
A Synthetic Data Generator for Clustering and
Outlier Analysis

Yaling Pei, Osmar Zäıane

Computing Science Department
University of Alberta, Edmonton, Canada T6G 2E8

{yaling, zaiane}@ualberta.ca

Abstract. We present a distribution-based and transformation-based
approach to synthetic data generation and demonstrate that the ap-
proach is very efficient in generating different types of multi-dimensional
numerical datasets for data clustering and outlier analysis. We devel-
oped a data generating system that is able to systematically create test-
ing datasets based on user’s requirements such as the number of points,
the number of clusters, the size, shapes and locations of clusters, and
the density level of either cluster data or noise/outliers in a dataset.
Two standard probability distributions are considered in data genera-
tion. One is uniform distribution and the other is normal distribution.
Since outlier detection, especially local outlier detection, is conducted in
the context of clusters of a dataset, our synthetic data generator is suit-
able for both clustering and outlier analysis. In addition, the data format
has been carefully designed so that generated data can be visualized not
only by our system but also by some popular statistical rendering tools
such as statCrunch [16] and statPoint [17] that display data with stan-
dard statistical graphical approaches. To our knowledge, our system is
probably the first synthetic data generation system that systematically
generates datasets for evaluating the clustering and outlier analysis al-
gorithms. Being an object-oriented system, the current data generator
can be easily integrated into other data analysis systems.

1 Introduction

Clustering analysis and outlier detection are two important techniques widely
used in data mining and automatic knowledge discovery. Although research on
outlier analysis is relatively new in the area of data mining compared to data
clustering, they have both been addressed by many researchers and there exist
a large number of approaches to clustering and outlier analysis. While different
algorithms have their own strength in finding clusters and/or outliers, the per-
formance of a particular algorithm can be quite different with different datasets.
Therefore, the choice of clustering or outlier analysis methods depends on the
specific purpose of the application as well as the datasets available. This in turn
poses one of the most important issues in data analysis: How do we assess a data
analysis algorithm?



It is hard to say that one algorithm is better than the other since different
algorithms usually use different testing datasets with certain constraints such
as data distribution, dimension and density in the analysis of the effectiveness
and efficiency. There exist some databases with a variety of datasets obtained
from real life environment. These datasets could be in various formats and dis-
tributions that make it difficult to be used in testing and comparing different
clustering and/or outlier algorithms. Surprisingly, little work has been done on
systematically generating artificial datasets for the analysis and evaluation of
data analysis algorithms in data mining area.

In this work, we explore the idea to automatically generate datasets in two
or more dimensional space given the total number of points N and the number
of clusters K in a dataset. We use data points to represent objects with multiple
attributes. The properties of each dataset, including space between clusters, clus-
ter distributions and outlier management are specified by the user but controlled
automatically by the system. Each dataset is generated along with a difficulty
level, a density level, an outlier level and a certain data distribution. Given a
fixed number of points in a dataset, the size and density of clusters are closely
related and are both controlled by the density level. The spreading and density
of outliers with respect to the main body of the data is determined by the outlier
level. The difficulty level is defined in terms of the existing clustering algorithms
and they are roughly classified into three groups:

– easy level - the datasets at this level have only spherical or convex clusters;
– medium level- the datasets have long thin or arbitrarily shaped clusters;
– difficult level - the datasets can have clusters within clusters with all possible

shapes.

The data generator can be used not only in the evaluation and testing of
data clustering analysis and outlier detection but also in visualizing various
data distributions . Our goal is to develop a generic framework for the genera-
tion of testing datasets with controlled level of clustering difficulties and devise
a heuristic that will be improved upon in a meaningful way in high-dimensional
and categorical space in the future. We investigate current research and im-
plementation on data generation and proceed in different stages. An important
part of data generation is to display the produced datasets in a graphical user
interface for visual inspection. Hence, we combine the algorithm design with
the implementation together in each stage of the development. Several methods
such as distribution-based approaches and transformation-based approaches, or
their combination have been employed in generating meaningful datasets. Java
Swing is used as the programming language as the implementation of the data
generation system relies heavily on the graphical user interface (GUI).

2 Existing Work on Synthetic Data Generation

An important issue in evaluating data analysis algorithms is the availability of
representative data. When real-life data are hard to obtain or when their prop-
erties are hard to modify for testing various algorithms, synthetic data becomes



an appealing alternative. Most existing work on clustering and outlier analysis
uses both synthetic data and real-life data to test the validity and performance
of the proposed algorithms.

Data generation has been an important topic in mathematics and statistics.
There are some state-of-the-art techniques on generating data of certain distribu-
tion, for example, random sequences and normal distribution, which serve as the
fundamental tools for synthetic data generation systems in many applications.
Despite increasing interest, the research on synthetic data generation in the area
of data mining is still in its early stage. There exist some well-known datasets
that have been widely used as benchmark datasets to test the performance of
many clustering algorithms. Among them, one is provided by the team that
developed the clustering algorithm CHAMELEON [9]. The dataset has 10,000
2D points and includes not only different shapes of clusters but also different
type of outliers. Unfortunately, there is no description of how these datasets are
generated.

In the literature of software testing, a large number of methods to automate
test data generation have been studied [4]. In recent years, research areas such
as data mining [8], sensor networks [21], artificial intelligence [14] and bioin-
formatics [19] are paying more attention in developing data generation systems
aiming to systematically generate synthetic data for numerous applications. In
this chapter, we will briefly discuss some existing data generation methods and
systems.

2.1 IBM Quest Synthetic Data Generator

A well-known synthetic data generation system is developed by the IBM’s QUEST
data mining group [8]. The system consists of two data generators. One is used to
generate transaction data for mining associations and sequential patterns. Given
some parameters, the system can produce a set of data containing information
of customer transactions. The other generator produces data intended for the
task of classification. The output is a person database in which each entry has
nine attributes. QUEST also developed a series of classification functions of in-
creasing complexity that used the nine attributes to classify people into different
groups.

The generated datasets contain only numerical values. Values of non-numerical
attributes are converted to numerical values according to some pre-defined rules.

2.2 Synthetic Data Generation in Other Research Fields

Synthetic data generation also plays an important rule in many different fields
of computer science such as Information retrieval, software engineering and ar-
tificial intelligence, although in each field the focus and the requirement of gen-
erating synthetic data are quite different.

The GSTD algorithm proposed in [18] uses three operations to generate spa-
tiotemporal datasets by gradually altering the three parameters that control the



duration, the location, and the size of spatiotemporal objects. Such a data gener-
ator serves as an integral part of the benchmark environment for spatiotemporal
data access system.

The main focus of test data generation in automatic software testing is to
generate input data to test the correctness of a given computer program or
software system. To have a sufficient coverage on the execution of a computer
program, a data generation system first needs to analyze the control flow of
the program to identify target execution paths to be tested. Input data with
which the execution of the program follows a specific path are usually generated
by using either symbolic evaluation techniques or solving a properly formulated
optimization problem.

In the field of artificial intelligence, many important problems are NP-hard
such as the Boolean satisfiability problem (SAT). To test the performance of
solvers and algorithms for these problems, one also needs to generate testing
problem instances.

In addition to real-world and manually compiled benchmarks, a recent trend
is to generate problem instances randomly from some probability distribution.
As a matter of fact, the study of the typical-case hardness of randomly-generated
problem instances and the performance of various algorithms on these instances
has been an important research topic in artificial intelligence. On the one hand,
many deep theoretical results on the complexity of NP-hard problems and useful
insights into the design of more efficient algorithm have been obtained. On the
other hand, hard testing problem instances generated at the so-called phase
transition region of some random problem model have been one of the driving
forces in the development of the start-of-the-art solvers for these AI problems.

3 Mathematical Tools and Techniques

In an effort to systematically generate test datasets for data analysis, we make
use of some mathematical tools such as probability distributions and linear
transformations. By applying these principles, the proposed method provides
the mechanism that datasets are not only generated automatically but also con-
trolled by the parameters from the user input. This section introduces the math-
ematical concepts and tools related to our proposed approach.

3.1 Uniform Distribution

The uniform distribution is the simplest continuous distribution in probability.
A random variable x has the uniform distribution if all possible values of the
variable are equally probable [13]. It is also called rectangular distribution.

Uniform distribution is specified by two parameters: the end points a and
b. The distribution has constant probability density on the interval (a, b) and
zero probability density elsewhere. The probability density function(PDF) and
cumulative distribution function(CDF) for a continuous uniform distribution on



(a, b) are

f(x) =
{

1
b−a , a < x < b;
0, otherwise.

F (x) =


0, x < a;
x−a
b−a , a < x < b;
1, x > b.

Fig. 1. PDF and CDF of uniform distribution

In Figure 1, (a) is the plot of the uniform PDF and (b) is the plot of the
uniform CDF. Standard uniform distribution is the case where a = 0 and b = 1.

We aim to generate data from a multivariate uniform distribution. The
dataset D is composed of a set of multi-dimensional points. Each point (x1, x2, ..., xm)
is obtained by generating uniform random numbers for xi, where i = 1, 2, ...,m.
The values of each variable are uniformly distributed in (0, 1). Since the joint
distribution of two or more independent one-dimensional uniform distributions
is also uniform, the points in D are uniformly distributed on a region in the
feature space of all variables.

3.2 Normal Distribution

A continuous random variable x has a normal distribution or Gaussian distribu-
tion if its probability density function is

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

,

where µ is mean, σ2 is the variance and −∞ < x <∞ [13].
Figure 2(a) is the plot of the normal PDF and Figure 2(b) is the plot of the

normal CDF respectively. Standard normal distribution is the normal distribu-
tion given µ = 0 and σ2 = 1 .



Fig. 2. PDF and CDF of normal distribution

Recall that the joint distribution of two independent one-dimensional nor-
mal distributions is a bivariate normal distribution. We can therefore generate
normally distributed data points (x, y) in the plane by generating x and y inde-
pendently from the one-dimensional standard normal distribution. The plot of a
dataset of bivariate normal distribution has a round shape with the center being
the origin of the coordinates and the inner points having a higher density than
that of the outer points. Such method can be generalized to higher dimensions
to generate normally distributed data with more attributes.

3.3 Box-muller Transformation

Box-Muller transformation allows us to transform a two-dimensional continu-
ous uniform distribution to a two-dimensional bivariate normal distribution (or
complex normal distribution) [12]. Let x1 and x2 be two independent random
variables and are uniformly distributed between 0 and 1. The basic form of
Box-Muller transformation is defined as

y1 =
√
−2 ln x1cos(2πx2),

y2 =
√
−2 ln x1sin(2πx2),

where y1 and y2 have a normal distribution with mean µ = 0 and variance
σ2 = 1.

In our data generation system, rather than using the normal probability den-
sity function to generate normal distribution, which costs too much in compu-
tation, we adopted Box-muller transformation. By applying the above formulas,
we are able to transform uniformly distributed random variables x1 and x2 to
two random variables y1 and y2 with a normal distribution.

3.4 Linear Transformation

A linear transformation between two vector spaces U and V is a mapping T :
U → V such that



1. T (u1 + v2) = T (u1) + T (u2), for any vectors u1 and u2 in U ,
2. T (αu) = αT (u), for any scalar α and arbitrary vector u in U .

Suppose U = R2 and V = R2, T : R2 → R2 is a linear transformation if
and only if there exists a 2 × 2 matrix A such that T (u) = Au for all u in
R2 [7]. Matrix A is called the standard matrix for T . Linear transformation in
two dimensional vector space has been extensively used in our data generation
system to dynamically produce two dimensional datasets of various characteris-
tics. Once we have obtained the basic dataset, which will be detailed in section
4, we can control the shape, density and location of each cluster in the output
dataset by applying to each vector/point in the basic dataset linear transforma-
tions such as shears, reflections, contractions, expansions and translations. The
linear transformation of a normal distribution is still a normal distribution, but
the linear transformation of a uniform distribution is not necessarily a uniform
distribution.

Fig. 3. Linear transformation: expansions and contractions

Fig. 4. Linear transformation: shears

Figure 3 and 4 are examples used in [7] to illustrate the action of a linear
transformation T : R2 → R2. The image of a unit square under T is employed to
demonstrate the geometric meaning of different types of linear transformation.



Figure 3(a) indicates how expansion and contraction along x-axis work. Given
a set of column vector [px py]T , expansion and contraction along x-axis is given
by the standard matrix

A =
[

k 0
0 1

]
.

Thus, the vectors “stretch” along the x-axis to [kpx py]T for k > 1 and “com-
press” along the x-axis for 0 < k < 1.

Similarly, Figure 3(b) is an example showing the expansion and contraction
of the unit square along y-axis. The standard matrix used here is

A =
[

1 0
0 k

]
,

which takes the vectors [px py]T to [px kpy]T . In this case, the standard matrix
A stretches the vector along y-axis when k > 1 and compresses it along y-axis
when 0 < k < 1.

A shear in the x-direction is shown in Figure 4 (a). It is achieved using the
standard matrix

A =
[

1 k
0 1

]
,

to convert vectors [px py]T to [(px + kpy) py]T .
A shear in the y-direction is given in Figure 4 (b), in which the standard

matrix

A =
[

1 0
k 1

]
,

is used taking [px py]T to [(px + kpy) py]T .

Fig. 5. Linear transformation examples



To generate datasets with various patterns and densities, we often use a more
complicated standard matrix to transform a set of data. The operation can be
considered as the composition of several linear transformation, such as a rotation,
a magnification, and a translation. A typical example is shown in Figure 5 where
a unit circle is transformed into an enlarged oval as in (a) and a contracted oval
as in (b), where the standard matrices leading to these transformations are

A =
[
−1.2 1.1

2 1

]
,

and

A =
[

0.3 0.8
0.9 0.3

]
respectively. The transformed ovals may be shifted to a different location by
translations through vector addition.

4 A Comprehensive Approach to Synthetic Data
Generation

In this section, we present a hybrid approach to synthetic data generation. The
proposed approach is aimed at providing a basic modelling framework for gener-
ating data that can be used to evaluate and test clustering and outlier analysis
algorithms.

It has been well recognized that the performance of different data analysis al-
gorithms depends heavily on the testing datasets. Among the existing clustering
algorithms, the partitioning methods can easily identify clusters with spherical
shapes, but they are unable to find clusters of irregular shapes and tend to split
an elongated cluster into different groups. Although the density-based methods
can handle clusters of arbitrary shapes and various sizes, they are very sensitive
to the density of each cluster, which will lead to failure in detecting clusters with
data unevenly distributed. Since outliers are data that deviate from the main
pattern of a dataset, they are always considered in the context of clusters. That
is, an object is marked as an outlier if it is isolated from the clusters in the
dataset. The causes for such isolation can be generalized in two categories: (1)
outliers are located in a less dense region compared to the density of the clusters;
and (2) outliers do not fit into the cluster patterns. Therefore, outlier detection,
especially local outlier detection that defines outliers with respect to the neigh-
borhood density and patterns is often conducted by differentiating them from
data in clusters. A recent study [3] also shows that some outlier detection and
clustering analysis algorithms are actually complementary to each other.

In our method of synthetic data generation, each output dataset is specified
by a difficulty level, which is defined in terms of data distributions and cluster
shapes. Since the difficulty level of a dataset indicates the complexity in iden-
tifying clusters, it provides us a measure of how a clustering algorithm works.
Apart from the difficulty level, each dataset is also assigned a density level and



Fig. 6. A screen shot of the synthetic data generation system



a noise level. Like the difficulty level, noise level is used to define the spreading
and density of outliers or noise. Other parameters from user input but controlled
automatically by the system are the number of points, the number of clusters
and the percentage of points for each cluster in a dataset. The created data
points are in two dimensional space with x and y being floating point numbers.
We built a graphical user interface to display the generated dataset for visual
inspection. Figure 6 is a screen shot of the synthetic data generation system. As
is seen in the figure, the shape and density of the output clusters as well as the
distance between the means of different clusters in a dataset are determined by
the standard distribution, the difficulty level and the density level.

To automate the data generation process, the system proceeds in two steps.
The first step is to create the basic dataset, in which the data in each cluster
have a standard distribution. For uniform distribution, the x and y values of all
the points in the basic dataset are in (0, 1). For normal distribution, the basic
dataset contains clusters that have a standard normal distribution with mean
µ = 0 and variance σ2 = 1. The second step is to apply some mathematical
techniques to generate the required dataset. Once we have the basic dataset,
three major methods are used in creating clusters and outliers with different
shapes and densities.

– Linear transformation, which involves matrix multiplication to translate,
shear, contract or expend the the clusters in the basic dataset.

– Linear equation, which controls the line-shaped clusters and outliers.
– Circle equation, which controls the curve-shaped clusters.

The technical details of synthetic data generation will be presented in two
aspect. One is the dynamic control and generation of clusters. The other aspect
is about outliers, that is how the outliers are distributed. To make the concept
concrete to the readers, a visual approach is taken in presenting the method.

4.1 Generation of Clusters in a Dataset

The generation of clusters of a dataset involves the determination of cluster
densities, sizes, shapes and relative locations. By analyzing the user input, the
synthetic data generation system automatically controls all these aspects. Two
parameters density level and cluster ratio are the major factors to contribute
to the density and size of each cluster in a dataset. Given a density level, an
appropriate standard matrix is calculated to transform the basic clusters 1 into
ones with either expanded or contracted sizes. The higher the density level, the
smaller the cluster size and the more compacted the data in the clusters. By
default, data are evenly distributed to each cluster in a dataset. For example, if
dataset D has 1,000 data objects that forms 4 clusters, the system would auto-
matically assign 250 data to each cluster. The parameter cluster ratio provides
the user with an option to set the number of data objects for each cluster. It

1 attribute values in such clusters are usually in (0, 1)



consists of a sequence of integers indicating the percentage of data in each clus-
ter over the total number of data in a dataset. By parsing the cluster ratios, the
system adjusts the number of data in each cluster to satisfy the user’s specific
requirements. This, in turn, will change the density of each cluster since each
cluster size remains unchanged.

Cluster shapes and relative locations are mostly determined by the param-
eter difficulty level. In the following, we will discuss the generation of datasets
classified into five difficulty levels based on the distribution of the data in clus-
ters. Given a difficulty level, the specific locations and shapes of the clusters
in a dataset is controlled by the system in a random manner, i.e., the cluster
can have any of the shapes belonging to this difficultly level and lie in any re-
gion in the dataset. The distances between clusters are dynamically measured
to ensure clusters are not overlapping, which is especially important for simple
datasets with low difficulty levels. Alternatively, a dataset may consist of ran-
domly produced clusters from different difficutly levels when one prefers to have
a sophisticated set of data. Therefore even with identical parameter sets, there
are hardly any datasets that are exactly the same due to the randomness in de-
ciding cluster locations and shapes. Apart from being visualized, the generated
data can be saved to a file in case that the same data are required for later
inspection or testing different data analysis algorithms.

Datasets with Difficulty Level One

The datasets at this level are the simplest in terms of the definition of clusters.
There are two major features of the clusters in such a dataset.

– All clusters have only spherical or square shapes.
– Clusters are well separated.

Following the generation of the basic datasets, the transformation of con-
traction and/or expansion are applied to generate the datasets that satisfy the
user-specified density level. Figure 7 shows the typical clusters in a dataset hav-

Fig. 7. Difficulty level 1: each cluster contains 500 2D points

ing a difficulty level of one. It can be seen that such design of data distribution



ensures that data are clearly divided into well-formed groups which makes it
relatively easy for clustering algorithms to find the clusters. When evaluating
clustering methods with these type of datasets, we are mostly concerned about
how fast a certain method can identify the clusters in a large dataset.

Datasets with Difficulty Level Two

The datasets have long and thin clusters with straight or curved shapes. Like
clusters in level one, clusters in a particular dataset are well separated. Figure 8

Fig. 8. Difficulty level 2: each cluster contains 300 2D points

gives some of the example clusters in the datasets having a difficulty level of two.
Based on the input parameters, linear equations and transformations of contrac-
tion, expansion, rotation and translation are performed on the basic dataset to
create level-two datasets. Although the clusters are at an easy level and are as
intuitive as the first level ones, their enlongated shape can make some clustering
methods fail in identifying them. For example, the algorithms k-means [11] and
k-medoids [10] are most likely to split such a cluster into two or more groups as
they favor spherical shaped clusters.

Datasets with Difficulty Level Three

The clusters in the dataset with difficulty level three have simple arbitrary shapes
such as rings, crosses and stairs. The distance between the clusters are clearly
separated. Some typical clusters are given in Figure 9 in which the three clus-
ters on top have uniform distributions and the two at the bottom have normal
distributions. In order to generate these datasets, linear transformations such as
contraction, expansion, rotation and translation as well as linear equations and
circle equations have been performed on the basic dataset of either uniform or
normal distribution.

Compared to the first two level datasets that contain only basic convex clus-
ters, the level-three datasets have clusters that do not necessarily have an object



Fig. 9. Difficulty level 3: each cluster contains 500 2D points

defined as the mean. For example, there is not any object that can be consid-
ered as the explicit mean for a ring shaped cluster. Consequently, the irregular
shape of clusters will increase the difficulty in finding meaningful clusters for any
clustering algorithm that considers the mean.

Datasets with Difficulty Level Four

The clusters in the dataset with difficulty level four have arbitrary shapes with
some obvious or vague space inside a cluster. The distance between the clusters
are still distinguishable. To enrich the diversity of cluster shape, clusters with
uniform distribution are specifically designed to be any of the twenty-six letters
of the alphabet which are evenly positioned in a particular dataset. Each letter is
treated as an individual clusters. The system provide two options for generating
the required number of alphabet clusters. One is to randomly produce any of
the letters. The other option allows the user to input letters of his own interest.
The operations used to control the distribution and shape of the letters involve
all the techniques mentioned including equations and transformations. Example
clusters are shown in Figure 10 in which the letters have uniform distributions
and the other two clusters have normal distributions. Since the letters encompass
a wide range of cluster shape, it is hard for most clustering methods to find all
the different letter-shaped clusters. Although density-based algorithms such as
DBSCAN can work well with datasets containing diverse cluster shape, they will
fail in identifying some of the clusters if the densities between clusters are quite
different.



Fig. 10. Difficulty level 4: each cluster contains 500 2D points

Datasets with Difficulty Level Five

The datasets contain clusters within clusters or single clusters with irregular
shapes. In the case of one cluster within the other cluster, the two clusters can
either be clearly separated or they are connected with bridges of points, which
can cause much trouble to many clustering algorithms in correctly identify the
clusters. Nested clusters also raise a question as to how to define a cluster: should
we consider a nested cluster as one cluster or several clusters? Figure 11 displays
some of the clusters in datasets having a difficulty level of five. Besides the
generation mechanism for creating clusters of the other levels, special attention
is paid to positioning the nested clusters at this level.

Fig. 11. Difficulty level 5: each paired cluster contains 1,000 2D data points, of which
500 are assigned to each single cluster



4.2 Generation of Outliers/Noise in a Dataset

As discussed in the previous chapters, outliers and noise are unavoidable in real
life datasets collected from numerous application domains. The mechanism of
adding outliers or noise is another important contribution of our synthetic data
generation system. While there is no strict distinction between outliers and noise
in most data analysis tasks, we will use outliers as a generic term in the following
discussion.

It is well accepted that outliers in a dataset are not consistent with the
rest of the data. This leads to the exploration of outlier detection based on
the distance to a point’s neighboring points. Many existing outlier detection
methods use the neighborhood density of a point as a criterion to differentiating
abnormalities from normalities. Points located in a less dense region are usually
considered as outliers. While intuitive, such definition raises new issues: how do
we specify the cutoff density value to guarantee real outliers and meaningful
clusters? Should the points located in the outer layers of a normal distribution
as shown in Figures 7 through 11 be marked as outliers? Or should all the data
in a less dense cluster be treated as outliers?

Because the definition of outliers is subjective, the notions of outliers and
inliers in a dataset are ambiguous in many situations. Data object being identi-
fied as outliers by one data analysis method could be legitimate inliers with the
other method. Therefore, To produce outliers with respect to local and global
clusters, our effort is focused on how to generate those data points that can be
objectively identified as outliers by the existing outlier detection algorithms.

The method of generating outliers is similar to that of generating clusters.
Standard distribution and linear transformation have been widely used. The
distribution and density of outliers are determined by the system through the
parameter: outlier level. The value of outlier level can be none, low and high
and are specified by the user. Depending on the selected level, the number of
outliers is a controlled percentage of the total number of points in a dataset.
For example, the outliers account for 10% of the data when 90% of the data are
in clusters. This ensures that the total number of points from the user input is
preserved while outliers are being added. Next we will discuss the generation of
the three level outliers. The examples used are all sophisticated datasets that
contain clusters of different difficulty levels.

Outliers Level None

The name of “level none” is self-explaining. No outliers are intentionally added
to a dataset. However, this does not necessarily mean that a set of generated
data does not contain outliers. A dataset often consists of clusters with differ-
ent distributions and densities. Depending on the definition of a specific outlier
detection algorithms, data points in clusters of different difficulty levels as de-
scribed before can be outliers. For example, a cluster itself can be considered as
a collection of outliers if the size of the cluster is much smaller than those of
other clusters or the data in the cluster are very sparsely distributed compared



Fig. 12. Outliers level none: outliers are those exterior points of a cluster



to the majority of the data. Most outlier detection algorithms would mark the
exterior points in a normally distributed cluster as outliers. Such examples are
demonstrated in Figure 12.

Fig. 13. Outliers level low: outliers are randomly distributed

Outliers Level Low

This is the basic type of outliers. For a given dataset, the system randomly
distributes a small percentage of the data in the region where the clusters are
located. Figure 13 shows a dataset containing 4,000 points including outliers.

Outliers Level High

In addition to generating randomly distributed outliers, the data generator pro-
duces outliers of controlled shape and distribution. Since there is no universal
agreement on what constitutes outliers, our intention is to provide a prototype of
outlier distribution in a dataset. Figure 14 gives an example dataset containing
5,000 2D points in which outliers count up to 15% of the total data. Two major
types of data points can be classified as outliers in this dataset:



Fig. 14. Outliers level high: outliers are either randomly distributed or have simple
patterns



1. points that are located in a sparse neighborhood;
2. exterior points of the cluster that has a normal distribution; and
3. points that form certain patterns, such as the lines, each of which has much

less data than those major clusters. Some may not consider these points as
outliers because they form a major pattern. Depend on the density of the
lines, these points can be classified into either points in clusters or outliers.
We will demonstrate this in section 5 with experimental results.

Many clustering and outlier analysis algorithms can easily identify the first
two type of outliers that have sparse neighborhoods. But the third type of out-
liers can cause problems in the process of data clustering. For example, the
density-based clustering algorithm DBSCAN has been well recognized as an ef-
fective method in finding clusters of arbitrary shapes as well as identifying and
eliminating outliers. However, it may merge two or more clusters together as the
lines or the so-called bridges of points join these clusters into a group.

5 Experiments and Evaluation

One of the most effective ways to evaluate the generated dataset is to visualize
the data for human inspection. The GUI of the data generating system has
been designed to serve this purpose. In addition to visual inspection, we test the
performance of our system in two aspects:

– the efficiency of producing large datasets that satisfy user’s requirement;
– the effectiveness of a benchmark instance generator for clustering analysis

and outlier detection.

In this section, we report experiments and evaluation results of our synthetic
data generation system.

5.1 Generating Very Large Datasets

We first test how the size of the generated datasets affects the execution time. For
any dataset with size up to 1,000,000 points, the execution time for generating
the data (excluding writing the data to a file) is less than three seconds. This is
demonstrated in Figure 15, which is a plot of the execution time against the size
of the generated datasets. It is observed that to generate a dataset containing
less than 4,000,000 data points, the execution time is linear to the size of the
dataset regardless of difficuty levels, density levels and outlier levels.

Since the difficulty level is the major factor that determines the distribution
and shape of each cluster in a dataset, we also ran the program to show how
the execution time is affected by the difficulty level. For each difficulty level
(from 1 to 5), we input the same parameters which include data size, number of
clusters, density and outlier levels so that the difference of data generating time is
exclusively based on the change of difficulty levels. Despite the same parameters,
each dataset produced may contain clusters of different distributions, shapes and



Fig. 15. Each generated dataset has the following properties: number of clusters is 5;
data distribution in a cluster is either uniform or normal; difficulty level ranges from 1
to 5, density level is 3, and noise level is low

Fig. 16. With each difficulty level, the system generates a dataset of 100,000 that
contains both uniformly and normally distributed clusters.



densities. In order to precisely show the execution time of generating a dataset,
we ran the program at least five times for each difficulty level and then computed
the average excution time. The plot in Figure 16 demonstrates that with the
change of difficulty levels, there is little change of average execution time to
generate a certain type of dataset.

5.2 Testing with Clustering and Outlier Analysis Algorithms

We generated six sets of two dimensional spatial data. Each dataset contains
outliers as well as clusters that consist of either uniformly or normally distributed
data. The details of the datasets are given in Table 1. Clusters in each of the first
five datasets exhibit the typical cases of data distributions and shapes of a specific
difficulty level. The sixth dataset, however, contains a mixture of clusters that
are randomly generated from different difficulty levels. The sizes of the datasets
are moderate for easy inspection and illustration.

Table 1. Detailed description of the parameters for the datasets

Dataset Data size Number of clusters Difficulty level Noise level

dataset1 2,000 4 1 low

dataset2 2,000 4 2 low

dataset3 2,000 4 3 low

dataset4 2,000 5 4 high

dataset5 2,000 5 5 high

dataset6 10,000 7 mixed high

Table 2. Description of the clustering algorithms

Algorithm classification Parameters

k-means partition-based k

DBSCAN density-based radius ε, MinPts

CURE hierarchical k, shrinking factor α, representative points t

CHAMELEON hierarchical k −NN , MinSize, k

WaveCluster grid-based resolution r, signal threshold τ

AutoClass model-based N/A

Using these datasets as benchmark instances, we conducted experimental
evaluation upon six existing clustering algorithms: k-means [10], DBSCAN [5],
CURE [6], CHAMELEON [9], WaveCluster [15] and AutoClass [1, 2]. The CURE
code is kindly supplied by the Department of Computer Science and Engineering,
University of Minnesota. The AutoClass is the public C version from [20]. The



other four programs were locally implemented. Some basic characteristics of
these clustering methods are generalized in Table 2.

Our experiments proceed from easy datasets to hard datasets. The complex-
ity of a dataset is defined by the difficulty levels as described in the previous
section. Our intension is not to explore the different clustering mechanisms, in-
stead, we aim to show experimentally how each of these six clustering algorithms
performs with different datasets consisting of a diversity of clusters and difficulty
levels. We show the clustering results on each dataset graphically to give read-
ers a concrete idea of the clustering ability of different clustering methods. We
assume that we have the specific domain knowledge of each dataset. When per-
forming the experiment, such domain knowledge plays an important role in the
selection of certain parameters, such as k, the number of clusters involved in
some of the algorithms. To avoid the bias of inappropriate use of other parame-
ters for different algorithms, we also conduct many test-and-trials to select the
set of parameters that lead to the best clustering results of the algorithm being
tested.

In Figure 17 to 22, different colors have been employed to indicate discovered
clusters in a dataset after the clustering process. Since some of these clustering
methods, such as DBSCAN, CURE and WaveCluster, are able to identify out-
liers, red color is reserved to mark outliers in all the clustering results of the
following figures. Figures 17 to 22 can be viewed in two ways:

– Given a certain dataset, inspect the clustering abilities of different clustering
algorithms, and

– For a certain clustering method, check its clustering results over different
sets of data.

The definition of clusters and outliers is often subjective. Meaningful clusters
and real outliers should be considered in the context of application domains.
Even with the synthetic datasets used in our experiments, it is sometimes not
easy to mark clusters from clusters or to distinguish clusters from outliers. For
example, in figure 21, CURE and AutoClass treat the diagonal line pattern as a
single cluster while other methods consider it either as part of another cluster or
as outliers. Another example is the clustering results shown in 22 obtained from
dataset 6, where the small oval and big rectangle (cluster in cluster) are grouped
into one cluster by all the six clustering methods although they might well be
considered as two clusters. Pros and cons of various clustering algorithms have
been widely discussed in the literature, we evaluate these algorithms based on
the quality of the clustering results on the given datasets.



(a) k-means (b) DBSCAN

(c) CURE (d) CHAMELEON

(e) WaveCluster (f) AutoClass

Fig. 17. Clustering results on dataset 1. (a): k-mans with k = 4; (b): DBSCAN with ε =
15 and MinPts = 10; (c): CURE with k = 4, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 4; (e): WaveCluster with r = 5 and
τ = 0.2; (f): AutoClass



(a) k-means (b) DBSCAN (c) CURE

(d) CHAMELEON (e) WaveCluster (f) AutoClass

Fig. 18. Clustering results on dataset 2. (a): k-mans with k = 4; (b): DBSCAN with ε =
15 and MinPts = 10; (c): CURE with k = 4, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 4; (e): WaveCluster with r = 5 and
τ = 0.2; (f): AutoClass

Some interesting observation from the experiments can be generalized as
follows.

1. K-means is well known for being able to quickly find spherical shaped clus-
ters. Through the experiments on datasets of different levels, it is found that
k-means can successfully identify irregular shaped clusters if the distances
between clusters are big enough and the initial set of centroid have been
well selected. Three major factors that mostly affect the clutering results
of k-means are: (1) domain knowledge for the selection of parameter k; (2)
initial location of the set of centroid; and (3) distribution of outliers.

2. Given the appropriate values for the two parameters: neighborhood radius
ε and MinPts, DBSCAN achieves the best clustering results among the six
algorithms. It can not only find arbitrary shaped clusters but can also detect
most outliers. One intrinsic shortcoming of DBSCAN is that it may merge
two or more clusters if there exist “bridges” of outliers joining clusters such
as Figure 21 (b).

3. CURE is designed to not only find arbitrary-shaped clusters, but also iden-
tify outliers in a dataset. Our experiments indicate that CURE can success-
fully find meaningful clusters that have identical densities, but it also marks
many points that located in the uniformly distributed clusters as outliers as



(a) k-means (b) DBSCAN

(c) CURE (d) CHAMELEON

(e) WaveCluster (f) AutoClass

Fig. 19. Clustering results on dataset 3. (a): k-mans with k = 5; (b): DBSCAN with ε =
15 and MinPts = 10; (c): CURE with k = 5, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 5; (e): WaveCluster with r = 5 and
τ = 0.2; (f): AutoClass



(a) k-means (b) DBSCAN

(c) CURE (d) CHAMELEON

(e) WaveCluster (f) AutoClass

Fig. 20. Clustering results on dataset 4. (a): k-mans with k = 5; (b): DBSCAN with ε =
15 and MinPts = 10; (c): CURE with k = 5, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 5; (e): WaveCluster with r = 5 and
τ = 0.2; (f): AutoClass



(a) k-means (b) DBSCAN (c) CURE

(d) CHAMELEON (e) WaveCluster (f) AutoClass

Fig. 21. Clustering results on dataset 5. (a): k-mans with k = 5; (b): DBSCAN with ε =
15 and MinPts = 10; (c): CURE with k = 5, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 5; (e): WaveCluster with r = 5 and
τ = 0.2; (f): AutoClass



(a) k-means (b) DBSCAN

(c) CURE (d) CHAMELEON

(e) WaveCluster (f) AutoClass

Fig. 22. Clustering results on dataset 6. (a): k-mans with k = 5; (b): DBSCAN with ε =
20 and MinPts = 30; (c): CURE with k = 7, α = 0.3, and t = 10; (d): CHAMELEON
with k − NN = 15, MinSize=2.5%, and k = 7; (e): WaveCluster with r = 4 and
τ = 0.2; (f): AutoClass



demonstrated with all the six datasets. A big problem with CURE is that
it might fail to find some real clusters when the densities of these clusters
are relatively less than those of the other clusters in a dataset as shown in
Figure 18 (c).

4. Like k-means, CHAMELEON can not handle outliers. Although it is ex-
tremely slow in performing the clustering, it is more effective than k-means
as it can find clusters of arbitrary shapes regardless of the distances between
clusters.

5. In most cases, WaveCluster is effective in finding clusters and outliers in a
dataset. Although the number of resulted clusters is often more than the
actual number of clusters in a dataset as shown in Figure 19 (e), 20 (e),
21 (e) and 22 (e), major clusters usually stand out since they contains far
more data objects than those small clusters. A further step to eliminate small
clusters and mark the data objects in these clusters as outliers would surely
improve the effectiveness of WaveCluster.

6. The most interesting clustering algorithm used in our experiments is Au-
toClass. It is an unsupervised Bayesian classification system that seeks a
maximum posterior probability classification [20]. Such method has been
widely used in statistics and machine learning. The uniqueness of AutoClass
is that it can find data clusters that might not be identified as clusters by
visual inspection. For example, the blue clusters in Figure 19v(f) and Fig-
ure 20v(f). This is due to the fact that AutoClass is able to find clusters that
is maximally probable with respect to the underlying data model. Though
not designed to identify outliers, AutoClass can generally classify outliers
into one group even though they are usually separated by clusters.

6 Conclusion

In this chapter, we present a comprehensive approach to synthetic data gen-
eration for data analysis and demonstrate that the approach is very effective
in generating testing datasets for clustering and outlier analysis algorithms.
According to the user requirements, the approach systematically creates test-
ing datasets based on different data distribution and transformation. Given the
number of points and number of clusters, each dataset is controlled by data dis-
tribution, difficulty level, density level and outlier level. The difficulty level deter-
mines the overall characteristic (shape, position) of the clusters in a dataset, the
density level mostly determines the size and density of each cluster. The gener-
ated datasets contain clusters of two standard distributions: uniform distribution
and/or normal distribution. While the synthetic data generation system is effec-
tive in generating two-dimensional testing datasets to satisfy user’s requirement,
it is proven to be efficient in generate very large dataset with arbitrary shaped
clusters. The current object-oriented system is carefully designed so that it can
be easily extended to handle data in high-dimensional space in the future.



7 Future Work

Synthetic data generation is an interesting topic in data mining. In many research
areas, a set of standard dataset is essential in evaluating the quality of a proposed
technique. Methods of generating datasets for different purposes can be quite
different. Our work concentrates on the generation of test instances for clustering
and outlier analysis algorithms. There are still much room for improving the
current data generating system.

– The data generator now can only handle two-dimensional data. Based on the
heuristic devised, the system can be extended to generate three or higher
dimensional data.

– The size of a cluster is controlled by the density level, which ensures that the
number of points in a cluster be fixed, but also poses a problem, i.e., clusters
with a specific density have basically the same size. Finding a better way to
address this problem can produce various sized clusters in a dataset.

– The current interface is very basic, further work is needed to improve the
look and feel of the interface.

– In another more or less theoretical direction, it would be interesting to discuss
the meaning of the difficulty of the datasets.



References

1. P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass:
A bayesian classification system. In PProceedings of the Fifth International Con-
ference on Machine Learning, pages 54–56. Morgan Kaufmann Publishers, June
1988.

2. P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory and re-
sults. In U. Fayyad, G. Paitesky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 153–180. AAAI Press,
1995.

3. Z. Chen, A. Fu, and J. Tang. On complementarity of cluster and outlier detection
schemes. In Proceedings of 5th International Conference on Data Warehousing and
Knowledge Discovery, (DaWaK), pages 3–5, September 2003.

4. J. Edvardsson. A survey on automatic test data generation. In Proceedings of
the Second Conference on Computer Science and Engineering in Linkping (CC-
SSE’99), October 1999.

5. M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, 1996.

6. S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for
large databases. In In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 73–84, 1998.

7. HMC. Geometry of linear transformations of the plane. Internet page.
http://www.math.hmc.edu/calculus/tutorials/.

8. IBM. Intelligent information systems. Internet page.
http://www.almaden.ibm.com/software/quest/resources/.

9. G. Karyapis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clustering
algorithms using dynamic modeling. IEEE Computer, 32(8):68–75, 1999.

10. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, 1990.

11. J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. University of California Press, 1967.

12. Mathworld. Box-muller transformation. Internet page.
http://mathworld.wolfram.com/.

13. S. Ross. A first course in probability. Prentice Hall, 1997.

14. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, 2003.

15. G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution
clustering approach for very large spatial databases. In Proceedings of 24th Inter-
national Conference on Very Large Data Bases, August 1998.

16. StatCrunch. Statistical software for data analysis on the web.
http://www.statcrunch.com/.

17. Statlets. Statpoint internet statistical computing center. Internet page.
http://www.statlets.com/.

18. Y. Theodoridis and M. Nascimento. Generating spatiotemporal datasets on the
www. ACM SIGMOD Record, 29(3), September 2000.

19. VBRC. Viral bioinformatics resource center. Internet page.
http://athena.bioc.uvic.ca/techDoc/.



20. T. Will. NASA ames research center: The autoclass project. Internet page.
http://ic.arc.nasa.gov/ic/projects/bayes-group/.

21. Y. Yu, D. Ganesan, L. Girod, D. Estrin, and R. Govindan. Synthetic data gen-
eartion to support irregular sampling in sensor networks. In Geo Sensor networks,
October 2003.


