
Concordia University College of Alberta

Master of Information Systems Security Management (MISSM) Program

7128 Ada Boulevard, Edmonton, AB

Canada T5B 4E4

Reverse Discovery of Packet Flooding Hosts with Defense Mechanisms

by

MURRAY, Brian

A research paper submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security Management

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Reverse Discovery of Packet Flooding Hosts with Defense Mechanisms

by

MURRAY, Brian

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Reviews Committee:

Andy Igonor, Assistant Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Ron Ruhl, Assistant Professor, MISSM

Pavol Zavarsky, Associate Professor, MISSM

The author reserve all rights to the work unless (a) sprecifically stated otherwise or (b) refers to referenced

material the right to which is reserved by the so referenced authors.

The author acknowledges the significant contributions to the work by Academic Advisors and Review

Committee Members and gives the right to Concordia Univeristy College to reproduce the work for the

Concordia Library, Concordia Websites and Concordia MISSM classes.

Concordia University College of Alberta
Department of Information Systems Security

7128 Ada Boulevard, Edmonton, AB T5B 4E4, Canada

Reverse Discovery of Packet Flooding Hosts With
Defense Mechanisms

Brian Murray
brian@game-sat.com

mailto:brian@game-sat.com
mailto:brian@game-sat.com

Introduction
Denial of Service (DoS) attacks are still a
widespread problem on the Internet, with
25% of companies suffering from an
attack [1]. There are several different
attack types that could be considered a
DoS [2]. They include Protocol Feature
attacks, Data Flood, and Application
Level attacks. The solution presented in
this paper explicitly addresses Data Flood
type attacks, but could extend to other
t y p e s o f a t t a c k s w i t h s i m p l e
modifications. Attack Countermeasures
can be classified into 4 categories:
prevent ion, detect ion, mi t igat ion,
response [2]. The method proposed
would fall into the mitigation and
response categories. Deployment
locations can be classified as victim,
intermediate, and source network. This
solution provides the ideal scenario
where the detection happens at the victim
network, but the defense mechanisms
are deployed at the source network, with
very little overhead at the intermediate
network.

Denial of Service Attacks

A DoS attack is a type of attack that
prevents normal, legitimate traffic from
being served. The most common way to
do that on the current Internet is to flood
a large amount of traffic at a specific host.
The victim is then unable to handle the
excess traffic, and will mistakenly discard
legitimate traffic. While this may not be an
issue for a web photo gallery, it does
pose a significant problem for a small
business that is just starting out on the
Internet. When millions of dollars of
business gets conducted every hour, a
website cannot afford to be down for any
significant period of time. Older attacks
have abused the very systems of the
Internet that allow it to function, such as a
TCP SYN flood attack. However, these
low volume attacks have mostly been
solved with some ingenuity of Internet
architects, such as with TCP syncookies.
Brute flooding, however, is a very simple
problem, but also very troublesome. The
number of compromised hosts on the
Internet is growing every day, making
large botnets even bigger than they
already are. Unfortunately, there is no

Reverse Discovery of Packet Flooding
Hosts With Defense Mechanisms

Abstract - Distributed Denial of Service attacks have long been a staple of the Internetʼs malware
community that has not been dealt with outside of companies with large budgets. Many of these
attacks use spoofing to obfuscate their originating address. It is this problem that I intend to address
with a new distributed traceback approach. In essence, it removes the effectiveness of clusters of
infected botnet computers by ʻwormingʼ its way backwards through the Internet to locate the source
of packets destined for a host under attack. Once the source is discovered, countermeasures are
deployed at the source location, which ultimately prevent the traffic from ever entering the Internet,
and decreasing the overall demand on the Internet. This is a benefit for both Internet backbone
providers, as well as customers to these Internet service providers in that they would no longer be
forced to suffer from extended periods of Internet outages.

simple way to stop these attacks, so a
more complex approach is required.

There are two standard flood type DoS
attacks. The first is a standard DoS,
where a single host floods another host.
This means the attacker must have
equal, or greater bandwidth than its
target. The second, and more dangerous
attack, is a Distributed Denial of Service
(DDoS) attack. This is identical to a
standard DoS attack, except there is
many hosts attacking a single target.
Usually these hosts are linked and
controlled by a single hacker, or group of
hackers. Since there are many hosts
sending data, only their aggregate traffic
needs to be greater than what the target
can handle. That means, the more hosts
that are attacking, the less traffic needs to
be generated by each attacking host.
Since botnets can contain thousands of
hosts, each attacking host may only need
to send very small amounts of traffic.

One simple fact always remains in
flooding DoS attacks: the target is
overloaded with inbound packets.
Whether an application cannot handle the
load, or an actual network interface is
forced to drop packets as its queue is full,
no packets may reliably reach the
attacked network or host while an attack
is taking place. Upstream traffic, however,
is controlled completely by the attacked
host. This provides a convenient path to
notify upstream routers of the issue.

Current Protection Systems

There are already a few approaches to
preventing such an attack. However, for
the most part, they are ineffective at
stopping large attacks, or attacks on
smaller hosts with fewer resources than a

large corporation.

The first type of existing scheme uses an
outside party to filter traffic. All Internet
Domain Naming System (DNS) records
point to this third party, who has a large
amount of bandwidth. Traffic destined for
the site is routed to this third party. Then,
all the traffic they deem legitimate gets
sent on to the real servers. This can
create a fairly large lag time, and can
reduce the responsiveness of your site.
As a result, customers may be turned off
from doing business with you. Also, there
is no guarantee that the third party can
handle the attack. At best, this can stop
small or medium sized attacks, but is still
prey to large attacks.

The second type, offered by Cisco, is
very similar in that it filters bad traffic. It
involves an ISP having a second
backbone that filters the traffic. Since this
second “clean pipe” is already in line with
the existing network connections, it does
not suffer from the extra hops as the
other solutions do. [3] However, a large
DDoS attack can still take down one of
these massive Internet backbone
connections.

A third solution, which is probably the
most widely known, is called ʻAnycastʼ. It
is primarily used by the DNS root servers,
which are critical to the functioning of the
Internet. Anycasting works by redirecting
traffic to a local provider, instead of a far
reaching provider. That is to say, you
request a DNS resolution from a server
on the other side of the country, but the
request is actually handled by a nearby
server. This is usually accomplished by
providing multiple BGP routes to the
same Autonomous System (AS). Each
route terminates at a different location,

which is more local than another route.
Since the servers are geographically
diverse, no attack can take down the
entire DNS structure. Every root cluster
may only serve a small portion of the
Internet, instead of all of it. So, if a large
scale attack was to originate from
Singapore, their attack traffic would never
touch the North American root servers as
the attack packets would only be
delivered to the local Singapore DNS root
servers. For Anycast to be deployed for a
specific company, they must have the
m o n e y t o d e p l o y i n s e v e r a l
geographically diverse data centers.
Their routes must also remain highly
stable for any connection oriented traffic
to function. Their data centers must also
interact and collaborate data between
them. For a small business, Anycast is
not a viable solution.

Recently, a lot of research has gone into
solving the problem, with many different
approaches. Some use overlay networks
to manage the attack routes [4] [5]. These
merely obfuscate the traffic path. A smart
attacker will merely flood out the overlay
network from a variety of different hosts.

The primary concern with an overlay
network is that it is a second set of
routes. Some are merely the same
routes, but with tunnels over top that
create a second virtual network. These
secondary routes need to be maintained
in order for the system to work, even if
they are established temporarily. Some
require authentication of connecting hosts
to use the overlay network. This allows
them to do rudimentary filtering of traffic.
However, an attacker can still flood out
the overlay networkʼs entry points with
data, negating the whole system. Even
overlay networks that have alternate
physical paths are still vulnerable, as an

attacker with an inordinate amount of
attacking hosts can still overcome the
bandwidth allowed by the second
n e t w o r k . T h e s e c o n d a p p r o a c h
mentioned in this section, which is offered
by Cisco, is a type of overlay network.

Other systems use traceback methods,
such as the ANT system, where “ants”
crawl up the network. The ANT system is
based on the natural path creating
method that ants use in the wild. Ants
march towards a destination, each laying
a trail of scent. As more ants lay a trail,
the scent gets stronger. The path with the
strongest scent is the path that more ants
follow, and subsequently strengthen the
path even further. In the ANT system, the
“ant” lays a trail along the path with the
most traffic [6]. Most traceback systems
that work by communicating with peers,
such as ANT, require updates to a vast
number of routers in the chain. Other
types of systems proactively tag packets
for the destination to parse when it is
received, so that it gets a better idea of
where the packet originates from [7].
However, these proactive systems add
significant overhead to intermediary
routers, as each needs to add its tag on
to every packet.

Proposed new solution

The proposed solution requires 3 tiers of
development. The basics of this protocol
are quite elementary. First, an attack
needs to be detected. This can be done
automatically, such as with many
currently deployed Intrusion Detection
Systems (IDS), or manual ly with
administrator intervention. Next, the
attacker must be discovered. For this, a
reverse path discovery method is used.
Finally, the attacker must be stopped.

This last stage only requires the closest
trusted routers to the attacker to prevent
data flow.

The key component to this new method is
the reverse path discovery. Since the only
reliable piece of information in an attack
is the destination, the protocol uses that
destination address to detect the source
of the attack. When an attack is detected
on a client system, the client system
sends an initiator packet to its nearest
router. That edge router then sets all of its
par t ic ipat ing inter faces, wi th the
exception of the interface that received
the initiator packet, into a listening mode.
In the listening mode, the interface is
scanning for incoming packets that match
the destination host or network that was
identified in the initiator packet. When a
packet is detected on the participating
interface, the interface then stops
listening, and performs one of two tasks.
It may deploy a countermeasure by
blocking packets to the attacked network,
or by filtering the packets with deep
packet inspection that are destined for
the attacked network. This would be most
common when packets are detected from
a stub network, such as on an edge
router. The interface may instead notify
its peers. It can do this either with unicast
to each peer, or via multicast to notify a
wide range of peers. The interface
notifies its peers by using the same
initiator packet that was sent to it, but
replaces the authentication data with its
own authentication data, as is discussed
later. This process is repeated until no
packets are detected on interfaces that
are set to notify peers.

Once the source has been narrowed
down, the attack must be stopped. The
hardest part is detecting attack packets
versus legitimate packets. However,

since the destination is already known,
the differentiation is much easier, since
an attack on that specific host can be
verified. That is, it limits the exposure to
false positives, since no detection is done
until an attack has been verified by the
destination.

This system allows for every company,
small or large, to mitigate DoS attacks. It
is deployed by ISPs, but authenticated
access is granted to smaller companies.
This means that no small company has to
make a large investment in redundant
da ta cen te rs w i th mu l t ip le BGP
advertised routes. Since the notification
packets only travel upstream, no two way
communication is required while an
attack is under way.

In the first two schemes that I have
mentioned, the solution is merely to add
more bandwidth, but at two different
locations. Unlike those schemes, the
p roposed so lu t ion uses ex is t ing
resources to mitigate the attack. It does
not rely on the attacker having less than
sufficient traffic to overload the extra
bandwidth added. The proposed solution
also allows countermeasures to be
deployed closer to the attacker, which
means that less Internet bandwidth is
used, which is a benefit to the ISP.
Ultimately, this also means that the
countermeasures are only checking much
smaller amounts of bandwidth, and is
therefore significantly more efficient at
separating the legitimate traffic from the
malicious traffic.

The ANT system, at a glance, looks like a
very good system as it mimics nature.
However, nature and evolution work on a
“just good enough” principal, as opposed
to a “perfection” principal. The ant path
creating system works fine in nature for

its purpose, but when discovering an
attacker on a network, the actual path
used is unimportant. The only important
piece of data is the actual source of the
attack. In nature, the trail is used later to
aid in navigation for future ants. On the
Internet, the destination address can be
reached using existing routing resources,
so long as the attackers location is known
and translated to the proper source
address of the attacker. Laying a trail
merely wastes valuable resources on
already strained Internet routers.

A variety of tagging systems also suffer
from the same issue. They put a large
weight on discovering the actual path of
the attack, when the only thing needed is
the actual attackers source. If an attack
was originated only from a small area of
the Internet, these systems would work
very well, as traffic could merely be
blocked at the first common router to the
attackers. However, attacks come from
very diverse areas of the Internet, so the
attack would either be blocked close to
the destination, or many blocks would
need to be placed throughout the
Internet, making the tagging mostly
unused.

On top of intermediate tagging being
highly wasteful, the issue remains of how
do you stop the attack. These systems
would require a separate protocol to
inform the attackers nearest router to
stop the attack. The proposed solution
does not concern itself with intermediary
hops, and is capable of deploying
countermeasures at the instant the
attacker is discovered. There is also no
processing of the attackers packets at
any routers, nor is the attacked host
required to reconstruct the attack path.
Once the attacker is discovered in the
proposed solution, a countermeasure can

be deployed instantly, without the need
for a second notification to inform the
attackers nearest router that an attack is
taking place. As a side note to a second
protocol being needed, every edge router
on the Internet would need to allow for
authentication of every host that could be
attacked. In the proposed solution, the
only direct peers or peers within its
multicast group need to be authenticated.
This means that an initiator can be
started from a host in Toronto, and each
intermediary only needs to trust the
validity of each adjacent hop, with the
router closest to the attacker only
needing to trust the next nearest router,
as opposed to trusting the host in
Toronto.

Protection Method
Development
There are several factors that need to be
considered when creat ing a new
algorithm. Many problems need to be
solved so that the final product is highly
efficient.

Communications Protocols

For multiple routers to interact, they need
to have an efficient communication
protocol. However, del ivering the
message can be as difficult as designing
the message itself. The message cannot
be sent to routers that donʼt need the
message, but must make it to all routers
that do need the message. This is why
blanketing out a request to all hosts may
not be a good idea.

Unicast

Unicast is the most common protocol in
use on the Internet. All traffic between
any two hosts is unicast, such as web
traffic, DNS traffic, or Email.

To use unicast with the proposed
solution, each router in the chain needs
to know about all other routers near it.
While this may not be a problem on a
small scale, it could end up being a very
large problem as a single router may
have a dozen peers. Also, this would
require that all routers in the path
between the attacker and the victim
would need to be updated to support this
new method.

Broadcast

Broadcast traffic is different from unicast
in that everyone on the local ʻbroadcast
domainʼ hears the message. Broadcast,
however, is only significant to the local
network. It can be directed to a specific
subnet, but that is often disabled to
prevent abuse. Since only locally
significant broadcast can be used, only
other routers directly connected to each
router can hear the message. This
alleviates most of the need for each
router knowing its counterparts. One
broadcast message will inform all of its
peers about the attack, and have them
shut down the traffic flow and notify
upstream. However, since only the next
router can hear the message, it means
that every router in the chain still needs to
be patched with support. This is a slightly
better protocol, but still not good enough.

Multicast

Multicast is still not widely used outside of
routing protocols, even though it is well
supported. A multicast packet can be
routed, and even “spl i t” amongst

destinations. That is, one packet may be
sent, but many destinations may receive
the message.

There are two methods for distributing
multicast traffic. The first is called a
source tree. Source trees are sometimes
referred to as shortest path trees (SPT),
since they represent the least hops
between the source and destination.
Using this method, every router between
the source and destination needs to
maintain a table of each route. This can
lead to very large memory requirements.

The second method is called a shared
tree. All multicast traffic is sent to a
rendezvous point (RP), then routed down
the multicast tree to all listeners. With
this, only one route is required. The
memory requirements are significantly
less.

Each of these two methods have their
own drawbacks. Obviously, the more
routers there are on the network, the
more routes would be required for the
first method. This number could get quite
large within a single AS. However, the
second method provides a single point of
failure. If an attacker knew the RP, they
could attack the RP as well as the
destination, removing the effectiveness of
the protocol. This could be mitigated by
moving the RP frequently, and ensuring
few people knew where the current RP
was located.

Since every router may be able to route
the message without understanding it,
most routers on the chain will have no
need to be patched or updated to support
this. It also means that no routers need to
know where its peers are. Ultimately, this
is the best solution as it allows for much
more rapid dissemination of information,

as well as requires the least updates from
intermediary routers. Without every router
needing updates, a perimeter can be
extended very quickly.

For example, if we had two cities, like
Edmonton and Calgary. A host in
Edmonton is being attacked, so it
requests action be taken by its nearest
router. The router then notifies the
Edmonton multicast group. All access
routers and intercity routers within
Edmonton are instantly notified via
multicast from a single request by the
router. If flooding is occurring from an
access router, and if blocking is deployed
as the countermeasure, the traffic is
purely blocked. If traffic is seen from a
intercity router coming from Calgary, then
the Calgary mutlicast group is notified by
the Edmonton-Calgary intercity routers.
All access routers within Calgary are then
checked for attack sources as well. No
other routers are required to have
updates, and merely route the multicast
traffic. If every router between the source
and destination needed to be notified,
then the response time would be greatly
increased.

To quantify the benefit of multicast over
unicast, we need to quantify each
component of the notify process. First, I
will denote the time between the router
receiving the packet, and when it begins
to notify the next hop in the chain as P.
Next, the time between each hop
between the source and destination will
be denoted by H. The number of hops will
be denoted with an h. Therefore, the
time Tuni for unicast would be:

Tuni = h x P

So the time to notify a router that is 4
hops away, with processing time (P) of 1

second:

Tuni = 4 x 1
Tuni = 4 seconds

Multicast traffic only needs the source
and des t i na t i on t o p rocess t he
information, with the rest of the routers
merely passing on the data. Therefore,
we are left with:

Tmul = (2 x P) + (H x h)

If we use the same numbers, and
assume a hop time of 1 millisecond each
using SPT:

Tmul = (2 x 1) + (0.001 x 4)
Tmul = 2.004 seconds

The more intermediary routers are added,
the greater the difference. If we have 8
routers:

Tuni = 8 seconds
Tmul = 2.008 seconds

If we use unicast to communicate with
each end router, that is several hops
away, we then need to count each router
that the router needs to communicate
with. For this, we can use the time H for
the time to send a packet to each router
n.

Tuni = 2P + (H x n)

With 50 peers, this number is:

Tuni = 2(1) + (0.001 x 50)
Tuni = 2.050 seconds

This number is small, almost as small as
that of unicast. However, unicast has

another drawback. It requires each router
to know of every other router. This means
that all peers must be maintained. If a
new router is added, all 50 peers must be
added to it, and it to all 50 peers.
Multicast does not require every other
router to know of every other peer.
Maintenance time on each router could
be significant. If a peer is not added,
especially an inter-domain transit router, it
can leave a hole open to be exploited.

Software Management

The implementation of the protocol
requires two separate components, the
daemon and the firewall. Each has its
own tasks to perform, but neither can
function without the other.

Daemon

The daemonʼs job is to receive messages
from other routers informing it of an
attack. Once it receives an initiator
message, it must act on it by creating
firewall rules, and monitoring them for
activity. Once it notices activity on one of
these rules, it then must inform the next
set of routers.

First, it needs to listen on a multicast
address for messages from its peers.
These messages will consist of the
destination address and its netmask.
I n i t i a t o r s s h o u l d a l s o c o n t a i n
authentication data.

Next, it needs to interact with the firewall.
In the testbed system, it simply used
Linuxʼs netfilter and its ʻrecentʼ matching.

To gather information about if the rules
have been matched, it will read the ʻprocʼ
nodes pertaining to the recent matches.

Lastly, it must be able to send data out to
its peers, based on where the firewall rule
triggered from. If the interface has no
p e e r s , i t s h o u l d p e r f o r m s o m e
rudimentary detection tasks, such as
detecting spoofed packets, then block
packets that do not appear to be
legitimate.

Firewall

The firewall is a very important piece of
software. It must be able to dynamically
add rules, while still remaining efficient. In
high bandwidth environments, a null route
may be used instead, but it must report
that it was triggered to the daemon. In the
case of the testbed, it will simply use
Linuxʼs netfilter with the ʻrecentʼ module.

In a real world deployment, the firewall
rules may not even work as a normal
firewall would. It may, however, establish
a GRE tunnel to a IDS or other malicious
traffic filtering system that is deployed by
an ISP, then re-route all traffic that
matches the destination through that
GRE tunnel. If the IDS detects the packet
is malicious, it would be dropped and
logged, but if it was benign, then it would
be passed along with only a delay added.
The delay would only be applied while an
attack is taking place, instead of always,
such as with other previously mentioned
methods.

Thresholds

While thresholds are not required, they
can help to augment the effectiveness of
t he sys tem w i thou t e r roneous l y
preventing legitimate users access to the
victim. Once a threshold is reached, the
router will either send out a notification to
its peers out the source network

interface, or will carry out an action to the
packets if it has no peers out that
network . The thresholds can be
implemented near the attacked network,
or the attacker. If they are implemented at
the attacked networkʼs router, then they
could be used to trigger the reverse
discovery process. One example of this
would be an intrusion detection system
set off by DDoS packets. If the thresholds
are implemented close to the attacker,
they could properly handle, and filter, all
attack traffic from that subnet to the
destination.

Packet Numbers

One threshold can be the number of
packets received with the destination set.
That is, if too many packets per second
are being sent to the destination in the
attack, then it could be considered as one
of the attackers. This may, however, not
work in the case of a low rate attack,
consisting of thousands of nodes.

Connection Numbers

Some DoS attacks donʼt consist of raw
flooding, but instead, of legitimate
connections tying up useful resources on
the destination server. If too many
connections are attempted, it could be
considered the attacker. Along with these
connection numbers, the amount of data
sent directly after the connection could be
used. If the connection opens, but no
data is sent or received, then it is likely an
attack that leaves useful sockets open to
handle empty connections. Adjusted
window sizes could be an indication of
this type of attack.

Spoofing

In the most common flooding attack,
spoofing is often used. This is the
purpose for this protocol. Since spoofing
makes it impossible for any destination to
know the source, and take action, reverse
path discovery is used in this new method
to find the source. Once it has gone no
further than it possibly can upstream, it
can check to see if any packets are being
spoofed. That is, if the last router is on
the access network of 30.40.50.00/24,
and sees packets from 1.5.2.4, then it
knows spoofing is happening, and that
there is almost definitely an attacker out
its interface.

In a real world implementation, a
threshold that adheres to RFC 2827 [8]
would be the most beneficial.

Alternate Actions

Once a threshold is met in the deployed
testbed, one of two actions occur. It either
blocks the traffic, or notifies its peers in
an upstream direction. In a full Internet
deployment, this action can be anything
that the deploying ISP may desire. For
example, instead of blocking traffic to the
attacked network or host, it may redirect
traffic from that attacking network to a
classification system that determines if an
attack is taking place. This could happen
on overlay networks, such as those
described earlier. Since few hosts would
actually be filtered by each of these, there
would be almost no potential for them
being overloaded. This places the
mitigation as close to the attacker as
possible. This would allow an ISP to
verify that an attack was taking place
from that host, instead of relying on
simple detection protocols.

Another potential action could be to
simply notify the network operations

group via an SNMP trap, or any
notification system that the company has
implemented.

Ultimately, in the real world, blocking
entire non-conforming networks would
not be beneficial for most cases. Instead,
re-routing traffic destined for the attacked
host to a deep packet inspector would be
significantly more beneficial. This has the
effect of requiring much less investment
on packet inspectors, as most traffic
wonʼt be triggered as potential attack
traffic, and as a result, less packets will
be redirected to the inspector.

Security

With this type of protocol, there is a huge
potential for abuse. Without security
precautions, someone could spoof that
an attack is happening on a target host,
then the end host would end up in the
same condition that the protocol is trying
to prevent. An extensible scheme should
be used so that new authentication
schemes can be added at a later date in
the case of a flaw being found in existing
authentication schemes.

Two conditions must be met with the
security of the protocol. First, it must be
secure. That is, only the hosts within the
group may have the information to
authenticate. Second, when the attack
discovery is triggered, it must only require
a one way communication. That is, no
packets can be relied on to be sent back
to the attacked host or network. The
attacked host or network is to be
considered offline during an attack.

Any bit of information in the initiator can
b e u s e d f o r a u t h e n t i c a t i o n . I f
authentication data for ʻCompany Aʼ is
received, but it requests traceback for a

network that isnʼt owned by ʻCompany Aʼ,
the authentication will fail. Only edge
routers ever communicate with customer
equipment.

Implemented Security

In the testbed, a simple username and
password was used. It was sent in
plaintext to speed up development of the
system. This is, by no means, the final
scheme. Since both sides know the
password, there is no need to pre-
authenticate before the information is
sent.

Future Security

In the future, cryptography should be
used. Public key cryptography could be
used as an extensible authentication
scheme. For example, an ISP may have
a master key. The routers, while booting,
could initiate a public key transfer for all
routers on the multicast group. All routers
would then send their public keys which
were signed by the ISP master key. Then
each request would only require being
signed by the sending router. The only
manual intervention to setup would be the
deployment of the ISP master public key.
Also, if no known routers or hosts are to
be found on a branch of the network, then
the router should not listen for initiator
packets on the interface attached to that
network. If a certain authentication is
associated only with a certain network, an
initiator packet of another network would
be ignored.

Other, non-security related ideas could be
implemented. For instance, a token
allowance may be issued to clients who
pay for the attack discovery service. This
would be a revenue generating service

for ISPs, as well as prevent abuse of the
system.

Routers

No router access is required between any
peers. That is, the ISP requires no
access to the customer equipment, nor
does the client require any access to the
ISP equipment. Only authentication of the
actual protocol needs to be granted, in
exactly the same way that PPPoE is used
on small customer sites to authenticate
Internet access. It is also worth reiterating
that no client equipment is relied on. Only
the closest trusted router handles the
requests, and does not pass it on as the
client equipment is not considered a peer.

Network Setup
For this research, a simple test bed
network was required. It consists of
several computers networked together, all
running Linux.

Physical Installs

The physical machines that were used
vary widely. End nodes consisted
primarily of laptops, as they were what
was available, and are more than
sufficient for testing purposes. The
routers were all standard i386 desktops,
with multiple network cards. To be
thorough, a multi-access network was
used between three routers, as well as a
point to point ethernet link between one
of the three and a fourth router.

Software Installs

The primary OS of the network was
Linux. All routers ran Linux, as the
daemon was specific to netfilter. The
distribution of choice was Debian. The
target host, which also included the
initiator, was running OSX 10.5 Leopard.
Two of the external hosts were running
old versions of Gentoo, while the third
external host was running Windows Vista.
Since this attack is against network
protocols, and not software, the specific
patch level, and operating systems are
unimportant.

Software Design
The testbed system used requires a basic
version of the software to be created. The

software is required to have the following
functions. It must:

1. Receive packets via multicast.
2. Authenticate the above packets from

any source, using an extensible
authentication scheme.

3. Monitor for packets matching the
signature on all monitored interfaces.

4. Perform an action against packets
matching the signature if no upstream
peers are present.

5. Generate authenticated packets to
pass on the signature to upstream
routers, using multicast.

Daemon Development

The daemon was built using C, as it is
most native to Linux. The daemon uses
UDP port 9494, as an arbitrarily chosen
port. The test daemon is also capable of
listening to several multicast addresses,
o n e o n e a c h i n t e r f a c e . I n t h e
implementation, unicast, as well as
multicast were both supported. This is so
that an ʻinitiatorʼ can communicate with its
nearest node without being multicast
aware . I t a lso loads a dynamic
authentication module for passwords.
However, since only one authentication
scheme is supported, a true dynamic
module loader is not present. Below is a
sample packet header as it was used in
the testbed system. The authentication
section carries authentication data in
ASCII. The password authentication
format is:
“password:<username>:<password>”
 where <username> is a username, and
<password> is a password. The payload
carried a dotted decimal representation of
the attacked network, with an optional
prefix notation for a subnet. That is:
“192.168.0.0/24”.

Operating System Integration

Integration with the network is achieved
via netfilter. Packets matching the
signature, in this case the destination
address, add an entry to a recent match,
which is accessible via a ʻprocʼ node.
Upon a match, the daemon may also
create a separate netfilter rule to block, if
the interface is setup as such. No other
countermeasures were developed in the
testbed as blocking provides the simplest
method to test the performance of the
protocol.

Installation

Since the daemon is configured via a
simple configuration file, the only unique
installation step to each machine was
creating the configuration file. Each router
had the daemon installed on it, and then
ran as root. It required root access due to
the integration with netfilter.

Testing
The system was tested using the
aforementioned test network. Network
t r a f fi c w a s g e n e r a t e d a s H T T P
downloads. This included many small file
downloads, mimicking standard HTTP
traffic, as well as large single file
downloads. Since only spoof protection
was implemented, there were no
th resho lds based on connect ion
numbers, or amounts of traffic. Statistics

were recorded for each of the two types
of legitimate traffic before malicious traffic
was generated, while malicious traffic
was being generated, while the protocol
was being triggered, and after the source
of the malicious traffic had been
discovered.

Normal Traffic

Normal traffic was generated using
several web browsers on the network.
That is, one on each of the three “user”
hosts. While the protocol was being
triggered, response times were recorded.

Exceptional Traffic

Exceptional traffic was mimicked by
downloading a large file to one or two
hosts. This is still legitimate traffic, but is
enough to slow the response to other
hosts since it is monopolizing network
resources. Since this is not considered
malicious traffic, the protocol did not stop,
or even slow, this traffic. To slow this type
of traffic, shaping could be implemented
at the web server. In this scenario, it was
not implemented. While the protocol was
tr iggered, download speeds were
recorded.

Malicious Traffic

Malicious traffic, as defined by the only
threshold implemented, is any spoofed
traffic. Since the whole point of this
protocol is to trace back senders of
excess, malicious traffic, the senders
were set to flood the web server with
traffic. The traffic was not legitimate, and
did not TCP Checksum correctly. This
meant that the web server merely
dropped the traffic before it could reach
the web server daemon, and ruled out

TCP SYN flood from the attack.

Results
The first phase of testing was to establish
baselines of the network. To simulate a
proper network connection, access lines
were limited to 10 Mbps, half duplex,
where network cards allowed. Most
importantly, this included the web servers
connection. Response times for standard
web traffic from all three “user” hosts
were under a second. Ping times were
less than 1 ms. Exceptional traffic was
clocked at 900KB/s, divided between
each connecting host. That is, if only one
was connected, it experienced 900KB/s.
If two were connected, each would
experience 450KB/s. On a 10 Mbps
connection, this is the most that can be
expected, which is around 7.2 Mbps.
Immediately after a single host started
packet flooding, response times jumped
to 30 seconds or more. Packet loss
approached 100%. Exceptional traffic
speed plummeted to bursting between
0KB/s and 3KB/s.

Response times without the
protection algorithm

The first step in responding to an attack is
detecting an attack. Some factors can
decrease this time, such as a network
monitoring solution or IDS. However,
smaller networks may only be alerted
when users are unable to visit web pages
or receive email. I will label the time to
detect an attack as D. One important note
is that few network administrators have
any type of access to their ISPʼs routers.
That is, to do any kind of tracing or
mi t igat ion, they would need the
cooperation of the ISP. For requesting a

response from the ISP, I will label this R.
Once the ISP has been notified, their
support technicians must be contacted,
as few, if any, ISPs have their technical
staff answering support calls. I will call
this notification time N. Once a technical
person has been informed, they must
then start the process of discovering the
source. Each router along the chain
would need to be connected to, checked,
and possibly have a packet filter enabled.
I will denote this process of checking
each router as C. Since more than 1
router needs to be contacted, we would
have to multiply out by each router that
requires contacting. I will denote the
number of routers that need to be
contacted with n. This leaves us with the
total time T.

T = D + R + N + (C x n)

If we take a small company, without an
IDS or network monitor, we can assign D
as 10 minutes. I will assume a diligent
ISP with sufficient phone support staff to
promptly handle the call, and assign R as
1 minute, and N as 1 minute as well. With
a fast typing technical staff, we can hope
for 30 seconds per router (C). If we guess
at 4 routers (n), all accessible to the ISP
technical staff member, we are left with:

T = 10 + 1 + 1 + (0.5 x 4)
T = 14 minute

If the company has an IDS or other
network monitoring, we could assume 1
minute for D, leaving us with 5 minutes
response.

Unfortunately, the Internet is not quite
that simple. With many ISPs, and none
giving access to their neighbors, we need
to multiply the number of ASs. We can
multiply all of the numbers by the number

of ASs (A) by everything but the detection
time.

T = D + (A x (R + N + (C x n)))

In this extended case, R, N, C, and n
would all be average values of their
singular counterparts between the ASs. If
we use the numbers from the first
example, but between 2 ASs, we get:

T = 10 + (2 x (1 + 1 + (0.5 x 4)))
T = 18 minutes

We can very quickly see how fast these
numbers may climb as more routers are
added. Deep call queues of an ISP could
translate to even slower times.

Response times with the
protection algorithm

Once the initiator was triggered, response
times for regular traffic was restored to its
normal state. Exceptional traffic was
again clocked at 900KB/s. However, the
most important mark of the performance
of the protocol is the response time. Once
triggered, normal speeds were restored in
between one and two seconds. This
speed is due to the 1 second timer
implemented in the daemonʼs code in
order to ensure netfilter was finished
adding the rules. If netfilter was triggered
too quickly, it would merely report that the
resource was not ready, and the rule
would not be added. With a more closely
integrated daemon, this time could be
decreased drastically.

Shortcomings
The first shortcoming with the proposed
solution arises when large portions of the
Internet donʼt participate. When a router

has no peers out of its interface, the
default policy is to block packets destined
for the attacked network. So if a section
of the Internet, such as Asia, does not
participate, then an attack from Asia
would prevent legitimate traffic from
accessing the destination. This could be
overcome by adding an options field to
the initiator packet that gives the attacked
host the ability to inform all routers that it
is OK to block certain non-conforming
areas of the Internet. That is, a local
news website in Florida may not care if all
of Asia gets blocked, as their content is
not relevant to Asia anyways. Or a retailer
deems that it is OK to block parts of
Africa, as they donʼt ship their products
outside of North America. Instead of
blocking, another action could be
implemented, such as was mentioned
earlier. An IDS could be used to filter
malicious traffic from a non-participating
AS, instead of blindly blocking traffic.
Since only traffic destined for the
at tacked host would need to be
processed, it could be a viable option
over blindly deploying a filtering system
for the entire AS ingress. Ultimately,
blocking traffic from an external AS to the
attacked network is much more desirable
than having all traffic from all networks
being dropped. That is, a partial DDoS is
favorable over a complete DDoS. In the
end, it is the attacked host that controls
the criteria for detection.

Other protocols support forensic analysis
of packets from the past to determine the
attackerʼs location. This protocol is only
effective against stopping current attacks
and does not serve to reconstruct the
attack path after the attack has finished.
As I have mentioned previously, protocols
that depend on the attacked host require
a second augmentation to mitigate a
current attack. They also depend on the

attackers packets reaching the host to be
processed, which may not be possible.

Conclusions
DDoS attacks are common on the
Internet. There are current solutions, but
they require the target for the attack to
have a large budget to combat the
problem. Since response times from
manual intervention are slow, a faster
method is needed to combat the problem.
This method is one such approach. Its
simplicity does not demand huge
resources to be spent implementing it,
and its design makes it work in an
environment that doesnʼt require time
consuming patches to be applied, nor
maintained. Since attack response can
be triggered by clients, ISPs can easily
implement accounting controls as a
revenue generator to pay for the
implementation of the protocol.

References

[1] Richardson, R, CSI Computer Crime
and Security Survey 2007

[2] C. Douligeris and A. Mitrokotsa,
“DDoS Attacks and Defense
Mechanisms: Classification and State-of-
the-Art,” Computer Net-
works, vol. 44, no. 5, pp. 643-666, Apr.
2004.

[3] Cisco Systems, Cisco Distributed
Denial of Service Protection
Solution: Leading DDoS Protection for
Service Providers and their Customers
(http://www.cisco.com/
cdc_content_elements/
networking_solutions/service_provider/
ddos_protection_sol/
ddos_protection_bdm_wp_0602.pdf)

http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf
http://www.cisco.com/cdc_content_elements/networking_solutions/service_provider/ddos_protection_sol/ddos_protection_bdm_wp_0602.pdf

[4] Chen, Ling, Chow, Xia, (2007). AID:
A global anti-DoS service, Computer
Networks
(Vol/Issue: 51 (15), Date: Oct 24, 2007,
Page: 4252)

[5] Tian Bu, Samphel Norden, Thomas
Woo, A survivable DoS-resistant overlay
network, Computer Networks 50 (2006)
1281–1301

[6] Gu Hsin Lai, Chia-Mei Chen, Bing-
Chiang Jeng and Willams Chao, Ant-
based IP traceback, Expert Systems with
ApplicationsVolume 34, Issue 4, , May
2008, Pages 3071-3080. (http://
www.sciencedirect.com/science/article/
B6V03-4P40KHS-1/2/69a48379b79a6f49
ae5df419813515f6)

[7] Bhaskaran, V. Murali, Natarajan, A.
M., Sivanandam, S. N., A New Promising
IP Traceback Approach and its
Comparison with Existing Approaches.,
Information Technology Journal (2007,
Vol. 6 Issue 2, p182-188, 7p)

[8] RFC 2827

[9] Chen, R, Park, J, Marchany, R, A
Divide-and-Conquer Strategy for
Thwarting Distributed Denial-of-Service
Attacks, IEEE Transactions on Parallel
and Distributed Systems (VOL. 18, NO.
5, May 2007, p577-588)

[10] Yu Chen, Kai Hwang, Wei -Shinn Ku,
Collaborative Detection of DDoS Attacks
over Multiple Network Domains, IEEE
Transactions on Parallel and Distributed
Systems, VOL. 18, NO. 12, December
2007

[11] Cisco Internet Protocol (IP) Multicast
(http://www.cisco.com/univercd/cc/td/doc/
cisintwk/ito_doc/ipmulti.htm)

http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.sciencedirect.com/science/article/B6V03-4P40KHS-1/2/69a48379b79a6f49ae5df419813515f6
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm

