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Abstract 

 

Tumor angiogenesis is the cancer-induced chaotic proliferation of blood vessel 

structure penetrating into surrounding cancerous tissue. Effective micro-

vasculature imaging method is urgently desired for both fundamental biological and 

clinical studies. However, this is a challenging task, as existing standard imaging 

techniques are limited by factors such as poor resolution, high cost, necessity of 

using imaging contrast agent and invasiveness. Photoacoustic (PA) imaging, as a 

non-ionizing modality, has drawn significant interest due to the promise it holds for 

high-resolution, noninvasiveness and its capability to reveal functional information 

based on intrinsic optical contrast.     

The ultimate goal of this dissertation is to further previous work on quantitative 

photoacoustic imaging, specifically, to contribute to quantitative imaging of tumor 

angiogenesis and anti-angiogenetic therapy. The work presented in this dissertation 

can be divided into three parts. In the first part, we focus on quantitative 

photoacoutic tomography (qPAT) for deep tissue imaging. We developed a series of 

algorithms that are able to quantify deep tissue photoacoustic imaging. We 

demonstrated by simulations that spatial distributions of optical properties, namely 

optical absorption and scattering, as well as the Grüneisen parameter can be 
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faithfully reconstructed with our reconstruction algorithms. In the second part, we 

focused on developing new imaging platforms for quantitative photoacoustic 

microscopy (PAM) imaging for superficial imaging depths. We successfully 

included fluorescently-labeled molecular context in optical-resolution PAM (OR-

PAM) imaging by our integrated micro-endoscopy system that is able to 

simultaneously accomplish fluorescence and OR-PAM imaging. With our fast, 

wide field-of-view OR-PAM imaging technique, we significantly reduced the data 

acquisition time of conventional OR-PAM systems to a clinically realistic level. In 

the third part, experimental work is presented for quantitative imaging of 

vasculature variations and oxygen depletions due to photodynamic therapy with an 

acoustic-resolution PAM (AR-PAM) system we developed.    
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1. Introduction 

 

1.1 The need for micro-vasculature imaging 

Tumor angiogenesis refers to the proliferation of a blood vessel network that 

penetrates into cancerous growth [1]. From the 1970s, the importance of these 

vessels in tumors have been gradually identified as a hallmark of cancers [2]. To 

longitudinally and non-invasively monitor the angiogenic process is non-trivial, 

but could be very important to monitor tumor aggressiveness, track treatment 

efficacy, guide therapeutic decisions and to predict responders and non-responders. 

A number of techniques in biomedicine have been developed to visualize 

vasculature. For example, magnetic resonance angiography (MRA) based on 

magnetic resonance imaging (MRI) [3], X-ray computed tomography angiography 

(CT-Angiography, or CRA) [4], positron emission tomography (PET) [5] and 

contrast-enhanced ultrasound have been used. However, these methods are 

comparably expensive and requires utility of contrast agents. Limited by 

ultrasonic resolution, color and power Doppler techniques are only suitable for 

imaging large vessels [6]. Recently proposed optical techniques, such as laser 

Doppler imaging [7] [8] and laser speckle imaging [9] suffer from either limited 

penetration depth due to highly scattered photons in soft tissue, limited resolution 

or difficulty to target at specific regions of interests in practice. Moreover, they 

cannot visualize capillary-level changes, which is important for the angiogenetic 

process.  

1.2 Photoacoustic imaging 

Photoacoustic (PA, or optoacoustic, thermoacoustic) imaging is an ideal candidate 
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for tumor angiogenesis imaging, due to its non-invasiveness, non-ionizing nature 

and its capability to provide intrinsic optical contrast, which can be used to reveal 

important functional information in biological bodies [10][11]. PA imaging is a 

hybrid biomedical imaging modality based on the photoacoustic effect [12]. As a 

non-ionizing imaging technique, it has drawn dramatic attention in the last two 

decades [13][14][15].  

PA imaging relies on sensing acoustic energy from local transient thermal 

elastic expansion of absorbers due to ultra-short laser pulse irradiations. Therefore 

optical absorption provides the primary contrast for PA imaging. In biological 

subjects, while exogenous contrast agent are observable, hemoglobin in blood is 

the dominant absorber, PA imaging is thus ideal for visualizing vasculature 

without the use of exogenous agents. PA imaging falls into two categories: 

computational PA tomography (PAT), and scanning PA tomography, or PA 

microscopy (PAM). In PAT, an unfocused ultrasound transducer is used to detect 

the PA effect-induced acoustic waves, which are used to reconstruct tomographic 

images using an inverse algorithm [16]. In PAM [17], a pulsed laser beam is 

focused by an optical lens onto the target, and an ultrasound detector is employed 

to sense the acoustic waves, leading to 1D A-scan lines at each detection location, 

2D B-scans and 3D C-scan images are then formed from a set of A-scans. 

1.3 Problem statement and motivation 

Despite the success of PA imaging in a wide spectrum of topics, it is also facing a 

number of challenges.  

First, quantification of PA imaging is challenging. To visualize the optical 

properties based on PA images is important and very much desired [18]. For 

example, optical absorption can provide functional contrast, which reveals 
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angiogenesis and hypermetablism information; scattering spectra is related to 

physical properties of optical scatters such as cell nuclei size distribution. PA 

imaging quantification is nontrivial, because 1) it is in nature an ill-posed, 

nonlinear inverse problem [19]; 2) an unknown and spatially varying parameter, 

the Güneisen parameter, which is impossible to de-couple from the measurements 

makes the problem even more complex. It has been proved that with PAT images 

by single wavelength and single optical source, it is impossible to simultaneously 

recover both absorption and scattering maps [20]. This is known as the 

absorption-scattering non-uniqueness problem. Previous literature focused on 

estimating only absorption coefficient distribution from reconstructed PAT images 

[21] [22] [23]. Some investigators also tried estimating both absorption and 

scattering with measurements by multiple wavelengths [24][25] with a priori 

information about wavelength-dependence of optical scattering. Reconstruction of 

the Grüneisen parameter is also desired. As it varies among different soft tissue 

types, and is temperature-dependent, there is a potential for applications, for 

example, spatial temperature monitoring in various treatments [26]. However, no 

reports of reconstructing the spatial distribution of the Grüneisen parameter were 

yet found before the work presented in this thesis.  

 Second, except for other highly absorbing molecules such as melanin, 

hemoglobin dominates optical absorption, therefore only blood vessel structure is 

visualized in normal soft tissue. Inclusion of cellular information in PA imaging 

has the potential to make it a more powerful tool in biomedical imaging. For 

example, though angiogenesis is a hallmark of tumor growth, morphological 

variations of cellular structures plays the most important role in clinical diagnosis 

in early stage cancer. 

Third, slow imaging speed of conventional PA imaging systems hinders 
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application of this technique. PA imaging is essentially a fast imaging modality. 

For an ideal imaging system, the only time restriction is the time of flight from the 

imaging object to the ultrasonic sensing device. However, to form a 3D C-scan 

image, raster canning is a necessity. The utility of mechanical raster scanning 

significantly slows down the data acquisition speed [27]. Whereas some workers 

used optical scanning instead, field-of-view and signal-to-noise ratio of the 

imaging system are sacrificed [28][29].    

The long-term goal of this dissertation is to further previous work on 

quantitative photoacoustic imaging, targeting these three challenges. Specifically, 

to contribute to the development of efficient tools for quantitative imaging of 

tumor angiogenesis and anti-angiogenetic therapy.  

1.4 Major contribution of this dissertation 

Work described in this dissertation can be classified into the following three parts.  

1. Quantitative photoacoustic tomography (qPAT) 

We pioneered the use of multiple illuminations in photoacoustic tomography 

and explored the improved information content provided by such 

multiple-illumination schemes for quantitative imaging of optical properties. 

Previous to this work, most investigators working on photoacoustic tomography 

used blanket illumination or a single illumination pattern. However it was 

recognized that reconstruction of optical properties using photoacoustic data was 

challenging due to ill-posedness [26]. Yet in the Diffuse Optical Tomography field, 

multiple source-dector pairs were utilized to reconstruct coarse distributions of 

absorption and scattering parameters. Photoacoustic tomography used many 

multiple acoustic detectors previously but had not really considered multiple 

optical sources (with the exception of scanning photoacoustic microscopy 
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methods, however these scanning methods were not necessarily used for 

quantitative reconstructions of optical properties). We reasoned that photoacoustic 

tomography promised significantly higher spatial resolutions than DOT, moreover, 

adding multiple illuminations might pave a way to reconstruct optical properties 

with high photoacoustic resolution.  

We developed a series of algorithms to quantitatively estimate optical 

properties using multiple-illumination imaging schemes, as well as the Grüneisen 

parameter distributions for photoacoustic tomography (PAT) imaging. Previous to 

this work, most photoacoustic literature focused on reconstruction of 

photoacoustic initial pressures [16][10][13] or estimation of optical absorption 

maps [21][22][30][31] but with the exception of a few contributions [25], little 

had been done to reconstruct optical scattering distributions (with or without 

multiple illuminations) and no previous work had considered reconstruction of the 

Grüneisen parameter distributions. Reconstruction of scattering distributions is 

important because, for example, cell nuclei are often enlarged in tumors and 

pre-cancers, leading to higher bulk-scattering coefficients. Being able to image 

scattering distributions could lead to improved ability to diagnose or detect 

cancers or monitor the effect of therapies. The Grüneisen parameter is the constant 

of proportionality between absorbed energy density and photoacoustic initial 

pressure generation and had previously been taken as spatially constant, however 

it is known to increase as much as ~ 5% per degree Celcius temperature rise and 

reconstruction of this parameter could be important for temperature mapping [32]. 

Additionally since this paper was published others have measured the Grüneisen 

parameter and found it can vary from tissue to tissue [33].  

 We proposed a method using multiple-optical-sources to reconstruct optical 

absorption, scattering and Grüneisen parameter distributions in turbid 
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biological tissue simultaneously. This work resulted in publication [34]. 

Previous to this paper it was known that a given photoacoustic image could be 

associated with multiple absorption-scattering distributions hence quantitation 

of optical properties was challenging. In [34] we demonstrated that multiple 

optical illumination patterns could break this non-uniqueness and provided 

computational examples of demonstrating two pairs of absorption-scattering 

optical properties which gave the same simulated photoacoustic image with 

one illumination but not with a different illumination pattern. We provided a 

ratiometric algorithm which showed for the first time the potential of multiple 

illuminations to enable reconstruction of absorption, scattering and Gruneisen 

parameter distributions.  

 Previous quantitative reconstruction methods principally used 

ideally-reconstructed initial pressure distributions as a starting point. We 

proposed an iterative method to reconstruct optical properties directly using 

ultrasonic channel data (raw voltage signals as a function of time from each 

transducer element in a multi-detector array configuration). Unlike methods 

published before, this method does not rely on ideal reconstruction of PAT 

images, thus avoided degradation of reconstruction results due to imperfection, 

such as noise in PAT images. Also, instead of a two-step approach to first 

reconstruct initial pressures then reconstruct optical properties, our approach 

offers a one-step reconstruction inverting for both optical and acoustic data 

simultaneously. This algorithm again leverages multiple illuminations to 

provide an informative dataset for the reconstruction of optical absorption and 

scattering distributions but not Grüneisen distributions. This work was 

published as [35]. 

 Many of the previous approaches (including our previous works) required 
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inversion of large matrices which quickly scaled to unrealistically large 

matrices with a fine 3D mesh. To address this problem, I assisted my 

colleague Tyler Harrison in developing a fixed point iterative least-squares 

algorithm for reconstructing optical scattering distributions in a medium with 

a known scattering distribution [36]. A key advantage of this algorithm is that 

a key matrix inversion was performed analytically rather than computationally 

which is important for minimizing computational complexity and to minimize 

numerical errors associated with inverting ill-conditioned matrices. The 

algorithm was an extension of a previous method proposed by Cox et al. [21] 

for a single illumination scheme but shown to exhibit convergence problems 

with over-iteration including using experimental data as demonstrated by 

Jetzfellner et al. [31]. Our algorithm was a least-squares multiple-source 

extension to this previous work and we demonstrated that multiple-source data 

offered significant potential for ensuring convergence. This work was 

extended by including scattering as a parameter to reconstruct. We proposed a 

hybrid strategy which consecutively reconstructs optical absorption and 

scattering using multiple illuminations. While large matrices still needed to be 

inverted for scattering reconstructions, our low-complexity least-squares fixed 

point iteration approach was used for absorption reconstruction. By taking 

advantages of the robustness and fast convergence of absorption estimation, 

we demonstrated with simulations that the new method can faithfully 

reconstruct both absorption and scattering at a realistic signal-to-noise ratio 

level of ~ 30 dB and is the first algorithm and approach to show promise for 

experimental implementation. 

We were not yet able to experimentally realize the concepts discussed here. 

However, the methods presented may prove important for quantitative 
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photoacoustic imaging in deep tissue (cm) on a macro-scale and will be the topic 

of ongoing work. 

2. Development of new imaging platforms. 

 We developed an imaging platform which for the first time included 

fluorescently-labeled cellular context in photoacoustic microscopy (PAM) 

imaging by combining a fluorescent imaging system and our 

micro-endoscopic PAM system. This approach avoids the necessity of a 

fluorescent label to be injected to visualize the microvasculature as it instead 

uses endogous hemoglobin contrast for photoacoustic imaging. Fluorescent 

labelling of cells is accomplished by a simple topical applicator so the 

approach is non-invasive and has potential for clinical translation. This work 

was published in [37]. 

 We developed a fast, wide FOV imaging system using a fast fiber laser system, 

optical scanning and the mosaicing acquisition and processing. Our system is 

able to achieve arbitrary FOVs and reduced imaging acquisition time of 

conventional mechanical scanning PAM imaging systems by over 20 times. 

This work was published in [38].  

The work is in nature experimental and focuses on developing imaging 

platforms for superficial (< 3 mm) micro-scale structure visualization in biological 

objects with the optical-resolution PAM technique. This work used fiber lasers 

with repetition rates significantly higher than most previous approaches. The 

improved imaging speed and field of view may help make the technique easier to 

use for biologists and could help facilitate translation to the clinic. 

3. An example of applications: monitoring photodynamic therapy with 

acoustic-resolution photoacoustic microscopy.  

 We demonstrated the capability of our custom-developed acoustic-resolution 



9 

 

 

PAM system for monitoring vasculature changes and oxygen saturation 

variations induced by photodynamic therapy. This is the first report of using 

PAM technique to quantitatively study morphological and functional changes 

of blood vessel structures in small animal models before, during, and after 

photodynamic therapy treatments. The work shows promise for detecting 

vessel ablation and oxygen depletion in blood and tissues during and after 

photodynamic therapy and could lead to improved treatment guidance and 

could help predict responders from non-responders.  

1.5 Organization of this dissertation 

The rest of the dissertation is organized as follows: Chapter 2 provide background 

knowledge on tumor angiogenesis and photodynamic therapy, principle of PA 

imaging, as well as literature review on the development of PA imaging 

techniques. The work presented in this dissertation can be divided into three parts. 

The first part (chapters 3-5) is focused on quantitative photoacoustic tomography 

(qPAT). The second part (Chapters 6-7) is focused on developing new imaging 

platforms for quantitative photoacoustic microscopy (PAM). In the third part 

(Chapter 8), experimental work is described for quantitative imaging of 

vasculature variations due to photodynamic therapy with PAM. Chapter 9 

summarizes contributions, discusses conclusions and future work. 

Contents of this dissertation (Chapter 3 to Chapter 8) are drawn from the 

following publications with permissions: 

[1] P. Shao, B. Cox and R. J. Zemp, Estimating Optical Absorption, 

Scattering, and Grueneisen Distributions with Multiple-Illumination 

Photoacoustic Tomography, Appl. Opt., 50(19), 3145-3154, 2011.  

[2] P. Shao and R. J. Zemp, Iterative Algorithm for Multiple-Illumination 
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Photoacoustic Tomography (MIPAT) Using Ultrasound Channel Data, 

Biomed. Opt. Express, 3(12), 3240-3249, 2012. 

[3] P. Shao, T. Harrison, and R. J. Zemp, A Consecutive Strategy for 

Estimating Absorption and Scattering Coefficient Distributions in 

Multiple-Illumination Photoacoustic Tomography (MI-PAT), submitted to 

J. Biomed. Opt., under review, 2014. 

[4] P. Shao, W. Shi, P. Haji Reza and R. J. Zemp, Integrated 

Micro-Endoscopy System for Simultaneous Fluorescence and 

Optical-Resolution Photoacoustic Imaging, J. Biomed. Opt., 17(7), 

076024, 2012. 

[5] P. Shao, W. Shi, R. K. Chee, and R. J. Zemp, Mosaic Acquisition and 

Processing for Optical-Resolution Photoacoustic Microscopy,  J. Biomed. 

Opt., 17(8), 070503, 2012. 

[6] P. Shao, Roger J. Zemp, Monitoring Photodynamic Therapy Using 

Photoacoustic Microscopy, in preparation, 2014. 
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2.  Background 

 

2.1. Tumor angiogenesis and anti-angiogenetic therapy 

Angiogenesis is the process of blood vessel formation from existing vasculature. 

Tumor angiogenesis refers to the tumor-induced chaotic proliferation of blood 

vessel structures penetrating into cancerous tissue [1]. The blood vessel network 

supplies nutrients and oxygen and remove waste products from tumors [2]. Though 

permeable blood vessels surround tumors have been observed for a long history, its 

importance in diagnosis and treatment of cancer was not recognized until the 1970s. 

It is well-appreciated nowadays that angiogenesis is a critical component of tumor 

metastasis [3]. A highly vascular tumor might lead to high potential to produce 

metastases. For example, studies implied a direct correlation between vascular 

density and the likelihood of metastasis in human breast cancer patients [4].  

Angiogenesis is initiated by certain stimuli, mainly exposure of cancer tissue 

to hypoxia [5]. After a complex response by cancer cells, transcription of certain 

growth factors is started within the nucleus. These factors include the well-known 

VEGF (vessel endothelial growth factor), VEGR-C, endothelin-1, platelet-derived 

growth factor and so on. These growth factors stimulate the growth of endothelial 

cells, which lead to formation of new blood vessels. The revolutionary concept 

antiangiogenesis was proposed by Folkman J. in 1971. As a pioneer on tumor 

angiogenesis, he proposed to treat cancer by ‘preventing new vessel sprouts from 

penetrating into early tumor implant.’ [5]. Efforts were directed to search for agents 

targeting VEGF, or multiple growth factors [6]. Three classes of agents targeting at 

VEGF were developed, including monoclonal antibodies, VEGF decoy receptors 
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and small molecule tyrosine kinase inhibitors (TKIs). 

Development of aniangiogenetic therapy has been a long journey. The first 

antiangiogenesis drug was approved by FDA in 2004, over 30 years after Folkman’s 

imagineray hypothesis. However, only modest improvement in terms of survival 

benefits were observed, ‘with possible exception of … renal-cell carcinoma [6].' 

There are still many questions with unclear answers, for example, resistance to 

angiogenetic therapy.   

2.2. Photodynamic therapy 

Photodynamic therapy (PDT) is a photochemistry-based method which uses light 

at certain wavelength illuminating light-activable chemical, namely a 

photosensitizer (PS), to generate reactive oxygen species (ROS) that is cytotoxic to 

diseased cells [7]. In modern clinical settings, PS administration is accomplished 

either intravenously or topically, followed by laser illumination. PDT is an oxygen-

dependent procedure [8]: when irradiated by light, the PS transfers energy from 

photons to molecular oxygen to generate ROS, such as singlet oxygen (1O2) and 

free radicals. PDT is used clinically to treat a wide spectrum of medical conditions, 

for example, skin disease [9] and cancer [10]. It impacts a tumor by several 

mechanisms, among which vascular damage is one of the most important.  

Evaluation of PDT efficacy is an challenging topic. Conventionally, 

researchers focus on measurement of the two fundamental elements of PDT: PS and 

light dose administration [11]. However, it is now recognized that simple 

measurements of these quantities are not sufficient. Real-time monitoring of 

multiple dosimetric parameters including biological response is urgently needed for 

personalized treatment planning and evaluation [11]. Vascular damage, in terms of 

blood flow, vessel diameter and blood perfusion variations, are some of the 

representative factors of biological response.  
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2.3. Micro-vasculature imaging 

Effective imaging techniques are desirable for both fundamental research and 

clinical purposes in the aforementioned areas. Quite a number of approaches have 

been proposed to visualize vasculature. For example, Magnetic resonance 

angiography (MRA) – a group of techniques based on magnetic resonance imaging 

(MRI). However, the necessity of imaging contrast agent, comparatively high cost 

and limited spatial and temporal resolution hinders its applications [12]. There is 

always a trade-off between higher field strength and parameters such as scan time, 

spatial resolution and contrast agent dose. X-ray-based computed tomography 

angiography (CT-Angiography, or CRA) is becoming more popular and is able to 

provide better spatial resolution than MRI methods with access to almost any 

regions of interests in human bodies. But the significant amount of ionizing 

radiation and difficulty in contrast agent administration is a challenge [13]. In a 

study by Einstein A. J. et al. [14], the authors argued that there is a ‘nonnegligible’ 

correlation between use of a 64-slice CRA and lifetime of attributable risk of cancer. 

Positron emission tomography (PET) is a nuclear functional imaging technique to 

trace positron-emitting tracer in human bodies. 3D images are reconstructed with 

the assistance of CT or MRI to assess tracer concentration in the subjects. PET has 

been used for vasculature imaging since 1997 [15]. However, tremendous 

challenges still exist such as poor spatial resolution (millimeter), high-cost and 

exposure of patients to radiation by tracer [16]. Ultrasound imaging, as a fast, 

portable, cost-effective, non-ionizing and noninvasive technique, is commonly used 

for studying vasculature in clinical practices. Usually color or power Doppler 

images, which are produced with the Doppler Effect containing information such 

as blood vessel structure, relative velocity and directions of blood flow are co-

registered with ultrasound sonography [17]. However, this technique can only 
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provide limited spatial resolution determined by ultrasound imaging system. 

Whereas intravascular ultrasound (IVUS) significantly improves imaging 

resolution (with a lateral resolution of 200 – 250 𝜇𝑚, axial resolution of ~80 𝜇𝑚) 

compared with clinical ultrasonography [18], the invasiveness by inserting 

miniature probing device into blood vessels is a concern [19]. Advanced optical 

techniques have been used for micro-vascular imaging. Optical Doppler 

tomography [20] is a technique that combines the laser Doppler flowmetry and 

optical coherence tomography. Whereas high spatial resolution is achieved with this 

technique, its penetration depth in turbid soft tissue is limited [21] [22]. Recently 

laser speckle contrast imaging [9] has been proposed to study vasculature change. 

However, as addressed by Duncan D. et al. [23], because the results by this 

technique are in arbitrary units, it can only serve as a semi-quantitative real-time 

mapping of blood flow fields and calibration is needed.  

2.4. Photoacoustic imaging 

Photoacoustic (PA) imaging is based on the PA effect, which refers to generation of 

acoustic energy based on absorption of electromagnetic (EM) energy [24]. PA effect 

was first discovered by the eminent scientist Alexander G. Bell while searching for 

means to transmit sound over long distance and reported in 1880 [25]. However, 

the effect was soon abandoned till the invention of intensive light sources and 

reliable acoustic sensors before being applied to different fields.  

PA imaging in biomedicine was pioneered in late 1980’s and soon developed 

very quick because of its multifold advantages. The main driver behind early efforts 

was to combine ultrasonic resolution and intrinsic optical contrast, although optical-

resolution PA imaging techniques was proposed later in 2008 [26]. In pure optical 

imaging, scattering of photons in turbid biological tissue significantly degrades 

spatial resolution. Despite that ultrasound provides with greater penetration depth, 
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mechanical properties detected by pure ultrasonic imaging technique is weak [17]. 

Combining these two aspects takes advantages of the two energy forms. Since 

ultrasound is ~ 1000 times less scattered in soft tissue [17], initial pressure 

generated by PA, which carries optical contrast information is able to propagates 

over a longer distance. The non-ionizing mechanical waves in PA imaging are not 

biologically hazardous. Moreover, since the dominant absorber in soft tissue is oxy- 

and deoxyhemoglobin (others include water and melanin), demultiplexing of these 

two components can provide functional information, namely the oxygen 

concentration (SO2) in biological tissue, which reveals physiological information 

of significant importance. 

In PA imaging, upon absorption of laser pulses with short duration, local 

thermoelastic expansion-induced transient acoustic pressure acts as initial acoustic 

sources. The acoustic waves propagate through the tissue to the surface and are 

detected by ultrasound sensors positioned nearby. Recorded acoustic waves are 

stored for image reconstruction to estimate the internal structure of the biological 

target. According to the image reconstruction method involved in PA imaging, it 

can be classified into two categories: computational photoacoustic tomography 

(PAT) and scanning photoacoustic microscopy (PAM).  

Computational Photoacoustic Tomography (PAT) 

Computational photoacoustic tomography (usually termed as photoacoustic 

tomography, PAT) is based on image reconstruction with backprojection algorithms 

[27].  With this technique, usually a nanosecond-pulsed wide-field laser is used as 

the light source, above the target for sample surface heating. An ultrasound 

transducer is nearby to sense generated photoacoustic signals. To optimize lateral 

resolution, Wang et al. [27] proposed to scan the acoustic sensor in a plane 

perpendicular to the laser irradiation axis with a motorized stage, as is shown in 
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Figure 2.1. A modified back-projection method is used for image reconstruction. A 

resolution of ~ 60 𝜇𝑚 was achieved with a 10-MHz center-frequency transducer, 

which has a similar diffraction limit.  

 

 

Figure 2.1 A typical PAT imaging system [27]. 

 

Alternative imaging system setups were proposed to reduce imaging time by 

avoiding or minimizing mechanical scanning. Conventional linear array 

transducers was utilized [28] [29]. Ephrat et al. [30] used a sparse 2D annular 

detector array. Gamelin J. [31] introduced a custom-fabricated 5-MHz 128-element 

curved ultrasonic transducer array that covers a 90-degree field of view (FOV). 

Mechanical rotation is required to cover a 360-degree full FOV. Gamelin [32] and 

Yao [33] then introduced a second generation curved ring with 512 detector 

elements. This ring provides with a 0.1-mm axial resolution and a 0.25-mm 

transverse resolution. Kruger et al. introduced a bowl-shape hemispherical 

transducer array [34]. Xiang et al. [35] reported a 4D PAT system with a spherical 

ultrasound transducer array, which included the time resolution to provide real-time 

3D PAT imaging. The system achieved hundred-millisecond temporal resolution.  
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Reconstruction algorithms are crucial for PAT. Analytic reconstruction 

methods were employed for PAT. Xu M. and Wang L. V. [36] reported the first 

reconstruction method based on the backprojection algorithm for PAT in a spherical 

geometry. A number of other algorithms of the filtered backprojection form were 

introduced [27] [37]. Paltauf et al. [38] utilized an iterative method to alleviate 

artifacts when using backprojection methods, which later on became an important 

topic in this field [39] [30]. Yao and Jiang used a finite element-based framework 

combined with total variation minimization to improve reconstruction quality using 

time-domain data [40]. In practice, sparse spatial sampling is desired to increase 

imaging speed. Compressed sensing techniques was introduced to compensate for 

recovering unobserved components (incomplete datasets) under certain conditions 

[41] [42]. With phantom studies and in vivo experiments, the authors demonstrates 

that undersampling artefacts were effectively reduced.  

PAT can be used to for imaging deeper tissues than PAM. In [34], the authors 

used their PAT system to image vasculature in human breasts with a 40-mm 

penetration depth at a resolution of 250 𝜇𝑚. 

In this dissertation we discuss improving both PAT and PAM. For PAT, we 

primarily use simulations to demonstrate new algorithms for improved 

quantification.  

Scanning photoacoustic microscopy (PAM) 

Scanning photoacoustic microscopy is very much similar to the clinically used 

ultrasonography imaging in principle. An ultrasonic detector (transducer) scans 

along a soft tissue to collect multiple A-scan signals, which can be converted to 

single 1D image depicting structure information along the vertical axis. Multiple 

A-scans generated sequentially along one direction are then combined to form a B-

scan cross-sectional view, or tomography. B-scan images are further stacked 
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together to generate 3D C-scan volumetric view. The maximum amplitude 

projection (MAP, or maximum intensity projection, MIP) method was employed to 

visualize the 3D dataset on the plane of projection (horizontal plane). 

Scanning photoacoustic microscopy falls into two classes: the acoustic-

resolution photoacoustic microscopy (AR-PAM) [43] and optical-resolution 

photoacoustic microscopy (OR-PAM) [44].  

AR-PAM was first proposed by Maslov et al. [43] in 2005. In the first-reported 

setup, light coming out the light-deliver optical fiber is coaxially positioned with a 

focused ultrasound transducer with a 50-MHz center frequency (Fig. 2.2). NA 

(numerical aperture) of the transducer is as high as 0.44. Light pulse is first 

expanded and then focused by an optical condenser lens with a NA of 1.1. Foci of 

the light beam and the ultrasonic detector are aligned. The imaging system reached 

a lateral resolution of 45 𝜇𝑚 and a 3-mm imaging depth. The author claimed 

multiple advantages of the dark-field illumination design, including reduced optical 

fluence on sample surface, mitigated shadows of superficial heterogeneities in 

images, and alleviated strong interference of the extraneous photoacoustic signals 

from superficial areas. 

 

 

Figure 2.2 Schematic of the reflection-mode dark-field illumination acoustic-resolution 

photoacoustic tomography (AR-PAM) [43]. 

 

In AR-PAM imaging system, the axial resolution is determined by two factors 

[24]: the width of the ultrasound transducer impulse response, and the width of the 

irradiation laser pulses. AR-PAM system can provide a maximum penetration depth 
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to depth resolution ratio of over 100 [45]. Lateral resolution relies on the dimension 

of ultrasonic focal zone, which is in turn determined by the center-frequency and f-

number of the transducer [17]. The detection sensitivity system decreases 

significantly outside the focal zone. As the imaging system works in the reflection 

mode rather than transmission mode, superficial layers of thick tissues can be 

imaged. With penetration depth on the order of millimeters, AR-PAM finds its 

applications in imaging vasculature [45], SO2 in blood vessels [46], subcutaneous 

melanoma [47], and real-time cardiovascular dynamics [48] in nude mice. 

Alternative setups were proposed. Zemp et al. reported a system utilizing a high-

frequency array transducer [49]. Zhang et al [50] from University College London 

reported their design utilizing a transparent Febry-Perot sensor poisoned on the 

surface of the target to detect PA signal in the backward reflection fashion. Raster 

scanning was accomplished by moving the light source on a 2D motion stage. Since 

the spatial resolution is also determined by limitations of effect detection element 

size, it also falls into the category of AR-PAM. Success of this design was 

demonstrated in in vivo studies visualizing mouse brain vasculature [51] and tumor 

vasculature development [52]. 

OR-PAM imaging system was introduced in 2008 by Maslov et al. [26]. Rather 

than defining the lateral resolution with the focal zone of the ultrasound detector 

like AR-PAM, the system takes advantages of a strongly-focused bright field 

illumination (spot size 3.7 𝜇𝑚, focal zone 200 𝜇𝑚) to provide high resolution 

( experimentally demonstrated as 5 𝜇𝑚 ). An imaging depth of 0.7 𝑚𝑚  was 

achieved. Energy of a single laser pulse was 100 𝑛𝐽 . Center-frequency of the 

ultrasound transducer was 75 MHz and a focal width of 27 𝜇𝑚 was realized. 

Similar to PAM, the MAP method was used to visualize 3D volumetric data set. In 

the second generation OR-PAM by Hu et al. [53], the signal-to-noise ratio was 
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significantly increased by 18 dB with a novel acoustic coupling design. Penetration 

depth was deepened to 1.2 mm.  

 

 
Figure 2.3 Schematic of the first optical-resolution photoacoustic microscopy (OR-PAM) 

system [26]. 

 

OR-PAM has been intensively studied ever since. Besides being applied to 

study structural information of vasculatures with high resolution [44], it has been 

utilized to study oxygen saturation in scenarios. Hu et al. [54] reported the first 

imaging of 3D volumetric structural and functional images of brain 

microvasculature through intact skull. Hu et al. also reported micro-hemodynamics 

[55][56] activities, such as vasomotion and vasodilation in small animals imaged 

with OR-PAM. These studies demonstrated the power of OR-PAM as a non-

invasive, high-resolution imaging technique for potential broad applications in both 

biological and clinical studies. The healing process of lesions induced by laser 

burns [57] was imaged with OR-PAM. Amyloid plaques in the brain of a transgenic 

mouse model was imaged with OR-PAM [58]. Ophthalmic angiography using OR-

PAM was introduced to image ocular microvasculature in living animals [59] as 

well as oxygen saturation in the iris microvasculature.  
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To speed up data acquisition, different scanning schemes were proposed. Rao 

et al. [60] reported a hybrid-scanning OR-PAM scheme. With this system, fast 

scanning in 1 dimension was accomplished with a galvanometer mirror and 

mechanical scanning was used for scanning in the other dimension. A cylindrically-

focused transducer was used to receive acoustic signals. Xie et al. [61] reported a 

system using purely optical-scanning by a pair of galvanometer mirrors. Using a 

laser with a pulse repetition rate of 1024 Hz, it took only 2 min to generate an image 

with 256 × 256 pixels. Wang [62] used a fast voice-coil system to realize 1D fast 

scanning at the frequency of 40 Hz for B-scan. A motor stage was used for scanning 

along the other axis. Endoscopic imaging setup was proposed for OR-PAM [63]. 

Shi et al. [64] reported the first near-real time OR-PAM with optical-scanning and 

customized photoacoustic imaging probe [65]. By using a pulsed laser system with 

a laser pulse repetition rate of 600 kHz, a data acquisition rate of 4 frames per 

second was achieved. Field-of-view of the system, however, was limited to 1mm × 

1mm.  

Functional photoacoustic imaging 

PA imaging is the only imaging modality that is able to provide morphological, 

functional and molecular imaging of ‘organelles, cells, tissues, and organs in vivo’ 

with high resolution at multiple scales [66]. Functional information here refers to 

physiological parameters including oxygenation and micro-hemodynamics.  

Oxygenation in soft tissue is measured with oxygen saturation (SO2). This is 

achieved by estimating concentrations of oxy- and deoxyhemoglobin: C𝑜𝑥  and 

C𝑑𝑒  [67]. If we denote two laser wavelengths with 𝜆1  and 𝜆2 , the optical 

absorption coefficient can be written as: 
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 μa(𝜆1) = 𝑙𝑛(10) 𝜀𝑜𝑥(𝜆1)𝐶𝑜𝑥 + 𝑙𝑛(10) 𝜀𝑑𝑒(𝜆1)𝐶𝑑𝑒 (2.1) 

 μa(𝜆2) = 𝑙𝑛(10) 𝜀𝑜𝑥(𝜆2)𝐶𝑜𝑥 + 𝑙𝑛(10) 𝜀𝑑𝑒(𝜆2)𝐶𝑑𝑒 (2.2) 

   

where 𝜀𝑜𝑥  and 𝜀𝑑𝑒  are the known molar extinction coefficients of oxy- and 

deoxyhemoglobin, respectively. Once C𝑜𝑥  and C𝑑𝑒  are obtained, SO2 is 

computed with 

 

 SO2 =
𝐶𝑜𝑥

𝐶𝑜𝑥 + 𝐶𝑑𝑒
× 100%. (2.3) 

   

This is also the principle of pulse oxymetry.  

SO2 is of significant importance in many applications. Examples include 

microcirculatory physiology, pathology, tumor angiogenesis, laser microsurgery, 

neuroscience etc. Zhang H. et al. [45] [68] pioneered estimating SO2 with AR-PAM 

techniques. Hu S. et al. used OR-PAM to measure SO2 in soft tissue [54]. 

Recently, Ashkenazi et al. [69][70] demonstrated the feasibility of performing 

photoacoustic lifetime imaging to estimate partial oxygen pressure (PO2) in soft 

tissue. PO2 refers to the pressure oxygen exerted in a mixture of other gases. By 

using a pump beam to excite chromophores out of their ground state, then using a 

time-delayed probe pulse to interrogate the remaining ground-state population as a 

function of pump-probe time delays, life-time curves according to different PO2 

level in biological objects is depicted.  

Photoacoustic imaging of tumor angiogenesis and treatment monitoring 

PA technique is an ideal candidate for vasculature imaging in biomedicine because 

its noninvasiveness, high resolution and capability to provide intrinsic optical 

contrast. Efforts have been directed to blood vessel vasculature imaging. Ku et al. 
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[71] described their work using a PAT system imaging angiogenesis induced by a 

brain tumor in rat model. The authors concluded that with a contrast that is good 

enough, the tumor can be diagnosed with the neovasculature observed. Xiang et al. 

[72] reported a serial PAT images of neovascularization in tumor angiogenesis in a 

rat with implanted gliosarcoma. Hu et al. [73] first implemented OR-PAM 

technique to chronic study of microchemodynamics. They reported longitudinal 

monitoring of hypoxia-inducible factor-1-mediated angiogenesis in a transgenic 

mouse model with their OR-PAM system.  

Besides neovascularization, cancer treatment evaluation with PA technique was 

also proposed. Monitoring of photodynamic therapy (PDT) is one of the examples. 

Monitoring of dosimetric parameters such as light dose and photosensitizer 

administration [11] fail to evaluate efficacy of PDT. PA imaging has the potential 

for monitoring PDT by directly imaging biological response to the treatment. An 

early trial study was conducted by Xiang et al. [74], in which the authors 

demonstrated the capability of PAT technique to image tumor neovasculaturization 

and blood vessel destruction due to PDT.  

2.5. Challenges of photoacoustic techniques 

Despite the success of PA imaging in various applications, challenges exist in tumor 

angiogenesis imaging using PA techniques.  

Quantification of photoacoustic imaging 

To visualize the intrinsic optical properties, namely optical absorption and 

scattering in soft tissue is one of the most important purposes of PA imaging. This 

is called the quantification of PA imaging.  

In this dissertation, we focus on quantitative photoacoustic tomography (qPAT) 

techniques. Usually, two steps are involved in qPAT: In the first step, one seeks to 
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recover photoacoustic initial pressure distribution. The second step focus on 

estimating the optical properties, namely absorption and scattering maps based on 

the first step. The first step is an ultrasonic inverse problem, whose framework has 

already been well-established, based on knowledge developed for other imaging 

modalities. The second step, which is an optical inverse problem, is rather 

challenging. 

The contrast of PA imaging is mainly provided by optical absorption. Typical 

absorbers of interests in biological bodies include a) endogenous molecules, for 

example, hemoglobin (oxy- and deoxy-), melanin etc.; b) exogenous contrast agents, 

such as cell-surface receptor and biomolecules; c) optically absorbing enzymes or 

proteins [75]. The spatially varying optical property distributions can be used to 

reveal important physiological and pathological information, in both morphology 

and function. For example, quantitative estimates of concentrations of oxy- and 

deoxy-hemoglobin can be used to obtain oxygen saturation (SO2), which is of 

significant importance of a wide spectrum of applications in biomedical studies and 

clinical practices. One example is hyper-metabolism in cancer [2]. Scattering 

coefficient distributions, which is due to micro-structure of soft tissue, may 

represent important morphological information interests researchers. For example, 

size distribution of cell nuclei can be used for cancer diagnosis, as enlarged nuclei 

are characteristic of many cancers [76]. However, quantitative reconstruction of 

optical property distributions form PA imaging is a rather challenging task, because 

in nature it is an ill-posed nonlinear problem. The initial pressure 𝑝 generated in 

PA imaging is a determined by local absorption 𝜇𝑎 , optical fluence Φ and the 

Grüneisen parameter Γ, which is a measure of conversion efficiency from heat to 

stress: 
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 𝑝 = Γ𝜇𝑎Φ(𝜇𝑎, 𝜇𝑠
′). (2.4) 

 

However, the local optical fluence, is unknown in PA imaging. Moreover, since it 

is also a function of 𝜇𝑎 and local scattering property (quantified by the reduced 

scattering coefficient 𝜇𝑠
′ , sometime with the diffusion coefficient D), to estimate 

{𝜇𝑎, 𝜇𝑠
′ } is a nonlinear problem. The spatially varying Grüneisen parameter Γ 

makes this problem even more complex. Quite a number of methods have been 

proposed for recovering optical absorption coefficient distribution in turbid 

biological media [77][78][79][80]. It has also been proved that without priori 

information such as wavelength dependence of optical scattering, it is impossible 

to correctly recover the optical properties [81]. Cox et al. [82] extended the work 

of previous literature by reconstructing both absorption and reduced scattering 

coefficients. However, with his method, multiple-wavelength, with the assistance 

of the priori information about wavelength of optical scattering have to been used. 

A common element lacked in the literature is the reconstruction of the Grüneisen 

parameter. Because it varies significantly among tissue types and is temperature-

dependent [83], the spatial reconstruction of Grüneisen parameter can lead to 

important applications in clinical settings, for example, spatial temperature 

monitoring for treatments.  

Lack of cellular contexts besides vasculature 

PA imaging is ideal for vasculature visualization, because hemoglobin is the 

dominant optical absorber in biological soft tissue. However, usually no cellular 

contexts can be visualized with label-free PA imaging, despite other optical 

absorbing structures exist, such as melanin, lipids, DNA etc [66]. Morphology at 

cellular level can be vital for fundamental research and clinical studies. For example, 

despite the chaotic angiogenesis is considered a hallmark of tumor [3], 
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morphological change in pathology is still the most important factor for cancer 

diagnosis. Cancerous cells share similarities such as large nucleus, irregular size 

and shape, prominent nucleoli, scarce cytoplasm, and either intense color or pale 

[84]. None of these can be observed with conventional PA imaging systems. PA 

imaging has been employed to image tumor angiogenesis [72][73]. Chen et al. [85] 

used PAM system to evaluate angiogenesis inhibitor. Whereas blood vessel 

structure were quantitatively observed, visualized cellular structures can be used to 

enrich these studies by locating the cancerous tissue, evaluating treatment efficacy 

by studying the interaction between angiogenesis and tumor growth, etc.  

Long data acquisition time in scanning PAM imaging 

PA imaging is fundamentally a fast imaging technique [66]. For each A-scan in 

scanning PAM imaging, the only time restriction come from the time of flight of 

the PA acoustic waves from the internal acoustic source in the object to the sensing 

device. However, point-to-point raster scanning could be rather time consuming. 

Conventional PAM system employs mechanical scanning of either the object or the 

bulky imaging head, which consists of the ultrasonic detecting device and the 

optical focusing components [45] [44] [53]. Therefore the data acquisition time is 

limited by 1) mechanical scanning speed and 2) laser pulse repetition rate and 3) 

data transfer. Usually, mechanical scanning is slow, which restrict the overall 

imaging speed. For example, in the first report of OR-PAM, to image a 1 𝑚𝑚 × 1 

𝑚𝑚-FOV with a pixel size of 1.25 𝜇𝑚, 10 𝑚𝑖𝑛 is needed [44]. It took the second 

generation OR-PAM by Hu et al. 70 min to image an ear of 7.8 mm ×10 mm [53]. 

In [50], 1 s is needed for each A-scan line scanning. Optical scanning is proposed 

to speed up data acquisition [61]. However, whereas raster scanning is significantly 

faster, a trade-off between SNR and FOV always exists. There are also hybrid 

scanning reported, which use optical scanning in 1 direction and mechanical in the 
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other axis [60][62]. However, the FOV of these systems is limited in at least one 

direction. 
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3.  Estimating Optical Absorption, Scattering, 

and Grüeneisen Distributions with Multiple-

Illumination Photoacoustic Tomography 

(MI-PAT)1 

 

3.1 Introduction 

Photoacoustic tomography (PAT) is a unique new imaging technology capable of 

generating images with high optical contrast, fine ultrasonic spatial resolution, and 

good imaging depth [1]. Despite its recent attention in the bio-imaging community, 

presently, quantitative reconstruction of optical properties in photoacoustic imaging 

is rather challenging due to several reasons. First, photoacoustic signals emitted 

from a subcutaneous location are proportional to the unknown optical fluence, 

which is in turn, a function of the distributed optical properties to be estimated. This 

introduces a non-linear relationship between the measured signals and the optical 

properties to be recovered. Second, a given optically-induced heating distribution 

could be produced by multiple possible optical property distributions. Furthermore, 

the Grüeneisen parameters may vary between tissue types. The present project 

proposes an inversion methodology which addresses each of these challenges. 

A number of methods have emerged for quantitative estimation of optical 

properties using photoacoustics. Cox B. T. et al. [2] proposed to recover absorption 

coefficient distribution with a fixed-point iterative inversion scheme when the 

                                                 

1 A version of this chapter has been published. Reprint with permission from: P. Shao, B. Cox 

and R. J. Zemp, Appl. Opt., 50(19), p.3145-3154, 2011. Copyright 2011 OSA. 
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scattering distribution is known. Yuan Z. and Jiang H. [3] reconstructed absorption 

coefficient map based on the finite-element solution to diffuse equation. Ripoll J. 

and Ntziachristos V. [4] also described an iterative diffusion-regime inverse method, 

which can recover small perturbations in the absorption coefficient distribution 

when the optical properties of the background turbid medium are known. Jetzfellner 

T. et al. [5] investigated the experimental performance of an iterative approach and 

found that it was sensitive to errors in the scattering coefficient. Banerjee B. et al. 

[6] proposed a non-iterative scheme to recover the absorption coefficient map, 

which is applicable to only highly scattering media. Yin L. et al. [7] suggested 

iteratively estimating absorbed energy density with photoacoustic tomography 

(PAT) and the interior fluence distribution with diffusing light measurements, and 

then calculating the absorption coefficient with quotient of the two quantities. Yuan 

Z. et al. [8] proposed the use of a method based on diffusion equation with a priori 

structural information from PAT images serving as a means of regularization. 

Unfortunately, the PAT image may be biased by the nonuniform fluence and thus 

the a priori structural information from the PAT image may not be reliable. Cox B. 

T. et al. [9] further extended the work of previous literature to the case where both 

absorption and reduced scattering coefficients were unknown. He showed that 

multiple optical wavelengths, with prior information about the wavelength-

dependence of the optical scattering, could overcome non-uniqueness and estimate 

chromophore distributions quantitatively, albeit with some numerical challenges. 

Guo Z. et al. [10] proposed a self-calibrating method to quantify absorption 

coefficient. By taking the ratio of acoustic spectrals of two optical wave lengths, 

factors such as system bandwidth and acoustic attenuation are canceled out. This 

method is robust to absolute fluence variations. However, it requires the fluence to 

follow the Beer-Lambert law and so is not generally applicable to heterogeneous 
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media. With the exception of the DOT (Diffuse Optical Tomography)-PAT hybrid 

technologies [7], the literature cited thus far has considered only a single optical 

illumination location. 

One of the common elements lacking in the above noted literature is the 

inability to decouple the Grüneisen parameter from the reconstructed optical 

parameter distributions. The Grüeneisen parameter Γ  is a unitless 

thermodynamical parameter quantifying the efficiency of conversion between 

thermal energy to acoustic energy. It is given as Γ = 𝛽𝑐2/𝐶𝑝 , where 𝛽 is the the 

volume thermal expansivity of the tissue, c is the speed of sound in the tissue, and 

𝐶𝑝 is the specific heat capacity at a constant pressure. While most reconstruction 

strategies assume that the Grüeneisen parameter is considered spatially constant, 

Cox B. T. et al. [11] point out that the Grüeneisen parameter may vary considerably 

between tissue types such as fat and blood. 

Additionally, the Grüeneisen parameter is highly temperature dependent, and 

several groups have shown how photoacoustics can track temperature changes by 

tracking variations in photoacoustic amplitude with temperature [12] [13] [14] [15] 

[16] [17] [18] [19]. In applications such as thermal therapy, where imaging of local 

heating is desired, the Grüeneisen coefficient may be spatially varying, and may 

change as much as a few percent per degree Celcius temperature rise [13]. To our 

knowledge, recent articles investigating photoacoustic thermometry choose to track 

only changes in the photoacoustic signals due to temperature sensitivity of the 

Grüeneisen parameter, and do not consider the reconstruction of this parameter. As 

with other temperature imaging methods [20] [21] [22] [23] [24], those methods 

requiring pre- and post-heating images are susceptible to motion artifacts and other 

physiological changes which often confound reliable temperature estimates. 

Imaging of the Grüeneisen parameter may lead to opportunities for quantifying 
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temperature distributions without confounding issues of tissue motion, although 

this remains to be seen. 

There has been little work done in quantitative photoacoustic reconstruction of 

optical properties when multiple optical source locations are involved. Zemp R. J. 

et al. [25] and Ranasinghesagara J. et al. [26] described a simple method for 

estimating optical scattering properties of turbid media using multiple surface 

illumination locations. That work also described a design for flexible light delivery 

with accompanying photoacoustic detection.  Multiple optical sources are 

routinely used in DOT. Multiple source-detector pair measurements are collected 

and then reconstructed to form images of absorption, scattering, and fluorescence 

with this technique. Unfortunately, DOT is limited to light collection from surface-

detectors. One potential advantage of multiple-optical-source photoacoustic 

imaging is that for each optical source, photoacoustic detection effectively provides 

an optical fluence measurement at each subsurface location and hence sub-surface 

points can be viewed as virtual detectors. Bal G. and Uhlmann G. [27] showed 

mathematically that absorption and diffusion coefficients can, in principle, be stably 

constructed from “ internal data” corresponding to “2n well-chosen boundary 

conditions”, where n is the dimension. By “internal data” they mean PAT images 

and by “boundary conditions” they mean illumination patterns. Their work, 

however, provided no computational or experimental studies nor a way to find the 

“well-chosen boundary conditions”. Our work could be viewed as a first step in 

assessing the practicality of concepts they discuss, but from a very different 

theoretical perspective. 

We recently proposed a novel reconstruction methodology utilizing faithful 

photoacoustic reconstructions of initial pressure distributions due to spatially 

distinct multiple illuminations (MI) [28]. We call the technique multiple-
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illumination photoacoustic tomography (MI-PAT). We showed that absolute 

reconstructions of absorption coefficient perturbations is possible with simulated 

data, and that these MI-PAT reconstructions are robust to spatially-varying 

Grüeneisen coefficients. 

Building on that success, the goal of this paper is to show that photoacoustic 

imaging with multiple optical illumination locations (sources) can provide 

quantitative estimates of tissue optical absorption and scattering perturbations with 

ultrasonic spatial resolution. For a given optical illumination geometry, a heating 

distribution can be reconstructed via photoacoustic tomography. The heating 

distribution can, however, be due to multiple possible absorption-scattering 

distribution pairs, hence, non-uniqueness confounds quantitative reconstruction 

methods when both absorption and scattering distributions are unknown. We 

demonstrate that alternative illumination geometries can alleviate this type of ill-

posedness, and that distributions of the optical absorption and diffusion coefficients 

may be faithfully reconstructed, albeit with some numerical challenges. This is the 

first report of, to our knowledge, a framework for reconstruction of both absorption 

and scattering coefficient distributions in a known turbid-tissue with a single optical 

wavelength. Suggestions for further reducing ill-conditioning are discussed. One 

unique aspect of our framework is that our reconstruction methods are immune to, 

and able to recover spatially-varying Grueneisen parameter distributions, which 

may be important in practice due to large variations in this parameter for different 

tissue types or when temperature varies in an imaging subject. We also compare 

conditioning (singular values) of our methods with Continuous-Wave Diffuse 

Optical Tomography (CW-DOT) and show that MI-PAT is orders of magnitude less 

ill-posed. 
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3.2 Theory 

We assume that the true subcutaneous heating distribution at object location 𝐫 due 

to a laser pulse incident at location 𝐫𝑠𝑖 is given as 

 

 ℎ𝑖(𝐫) = 𝜇𝑎(𝐫)Φ(𝐫, 𝐫𝑠𝑖
 ) (3.1) 

   

where 𝜇𝑎  and Φ are the optical absorption coefficient and the optical fluence, 

respectively. Local heating induces a thermoelastic expansion with initial 

photoacoustic pressure generation given as 

 

 𝑝𝑖(𝐫) = Γ(𝐫)𝜇𝑎(𝐫)Φ(𝐫, 𝐫𝑠𝑖
 ) (3.2) 

   

where Γ(𝐫) is the Grüeneisen parameter as a function of object position. The initial 

pressure distribution can be reconstructed from received photoacoustic signals 

𝑔i(𝐫𝑑, 𝑡) [1] 

 

 �̂�𝑖(𝐫) = 𝑂{𝑔i(𝐫𝑑, 𝑡)} (3.3) 

   

where 𝑂 is a reconstruction operator, and where ultrasound detectors are located at 

locations 𝐫𝑑 and t is time. 

The reconstructed photoacoustic image due to illumination 𝑠𝑖 can be thought 

of as the true initial pressure distribution filtered by an imaging system, represented 

as functional operator 𝐻 which is linear but not necessarily shift-invariant: 

 

 �̂�𝑖(𝐫) = 𝐻{𝑝𝑖(𝐫)} + 𝑛 = 𝐻{Γ(𝐫)𝜇𝑎(𝐫)Φ𝑖(𝐫 )} + 𝑛 (3.4) 
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where n is additive noise and we use the abbreviated notation Φ(𝐫, 𝐫𝑠𝑖
 ) = Φ𝑖(𝐫 ). 

When the reconstruction is ideal, 𝐻 is modeled as a linear shift-invariant delta 

function. In general, however, 𝐻 is linear and shift-variant. 

3.2.1 Problem of absorption-scattering non-uniqueness 

Arridge S. and Lionheart W. [29] showed that in DOT there is a non-uniqueness 

between optical absorption and scattering, to the extent that it is not possible to 

recover a unique internal absorption distribution from d.c. measurements of the 

boundary fluence unless the scattering is known. Does the same non-uniqueness 

plague photoacoustic tomography (PAT)? The situation differs in two ways: first, 

the data for the optical inversion in PAT consists of measurements proportional to 

absorbed energy, h, rather than the fluence Φ, so the data depends more strongly 

on absorption than scattering; second, the data consists of internal measurements, 

i.e., the initial pressure is known for all interior points in contrast to DOT's 

measurements of Φ on the boundary. Despite these differences, a similar non-

uniqueness does affect PAT, although this has yet to be proven analytically. 

Numerical examples calculated by minimizing an error functional are given in Fig. 

3.1 and Ref [9]. 

Figure 3.1 shows two pairs of absorption and scattering distributions with 

background absorption coefficients of 0.02 cm-1 and reduced scattering coefficients 

of 5 cm-1. Absorption coefficient A has a circular heterogeneity of 1.2 cm-1. 

Reduced scattering coefficient A is constant at the background value in contrast to 

reduced scattering coefficient B which has the two circular scattering 

heterogeneities with 𝜇s′ = 15 cm-1. Absorption coefficient B was calculated to 

ensure that the absorbed energy distributions resulting from placing a point source 

centrally at the top of the 20 × 20 mm domain were identical to machine precision. 
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The calculations were performed using a finite element model of light transport [30] 

on a 40 × 40 element square mesh, with a boundary condition of zero incoming 

photon current. 

 

 

 

 

This example shows that non-uniquenesses can appear in PAT when a single 

optical source is used to illuminate the sample. This makes the extraction of 

quantitative estimates of absorption coefficient from absorbed energy distributions 

difficult, if not impossible. Additional independent information is necessary in 

order to mitigate the non-uniqueness. As mentioned in the Introduction, Cox B. et 

al. [9] proposed using knowledge of the wavelength dependence of the scattering 

Fig. 3.1. The absorption-scattering non-uniqueness problem in quantitative 

photoacoustic tomography. Give heating distributions (c) = (f) can be produced by the 

{𝝁𝒂, 𝝁′𝒔} distributions A {(a), (b)} or B {(d), (e)}. Because two pairs of absorption and 

scattering distributions, A and B, can produce the same heating distribution for a givan 

optical illumination geometry, approaches attempting to reconstruct optical properties 

using single-illumination PAT are ill-posed due to nonuniqueness. However, when 

illuminated by a spatially distinct alternate optical source (source 2), the heating 

distribution from A is distinct from that of B. The error image (difference) between (g) 

and (h) is shown in (i). This example demonstrates the potential to remedy 

nonuniqueness using multiple sources. 
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in conjunction with multiple wavelengths to assist in recovering chromophore 

concentrations. Yin L. et al. [7] avoided the question of non-uniqueness by using 

DOT to estimate the fluence thereby allowing 𝜇𝑎 to be estimated from 𝜇𝑎= ℎ/Φ. 

Here, we propose using multiple illumination patterns to provide the extra 

information necessary to recover absorption coefficients. 

3.2.2 Multiple-Illumination locations as a potential remedy for absorption-

scattering non-uniqueness 

The diffusive nature of light propagation in highly scattering media, and the 

resulting randomness of the photons within the tissue at depths greater than one 

scattering depth, might suggest that the position of the illuminating source is not a 

significant factor in determining a photoacoustic image at greater depths. However, 

when the illumination comes from just one direction, or from a small illumination 

region, the fluence can vary significantly within the tissue. This raises the prospect 

of obtaining extra information by taking PAT images of the same sample using 

different illumination patterns (here point sources of light are used for simplicity). 

Figure 3.1 (g) and (h) show the absorbed energy distributions generated from 

the pair of absorption and scattering coefficients calculated in the previous section 

but with the point source positioned centrally at the left of the image, rather than at 

the top. There are clearly significant differences in the images: not just around the 

point source itself, which is perhaps unsurprising, but also at a depth of 10 mm at 

the position of the absorption heterogeneity. This suggests that a set of PAT images 

obtained with sufficiently independently placed sources might contain sufficient 

additional information to enable the separation of 𝜇𝑎 and Φ. 

3.2.3 Multiple-optical-source photoacoustic reconstruction Methododology 

for absorption and scattering perturbations in a known turbid 
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background 

Here we consider the case where distributed absorbers perturb the fluence from the 

homogenous case such that 

 

 Φ(𝐫𝑗 , 𝐫𝑠𝑖
) = Φ0(𝐫𝑗, 𝐫𝑠𝑖

) + Φ𝑠𝑐(𝐫𝑗, 𝐫𝑠𝑖
) (3.5) 

   

where Φ(𝐫𝑗, 𝐫𝑠𝑖
) is the fluence at location 𝐫𝑗 (with j=1,2,...,J) due to illumination 

spot at location 𝐫𝑠𝑖
. Figure 3.2 provides an illustration of the vector geometry of 

the problem. Φ0(𝐫𝑗 , 𝐫𝑠𝑖
)  is the fluence due to the known homogenous turbid 

background with absorption and reduced scattering coefficients {𝜇𝑎 , 𝜇𝑠′} if no 

additional absorption or scattering perturbations were present, and Φ𝑠𝑐(𝐫𝑗, 𝐫𝑠𝑖
) is 

the fluence perturbation due to optical property variations. In this paper, we use the 

diffusion coefficient D, which is defined as 1/[3(𝜇𝑎 + 𝜇𝑠′)] instead of 𝜇𝑠′ to 

depict scattering for simplicity. For both absorption and scattering perturbations 

such that 𝜇𝑎(𝐫𝑗) = 𝜇𝑎 + 𝛿𝜇𝑎(𝐫𝑗) and 𝐷(𝐫𝑗) = 𝐷 + 𝛿𝐷(𝐫𝑗) we have that [31] 

 

 

Φ𝑆𝐶(𝐫𝑗 , 𝐫𝑠𝑖
) = − ∫

𝛿𝜇𝑎(𝐫′)

𝐷0
𝐺0(𝐫𝑗 , 𝐫′) Φ(𝐫′, 𝐫𝑠𝑖

)𝑑𝐫′

+ ∫
𝛿𝐷(𝐫′)

𝐷0
∇𝐺0(𝐫𝑗, 𝐫′) ∙ ∇ Φ(𝐫′, 𝐫𝑠𝑖

)𝑑𝐫′ 

(3.6) 

   

where 𝐷0  is the diffusion coefficient of the homogenous background, and 

𝐺0(𝐫𝑗 , 𝐫′) is the Green's function representing propagation from 𝐫𝑗 → 𝐫′. Using the 

first-order Born approximation, such that Φ𝑆𝐶 ≪ Φ0 , we have that Φ ≈ Φ0 . 

Although this limits the inversion to the linear case, it is sufficient to show that 

multiple illumination ameliorates the nonuniqueness without the additional 
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complexity the nonlinearity imposes. For cases in which the linear assumption is 

not sufficient, this framework can be extended to the nonlinear case, as discusses in 

Section 3.4. 

 

 

 

 

We can discretize the integral as 

 

 Φ𝑆𝐶(𝐫𝑗 , 𝐫𝑠𝑖
) = Σ𝑛𝑊{𝑖𝑗}𝑛

𝑎 𝛿𝜇𝑎(𝐫𝑛′) + Σn𝑊{𝑖𝑗}𝑛
𝑠 𝛿𝐷(𝐫𝑛′) (3.7) 

   

with 𝑠𝑖 represents a source index (i = 1,2,… S), 

 

 𝑊{𝑖𝑗}𝑛
𝑎 = −𝐺0(𝐫𝑗 , 𝐫𝑛

′ ) Φ(𝐫𝑛
′ , 𝐫𝑠𝑖

)∇𝑉/𝐷0 (3.8) 

   

and 

 

 𝑊{𝑖𝑗}𝑛
𝑠 = ∇𝐺0(𝐫𝑗 , 𝐫𝑛

′ )  ∙ ∇Φ(𝐫𝑛
′ , 𝐫𝑠𝑖

)∆𝑉/𝐷0 (3.9) 

Fig. 3.2 Light propagation geometry 
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where ∇𝑉 is a volume element. The {𝑖𝑗} elements are grouped together in this 

way because they could be rastorized into a single index 𝑘𝑖𝑗 = 𝑖 + 𝑗S so that this 

may be written in matrix form as 

 

 𝚽𝑺𝑪 = 𝐖𝐮 (3.10) 

   

where 𝐖 = [𝐖𝐚|𝐖𝐬] with 𝐖𝐚and 𝐖𝐬 being 𝑆𝐽 ×  𝑁 matrices corresponding 

to absorption and scattering, respectively. Here，𝐮 = [𝛿𝜇𝑎
𝑇 , 𝛿𝐷𝑇]T, where 𝛿𝜇𝑎 and 

𝛿𝐷  are 𝑁 ×  1 column vectors. For example, 𝛿𝜇𝑎 =

[𝜇𝑎(𝐫1
′), 𝜇𝑎(𝐫2

′), … , 𝜇𝑎(𝐫𝑁
′ )]T. The locations {𝐫′

𝑛: 𝑛 = 1,2, … , 𝑁} could represent, 

for example, points on a mesh and represent locations at which optical properties 

are to be reconstructed. 

If we multiply the expression for Φ𝑖(𝐫𝐣) ≡ Φ(𝐫𝑗, 𝐫𝑠𝑖
)  by Γ(𝐫𝑗)μa(𝐫𝑗) , we 

obtain the initial pressure distribution 𝑝𝑖(𝐫𝑗) due to point source 𝐫𝑠𝑖
. Let us take a 

ratio of reconstructed initial pressure distribution estimates from photoacoustic 

images taken at source positions 𝑠𝑖 and 𝑠𝑙. If we consider locations {𝐫𝑗: 𝑗=1, 2, …, 

J}, which have high signal-to-noise ratio (SNR) in the reconstructed image to avoid 

instability, then the ratio is well approximated as: 

 

 
�̂�𝑖(𝐫𝑗)

�̂�𝑙(𝐫𝑗)
≅

𝐻{Φ𝑖(𝐫𝑗)Γ(𝐫𝑗)μa(𝐫𝑗)}

𝐻{Φ𝒍(𝐫𝑗)Γ(𝐫𝑗)μa(𝐫𝑗)}
 (3.11) 

   

We now assume that the fluence distribution is slowly varying (essentially a 

constant) compared to the scale of a point-spread function, which should be a good 

approximation when absorption and scattering perturbations are not too strong. In 



59 

 

this case, if H is linear and noise is small enough to be negligible, 

 

 �̂�𝑖(𝐫𝑗) = Φ𝑖(𝐫)𝐻{Γ(𝐫)μa(𝐫)} (3.12) 

   

With this approximation the ratio becomes 

 

 
�̂�𝑖(𝐫𝑗)

�̂�𝑙(𝐫𝑗)
≅

Φ𝑖(𝐫𝑗)

Φ𝑙(𝐫𝑗)
 (3.13) 

   

Fortuitously the terms 𝐻{Γ(𝐫𝑗)μa(𝐫𝑗)} cancel and we are left with a ratio of 

fluences due to different illumination locations. By expanding these fluence 

distributions in terms of homogeneous and perturbation terms we have: 

 

 
�̂�𝑖(𝐫𝑗)

�̂�𝑙(𝐫𝑗)
≅

Φ0(𝐫𝑗, 𝐫𝑠𝑖
) + Φ𝑆𝐶(𝐫𝑗 , 𝐫𝑠𝑖

)

Φ0(𝐫𝑗 , 𝐫𝑠𝑖
) + Φ𝑆𝐶(𝐫𝑗 , 𝐫𝑠𝑙

)
 (3.14) 

   

 

The local unknown absorption coefficients cancel and we are left with a ratio 

of fluences. The left-hand side represents a set of measurements, while the right-

hand-side consists of model calculations. Then Φ𝑆𝐶 is expressed in terms of the 

distributed absorption perturbations and we can re-write Eq. 3.14 as 

 

 

Σ𝑛[�̂�𝑖(𝐫𝑗)𝐖{𝒍𝒋}𝒏 − �̂�𝑙(𝐫𝑗)𝐖{𝒊𝒋}𝒏]𝐮(𝐫′
𝑛)

= �̂�𝑙(𝐫𝑗)Φ0(𝐫𝑗, 𝐫𝑠𝑖
) −  �̂�𝑖(𝐫𝑗)Φ0(𝐫𝑗, 𝐫𝑠𝑖

) 

(3.15) 
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For S optical source locations {𝑠1, 𝑠2, … , 𝑠𝑆} we consider S(S-1)/2 unique pairs 

{(𝑠𝑖, 𝑠𝑡), 𝑖 ≠ 𝑙} of optical sources. In matrix form Eq. 3.15 is written as 

 

 Qu=b. (3.16) 

   

 

where 𝐐 = [𝐐𝐚|𝐐s] is a [𝑆(𝑆 − 1)/2]𝐽 × 2N matrix, where 𝐐𝐚  has elements 

[𝐐a]{𝑖𝑙𝑗}𝑛  = �̂�𝑖(𝐫𝑗)𝐖{𝒍𝒋}𝒏
𝒂 − �̂�𝑙(𝐫𝑗)𝐖{𝒊𝒋}𝒏

𝒂 , and 𝐐s  has elements [𝐐s]{𝑖𝑙𝑗}𝑛  =

�̂�𝑖(𝐫𝑗)𝐖{𝒍𝒋}𝒏
𝒔 − �̂�𝑙(𝐫𝑗)𝐖{𝒊𝒋}𝒏

𝒔 . These consist of measurements �̂� from the 

reconstructed photoacoustic image (due to different optical source positions), and 

model calculations based on a known homogenous background. 𝐛 is a [𝑆(𝑆 −

1)/2]𝐽 × 1   column vector with elements [b]{𝑖𝑙𝑗} = �̂�𝑙(𝐫𝑗)Φ0(𝐫𝑗, 𝐫𝑠𝑖
) −

  �̂�𝑖(𝐫𝑗)Φ0(𝐫𝑗 , 𝐫𝑠𝑖
) which are a mixture of measurements and model calculations. 

The unknown perturbations can be estimated quantitatively by inverting the 

linearized model via a Moore-Penrose pseudo-inverse: 𝐮 = (𝐐T𝐐)−1𝐐𝐓𝐛 . We 

may alternatively need to use singular value decomposition to decompose the 

matrix 𝐐 as 𝐐 = 𝐔𝚺𝐕𝐓, where 𝚺 is a diagonal matrix of singular values of the 

same dimension as 𝐐, and 𝐔 and 𝐕 are unitary matrices consisting of columns 

of the “right” and “left” singular vectors 𝐮𝑖 and 𝐯𝑖, respectively. The inversion is 

then given as 𝐮 = 𝐕𝚺−𝟏𝐔𝐓𝐛 = Σi
𝑢𝑖

T𝑏

𝜎𝑖
𝑣𝑖 . Tikhanov regularization or other 

regularization procedures may be used to avoid instabilities due to poor matrix 

conditioning. It should be noted that the above should produce absolute estimates 

of {𝛿𝜇𝑎(𝐫), 𝛿𝐷(𝐫)}. 
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3.2.4 Recovery of the spatially varying Grüeneisen parameter 

With the ability to recover absorption coefficients perturbations quantitatively, in a 

way which is robust to spatially-varying Grüeneisen parameters, we can estimate 

the Grüeneisen coefficient distributions   Γ̂(𝐫) =
𝑝(𝐫)

Φ̂(𝐫)�̂�𝑎(𝐫) 
, where �̂�(𝐫)  is the 

reconstructed photoacoustic image, �̂�𝑎(𝐫)  is the reconstructed absolute 

absorption coefficient distribution, and Φ̂(𝐫) is the estimated fluence distribution 

(computed with knowledge of the absorption perturbations). To improve robustness 

to noise, we choose to use all illumination sources as follows: 

 

 Γ̂(𝐫) =
Σ𝑖�̂�𝑖(𝐫)

�̂�𝑎(𝐫)Σ𝑖Φ̂𝑖(𝐫) 
 (3.17) 

   

where �̂�𝑖is the reconstructed photoacoustic image due to source 𝑖, and Φ̂𝑖 is the 

estimated fluence distribution due to source source 𝑖. 

3.3 Computational reconstruction 

Two-dimensional simulations are considered here for simplicity. True absorption 

and diffusion-coefficient maps are simulated on a 20 × 20 grid spanning 2 cm × 2 

cm, as shown in Figs. 3.3 (a) and (b), respectively. The grid sampling interval is 1 

mm. The reduced scattering coefficient of the turbid background is taken as 10 

cm−1    everywhere. The background absorption coefficient is taken as 𝜇𝑎 = 0.1 

cm−1 , while two absorbing regions are taken to have a 0.025 cm−1absorption 

perturbation.  One region of increased diffusion coefficient (reduced scattering 

coefficient) corresponds to a 𝛿𝜇′s=0.9 cm−1. Eight optical sources {𝑠1, 𝑠2, … , 𝑠8}, 

as is illustrated in Fig. 3.4, located 3-mm back from each edge around the object 

are simulated. The fluence due to source 𝑠1 is shown in Fig. 3.3 (d). The 3-mm 

gap between the tissue surface and the reconstruction region permits isotropic 
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point-sources in an infinite medium to be used as a good approximation to the true 

pencil-beam illumination situation that would occur in an experiment. 

Photoacoustic images are simulated by multiplying the computed optical fluence 

distribution, Grüeneisen parameter distribution and the absorption map, as shown 

in Fig. 3.3 (h). One way to estimate the absorption perturbations could be to 

estimate the local fluence as Φ0(𝐫) , the fluence computed in a homogenous 

medium with no absorption perturbations. By normalizing the photoacoustic 

images by these fluence estimates, we produce estimates of the absorption map, as 

shown in Fig. 3.3 (i) for source 𝑠1  as an example. These estimates possess 

unacceptable errors that we aim to correct with the reconstruction method described 

in this article. When we apply our algorithm to the “measured” photoacoustic 

images, we are able to produce a fairly good estimate of the optical absorption map, 

as shown in Fig. 3.3 (j). Reconstructed diffusion (scattering) distribution map is 

shown in (k). No cross-talk has been found in the two recovered maps. The 

maximum error without additive noise is less than 12 orders of magnitude below 

the true values. However, we find the reconstruction quality deteriorates quickly as 

the amount of of noise increases, revealing sensitivity of the algorithm to noise. In 

the examples we show here, signal-to-noise ratio (SNR) of the simulation 

photoacoustic images at each detection location is no lower than 40 dB, and only 

data with SNR higher than 60 dB for each source pair are used for reconstruction 

to ensure the image quality. Key to numerical stability and robustness to noise is 

the conditioning of the matrix 𝐐. We plot the singular values of 𝐐 (normalized by 

the maximal value of each curve to compare the condition numbers) in Fig. 3.5. We 

find that the matrix condition number improves with the number of optical sources 

used for condition numbers of corresponding cases). With 2 optical sources, Eq. 

3.16 is under-determined. For two sources 𝐐 is of size 𝐽 × 2𝑁 with 𝐽 = 𝑁 =
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202, hence there are only 400 rather than 800 singular values. Matrix conditioning 

improves by using 4 sources rather than 2, and further improves by using 8. 

Interestingly, the diffusion coefficient seems to be reconstructed with higher 

accuracy than the absorption coefficient despite that photoacoustic signals in reality 

are more sensitive to absorption. This is consistant with the fact that the matrix 

condition number of 𝐐𝐚 is larger than that of 𝐐s for the case of 8 sources (data 

not shown). The nature of our inversion strategy might be accounting for this 

phenomenon. Based on our assumptions, the ratio of photoacoustic signals is 

simplified into a ratio of fluences, which is sensitive to scattering perturbations. We 

also plot singular values from the linearized CW-DOT technique [31] when 

recovering optical properties. Three kinds of configuration were used for the CW-

DOT imaging, as is shown in Fig. 3.4. In the first one, the same sources locations 

as the MI-PAT simulation are used, but only diffuse reflectance of light exiting from 

four tissue surfaces were measured by detectors for the imaging task. A more 

realistic configuration is to place all 20 sources and 20 detectors on top of the turbid 

tissue (also with a 3-mm gap from the tissue edge). Finally, we also consider 80 

sources and 80 detectors placed around the object as a case where the DOT 

simulations are not under-determined (but are still ill-conditioned). 
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Fig. 3.3 Simulation models and results. (a) True 2D 𝝁𝒂 distribution. (b) True 2D diffusion 

coefficient distribution. (c) True 2D Grüneisen parameter distribution. (d) Normalized 

fluence distribution from source 𝐬𝟏. (e) Normalized fluence distribution from source 𝐬𝟐. (f) 

Fluence perturbation from source 𝐬𝟏  due to only absorption perturbation. (g) Fluence 

perturbation from source 𝐬𝟏 with the presence of only diffusion coeffient perturbation. (h) 

Photoacoustic imaging with source 𝐬𝟏. (i) Photoacoustic image normalized by the fluence 

distribution 𝚽𝟎  due to source 𝐬𝟏 , where 𝚽𝟎  is calculated under the assumption of a 

homogeneous medium. If the Grüneisen parameter were constrant, this would represent 

one approximation to the absorption map. This estimate exhibits unacceptable errors. (j) 

Reconstructed image of the optical absorption map using our multiple-source photoacoustic 

inversion technique. (k) Reconstructed image of the diffusion coefficient. (l) Reconstructed 

image of the Güneisen parameter. 
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Fig. 3.4 Simulation configuration. (a)-(c) two, four and eight sources located around the 

object from MI-PAT and DOT imaging simulation. (d) Detector distribution for DOT 

imaging when using two, four, and eight sources. (e) 20 source-detector pairs positioned on 

top of the object for DOT. (f) 80 source-detector pairs around the tissue. For all 

configurations, sources and transducers are positioned 3 mm back from the object surfaces. 

 

 

 

Fig. 3.5 Singular value spectra (normalized by the largest value) of the matrix Q used in the 

example of Fig. 3.3 for recovering both absorption and scattering perturbations. For n = 2 

sources, the number of singular values is underdetermined. Matrix conditioning improves 

when using more sources. The MI-PAT method is better conditioned than DOT imaging. 
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The condition number of a matrix, defined as the ratio of maximum to 

minimum singular values, typically determines the numerical stability of inversion. 

Compared with CW-DOT, while trying to accomplish the same imaging task with 

the same number of sources, the MI-PAT scheme has orders of magnitude smaller 

condition number, which implies that it is better-conditioned and thus more 

informative (please refer to Table 3.1 for the over-determined cases). The 

positioning of the sources matters too. We found that sources positioned around the 

object was more informative than cases with sources all on the top of the object. It 

is interesting to note that our simulations could recover the {𝜇𝑎, 𝜇′𝑠} distributions 

accurately with only 3 sources (data not shown), albeit with orders of magnitude 

worse matrix condition number, hence more sensitivity to noise. Nevertheless, this 

point is interesting because the work of Bal and Uhlmann [27] predict 2n = 4 

sources are needed for stable reconstruction (where n = 2 is the dimension of the 

space in our simulations). They also point out (mathematically) that fewer than 2n 

illumination patterns are possible at the expense of reconstruction stability. Our 

findings support their theory. 

 

Table 3.1 Condition Number for Different Configurations 

Case Condition number 

MI-PAT, eight sources around 1.9654e5 

MI-PAT, four sources around 7.3810e6 

CW-DOT, 80 sources and 80 

detectors around 
1.776e16 

 

3.4 Discussion 

We have demonstrated an inversion method to recover both absorption and 
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scattering perturbations in a known homogeneous turbid background when multiple 

optical source locations are used. A number of approaches have been discussed in 

the literature to recover absorption-only perturbations without multiple sources. 

Recovery of both absorption and scattering perturbations, however, has remained a 

challenge. In part this is due to the ill-posedness associated with absorption-

scattering non-uniqueness. We have demonstrated that the non-uniqueness problem 

is remedied by the use of multiple optical source illumination locations. The method 

presented here is not iterative, is not under-determined (although like many 

methods may be ill-conditioned), and is the first, to our knowledge to address 

multiple optical sources in a quantitative photoacoustic reconstruction framework. 

Very little has been done on work to recover optical properties using photoacoustics 

when the Grüeneisen parameter Γ(𝐫) (note 𝜅(𝐫)  ∝  Γ(𝐫))is spatially varying. 

Surveying the literature, Cox B. et al. [11] note that the Grüeneisen parameter Γ 

can vary considerably between different tissue types, and as such, may serve as a 

significant challenge for quantitative photoacoustic inversion of optical properties. 

Because the present framework can reconstruct optical properties independently of 

the local Grüeneisen parameter, we believe it worthwhile to explore further. From 

the ability to estimate tissue optical properties, we can predict local fluence and 

hence estimate the Grüeneisen parameter distribution, which may have diagnostic 

value in and of itself, but may also prove important for temperature imaging, due 

to the temperature-dependence of this parameter. 

While our theoretical framework accounts for a spatio-temporal system-

response, the present simulations are restricted to an ideal photoacoustic imaging 

system response. For the theoretical developments to work when a more realistic 

imaging system is used, the conditions for the approximations discussed must hold 

well (i.e. the fluence must be slowly varying compared to the size of the point-
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spread function, and spatial variations of optical properties must not be too strong), 

otherwise additional errors will be introduced and reconstructions may fail. 

We believe that ill-conditioning arises due to the diffusive nature of light 

propagation in tissue. Matrix condition number worsens with penetration depth - or 

equivalently, the dynamic range of fluence values throughout the image (data not 

shown). Illumination from points around the object rather than just the top surface 

was shown to be significantly advantageous in this regard. A challenge our 

framework faces is its sensitivity to data noise. This may be due to our hypothesis 

behind the derivation of the ratiometric quantity in Eq. 3.16. As such we only 

consider points in the photoacoustic images which have high signal-to-noise (SNR). 

SNR of photoacoustic images will be important to avoid reconstruction instabilities 

when matrix condition numbers are large. Even though we use only high SNR 

locations as virtual detectors, we must have enough source-(virtual) detector pair 

combinations to produce adequate estimates of the subsurface fluence and 

absorption distributions if we have an adequate number of optical sources. In the 

presence of increasing amounts of noise, we found that regularization methods 

become important. Investigation of various regularization schemes to stabilize the 

inversion should be a topic of future work. 

When the linear assumption made in Section 2 proves restrictive, the inversion 

scheme could be extended to nonlinear case in a number of ways. Iterations of the 

present method may be attempted, and should be the subject of future work. This 

will entail computations of Jacobian matrices 𝑱 = [
∂Φ

𝝏𝝁𝒂
,

∂Φ

𝝏𝑫
]  (eg. using Finite-

Element methods) at each iteration, rather than using the analytical Green's 

function-approximation 𝑱 ≈ 𝐖 for a homogenous turbid background. Then the 

𝑘 + 1𝑡ℎ iteration of the optical properties 𝐮𝑘+1 would use the previous iteration's 

estimates as follows: 𝐮𝑘+1 = 𝑖𝑛𝑣(𝐐𝑘)𝐛𝒌 where 𝐐𝑘  and b𝑘  are the 𝑘𝑡ℎ 
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estimate of the 𝐐 matrix and 𝐛 vector, respectively.  However, for large scale 

3D reconstruction, the jacobian matrix might be computationally expensive and 

requires large memory space. To overcome this problem, Gao et al. [32] proposed 

a gradient-based method for quantitative photoacoustic imaging. Alternatively, 

techniques for the inversion of a Born series for diffuse waves could be exploited 

[33]. More generally, nonlinear optimization-based schemes for image 

reconstruction should be considered, which will additionally permit various 

constraints to be included as terms modifying an objective function. For example, 

Gao et al. [34] proposed using the Bregman method combined with the total 

variation regularization for recovering both absorption and scattering information 

in turbid media with photoacoustic imaging. Numerical simulation showed that 

their methods surpass Jacobian-matrix-based methods in terms of computational 

efficacy. Furthermore, piecewise features can be better reserved with the proposed 

regularization scheme. Nevertheless, The present linearized inversion problem 

could serve as a starting point for such iterative procedures. Three-dimensional 

reconstructions should be tested numerically, then, future work should of course 

involve experiments to test the practicality of our methods. 

Combining multiple optical source locations with multiwavelength 

photoacoustic imaging may provide quantitative estimates of chromophore 

concentrations which in turn may pave the way for reliable mapping of oxygen 

saturation of hemoglobin and quantitative molecular imaging applications. 

Additionally, similar to Cox et al. [9], prior knowledge of the wavelength-

dependence of the scattering coefficient may further alleviate ill-conditioning and 

absorption-scattering non-uniqueness. This list of future projects can now proceed 

given the present groundwork. 
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3.5 Conclusions 

We have presented, for the first time, a theoretical framework and numerical results 

for quantitative estimation of optical properties with multiple-source photoacoustic 

optical tomography. The reconstruction algorithm presented is able to reproduce 

optical absorption, scattering, and Grüeneisen distributions in a known turbid-

media background with high accuracy. Compared with CW-DOT, our methods are 

better-conditioned. We also show the reconstruction of spatially varying 

Grüeneisen parameter for the first time. Despite some challenges our methods faces 

in terms of robustness to noise, this article may be a first step towards a number of 

techniques for quantitative reconstruction of optical properties with high spatial 

resolution. 

3.6 Appendix A: Models of Light Transport 

For monochromatic light, the diffusion-equation of optical transport can be written 

as [31] 

 
∂Φ(𝐫, t)

𝜕𝑡
+ 𝑐𝜇𝑎(𝐫, 𝑡) − 𝑐∇ ∙ [𝐷∇Φ(𝐫, 𝑡)] = 𝑞(𝐫, 𝑡) (3.A1) 

   

where 𝑞 denotes the photon density source strength, 𝑐 is the speed of light in the 

medium, and D is the diffusion coefficient. For photoacoustic imaging, we often 

use lasers with multiple-nanosecond pulse-lengths. Over a time-scale of a few 

nanoseconds light can propagate distances of meters, whereas we are concerned 

with cm-distance scales for biological imaging applications, hence, we can 

effectively consider  𝑞 to be time-independent for our present purposes. 

If we assume that all light propagation, scattering and absorption will finish in a 

time scale much shorter than the acoustic time scale, the optical part of the 

propagation is independent of time. For a time-independent point-source 𝑞(𝐫, 𝑡) =
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𝐴𝛿(𝐫) in an effectively infinite turbid homogeneous medium, we have 

 

 𝜇eff
2 Φ0(𝐫) − ∇2Φ0(𝐫) =

𝐴

𝑐𝐷
𝛿(𝐫) (3.A2) 

   

where 𝜇eff = √𝜇𝑎/𝐷. Taking the spatial Fourier transform, this equation can be 

written as 

 [𝑘2 + 𝜇eff
2 ]Φ0(𝐤) =

𝐴

𝑐𝐷
 (3.A3) 

   

where 𝑘 is the magnitude of 𝐤, the spatial frequency vector conjugate to 𝐫. The 

solution in three-dimensional (3D) space is given by taking the inverse Fourier 

transform of Φ0(𝐤) as 

 

 Φ0(𝐫) = 𝐴
exp (−𝜇eff𝑟)

4𝜋𝑐𝐷𝑟
 (3.A4) 

   

where 𝑟 = |𝐫|.For two-dimensional space (2D) the solution is found as the inverse 

Hankel transform of Φ0(𝐤), which is 

 

 Φ0(𝐫) =
𝐴

2𝜋𝑐𝐷
𝐾0(𝜇eff𝑟) (3.A5) 

   

where 𝐾0 is the modified Bessel function of the second kind of order zero. The 2D 

solution will prove useful for proof-of-principle numerical studies. The 

corresponding Green's functions solution to for 𝜇eff
2 𝐺0(𝐫, 𝐫′) − ∇2𝐺0(𝐫, 𝐫′) =

𝛿(𝐫) for 3D and 2D are 
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 𝐺0(𝐫, 𝐫′) =
exp (−𝜇eff|𝐫 − 𝐫′|)

4𝜋|𝐫 − 𝐫′|
 (3.A6) 

   

and 

 𝐺0(𝐫, 𝐫′) =
𝐾0 (−𝜇eff|𝐫 − 𝐫′|)

2𝜋
, (3.A7) 

   

respectively. 

Our modeling requires computation of the gradients of both 𝐺0(𝐫, 𝐫′) and Φ. 

Because of radial symmetry about the source 

 

 ∇𝐺0(𝐫𝑗 , 𝐫′) = �̂�
𝜕𝐺0 (𝐫𝑗, 𝐫′)

𝜕𝑟
 (3.A8) 

   

For the 2D models the Green's function is given by Eq. 3. A7, and using properties 

of Bessel functions, 

 

 
𝜕𝐾0 (𝜇eff𝑟)

𝜕𝑟
= −𝜇eff𝐾1(𝜇eff𝑟) (3.A9) 

   

Hence, for 2D, Eq. 3.9 becomes 

 

 

𝑊{𝑖𝑗}𝑛
𝑠 = −

𝐴𝜇eff
2

4𝜋2𝑐𝐷0
𝐾1(𝜇eff|𝐫𝑗 − 𝐫𝑛

′ ) 

× 𝐾1(𝜇eff|𝐫
′
n − 𝐫𝑠𝑖

|)
(𝐫𝑗 − 𝐫′

n) ∙ (𝐫′
n − 𝐫𝑠𝑖

)∆𝑉

|𝐫𝑗 − 𝐫′
n||𝐫′

n − 𝐫𝑠𝑖
|𝐷0

  

 

(3.A7) 
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4. Iterative Algorithm for Multiple-

illumination Photoacoustic Tomography 

(MI-PAT) Using Ultrasound Channel Data1 

 

4.1 Introduction 

Photoacoustic tomography (PAT) holds significant promise for high-resolution 

optical tomographic imaging in optically-scattering tissues. Often, two steps are 

involved in PAT reconstruction problems. First, the absorbed energy (or initial 

pressure) distribution is estimated from the measured acoustic signals. Second, one 

seeks to reconstruct optical properties, the optical absorption coefficient and 

scattering coefficient map, as well as the Grüneisen parameter distribution based on 

the results of the first step. This is often called quantitative PAT, or quantitation of 

PAT. The first step is a well-known acoustic inverse problem and thoroughly studied 

[1] [2] [3]. The second step, an optical inverse problem is, however, non-trivial [4]. 

This is because of several reasons. The local initial pressures generated when 

absorbed light pulses are converted to acoustic signals are proportional to not only 

the local optical absorption coefficient, but also the local laser fluence, which is in 

turn a complex nonlinear function of the distributed optical properties of the 

medium. This nonlinear inverse problem of estimating optical properties from 

photoacoustic data is further complicated by potential ill-posedness: a given 

photoacoustic absorbed energy distribution may be due to non-unique absorption-

                                                 

1 A version of this chapter has been published. Reprint with permissions from: P. Shao, T. J. 

Harrison and R. J. Zemp, Biomed. Opt. Express, 3(12), p. 3240-3249, 2012. Copyright 2012 OSA. 
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scattering distribution pairs. Additionally, when the Grüneisen parameter is 

unknown as a function of space, Bal and Ren argue that based on diffusion theory, 

with a single wavelength, only two of the three coefficients in quantitative PAT can 

be reconstructed uniquely [5].  

Quite a number of methods were proposed for quantitative PAT. Studies were 

conducted in recovering absorption coefficient distributions with scattering 

background as a priori information [6] [7] [8] [9]. Yin et al. [10] iteratively 

estimated absorbed energy density with PAT and fluence distribution with diffuse 

optical tomography. Jetzfellner et al. [11] studied the experimental performance of 

an iterative scheme and concluded that scattering coefficient errors may lead to 

failure of the method. Cox et al. [12] recovered both absorption and scattering 

distribution with multiple optical wavelengths when known wavelength 

dependence of the optical scattering exists. Efforts were also made later on to 

decouple Grüneisen coefficients in quantitative PAT. Bal and Ren [13] proposed a 

scheme for reconstructing absorption, diffusion and Grüneisen coefficients 

distributions simultaneously with measured data by different wavelengths and a 

priori information on the form of the coefficients stably.   

Recently we demonstrated a linearized non-iterative algorithm, namely 

multiple-illumination photoacoustic tomograpy (MIPAT), for recovering 

absorption-scattering distributions using multiple illuminations [14] [15]. This 

approach showed that multiple sources can significantly mitigate absorption-

scattering non-uniqueness as demonstrated by simulations. The algorithm we 

reported used a diffusion-regime ratiometric approach and assumed that initial 

pressures could be reconstructed in an ideal way. Unfortunately, artifacts in the 

reconstructed initial pressure distribution can lead to undesirable errors when 

solving for optical properties. Despite these limitations, the technique showed 
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promise for multiple illumination photoacoustic data for more complex problems.  

In this paper, we propose an updated version of the MIPAT algorithm that does 

not require an ideal initial pressure reconstruction, and that instead uses channel 

data from an ultrasound transducer array as the measurements. The proposed 

algorithm employs an iterative scheme, therefore it is capable of recovering 

relatively stronger heterogeneities. While we presently restrict ourselves to the 

diffusion-regime in 2D, the approach can potentially be generalized to include 

radiative transport models in 2 or 3 dimensions. 

4.2 Theory 

4.2.1 Light Propagation Model 

We use the diffusion equation of optical transport as the light propagation model, 

which can be written as [16] 

 

  
( , )

( , ) ( , ) ( , ),a

t
c t c D t q t

t



     



r
r r r  (4.1) 

   

in which q is the photon density source strength, c is light speed in the medium. D 

is the diffusion coefficient, which is defined as a function optical properties as 

'
1 / 3( )

a s  . Here 
a

  and 
'

s are the optical absorption coefficient and reduced 

scattering coefficient, respectively. A time-independent form of this equation is 

often sufficient when laser-pulse widths are significantly longer than the average 

random-walk time of photons through the tissue, in which case the time-derivative 

is neglected. To ensure that the diffusion model is valid, we require
'

s a  . With 

this hypothesis, fluence   will be almost isotropic. To calculate the fluence 

perturbations due to background heterogeneity at location r , we use the relations 
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[16], 
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0 ( , ')G r r  is the Green’s function representing propagation from 'r r . 0D  

is the diffusion coefficient of the backgound. Optical property distributions are 

written as ( )a a a   r  and 0( ) ( )D D D r r . The Born approximation is 

used in this paper to estimate fluence perturbations due to optical property 

variations at location r , when assuming that the fluence perturbations are small: 

( ) ( ) 
SC 0

r r , where ( ) r  is the background optical fluence. 

4.2.2 Reconstruction of the Optical Properties with Ultrasound Channel 

Data 

Consider that we have a photoacoustic tomography system with M ultrasound 

transducers and S illumination patterns. Consider that each detector acquires T time 

points at a given sampling frequency. A column vector of observed pressure 

measurements may be constructed as 

 

𝒑𝟎

= [
𝑝{111}

0 ⋯ 𝑝{𝑇11}
0 | ⋯ |𝑝{1𝑀1}

0 ⋯ 𝑝{𝑇𝑀1}
0 | ⋯

                          |𝑝{11𝑆}
0 ⋯ 𝑝{𝑇1𝑆}

0 | ⋯ |𝑝{1𝑀𝑆}
0 ⋯ 𝑝{𝑇𝑀𝑆}

0 |
]

𝑡

 
(4.4) 

   

where 0

{ }ikp   is the observed pressure at time-point  , with detector i, due to 

source k. The composite index { }ik  can also be assigned the index   to map 

uniquely to the th  element of this vector such that ( 1) ( 1) .i T k MT       
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We want to compare these observed photoacoustic channel measurements with 

forward-model computed values c
p  which are a function of the optical parameters 

[ ]T au μ D , where 
a

μ  and D are rastorized column vectors of the optical 

absorption and diffusion coefficient maps. The objective is to find best estimate û  

for u  such that   

 

 ˆ arg min ( )
u

u u , (4.5) 

   

where 
2

( ) ( )  o c
u p - p u is the regularized least-squares error functional 

with regularizing penalty function ( ) u , which can be taken as a total variation 

functional or other related functional. 𝜆 is the so-called trade-off parameter that 

determines how much emphasis is placed on regularizaiton while seeking the 

optimal solution. Forward model calculations of pressures received by transducer i 

due to source illumination k follow from the superposition of propagated initial 

pressure signals: 
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with i iR  r r  where ir  is the location of the detector and r  is a field point. 

This expression is valid for point-detectors with isotropic directivity and ideal 

electromechanical efficiency. Initial pressures are computed simply as

, ( , ) ( ) ( , ) ( )o k a kp t t  r r r u  where   is the Grüneisen parameter, assumed to 

be a constant in this paper, and k  is the local laser fluence due to source k. To 
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model the electromechanical response of the transducer, ( , , )k

if tr u  is convolved 

with impulse response  ,r xh t . Thus in the expression for { }

c

ikp   we can use a 

filtered version of the initial pressure distribution written as 

 , ,( , ) ( ) ( , ) .o k a k r xp t h t  r r r u  In future work, the computed channel data may 

also be modified to include finite aperture effects and acoustic attenuation. By 

considering that ( , , ) ( , , )k k k

i i if t f t    r u u r u J u , and requiring that 

( ) / 0   u u we arrive at the iterative algorithm    ( ) ,T T o c  J J u J p p u  

which can be written as 

 

 ,T T  J J u J  (4.7) 

   

with ( )o c  p p u . For each iteration of the algorithm, u is computed as an 

update vector. Once the optical properties are updated, new c
p  vectors and 

Jacobian matrices J  are computed, then a new update vector u  is computed, 

and the iterations continue until successive iterations of the algorithm yield little 

change. With Hessian matrix approximated as 
TH J J ,  a Gauss-Newton step 

may be added to improve convergence speed such that 1[ ]T   u H J and where 

 is a scalar chosen via a line-search algorithm to further minimize the error 

functional for each step. The Jacobian matrix has elements  
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where ( ) ( )k

a kE  r r  is the time-independent absorbed energy at location r  

due to source k. It is straightforward to show that 
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which reduces to the Gruneisen parameter times the free-space acoustic Green’s 

function when ( ) ( )rxh t t  and represents acoustic propagation from field point  

 to detector i. /k

jE u  represents optical absorbed energy variation with 

respect to optical property perturbations and it can be written as: 
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Given that the diffusion coefficient may be written as '1/ 3( ),a sD      we 

have 
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The partial derivatives can in turn be computed from the diffusion equation or 

in linearized form as  
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Observed and computed pressure vectors have dimensions TMS × 1. For an N 

× N 2D grid of optical properties,  u  and  u  have dimensions 2N2 × 1. 

Jacobian matrices have dimensions TMS × 2N2. These matrices can be quite large. 

The Hessian H of size 2N2 × 2N2 has quadrant symmetry, reducing memory 

requirements. With the above notation, the  th row of J  is a 1×2N2 vector 

given as { }

{ } [ ]k ik T

P ik



 J J B α where for a given k, k
B is a 2N2 × 2N2 matrix and 

for a given  { }ik , { }ik
α  is an 2N2 × 1 column vector.  The Jacobian need not to 

be stored, but calculated row by row to find 
1

TMST T

 
  b J J J  and 

1

TMS T

 
H J J  in a loop over   (a loop over the indices{ }ik ). Future Gradient-

based optimization methods may circumvent the necessity of using such large 

matrices.   

4.2.3 Inversion 

Rewrite equation (4.7) as 

 

  H u b , (4.13) 

   

where T b J . Now estimating the unknown parameters u  is an inverse 

problem. Different techniques can be employed to solve the problem. For the ith 

iteration, we minimize the following cost function 
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For any vector x , 
2

2
x is the 2 -norm. The first term is the least squares norm 

which represents the misfit portion of the cost function. The second term is the 

Tickhonov regularization term and represents the constraints possessed on the 

parameter to be estimated. W is a 2-dimensional regularization operator matrix or 

weighting matrix. Here we use the second order derivatives as a smoothing 

weighting factor. For each iteration, the least-squares minimum solution is found 

with 0i J , which yields  
1

1 1
ˆ .T T T

i i i i 


  u H H W W H b  Solution ˆ
iu is then 

used to update optical fluence estimation for next iteration. Initial guess of the 

parameters to be estimated is chosen to be the background absorption and scattering 

distribution.  

4.3 Numerical Simulation 

 

 

 

With the framework above, we simulated multiple-illuminations of 2D absorption 

Fig. 4.1 Simulation model setup. The 2-dimensional simulation configuration is shown 

in (a) and true optical property model are presented in (b) and (c). Four light sources 

are distributed on each side of the imaging object, with a 3-mm gap backward from 

the soft tissue surface. 64 detectors are circumferentially located around the object. 

. 
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and scattering distributions 2 cm × 2 cm in a grid of 30 × 30 pixels of size 

667x y m    . Configuration of the simulation numerical model is shown in 

Fig. 4.1. The reduced scattering coefficient of the turbid background is taken as 10 

cm−1 everywhere except a scattering perturbation of 1 cm-1. The background 

scattering coefficient is taken as s =0.1 cm−1, while one regions is taken to have 

a 10% scattering perturbation. We use 4 illumination sources and an array of 64 

ultrasound point detectors distributed circumferentially 1cm away from the object 

(16 on each side of the object). The optical sources are placed 3 mm away from the 

object to validate the light transport model in the diffusion regime. The gap permits 

isotropic source in an infinite medium to be a reasonable approximation to the 

pencil-beam illumination in experimental scenarios. We sample pressure signals 

generated by photoacoustic effects with a temporal sampling frequency of 15 MHz. 

The transducer electromechanical response ( )rxh t  is modeled as a low-pass 

Hanning filter of width 7 time samples. 1% normally distributed white noise (zero 

mean and 1% of the mean of data) is added to measurements. Fig. 4.2 shows some 

‘measured data’ we generated with the simulation model. (a) is the normalized 

optical fluence generated with a point source on top of the grid system. (b) and (c) 

are the fluence perturbations due to only absorption and scattering with one point 

optical source on top of the grid system, respectively. (d) is the total fluence 

perturbation and (e) is the ultrasound transducer channel data. 

The time vector has maximum length 283 samples, so with 4 sources the 

Jacobian is of size 72448 × 1800, the pressure vectors are of length 1800, and the 

Hessian matrix is 1800 × 1800.  
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Reconstructed optical absorption and scattering distribution is shown in Fig. 4.3. 

Both μa and D distributions are faithfully recovered. μa is better recovered than 

scattering features. This supports conclusions by other researchers [17]. We believe 

this is due to stronger dependence of photoacoustic signals on optical absorption. 

This is also confirmed with faster convergence of optical absorption, as is shown in 

Fig. 4.5. A single iteration provides a reasonable first estimate of both μa  and D. 

Additional iterations improve absorption distribution estimates in particular, 

however, diffusion coefficient begin diverging and this becomes appreciable 

especially after 10 iterations. By experimental work, the authors Jetzfellner et al. 

[11] found that a fixed point iteration scheme for recovering absorption 

heterogeneities could lead to divergence with over-iteration. Their work involved a 

single illumination pattern. They suggested that a prior information on the imaged 

object may be necessary. Our simulation showcased improved convergence in 

absorption distributions albeit with simulated data. As a comparison, we also show 

results with the ratiometric method described previously in [15] in the bottom row. 

Fig. 4.2  Some quantities generated in the simulation study. (a) Normalized optical 

fluence distribution from source on top of the object. (b) Optical fluence perturbations 

due to only absorption heterogeneities. (c) Fluence perturbations due to only diffusion 

coefficient distribution. (d) Total fluence perturbations. (e) Ultrasound transducer 

channel data due to the same light source.  
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Only data with signal-to-noise ratio above 60 dB were used in this case. As is 

shown, the error in the reconstructed absorption map is unacceptably high for the 

ratiometric approach. Reconstruction of absorption failed. This is because the 

diffusion coefficient D has higher values than that in the previous paper and cross-

talk between absorption and scattering begin to appear. Where the proposed method 

can alleaviate the cross-talk, the ratio-metric method cannot. Scattering features are 

recovered better than absorption. While this does not agree with real cases, it is due 

to the nature of the algorithm. Readers can refer to [15] for discussion. 

 

 

 
 

 

The singular values of the Hessian are analyzed as an indicator of inversion 

stability. The first-iteration Hessian with 1, 4 and 8 sources are shown in Fig. 4.5. 

Fig. 4.3 Simulation results the proposed method and the ratio metric method with 4 

illuminations surrounding the object. From top to bottom, absorption and diffussion 

on coefficient distribution obtained with the ratiometric method described in [15], 

and the 1st, 3rd, 5th, and 10th iteration with the proposed method. 
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We found that conditioning improves with multiple illumination sources compared 

to one source alone (condition numbers are shown in Table 4.1). Detector count and 

positioning is also advantageous for inversion stability. 64 detectors yield better 

conditioning than circumferentially positioned 16 detectors. We also found that 

equally distributed sources perform better than densely positioned sources on one 

side of the object (data not shown). Conditioning of the inversion of each iteration 

is similar. Multi-source configuration is commonly used on diffuse optical 

tomography, therefore we also compared the conditioning of our proposed methods 

with continuous wave diffuse optical tomography (CW-DOT). With the same 

number of optical sources and detectors, the proposed method is orders of 

magnitude less ill-conditioned. 
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Fig. 4.4 Normalized reconstruction errors with 10 iterations. 
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Table 4.1 Condition number for different configurations 

Case Condition number 

MI-PAT, 1 source, 64 detectors 3.7764e+017 

MI-PAT, 4 sources, 64 detectors 1.3061e+008 

MI-PAT, 4 sources, 16 detectors 6.8934e+007 

MI-PAT, 8 sources, 64 detectors 3.8724e+007 

CW-DOT, 8 sources 1.7838e+013 
 

 

4.4 Conclusions and Discussion 

Our algorithm appears to be a promising way of reconstructing optical properties 

quantitatively using photoacoustic channel data. The use of multiple optical sources 

helps mitigate absorption-scattering non-uniqueness. The proposed algorithm 

performs image reconstruction and quantitative optical property estimation together 

in an iterative scheme.  

Our approach is presently based on diffusion theory calculations. However, it 

may be generalized to incorporate the radiative transport equation (RTE). Though 
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MIPAT 4 sources 64 detectors
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MIPAT 8 sources 16 detectors

CW-DOT 8 sources 64 detectors

Fig. 4.5 Singular values of the Jacobian matrices for different configurations. MIPAT 

with different source and detector count (1, 4 and 8 sources with 64 detectors and 16 

detectors) are compared. Conditioning of CW-DOT with the same number of 

sources and detectors is also included for comparison. 
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RTE outperforms light diffusion models in reconstruction of optical properties in 

photoacoustic tomography [17], the diffusion approximation is a reasonable starting 

point. In our simulation setup, we also took into consideration the feasibility of the 

diffusion approximation and located light sources far from the object to be imaged. 

The Born approximation is utilized in our work. This limits our method to be 

validated with relatively small perturbations. 

Additional nonlinear optimization methods should be explored to further 

improve reconstruction quality. Various constraints should be incorporated during 

inversion. One example is that Gao et al. [18] introduced the Bregman method 

combined with total variation regularization for reconstruction of optical properties 

in photoacoustic imaging. The 1  total variation regularization preserved sharp 

edges and therefore piece-wise continuous features in the recovered map. 

Simulation work demonstrated that their method outperformed the Jacobian matrix-

based methods in terms of computational efficacy.   

Our work has limitations. We simplified our work by assuming the Grüneisen 

parameter is constant throughout the object to be imaged. In practical scenarios, 

this may lead to inaccuracy in reconstruction of optical properties. We used the 

same theoretical model for both forward and inverse problems, but to avoid the 

‘inverse crime’ we did add noise to our ‘measured’ data. It should also be 

straightforward to incorporate more realistic transducer aperture, directivity, and 

electromechanical response effects into future work involving experiments.  
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5. Consecutively Reconstructing Absorption 

and Scattering Distributions in Known 

Turbid Media with Multiple-Illumination 

Photoacoustic Microscopy (MI-PAT)1 

 

5.1 Introduction 

Photoacoustic (PA) imaging has been intensively studied recently because of its 

promise for high resolution and intrinsic optical contrast [1]. Efforts have been 

directed to quantitative estimation of optical properties (absorption 𝜇𝑎  and 

scattering 𝜇𝑠), and the Grüneisen parameter distributions based on photoacoustic 

tomography, which may significantly enhance clinical and biomedical applications 

of PA imaging. This is usually termed quantitative photoacoustic tomography 

(qPAT), which usually involves two steps. The first step is a well-studied acoustic 

inverse problem, which aims to reconstruct photoacoustic initial pressure 

distribution using recorded acoustic data generated by a wide field pulse laser 

[2][3][4]. The second step is to estimate optical properties 𝜇𝑎 and 𝜇𝑠, in the target 

imaged. This is essentially a rather challenging optical inverse problem. Quite a 

number of approaches has been proposed for the second step of qPAT. Studies were 

first focused on 𝜇𝑎  estimation [5][6], later extended to include scattering 

[7][8][9][10]. Multiple-wavelength [11][12] or optical sources [13][14][15][16] 

were also proposed to mitigate the absorption-scattering non-uniqueness problem. 

                                                 

1 A version of this chapter has been submitted to J. Biomed. Opt., 2014. 
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Diffuse optical measurements were also used also to assist estimate 𝜇𝑎 in PAT [17] 

[18]. A thorough review on qPAT is provided by Cox et al. [19].  

The fixed-point iterative scheme for estimating optical absorption distribution 

was first proposed by Cox et al. [6]. With this method, absorption map is estimated 

in each iteration and then used to update fluence distribution for the next iteration. 

With simulaitons based on a diffusion-based finite-element model, the authors 

demonstrated that the algorithm converges fast and the absorption distribution 

could be reconstructed accurately. Jetzfellner et al. [20] examined the performance 

of this scheme with experimental data. With a tissue-mimcking phantom, PA 

imaging was conducted with circular illumination with a high intensity near 

infrared pulsed laser. The authors argued the iterative method is sensitive to 

background optical properties and diverges over iterations.  

Recently Harrison et al. [21] extended the aforementioned iterative method [6] 

to a least-squares fixed-point iterative method for reconstructing absorption maps 

in multiple-illumination photoacoustic tomography (MIPAT). With the proposed 

method, convergence of the inversion is significantly improved when multiple 

iterations is utilized. This approach is efficient and stable to accomplish as it does 

not require computation of Jacobian-matrix. However, the aforementioned methods 

are restricted to reconstructing only absorption distributions.  

In the present paper, we intend to extend our previous work to recover both 

absorption and scattering perturbation distributions in a known turbid media, which 

holds a typical value of background scattering in soft tissue. We accomplish this 

task in an iterative manner. For each iteration, absorption maps is first estimated 

with the least-squares fixed-point iterative method by Harrison et al. [21]. Optical 

fluence distribution is then updated, whereupon scattering coefficient perturbation 

distribution is estimated. This procedure is then repeated for multiple times until an 
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acceptable error is reached.  

5.2 Method 

5.2.1 Light propagation model 

qPAT is in essence inversion of a light transport model. We use the diffusion 

equation in this paper as the light propagation model. In photoacoustic imaging, 

pulsed laser must be used to excite transient acoustic generation, and the pulse 

duration is significantly longer than the average random-walk time of photons 

though the tissue. Therefore a time-independent form of the equation is usually 

utilized. For a time-independent point source with strength A in an infinite turbid 

homogeneous medium, the equation has the following form [22]: 

 

 
𝜇𝑎

𝐷
Φ(𝐫) − ∇2Φ(𝐫) =

𝐴

𝑐𝐷
𝛿(𝐫), (5.1) 

   

where Φ is the optical fluence, 𝐴 is the photon density source strength. 𝜇𝑎 is the 

absorption coefficient. 𝐷 is the so-called diffusion coefficient, which is defined as 

1/ 3(𝜇𝑠 + 𝜇𝑠′). 𝜇𝑠′ in the above expression is the reduced scattering coefficient, 

which may be calculated by 𝜇𝑠
′ = (1 − 𝑔)𝜇𝑠  with the anisotropy 𝑔. In diffuse 

theory, scattering is usually described with 𝜇𝑠′, or 𝐷. In this study, we use 𝐷. To 

validate the diffusion theory, 𝜇𝑠
′ ≫ 𝜇𝑎 is required, which is often satisfied in soft 

tissue at near-infrared wavelengths. 

5.2.2 Reconstruction of absorption distribution 

In MIPAT, the transient initial pressure distribution  due to source 𝑖 for a certain 

optical wavelength is [2] 
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 𝑝𝑖(𝐫) = 𝛤(𝐫)𝜇𝑎(𝐫)Φ𝑖(𝐫). (5.2) 

   

With the least-squares fixed-point iterative method [21], absorption at location 

𝐫 is estimated by 

 

 𝜇�̂�
(𝑖+1)(𝐫) =

1

𝛤

Σ𝑘Φ̂𝑘
(𝑖)

(𝐫) �̂�0
𝑘(𝐫)

Σ𝑘 [Φ̂𝑘
(𝑖)

(𝐫)]
2

+ 𝛽2

, (5.3) 

   

where �̂�𝑎
(𝑖+1)(𝐫)  is the estimated absorption with the (𝑖 + 1)th  iteration 

and  Φ̂𝑘
(𝑖)

 is the updated fluence due to source 𝑘 with the previous absorption 

map in the 𝑖th iteration.  �̂�0
𝑘(𝐫) is the reconstructed initial pressure distribution 

due to source 𝑘. 𝛽 is a regularization parameter to stabilize the computation.  

5.2.3 Reconstruction of the diffusion coefficient perturbation distribution 

The relation between the measured data 𝑝𝑖(𝐫) and [𝜇𝑎(𝐫), 𝐷(𝐫)] is nonlinear, 

because optical fluence at location 𝐫 is also a function of local optical properties. 

However, if we have an estimation of the absorption distribution 𝜇�̂�(𝐫) , the 

problem is simplified as the contribution of absorption to Φ�̂�(𝐫)  is known. 

Equation (5.2) is rewritten as, 

 

 𝑝𝑖(𝐫) = 𝛤(𝐫) 𝜇�̂� (𝐫) Φ̂𝑖(𝜇�̂�(𝐫), 𝐷(𝐫)). (5.4) 

   

To linearize the problem, we further decompose the local optical fluence at 

position 𝐫 as Φ̂𝑖(𝐫) = Φ̂𝑖,𝑜(𝐫) + 𝛿Φ̂𝑖,𝑎(𝐫) + 𝛿Φ𝑖,𝑠(𝐫), which is a sum of known 

homogeneous background fluence ( Φ̂𝑖,𝑜(𝐫)) due to known background absorption 

and scattering properties, and fluence perturbations due to absorption and scattering: 
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𝛿Φ̂𝑖,𝑎(𝐫) and 𝛿Φ𝑖,𝑠(𝐫). 

Equation (5.4) now becomes 

 

 𝑝𝑖(𝐫) = 𝛤(𝐫) 𝜇�̂� (𝐫)[Φ̂𝑖,𝑜(𝐫) + 𝛿Φ̂𝑖,𝑎(𝐫) + 𝛿Φ𝑖,𝑠(𝐫)]. (5.5) 

   

In the above equation, the only unknown term is 𝛿Φ𝑖,𝑠(𝐫) , the fluence 

perturbation due to scattering diffusion coefficient abnormalities. In this study, an 

extrapolated boundary condition is used (with zero inward flux) [22]. We assume 

that 𝛿Φ𝑖,𝑠(𝐫) is linearly related to 𝛿𝐷(𝐫), which limits our study to the linear case 

such that 𝛿Φ𝑖,𝑠(𝐫) ≪ Φ𝑖,𝑜(𝐫) , and Φ𝑖 ≅ Φ𝑖,𝑜 , we have the following relation 

based on the first-order Born approximation [14], 

 

 𝛿Φ𝑖,𝑠(𝒓) = ∫
𝛿𝐷(𝐫′)

𝐷𝑜
∇𝐺0(𝐫, 𝐫′) ∙ ∇Φ𝑖,𝑜(𝐫′)𝑑𝐫′. (5.6) 

   

Here 𝐺0(𝐫, 𝐫′) is Green’s function representing propagation from 𝐫  to 𝐫′ . 

𝛿Φ𝑖,𝑠(𝒓) can be estimated from equation (5.5): 

 

 𝛿Φ𝑖,𝑠(𝒓) =
𝑝𝑘(𝐫)

𝛤�̂�𝑎(𝐫)
− Φ̂𝑖,𝑜(𝐫) − 𝛿Φ̂𝑖,𝑎(𝐫). (5.7) 

   

If we discretize equation (5.7) and write it in a matrix form as  

 

 𝚽𝐬𝐜 = 𝐖𝐮,   (5.8) 

   

where 𝐖 is the Jocobian matrix, or sensitivity matrix and 𝐮 is the vector which 

contains the unknown diffusion coefficient perturbation map 𝛿𝐷(𝐫) to estimate. 
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This is a well-formatted linearized inverse problem and can be solved with a 

number of techniques. We use the least-squares minimization with total variation 

regularization: 

 

 𝐮 = arg𝑚𝑖𝑛𝐮‖𝚽𝐬𝐜 − 𝐖�̂�‖2
2 + 𝜆|�̂�|TV.  (5.9) 

   

λ in the above equation serves as the trade-off parameter for inversion. To 

determine the value of λ, we use the classic L-curve technique to balance the 

resulting errors in the first and second term [23]. 

We propose to repeat this procedure with multiple iterations to accomplish the 

imaging task until a preset tolerance is reached following the flowchart in Fig. 5.1. 

Before entering the iteration loop, we set the initial guess of the absorption as zero. 

In each iteration, we first update the fluence distribution with estimated [𝜇𝑎, 𝐷] 

from last the iteration. Then we reconstruct 𝐷 with the updated flunce distribution, 

whereupon a new version of optical fluence is generated, based on which absorption 

is again modified if a tolerance is not yet reached. The iterative reconstruction is 

repeated till a satisfactory result is reached.   
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5.3 Simulation 

Simulation studies were conducted to examine the performance of the proposed 

scheme. All simulation were conducted on a region of interest composed of 2-

dimensional 40 × 40 mesh grid system, whose dimension is set to be 20 𝑚𝑚 × 

20 mm, except for otherwise stated. To mitigate inversion crime, the synthetic data 

were generated on a larger grid system (43 × 43) and down-sampled to 40 × 40 

with the cubic interpolation for inversion. 16 optical sources positioned 3 mm 

backward from the object to validate the diffusion light propagation model. 

Background optical properties of the object were taken as the physiologically 

realistic values in biological soft tissue. Absorption and the reduced scattering 

coefficient are 0.1 cm−1 and 100 cm−1, respectively.  

We first tested our algorithm with regular overlapping features, as is shown in 

Fig. 5.2. Two rectangular features with absorption perturbations (10% on the left 

and 5% on the right) and diffusion coefficient anomalies (5% on the left and 10% 

on the right) were positioned in the center of the field of view. While noise with 

Fig. 5.1 Flow chart of the iterative method. 
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normal distribution corresponding to an average SNR of ~30 dB were added to 

‘reconstructed’ PAT image. For inversion, we use zero as initial guess for both 

absorption map and diffusion coefficient distribution. In each iteration, 𝜇𝑎  was 

estimated for 20 times before optical fluence was updated. Reconstructed results 

with iteration 1, 2 10 and 50 are employed to show improvement of estimation as 

more iterations are involved.  

 

 

 

 

To examine the capability of the method to recover arbitrary features rather 

than regular shapes, features with both discrete strips with sharp edges and 

smoothed features were tested, as is shown in Fig. 5.3. In (a), sharp strip features, 

which share similarities with biological structures such as blood vessels, with 10% 

absorption and scattering perturbations were reconstructed. We also tested four 

smoothed absorption perturbations (0.1 𝑐𝑚−1 ,  0.09 𝑐𝑚−1 , 0.07 𝑐𝑚−1  and 

0.05 𝑐𝑚−1, respectively ) and two diffusion coefficient anomalies (0.0083 𝑐𝑚−1 

and 0.0042 𝑐𝑚−1) with different spatial locations in the background. Synthetic 

data were generated with a SNR of ~30 and 20 iterations were used for inversion. 

 

 

Fig. 5.2 Reconstruction of optical property distributions with the proposed method. 

Initial values were chosen to be zero for both absorption and diffusion coefficient 

distributions. Results with iteration #1, #2, #10 and #50 are shown to demonstrate that 

results are improved with more iterations.  

. 
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Cross-talk between reconstructed maps of the two parameters is a concern, 

because diffusion coefficient depend on both absorption and scattering: 𝐷(𝐫) =

1/3(𝜇𝑎(𝐫) + 𝜇𝑠′(𝐫)) . Artefacts due to absorption might occur in reconstructed 

diffusion coefficient distribution. We tried estimating two non-overlapping features 

to examine cross-talk between the two properties in recovered results (Fig. 5.4). 

Interestingly, whereas no artefacts due to absorption appeared in the reconstructed 

𝐷 , we did observe artefacts in reconstructed absorption map where diffusion 

perturbations lie. However, the pseudo-feature is alleviated within several iterations 

and was finally removed from the results. This might be because that in each 

iteration, we update the absorption distribution, thus dependence of 𝐷 on 𝜇𝑎 is 

significantly mitigated and it is negligible already before reconstructing the 

scattering feature. On the other hand, while we estimate absorption map, the 

contribution of scattering features is still functioning and brings about artefacts in 

the recovered 𝜇𝑎 . But with more iterations involved, optical fluence is updated 

repeatedly and getting closer to its real status, therefore artefacts are removed. It is 

not surprise that with a single source, a unique solution for [𝜇𝑎, 𝐷] estimation is 

Fig. 5.3. Reconstruction of sharp (a) and smoothed features (b) with the proposed 

method with 20 iterations. In (a), Anomalies of both absorption and diffusion 

coefficient was set at 10% of the background value. Perturbations of 10%, 9%, 7% 

and 5% of the background absorption, 20% and 10% of the background diffusion 

coefficient at various locations was used in (b). SNR of synthetic data was ~30 dB.  

 

. 
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not achieved. This is due to the non-uniqueness problem. 

 

 

Figure 5.5 shows reconstruction of a realistic synthetic blood vessel structure 

of 10 mm × 10 mm. From left to right are true model, reconstruction results with 

SNR of infinity (0 noise), ~ 30 dB and ~ 20 dB, respectively. We also show the 

cross-sectional profiles of corresponding results in the center of the distributions in 

Fig. 5.6. With data that has a SNR of ~ 30 dB, absorption features are faithfully 

estimated. More artefacts appeared in the results computed with 20 dB data.  

 

 

 

Fig. 5.4. Reconstruction with non-overlapping features to demonstrate capabilities of 

the algorithm to alleviate cross-talk between absorption and diffusion coefficient. 

Reconstruction results when using 1 and 16 illuminations are shown. Artefacts 

appeared in the reconstructed absorption map where diffusion coefficient anomalies 

locates. But with more iterations involved, the artefacts was removed when multiple-

sources were used. 

 

 

. 

 

Fig. 5.5. Reconstruction of a synthetic blood vessel vasculature. Left column is the true 

[𝝁𝒂, 𝑫] model. Second to the last column are reconstruction results with average SNR 

of infinity (no noise), ~ 30 dB and ~ 20dB.  

 

 

 

. 
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Figure 5.7 depicts the relation between reconstruction errors from the last 

example and number of optical sources involved. Errors were calculated with the 

following formula [20],  

 𝜀 =
√∫ ∫ |𝑈 − 𝑈𝑛|2𝑑𝑥𝑑𝑦

√∫ ∫ |𝑈|2𝑑𝑥𝑑𝑦
 (10) 

where 𝑈 and 𝑈𝑛 are the intensity of true model and the reconstructed maps with 

the 𝑛𝑡ℎ iteration. The algorithm converges in the first few iterations and remains 

stable even with a large number of iterations. The number of optical sources matters 

for reconstruction quality. With more illuminations utilized reconstruction errors 

for both [𝜇𝑎, 𝐷] decreased immediately. But D benefits more and reconstruction 

errors drops more significantly. Considering that usually 𝜇𝑎 is better resolved than 

scattering features in qPAT [24], this suggests that multiple-illumination pattern 

does yield higher reconstruction quality by providing more information. We used 

16 optical sources for studies in previous examples as it yields faithful results. 

 

 

Fig. 5.6. Cross-sectional profiles of the reconstruction results along horizontal direction 

in the center of the true model in Figure 5.5. All features of 𝝁𝒂  was faithfully 

reconstructed with the ~ 30 dB data. Artefacts appeared in the reconstruction with 

data that has a SNR of ~ 20 dB. Despite some artefacts, 𝑫 features were recovered 

with a ~30 dB SNR. Amplitude errors were unacceptable for data with ~20 dB SNR.  

 

 

 

. 
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Fast convergence was seen as a remarkable advantage of the least-squares 

fixed-point MIPAT approach [21]. We plot the relative errors of reconstruction in 

Fig. 5.8 as an illustration of overall convergence ability of the proposed scheme. 

Reconstruction errors decreases quickly and stabilizes within the first 10 iterations.  

 

 

5.4 Conclusion and discussion 

We have proposed a consecutive reconstruction scheme to estimate optical 

absorption and diffusion coefficient perturbation distributions in known turbid 

medium for multiple-illumination photoacoustic microscopy (MIPAT). With this 

approach, absorption map is first estimated, whereupon optical fluence is updated 

and then diffusion coefficient distribution is reconstructed. The absorption 

distribution is recovered with a least-squares fixed-point iterative method. 

Numerical simulations demonstrated that both the optical properties can be 
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Fig. 5.7. Reconstruction errors with different number of optical sources. 
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Fig. 5.8. Normalized reconstruction errors with 50 iterations. Both 𝝁𝒂 and D converge 

in a few iterations and stay stable after a large number of iterations. 

 

 

. 
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faithfully reconstructed with the presence of noise at a SNR level of ~30 dB. This 

method converges fast and is robust to cross-talk of overlapping and non-

overlapping features.  

Conventional iterative methods for qPAT suffers from computational 

complexity, instability and poor convergence performance. The least-squares fixed-

point iterative methods [21] to recover absorption in our previous report does not 

require inversion of large scale Hessian- or Jocabian- matrix, therefore it is 

computationally efficient and stable. The reconstruction can be done on a resolution 

scale equivalent to the fine resolution obtainable by backprojection or other model-

based inversion approaches. Convergence is substantially improved. These 

advantages enable the faithfully estimated absorption serve as a compulsory guide 

for each iteration in the current method. Updated fluence estimate based on the 

reconstructed absorption map assisted accurate estimation of the scattering features. 

We did not study convergence of the algorithm with a much more scattering 

background as described in [20] as we restrict our study in the scope of realistic 

biological soft tissue. While various approaches have been proposed for 

quantitative reconstructions of optical distributions, most previous approaches were 

not sufficiently tolerant to realistic noise levels. Prior to experimental work we 

argue it is essential to develop imaging strategies and algorithms for sufficiently 

noise-robust. In this manuscript we demonstrate the ability to reconstruct both 

absorption and scattering distributions with realistic noise levels.   

Our study has limitations. The result in this paper is based on the approximate 

light propagation model in the diffuse regime. Whereas many studies used the 

diffuse approximation for qPAT, it is verified that the radiative transfer equation 

model [24] provides better estimation. It is worth trying to extend our current study 

to more accurate theoretical models. Similar to most of the literature on this topic, 
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we also assume that ideal reconstruction of the photoacoustic images from 

measured acoustic data. While one option to avoid this is to use the ultrasonic 

channel data as proposed by our previous report [16], one can also follow the 

framework by Saratoon et al. [25] to include acoustic reconstruction to study its 

influence on the final reconstruction results. Reconstruction of scattering 

distributions still requires matrix inversion, as do all other Diffuse Optical 

Tomographic (DOT) methods thus far. The matrix condition number is comparable 

with previous DOT/PAT approaches and the reconstruction can be done on a courser 

scale to accommodate regularization (data not shown). We utilized this method as 

a preliminary example. We partially committed the ‘inverse crime’ in this paper, 

which refers to the act to generate, as well as to invert synthetic data with the same 

theoretical model or discretization. Since we use the same theoretical model for 

both forward and inverse problem, We 1) generated synthetic data on a larger grid 

system (with an odd-number of grid) and then down-sampled the dataset with a 

smaller system (even number of grid points) for inversion; 2) added white noise 

with normal distribution to all experimental data to mitigate this issue. To extend 

our simulation work to experiments is enlisted as our future work. As a preliminary 

work, recently we have reported a reflection-mode photoacoustic technique that can 

be used for optical properties sensing [26]. 

In summary, we provided an alternative, but stable and practical framework for 

quantitative estimation of overall absorption distribution and scattering 

perturbations in known biological media, despite that our current approach still 

need a somewhat more complex experimental setup.  
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6. Integrated Micro-endoscopy System for 

Simultaneous Fluorescence and Optical-

Resolution Photoacoustic Imaging (OR-

PAM)1 

 

6.1 Introduction 

Optical-resolution photoacoustic microscopy (OR-PAM) is capable of sensing 

endogenous optical absorption in biological bodies with fine lateral resolution 

provided by optical focusing. Pioneered by Maslov et al. [1], OR-PAM imaging has 

been successfully applied to both structural and functional imaging [2]-[9]. Since 

both oxy- and deoxyhemoglobin are the dominant absorbing components in blood, 

the distribution of optical absorption, detected by the OR-PAM system can be used 

to recover oxygen saturation (SO2). For example, Hu et al. [10] used OR-PAM to 

image SO2 with capillary-level resolution in mouse brain with dual-wavelength 

measurements.  Hu et al. [11] also imaged the healing process of laser-induced 

microvascular lesions in a small animal model in vivo in terms of morphological 

and SO2 mapping. These studies demonstrated the capability of OR-PAM as a 

potential powerful tool in microcirculatory physiology and pathophysiology.  

Recently our group reported the first label-free fiber-based OR-PAM (F-OR-

PAM) imaging systems [12, 13]. The system retains many of the powerful 

properties of our previously proposed table-top system [14]. It takes advantage of 

                                                 

1 A version of this chapter has been published. Reprint with permissions from: P. Shao, W. Shi, 

P. Hajireza and R. J. Zemp, J. Biomed. Opt. 17(7), 070624, 2012. Copyright 2012 SPIE. 
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a flexible image guide and has significant potential to serve as a new micro-

endscopic imaging technique for clinical use. Visualization of microvasculature in 

living mouse ears was demonstrated with the system.  

Fluorescence contrast high-resolution fiber-optic micro-endoscopy (HRME) 

was introduced by Muldoon et al. [15]. This technique, which is inspired by the 

goal of virtual histopathology, utilizes a microscopic setup to image fluorescently-

labelled cellular structures with lateral resolution on the order of microns. 

Fluorescent signals excited by a wide-field light source are magnified and sensed 

by a CCD camera. Rosbach et al. [16] justified the feasibility of the imaging 

modality in evaluating lymph nodes from breast cancer patients with morphological 

variation. Muldoon et al. [16] verified the validity of the technique in assisting 

diagnosis of oral lesions by observing and analyzing morphology of epithelia in 

human oral cavities.  

In the present paper, we propose a combined system based on the HRME 

technique and our previous F-OR-PAM system, with the purpose of engineering a 

hybrid imaging platform to visualize capillary vasculatures along with cellular 

context. 

6.2 Method 

The dual modality imaging platform consists of two modules (Fig. 6.1). The F-OR-

PAM system employs a 532-nm diode-pumped Ytterbium-doped fiber laser system 

as the optical source (GLP-10, IPG Photonics Corporation). Pulse repetition rate 

(PRR) of the laser system is tunable within the range from 20 kHz to 600 kHz. Pulse 

duration is ~ 1 ns and the pulse energy can reach up to 20 𝜇J. A pair of 2D 

galvanometer scanning mirrors (6230H, Cambridge Technology Inc.) is utilized to 

accomplish optical scanning. The scanners are driven by two analog sinusoidal 

waves (x- and y- direction) from a function generator. The scanned beam is then 
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focused by an objective lens (f =18 mm, K16033703, Mitutoyo Co.) and directed 

into an image-guide fiber (FIGH-30-850, Myriad Fiber Imaging Tech. Inc.). 

Photoacoustic signals are sensed by a 3.5 MHz transducer (19-mm focus, 6-mm 

active element, f# = 3.17, CD International Technology, Inc.), amplified and pre-

filtered by a pulser-receiver (5900 PR, Olympus NDT Inc.) and then digitized by a 

12-bit 8-channel high-speed digitizer (CS8289, Gage Applied Technologies Inc.) 

along with the higher frequency (x-axis) scanning feedback signals. For the 

fluorescent sub-system, a 447.5-nm-centered diode laser is utilized as the excitation 

light source. A standard fluorescent filter unit is employed in the system. An exciter 

band-pass filter with a center wavelength (Thorlabs Inc.) of 445 nm is utilized. A 

475-nm cut-off dichroic mirror (Chroma Technology Corp.) is used to reflect 

excitation light while transmitting excited fluorescence signals directed back. 

Excited fluorescence signals travel back through the image guide, reflected by the 

beam splitter positioned above the objective lens and then follow the light path to 

the scientific grade high-resolution Electron-Multiplied CCD (EM-CCD, Andor 

iXon 885, Andor Technology).  To rule out noise in the fluorescence signals, we 

use a 500-nm long-pass barrier filter (Thorlabs Inc.) between dichroic mirror and 

tube lens. Pixel size of the CCD is 8 𝜇m × 8 𝜇m and there are 1002 × 1004 pixels 

in total. The objective lens and the tube lens function together as a microscopic 

system. We use a plano-convex lens with a focal length of 150 mm (Thorlabs Inc.) 

as the tube lens and therefore the magnification factor of the system is ~8.3. 

Proflavine, a FDA-approved drug for human medical use is utilized as the contrast 

agent. In soft tissue, proflavine stains nuclei. This is important since nuclei are often 

enlarged in cancer cells. Since the 532-nm laser is away from the absorption 

spectrum of Proflavine, no fluorescence signals will be generated by our OR-PAM 

optical source.  
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The image guide we used, which consists of 30,000 single mode fibers in a 

bundle, has a diameter of ~ 800 𝜇m. Considering the magnification factor of the 

microscope system, each single fiber covers 4.7 pixels of the EM-CCD on average, 

which is above the Nyquist limit. 

The software package for data acquisition and data transfer is written in C/C++ 

and data processing and analysis is conducted with Matlab (Mathworks Inc.). 

6.3 Results 

6.3.1 System characterization 

Figure 6.2 illustrates the system characterization of the imaging system. Fig. 6.2 (a) 

shows the entire footprint of the image guide we use, which has a diameter of ~800 

Figure 6.1 Experimental setup for the combined photoacoustic and fluorescence 

micro-endoscopy imaging system. The system is composed of an OR-PAM 

subsystem and a fluorescence microscopy system. A 2D galvanometer scanning 

mirror pair is used for raster optical scanning of the focused laser pulse. In the 

fluorescence imaging subsystem, excitation light is selected with an excitation 

filter and a dichroic mirror and directed by a beam splitter to share the same light 

path as the laser beam through the objective lens and the image guide to the target. 

Fluorescence energy is then reflected back through the dichroic mirror and then 

focused by a tube lens to the high resolution CCD camera. 
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µm. When the fluorescent imaging module is well-focused, single elements of the 

image guide can be visualized, as is shown in (b). This demonstrates that the module 

is capable of imaging features at a cellular level. To examine the lateral resolution 

of the fluorescent module, we imaged a 1951 United Stated Air Force resolution 

target (USAF 1951). Features with a dimension of 4.38 µm can be resolved, which 

suggests that the imaging module has a lateral resolution that is on the order as the 

F-OR-PAM sub-system. For properties of our F-OR-PAM module, readers can refer 

to [12] for details. (d) and (e) are  images of a carbon fiber network obtained with 

both the two modules with fluorescent dye applied to the background. Contents in 

the two images are consistent. While carbon fibers appear as dark features in the 

fluorescent images, the F-OR-PAM image relies on photoacoustic signals from the 

fiber structures. The dual-modality imaging platform is capable of simultaneously 

providing two kinds of information that are supplementary to each other.  

 

 

 

Figure 6.2 System characterization. (a) is the whole footprint of the  image guide, 

with a diameter of ~800 𝜇m. (b) is a zoomed-in version of the region in the dashed 

rectangle in (a). When the imaging system is well-focused, single elements of the 

image guide can be visualized. (c) is the image of the USAF 1951 resolution target 

taken with the fluorescent imaging system. Bars with a width of around 4.38 𝜇m 

are resolved. (d) and (e) are the same carbon fiber network imaged with the 

fluorescent imaging module and the F-OR-PAM module sequentially. Consistent 

contents are visualized in the two images. 
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6.3.2 In vivo Imaging 

In vivo studies were conducted to demonstrate imaging capability of our system. 

An ear of a 7-week old SCID hairless outbred mouse was imaged for in vivo studies. 

Experimental procedures follow the laboratory animal protocol approved by the 

University of Alberta Animal Use and Care Committee. An animal anesthesia 

system was utilized while image data were collected. Before the imaging 

experiment, we topically applied proflavine-saline solution with a concentration of 

0.01% (w/v) to the ear skin surface. To avoid contamination of fluorescence image 

by our fiber laser, the fluorescent and F-OR-PAM images were taken sequentially 

in a few minutes after the dye was applied. But acquisition of the two images can 

be interlaced. The measured power of the excitation 455-nm light at distal end of 

the image guide is around 0.45 mW. The 532-nm laser works with PRR of 160 kHz. 

The average power measured at the distal end when conducting F-OR-PAM 

imaging is around 35mW. Results of the experiment are shown in Fig. 6.3. The 

scanning frequency of the galvanolmater mirror system is 400 Hz and 1 Hz for the 

x- and y-axis, respectively. With the laser repetition rate of 160 kHz, the frame rate 

of the F-OR-PAM imaging sub-system is 2 frame per second, resulting in images 

with 160,000 points. (a) and (b) are the F-OR-PAM maximum amplitude projection 

(MAP) and fluorescent images of the mouse ear obtained at the same location, 

respectively. A 2D Hessian-based Frangi vesselness filter was used for data 

processing [18]. (c) is the co-registered image. 

Figure 6.3 (d) is a fluorescence image of normal human oral mucosa taken with 

our system. After topical application of the fluorescent dye, distal end of the image 

guide was placed in contact with normal human oral mucosa to acquire fluorescent 

images. Staining of nuclei and cell membrane can be visualized clearly in the image. 
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6.4 Conclusion and discussion 

We demonstrated a hybrid imaging system for both F-OR-PAM-based vasculature 

and fluorescently labeled cellular structure imaging. We further provide cellular 

information on the micron-scale based on the OR-PAM system reported by our 

group [12] [13]. We believe that the concept shown in the present paper may lead 

to a more powerful tool for biomedical imaging.  

A potential application of our system is the study and diagnosis of early-stage 

cancer. Whereas F-OR-PAM can provide images of vasculature (and potentially 

hemoglobin oxygenation) in tissue, cellular information may provide 

morphological context which is crucial for researchers and clinicians. For example, 

morphological anomalies in tumor tissue and variations in the micro-vasculatures 

due to cancer angiogenesis can confirm each other. This enables the technique to 

serve as a form of non-invasive virtual biopsy for identification of superficial tumor 

tissues in human cavities in diagnosis by clinicians. Estimate of SO2 at capillary 

level, which is not possible with pure fluorescence imaging, can also be 

accomplished with dual-wavelength OR-PAM imaging [10]. This could help reveal 

metabolic status of the cancer tissue, which is proven to be of importance for both 

fundamental studies and clinical practices. Another example is vasa vasorum 

Figure 6.3. Results of in vivo experiments. (a) is the fluorescence image of the 

mouse ear taken at the same location where the F-OR-PAM image was obtained; 

(b) is the F-OR-PAM image; (c) co-registered image of (a) and (b). (d) 

Fluorescence image of normal human oral mucosa with topical application of 

Proflavine. 
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imaging. Angiogenesis in this vascular layer of the lumen of atherosclerotic vessels 

has been correlated with plaque vulnerability. Visualizing the vessels could help 

provide one determinant of plaque vulnerability while fluorescent labelling could 

target immune cell invasion as an additional surrogate measure of rupture 

vulnerability.  

We would like to note that though the fluorescent dye we use for the present 

project is not cell-specific, various dye materials can be utilized to label different 

cells, cell markers, or sub-cellular features in the soft tissue to generate contrast 

between tissue components. For example, the amine-reactive derivatives of 

fluorescein isothiocyanate (FITC), which is widely used for various applications 

such as anti-body labeling in immunofluorescence. The FDA-approved dye 

Indocyanine Green (ICG) [19] [20] has the advantage of near infrared excitation 

and could also be considered as a myriad of existing and emerging fluorescent 

reporters. Investigation of these dyes is warranted in our future work for novel 

potential applications.  
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7. Mosaic Acquisition and Processing for 

Optical-Resolution Photoacoustic 

Microscopy (OR-PAM)1 

 

7.1 Introduction 

Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging 

modality for visualizing optically absorbing structures with high lateral resolution 

provided by fine optical focusing. Since proposed by Maslov et al. [1], it has been 

applied to both morphological and functional imaging in biological subjects. The 

technique was used to image microcirculation at the capillary level [2], brain 

microvascular morphology and oxygenation [3], amyloid plaques in Alzheimer’s 

disease mouse models [4], ocular microvascularture [5], and healing processes of 

laser-induced lesions in small animal models [6]. Recently, Tsytsarev. et al. [7], 

used OR-PAM to monitor microvasclar response to electrical stimulations of living 

mouse somatosensory cortex with exposed cranium.   

Data acquisition time is limited by scanning speed, laser pulse repetition rate 

(PRR), and data transfer. Different raster scanning schemes were introduced, among 

which the most commonly used is to mechanically translate the bulky imaging head 

within the horizontal x-y plane [1]-[7] while firing laser pulses and receiving 

photoacoustic signals periodically. Considerable data acquisition time is 

unavoidable in this case. Hu et al. [8] reported that with their second generation 

                                                 

1 A version of this chapter has been published. Reprint with permissions from: P. Shao, W. Shi, 

R. K. W. Chee and R. J. Zemp, J. Biomed. Opt., 17(8), 080503, 2012. Copyright 2012 SPIE. 
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(G2) OR-PAM system developed recently, 70 minutes is needed to scan a mouse 

ear with an area of 7.8 × 10 mm. While stunning image quality was demonstrated, 

acceptance of the imaging modality in practical applications is hampered by the 

long data acquisition time.  

Optical scanning was introduced by Xie et al. [9] to prevent mechanical 

scanning and to speed up the imaging process. While the laser beam raster scan was 

achieved by an x-y galvanometer scanner, an unfocused transducer was used to 

sense the generated photoacoustic signals. Utilizing a laser system with PRR of 

1024 Hz, data acquisition time for a 256 × 256-pixel image was reported as less 

than 2 min. Although a large circular field of view (FOV) of 6-mm diameter was 

demonstrated, a trade-off between signal to noise ratio (SNR) and FOV always 

exists. A hybrid-scanning OR-PAM (HSOR-PAM) scheme was used by Rao et al. 

[1]. With this setup, whereas fast scanning along one axis was achieved with a 

galvanometer mirror, mechanical scanning along the other axis was accomplished 

using a 1D mechanical translation stage. A cylindrically-focused transducer was 

used to receive ultrasonic signals. Using a laser system with a PRR of 5 kHz, the 

system required 256 s to obtain an 800 × 1600 × 200 volumetric data set of live 

mouse ear vasculature. SNR of the imaging system was somewhat compromising 

middle ground between the optical scanning scheme of Xie [9] and mechanical 

scanning methods [1] [8]. Scanning range along the fast scan direction is limited. 

Furthermore, motion artifacts might be a potential problem when imaging a large 

area with this setup. Wang et al. [11] developed a voice-coil scanning system that 

is able to accomplish B-scan in a range of 1 mm at 40 Hz and 20 Hz at a range of 9 

mm. Scanning in the other axis is achieved with a mechanical motor stage. Some 

of these system architectures could perform faster with a higher repetition rate laser. 

However, for the hybrid and optical scanning systems, the FOV will be limited in 
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at least one direction. Mechanical scanning will limit the image speed of G1 and 

G2 OR-PAM systems.  

In this paper, we describe a fast OR-PAM system engineered for providing 

large FOV using mosaic acquisition and data processing. In this system, a 3-axis 

stepper-motor sub-system is used to mechanically move the target to be imaged 

from patch-to-patch in less than 0.5s. Patch images are aligned and stitched to 

generate a large scene composite. Our proposed system, which is a hybrid approach 

between laser-scanning and mechanical scanning, retains the SNR-advantages of 

focused-transducer OR-PAM systems we recently introduced [12].  

7.2 Method 

Configuration of our system is illustrated in Fig. 7.1. We use a diode-pumped pulsed 

Ytterbium-doped fiber laser system as the optical source (GLP-10, IPG Photonics 

Corporation), which generates 532-nm output pulses with durations of ~ 1 ns and 

the pulse energy can reach as high as 20 𝜇J. The PRR of the laser pulses is tunable 

within the range of 20 kHz to 600 kHz. A glass slide is used to reflect a small 

amount of light to a photodiode and used as a trigger for data acquisition. Optical 

scanning is achieved by a pair of galvanometer mirrors (6230H, Cambridge 

Technology Inc.) driven by two sinusoidal waves (x-y) from a function generator 

(Tektronix ATG 3022B). Scanning range (or FOV) of one individual image is 

determined by the amplitude of the sinusoidal signals. The scanned beam is focused 

by an objective lens (NA = 0.15, Thorlabs Inc.) with a focal length of 18 mm and 

then travels through our custom designed low-loss light-delivery probe [12] before 

reaching the imaging object. A 3.5 MHz ultrasound transducer (SLIG 3-02, CD 

International Technology, Inc.) with a 19-mm focal length and 6-mm active element 

is employed to sense photoacoustic signals.  
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An 8-channel 12-bit PCI high speed digitizer (CS8289, Gage Applied 

Technologies Inc.) is used for data collection. Two channels of the HSD card are 

used to digitize and store photoacoustic signals and the scanning sinusoidal 

feedback signal with the higher frequency (x-axis). A pulser-receiver (5900 PR, 

Olympus NDT Inc.) is used for photoacoustic signal amplification and pre-filtering.  

The object to be imaged is mounted on a motorized high precision 3-axis 

motion stage to realize mosaic movement. A PCI motion card (NI 7350) is utilized 

to communicate with the motion system that consists of three integrated high torque 

stepper motors (23Y002D-LW8, Anaheim Automation).   

Mosaic acquisition is accomplished by acquiring small FOV fast-optical scans 

successively in a sequence of mosaic patches at mechanically-scanned 2D grid 

locations. The object is moved to each mosaic location until the entire region is 

covered. At each imaging spot, the location of the stage is sensed by encoders and 

recorded for patch alignment. Stage movement, data collection and optical scanning 

are coordinated with a square wave generated by a DAQ card (NI PCI 6221, 

Figure 7.1 System configuration. 
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National Instruments) sharing the same frequency as the slow-axis (y-axis) 

scanning signal. Photoacoustic data acquisition is active only for the backward 

portion of the y-axis signal. During data acquisition, the low-phase of the 

coordinating square wave is used to inhibit the motors to avoid electronic noise 

from the motion sub-system. After each mosaic data acquisition is complete, and 

during stepper motor activation for subsequent patch positioning, data from the 

previous patch are transferred from the HSD-card on-board memory to a number 

of pre-allocated data buffers in the random-access memory (RAM) of the PC. The 

buffers are created when commencing the imaging task and utilized in a circular 

pattern to minimize system resource requirements. A separate thread manages 

saving data from PC RAM to the hard drive when buffers are not empty. Software 

for realizing data collection and motion control is written in C/C++. A flowchart of 

the control software is illustrated in Fig. 7.2. Multiple threading is used to 

coordinate tasks such as data acquisition, stage movement and data saving.  

 

 

 

Figure 7.2 Flow chart of the control software. One thread is used to 

coordinate photoacoustic data acquisition, while the other thread is 

generated to save data into the PC hard-drive. 



130 

  

Scanning areas for each sub-image is intentionally kept larger than desired 

mosaic patch sizes. Image redundancy permits position shifts for image alignments 

to account for motion artifacts and also helps improve SNR in the marginal area of 

each small FOV scene. In data processing, mosaic patches are first positioned at 

corresponding locations on the 2D grid system then shifted according to the position 

feedback information obtained during the imaging process to compensate 

mechanical movement errors. Raster scanning directions are aligned to be parallel 

with the movement directions, therefore no complex image registration methods 

are required by this system. Image blending is essential for generating the large 

composite. We use the feathering [13] method to merge adjacent image mosaic 

patches. The pixel value at location (𝑥, 𝑦) in the new image composite in the 

overlapping area is determined with the contribution of the two adjacent mosaic 

patches with the following method: 

 

𝑁(𝑥, 𝑦) = 𝛼𝐼𝐴(𝑥, 𝑦) + (1 − 𝛼)𝐼𝐵(𝑥, 𝑦) 

 

in which 𝑁(𝑥, 𝑦)  is the pixel value in the new image composite at (𝑥, 𝑦) , 

𝐼𝐴(𝑥, 𝑦)and 𝐼𝐵(𝑥, 𝑦) are the pixel values of adjacent image A and B, respectively. 

𝛼 is the weighting function, which is simply calculated as the distance from image 

A. This helps eliminate the edge artifacts in the composite image.  

7.3 Results 

Figure 7.3 shows results of our phantom study. 36 images with a small FOV of ~ 

930 µm × 930 µm were generated in total, as is shown in (a). The mosaic patches 

were then shifted according to the position feedback information and then stitched 

to generate the panoramic scene (b).  
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We imaged the blood vessel structures of a 7-week old SCID Hairless Outbred 

(SHO™, Charles River, MA, USA) mouse ear for in vivo studies. All experimental 

procedures are in conformity with the laboratory animal protocol approved by the 

Animal Use and Care Committee of the University of Alberta. The mouse was 

under anesthesia during the imaging process.   

The panoramic scene with an overall area of 6.45 mm × 5.8 mm is shown in 

Fig. 7.4 (a). 90 (9 × 10) image mosaics were generated to composite the large FOV 

image. Distance between imaging spots is 645 µm and the original dimension of 

image mosaic is around 930 µm × 930 µm. (b) is an image composite with 4 × 4 

image blocks, which is an image of the framed area A in image (a) but acquired 

separately after the animal was re-positioned. The vascular structures in (b) are 

consistent with those in the region A shown in image (a). To examine the image 

capability of our system, we take an individual image patch, which is shown in (c) 

from the large scene. With a fine resolution of around 6 µm of the system [12], 

detailed capillary structures can be resolved. 

PRR of the laser system is 320 kHz for the imaging experiment. The measured 

pulse energy after the scanning mirror is ~ 0.15 µJ. No damage was observed on 

the animal skin surface after imaging. Assuming that the laser focal spot is around 

120 µm beneath the skin surface, the calculated laser fluence on the skin is 18 

Figure 7.3 Phantom studies. (a) 36 Sub-images acquired at a 2D grid locations; 

(b) image composite generated with the mosaic images with image alignment and 

stitching. 
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mJ/cm2. This is less than the 20 mJ/cm2 standard by American National Standards 

Institute (ANSI).We used 400 Hz (x-axis) and 1 Hz (y-axis) sinusoidal waves to 

drive the scanning mirrors, respectively. Therefore the B-scan frame rate across 930 

𝜇m is 400 Hz. Only 0.5 seconds is needed to collect data for one mosaic patch with 

160,000 pixels (400 × 400). In total, only 1 second is required for one image mosaic 

including data acquisition, transfer and the stage movement.  

 

 

 

7.4 Conclusion and discussion 

Several advantages of our mosaicing scheme should be noted. First, as a hybrid 

scanning approach between optical scanning and mechanical scanning, moscaicing 

significantly speeds up the data acquisition time of the imaging modality. With 320 

kHz fiber laser, our system outperforms the G2 OR-PAM, which is introduced by 

Hu et al. [8] in terms of data acquisition speed. To scan a region of 7.8 mm × 10 

mm, 70 min is required for G2 OR-PAM, whereas with the proposed system, only 

Figure 7.4 Micro-vasculature of a living mouse ear. Left: large image 

composite of the living mouse ear with FOV of 6.45×5.81 mm2; Upper right: 

a separate image of the same area framed with dashed box A in the image 

composite; Bottom right: a magnified individual patch taken from the 

image composite enclosed by the dash box B. 
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90 s is needed for a region of 6.45 mm × 5.8 mm. Our system is at least 20 times 

faster than G2 in terms of data acquisition time per unit area. Since our system has 

similar pixel size with G2 OR-PAM, it still surpasses G2 OR-PAM by the same 

factor if compared with size of dataset per unit time range. Our system is also faster 

than existing systems with different scanning schemes in terms of dataset size as 

discussed above. This speed advantage will prove important for ease of use for end-

users. Second, the mosaicing scheme significantly enlarged the FOV possible with 

optical-scanning OR-PAM, which is limited by the transducer focal waist. Third, 

since each mosaic patch is acquired in less than 0.5 seconds, motion artifacts per 

patch should be minimal, and motion artifacts between different mosaic patches can 

be compensated for by simple image processing. This scheme may be less prone to 

motion artifacts over large FOVs compared to other mechanical or hybrid-scanning 

methods [10]. Future work should validate robustness to motion in clinical 

scenarios. Finally, the mosaicing scheme enables multi-scale imaging with OR-

PAM. As shown in Fig. 7.4 (a) and (b), one can conduct a rough scan in a larger 

area for preliminary study, and then direct the imaging system to a specific region 

of interest for further studies after re-adjusting the system in terms of focusing, etc. 

We believe the aforementioned merits will accelerate the acceptance of the imaging 

technique among biologists and clinicians. 
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8. Monitoring Photodynamic Therapy (PDT) 

with Photoacoustic Microscopy (PAM)1 

 

8.1 Introduction 

Photodynamic therapy (PDT), or photochemotherapy, is a modality that takes 

advantage of toxicity of activated photosensitizer by light at selective wavelength 

to kill targeted diseased cells/ tissue [1]. PDT has been successfully applied to a 

wide range of medical conditions, for example, skin conditions and cancer 

treatment. During a PDT treatment, photosensitizer is activated from ground state 

to excited stat by photons when exposed to treatment light source, then it releases 

energy to return to its ground state. In this process, energy is transferred from light 

to molecular oxygen, generating reactive oxygen species (ROS), for instance, 

singlet oxygen (1O2), which is highly toxic to cellular structures [2]. Therefore, the 

three interacting components: photosensitizer, light administration and oxygen play 

important roles in PDT. Evaluation of PDT treatment is of significant importance 

and urgently needed. However, it is recognized that to evaluate the efficacy of PDT 

with only the presence of these three components is not sufficient [3]. Despite the 

fact that dosimetry measurement is important, such as photosensitizer distribution, 

1O2 concentration and treatment light fluence (rate), biological responses 

monitoring is an effective means to evaluate the efficacy of PDT as it is a direct 

reflection of the treatment outcomes [4]. PDT-induced vasculature variation is the 

most important hallmark of these parameters. 

                                                 

1 A version of this chapter is in preparation to be submitted to J. Biomed. Opt. 
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A number of techniques can be used to image vasculature. Magnetic resonance 

angiography (MRA) is a group techniques to image blood vessels based on MRI 

[5]. However, it requires imaging contrast agent, comparatively high cost and can 

provide only limited spatial and temporal resolution. Positron emission tomography 

(PET) also requires contrast agents to visualize vasculature [6]. Recently optical 

techniques, such as Laser Doppler imaging [7][8] and laser speckle imaging [9], 

have been proposed to study vasculature. However, these techniques suffers from 

either limited penetration depth due to highly scattered photons in soft tissue, 

limited resolution or difficulty to target specific region of interests in practices.    

Photoacoustic (PA) imaging is a new imaging modality intensively studied 

recently because of its promise for combined high resolution and intrinsic optical 

contrast, which can reveal important physiological information without assistance 

of contrast agents [10]. As hemoglobin in blood is the dominant absorber in soft 

tissue to provide optical contrast, both computed photoacoustic tomography (PAT) 

and scanning photoacoustic tomographic techniques have been applied to a wide 

spectrum of topics for both morphological and functional studies [11]. Blood flow 

imaging based on the Photoacoustic Doppler Effect was accomplished [12]. In [13], 

Shi et al. realized real time monitoring of hemodynamics with an optical-scanning 

optical-resolution photoacoustic microscopy (OR-PAM) system. 

Photoacoustic imaging techniques has also been proposed to evaluate efficacy 

of, or to monitor PDT by assessing vasculature changes. Xiang et al. [14] reported 

a PAT imaging system to monitor vascular damage in PDT on a check 

chorioallantoic membrane (CAM) tumor model. In their setup, a single pulsed laser 

with a wavelength of 532 nm served as the light source for both photoacousitc 

imaging and photodynamic therapy. The protoporphyrin IX (PpIX) was used as the 

photosensitizer. With this system, they visualized neovascularization in tumor 
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angiogenesis and then verified the capability of their system for imaging vascular 

structure damage by PDT. However, only target blood vessel size change was 

studied in their report. This study was also limited to topical application of 

photosensitizer on the CAM model. 

In this study, we intend to monitor both morphological and functional 

information variations due to PDT with acoustic-resolution photoacoustic 

microscopy (AR-PAM, or PAM). With the wavelength tenability of our laser 

system, we are able to acquire not only vasculatures, but also oxygen saturation 

change of interested areas. In the present project, we are not restricted to topically 

application of photosensitizer to the CAM model, we also studied effects of PDT in 

a rat ear model with IV injection from a tail veil. 

8.2 Method 

The experiment setup is shown in Fig. 8.1. For the imaging task, we use a tunable 

nanosecond pulsed dye laser (ND6000, Continuum, Santa Clara, CA, U.S.) as the 

light source. The laser has a tunable wavelength range between 420nm – 900 nm 

with proper selected dyes. For the present study, we used Rhodamine 590 (Exciton, 

OH, U.S.). The laser pulse is coupled into a 600-𝜇m multimode optical fiber. Laser 

pulse coming out of the fiber is first collimated. After being focused by a 

microscope objective lens, it is directed to the target by a custom-made imaging 

probe. An ultrasound transducer (V214-BB-RM, Olympus) with a 50-MHz center 

frequency was coupled with the probe acoustically. An acoustic lens was positioned 

under the probe to receive ultrasound energy. Signal detected by the transducer is 

digitized by a high-speed digitizer and then transferred to a PC for further 

processing. To realize raster scanning during the imaging task, the object is 

positioned on a 3-Axis motion stage, which is controlled by the PC through a 

motion control card [15]. An example of PAM images generated with this system 
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is shown in Fig. 8.2.  

 

 

 

 

 

A diode-laser with a 455±5-nm wavelength (Ultralasers, Newmarket, ON., 

CAN) was utilized for PDT. The laser beam is directed to an aperture to adjust the 

beam size for treatment.  

Verteporfin (129497-78-5, Sigma-Aldrich) was utilized as the photosensitizer. 

3.6 mg Verteporfin was first dissolved in 500 𝜇L Dimethyl Sulfoxide (DMSO), 

and then diluted with Phosphate buffered saline (PBS) to various concentration for 

experiments. Storage and preparation of the solution is protected from light. 

Figure 8.1 Experiment setup. OL: optical lens; MF: multi-mode fiber; Ob. L: 

objective lens; UST: ultrasonic transducer; AL: acoustic lens; AP: aperture; M: 

mirror; DAQ: data acquisition card; MC: motion controller. 

Figure 8.2 Setup PAM image of a HT1080 tumor-induced neo-vasculature on a 

CAM model. (a) is the white light picture of the HT1080 tumor in the CAM; (b) is 

the PAM image showing neovasculature around the tumor. Tumor region is labeled 

by a dashed circle. 

http://www.sigmaaldrich.com/catalog/search?term=129497-78-5&interface=CAS%20No.&lang=en&region=CA&focus=product
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8.3 Results 

To validate the capability of our system to image vasculature change due to PDT, a 

preliminary study was conducted with the CAM model. Verteporfin of 50 𝜇M was 

topically applied to a region of treatment on the membrane 15 min before treatment. 

Then the embryo was positioned under the pulsed laser for a 20-min treatment. 

Power of the treatment beam was 20 mW/cm2 . As a comparison, we also 

illuminated another region on the same embryo without photosensitizer applied as 

a control. PAM images were taken before and after the treatment for both regions 

of interests. Results were shown in Fig. 8.3. Whereas vasculature remained the 

same in the image of the control area (upper row in Fig. 8.3), dramatic change was 

visualized in the treatment region (bottom row). Major blood vessel (with diameters 

< 100 μm) structures, for example, blood vessels marked as 1 and 2, in this area 

were destroyed. Capillary clouds were also partially damaged, leaving bleeding 

spots (bright spots). 

 

 

 

 

 

A longitudinal monitoring study was performed to examine vasculature 

variations due to the treatment. PAM images of the treatment area are shown in Fig. 

8.3. One images was (#1) taken before the treatment, and then followed by images 

Fig. 8.3 PDT-induced vasculature change in a CAM model. 
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taken after every 5-min treatment period. 50 𝜇M Verteporfin was topically applied 

on the membrane surface 15 min before treatment. Optical fluence used for 

treatment was 10 mJ/cm2. 15 min was needed for taken each image with the size 

of 3.6 mm × 3.6 mm. All parameters settings were kept the same for the imaging 

equipment during the experiment and the 7 images were displayed with the same 

colormap for comparison.  

 

 

 

 

A steady decrease of pixel intensities corresponding to the major blood vessel 

structure is observed, which may imply the decrease of blood volume as the 

photoacoustic signal is proportional to the total concentration of hemoglobin. In 

Fig. 8.4, discontinuities appeared in the circled vessel, which may be thrombi after 

the treatment. 

In some areas, capillary structures also experienced a decreased intensity 

values, leaving bright spots. We believe this is bleeding area due to damage of small 

blood vessels. 

Decrease of blood vessel size is believed to be a result a PDT [4]. We compared 

the diameter change of a target vessel with a 242 ± 20-μm width in image before 

Figure 8.4 PDT-induced vasculature change in a CAM model. 50 𝝁𝐌 Vertiporfin was 

topically applied to the CAM surface 15 min before treatment with a fluence of 10 

𝐦𝐉/𝐜𝐦𝟐. Images were taken sequentially during the treatment at every 5 minutes. 
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treatment (labeled by the dashed box in image #1). Measured size of the vessel 

experienced a steady decrease along with the treatment procedure (Fig. 8.5). Width 

of the vessel was defined by the region that has at least 50 % of the maximal pixel 

intensity of the vessel before treatment. An immediate size change occurred in the 

first a few minutes right after the treatment was started. A steady decrease continued 

till the end of measurements. An overall decrease of 70 % of the original size was 

observed by the end of the treatment.   

 

 

 

We also examined feasibility of our technique with a rat ear model. Before 

experiment, the whole rat ear was processed with hair removal cream for 10 min 

and then cleaned with warm water. Verteporfin was injected via a tail vein of a 60-

g weight Sprague Dawley rat with a dose of 2 mg/kg (300 μL) as suggested by 

literature. PDT was started 15 min after the injection. Laser pulse fluence was set 

to right blow 20 mJ/cm2, which is the upper value of the ANSI limit [10] for laser 

safety on skin surface for wavelength rage 400 nm – 700 nm to avoid laser-induced 

skin burn.  

PAM images were acquired before the treatment, and at 30 min and 90 min 

after the treatment was started, respectively. Treatments was temporally stopped for 
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Figure 8.5 Change of a target blood vessel size in a CAM model due to PDT. 
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20 min when imaging the region of interest. Result images with the same colormap 

were shown in Fig. 8.6. Image (a) is the whole field of view before treatment with 

the region of treatment for quantitative study circled. (b) - (d) are zoomed-in 

versions of the treatment region. The size change of the target vessel (boxed in (b)-

(d)) in the region of treatment is shown in Fig. 8.7.  Size of the target blood vessel 

significantly shrank to ~55 % of its original after the treatment. 

 

 

 

 

 

 

Oxygen level is one of the most factors for PDT. With the tunable laser source, 

we longitudinally monitored the oxygen saturation level of a target vessel during 

the treatment. In Fig. 8.8 (a) is the region of treatment before and after the treatment. 
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Figure 8.6 PDT-induced vasculature change in the treated area in a rat ear. (a) PAM image 

of the ear with treatment region circled. (b) – (d) vasculature change of the treatment area. 

A target blood vessel for quantitative analysis is labeled with a box.. Thrombi occurred at 

the locations labeled with arrows along with the treatment. 

Figure 8.7 Change of a target blood vessel size in a rat ear model due to PDT. 
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SO2 of labeled spots in the two images was measured multiple times with a 10-min 

interval during the experiment. An immediate drop of SO2 was observed. During 

the treatment, the SO2 level gradually recover to a slightly lower level compared 

with the original value.  

 

 

 

 

8.4 Conclusion and discussion 

We report our feasibility study of parametric imaging of vasculature response to 

PDT with photoacoustic microscopy. Functional information change induced by 

PDT is also measured with PA technique. To our knowledge, this is the first report 

of using scanning photoacoutic tomography to monitor PDT-induced biological 

response. As a label-free imaging modality combines high resolution and optical 

contrast, PA imaging is ideal for studying vasculature variations due to PDT. Our 

future work include to quantitatively image hemodynamics-related biological 

responses such as blood flow, blood volume change during PDT.  

Figure 8.8 Oxygen saturation change during PDT. (a) Example of PAM image of the 

treated region, with measured SO2 at the target vessel before and after treatment. (b) 

Variations of SO2 at the target vessel along during the treatment. 
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9. Conclusions and Future Prospects 

 

9.1 Summary of work done in this dissertation 

The work presented in this dissertation can be divided into three parts. The first 

part focused on quantitative photoacoustic tomography (qPAT). The second part 

focused on developing new imaging platforms for quantitative photoacoustic 

microscopy (PAM) imaging. In the third part, experimental work was described for 

quantitatively imaging of vasculature variations due to photodynamic therapy with 

PAM. 

qPAT: We pioneered the use of the multiple-illumination schemes in 

reconstruction of optical properties. Before our work, most work in qPAT focused 

mainly on reconstructing only the absorption coefficient distributions. With the 

involvement of multiple optical sources, the absorption-scattering non-uniquness 

was broken, therefore both the optical absorption and scattering distributions are 

able to be faithfully estimated. We also for the first time de-coupled the Grüneisen 

parameter in PA imaging. This might lead to a potential for various clinical 

applications such as temperature monitoring in treatments. The work in this part 

was for deep tissue imaging in a macro-scale in PA imaging, and was demonstrated 

with numerical simulations. We were not yet able to experimentally present these 

concepts. Specifically, the work can summarized as follows: 

1. We developed a framework for quantitative estimation of optical 

properties with multiple-source PAT. The reconstruction method is able 

to recover optical absorption, scattering and Gruneisen parameter 

distributions in a known turbid media background with high accuracy;  
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2. We furthered our work in i) by introducing an iterative reconstruction 

method to recover optical absorption and scattering distributions with 

only ultrasound channel data rather than ideally reconstructed PAT 

images;  

3. We proposed an iterative method which recovers absorption and 

scattering features consecutively. In each iteration, we first estimate the 

absorption map with a least-squares fixed-point iterative method 

introduced by our group and then use this as a guide to update the 

background optical fluence, whereupon scattering distribution is 

estimated based on optical fluence. 

Quantitative PAM imaging platforms: In this part, we developed new 

imaging platforms for superficial structure imaging on a micro-scale. We tried to 

further previous imaging techniques and proved new concepts with experimental 

demonstration:  

1. We demonstrated a multi-modality imaging system that can 

simultaneously accomplish optical-resolution PAM vasculature 

imaging and fluorescently labeled cellular structure imaging;  

2. ii) We presented a fast, wide-field-of-view (FOV) optical-resolution 

PAM system which significantly reduced data acquisition time to a 

clinically realistic scale with arbitrary FOV size.   

Quantitative PAM imaging of vasculature variations: We presented a 

preliminary study which use acoustic-resolution PAM (AR-PAM) to monitor 

vasculature variations during photodynamic therapy (PDT). In vivo experiments 

were conducted with both chick chorioallantoic membrane vasculature model and 

a rat ear model to monitor blood vessel diameter change and oxygen saturation 

variations induced by the treatment was quantitatively monitored. This work 
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demonstrated the promise of PAM for imaging blood vessel ablation and oxygen 

depletion during PDT.   

9.2 Directions of future work 

Quantitatively imaging tumor-induced vasculature is highly desired in both 

biomedical fundamental and clinical studies. Both the theoretical and imaging 

platforms can be applied to a spectrum of applications in this field.  

The series qPAT algorithms can be applied to quantitative imaging of cancer 

angiogenesis. The abilities of these algorithms to recover both optical absorption 

and scattering enables PAT to provide scientists and clinicians with multiple 

parameters that might be important for diagnosis. For example, cancerous tissue 

usually present enlarged cell nuclei. Our algorithms have the potential to identify 

scattering anomalies induced by the diseased cells. Another example is that the 

spatially varying Grüneisen parameter distribution is highly temperature-dependent. 

Grüneisen maps recovered by our algorithms can be used to monitor temperature 

change in applications such as thermal therapy of cancer.  

The multi-modality system has the potential for studying tumor angiogenesis-

related topics as it can simultaneously image fluorescently labelled cellular 

structure. For example, in diagnosis of cancer, the morphological change in 

vasculature due to angiogenesis and tissue anomalies can confirm each other. The 

fast, wide-FOV OR-PAM can be a powerful tool for imaging vasculature due to its 

quick imaging speed in contrast to conventional systems that requires tens of 

minutes data acquisition time. 


