Qin et al. 2016). 

 A number of tools are also available for SNP-based analyses. BioNumerics is a common 

commercial software for these analyses. It is convenient to use as all steps of the analysis can be 

done with a single package. As mentioned earlier, it is also capable of performing gene-by-gene 

analyses, so researchers can easily perform both SNP-based and gene-by-gene-based study for 

the same dataset using this tool. The major limitation of BioNumerics is the cost as not only must 

users purchase the software license, there are also an additional cost associated with performing 

subsequent analyses, such as SNP identification. Open-source alternatives, such as SAMtools, 

are available for performing SNP-based analysis using raw reads (Li et al. 2009). There are also 

other open-source tools to map reads onto reference genome for SNP identification, such as 

SMALT, BWA and MOSAIK, that allow for more customizability in the quality filter criteria 

(http://www.sanger.ac.uk/science/tools/smalt-0, Li and Durbin 2009, Lee et al. 2014). Different 

software have different advantages and excel at dealing with reads of varying quality and species 

of varying diversity; therefore, additional analyses should be perform to assess the suitability of 

each tool (Pightling et al. 2014). 
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1.4 Thesis objective and outline 

1.4.1 Resolving taxonomic inconsistencies within the Rhodobacteraceae family: proposal to 

move the roseobacter clade into Roseobacteraceae fam. nov and numerous genus and species 

level changes (Chapter 2) 

 Rhodobacteraceae is a diverse family of bacteria found in many different environments 

(Simon et al. 2017). The diverse metabolic and phenotypic abilities mean members of this family 

play important environmental and ecological roles (Buchan et al. 2005, Moran et al. 2007). This 

family also includes one of the most abundant group of marine bacteria, the roseobacter clade, 

which were among the first group of marine bacteria to be cultivated in a laboratory setting; 

therefore, it is widely studied by oceanographers worldwide (Buchan et al. 2005). The cultivation 

of members of this family also corresponds with the rising popularity of 16S rRNA gene 

sequencing, and as such, taxonomic classifications relied heavily on this gene (Buchan et al. 

2005). As previously discussed, although we aim to create monophyletic groups, 16S rRNA gene 

alone is not sufficient as it lacks resolution at the genus and species level. As a result, numerous 

taxonomic inconsistencies exist within this family. 

Applying the polyphasic approach to taxonomy and utilizing the abundance of WGS now 

available, I aim to identify and resolve any taxonomic inconsistencies in this family. As type 

strains serve an important role as reference material for taxonomic purposes and have additional 

phenotypic information available, they were my focus in this study. I collected the genome 

sequences of over 300 type strains within the Rhodobacteraceae family and performed various 

phylogenetic and genomic similarity analyses to identify, family, genus and species level 

misclassifications based on currently accepted standards (e.g., ANI, AAI, dDDH). I identified 25 
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genera and 3 species that violated existing taxonomic standards. My analyses also showed strong 

evidence that the roseobacter clade, members of which are commonly found in the marine 

environment, should be moved to a novel family for which I propose the name 

Roseobacteraceae fam. nov. 

 

1.4.2 Development of a cgMLST scheme for subspecies level classification of Vibrio cholerae 

and application in an epidemiological setting (Chapter 3) 

 Vibrio cholerae is best known as the causative agent of the acute diarrheal disease 

cholera. Cholera is a pandemic disease that has its origin in at least the early 19th century. 

Currently, it affects over 53 countries around the world causing millions of deaths annually (Ali 

et al. 2015). Epidemiological research and surveillance of a pandemic disease such as cholera 

requires a global effort. As such, a standardized, high-resolution typing scheme is required. 

Current methods for subspecies level identification of V. cholerae, such as SNP-based methods, 

MLST and MLVA, all suffer from important limitations that make them unsuitable for global 

surveillance effort. Using the readily available WGS of over 1,200 V. cholerae isolates, I have 

developed a core-genome MLST (cgMLST) scheme for typing V. cholerae. By utilizing over 

2000 core genes, it provides greater resolution than any previously used methods. As cgMLST 

can be easily standardized and automated, it can analyze thousands of genomes efficiently. 

Utilizing PubMLST, cgMLST is able to collect and store data from V. cholerae genomes 

collected around the world allowing researchers to analyze their own datasets in a global context. 

 I evaluated the applicability of this scheme by applying it to the two best documented 

cholera outbreaks in modern history; Haiti and Yemen. The strength of this scheme is also 
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highlighted by a direct comparison with currently established methods such as SNP-based 

methods, MLST and MLVA. 
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Chapter 2 

2.1 Abstract 

The Rhodobacteraceae family is a group of a-proteobacteria that is metabolically, 

phenotypically and ecologically diverse. It includes one of the most abundant group of marine 

bacteria, the roseobacter clade. The rapid pace of discovery of novel organisms in this clade in 

the last two decades meant that best practice for taxonomic classification, a polyphasic approach 

utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early 

efforts for the classification of these bacteria relied heavily on 16S rRNA gene sequence 

similarity and resulted in numerous taxonomic inconsistencies, with several poly- and 

paraphyletic genera within this family. Next-generation sequencing technologies have allowed 

whole-genome sequences to be obtained for most type species in this group, making a revision of 

its taxonomy possible. In this study, I performed whole-genome phylogenetic and genotypic 

analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications 

of 331 type strains within the Rhodobacteraceae family. I identified three isolates that were 

misclassified as a novel species, and as such these were merged with existing species. In 

addition, I also identify seven paraphyletic genera and 17 polyphyletic genera, which were 

resolved by merging and splitting them as necessary. Members of the roseobacter clade not only 

have different environmental adaptions from other isolates within the family, but were also found 

to be different based on genomic, phylogenetic, and in-silico phenotypic data. As such, I propose 

to move this group of bacteria into a new family, Roseobacteraceae fam. nov. By resolving 

taxonomic inconsistencies of type strains within this family, I have established a set of coherent  

criteria based on whole-genome analysis that will help guide future taxonomic efforts and 

prevent the propagation of errors.  
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2.2 Introduction 

Taxonomy is the science of characterizing, naming, and classifying organisms. Its aim is 

to group together organisms with shared evolutionary history from which they derived shared 

traits meaningful to their ecology and physiology (Wayne et al. 1987) and to this end, numerous 

criteria were established (Wayne et al. 1987, Konstantinidis and Tiedje 2005a, Mignard and 

Flandrois 2006, Meier-Kolthoff et al. 2013, Qin et al. 2014). These criteria were defined based 

on our understanding of prokaryotic diversity as well as the technology available. With each new 

method developed, we improve our understanding of bacterial diversity and evolution. As a 

result, many earlier taxonomic classifications are re-evaluated and modified (Parks et al. 2018, 

Wirth and Whitman 2018), as they are hypotheses that should be continuously verified when 

better techniques are available to reflect the current understanding (Garrity 2016). 

 Microbial taxonomy has changed substantially in the past few decades, embracing a 

polyphasic approach – phenotypic, genotypic, and phylogenetic – that considers a wide range of 

different traits for a systematic identification and description (Vandamme et al. 1996). Early 

phenotypic tests were primarily based on morphological characteristics; however, as 

morphological traits can vary within particular species, additional phenotypic tests were 

developed. This has led to what is known as numerical taxonomy, in which bacteria are 

represented by a long sequence of numbers, each representing individual phenotypic test (Sneath 

2005). To make this process easier, we now have commercially available phenotypic tests, such 

as the Biolog system (https://www.biolog.com/products-portfolio-overview/microbial-

identification/), that provides a systematic method to describe bacteria isolates base on a wide 

range of traits including, among others, carbon utilization, and antibiotic resistance. Despite the 

many standardized tests available, bacteria are rarely classified based on common phenotypic 
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tests. This is partly because bacteria are metabolically and phenotypically diverse and at times 

atypical phenotypic tests are required for species with specialized adaptive traits (Tindall et al. 

2010). Labor and time constraints also dictate the number of phenotypic tests that can be done, 

and the number of isolates analyzed. Despite these limitations, phenotypic tests are still an 

invaluable part of every taxonomic classification regardless of ranks because it allows for 

detailed descriptions that highlight important ecological roles and/or clinical traits. Fortunately, 

next generation sequencing (NGS) has made it easier to determine phenotypic traits. This is 

because we are now able to extract phenotypic traits of medical, ecological, and physiological 

importance from WGS through in-silico means (Aziz et al. 2008, Kanehisa et al. 2016). 

Although in-silico phenotypic predictions are ultimately predictions that should be verified 

through experiments, these are based on extensive genomic and phylogenetic analyses and can 

still nonetheless help guide subsequent phenotypic test which will reduce both time and costs 

required to identify characteristic phenotypes useful for taxonomic purposes. 

 Genotypic and phylogenetic analyses are the other two important pillars of polyphasic 

taxonomy (Wayne et al. 1987). The earlier methods include G+C content deviation, 16S rRNA 

gene analyses, and DNA-DNA hybridization (DDH). Although these are still used today (Sasi 

Jyothsna et al. 2016, Rabus et al. 2019), they have important limitations.  

 DDH is proposed to be the gold standard for species delineation. It is widely accepted 

that 70% DDH at 5oC melting temperature is the species cutoff, where isolates belong to the 

same species only if they meet or surpass this threshold (Wayne et al. 1987). DDH is notoriously 

difficult to reproduce and also time and labor intensive. In addition, only a limited number of 

laboratories are able to reliably perform DDH experiments (Gevers et al. 2005). Therefore, 

although this technique is seen as the gold standard for taxonomy, other methods are being 
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explored as a replacement for traditional DDH experiments or at least attempt to accurately 

predict traditional DDH results. 

G+C content is one of the earlier methods that aim to predict DDH values. Conventional 

methods for measuring G+C content were indirect as they relied on variation in physical 

properties, such as melting temperature. These methods were later determined to be the primary 

sources of variations of past G+C content measurements (Klenk et al. 2014). Obviously, this 

limits the use of G+C content in bacterial taxonomy as it is impossible to attribute whether the 

variation seen is the result of the technique or actual differences. It is now possible to measure 

G+C content directly and more accurately using WGS and has been shown that within species 

variation of G+C content is usually less than 1% (Klenk et al. 2014). However, even with this 

more reliable method to measure G+C content, it alone cannot be used for species identification 

as even 0% G+C content deviation only corresponds to approximately 84% chance that 

traditional DDH values will be above the species cutoff of 70% (Klenk et al. 2014). In addition, 

isolates from different genera can have as little as 0.4% difference in their G+C content. 

The most popular method used to predict DDH values is 16S rRNA gene analysis, as 

evident by the numerous 16S rRNA gene databases available such as Greengenes 

(https://greengenes.secondgenome.com), SILVA (https://www.arb-silva.de) and RDP 

(https://rdp.cme.msu.edu). It is used not only as a proxy for genomic similarities, but also to 

reconstruct phylogenetic trees. However, it should be noted that although 16S rDNA similarity 

values below 97.5% (Stackebrandt and Goebel 1994), and later 98.7% (Stackebrandt and Ebers 

2006), means that high DDH values are unlikely, 16S rDNA identities above these thresholds do 

not necessarily guarantee high DDH values. This is in part because the full-length 16S rRNA 

gene, which is approximately 1.4kb long, is only a fraction of the size of a bacterial genome, 
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which can range from 130kb to 14Mb. It has been shown that isolates sharing up to 99% 16S 

rRNA gene sequence identity can still have DDH values as low as 23-50% (Wang et al. 2015) 

highlighting the discrepancy between 16S rRNA gene sequence identity and traditional DDH 

experiments. In addition to the lack of resolution, some isolates also contain multiple 

intragenomic copies with sequence different enough to be considered different genera based on 

phylogenetic analyses (Klappenbach et al. 2001, Acinas et al. 2004, Boucher et al. 2004, Case et 

al. 2007), adding yet another reason why the 16S rRNA gene alone is not suitable for 

determining taxonomic classification. 16S rDNA similarity should therefore only serve as a 

preliminary guide as to whether more in-depth genomic analyses are required (Tindall et al. 

2010). Unfortunately, despite the increasing ease of bacterial genome sequencing, 16S rRNA 

gene-based phylogeny is still commonly used to fulfil the phylogenetic aspect of polyphasic 

taxonomy (Kim et al. 2010, Baek et al. 2015, Shin et al. 2017). 

 Fortunately, WGS has provided the basis to develop more accurate methods to assess 

genomic and phylogenetic relationships and has provided us with tangible standards for 

systematic classifications, more so for the species level than higher ranks. Many WGS-based 

methods developed have their basis in traditional DDH experiments, as it is still the gold 

standard for species delineation; however, unlike G+C content and 16S rRNA analysis 

mentioned above, these methods are much better able to predict traditional DDH experiments. 

One such method is average nucleotide identity (ANI), which is primarily used for species level 

delineation. It was determined that 95% ANI corresponds to 70% DDH values and is proposed as 

the species cutoff (Goris et al. 2007). Another method used for species classification that has its 

basis in traditional DDH is in-silico DDH (dDDH) calculated based on genome to genome 

distance and it retains the 70% species cutoff (Meier-Kolthoff et al. 2013). As ANI and dDDH 
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are reproducible and easily scaled to analyze hundreds of isolates, it is becoming standard 

practice for species delineation (Orata et al. 2016, 2018, Dees et al. 2017, Wirth and Whitman 

2018). 

 Taxonomic standards become increasingly more ambiguous as we move to higher ranks. 

One method proposed was average amino acid identity (AAI), which is similar to ANI, but 

measures amino acid sequence identity instead. AAI is more suitable than ANI to assess higher 

taxonomic ranks, or more distantly related species, because amino acid does not reach mutational 

saturation as quickly as nucleotides (Qin et al. 2014). Although AAI can be used to resolve genus 

level relationships, there has yet to be an established genus level threshold as values for between 

genera comparisons can be anywhere from 60%-80% (Orata et al. 2018). Therefore, although 

AAI can be helpful when identifying comparisons that are different from expected and highlight 

potential misclassifications, unlike dDDH and ANI analyses, it will not provide a definitive 

answer. A polyphasic approach that includes detailed phylogenetic and genomic analyses 

supplemented with phenotypic data are still required for proper genus and higher-level 

classifications. 

In this study I utilized the abundance of high-quality WGS data to perform a large-scale 

phylogenomic analyses on the type strains within the family Rhodobacteraceae to identify and 

resolve taxonomic inconsistencies. This family is the largest family within the order 

Rhodobacterales and is, according to the 2015 publication of the Bergey’s manual, 

metabolically, phenotypically and genotypically diverse (Garrity et al. 2015b). 

Rhodobacteraceae was first proposed in 2005 based on 16S rRNA gene analysis and was named 

after the first described genus, Rhodobacter (Garrity et al. 2005). Because of its reliance on the 

16S rRNA gene, taxonomic inconsistencies have been a reoccurring problem in this family since 
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it was first proposed. In fact, Rhodobacteracea was not even a legitimate name when it was 

proposed, as it included the genus Hyphomonas, the type genus of the family Hyphomonadaceae 

which violated rule 51b of the International Code of Nomenclature of Prokaryotes (Parker et al. 

2019). It was only recognized as an official family within the order Rhodobacterales when 

Hyphomonadaceae was moved to the order Caulobacterales later that year based yet again on 

16S rRNA gene-based phylogenetic analyses (Pujalte et al. 2007). However, the 2015 

publication of the Bergey’s manual placed Hyphomonadacea in the order Rhodobacterales again 

(Abraham and Rohde 2019), underlining once more the instability of taxonomic classifications at 

the family level based on the16S rRNA gene. This gene is therefore not suitable for family level 

analysis within this order let alone at the genus or species level.  

 Within the family Rhodobacteraceae is the roseobacter clade. Members of this group are 

historically important as it is one of the most readily cultivated groups of marine bacteria 

(Buchan et al. 2005). Members of the roseobacter clade can consists of up to 20% of coastal 

marine bacterial population making it one of the most abundant groups of marine bacteria 

(Moran et al. 2007). The roseobacter clade also plays important ecological and environmental 

roles. For example, it is one of two groups of bacteria that contains isolates capable of both 

pathways for dimethylsulfoniopropionate (DMSP) degradation; DMSP demethylation and 

DMSP cleavage (Luo and Moran 2014). These pathways utilize DMSP in different ways and are 

important for different reasons. The DMSP demethylation pathway converts DMSP into 

methanethiol (MeSH), which can be assimilated by marine bacteria (Reisch et al. 2011). The 

cleavage pathway, on the other hand, converts DMSP into DMS, which plays an important role 

in cloud formation and ultimately global climate regulation (Reisch et al. 2011, Moran et al. 

2012). Much like the initial circumscription of the family Rhodobacteraceae, taxonomic 
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classifications within this group continues to rely heavily on 16S rRNA gene phylogeny. As a 

result, multiple studies have been published highlighting the numerous genus and species level 

misclassifications within this group (Breider et al. 2014, Wirth and Whitman 2018, Huang et al. 

2018), but none has addressed it systematically. 

 To resolve taxonomic inconsistencies within this family, I focused on all type strains with 

draft or complete genomes available as of January 13th, 2019. By resolving taxonomic 

misclassifications among type strains, it will establish a set of taxonomically correct reference 

material that can help guide future taxonomic efforts and prevent the propagation of error. In 

addition, type strains also provide phenotypic data for a meta-analysis allowing us to more 

closely follow the polyphasic approach to taxonomy. A total of 25 genera and 3 species that 

violated existing taxonomic rules have been identified and must be addressed.  

   

2.3 Results and Discussion 

2.3.1 16S rRNA gene phylogeny provides little resolution within the Rhodobacteraceae family 

relative to core genome analysis 

The 16S rRNA gene has played a major role in the taxonomic classification of many 

members within the Rhodobacteraceae family (Garrity et al. 2015b). The importance of 16S 

rDNA is further highlighted by the fact that the largest lineage within this family, the marine 

roseobacter clade, is defined by having members that share >89% 16S rRNA gene sequence 

similarity (Buchan et al. 2005). To determine the impact of using the 16S rRNA gene as the main 

molecular marker for naming new species and genera within this family, we reconstructed the 

phylogenetic tree of 331 type strains using full lengths 16S rRNA gene sequences, which are 
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recommended for use in phylogenetic and taxonomic studies (Tindall et al. 2010). As expected, 

the 16S rRNA gene-based tree has poor resolution and low bootstrap support overall (Fig 2.1). 

This is even more evident when nodes with less than 50% bootstrap support were collapsed, 

resulting in a poorly resolved tree backbone (Fig. 2.1). The inadequacy of 16S rRNA gene for 

use in genus-level classification is highlighted by the fact that only 23 genera in the entire family 

are monophyletic (Fig 2.1). In addition, genera such as Yoonia, Loktanella and phaeobacter 

which have previously been shown to be monophyletic based on a whole-genome approach 

(Breider et al. 2014, Wirth and Whitman 2018) are no longer monophyletic in the 16S rRNA tree 

(Fig 2.1, Fig 2.2).  
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Fig 2.1: Phylogenetic tree of 331 Rhodobacteraceae type strains based on  the full-length 16S 

rRNA gene. The tree was reconstructed using RAxML v8.2.11 with 1000 bootstrap replicates 

under the GTRGAMMA model and rooted with Agrobacterium tumefaciens. Bootstraps are 

indicated as black (≥95%), grey (≥70%) and white (<70%) circles. The inner ring represents the 

two major lineages within the family (Fig 2.2) and outer ring represents monophyletic genera. 

Blank regions of the outer ring represent polyphyletic genera based on this 16S rRNA gene tree. 
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A popular high-resolution method to reconstruct phylogenetic relationships is the core-

genome approach. In this approach, phylogenetic trees are reconstructed with the concatenated 

alignments of core genes, which are defined as genes present in all organisms of interest. In a 

previous study, a core-genome phylogeny of the roseobacter clade was reconstructed using 108 

core housekeeping genes (Luo and Moran 2014). To determine the phylogenetic affiliation of 

this clade within the family Rhodobacteraceae, the phylogeny of the entire family was 

reconstructed in another study using 208 core genes from 106 strains (Simon et al. 2017). In my 

study, the core-genome phylogeny of the family was reconstructed using 140 core genes from a 

dataset of more than three times as large (331 type strains with the addition of three 

Agrobacterium tumefaciens outgroup; Table A1) as previously used (Simon et al. 2017), 

providing a more complete picture of the phylogenetic framework of the Rhodobacteraceae 

family (Fig 2.2). As expected, phylogenetic relationships are much better resolved in the core-

genome phylogeny than with the 16S rRNA gene alone, with a well define backbone (Fig 2.2). 

Based on this core-genome tree, the Rhodobacteraceae family can be divided into two 

monophyletic lineages, one of which consists of the roseobacter clade and is composed primarily 

of organisms found in the marine environment (Buchan et al. 2005) (Fig 2.2 – inner ring, Table 

A1). It should be noted that the 16S rRNA gene phylogeny was unable to resolve these two 

lineages, meaning it would be difficult to determine even which lineage an isolate belongs to let 

alone which genus or species using this gene. In addition, genera that were not monophyletic in 

the 16S rRNA gene tree (e.g., Yoonia, Leisingera, and Phaeobacter) are now monophyletic with 

strong bootstrap support, consistent with prior studies (Wirth and Whitman 2018). However, 

several polyphyletic (Albidovulum, Celeribacter, Defluviimonas, Gemmobacter, Lutimaribacter, 

Maribius, Oceanicola, Ponticoccus, Primorskyibacter, Pseudooceanicola, Pseudorhodobacter, 
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Pseudoruegeria, Rhodobacter, Roseivivax, Ruegeria, Sulfitobacter, Thalassobius) and 

paraphyletic genera (Paracoccus, Actibacterium, Tropicimonas, Roseovarius, Salipiger, 

Tropicibacter, Epibacterium) remained (Table A2).  
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A: Brevirhabdus

C: Hasllibacter D: Boseongicola E: Silicimonas

H: Tranquilimonas I: Oceaniglobus J: Kandeliimicrobium K: Oceaniovalibus

L: Hwanghaeicola M: Palleronia N: Maribius O: Pseudoruegeria

Q: Halocynthiibacter R: Maritimibacter S: Aliiroseovarius T: Aquimixticola U: Pacificibacter

V: Celeribacter W: Marivivens X: Pseudooctadecabater Y: Octadecabacter

Z: Oceanicola AA: Roseisalinus AB: Wenxinia AC: Pseudoroseicyclus AD: Limimaricola

AE: Flavimaricola AF: Loktanella AG: Cognatiyoonia AH: Yoonia AI: Salinihabitans

AJ: Cognatishimia
Thalassobius activus CECT 5113 ĺ�Cognatishimia activus CECT 5113

AL: Shimia AM: PseudooceanicolaAK: Pseudopelagicola AN: Sediminimonas

AO: Lutimaribacter AP: Litorimicrobium

AR: Thalassobius
AS: Roseovarius

Pelagivirga sediminicola BH-SD19 ĺ�Roseovarius sediminicola BG-SD19
 Pelagicola litorisediminis CECT 8287 ĺ�Roseovarius litorisediminis CECT 8287

AT: Pseudaestuariivita AU: Rhodosalinus AV: Poseidonocella AW: Marinovum
AX: Donghicola AY: Puniceibacterium

AZ: Primorskyibacter
Pseudooceanicola flagellatus CGMCC 1.12644
ĺ�Primorskyibacter flagellatus CGMCC 1.12644

BA: Primorskyibacter_A BB: Marivita BC: Thalassococcus BD: Roseivivax

BF: Citreimonas

BH: Tropicibacter
Pelagimonas varians DSM 23678 ĺ�Tropicibacter varians DSM 23678

BI: Ponticoccus BJ: Sagittula

BG: Roseivivax_B
Roseivivax pacificus�'60�������ĺ�Roseivivax_B pacificus DSM 29329

BK: Ponticoccus_A 
Ponticoccus marisrubri SJ5A-1 ĺ�Ponticoccus_A marisrubri SJ5A-1

BP: Sulfitobacter_A 
Sulfitobacter pseudonitzschiae H3 ĺ�Sulfitobacter_A pseudonitzschiae H3

BL: Maliponia BM: Mameliella BO: PlanktotaleaBN: Antarctobacter

BQ: Ascidiaceihabitans BS: Sulfitobacter BT: AestuariivitaBR: Roseobacter

CH: Leisingera CI: Agrobacterium CJ: Ahrensia CK: Acuticoccus CL: Rubrimonas
CM: Oceanicella CN: Albimonas CO: Monaibacterium CP: Pontivivens CQ: Amylibacter
CR: Neptunicoccus CS: Pararhodobacter CT: Roseicitreum CU: Roseinatronobacter
CV: Rhodobaca CW: Roseibaca

CY: Haematobacter

DA: Cereibacter

DB: Rhodobacter_A 
Rhodobacter megalophilus DSM 18937 ĺ� Rhodobacter_A sphaeroides DSM 18937
Rhodobacter sphaeoroides 2.4.1 ĺ� Rhodobacter_A sphaeroides 2.4.1
Rhodobacter johrii JA192 ĺ� Rhodobacter_A johrii JA192
Rhodobacter azotoformans KA25 ĺ�Rhodobacter_A azotoformans KA25
Rhodobacter ovatus JA234 ĺ�Rhodobacter_A ovatus JA234

CZ: Gemmobacter_A 
Gemmobacter nectariphilus DSM 15620 ĺ� Gemmobacter_A nectariphilus DSM 15620
Gemmobacter megaterium DSM 26375 ĺ Gemmobacter_A megaterium DSM 26375

CX: Defluviimonas_A 
Defluviimonas indica DSM 24802 ĺ�Defluviimonas_A indica DSM 24802

DC: Pseudorhodobacter DD: Gemmobacter
DE: Pseudorhodobacter_A 

Pseudorhodobacter psychrotolerans PAMC 27389 ĺ�Pseudorhodobacter_A psychrotolerans PAMC 27389

BU: Pseudodonghicola BV: Marinibacterium BW: Sedimentitalea

BZ: Jhaorihella CA: Cribrihabitans CB: Ruegeria

CE: Epibacterium
Tritonibacter horizontis O3.65 ĺ�Epibacterium horizontis O3.65

CF: Pseudophaeobacter CG: Phaeobacter

CD: Falsiruegeria
Ruegeria litorea R37 CECT 7639 ĺ�Falsiruegeria litorea R37 CECT 7639 
Ruegeria mediterranea M17 ĺ�Falsiruegeria mediterranea M17

BY: Pseudooceanicola_A 
 Pseudooceanicola lipolyticus 157 ĺ�Pseudooceanicola_A lipolyticus 157

BX: Ruegeria_A 
 Ruegeria kandeliae J95 ĺ�Ruegeria_A kandeliae J95

P: Pseudohalocynthiibacter
Halocynthiibacter arcticus 3$0&�������ĺ�Pseudohalocynthiibacter arcticus PAMC 20958

G: Maribius_A
Maribius pontilimi *+�������ĺ�Maribius_A pontilimi GH1 23 1 

F: Roseivivax_A 
F: Roseivivax roseus '60�������ĺ�Roseivivax_A roseus DSM 23042

B: Pseudoalbidovulum
Albidovulum xiamenense &*0&&���������ĺ�Pseudoalbidovulum xiamenense CGMCC 1.10789  

AQ: Lutimaribacter_A 
Lutimaribacter litoralis KU5D5 ĺ�Lutimaribacter_A litoralis KU5D5

BE: Salipiger
 Yangia pacifica CGMCC 1.3455 ĺ�Salipiger pacifica CGMCC 1.3455
 Pelagibaca abyssi JLT2014 ĺ�Salipiger abyssi JLT2014

DP: Actibacterium
DS: Confluentimicrobium lipolyticum CECT 8621 ĺ�Actibacterium lipolyticum CECT 8621

DO: Rhodovulum
Rhodovulum viride JA756 ĺ�Rhodovulum kholense JA756

DQ: Oceanicola_A 
Oceanicola litoreus DSM 29440 ĺ�Oceanicola_A litoreus DSM 2944

DR: Celeribacter_A 
Celeribacter manganoxidans DY25 ĺ�Celeribacter_A manganoxidans DY25 

DS: Tropicimonas
Pseudoruegeria marinistellae SF-16 ĺ�Tropicimonas marinistellae SF-16

DT: Pseudoruegeria_A 
Pseudoruegeria haliotis DSM 29328 ĺ�Pseudoruegeria_A haliotis DSM 29328
Pseudoruegeria lutimaris DSM 25294 ĺ�Pseudoruegeria_A lutimaris DSM 25294
Pseudoruegeria sabulilitoris GJMS-35 ĺ�Pseudoruegeria_A sabulilitoris GFMS-35

DU: Planktomarina DV: Nereida DW: Litoreibacter DX: Nioella
DY: Roseicyclus DZ: Roseibacterium EA: Dinoroseobacter EB: Thalassobacter
EC: Jannaschia

DF: Rhodobacter_B 
Rhodobacter blasticus DSM 2131 ĺ�Rhodobacter_B blasticus DSM 2131

DJ: Rhodobacter_C 
Rhodobacter vinaykumarii JA123 ĺ�Rhodobacter_C vinaykumarii JA123
Rhodobacter veldkampii DSM 11550 ĺ�Rhodobacter_C veldkampii DSM 11550

DK: Paenirhodobacter DL: Rhodobacter DM: Thioclava
DN: Paracoccus

Paracoccus bengalensis DSM 582 ĺ�Paracoccus versutus DSM 582
Methylarcula marina VKM B-2159 ĺ�Methylarcula marina VKM B-2159

DH: Albidovulum DI: DefluviimonasDG: Tabrizicola
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Fig 2.2: Phylogenetic tree of 331 Rhodobacteraceae type strains based on concatenated 

alignments of 140 core genes. The tree was reconstructed using RAxML v8.2.11 with 100 

bootstrap replicates using the PROTGAMMAAUTO option for automatic model selection rooted 

with Agrobacterium tumefaciens. Bootstraps are indicated as black (≥95%), grey (≥70%) and 

white (<70%) circles. The inner ring represents the two major lineages within the family and 

outer rings represents monophyletic genera. Red and green dots represent where genus and 

species level changes respectively.  
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2.3.2 Evaluation of species designation within monophyletic genera 

Unlike higher taxonomic ranks, there are clear genomic and phylogenetic criteria for 

species level delineation. dDDH and ANI are two common genomic metrics which uses 70% and 

95% as the species threshold respectively (Richter and Rosselló-Móra 2009, Meier-Kolthoff et 

al. 2013). Phylogenetically, all isolates belonging to the same species must also be monophyletic 

(Rosselló-Móra and Amann 2015). 

To identify possible taxonomic misclassifications at the species level, I calculated dDDH 

values for all species within currently named genera using the GGDC online tool (Meier-

Kolthoff et al. 2013) (https://ggdc.dsmz.de). For polyphyletic genera, only comparisons within 

monophyletic clades are considered, as it is unlikely for two isolates that are not monophyletic to 

share more than 70% dDDH value. For cases where pairwise comparisons showed more than 

70% dDDH, I then calculated ANI using JSpecies (Richter and Rosselló-Móra 2009) as a 

separate independent method of evaluating genomic relatedness. Only cases where dDDH, ANI 

and phylogenetic data support the merging of two species do I propose any taxonomic changes. 

From all dDDH comparisons (Table A3), only three pairs of species had more than 70% 

dDDH value and 95% ANI (Fig 2.3, Table A3). The pairs of species were Rhodobacter 

sphaeroides 2.4.1T (Imhoff et al. 1984) vs. Rhodobacter megalophilus DSM 18937T (Arunasri et 

al. 2008), Paracoccus bengalensis DSM 17099T (Ghosh et al. 2006) vs Paracoccus versutus 

DSM 582T (Katayama et al. 1995), and Rhodovulum viride JA756T (Srinivas et al. 2014) vs 

Rhodovulum kholenses DSM 19783T (Kumar et al. 2008) with dDDH values of 82.9%, 81.9%, 

and 84.1 and the ANI values of 98.1%, 97.7% and 97.7% respectively (Fig 2.3, Table A3). The 

16S rRNA gene sequence similarities (99.39%, 99.93%, 100% for Rhodovulum, Paracoccus, 

Rhodobacter respectively) were also higher than the 98.7% cutoff previously proposed 
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(Stackebrandt and Ebers 2006) (Table A4). In addition, all three pairs form monophyletic clades 

(Fig 2.2) with patristic distance (PD) ranging from 0.015 to 0.011 (Table A4). As PD is a 

measure of evolutionary distance based on our core-genome phylogenetic tree and the average 

within genera PD was 0.24 (Table A5), it shows that these pairs of isolates are not only 

monophyletic but are also closely related. Both phylogenetic and genomic evidence suggest 

these taxa should be renamed. In all cases, the species that was first identified will retain the 

species designation and all strain names are retained as per rule 38 of the code (Parker et al. 

2019).  
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Fig 2.3: dDDH and ANI values showing the genera containing species level misclassifications. 

The species threshold (70% and 95% for dDDH and ANI respectively) are labeled on the X and 

Y axis.   
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Independent of my analyses, a recent publication specifically examined the taxonomic 

inconsistencies within the genus Rhodobacter using a concatenated phylogenetic tree based on 

92 core genes (Suresh et al. 2019). In this study, the genus Rhodobacter was split into the same 

number of clades as our broader-scale core-genome phylogenetic analysis, highlighting the 

reliability and reproducibility of core-genome based phylogenies (Suresh et al. 2019) (Fig 2.2). 

This study, taken together with my analyses, provides strong evidence that Rhodobacter is 

indeed a polyphyletic genus that requires taxonomic reclassification. The same study also 

showed that R. sphaeroides 2.4.1T and R. megalophilus DSM 18937T are indeed the same 

species, which is consistent with my findings (Suresh et al. 2019) (Fig 2.3). As R. megalophilus 

DSM 18937T differs from R. sphaeroides in a number of phenotypic traits including, among 

others, growth at 5oC, vitamins required for growth and the ability to utilize citrate as carbon 

source, it was proposed that R. megalophilus should be considered a subspecies within R. 

sphaeroides 2.4.1T (Suresh et al. 2019). 

As for the other two pairs, I propose the following changes: Rhodovulum viride JA756T 

(Srinivas et al. 2014) renamed as Rhodovulum kholense JA755T comb. nov; and Paracoccus 

bengalensis DSM 17099T (Ghosh et al. 2006) renamed as Paracoccus versutus DSM 17099T 

comb. nov. 

 

2.3.3 Genome guided genus level reclassifications supported by phylogenetic data. 

Taxonomic classification at the genus level and higher is more difficult, as it lacks 

standardized metrics or guidelines. Although attempts were made to establish genomic standards 

for genus level classification, there has yet to be a consensus on what analyses to run and cutoff 

values to use (Orata et al. 2018). As a result, a polyphasic approach that also looks at phenotypic 
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and phylogenetic data is favored for assigning taxonomic classifications above the species level. 

However, it should be noted that although genome similarity analyses alone are not sufficient to 

justify genus level reclassifications, the relative ease in analyzing hundreds of isolates using a 

variety of metrics makes these methods effective initial approaches for sifting through a large 

quantity of data to identify potential misclassifications. These can be further examined from a 

phylogenetic and phenotypic perspective; both of which are more time-consuming and 

computationally intensive. 

In the past, genus definition relied heavily on 16S rRNA gene sequence analyses. As 

such, genomically dissimilar organisms are sometimes grouped into the same genera because 

relatively distantly related organisms may still have similar 16S rRNA gene sequences. Take 

Yoonia vestfoldensis DSM 16212T (Wirth and Whitman 2018) and Flavimaricola marinus CECT 

8899T (Wirth and Whitman 2018) for example. Y. vestfoldensis DSM 16212T and F. marinus 

CECT 8899T share a 96% 16S rDNA identity; however, Y. vestfoldensis DSM 16212T has lower 

AAI, 1st, 2nd, and 3rd codon position similarity and higher PD when compared to F. marinus 

CECT 8899T relative to other Yoonia species (Table A5). Therefore, if genus classifications were 

assigned based only on 16S rRNA gene sequence identity and 16S rRNA gene-based phylogeny, 

these two isolates would be grouped into the same genus despite being genomically dissimilar. 

This was indeed the case in the past (Van Trappen et al. 2004, Jung et al. 2016); however, 

genomic similarity analyses alone showed these isolates do not belong in the same genus and 

further phylogenetic and phenotypic analyses corroborated these results, leading to their 

reclassification in 2018 (Wirth and Whitman 2018). This highlights the importance of genomic 

similarity analyses as efficient methods for quickly identifying potential misclassifications that 

can help guide subsequent analyses. 
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Genomic metrics are therefore used to determine if there are any misclassifications 

among currently recognized monophyletic groups (Table A2, A5). It is clear that for all genomic 

metrics measured, that species within the same genus are more similar to each other than species 

between genera, as values for within genera comparisons are significantly different from 

between genera comparisons in all cases (Fig 2.4, Table A5). It is also worth noting that between 

and within genera comparisons always have some overlaps for all metrics considered (Fig 2.4). 

These overlaps are not unexpected, as even closely related genera can have different 

evolutionary rates due to differences in response to environmental factors (Ramette and Tiedje 

2007), which means genera will contain species of varying degrees of diversity. This overlap is 

the primary reason why establishing a clear universal genus level boundary is difficult if not 

impossible.   
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Fig 2.4: Genomic similarity within and between genera. Histogram of AAI, PD, 1st, 2nd and 3rd 

codon position similarity for all within (light blue) and between (grey) recognized monophyletic 

genera (Table A5). The distributions for within and between genera comparisons for all metrics 

are statistically significant (p < 0.05) based on Mann-Whitney U-test. The red and the green bars 

represent two atypical within genus comparisons. 
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All within genera comparisons have AAI values above 70% with only one exception; the 

comparison between Halocynthiibacter arcticus PAMC 20958T (Baek et al. 2015) and 

Halocynthiibacter namhaensis RA2-3T (Kim et al. 2014) at 65.8% (Fig 2.4); the only two named 

species within this genus as of November 28th, 2019. Other genomic metrics also show a similar 

pattern where these two isolates consistently have values more similar to those observed for 

between genera comparisons rather than within genus comparisons. As codon position 

similarities and AAI are measures of genomic similarities and PD is a measure of evolutionary 

distance, collectively these metrics show that H. arcticus PAMC 20958T and H. namhaensis 

RA2-3T are genomically and phylogenetically distinct, which is supported by the core-genome 

phylogeny as indicated by the relatively long branch length (Fig 2.2). 

 It is likely that H. articus PAMC 20958T was misclassified, as it was originally identified 

to belong to the genus Halocynthiibacter based solely on 16S rRNA gene sequence identity and 

16S rRNA gene-based phylogenetic analysis (Baek et al. 2015). Consistent with Baek et al, H. 

articus PAMC 20958T does have the highest 16S rDNA identity with H. namhaensis RA2-3T in 

at 96.6% (Table A5); however, based on my analysis, H. articus PAMC 20958T shares a 

similarly high level of 16S rDNA identity with Pseudopelagicola gijangensis DSM 1005T at 

96.1% and Thalassobius gelatinovorus CECT 4357T at 94.1% (Table A5). In addition, within the 

dataset used in this study, the ranges of 16S rDNA sequence identity for within and between 

genera comparisons are 93.3%-99.9% and 84.1%-97.9% respectively (Table A5). 16S rDNA 

identity of 96.6% is therefore not sufficient to support the placement of H. arcticus PAMC 

20958T with H. namhaensis RA2-3T in the same genus. Based on other genomic and 

phylogenetic data (Fig 2.2, Fig 2.4), these isolates should, in fact, be considered as different 

genera. 
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 The separation of these two isolates into different genera is also supported by differences 

in phenotypic traits previously identified (e.g., difference in temperature range, salt tolerance, pH 

tolerance, enzymatic activities and carbon metabolism) (Baek et al. 2015). As such, I proposed to 

move H. arcticus PAMC 20958T to a new genera Pseudohalocynthiibacter gen. nov. This 

isolate, Pseudohalocynthiibacter arcticus PAMC 20958T gen. nov comb. nov, will be the type 

species of the genus. 

 It is worth mentioning that although based on 1st and 2nd codon position similarity alone, 

Pseudophaeobacter leonis 306T and Pseudophaeobacter arcticus DSM 23566T also seem to 

belong to different genera, but unlike the Halocynthiibacter species, AAI, PD, and 3rd codon 

position similarity for these two Pseudophaeobacter species are within expected range (Fig 2.4). 

As genomic metrics are providing conflicting results for these two isolates, a definitive decision 

cannot be made until additional in-depth genomic, phylogenetic and phenotypic characterization 

is done. 

 

2.3.4 Phylogenetically guided genus level reclassifications  

Monophyly is one of the few rules that can be universally applied to all levels of 

classifications (Parks et al. 2018), and16S rDNA-based phylogeny is typically used to determine 

whether this criterion is met. Taxonomic classification within the Rhodobacteraceae family is no 

exception, but as previously mentioned, the 16S rRNA gene is not able to resolve phylogenetic 

relationships among isolates in this order, resulting in numerous non-monophyletic genera (Table 

A2). One of the goals of this study is to resolve all non-monophyletic genera in this family by 

applying modern techniques to polyphasic taxonomy. 
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A total of seven paraphyletic genera were identified as they form monophyletic clades 

with one or more members of a different genus with strong bootstrap support (Fig 2.2, Table 

A2). There are seven monophyletic clades (one clade for each paraphyletic genus) consist of 16 

genera in total, but ultimately only seven genera should retain their designation as all conflicting 

genera should be merged with existing genera. In all cases, the first described genus in each 

monophyletic clade, which I will refer to as the primary genus, will retain its genus designation, 

provided that the type species is available as per rule 38 and 42 of the code (Parker et al. 2019). 

For each monophyletic clade (which contains the primary genus and conflicting genera), PD and 

AAI comparisons are all within the range observed for typical within genus comparisons (Fig 

2.5, Table A6), providing genomic support for the merging of these genera (Fig 2.2). As such we 

propose the following changes: transfer of Confluentimicrobium lipolyticum CECT 8621T to the 

genus Actibacterium, Tritonibacter horizontis O3.65T to the genus Epibacterium, Pelagicola 

litorisediminis CECT 8287T and Pelagivirga sediminicola BH-SD19T to the genus Roseovarius, 

Yangia pacifica CGMCC 1.3455T and Pelagibaca abyssi JLT2014T to the genus Salipiger, and 

Pelagimonas varians DSM 23678T to the genus Tropicibacter. 

The only paraphyletic genus that could not be resolved is Paracoccus (Davis et al. 1969), 

which forms a monophyletic clade with Methylarcula marina VKM B-2159T (Trotsenko et al. 

2000). As Paracoccus was described before M. marina VKM B-2159T, the latter should be 

moved to the genus Paracoccus; however, because the type species of Paracoccus (Paracoccus 

denitrificans DSM 413) did not meet my minimum quality filter criteria of ≥95% complete and 

<5% contamination as determined by checkM (Parks et al. 2015), it was removed from my 

analyses. Therefore, a taxonomic reclassification cannot be proposed as it violates rule 42 of the 

code (Parker et al. 2019). Out of the seven paraphyletic genera identified, this is the only case in 
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which genome sequence quality impedes taxonomic resolution, highlighting the importance of 

not just having the whole genomes of type species, but that these genomes must also be of high 

quality as subsequent taxonomic classifications will rely heavily on these genomes. 

  



 54 

 



 55 

 

Fig 2.5: AAI and dDDH dot plots of all paraphyletic genera. Phylogenetic trees shown here are 

subsets of the core-genome tree (Fig 2.2). 
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 Tropicimonas, unlike other paraphyletic genera identified, is monophyletic with four 

Pseudoruegeria strains, which themselves are a polyphyletic genus (Fig 2.5B). Genomic 

similarities between the two Tropicimonas species and the four Pseudoruegeria species are 

within the range expected for within genus comparisons (Fig 2.5B) and phylogenetically, it 

would resolve this paraphyletic genus to move the two Tropicimonas species into the genus 

Pseudoruegeria, as Pseudoruegeria was described before Tropicimonas. This, however, is not 

the most parsimonious solution as it results in two genus level changes. To respect the parsimony 

principle, only Pseudoruegeria marinistellae SF-16T was moved into the genus Tropicimonas. 

 

2.3.5 Reclassification at the genus level: addressing polyphyletic genera 

Based on my core-genome phylogenetic analysis, I have identified 17 polyphyletic 

genera (Fig 2.2, Table A2). For each polyphyletic genus, the clade containing the type species, 

which I will call the primary clade, retains the genus designation as per rule 39a of the code 

(Parker et al. 2019). All isolates that are part of a polyphyletic genus but are not part of the 

primary clade will be given a new genus designation or merged with other genera. For each clade 

where genus level reclassification is required, within and between genera comparisons for all 

relevant genera were performed (Fig 2.6, Table A6).   



 57 

 



 58 

 



 59 

 

Fig 2.6: AAI and dDDH dot plots of all polyphyletic genera. Phylogenetic trees shown here are 

subsets of the core-genome tree (Fig 2.2).  
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 A majority of the comparisons between the polyphyletic genera and their closest 

neighbors resulted in borderline AAI and PD values, where they fall in the overlap region of 

between and within genus comparisons (Fig 2.6). Besides the lack of resolution from these 

genomic similarity indicators, there are several reasons why it is more difficult to make decisions 

on taxonomic classifications for polyphyletic as opposed to paraphyletic genera. Unlike the 

latter, where conflicting genera must be merged with existing ones to achieve resolution, 

polyphyetic genera can be resolved by either merging conflicting genera with existing ones or 

giving them novel genus designations. Therefore, although we know that these isolates must be 

renamed as they are currently polyphyletic, how they should be renamed remains unclear for 

some. Following the polyphasic approach in bacterial taxonomy, if genomic similarity and 

phylogenetic analyses are inconclusive, the decision must then rely on phenotypic traits. As we 

are using type species to determine genus boundaries, this information is generally available 

from original publications. 

Although majority of the cases are ambiguous (Fig 2.6), there are two polyphyletic 

genera that can be partially resolved and two that can be fully resolved based on phylogenetic 

and genomic data. One genus that can be partially resolved is the genus Pseudoruegeria. It is 

currently split into three clades (Fig 2.6K). One clade contains Pseudoruegeria marinistellae SF-

16T, which will be transferred to the genus Tropicimonas, which as previously mentioned, is the 

most parsimonious solution. Another clade contains the type species, P. aquimaris CECT 7680T 

with two Halocynthibacter species. Genomic comparisons between P. aquimaris CECT 7680T 

and the Halocynthibacter species clearly falls within the range of between genera comparisons 

(Fig 2.6K, Table A6) and therefore, both genera will retain their designations. The last clade 

contains exclusively of Pseudoruegeria haliotis DSM 29328T, P. lutimaris DSM 25294T, P. 
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sabulilitoris GJMS-35T. The closest relative of these three isolates is the genus Tropicimonas 

(Fig 2.6K). Genomic comparisons between these three Pseudoruegeria and the Tropicimonas 

isolates resulted in inconclusive values for both AAI and PD (Fig 2.6K). To determine whether 

these three Pseudoruegeria species should merged with Tropicimonas or be given a new genus 

designation will require additional phenotypic data. 

Another polyphyletic genus that can be partially resolved is Ruegeria. It is currently split 

into three monophyletic clades (2.6Q). Ruegeria atlantica CECT 4292T is the type species and it 

is in a monophyletic group with only Ruegeria isolates (2.6Q). This clade will therefore retain 

the genus designation. Another clade contains Ruegeria kandeliae J95T, Sedimentalea 

nanhaiensis DSM 24252T and Pseudooceanicola lipolyticus 157T. Since genomic metrics 

between these three species (S. nanhaiensis DSM 24252T, P. lipolyticus 157T and R. kandeliae 

J95T) are inconclusive, additional phenotypic data is required (Fig 2.6Q, Table A6). The last 

clade contains exclusively of R. litorea R37T and R. mediterranea M17T and will be given a new 

genus designation, for which I propose the name Falsiruegeria and designate Falsiruegeria 

litorea R37T gen. nov comb. nov as the type species of the genus. 

Albidovulum is one of the two genera that can be fully resolved (Fig 2.6H). Currently, 

this genus is split into two separate monophyletic clades; A. xiamenense CGMCC 1.10789T is 

grouped together with Hasllibacter halocynthiae DSM 29318T and A. inexpectatum DSM 

12048T is grouped together with Defluviimonas aquaemixtae CECT 8626T and D. denitrificans 

DSM 18921T (Fig 2.6H). The type species for the genus Albidovulum is A. inexpectatum. 

Currently, A. inexpectatum DSM 12048T is basal to the two Delufviimonas species, and as such it 

will retain its genus designation as this will not result in any para- or polyphyletic genus. The 

genomic comparisons between A. xiamenense CGMCC 1.10789T and H. halocynthiae DSM 
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29318T is more straightforward, as these values clearly fall within the range for between genera 

comparisons (Fig 2.6H, Table A6) and therefore these two isolates will remain as separate 

genera. As a result, A. xiamenense CGMCC 1.10789T will require a new genus designation, 

which I propose to be Falsialbidovulum gen. nov and F. xiamenense CGMCC 1.10789T gen. nov 

comb. nov will the type species of this genus. 

The other polyphyletic genus that can be fully resolved is Thalassobius (Fig 2.6O). This 

genus is currently split into two monophyletic clades. The first clade contains T. gelatinovorus 

CECT 4357T, T. autumnalis CECT 5118T, T. mediterraneus CECT 5383T, Litorimicrobium 

taeanense DSM 22007T and Lutimaribacter litoralis KU5D5 1T. The second clade contains T. 

activus CECT 5113T with Salinihabitans falvidus DSM 27842T, Cognatishimia maritima DSM 

28223T, Pseudopelagicola gijangensis DSM 100564Tand the genus Shimia (Fig 2.6O). All 

comparisons between Thalassobius with other genera in the first clade resulted in borderline 

values. As Thalassobius is monophyletic and contains the type species of the genus, this group 

will retain its genus designation. T. activus CECT 5113Twill therefore require a new genus 

designation or be merged with existing genera. AAI and PD values between T. activus CECT 

5113T and Cognatishimia maritima DSM 28223T fall within range expected for within genus 

comparison (Fig 2.6O); therefore, I propose to rename T. activus CECT 5113T as Cognatishimia 

activus CECT 5113T comb. nov. 

 

2.3.6 Workflow for the incorporation of new genomes for consistent taxonomic classifications. 

As it is not practical to reconstruct core-genome phylogenetic trees of all type strains 

each time new genomes are available, there needs to be a way to quickly and accurately identify 



 63 

the phylogenetic relationships of unknown isolates to known isolates. The 16S rRNA gene was 

previously used for this purpose, but it is at best able to identify the family to which an isolate 

belongs, which will still contain hundreds if not thousands of isolates.  

An efficient way to narrow down a list of close relatives and was used in this study for 

the incorporation of new genomes, is through the use AAI. Ideally the 10 closest relatives can be 

determined based on pairwise AAI comparisons between the unknown isolate and all type 

strains. This effectively reduces the dataset to only 11 isolates (10 closest relative and the 

unknown isolate), for which in-depth phylogenomic analyses, such as the reconstruction of a 

core-genome phylogenetic tree, can easily be done 

I collected two additional type strains (Primorskyibacter sedentarius DSM 104836T and 

Phaeobacter piscinae P-14T) and one novel genus (Sinirhodobacter) as examples for which I can 

apply this approach. The identity of these two species were confirmed as not only do they form a 

strongly supported monophyletic clade with their proposed genera, the overall structures of the 

smaller phylogenetic trees are similar to the core-genome tree that was reconstructed with a more 

extensive dataset (Fig 2.2, 2.7AB).  
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Fig 2.7: Core-genome phylogenetic trees of new genomes added after the creation of the 

phylogenomic framework. Each phylogenetic tree contains three Agrobacterium tumefaciens 

strains as outgroup, the newly uploaded genomes and its 10 closest relatives determined based on 

AAI. Core genes are identified for each group separately. Each tree is built using RAxML 

v8.2.12 with PROTGAMMAAUTO option for automatic model selection. Branch supports is 

evaluated with 100 bootstrap replicates.  
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As Primorskyibacter is currently a polyphyletic genus (Fig 2.6P), confirming that the 

type species P. sedentarius DSM 104836T forms a monophyletic cluster with P. marnius PX7T 

allows us to partially resolve this genus, which was previously not possible (Fig 2.6P). 

Primorskyibacter is currently split into two monophyletic clades. P. insulae CECT 8871T is 

grouped together with the genus Marivita and Primorksyibacter marinus PX7T is grouped 

together with Pseudooceanicola flagellatus CGMCC 1.12644T (Fig 2.6P). AAIs between 

Primorskyibacter marinus PX7T and the two Puniceibacterium species are 71% whereas 

comparison with Pseudooceanicola flagellatus CGMCC 1.12644T is clearly different from the 

rest at 95% (Fig 2.6P, Table A6). PD shows a similar pattern where comparisons between 

Primorksyibacter marinus PX7T and the two Puneiceibacterium species are 0.41, but 0.042 when 

compared with Pseudooceanicola flagellatus CGMCC 1.12644T.This extremely high AAI value 

suggest that there is even the possibility that these two isolates (Primorskyibacter marinus PX7T 

and Pseudooceanicola flagellatus CGMCC 1.12644T) belong to the same species (Konstantinidis 

and Tiedje 2005b); but a dDDH value of 52.4% clearly shows that these are different species. 

Taking AAI, PD and dDDH together, these two isolates should be classified as distinct species 

within the same genus. As Pseudooceanicola flagellatus CGMCC 1.12644T (Huang et al. 2018) 

was described after Primorskyibacter (Romanenko et al. 2011), it will be transferred to this 

genus. Consequently, P. insulae CECT 8871T will either have to be merged with existing genera 

or given a novel genus designation. 

This approach was also able to highlight potential misclassification of a novel genus. 

Sinirhodobacter is a novel genus proposed in 2013 as the close relative of Rhodobacter (Yang et 

al. 2013). This study has shown that members of Sinirhodobacter is the sister taxa of the genus 

Rhodobacter and Thioclava is basal to both (Yang et al. 2013). This relationship, where the type 
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species of the genus Sinirhodobacter (Sinirhodobacter ferrireducens CCTCC AB2012026T) is 

the sister taxa to the genus Rhodobacter, was confirmed by my core-genome phylogenetic 

analysis (Fig 2.7C). However, different from the previous study, my analysis shows that 

Paenirhodobacter is a closer relative to Sinirhodobacter than Rhodobacter (Fig 2.7). In addition, 

Paenirhodobacter forms a monophyletic clade with Sinirhodobacter populi SK2B-1T (Fig 2.7C) 

making the genus Sinirhodobacter a paraphyletic genus. Paenirhodobacter is likely misclassified 

as not only are both Paenirhodobacter and Sinirhodobacter differentiated from Rhodobacter by 

their lack of phototrophic abilities, the initial analyses describing Paenirhodobacter did not 

include any Sinirhodobacter strains (Yang et al. 2013, Wang et al. 2014). In addition, 

Paenirhodobacter also shares a number of phenotypic traits with Sinirhodobacter as both are 

positive for urease activity, arginine dihydrolase and utilization of maltose and negative for 

indole production. Since Paenirhodobacter was described in 2014 (Wang et al. 2014) after 

Sinirhodobacter was described (Yang et al. 2013), I propose to rename Paenirhodobacter 

enshiensis DW2-9T (currently the only named species within this genus) as Sinirhodobacter 

enshiensis DW2-9T comb. nov.  

The three examples presented highlight the benefits of this approach as an efficient first 

step in determining taxonomic classifications of novel genomes as it can provide validation to 

the proposed taxonomic classification or point out potential misclassifications. It should be noted 

that although phylogenetic data and AAI alone may not be sufficient to justify all taxonomic 

classifications, this approach can still serve to guide subsequent in-depth genomic, phylogenetic 

and phenotypic analyses that involves an even larger dataset of closely related strains. 

Although this approach was used in this study, as the number of genomes increases it will 

become increasingly less feasible to compute all pairwise AAI in a timely manner without 
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sufficient computing power. In such cases, close relatives can still be identified using tools such 

as GTDB-tk (Chaumeil et al. 2019) to identify the general phylogenetic placements of unknown 

isolates among known type strains. A shortlist of close relatives can then be selected for more in-

depth analyses as before. 

 

2.3.7 Proposal to move the roseobacter clade into the new family Roseobacteraceae fam. nov. 

As previously mentioned, the roseobacter clade has an important historical role in the 

field of oceanography (Buchan et al. 2005, Moran et al. 2007) and is studied by many 

worldwide. Members of this clade also play important roles in regulating biogeochemical cycles 

and climate conditions (Buchan et al. 2005, Brinkhoff et al. 2008). Despite its importance, there 

is no standardized terminology to refer to this clade. It was previously suggested to refer to this 

group as the marine roseobacter clade based on marine and non-marine adaptions (Simon et al. 

2017); however, as not all members of the roseobacter clade live in marine environments and not 

all isolates outside of the roseobacter clade live in non-marine environments (Table A1), this 

term does not refer to the roseobacter clade specifically, but rather to a polyphyletic group within 

the family. 

To establish a phylogenetically coherent classification for the roseobacter clade, I 

performed a meta-analysis of phenotypic traits as well as comprehensive genomics and 

phylogenomic analyses looking at similarities and differences between the roseobacter clade and 

its closest relatives. I identified a number of genomic and likely phenotypic differences between 

the roseobacter clade and other members of the Rhodobacteraceae family. As such I propose to 

move this clade to a new family, Roseobacteraceae fam. nov, named based on the first described 
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genus, Roseobacter (Shiba 1991). All members outside of this clade will retain the 

Rhodobacteraceae family designation. 

 

2.3.7.1 Phylogenetic and genomic analysis shows a clear distinction between the 

Roseobacteraceae family and the Rhodobacteraceae families. 

Phylogenetically, the Roseobacteracae family forms a monophyletic clade, with 100% 

bootstrap support, clearly separating it from other members of the Rhodobacteracea family (Fig. 

2.2 – inner ring). This is consistent with multiple studies that the roseobacter clade is 

monophyletic and distinct from the rest of the family (Simon et al. 2017, Parks et al. 2018). 

Values of all genomic metrics (AAI, and codon position similarities) for within family 

comparisons are significantly higher than between family comparisons (p = 0, Fig 2.8A-D). PD, 

which is a measure of evolutionary distance, for within family comparisons is also significantly 

smaller than between family comparisons (p = 0, Fig. 2.8E).  
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Fig 2.8: Histogram of AAI, codon position similarities and PD for within Roseobacteracea 

(Red), within Rhodobacteraceae (blue) and between family (purple) comparisons. Boxplots 

show 1.5 interquartile range, 25th, 50th and 75th percentile. Significant differences between 

distributions (p < 0.05) are represented by a *.  
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Taken together, there is strong evidence that the Roseobacteraceae family is 

phylogenetically and genomically distinct from the Rhodobacteraceae family and should be 

considered a novel family. 

 

2.3.7.2 Predicted phenotypic characteristic shows difference in adaptive traits between the 

Roseobacteraceae family and the Rhodobacteraceae family. 

Environmentally, the two families are different where 89% of the Roseobacterace are 

isolated in environments with high salt content (defined here as environments with ≥3.5% w/v 

NaCl concentration; the average NaCl concentration of sea water) (Fig. 2.9). On the other hand, 

only 39% of the Rhodobacteraceae family are isolated from such environments.  
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Fig 2.9: Same core-genome phylogenetic tree as before (Fig 2.2), but colored based on 

phenotypic traits and environment of isolation. Branches of the Roseobacteraceae and 

Rhodobacteraceae families are highlighted in pink and blue respectively. Rings represent 

presents (green)/absents (red) of AHL-quorum sensing (a), DMSP cleavage pathway (b), DMPS 

demethylation pathway (b), together with the environment of isolation (c) (marine (blue), 

terrestrial (brown), freshwater (light blue) and other (grey)) and salinity levels (d) (high: ≥3.5% 

NaCl, light blue; low: <3.5%, yellow). Significant difference in proportion between the two 

families is (p < 0.05 according to proportional Z test) is marked by a *. 
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Different environments also lead to different adaptions. Three pathways characteristics of 

the family Roseobacteraceae were identified by combining a meta-analysis of phenotypic traits 

with comprehensive genomic similarity analyses. For each pathway, I chose a number of 

functional marker genes, based on current literature, as indication of present/absent of each 

pathway (Fig. 2.9, Table A7, A8). 

 

2.3.7.2.1 Sulfur metabolism: DMSP demethylation and DMSP cleavage pathways  

Dimethylsulfoniopropionate (DMSP) is a ubiquitous sulfur containing compound found 

in the ocean produced by many marine phytoplankton and macroalgae, which can serve as an 

osmoprotectant (Moran et al. 2012), antioxidant (Sunda et al. 2002) or as a defense mechanism 

against grazing (Strom et al. 2003). As DMSP is also a source of carbon and sulfur for marine 

bacteria, it is a known chemoattractant (Seymour et al. 2010). Marine bacteria can utilize DMSP 

in two ways (Moran et al. 2012): the demethylation pathway, which produces methanethiol 

(MeSH), and the cleavage pathway, which produces DMS (Moran et al. 2003, Reisch et al. 

2011). MeSH is an important source of cellular sulfur and it has long been known that bacterial 

can incorporate MeSH directly into sulfur containing amino acids (Visscher et al. 1992, 

González et al. 1999). The second pathway cleaves DMSP into DMS, a volatile sulfur compound 

that plays an important role in global climate regulation (Lovelock et al. 1972, Charlson et al. 

1987, Vallina and Simó 2007, Moran et al. 2012) and is an important part of the sulfur cycle. 

Members of the Roseobacteraceae family are one of the few that are known to contain both 

pathways (Moran et al. 2003), suggesting the importance of DMSP to this family bacteria. 
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 All isolates capable of the DMSP demethylation pathway have at least one homolog each 

of the dmdABC genes (Moran et al. 2012). Therefore, in my dataset, these three genes (dmdABC) 

are used as functional markers for the demethylation pathways where only isolates with at least 

one homolog of each are considered to be capable of DMSP demethylation. The cleavage 

pathway is more complicated as there are six homologous DMSP lyases (dddWPQDLY) and not 

only can isolate contain multiple copies of each gene, it is also not necessary to have all six 

homologs (Moran et al. 2012). I, therefore, used all six DMSP lyase genes as functional markers 

for the DMSP cleavage pathways, but isolates that contain any number of the six genes are 

considered to be able to cleave DMSP. Overall, 64% of the Roseobacteraceae are capable of the 

cleavage pathway which is significantly higher than the 38% of the Rhodobacteraceae that are 

able to do so (Fig. 2.9, Table A7). The demethylation pathway shows a similar pattern where 

52% of the Roseobacteraceae are likely able to perform DMSP demethylation compared to only 

7% of the Rhodobacteraceae (Fig 2.9, Table A7). DMSP cleavage and DMSP demethylation is 

present in majority of the Roseobacteraceae family suggest these two pathways are likely 

ancestral traits within this family and was subsequently lost by some. 

The importance of DMSP to the Roseobacterace family is further highlighted by the fact 

that 40% of the Rosoebacteraceae are capable of performing both pathways whereas only 3% of 

the Rhodobacteraceae can. The difference in proportion of isolates capable DMSP degradation 

between these two families is consistent with the fact that majority of the Roseobacteracae 

family are found in the marine environment in association with marine algae blooms where 

DMSP is commonly found (Buchan et al. 2005). 
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2.3.8.2.2 Quorum sensing: Acyl-homoserine lactone production and response 

Marine bacteria can be broadly classified as free-living, those that can thrive on minimal 

nutrient, or patch-associated, those that are able to exploit small nutrient rich patches (Luo and 

Moran 2015). Patch-associated bacteria, such as the members of the Roseobacterace family, 

generally have a larger genome size encoding a variety of genes that allow these bacteria to 

respond quickly to changes in the environment (Luo and Moran 2015). One of the adaptations 

that members of the Roseobacteraceae family is quorum sensing. Quorum sensing is an 

important behavioral modulation mechanism that regulates many phenotypes that requires 

coordinated behavior, such as biofilm formation and pathogenicity (Case et al. 2008). This 

mechanism allows bacteria to quickly respond to different environmental cues and effectively 

cope with the changes in their environments. 

 Acyl-homoserine lactone-based quorum sensing (AHL-QS) is the most commonly 

described QS mechanism in Proteobacteria (Case et al. 2008) and is highly conserved within the 

Roseobacteraceae family (Cude and Buchan 2013). A complete AHL-QS circuit consists of two 

genes, luxRI (Case et al. 2011). The LuxR protein is the response protein. It mediates gene 

expression of other proteins in the cell and also activates the luxI gene. The LuxI protein is 

responsible for the synthesis of AHL. Not only can a single organism have more than one copies 

of the LuxRI genes, there can also be more copies of one than the other (Case et al. 2008). In this 

study, isolates that contain at least one copy each of the luxRI genes are considered likely 

capable of AHL-QS. I found that 56% of the Roseobacteraceae family is capable of AHL-QS 

which is significantly higher than the 4% of the Rhodobacteraceae family (Fig. 2.9, Table A8). 

AHL-QS, therefore, seems to be a trait that is more prominent in the Roseobacteraceae family 
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than the Rhodoabacteraceae family which again fits with known ecological data as majority of 

the Roseobacteraceae family are marine bacteria. 

 

2.4 Conclusion 

This study highlights several issues with the taxonomic classifications within the 

Rhodobacteraceae family of the order Rhodobacterales. Overall, I identified 17 polyphyletic and 

seven paraphyletic genera. All paraphyletic genera, with the exception of Paracoccus, were 

resolved by merging conflicting genera with existing ones. When possible, polyphyletic genera 

were resolved by splitting or merging isolates based on genomic and phylogenetic data. Genomic 

metrics (i.e, AAI, codon position similarities), phylogenetic data, and PD show that the genus 

Halocynthiibacter, which currently contains only two species, should be split into separate 

genera. Three species level misclassifications were also identified and resolved based on dDDH, 

ANI and phylogenetic analysis. Lastly, I also proposed to move the roseobacter clade into a new 

family, Roseobacteraceae fam. nov. based on phylogenetic, genomic and in-silico phenotypic 

analysis. 

 

2.5 Materials and Method 

2.5.1 Dataset descriptions 

As of January 13th, 2019, WGS of 342 type strains within the Rhodobacteraceae family 

were available on GenBank (National Center for Biotechnology Information) (Table A9). In 

addition, three Agrobacterium tumefaciens strains were used as the outgroup for all phylogenetic 

analyses. Plasmid sequences were excluded from analyses where possible. 
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2.5.2 Genome annotation and core gene identification 

An important limitation of core-genome phylogeny is the quality of the assembled 

genomes used. Low sequence quality or poorly assembled genomes will affect gene annotations 

and the number of core genes identified (Moura et al. 2016) which will ultimately affect the 

reconstruction of the phylogeny. I addressed this issue by ensuring our genome sequences are 

complete or nearly complete (i.e., ³95% complete) with low levels of contamination (>5%) as 

outlined in CheckM (Parks et al. 2015), which assess these criteria based on the present and the 

number of copies of a set of well-defined core genes. As a result, we excluded 11 genomes from 

our initial dataset of 342 genome sequences obtained from GenBank leaving us with 331 

genomes (Table A10). 

All 331 high-quality Rhodobacteraceae genomes that meet my quality filter criteria 

(≥95% complete and <5% contamination) together with three Agrobacterium tumefaciens strains 

were annotated using RAST 2.0 (Aziz et al. 2008) or Prodigal 2.6.3 

(https://github.com/hyattpd/Prodigal). Core genes, as defined as genes present in all organisms of 

interest, are then identified using Bacterial Pan Genome Analysis (BPGA) (Chaudhari et al. 

2016) based on USearch clustering algorithm (Edgar 2010). 

 

2.5.3 16S rRNA phylogenetic analysis 

16S rDNA-based phylogeny for the full dataset of 333 genomes (331 type strains and 

three Agrobacterium tumefaciens strains) (Table A1) was reconstructed to highlight the impact 

of 16S rDNA-based phylogeny has on taxonomic classification within this group. A single copy 
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of the full length 16S rRNA gene was extracted from all 333 organisms. These sequences were 

then aligned with muscle with default parameters (Edgar 2004). The final alignment (with 1,628 

nucleotide positions) was used to reconstruct a maximum-likelihood phylogenetic tree using 

RAxML 8.2.12 (Stamatakis 2014). The GTR (general time reversible) nucleotide substitution 

model and gamma model of rate heterogeneity was used and robustness of branches was 

estimated with 1000 bootstrap replicates. 

 

2.5.4 core-genome phylogenetic analysis 

There were 140 core genes identified from the 331 genomes in the initial dataset. For 

every core gene, the amino acid sequences were aligned with Muscle (Edgar 2004) with default 

parameters. The core gene alignments were then concatenated using Geneious 8.1.8 (Kearse et 

al. 2012), resulting in final alignments with 71,480 amino acid positions. This alignment was 

used to reconstruct a core-genome phylogenetic tree of the 333 genomes RAxML 8.2.11 

(Stamatakis 2014) with PROTGAMMAAUTO option for automatic model selection. Robustness 

of branches was estimated with 100 bootstrap replicates. 

 

2.5.5 Species delineations 

There are established genomic and phylogenetic criteria for species level designation. 

Phylogenetically, the minimum requirement for a set of isolates to be considered as members of 

the same species is that they must form monophyletic clades, for which I assessed using core-

genome phylogenetic trees. Average nucleotide identity (ANI) and in-silico DNA-DNA 

Hybridization (dDDH) are the two genomic metrics used for species delineation. Based on 
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previous studies, 70% dDDH and 95% ANI were used as the species level threshold (Goris et al. 

2007, Richter and Rosselló-Móra 2009, Meier-Kolthoff et al. 2013). ANI was calculated using 

JSpecies (Richter and Rosselló-Móra 2009) and dDDH was calculated with the online GGDC 

calculator tool (Meier-Kolthoff et al. 2013) with default parameters for both. 

 To identify any species level misclassifications, dDDH was calculated for isolates 

belonging to the same genus. For polyphyletic genera, only isolates within the same 

monophyletic clades are considered as it is impossible for isolates to share more than 70% 

dDDH values if they are not monophyletic with each. For any genera where species level 

misclassifications was identified, ANI was calculated for those comparisons. Taxonomic 

classifications were only proposed for isolates that meet or surpass both the dDDH and ANI 

species threshold and are also monophyletic.  

 

2.5.6 Assessing genomic level similarities for genus and family level 

AAI and codon position similarities were used to assess genus and family level genomic 

similarities. Evolutionary distance based on the core-genome phylogenetic tree was quantified 

using patristic distance (PD). AAI was calculated using compareM 

(https://github.com/dparks1134/CompareM), and codon position similarities were calculated 

using Geneious 8.1.8 (https://www.geneious.com) and translatorX (Abascal et al. 2010) 

respectively.  
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2.5.7 Genus level delineation based on genomic and phylogenetic data 

To assess if any currently recognized genera are misclassified, genomic metrics were 

calculated for all within and between monophyletic genera comparisons, which excludes any 

poly- and paraphyletic genera. Mann-Whitney U-test were used to assess the significance of the 

difference between the two distributions. Poly- and paraphyletic genera are identified based on 

the core-genome phylogenetic tree (Fig 2.2). 

For paraphyletic genera, the first described genus within the clade, which I will refer to as 

the primary genus, will retain the genus designation. Other conflicting genera within that clade 

will be merged with the primary genus as per rule 38 of the code (Parker et al. 2019). All 

genomic metrics were calculated for within and between genera comparisons within these clades. 

These values were compared to those obtained from within and between recognized 

monophyletic genera comparisons (Table A5) to determine whether genomic similarities among 

genera I am merging falls within the expected range of within genus comparisons.  

For polyphyletic genera, the clade containing the type species of the genus, which I will 

refer to as the primary clade, will retain the genus designation as per rule 39a of the code (Parker 

et al. 2019). All other clades will require a novel genus level designation or merged with existing 

genera. Similar to paraphyletic genera, for all clades where genus level reclassifications are 

required, genomic metrics are used to determine whether these genera should be merged with 

existing genera or given novel genus designations. 
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2.5.8 Family level delineation based on genomic, phenotypic and phylogenetic data 

Genomic similarities at the family level were assessed based on AAI and codon position 

similarities. Core-genome phylogeny was used to assess phylogenetic relationships. Environment 

of isolation and salinity level were collected from original publications. Phenotypic traits 

characteristics of the Roseobacteracae family and marker genes used to assess present/absent of 

these traits were identified from current literature. Using Rast annotations (Aziz et al. 2008), 

present/absent of major pathways were assessed for all 245 members of the Roseobacteraceae 

family and 75 members of the Rhodobacteraceae family. Significance of the difference in 

proportion of these pathways between the two families was assessed using proportion Z-test. 

 

2.6 Data availability 

All genomes used in this study were retrieved from NCBI Genbank database. The list of 

accessions numbers is listed in table A9.  
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Chapter 3 

3.1 Abstract 

Core genome multilocus sequence typing (cgMLST) has gained popularity in recent 

years in epidemiological research and subspecies level classification. cgMLST retains the 

intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly 

larger portions of the genome. Here, I introduce a cgMLST scheme for Vibrio cholerae, a 

bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A 

set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive dataset 

of 1,262 clinical and environmental strains collected from 52 countries, including 65 genomes 

newly sequenced in this study. I established a sublineage threshold, based on 133 allelic 

differences that creates clusters nearly identical to traditional MLST types providing context and 

backwards compatibility to new cgMLST classifications. I also defined an outbreak threshold, 

based on seven allelic differences, that is capable of identifying strains that are part of the same 

outbreak and closely related isolates which could give clues on its origin. Using this scheme, I 

confirmed the South Asian origin of modern epidemics and identified a strong geographic 

affinity among sublineages of environmental isolates. Advantages of cgMLST are highlighted by 

a direct comparison with existing classification methods such as MLST, and single nucleotide 

polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, 

standardization, and ease-of-use. I anticipate this scheme will serve as a basis for a universally 

applicable and standardized classification system for V. cholerae research and epidemiological 

surveillance in the future. This cgMLST scheme is publicly available on PubMLST 

(https://pubmlst.org/vcholerae/).  
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3.2 Introduction 

Vibrio cholerae is the causative agent of cholera, an acute diarrheal disease. Cholera is 

transmitted in a fecal-oral route mostly by contaminated food or water (Jahan 2016, Momba and 

Azab El-Liethy 2017). The case fatality rate (CFR) of cholera can be up to 50% without 

treatment, but with proper medical care, CFR is usually less than 1% (Clemens et al. 2017, 

Momba and Azab El-Liethy 2017). In developed countries, with proper water treatment 

facilities, cholera is practically non-existent aside from imported cases. Unfortunately, this 

cannot be said for many developing countries lacking this infrastructure, where cholera has been 

endemic for centuries such as in parts of South Asia (Kaper et al. 1995). As it is also difficult to 

eradicate cholera (Islam et al. 2017), this disease often becomes endemic in regions where it has 

been introduced, for example in Latin America in 1991 (Dalsgaard et al. 1997, Choi et al. 2016), 

Haiti in 2010 (Orata et al. 2014), and Yemen in 2016 (Weill et al. 2018). It is estimated that there 

are over a million cholera cases each year resulting in tens of thousands of deaths worldwide (Ali 

et al. 2015). Being an indicator of healthcare and socio-economic disparities (Mintz et al. 2013, 

Legros 2018), this disease is often under-reported due to its negative influence on tourism as it 

implies poor water quality (Sack et al. 2006). In addition, it should be noted that only one lineage 

of V. cholerae is responsible for all documented pandemics and major outbreaks with numerous 

harmless environmental isolates found worldwide (Islam et al. 2017). Together with the lack of a 

universally applicable and standardized classification method, outbreak surveillance and source 

attribution is often challenging (Orata et al. 2014, Jahan 2016). The Haiti outbreak for example, 

due to these limitations, required continuous extensive genomic and epidemiological research 

since the beginning of the outbreak to determine the source of introduction, which was not 
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confirmed until August 2011 even though it broke out in July 2010 (Hendriksen et al. 2011, 

Frerichs et al. 2012, Katz et al. 2013, Orata et al. 2014, Frerichs 2016). 

A typing method for use in global surveillance of pandemic causing pathogens such as V. 

cholerae should be efficient and easy to use, with the potential to be applied to all V. cholerae 

strains around the world. Therefore, it must have the capacity to analyze thousands of genomes 

efficiently and new genomes should be easily typed as they get sequenced. As all cholera 

outbreaks are caused by a single lineage of V. cholerae, the pandemic generating/phylocore 

genome (PG) lineage, which includes 7th pandemic El Tor, El Tor sister, El Tor progenitor, 

classical and classical sister clade (Chun et al. 2009, Boucher 2016, Islam et al. 2017), this 

method should also be able to differentiate isolates at a fine scale and separate outbreaks caused 

by genetically similar strains. Such a method will help create a comprehensive database with 

detailed epidemiological data that will allow for the analysis of future outbreak strains in a global 

context and guide subsequent epidemiological analyses. Different methods for subspecies level 

classification and outbreak surveillance have been developed for V. cholerae. These methods 

include serotyping, multilocus sequence typing (MLST) (Octavia et al. 2013, Kirchberger et al. 

2016), multilocus variable number of tandem repeats (VNTR) analysis (MLVA) (Garrine et al. 

2017, Bwire et al. 2018), and single nucleotide polymorphism (SNP)-based approaches (Katz et 

al. 2013). Despite the popularity of these methods, there are important limitations to each. 

Serotyping based on the presence of cell surface O-antigens is one of the earliest attempts 

at subspecies level classification of V. cholerae. There are now over 200 serogroups of V. 

cholerae identified; however, only two serogroups, O1 and O139, have been found to be 

responsible for all major documented epidemics and pandemics (Safa et al. 2010, Boucher et al. 

2015). Serogroup O1 can be further divided into two biotypes (El Tor and Classical) and three 
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serotypes (Inaba, Hikojima, and Ogawa) (Momba and Azab El-Liethy 2017). The lack of 

resolution within the epidemic strains and the possibility of serogroup conversion (Mandal et al. 

2011) limits the use of serotyping in epidemiological studies. 

MLST provides a standardized classification method that is based on a collection of six to 

seven well-defined housekeeping genes (Maiden et al. 1998). MLST was used to study a number 

of cholera outbreaks and allowed the descriptions of its general population structure (Horwood et 

al. 2011, Luo et al. 2013). It is reproducible and provides reliable results; however, it is unable to 

differentiate between closely related strains which limits its use in outbreak surveillance 

(Gonzalez-Escalona et al. 2008, Maiden et al. 2013). In addition, direct comparisons between 

different MLST schemes are difficult, as different schemes utilize different housekeeping genes. 

MLVA utilizes VNTR regions, which are under less selective pressure than housekeeping 

genes. This method therefore provides greater resolution than MLST for some bacterial species 

(Lam et al. 2012, Chenal-Francisque et al. 2013). However, due to their rapid mutation rate, 

VNTR regions are more affected by homoplasy where two isolates may share the same MLVA 

profile due to convergent mutation and not by vertical descent (Vogler et al. 2011). As a result, 

MLVA may produce clusters that do not necessarily reflect phylogenetic relationships (Struelens 

and Brisse 2013). Two common PCR-based methods exist for the typing of VNTR regions, but 

each have significant limitations (Sabat et al. 2013). The first method is multiplex PCR which 

can analyze all loci at once, but it is impossible to determine which bands correspond to which 

loci; therefore, this method only produces a banding pattern for strain identification, which 

makes it difficult to standardize and communicate results. The second method is the separate 

amplification of VNTR regions but determining the number of repeats based on amplicon size 

information alone is difficult if the difference in size is not large enough. In addition, different 
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types of mutations that do not necessarily change the number of repeats, can cause a change in 

amplicon size. Sequencing is needed to confirm MLVA profiles, but repeat regions increase the 

chances of sequencing errors (Klassen and Currie 2012). Due to these limitations, stringent 

quality control is required for reliable MLVA analysis (Danin-Poleg et al. 2007). 

SNP-based analysis is one of the most common whole-genome-based methods currently 

being used and was applied to various outbreaks (Katz et al. 2013, Leekitcharoenphon et al. 

2014, Wong et al. 2016). It relies on the identification of conserved SNPs in strains of interest 

using next-generation sequence reads or assembled genomes. The number of SNPs can then be 

related to the evolutionary distance between isolates. SNP-based analysis provides reliable 

results with sufficient resolution for epidemiological studies, but it is sensitive to horizontal gene 

transfer and recombination events, as each event will result in many SNPs being created. The 

number of SNPs between two strains, therefore, does not necessarily reflect the true phylogenetic 

relationship. SNPs found in recombinogenic regions should therefore be removed which, 

depending on the organism of interest, can be anywhere from 30% to 97% of SNPs identified 

(Chen et al. 2013, Qin et al. 2016). Since recombination and horizontal gene transfer events are 

common in V. cholerae (Meibom et al. 2005, Borgeaud et al. 2015, Wang et al. 2016), SNP-

based methods, although suitable in individual epidemiological studies, will be difficult to serve 

as a universal classification method for V. cholerae. 

 Core-genome MLST (cgMLST), also known as the gene-by-gene approach, overcomes 

the various limitations of previously mentioned subtyping methods and was established to serve 

as a universally applicable standardized typing scheme. Similar to MLST, cgMLST relies on 

individual gene sequences to differentiate between closely related strains; however, instead of 

using six to seven housekeeping genes, cgMLST utilizes hundreds to thousands of core genes, 
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which are genes commonly found in all strains of a species. By utilizing a much larger portion of 

the genome, cgMLST provides superior resolution compared to traditional MLST schemes. By 

combining the expandable and standardized classification method that made traditional MLST 

favourable with the resolution of whole-genome-based methods, cgMLST is becoming more 

popular in epidemiological and ecological studies (de Been et al. 2015, Moura et al. 2016, Cody 

et al. 2017, Janowicz et al. 2018, Bletz et al. 2018, Neumann et al. 2019, Jones et al. 2019). This 

method has the added advantage of backwards compatibility with all MLST schemes, meaning it 

is possible to determine MLST profiles of any isolates based on their cgMLST profiles, since 

cgMLST, by definition, would include all housekeeping genes. This allows for a 1:1 mapping of 

any previously established MLST scheme to the cgMLST scheme, helping consolidate existing 

classification information.  

Another major benefit of cgMLST is that, much like traditional MLST methods, it is 

possible to establish different clustering thresholds to define important groups. Clonal complexes 

are examples of clustering thresholds established by MLST schemes, where each clonal complex 

corresponds to a cluster of isolates that share at most one allelic difference across all seven genes 

sequenced. Some important clonal complexes were shown to correspond to either groups 

established by a previous typing method (Sails et al. 2003) or major outbreak strains (Leavis et 

al. 2006). However, cgMLST offers even greater flexibility than MLST in this regard, given the 

number of loci considered. With small clustering thresholds where groups are created based on 

the sharing of a large number of alleles, it is possible to identify closely related strains useful in 

epidemiological studies. On the other hand, with larger clustering thresholds, it is possible to 

identify lineage- or even sublineage-level differences to study large scale patterns and answer 

broader ecological questions. The benefits of defining clustering thresholds with cgMLST 
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schemes have already been demonstrated in other human pathogens, such as Brucella melitensis 

(Janowicz et al. 2018), Campylobacter jejuni (Cody et al. 2017) , Clostridium difficile (Bletz et 

al. 2018), Enterococcus faecium (de Been et al. 2015), and Listeria monocytogenes (Moura et al. 

2016).   

In this study, I introduce a cgMLST scheme for the genome-wide typing of V. cholerae 

and demonstrate its universality and efficacy by applying it to known cholera outbreaks around 

the world. The advantages of cgMLST are presented by comparing the scheme with previously 

established classification methods. Additionally, I have produced a 1:1 mapping of the cgMLST 

scheme against two MLST schemes for V. cholerae (Octavia et al. 2013, Kirchberger et al. 

2016), allowing for the consolidation of existing classification information. The cgMLST 

scheme, genome sequences used in this study, and relevant epidemiological information are 

publicly available on PubMLST (https://pubmlst.org/vcholerae/), which allows for the automatic 

annotation and subsequent analyses of hundreds of newly uploaded V. cholerae genomes in a 

global context. This increase in efficiency, standardizability, and resolution compared to current 

methods makes cgMLST the most suitable classification scheme for large scale V. cholerae 

surveillance. By applying this scheme to over 1,200 isolates collected around the world, it was 

possible to establish outbreak and sublineage thresholds which not only allowed us to validate 

the South Asian origin of many modern epidemics as proposed in previous studies (Reimer et al. 

2011, Islam et al. 2017, Weill et al. 2017) but also identified a strong geographic signal among 

environmental strains where isolates from the same sublineage are also from the same 

geographic region; a pattern that is not seen in clinical isolates. 
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3.3 Materials and Method 

3.3.1 Dataset description 

On November 6th 2018, 1,172 V. cholerae genomes consisting of 800 draft and complete 

genomes and 372 sequence read archives (SRAs) were available from both publicly available 

databases and private collections and were selected as our dataset. One hundred sixteen SRAs 

from a recent study on the Yemen cholera outbreak (Weill et al. 2018) were subsequently added 

as an independent evaluation of the cgMLST scheme (Table B1). The 488 SRAs were assembled 

using skesa (Souvorov et al. 2018) or the CLC Genomics Workbench 7 

(https://www.qiagenbioinformatics.com) using default parameters. This total dataset of 1,288 

included twenty-six genomes with less than 90% of the core genes, which were identified using 

USearch (Edgar 2010) based on RAST (Aziz et al. 2008) annotations. These twenty-six genomes 

were removed from subsequent analyses resulting in a final dataset of 1,262 genomes collected 

from 52 countries and spanning 82 years from 1937 to 2018 (Table B2). These include a 

historical collection from the 6th cholera pandemic, clinical isolates from outbreaks in various 

countries (e.g., Bangladesh, India, Haiti, Yemen, the Democratic Republic of Congo, and 

Russia), and environmental isolates from different parts of the world (e.g., USA, Mexico, 

Australia, etc).  

 

3.3.2 Gene identification and allele assignments 

Instead of using the full dataset of 1,288 genomes for core gene identification, I selected 

a subset of high-quality genomes for this purpose. The reason is because core gene identification 

is highly dependent on the initial dataset and the inclusion of poorly assembled and/or sequenced 

data will reduce the number of core genes identified (Moura et al. 2016). First, 800 already 
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assembled draft or complete genomes were selected for core gene identification. Low-quality 

assemblies were then eliminated by removing genomes with less than 40´ coverage and/or N50 

values less than 40 kb. From a previously established cgMLST scheme for L. monocytogenes, 

40´ coverage and 20kb N50 value were used as cutoff thresholds, as genomes that do not meet 

these criteria resulted in a low proportion of loci being called (Moura et al. 2016). The 40´ 

threshold was adopted in this study; however, because the average V. cholerae genome size (~ 4 

Mb) is larger than the average L. monocytogenes genome (~ 3 Mb), 40 kb was instead selected as 

the N50 cutoff. The use of these cutoffs resulted in the removal of 82 genomes. 

The remaining 718 genomes were annotated using RAST (Aziz et al. 2008) and USearch 

(Edgar 2010) and a tentative set of core genes that were on average present in 99% of the 

genomes were selected. An additional 13 genomes were removed, as they lacked more than 90% 

for the core genes (Table B3), resulting in a final dataset of 705 high-quality genomes. However, 

an additional 26 genomes were subsequently removed for the core gene analysis as it has been 

previously suggested that they form a highly divergent lineage within the V. cholerae (Liang et 

al. 2017, 2019, Islam et al. 2018), ensuring that the dataset used for core gene identification 

consists only of unambiguously V. cholerae isolates (also as verified by average nucleotide 

identity (Goris et al. 2007) and digital DNA-DNA hybridization (Meier-Kolthoff et al. 2013) 

between genomes). Completeness and potential contamination of all remaining 679 genomes 

were also independently evaluated by checkM, which estimates these values based on the 

presence and number of copies of a set of pre-defined single copy marker genes (Parks et al. 

2015) (Table B4). All genomes were, according to the criteria established by checkM, nearly 

complete (≥97%) with medium to low levels of contamination (<7%) (Parks et al. 2015). 
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 Each orthologous gene was compared against the V. cholerae N16961 reference genome 

using BLASTN (Altschul et al. 1990) to determine gene function. Any gene family with no 

homolog in N16961 or classified as pseudogenes on the NCBI GenBank database were removed, 

meaning N16961 was 100% complete for the cgMLST scheme. Any gene that was present in 

more than one copy in any of the initial 679 genomes was also removed, as they were considered 

paralogous. Thus, in this context, core genes are defined as being present in at least 90% of the 

679 high-quality assembled genomes in a single copy. By choosing a relaxed cutoff of 90% 

completeness, we accounted for missing genes due to sequencing, annotation, or assembly errors 

while ensuring there is sufficient resolution to differentiate between closely related strains, with 

at least 2,199 loci remaining for classification purposes. The final cgMLST scheme utilizes a set 

of 2,443 single-copy core gene loci, which is 2,425,296 bp in size and covering approximately 

61% of the genome. The list of core genes is available on PubMLST 

(https://pubmlst.org/vcholerae/). 

  Automated scripts in BIGSdb (Jolley and Maiden 2010) were used to perform allele calls 

and assignments for all 1,264 isolates. Allele calls were made only for complete coding 

sequences with minimum of 70% similarity and 70% length coverage at the nucleotide level, as 

previously described (Moura et al. 2016). Default settings were used for all other parameters.  

 

3.3.3 Core-genome sequence type (cgST) assignment 

cgST, which was defined as a unique combination of alleles of all loci included in the 

scheme, was assigned for all isolates, excluding those from the Yemen outbreak study (8), with 

an in-house script, as previously described (Garg et al. 2003). Briefly, missing loci were replaced 
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with the most common allele when assigning cgSTs, allowing for a conservative estimate of 

diversity. The 116 isolates from the Yemen cholera outbreak study (Weill et al. 2018) were 

annotated automatically by uploading them to PubMLST. PubMLST treated missing alleles as 

‘N’. cgSTs were assigned to each allele profile, treating ‘N’ as a regular allele designation. 

However, different from typical allele designations, ‘N’s can represent any allelic sequence; 

therefore, some isolates may contain multiple cgST designations, all of which are possibly true 

cgSTs. For isolates with more than one cgST suggested by PubMLST, postprocessing was done 

using an in-house script to identify the most likely cgST, which was determined by assuming 

missing loci contained the most common allele (Table B5). It is expected that as genome 

sequencing becomes more reliable, higher quality genomes will be available and any missing 

data can be updated as needed. 

 

3.3.4 MLST scheme and sequence type (ST) assignments 

Two MLST schemes developed for V. cholerae were mapped to this cgMLST scheme. 

The first MLST scheme developed in 2013 by Octavia and colleagues (Octavia et al. 2013) was 

used to study the global population structure of non-O1/non-O139 V. cholerae and is currently 

hosted on PubMLST. All isolates uploaded to PubMLST were automatically annotated with this 

scheme. Any missing data in this scheme was ignored and no ST designation was assigned. The 

second MLST scheme developed in 2016 by Kirchberger and collegaues (Kirchberger et al. 

2016) was used to study the population structure of environmental V. cholerae in a region on the 

US East Coast. The second MLST scheme is not currently hosted on PubMLST, but because the 

housekeeping genes in this scheme are also found in the cgMLST scheme, a similar in-house 

script used in cgST assignments was used to assign ST designations. Therefore, all isolates in 
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this study, when possible, were assigned three designations – two ST designations based on the 

two previous MLST schemes (Octavia et al. 2013, Kirchberger et al. 2016) and one cgST 

designation based on the cgMLST scheme from this study. 

 

3.3.5 Outbreak and sublineage clustering thresholds 

A clustering threshold was defined as the maximum number of allelic differences found 

within a cluster. All clusters were produced based on the single-linkage clustering method, which 

meant an isolate belonged to a cluster if it linked with any isolate within that cluster. Two 

metrics were used as general guidelines for determining clustering thresholds. The first metric 

used was the Dunn Index (DI), which measured clustering efficiencies (Dunn 1974). Briefly, the 

DI was highest for a network (i.e., the network has the best clustering efficiency) when the intra-

cluster distances were minimized, and the inter-cluster distances were maximized. Since isolate 

distances were measured based on allelic differences, a high DI resulted in clusters where 

isolates were more closely related to those found within the same cluster than those found in a 

different cluster. The DI was calculated using the R package ‘clvalid’ and ‘boot’ with 100 

bootstrap replicates for each threshold and graphed using the R package ‘ggplot2’ (Brock et al. 

2008, Wickham 2009, Canty et al. 2017, R Core Team 2017). 

The second metric used was the Adjusted Rand Index (ARI), which measured the level of 

similarity between two networks when clustering the same set of isolates by measuring the 

amount of agreements (i.e., the number of pairs that were grouped either as being in the same 

cluster or different cluster in both networks) and disagreements (i.e., the number of pairs that 

were grouped together in one network but grouped separately in another) (Hubert and Arabie 
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1985). The values ranged from -1 (i.e, two networks are exactly opposite) to 1 (i.e, two networks 

are identical). ARI was used to determine the level of similarity between various clustering 

thresholds and the MLST schemes. ARI was calculated using the R package ‘clues’ and graphed 

using ‘ggplot2’ (Wickham 2009, Chang et al. 2010, R Core Team 2017). 

 

3.3.6 Minimum spanning tree (MST) 

All MSTs, unless otherwise specified, were constructed using GrapeTree MSTv2 (Zhou 

et al. 2018). Loci with missing data were included in the profile as “–”. GrapeTree provided a 

novel algorithm that accounted for missing data when constructing an MST, an important feature 

since missing data is common in whole and core genome-based analyses. GrapeTree is currently 

integrated within PubMLST, which allows for quick visualization of the dataset with any 

provenance data. 

 

3.3.7 Phylogenetic analysis 

Parsnp v1.2 (Treangen et al. 2014) was used to reconstruct the phylogenetic tree using V. 

cholerae N16961 as the reference genome. The -x flag was used to enable filtering of SNPs in 

recombinogenic regions as identified by PhiPack (Bruen et al. 2006). Default settings were used 

for all other parameters. The phylogenetic tree included 1,146 genomes (all genomes except for 

the 116 isolates from the recent Yemen cholera outbreak study (Weill et al. 2018)). Since all 

isolates sequenced in that study belonged to the 7th pandemic El Tor lineage, it would have had 

limited impact on the overall structure of the tree. The phylogeny was visualized and annotated 

using iTOL (Letunic and Bork 2007). 
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3.3.8 Biogeographical analysis of environmental isolates 

All isolates that were not part of the PG lineages (Chun et al. 2009, Boucher 2016) were 

first clustered based on the sublineage threshold using the python package networkX (Hagberg et 

al. 2008). Missing alleles were replaced with the most common allelic designation when 

calculating pairwise differences to establish a more conservative estimate of diversity. The 

network was then visualized using Cytoscape (Shannon et al. 2003). 

 

3.3.9 Data availability 

All previously sequenced V. cholerae genomes and the additional 65 genomes sequenced 

in this study will be deposited on NCBI GenBank database and is currently publicly available on 

PubMLST (https://pubmlst.org/vcholerae). Table B6 lists the accession numbers and links for all 

the genomes used in this study. In addition, all genome sequences, allelic profiles, cgST 

designations, ST designations, and relevant epidemiological data are publicly available on 

PubMLST (https://pubmlst.org/vcholerae/). 

 

3.4 Results and Discussion 

3.4.1 A high-resolution typing scheme for pandemic V. cholerae  

The highest level of resolution of any cgMLST scheme is defined by cgSTs, where a 

unique cgST represents a unique allelic profile. Isolates that belong to the same cgST are 

expected to be phylogenetically very closely related, as although they may not have the exact 

genomic sequence, they do have the same sequence for all 2,443 core gene loci. I identified a 
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total of 1,026 cgSTs from 1,262 genomes collected from 52 countries. Even with this extensive 

dataset, I have yet to sample anywhere close to the total predicted cgST diversity for the global 

V. cholerae population (Fig. 3.1). All isolates were given at least one cgST designation and up to 

two MLST ST designations based on two previously established MLST schemes (Octavia et al. 

2013, Kirchberger et al. 2016) (Table B2). MLST STs are defined based on the unique 

combination of all loci of a particular MLST scheme, which ideally uses six to seven well-

defined housekeeping genes. Only 12 STs are exclusively present in the 7th pandemic El Tor 

lineage using the traditional MLST schemes (Octavia et al. 2013, Kirchberger et al. 2016), while 

560 cgSTs are uniquely present in this group based on the cgMLST scheme (Table B2).  
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Fig 3.1: Rarefaction curve for cgST, outbreak threshold (7 allelic difference) and the sublineage 

threshold (133 allelic difference) computed using mothur (P. D. Schloss et al. 2009) with default 

parameters. 
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 As the El Tor lineage is responsible for most cholera outbreaks around the world since 

the beginning of the 7th pandemic (Salim et al. 2005), this superior ability to resolve between 

closely related strains in the 7th pandemic El Tor lineages makes cgMLST more suitable in 

outbreak surveillance than traditional MLST schemes. 

 

3.4.2 Backwards compatibility with previous subspecies classification methods 

Much like how cgSTs are important in studying closely related strains typical in 

outbreaks, it is also important in establishing a standardized nomenclature at a higher level to 

answer broader ecological questions. Here, I propose a sublineage definition for V. cholerae 

based on our cgMLST scheme.  

Pairwise allelic differences calculated between all isolates shows three major peaks (Fig. 

3.2A). The first peak ends at 40 allelic differences, and the second peak ends at 133 allelic 

differences (Fig. 3.2B). The last peak begins at 2,200 allelic differences (Fig. 3.2A), which is 

expected due to mutational saturation (i.e. every single allele in the scheme is different between 

the two distantly related strains being compared). Both breaks (i.e., 40 or 133 allelic differences) 

could represent a potential sublineage delineation. To choose between the two thresholds, the 

clustering efficiency is measured by calculating the Dunn Index (DI) (Dunn 1974). Since cluster 

distances are measured by allelic differences, the network with the best clustering efficiency (i.e., 

the highest DI) will also produce clusters that best represent biological relationships, as isolates 

are more closely related to themselves than to isolates from other clusters. A DI was calculated 

for each clustering threshold in the range of 1 to 1,000 allelic differences with 100 bootstrap 

replicates (Fig. 3.3). As the clustering threshold defines the maximum number of allelic 
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differences within a cluster, the smaller the threshold, the more closely related the isolates will 

be within a cluster. It is clear that DIs in the range of 0 to 50 allelic differences are significantly 

lower than the DIs in the range of 100 to 350 allelic differences, with 133 being a clear local 

maximum. Since 133 allelic differences has the best clustering efficiency and it also represents a 

natural break where most isolate pairs have either less than or much greater number of allelic 

differences (Fig. 3.2B), it was chosen as the sublineage threshold.  
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Fig 3.2: Pairwise allelic differences based on the cgMLST scheme for all isolates used in this 

study. Both plots show the frequency of allelic mismatches in pairwise comparisons. A) Pairwise 

comparisons of up to 2,443 allelic differences are shown. Major peaks are shaded. B) 

Comparisons with up to 150 allelic differences are shown. Vertical lines indicate the outbreak 

threshold (red) and sublineage threshold (blue). Pairwise comparisons of only clinical isolates 

are shown in red.  
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Fig 3.3: Plot showing the Dunn Index for clustering thresholds ranging from 1 to 1,000 allelic 

differences. Each clustering threshold is bootstrapped 100 times. The median, plotted with the 

light blue shade, indicates the 25th to 75th percentile range. Dark blue and dark red vertical lines 

indicate the sublineage and outbreak thresholds, respectively. The dotted lines represent other 

clustering thresholds used in the ARI calculations (Fig. 3.4B, 3.6).  
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Because cgMLST includes all housekeeping genes, information from the two MLST 

schemes previously developed for V. cholerae (Octavia et al. 2013, Kirchberger et al. 2016) can 

now be consolidated with the cgMLST scheme by creating a 1:1 cgMLST to MLST map. To 

evaluate the similarities between the sublineage threshold and the MLST schemes, I created a 

minimum spanning tree (MST) for all Bangladesh isolates (n = 255) showing only edges with 

133 allelic differences or fewer (Fig. 3.4A and Fig. 3.5). Each cluster therefore represents a 

single sublineage. Bangladesh was chosen to compare cgMLST and MLST as it is the most 

extensively sampled country both in terms of clinical and environmental isolates in our dataset. 

The sublineage threshold produces clusters that closely resembles traditional MLST STs. Based 

on the 2013 MLST scheme (Octavia et al. 2013), each sublineage corresponds to exactly one ST 

(Fig. 3.5), whereas there is only one sublineage that contains two STs based on the 2016 MLST 

scheme (Kirchberger et al. 2016) (Fig. 3.4A). All but two isolates (V. cholerae strains N16961 

and A19) belong to ST1. A19 and N16961 belong to ST290, which differs from ST1 at only one 

of seven MLST loci (Table B5). The reason these two isolates are of a different MLST ST could 

only be partly explained; they were isolated at an earlier time point (1970s near the start of the 

7th pandemic (Mutreja et al. 2011)) than most of the remaining isolates, which were isolated from 

1991 onwards (Table B2). 
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Fig 3.4: Evaluation of network similarities between cgMLST sublineage threshold (133 allelic 

differences) and the 2013 MLST ST (Kirchberger et al. 2016). A) Networks of all sublineages 

identified using only V. cholerae isolates from Bangladesh (n = 255). Each cluster represents a 

sublineage and includes isolates with less than or equal to 133 allelic differences with each other. 

Each node represents a cgST and is colored by sequence type based on the 2016 MLST scheme 

(Kirchberger et al. 2016). Size of the nodes are proportional to the number of isolates. The length 

of the connecting lines within a cluster is proportional to the number of allelic differences. B) 

Adjusted Rand Index for individual pairwise comparisons between predefined clustering 

thresholds (Fig. 3.3) and the 2016 MLST scheme (Kirchberger et al. 2016). The sublineage 

clustering threshold (i.e., 133 allelic difference) and outbreak threshold (i.e., 7 allelic difference) 

are indicated in blue and red bars, respectively.  
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Fig 3.5: Evaluation of network similarities between cgMLST sublineage threshold (133 allelic 

differences) and the 2013 MLST scheme (Octavia et al. 2013). Networks of all sublineages 

identified using only V. cholerae isolates from Bangladesh (n = 255). Each cluster represents a 

sublineage and includes isolates with less than or equal to 133 allelic differences with each other. 

Each node represents a cgST and is colored by sequence type based on the 2013 MLST scheme 

(Octavia et al. 2013). Size of the nodes are proportional to the number of isolates. The length of 

the connecting lines within a cluster is proportional to the number of allelic differences.  
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It is impossible to visually evaluate similarities between two MSTs with over 1,200 nodes 

each simply due to the sheer volume of data. ARI was therefore used as a metric to determine 

network similarities (Hubert and Arabie 1985). In order to determine whether the sublineage 

threshold (i.e., 133 allelic differences) is indeed the best match to traditional MLST schemes, I 

chose 11 clustering thresholds distributed across the range of 1 to 1,000 allelic differences (Fig. 

3.3) to compare with the MLST schemes. These additional thresholds are chosen as they have a 

relatively high DI compared to their immediate neighbours. More data points were chosen in the 

range of 105 to 330 allelic differences, as it was expected thresholds in this range will best match 

the traditional MLST schemes. Interestingly, all thresholds in that range had comparable ARIs 

regardless of the MLST schemes in question (Fig. 3.3B, Fig. 3.6), indicating that all of them, 

including the sublineage threshold, produces clusters similar to the MLST scheme. This would 

suggest that there can be a large range of diversity within a single MLST ST where isolates can 

have anywhere from 0 (i.e., have the same cgST) to 330 allelic differences. Although clustering 

thresholds between 105 to 330 allelic differences produce similar clusters to a traditional MLST 

scheme, 133 allelic difference was chosen as the sublineage threshold as it has the best clustering 

efficiency (Fig. 3.3) and it represents a natural breakpoint in the currently sampled population 

(Fig. 3.2B).  
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Fig 3.6: Adjusted rand index calculated with the same method as before (Fig 3.4), but compared 

with the 2013 MLST scheme (Octavia et al. 2013). The same allelic thresholds were chosen and 

the outbreak and sublineage thresholds are highlighted in red and blue respectively  
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A phylogenetic tree of 1,146 isolates was used to assess the phylogenetic support of the 

sublineage threshold across different V. cholerae strains (Fig. 3.7). This tree includes all V. 

cholerae isolates within my dataset with the exception of the 116 clinical isolates published 

recently from the Yemen cholera outbreak study (Weill et al. 2018), which all belong to the 7th 

pandemic El Tor lineage. The strains within the PG lineage, which include the 7th pandemic El 

Tor, El Tor progenitor, El Tor sister, Classical, and Classical sister groups (Chun et al. 2009, 

Boucher 2016), are closely related with little genetic variation. These lineages are therefore 

collapsed in the phylogenetic tree as the relationships between them are not well resolved. All 

sublineages formed monophyletic clades, although in some cases the most basal branch is of a 

different sublineage (e.g., V. cholerae strains T5 or 506315) creating paraphyletic clades. Ideally, 

each sublineage would correspond to exactly one full monophyletic clade. The reason this is not 

seen is likely the lack of sampling, leading to the grouping of relatively distantly related isolates 

together in the same clade. Further sampling will likely resolve these cases into two separate 

monophyletic clades. Out of 1,262 isolates, we identified 291 sublineages, and 19 of which 

belong exclusively to the PG lineage. Of the 292 sublineages, 223 are singletons. Based on the 

rarefaction curve, much like cgSTs, the total sublineage diversity of V. cholerae is far from being 

sampled (Fig. 3.1). 
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Fig 3.7: Phylogenetic tree of 1,148 V. cholerae isolates (excluding the 116 isolates from the 

Yemen outbreak study (Weill et al. 2018)) reconstructed using Parsnp v1.2 (Treangen et al. 

2014). All group inside the PG lineage (7th pandemic El Tor, El Tor progenitor, El Tor sister, 

Classical, and Classical sister) are collapsed. Outer rings represents clustering by sequence type 

based on the 2016 MLST scheme by Kirchberger et al. (Kirchberger et al. 2016), whereas the 

inner ring represents clustering based on the sublineage threshold (i.e., 133 allelic differences). 

Branches of clinical strains are colored in red. The phylogenetic tree is rooted with a basal 

lineage to V. cholerae (collapsed) (Islam et al. 2018, Liang et al. 2019)  
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The sublineage concept has been applied to numerous pathogens and as such were each 

defined differently depending on the pathogen in question. Some have defined sublineages based 

on natural breaks in genetic similarities (Moura et al. 2016), while others may use sublineage to 

refer specifically to traditional MLST STs (Lucidarme et al. 2015) or even finer level of 

resolution below the MLST ST level based on whole genome analyses (Royer et al. 2019). There 

is, however, one unifying feature of all sublineage definitions - that they all refer to 

monophyletic clades. Sublineages are defined in this study based on natural breaks in allelic 

differences calculated from cgMLST profiles and were put into context by comparing with two 

traditional MLST schemes. I have shown that our definition of sublineage not only form 

monophyletic clades (Fig 3.7), but also corresponds to any traditional MLST ST designation. 

This sublineage definition will therefore play a crucial role in consolidating information from all 

previous MLST analyses. 

 

3.4.3 A universal south Asian origin for modern cholera outbreaks 

With the continual improvements of next-generation sequencing techniques, whole 

genome sequencing is expected to become a standard practice or even the first identification tool 

used in clinical and epidemiological studies. It is therefore critical to develop rapid typing 

scheme for genome sequence data that had the power to inform us about the relationship of a 

novel isolate with known strains. This is done here by defining what I term an ‘outbreak 

threshold’ based on the cgMLST scheme, which can identify outbreak related strains and 

potential sources of introduction. The outbreak threshold is expected to be less than 40 allelic 

differences as outbreak isolates are very closely related. There is a minor discontinuity at seven 

allelic differences where isolate pairs have either less than or more than this number of allelic 
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differences (Fig. 3.2B). Looking at the DI, the local maximum in the range of 0 to 50 occurs at 

seven allelic differences as well (Fig. 3.3) making this cutoff a likely candidate for an outbreak 

threshold. When applying the outbreak threshold to the full datasets containing all sequenced V. 

cholerae genomes meeting the minimum quality threshold, major clusters were examined to 

evaluate the ability of cgMLST in identifying strains that are part of the same outbreak. 

One of the major outbreak clusters identified, with no prior information required, 

contains the Haiti and the Yemen outbreaks, which are the two best documented cholera 

outbreaks in modern history (Frerichs et al. 2012, Katz et al. 2013, Orata et al. 2014, Eppinger et 

al. 2014, Weill et al. 2018). Isolates collected from these outbreaks form a single cluster with 

Dominican Republic, Eurasian (India, Russia, Nepal, and Ukraine), and African (Tanzania, 

Kenya, and Somalia) isolates (Fig. 3.8A). The Dominican Republic isolates are closely related to 

the Haiti outbreak strains. Given the close proximity of the two countries, co-located on the 

island of Hispaniola, it was not surprising that isolates from Haiti would eventually spread to the 

Dominican Republic (Katz et al. 2013). The 7th pandemic El Tor lineage spread across the world 

from South Asia in three separate waves (Mutreja et al. 2011). The third wave, being the most 

recent distribution event, has been claimed to be responsible for the outbreaks in Haiti and 

Yemen (Weill et al. 2018). It is therefore not surprising to see Haiti and Yemen form a single 

cluster with India at its center. Nepal is the known source of introduction for the Haiti outbreak 

in 2010 (Frerichs et al. 2012), and comparisons with over 1,200 V. cholerae isolates from all 

over the world still show the Nepalese isolates are indeed the closest relatives to the Haitian 

isolates (Fig. 3.8A).  
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Fig 3.8: Minimum spanning trees isolated when the outbreak threshold (7 allelic differences) was 

applied to the complete dataset of 1,264 isolates. A) All isolates which clustered together with 

the isolates from Haiti (blue) and Yemen (light blue) based on the clustering threshold of seven 

allelic differences. B) All isolates clustered with the Mozambique isolates based on the clustering 

threshold of seven allelic differences. Additional Mozambique isolates that are not part of the 

same outbreak cluster are also shown. Three isolates, two from Zimbabwe (green) and one from 

the USA (orange), are connected as they share seven or fewer allelic differences with the 

Mozambique isolates. In both panels, the size of the nodes is proportional to the number of 

isolates. Length of the lines is proportional to the number of allelic differences and all 

connections have less than or equal to seven allelic differences.  
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Cholera is still endemic in Africa (Ali et al. 2015), and caused several major reported 

outbreaks in different countries over last few decades (World Health Organization 2017) 

including Mozambique (Cavailler et al. 2006, Garrine et al. 2017) and Zimbabwe (Sardar et al. 

2013). Another major cluster groups most of the Mozambique isolates together with two 

Zimbabwe isolates (strains CP1038(11) and 2011EL-1137) and one USA isolate (2009V-1116) 

(Fig. 3.8B). Based on cgMLST analysis, it is evident that these two Zimbabwe isolates are 

closely related to the Mozambique isolates differing at four or less alleles. The close proximity of 

the two countries suggests these are likely travel-associated cases. Although outbreaks involving 

Mozambique isolates (Garrine et al. 2017), and the Zimbabwe isolates ((Reimer et al. 2011, 

Hasan et al. 2012)) have been independently studied, the link between these isolates have not 

been shown before. Global cgMLST analysis is therefore an invaluable tool as it allows for the 

identification of links between independent studies. However, with only two Zimbabwe isolates 

in the dataset, additional sampling in this region is required to understand the epidemiology of 

this outbreak. According to the NCBI BioSample database, strain 2009V-1116 was collected by 

the Centers for Disease Control and Prevention in 2009 and is associated with travel to Pakistan. 

Since the 7th pandemic El Tor lineage has been circulating in Asian and Middle Eastern countries 

for a long time (Hu et al. 2016), it is possible that, at least within our dataset, the Mozambique 

isolates are the closest relative to this specific Pakistan strain. 

 

3.4.4 Confirmation of an African connection for the Yemen outbreak 

The Yemen cholera outbreak began in October 2016 with 11 confirmed cases 

(http://www.emro.who.int/pandemic-epidemic-diseases/cholera/cholera-cases-in-yemen.html). 

By January 2017, there were already over 10,000 cholera cases with 99 associated deaths 
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(http://www.emro.who.int/pandemic-epidemic-diseases/cholera/weekly-update-cholera-cases-in-

yemen-15-jan-2017.html). By the end of that year, there were over 900,000 cholera cases 

(http://www.emro.who.int/pandemic-epidemic-diseases/cholera/outbreak-update-cholera-in-

yemen-19-december-2017.html). The Yemen cholera outbreak continues on today as the largest 

cholera outbreak in modern history. As isolates from this outbreak were only recently made 

available (Weill et al. 2018), they were not part of the initial dataset for the cgMLST scheme 

development. These isolates were added and analyzed on PubMLST after the scheme had been 

established. This set of isolates therefore serves as an independent test of the universality and 

applicability of the cgMLST scheme. To determine the potential origin of the Yemen outbreak 

and its phylogenetic relationships with existing V. cholerae strains, the Yemen isolates were 

compared with other 7th pandemic El Tor isolates from Asian and African countries (Table B1). 

All allele designations and cgST assignments were done automatically on PubMLST. MST was 

built using these isolates and all connections with seven and fewer allelic differences are 

represented as solid lines (Fig. 3.9). Isolates connected by solid lines therefore belong in the 

same outbreak cluster as defined by the outbreak threshold of seven allelic differences. Isolates 

from Yemen, Kenya, and Haiti all cluster with the central Indian isolates with seven or fewer 

allelic differences; however, the closest relatives to the Yemen isolates are those from Kenya 

with four or fewer allelic differences (Fig. 3.9). The Indian isolates are the next closest 

connection but there is no direct linkage between these and the Yemen isolate. This pattern is 

consistent with the work of Weill and colleagues (Weill et al. 2018), where they suggested that 

the Yemen outbreak strains may have come from East Africa which itself came from South Asia 

based on SNP-base phylogenetic analysis and Bayesian evolutionary analysis (Weill et al. 2018)  
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Fig 3.9: cgMLST Minimum Spanning Tree of all Yemen isolates and representative 7th 

pandemic El Tor strains (Table B1). All isolates connected by dotted lines share eight or more 

allelic differences (not drawn to scale). All isolates connected with solid lines share seven or 

fewer allelic differences (i.e., they belong to the same outbreak cluster; drawn to scale). Each 

node represents a cgST that is colored by year of collection. The outbreak clusters are shaded by 

country.  
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 Unlike the limited samples available from African cholera outbreaks, the Haiti and 

Yemen outbreaks are significant cases for epidemiological investigations because V. cholerae 

has been heavily sampled from these countries as well as surrounding regions. Two major 

limitations in genomic epidemiology have been the lack of a universal classification scheme and 

a comprehensive database; however, this is no longer the case in the genomic era as sequencing 

technology is becoming increasingly more accessible (Orata et al. 2014). A genomic approach, 

as shown here, is able to produce accurate predictions of potential origins of outbreaks and 

provides us with sufficient resolution to accurately track the spread of the disease. Therefore, 

genomic analysis should be the first step in any epidemiological study as not only will it help 

guide subsequent analyses and investigations, but consistently sequencing new genomes will also 

help expand and refine the current global V. cholerae genome database. 

 

3.4.5 Increased resolution for the history of cholera in Mozambique: comparing cgMLST to 

MLVA  

The 7th pandemic reached Africa in 1970 and cholera appeared in Mozambique at 

roughly the same time (Weill et al. 2017). Since its introduction, cholera has been endemic in 

that country and has continued to cause multiple outbreaks (Garrine et al. 2017). A popular tool 

for outbreak investigation is MLVA (Danin-Poleg et al. 2007, Lam et al. 2012), which was 

recently used to study V. cholerae strains collected in Mozambique over multiple years (Garrine 

et al. 2017). MLVA is a subspecies typing method similar to MLST in concept; however, it 

utilizes variable number tandem repeats (VNTR) instead of gene sequences. As VNTR mutates 

at a faster rate than conserved genes, it has been shown that MLVA provides greater resolution 

than MLST for some species (Lam et al. 2012, Chenal-Francisque et al. 2013). To establish a 



 119 

direct comparison between my cgMLST scheme and this MLVA scheme, I examined the MSTs 

created by both methods focusing on only shared isolates (Fig. 3.10). The MLVA identified 26 

profiles forming two clonal complexes and four singletons (Fig. 3.10A) (Garrine et al. 2017). A 

similar population structure is seen with the cgMLST analysis (Fig. 3.10B), including the four 

singletons identified in the MLVA. The central node in the cgMLST MST consists mostly of 

isolates with MLVA profile ‘8,4,6,18,21’ similar to the central node in the MLVA MST (Garrine 

et al. 2017). The two clonal complexes (CC) identified in the MLVA MST are also identified in 

cgMLST MST with the smaller CC2 being at least four allelic differences away from the larger 

CC1.  
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Fig 3.10: Comparing MLVA with cgMLST analysis focusing on only Mozambique isolates. A) 

Minimum spanning tree (MST) based on MLVA adapted from a previous study (Garrine et al. 

2017). Each node represents a MLVA type and is assigned a unique color. B) MST based on 

cgMLST analysis of isolates used in the previous study. Each node represents a unique cgST but 

colored based on MLVA types.  
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Although there are a few MLVA types that were grouped into a single cgST, such as 

cgST1 and gST114, indicating cgMLST was unable to resolve the differences in these MLVA 

types, there are many MLVA types such as profile ‘2,4,6,18,21’, profile ‘7,4,6,16,22’, profile 

‘9,4,6,18,24’, and profile ‘8,4,6,18,22’, that were split into multiple cgSTs. Overall there are 26 

MLVA types as opposed to 48 cgST types, showing that the latter provides better resolution 

overall than the former. The cgMLST analysis overlaid with isolation dates shows that in 

Mozambique, V. cholerae strains are highly clonal and strains from the same cgST can cause 

outbreaks over multiple years (e.g. cgST114 and cgST94) (Fig. 3.11), which corroborates the 

claim made in the initial MLVA study (Garrine et al. 2017), where the same MLVA type can be 

seen over multiple years.  
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Fig 3.11: cgMLST analysis of Mozambique outbreaks isolates. Each node represents a unique 

cgST. Size of nodes and length of connecting lines are proportional to the number of isolates and 

allelic difference respectively. Each node is colored based on year of isolation.  
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In addition to increased resolution, cgMLST also produces more reliable and 

reproducible results than MLVA, as it eliminates errors associated with the detection of VNTR 

regions using PCR or sequencing-based methods. For the same reason that MLST is less affected 

by convergent evolution compared to MLVA (Struelens and Brisse 2013), cgMLST is also less 

affected by convergent evolution.  

 

3.4.6 Standardizing the genotypes responsible for the Haiti 2010 cholera outbreak: comparing 

cgMLST and SNP-based analyses  

One of the largest cholera outbreaks in modern history occurred in Haiti following the 

devastating earthquake in 2010 (Orata et al. 2014, Guillaume et al. 2018). Prior to this outbreak, 

there were no documented cholera cases in Haiti (Katz et al. 2013, Boucher 2016). Since the 

initial introduction, V. cholerae now remains endemic in Haiti and is responsible for thousands 

of cholera cases annually (Guillaume et al. 2018). Multiple studies have strongly suggested that 

the Haitian strains are in fact imported from Nepal (by the UN Nepalese troops) and the outbreak 

occurred as a result of both inappropriate sanitary practice and the lack of screening of UN 

troops upon their arrival in Haiti (Frerichs et al. 2012, Orata et al. 2014, Frerichs 2016, 

Guillaume et al. 2018). 

A SNP-based approach was used to study the evolutionary dynamics of V. cholerae in 

Haiti (Katz et al. 2013). This technique relies on the identification of SNPs in draft or closed 

genomes. The primary benefit of this method is that assembly and annotation are not required. It 

is also capable of resolving closely related strains using whole-genome data. However, SNP-
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based methods are highly influenced by recombination events and quality filter parameters 

chosen (Pightling et al. 2014).  

To establish a direct comparison between the cgMLST scheme and SNP-based analysis, 

we focused on MSTs of only Haitian outbreak isolates (Fig. 3.12). All Haitian isolates are 

closely related according to the cgMLST scheme, sharing at most four allelic differences with 

each other (Fig. 3.12A). The Haitian and Nepalese isolates, therefore, also belong to the same 

sublineage (SL6) which is consistent with the fact that these isolates belong to the same MLST 

ST (either ST1 or ST69 based on the 2016 and 2013 MLST scheme respectively) (Octavia et al. 

2013, Kirchberger et al. 2016) (Table B2). The overall population structure is similar between 

the two methods where we have SNP ST1 as the center of the MST and ST2 and ST3 extending 

from that likely ancestral genotype (Fig. 3.12). SNP ST1, ST2, and ST3 can be split into 11, 2, 

and 3 different cgSTs, respectively (Fig. 3.12A). There is only one case, cgST66, where it 

contains isolates from SNP ST1 and ST3. Overall, cgMLST was able to differentiate 39% of the 

isolates while SNP-based analyses can differentiate 35%, showing comparable level of 

resolution. As expected, both the cgMLST and the SNP-based analyses showed that the Haiti 

outbreak is highly clonal where most isolates belong to the same cgST or SNP ST (Katz et al. 

2013). However, one important advantage of cgMLST over SNP-based analysis is that, the 

former can be easily standardized because it relies on a predefined set of core genes. Based on 

these standardized genes, we can establish a systematic nomenclature system. This makes 

cgMLST more suitable than SNP-based method as a universally applicable classification system 

for epidemiological studies and research worldwide.  
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Fig 3.12: Comparison between cgMLST and SNP based analysis focusing on Haiti outbreak 

related strains. A) Minimum spanning tree (MST) constructed based on cgMLST analysis. Each 

node represents a unique cgST and is colored by year of isolation. All isolates not from Haiti are 

labeled. Background shading represents SNP ST. B) MST constructed based on SNP analysis. 

Each node is colored based on year of isolation and SNP ST and isolates not from Haiti are 

labeled. In all panels, size of nodes and length of connecting lines are proportional to number of 

isolates and allelic differences respectively.  
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3.4.7 Environmental isolates differ from clinical strains by their diversity and their 

associations with specific geographical locations 

To look at the geographic signal of V. cholerae, we eliminated all clinical isolates and 

those that belong to the PG lineages (Chun et al. 2009, Boucher 2016). This is because the 

geographic signal of clinical strains can be skewed, as pathogenic strains can travel long 

distances in a short period of time through association with human hosts. The geographical 

analysis was therefore performed only with environmental isolates. 

Along with all the publicly available environmental strains that are not part of the PG 

lineages, there are a total of 195 isolates spanning 9 countries. After grouping isolate at the 

sublineage level (i.e., each cluster have at most 133 allelic differences), it could be noted that all 

isolates from the same sublineage also shared a country of origin, with the exception of strains 

692-79 and 857 (Fig. 3.13), which are from the USA and Bangladesh, respectively. Phylogenetic 

analysis shows these isolates to be closely related to strain A215, a clinical isolate from the USA 

(Fig. 3.7). All three strains contain the toxR gene, a toxin transcriptional regulator common in 

pathogenic V. cholerae (Childers and Klose 2007), and genes encoding for the Mannose-

sensitive hemagglutinin pilus, the RTX toxin, and hemolysin (hlyA), all of which are putative 

virulence factors for V. cholerae.  In addition, strains A215 and 857 also have the zona occludens 

toxin gene. Similar toxin gene contents among these three isolates and close phylogenetic 

relationships suggest that strains 692-79 and 857 may also be pathogenic or at least associated 

with a pathogenic strain and are capable of surviving inside a human host. This provides 

evidence that although clinical isolates can spread across the world rapidly and closely related 

isolates can be from very different parts of the world, environmental isolates from the same 

geographic origin share an affinity among each other at least at the sublineage level. It is 
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important to note that my dataset contains a relatively small number of environmental isolates 

that are not part of the PG lineages. Therefore, this distinct distribution pattern based on 

geographic origin may be a result of currently insufficient sampling of environmental V. 

cholerae worldwide. With large-scale environmental sampling, it will be possible to determine 

with greater accuracy the evolutionary rate and distribution pattern of V. cholerae in the 

environment using cgMLST. In addition, this method will become an invaluable tool in dealing 

with these big datasets as it provides an efficient and standardized method of classification.  
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Fig 3.13: Sublineage clusters of non-clinical environmental isolates that are not part of the PG 

lineages. Each node represents an isolate and are colored by country of isolation.  
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3.5 Conclusion 

With an extensive collection of over 1,200 V. cholerae isolates, I developed a cgMLST 

scheme based on 2,443 core genes. I established a sublineage-level definition based on 133 

allelic differences as part of our standardized classification scheme. It was determined by 

comparisons with previous MLST schemes that the cgMLST sublineage classification can be 

used as a proxy for traditional MLST. Additionally, the universality and applicability of the 

scheme have been tested by looking at various cholera outbreak cases. I also determined an 

outbreak threshold based on seven allelic differences that groups outbreak isolates together with 

strains from potential source of introduction. This threshold creates clusters that are consistent 

with known epidemiological data when applied to the Haiti and Yemen cholera outbreaks, two of 

the best-documented cholera outbreaks in modern history. Also, I was able to confirm the South 

Asian origin of modern cholera outbreaks. Furthermore, although sampling is limited, a 

geographic signal at the sublineage leel not seen in clinical strains could be identified among 

environmental isolates that are not part of the PG lineage (Chun et al. 2009, Boucher 2016). 

Lastly, this scheme is fully implemented on PubMLST (https://pubmlst.org/vcholerae/) for 

public access. All newly available genomes uploaded to PubMLST will be annotated 

automatically and a cgST designation will be assigned to isolates with less than 100 missing loci. 

Relevant epidemiological data and the variety of analytical and visualization tools are all 

integrated on PubMLST, allowing for a quick analysis of any newly sequenced genome in a 

global context. This scheme will be an important tool for future large-scale epidemiological and 

biogeographical research.  
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Chapter 4 

4.1 The future of polyphasic taxonomy 

4.1.1 Application of genomic metrics in bacterial taxonomy 

 16S rRNA gene sequence analysis has played a significant role in bacterial taxonomy, 

especially in the Rhodobacteraceae and Roseobacteraceae families as the cultivation of 

members within these families corresponded to the raising popularity of the use of 16S rRNA 

gene for taxonomic classifications (Buchan et al. 2005). However, I have shown that the 16S 

rRNA gene does not have sufficient resolution to confidently resolve family level relationships 

within the order Rhodobacterales, let alone genus and species level (section 2.2, 2.3.1). In 

addition, it is now widely known that organisms may contain multiple intragenomic copies of 

16S rDNA with sequences different enough to be considered as different genera (Klappenbach et 

al. 2001, Acinas et al. 2004, Boucher et al. 2004, Case et al. 2007). This fact, combined with the 

small size and the low mutation rate of the 16S rRNA gene, means it cannot be used as a reliable 

proxy for genomic similarities. Taxonomic inconsistencies, therefore, has been a reoccurring 

issue within this family since its conception in 2005 (Garrity et al. 2005). 

Rather than relying on indirect methods, such as 16S rRNA gene sequence identity, to 

assess genomic similarities, it is now possible to directly measure it using WGS. Not only are 

WGS-based methods more accurate and reproducible, they can also easily be scaled to analyze 

hundreds of isolates efficiently. Popular WGS-based methods include dDDH, ANI, and AAI, 

which have already provided tangible taxonomic classification standards, more so for the species 

level than higher ranks. 70% dDDH and 95% ANI are currently regularly used for species level 

delineations (Baek et al. 2015, Orata et al. 2018, Rabus et al. 2019). Although there are yet to be 

universally accepted standards for taxonomic classifications at the genus rank and above, it can 
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nonetheless be used to identify potential misclassifications. With the abundance of WGS and the 

numerous readily available bioinformatics tools to assess genomic relatedness, it is reasonable to 

expect that WGS-based methods will become standard practices in the field of taxonomy.  

Using this genomic approach, it was possible to identify species, genus and family level 

misclassifications within the Rhodobacteraceae and Roseobacteraceae families (chapter 2). Out 

of 53 monophyletic genera consisting of 265 species, I identified three genera which contained 

species level misclassifications based on the accepted species threshold of 70% and 95% for 

dDDH and ANI respectively (Goris et al. 2007, Meier-Kolthoff et al. 2013) (section 2.3.2). At 

the genus level, AAI, 1st, 2nd and 3rd codon position similarities also showed that the genus 

Halocynthiibacter should be split into two genera; a conclusion supported by both phylogenetic 

and phenotypic data (section 2.3.3). At the family level, these genomic metrics also showed that 

the Roseobacteraceae family is genomically distinct from the Rhodobacteraceae family (section 

2.3.7.1). This exemplifies the importance of genomic similarity analyses in establishing stable 

taxonomic classifications as it is the only high-throughput method that can be used for large-

scale analyses to ensure taxonomic consistency in all taxonomic levels. 

 

4.1.2 Changes in phenotypic characterizations 

 Traditional bacterial classifications require extensive phenotypic characterization; 

however, it is not realistic to expect this approach to keep up with the rate at which genomes are 

sequenced. This problem becomes apparent when looking at the large discrepancy in the number 

of described species between NCBI and the Bergey’s manual of Systematics of Archaea and 

Bacteria. The family Rhodobacteraceae for example have only 30 described genera in the 2015 
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publication of the Bergey’s manual (Garrity et al. 2015b); however, as of November 22nd, 2019 

there were 153 genera with genomes available. 

 Although phenotypic testing is a costly and time-consuming process, it is an irreplaceable 

part of taxonomic classifications as accurate phenotypic descriptions are required to understand 

the complex ecological and environmental roles bacteria play in the environments. Furthermore, 

such descriptions highlighting relevant virulence and antibiotic resistance traits are also crucial 

for clinical and epidemiological practices. To keep up with genomic progress, it is expected that 

phenotypic analyses will require genomic guidance in the future (Rosselló-Móra and Amann 

2015).  

Through a meta-analysis of adaptive traits in the novel Roseobacteraceae family, I was 

able to identify a number of important phenotypes (e.g., quorum sensing, carbon monoxide 

oxidation, and sulfur metabolism) and marker genes ancestral to this lineage. A comprehensive 

genomic approach then allowed me to analyze and predict presence/absence of these phenotypic 

traits for hundreds of isolates, effectively extending these comprehensive phenotypic 

experiments of a few selected strains to hundreds of isolates (chapter 2.3.7.2). Although in-silico 

phenotypic analyses are ultimately predictions that must be verified experimentally, it is 

impossible to exhaustively test all possible phenotypes for all isolates. However, through this 

approach, I was able to reduce the number of phenotypes that should be tested by identifying 

traits that are likely able to differentiate between the groups in question. As bioinformatics tools 

mature, together with the ever-expanding database of WGS, in-silico phenotypic analyses will 

likely provide more accurate and comprehensive phenotypic predictions in the future not unlike 

how dDDH is currently able to accurately predict traditional DDH experiment results. 
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Three pathways that are characteristics of the Roseobacteraceae family were identified 

and they are DMSP demethylation, DMSP cleavage and quorum sensing. These pathways were 

significantly more prominent in the Roseobacteraceae fam. nov than in the Rhodobacteraceae 

family, which is supported by current understanding of their ecology (section 2.3.7.2). DMSP for 

example, commonly produced by phytoplanktons, has long been known to be an important 

chemoattractant for marine bacteria (Moran et al. 2012) (section 2.3.7.2.1). Similarly, acyl-

homoserine lactone-based quorum sensing have also been shown to be a common feature among 

members of the Roseobacteraceae family (Cude and Buchan 2013, Zan et al. 2014) (section 

2.3.7.2.2).  

 

4.1.3 Importance of genome-scale phylogenetic analysis in the aim to establish stable 

taxonomic classifications 

Phylogeny is one of the three key factors of polyphasic taxonomy. It is crucial for the 

development of a stable set of classification standards as monophyly is one of the few, if not 

only, rule that can be universally applied to all levels of classification (Rosselló-Móra and 

Amann 2015, Parks et al. 2018). It is expected that WGS-based phylogenetic analyses will play 

an increasingly bigger role in taxonomic classification as it can ensure that only organisms with a 

shared evolutionary history are grouped together avoiding potential misclassifications due to 

convergent evolution. Through a core-genome phylogenetic analysis, I was able to identify seven 

paraphyletic and 17 polyphyletic genera that must be addressed (section 2.3.4). It also 

highlighted two major lineages that are likely different families which later genomic and in-silico 

phenotypic analysis confirmed (section 2.3.7.1, 2.3.7.2). 
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 Although in my studies, I looked no further than the family level, there are numerous 

studies highlighting the use of genomic similarity analyses in higher taxonomic classifications 

ranging from the order to the phylum level (Sen et al. 2014, Waite et al. 2017).  

 

4.1.3 Genomic and phylogenetic analyses as a guide to ensure stable taxonomic classifications 

 Through genomic and phylogenetic analyses, I was able to identify and resolve numerous 

taxonomic inconsistencies among type strains, which should help guide future taxonomic 

classifications. In addition to resolving current taxonomic misclassifications, it is equally 

important to establish a workflow to ensure future taxonomic classifications are stable. As it is 

impossible to reconstruct core-genome phylogenetic trees with hundreds, if not thousands, of 

type strains each time a new genome is added, there needs to be a way to quickly and accurately 

identify close relatives of unknown isolates among known type strains. One way this can be 

achieved is through a genomic approach, which as previously mentioned is suitable for high-

throughput analysis. By calculating pairwise AAI values between newly added genomes with all 

known type strains, I was able to quickly identify the closest relatives of the new genomes 

(section 2.3.6). Using this much smaller dataset of just the novel genome and a few close 

relatives, I was able to perform in-depth phylogenetic analysis. This can then serve as a starting 

point to guide subsequent phenotypic and additional genomic analyses. Through this approach, I 

confirmed the taxonomic classifications of two type strains with genomes recently made 

available and identified a genus level misclassification (section 2.3.6).  

Aside from using genomic similarity analyses, there are also online tools available that 

can help identify closely related strains to guide subsequent analyses. One such tool is GTDB-tk, 
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which places any bacterial and archaeal genomes into a reference tree based on 120 core genes 

(Chaumeil et al. 2019). This allows researchers to identify, with confidence, the general 

phylogenetic placements of their genomes. From that, a shortlist of genomes can be selected for 

more in-depth analyses.  

 

4.2 Future of the Vibrio cholerae cgMLST scheme 

 The current cgMLST scheme for V. cholerae is based on a collection of 2,443 core genes, 

Based on this scheme, I have also established an outbreak threshold capable of identifying 

outbreak related strains and potential sources of introductions. Using this threshold, I was also 

able to confirm the Nepalese and East African origin of the Haiti and Yemen outbreak 

respectively (Orata et al. 2014, Weill et al. 2017) (section 3.4.4 and 3.4.6). In addition, I also 

proposed a sublineage threshold based on 133 allelic differences that creates clusters similar to 

any traditional MLST ST which will help consolidate information from existing studies. 

Applying this threshold, I have identified a strong geographic signal among environmental 

isolates not seen in clinical strains (section 3.4.7). This pattern is consistent with our 

understanding that clinical V. cholerae strains can spread through asymptomatic carriers (Ackers 

et al. 1997). 

Currently, PubMLST only hosts the 2013 MLST scheme (Octavia et al. 2013), but not 

the 2016 MLST scheme (Kirchberger et al. 2016). In addition, we have previously identified a 

novel gene marker (viuB) suitable for subspecies level typing of Vibrio cholerae (Kirchberger 

2017). Future progress will incorporate other molecular typing methods outside of cgMLST and 

MLST schemes, such as viuB and 16S rRNA gene sequence on the same platform. This will 
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allow researchers to easily analyze their isolates in a global context with all commonly used 

sequence-based typing methods. 

 To encourage the use of cgMLST, there are two limitations that should be addressed. The 

first limitation is that cgMLST only works with assembled genomes, which requires users to 

have at least an introductory knowledge in bioinformatics and genome assemblies. The second 

limitation is that genomes uploaded to NCBI must be uploaded separately to PubMLST and 

therefore, requires periodic update to ensure the cgMLST scheme is current. 

 To address the first concern, it would be ideal to integrate assembly tools, such as skesa 

(Souvorov et al. 2018), to enable automatic assembly of NGS reads. This will reduce the 

technical challenge of utilizing this scheme allowing users to upload draft/complete genomes or 

NGS reads. The second limitation can be addressed by developing back-end tools that will 

periodically retrieve newly uploaded genomes and NGS reads from NCBI then perform the 

proper quality filter and incorporate them into the scheme, which will ensure the cgMLST 

scheme is always up-to-date.  

One of the challenges in studying V. cholerae is that many local outbreaks are not well 

documented and/or reported due to the potential of negative impact on tourism as it implies poor 

water quality (Ali et al. 2015). As cgMLST relies on a comprehensive database to identify global 

and local patterns, this makes it difficult to make detailed predictions of the distribution patterns 

of localized outbreaks and track the spread of V. cholerae. Our collaboration with the CDC and 

ICDDR,B will hopefully encourage the use of the cgMLST analysis as standard protocols for 

epidemiological studies around the world, as well as the sequencing of clinical and 

environmental isolates. With sufficient global sampling, it is our goal to produce detailed 
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epidemiological data of cholera outbreaks around the world, similar to what was previously done 

with the Yemen outbreak (Weill et al. 2017), with significantly fewer steps and lower technical 

threshold to complete these analyses. 

The ultimate goal is to develop an easy-to-use online tool that is not only rooted in a 

comprehensive database, but will also allow users to easily visualize genomic and phylogenetic 

relationships with biogeographical (e.g., origin of introduction) and epidemiological data (e.g., 

virulent genes, antibiotic resistances, etc) through the integration of other readily available 

bioinformatics tools such as GrapeTree (Zhou et al. 2018), Phyloviz (Ribeiro-Gonçalves et al. 

2016) and GenGis (Parks et al. 2009). This will allow epidemiologists to quickly analyze new V. 

cholerae isolates in a global context and predict important clinically relevant traits. Such a tool 

will become an invaluable resource for epidemiological research worldwide. 
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Appendix A: Supplementary Data for Chapter 2 

*All tables in tsv format can be accessed online at: https://doi.org/10.7939/DVN/K8C7RG  

 *All tables in excel format can be accessed online at: https://doi.org/10.7939/DVN/WK4IB9 

  

Table A1: Meta-information of all isolates used in this study 

Table A2: List of mono-, para- and polyphyletic genera. 

Table A3: dDDH results for all within genus comparisons and ANI results for all genus were 

species level misclassifications exist. 

Table A4: 6S rRNA gene sequence similarity, AAI and 1st, 2nd, and 3rd codon position 

similarities for all within and between all genera.  

Table A5: 16S rRNA gene sequence similarity, AAI and 1st, 2nd, and 3rd codon position 

similarities for all within and between recognized monophyletic genera comparisons. 

Table A6: Genomic metrics (16S rRNA gene sequence similarity, AAI and codon position 

similarities) for poly- and paraphyletic genera comparisons 

Table A7: Genes present and absent matrix for assessing DMSP demethylation and DMSP 

cleavage pathways. 

Table A8: Genes present and absent matrix for assessing AHL-QS pathways.  
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Table A9: Genome accession numbers and original publications for all 342 type strains obtained 

from NCBI (331 type strains used in all analyses with the 11 genomes that were subseqnetly 

removed based on quality filter criteria). 

Table A10: Completeness and contamination results for all 342 type trains. 
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Appendix B: Supplementary Data for Chapter 3 

*All tables in tsv format can be accessed online at: https://doi.org/10.7939/DVN/LAFNCM 

*All tables in excel format can be accessed online at: https://doi.org/10.7939/DVN/6E6Z9E 

  

Table B1: V. cholerae isolates from the Yemen cholera outbreak and neighbouring countries, as 

well as other isolates from different lineages. 

Table B2: Meta-information for all 1,262 isolates used in this study. 

Table B3: Completeness for own cgMLST scheme (which consists of 2,443 genes). All genomes 

with less than 90% completeness for our own cgMLST scheme were subsequently removed. 

Table B4: Genome completeness information for the final set of 679 genomes. Completeness for 

own cgMLST scheme is represented as the percentage of the of the 2,443 core genes present in 

each genome. 

Table B5: Allelic profiles for all isolates for the cgMLST, 2013 MLST (Octavia et al. 2013) and 

2016 MLST scheme (Kirchberger et al. 2016). All missing genes are indicated as NA. (The most 

likely cgST are indicated in parenthesis where applicable) 

Table B6: All NCBI accession numbers for isolates (where available), PubMLST IDs and link to 

online storage of genomes. 
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