
Concordia University College of Alberta 

Master of Information Systems Security Management (MISSM) Program  

7128 Ada Boulevard, Edmonton, AB 

Canada T5B 4E4 

 

 

 

Reverse Discovery of Packet Flooding Hosts with Defense Mechanisms 

  

by 

 

MURRAY, Brian 

 

 

A research paper submitted in partial fulfillment of the requirements for the degree of 

 

Master of Information Systems Security Management 

 

 

 

 

 

Research advisors: 

Pavol Zavarsky, Director of Research and Associate Professor, MISSM 

Dale Lindskog, Assistant Professor, MISSM 



Reverse Discovery of Packet Flooding Hosts with Defense Mechanisms 

  

by 

 

MURRAY, Brian 

 

 

Research advisors: 

Pavol Zavarsky, Director of Research and Associate Professor, MISSM 

Dale Lindskog, Assistant Professor, MISSM 

 

Reviews Committee: 

Andy Igonor, Assistant Professor, MISSM 

Dale Lindskog, Assistant Professor, MISSM 

Ron Ruhl, Assistant Professor, MISSM 

Pavol Zavarsky, Associate Professor, MISSM 

 

 

 

 

 

The author reserve all rights to the work unless (a) sprecifically stated otherwise or (b) refers to referenced 

material the right to which is reserved by the so referenced authors. 

 

The author acknowledges the significant contributions to the work by Academic Advisors and Review 

Committee Members and gives the right to Concordia Univeristy College to reproduce the work for the 

Concordia Library, Concordia Websites and Concordia MISSM classes. 



Concordia University College of Alberta 
Department of Information Systems Security 

7128 Ada Boulevard, Edmonton, AB T5B 4E4, Canada 

Reverse Discovery of Packet Flooding Hosts With 
Defense Mechanisms

Brian Murray
brian@game-sat.com

mailto:brian@game-sat.com
mailto:brian@game-sat.com


Introduction
Denial of Service (DoS) attacks are still a 
widespread problem on the Internet, with 
25% of companies suffering from an 
attack [1]. There are several different 
attack types that could be considered a 
DoS [2]. They include Protocol Feature 
attacks, Data Flood, and  Application 
Level attacks. The solution presented in 
this paper explicitly addresses Data Flood 
type attacks, but could extend to other 
t y p e s o f a t t a c k s w i t h s i m p l e 
modifications. Attack Countermeasures 
can be classified into 4 categories: 
prevent ion, detect ion, mi t igat ion, 
response [2]. The method proposed 
would fall into the mitigation and 
response categories. Deployment 
locations can be classified as victim, 
intermediate, and source network. This 
solution provides the ideal scenario 
where the detection happens at the victim 
network, but the defense mechanisms 
are deployed at the source network, with 
very  little overhead at the intermediate 
network. 

Denial of Service Attacks

A DoS attack is a type of attack that 
prevents normal, legitimate traffic from 
being served. The most common way to 
do that on the current Internet is to flood 
a large amount of traffic at a specific host. 
The victim is then unable to handle the 
excess traffic, and will mistakenly  discard 
legitimate traffic. While this may not be an 
issue for a web photo gallery, it does 
pose a significant problem for a small 
business that is just starting out on the 
Internet. When millions of dollars of 
business gets conducted every hour, a 
website cannot afford to be down for any 
significant period of time. Older attacks 
have abused the very systems of the 
Internet that allow it to function, such as a 
TCP SYN flood attack. However, these 
low volume attacks have mostly  been 
solved with some ingenuity of Internet 
architects, such as with TCP syncookies. 
Brute flooding, however, is a very simple 
problem, but also very troublesome. The 
number of compromised hosts on the 
Internet is growing every day, making 
large botnets even bigger than they 
already are. Unfortunately, there is no 
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simple way to stop  these attacks, so a 
more complex approach is required. 

There are two standard flood type DoS 
attacks. The first is a standard DoS, 
where a single host floods another host. 
This means the attacker must have 
equal, or greater bandwidth than its 
target. The second, and more dangerous 
attack, is a Distributed Denial of Service 
(DDoS) attack. This is identical to a 
standard DoS attack, except there is 
many hosts attacking a single target. 
Usually  these hosts are linked and 
controlled by a single hacker, or group of 
hackers. Since there are many hosts 
sending data, only  their aggregate traffic 
needs to be greater than what the target 
can handle. That means, the more hosts 
that are attacking, the less traffic needs to 
be generated by each attacking host. 
Since botnets can contain thousands of 
hosts, each attacking host may only need 
to send very small amounts of traffic.

One simple fact always remains in 
flooding DoS attacks: the target is 
overloaded with inbound packets. 
Whether an application cannot handle the 
load, or an actual network interface is 
forced to drop  packets as its queue is full, 
no packets may reliably reach the 
attacked network or host while an attack 
is taking place. Upstream traffic, however, 
is controlled completely by the attacked 
host.  This provides a convenient path to 
notify upstream routers of the issue.

Current Protection Systems

There are already a few approaches to 
preventing such an attack. However, for 
the most part, they are ineffective at 
stopping large attacks, or attacks on 
smaller hosts with fewer resources than a 

large corporation. 

The first type of existing scheme uses an 
outside party to filter traffic. All Internet 
Domain Naming System (DNS) records 
point to this third party, who has a large 
amount of bandwidth. Traffic destined for 
the site is routed to this third party. Then, 
all the traffic they deem legitimate gets 
sent on to the real servers. This can 
create a fairly large lag time, and can 
reduce the responsiveness of your site. 
As a result, customers may be turned off 
from doing business with you. Also, there 
is no guarantee that the third party can 
handle the attack. At best, this can stop 
small or medium sized attacks, but is still 
prey to large attacks. 

The second type, offered by Cisco, is 
very  similar in that it filters bad traffic. It 
involves an ISP having a second 
backbone that filters the traffic. Since this 
second “clean pipe” is already in line with 
the existing network connections, it does 
not suffer from the extra hops as the 
other solutions do. [3] However, a large 
DDoS attack can still take down one of 
these massive Internet backbone 
connections. 

A third solution, which is probably the 
most widely known, is called ʻAnycastʼ. It 
is primarily used by the DNS root servers, 
which are critical to the functioning of the 
Internet. Anycasting works by redirecting 
traffic to a local provider, instead of a far 
reaching provider. That is to say, you 
request a DNS resolution from a server 
on the other side of the country, but the 
request is actually  handled by  a nearby 
server. This is usually  accomplished by 
providing multiple BGP routes to the 
same Autonomous System (AS). Each 
route terminates at a different location, 



which is more local than another route. 
Since the servers are geographically 
diverse, no attack can take down the 
entire DNS structure. Every root cluster 
may only serve a small portion of the 
Internet, instead of all of it. So, if a large 
scale attack was to originate from 
Singapore, their attack traffic would never 
touch the North American root servers as 
the attack packets would only be 
delivered to the local Singapore DNS root 
servers. For Anycast to be deployed for a 
specific company, they must have the 
m o n e y t o d e p l o y i n s e v e r a l 
geographically  diverse data centers. 
Their routes must also remain highly 
stable for any connection oriented traffic 
to function. Their data centers must also 
interact and collaborate data between 
them. For a small business, Anycast is 
not a viable solution. 

Recently, a lot of research has gone into 
solving the problem, with many different 
approaches. Some use overlay  networks 
to manage the attack routes [4] [5]. These 
merely obfuscate the traffic path. A smart 
attacker will merely flood out the overlay 
network from a variety of different hosts.

The primary concern with an overlay 
network is that it is a second set of 
routes. Some are merely  the same 
routes, but with tunnels over top that 
create a second virtual network. These 
secondary routes need to be maintained 
in order for the system to work, even if 
they are established temporarily. Some 
require authentication of connecting hosts 
to use the overlay network. This allows 
them to do rudimentary filtering of traffic. 
However, an attacker can still flood out 
the overlay  networkʼs entry points with 
data, negating the whole system. Even 
overlay networks that have alternate 
physical paths are still vulnerable, as an 

attacker with an inordinate amount of 
attacking hosts can still overcome the 
bandwidth allowed by the second 
n e t w o r k . T h e s e c o n d a p p r o a c h 
mentioned in this section, which is offered 
by Cisco, is a type of overlay network.

Other systems use traceback methods, 
such as the ANT system, where “ants” 
crawl up  the network. The ANT system is 
based on the natural path creating 
method that ants use in the wild. Ants 
march towards a destination, each laying 
a trail of scent. As more ants lay a trail, 
the scent gets stronger. The path with the 
strongest scent is the path that more ants 
follow, and subsequently  strengthen the 
path even further. In the ANT system, the 
“ant” lays a trail along the path with the 
most traffic [6]. Most traceback systems 
that work by  communicating with peers, 
such as ANT, require updates to a vast 
number of routers in the chain. Other 
types of systems proactively  tag packets 
for the destination to parse when it is 
received, so that it gets a better idea of 
where the packet originates from [7]. 
However, these proactive systems add 
significant overhead to intermediary 
routers, as each needs to add its tag on  
to every packet. 

Proposed new solution

The proposed solution requires 3 tiers of 
development. The basics of this protocol 
are quite elementary. First, an attack 
needs to be detected. This can be done 
automatically, such as with many 
currently  deployed Intrusion Detection 
Systems (IDS), or manual ly  with 
administrator intervention. Next, the 
attacker must be discovered. For this, a 
reverse path discovery method is used. 
Finally, the attacker must be stopped. 



This last stage only requires the closest 
trusted routers to the attacker to prevent 
data flow.

The key component to this new method is 
the reverse path discovery. Since the only 
reliable piece of information in an attack 
is the destination, the protocol uses that 
destination address to detect the source 
of the attack. When an attack is detected 
on a client system, the client system 
sends an initiator packet to its nearest 
router. That edge router then sets all of its 
par t ic ipat ing inter faces, wi th the 
exception of the interface that received 
the initiator packet, into a listening mode. 
In the listening mode, the interface is 
scanning for incoming packets that match 
the destination host or network that was 
identified in the initiator packet. When a 
packet is detected on the participating 
interface, the interface then stops 
listening, and performs one of two tasks. 
It may deploy a countermeasure by 
blocking packets to the attacked network, 
or by filtering the packets with deep 
packet inspection that are destined for 
the attacked network. This would be most 
common when packets are detected from 
a stub  network, such as on an edge 
router. The interface may instead notify 
its peers. It can do this either with unicast 
to each peer, or via multicast to notify  a 
wide range of peers. The interface 
notifies its peers by using the same 
initiator packet that was sent to it, but 
replaces the authentication data with its 
own authentication data, as is discussed 
later. This process is repeated until no 
packets are detected on interfaces that 
are set to notify peers.

Once the source has been narrowed 
down, the attack must be stopped. The 
hardest part is detecting attack packets 
versus legitimate packets. However, 

since the destination is already  known, 
the differentiation is much easier, since   
an attack on that specific host can be 
verified. That is, it limits the exposure to 
false positives, since no detection is done 
until an attack has been verified by the 
destination.

This system allows for every company, 
small or large, to mitigate DoS attacks. It 
is deployed by ISPs, but authenticated 
access is granted to smaller companies. 
This means that no small company has to 
make a large investment in redundant 
da ta cen te rs w i th mu l t ip le BGP 
advertised routes. Since the notification 
packets only travel upstream, no two way 
communication is required while an 
attack is under way. 

In the first two schemes that I have 
mentioned, the solution is merely to add 
more bandwidth, but at two different 
locations. Unlike those schemes, the 
p roposed so lu t ion uses ex is t ing 
resources to mitigate the attack. It does 
not rely on the attacker having less than 
sufficient traffic to overload the extra 
bandwidth added. The proposed solution 
also allows countermeasures to be 
deployed closer to the attacker, which 
means that less Internet bandwidth is 
used, which is a benefit to the ISP. 
Ultimately, this also means that the 
countermeasures are only checking much 
smaller amounts of bandwidth, and is 
therefore significantly more efficient at 
separating the legitimate traffic from the 
malicious traffic. 

The ANT system, at a glance, looks like a 
very  good system as it mimics nature. 
However, nature and evolution work on a 
“just good enough” principal, as opposed 
to a “perfection” principal. The ant path 
creating system works fine in nature for 



its purpose, but when discovering an 
attacker on a network, the actual path 
used is unimportant. The only  important 
piece of data is the actual source of the 
attack. In nature, the trail is used later to 
aid in navigation for future ants. On the 
Internet, the destination address can be 
reached using existing routing resources, 
so long as the attackers location is known 
and translated to the proper source 
address of the attacker. Laying a trail 
merely wastes valuable resources on 
already strained Internet routers. 

A variety of tagging systems also suffer 
from the same issue. They put a large 
weight on discovering the actual path of 
the attack, when the only  thing needed is 
the actual attackers source. If an attack 
was originated only  from a small area of 
the Internet, these systems would work 
very  well, as traffic could merely  be 
blocked at the first common router to the 
attackers. However, attacks come from 
very diverse areas of the Internet, so the 
attack would either be blocked close to 
the destination, or many blocks would 
need to be placed throughout the 
Internet, making the tagging mostly 
unused. 

On top of intermediate tagging being 
highly wasteful, the issue remains of how 
do you stop the attack. These systems 
would require a separate protocol to 
inform the attackers nearest router to 
stop the attack. The proposed solution 
does not concern itself with intermediary 
hops, and is capable of deploying 
countermeasures at the instant the 
attacker is discovered. There is also no 
processing of the attackers packets at 
any routers, nor is the attacked host 
required to reconstruct the attack path. 
Once the attacker is discovered in the 
proposed solution, a countermeasure can 

be deployed instantly, without the need 
for a second notification to inform the 
attackers nearest router that an attack is 
taking place. As a side note to a second 
protocol being needed, every edge router 
on the Internet would need to allow for 
authentication of every host that could be 
attacked. In the proposed solution, the 
only direct peers or peers within its 
multicast group need to be authenticated. 
This means that an initiator can be 
started from a host in Toronto, and each 
intermediary only needs to trust the 
validity  of each adjacent hop, with the 
router closest to the attacker only 
needing to trust the next nearest router, 
as opposed to trusting the host in 
Toronto.
 
Protection Method 
Development
There are several factors that need to be 
considered when creat ing a new 
algorithm. Many problems need to be 
solved so that the final product is highly 
efficient. 

Communications Protocols

For multiple routers to interact, they need 
to have an efficient communication 
protocol. However, del ivering the 
message can be as difficult as designing 
the message itself. The message cannot 
be sent to routers that donʼt need the 
message, but must make it to all routers 
that do need the message. This is why 
blanketing out a request to all hosts may 
not be a good idea.

Unicast



Unicast is the most common protocol in 
use on the Internet. All traffic between 
any two hosts is unicast, such as web 
traffic, DNS traffic, or Email. 

To use unicast with the proposed 
solution, each router in the chain needs 
to know about all other routers near it. 
While this may not be a problem on a 
small scale, it could end up being a very 
large problem as a single router may 
have a dozen peers. Also, this would 
require that all routers in the path 
between the attacker and the victim 
would need to be updated to support this 
new method. 

Broadcast

Broadcast traffic is different from unicast 
in that everyone on the local ʻbroadcast 
domainʼ hears the message. Broadcast, 
however, is only  significant to the local 
network. It can be directed to a specific 
subnet, but that is often disabled to 
prevent abuse. Since only locally 
significant broadcast can be used, only 
other routers directly connected to each 
router can hear the message. This 
alleviates most of the need for each 
router knowing its counterparts. One 
broadcast message will inform all of its 
peers about the attack, and have them 
shut down the traffic flow and notify 
upstream. However, since only the next 
router can hear the message, it means 
that every router in the chain still needs to 
be patched with support. This is a slightly 
better protocol, but still not good enough.

Multicast

Multicast is still not widely used outside of 
routing protocols, even though it is well 
supported. A multicast packet can be 
routed, and even “spl i t” amongst 

destinations. That is, one packet may be 
sent, but many destinations may receive 
the message. 

There are two methods for distributing 
multicast traffic. The first is called a 
source tree. Source trees are sometimes 
referred to as shortest path trees (SPT), 
since they represent the least hops 
between the source and destination. 
Using this method, every router between 
the source and destination needs to 
maintain a table of each route. This can 
lead to very large memory requirements.

The second method is called a shared 
tree. All multicast traffic is sent to a 
rendezvous point (RP), then routed down 
the multicast tree to all listeners. With 
this, only one route is required. The 
memory  requirements are significantly 
less.

Each of these two methods have their 
own drawbacks. Obviously, the more 
routers there are on the network, the 
more routes would be required for the 
first method. This number could get quite 
large within a single AS. However, the 
second method provides a single point of 
failure. If an attacker knew the RP, they 
could attack the RP as well as the 
destination, removing the effectiveness of 
the protocol. This could be mitigated by 
moving the RP frequently, and ensuring 
few people knew where the current RP 
was located. 

Since every router may be able to route 
the message without understanding it, 
most routers on the chain will have no 
need to be patched or updated to support 
this. It also means that no routers need to 
know where its peers are. Ultimately, this 
is the best solution as it allows for much 
more rapid dissemination of information, 



as well as requires the least updates from 
intermediary routers. Without every router 
needing updates, a perimeter can be 
extended very quickly.

For example, if we had two cities, like 
Edmonton and Calgary. A host in 
Edmonton is being attacked, so it 
requests action be taken by its nearest 
router. The router then notifies the 
Edmonton multicast group. All access 
routers and intercity routers within 
Edmonton are instantly  notified via 
multicast from a single request by the 
router. If flooding is occurring from an 
access router, and if blocking is deployed 
as the countermeasure, the traffic is 
purely  blocked. If traffic is seen from a 
intercity router coming from Calgary, then 
the Calgary mutlicast group is notified by 
the Edmonton-Calgary  intercity routers. 
All access routers within Calgary are then 
checked for attack sources as well. No 
other routers are required to have 
updates, and merely  route the multicast 
traffic. If every router between the source 
and destination needed to be notified, 
then the response time would be greatly 
increased. 

To quantify the benefit of multicast over 
unicast, we need to quantify each 
component of the notify process. First, I 
will denote the time between the router 
receiving the packet, and when it begins 
to notify  the next hop  in the chain as P. 
Next, the time between each hop 
between the source and destination will 
be denoted by H. The number of hops will 
be denoted with an h.  Therefore, the 
time Tuni for unicast would be:

Tuni = h x P

So the time to notify  a router that is 4 
hops away, with processing time (P) of 1 

second:

Tuni = 4 x 1
Tuni = 4 seconds

Multicast traffic only needs the source 
and des t i na t i on t o p rocess t he 
information, with the rest of the routers 
merely passing on the data. Therefore, 
we are left with:

Tmul = ( 2 x P ) + ( H x h )

If we use the same numbers, and 
assume a hop time of 1 millisecond each 
using SPT:

Tmul = ( 2 x 1 ) + ( 0.001 x 4 )
Tmul = 2.004 seconds

The more intermediary routers are added, 
the greater the difference. If we have 8 
routers:

Tuni = 8 seconds 
Tmul = 2.008 seconds

If we use unicast to communicate with 
each end router, that is several hops 
away, we then need to count each router 
that the router needs to communicate 
with. For this, we can use the time H for 
the time to send a packet to each router 
n. 

Tuni = 2P + ( H x n )

With 50 peers, this number is:

Tuni = 2(1) + ( 0.001 x 50 )
Tuni = 2.050 seconds

This number is small, almost as small as 
that of unicast. However, unicast has 



another drawback. It requires each router 
to know of every other router. This means 
that all peers must be maintained. If a 
new router is added, all 50 peers must be 
added to it, and it to all 50 peers. 
Multicast does not require every other 
router to know of every other peer. 
Maintenance time on each router could 
be significant. If a peer is not added, 
especially  an inter-domain transit router, it 
can leave a hole open to be exploited. 

Software Management

The implementation of the protocol 
requires two separate components, the 
daemon and the firewall. Each has its 
own tasks to perform, but neither can 
function without the other.

Daemon

The daemonʼs job is to receive messages 
from other routers informing it of an 
attack. Once it receives an initiator 
message, it must act on it by creating 
firewall rules, and monitoring them for 
activity. Once it notices activity on one of 
these rules, it then must inform the next 
set of routers. 

First, it needs to listen on a multicast 
address for messages from its peers. 
These messages will consist of the 
destination address and its netmask. 
I n i t i a t o r s s h o u l d a l s o c o n t a i n 
authentication data.

Next, it needs to interact with the firewall. 
In the testbed system, it simply used 
Linuxʼs netfilter and its ʻrecentʼ matching. 

To gather information about if the rules 
have been matched, it will read the ʻprocʼ 
nodes pertaining to the recent matches. 

Lastly, it must be able to send data out to 
its peers, based on where the firewall rule 
triggered from. If the interface has no 
p e e r s , i t s h o u l d p e r f o r m s o m e 
rudimentary  detection tasks, such as 
detecting spoofed packets, then block 
packets that do not appear to be 
legitimate. 

Firewall

The firewall is a very important piece of 
software. It must be able to dynamically 
add rules, while still remaining efficient. In 
high bandwidth environments, a null route 
may be used instead, but it must report 
that it was triggered to the daemon. In the 
case of the testbed, it will simply  use 
Linuxʼs netfilter with the ʻrecentʼ module. 

In a real world deployment, the firewall 
rules may not even work as a normal 
firewall would. It may, however, establish 
a GRE tunnel to a IDS or other malicious 
traffic filtering system that is deployed by 
an ISP, then re-route all traffic that 
matches the destination through that 
GRE tunnel. If the IDS detects the packet 
is malicious, it would be dropped and 
logged, but if it was benign, then it would 
be passed along with only a delay added. 
The delay would only be applied while an 
attack is taking place, instead of always, 
such as with other previously mentioned 
methods.

Thresholds

While thresholds are not required, they 
can help  to augment the effectiveness of 
t he sys tem w i thou t e r roneous l y 
preventing legitimate users access to the 
victim. Once a threshold is reached, the 
router will either send out a notification to 
its peers out the source network 



interface, or will carry  out an action to the 
packets if it has no peers out that 
network . The thresholds can be 
implemented near the attacked network, 
or the attacker. If they are implemented at 
the attacked networkʼs router, then they 
could be used to trigger the reverse 
discovery process. One example of this 
would be an intrusion detection system 
set off by DDoS packets. If the thresholds 
are implemented close to the attacker, 
they could properly handle, and filter, all 
attack traffic from that subnet to the 
destination.

Packet Numbers

One threshold can be the number of 
packets received with the destination set. 
That is, if too many packets per second 
are being sent to the destination in the 
attack, then it could be considered as one 
of the attackers. This may, however, not 
work in the case of a low rate attack, 
consisting of thousands of nodes.

Connection Numbers

Some DoS attacks donʼt consist of raw 
flooding, but instead, of legitimate 
connections tying up  useful resources on 
the destination server. If too many 
connections are attempted, it could be 
considered the attacker. Along with these 
connection numbers, the amount of data 
sent directly after the connection could be 
used. If the connection opens, but no 
data is sent or received, then it is likely  an 
attack that leaves useful sockets open to 
handle empty connections. Adjusted 
window sizes could be an indication of 
this type of attack. 

Spoofing

In the most common flooding attack, 
spoofing is often used. This is the 
purpose for this protocol. Since spoofing 
makes it impossible for any destination to 
know the source, and take action, reverse 
path discovery is used in this new method 
to find the source. Once it has gone no 
further than it possibly can upstream, it 
can check to see if any packets are being 
spoofed. That is, if the last router is on 
the access network of 30.40.50.00/24, 
and sees packets from 1.5.2.4, then it 
knows spoofing is happening, and that 
there is almost definitely an attacker out 
its interface. 

In a real world implementation, a 
threshold that adheres to RFC 2827 [8] 
would be the most beneficial. 

Alternate Actions

Once a threshold is met in the deployed 
testbed, one of two actions occur. It either 
blocks the traffic, or notifies its peers in 
an upstream direction. In a full Internet 
deployment, this action can be anything 
that the deploying ISP may desire. For 
example, instead of blocking traffic to the 
attacked network or host, it may redirect 
traffic from that attacking network to a 
classification system that determines if an 
attack is taking place. This could happen 
on overlay networks, such as those 
described earlier. Since few hosts would 
actually  be filtered by each of these, there 
would be almost no potential for them 
being overloaded. This places the 
mitigation as close to the attacker as 
possible. This would allow an ISP to 
verify  that an attack was taking place 
from that host, instead of relying on 
simple detection protocols. 

Another potential action could be to 
simply notify  the network operations 



group  via an SNMP trap, or any 
notification system that the company  has 
implemented. 

Ultimately, in the real world, blocking 
entire non-conforming networks would 
not be beneficial for most cases. Instead, 
re-routing traffic destined for the attacked 
host to a deep packet inspector would be 
significantly more beneficial. This has the 
effect of requiring much less investment 
on packet inspectors, as most traffic 
wonʼt be triggered as potential attack 
traffic, and as a result, less packets will 
be redirected to the inspector.

Security

With this type of protocol, there is a huge 
potential for abuse. Without security 
precautions, someone could spoof that 
an attack is happening on a target host, 
then the end host would end up in the 
same condition that the protocol is trying 
to prevent. An extensible scheme should 
be used so that new authentication 
schemes can be added at a later date in 
the case of a flaw being found in existing 
authentication schemes. 

Two conditions must be met with the 
security of the protocol. First, it must be 
secure. That is, only the hosts within the 
group  may have the information to 
authenticate. Second, when the attack 
discovery is triggered, it must only require 
a one way communication. That is, no 
packets can be relied on to be sent back 
to the attacked host or network. The 
attacked host or network is to be 
considered offline during an attack. 

Any bit of information in the initiator can 
b e u s e d f o r a u t h e n t i c a t i o n . I f 
authentication data for ʻCompany Aʼ is 
received, but it requests traceback for a 

network that isnʼt owned by ʻCompany Aʼ, 
the authentication will fail. Only edge 
routers ever communicate with customer 
equipment.

Implemented Security

In the testbed, a simple username and 
password was used. It was sent in 
plaintext to speed up development of the 
system. This is, by  no means, the final 
scheme. Since both sides know the 
password, there is no need to pre-
authenticate before the information is 
sent. 

Future Security

In the future, cryptography should be 
used. Public key cryptography could be 
used as an extensible authentication 
scheme. For example, an ISP may have 
a master key. The routers, while booting, 
could initiate a public key transfer for all 
routers on the multicast group. All routers 
would then send their public keys which 
were signed by the ISP master key. Then 
each request would only require being 
signed by  the sending router. The only 
manual intervention to setup would be the 
deployment of the ISP master public key.  
Also, if no known routers or hosts are to 
be found on a branch of the network, then 
the router should not listen for initiator 
packets on the interface attached to that 
network. If a certain authentication is 
associated only with a certain network, an 
initiator packet of another network would 
be ignored. 

Other, non-security related ideas could be 
implemented. For instance, a token 
allowance may be issued to clients who 
pay for the attack discovery service. This 
would be a revenue generating service 



for ISPs, as well as prevent abuse of the 
system. 

Routers

No router access is required between any 
peers. That is, the ISP requires no 
access to the customer equipment, nor 
does the client require any access to the 
ISP equipment. Only authentication of the 
actual protocol needs to be granted, in 
exactly the same way that PPPoE is used 
on small customer sites to authenticate 
Internet access. It is also worth reiterating 
that no client equipment is relied on. Only 
the closest trusted router handles the 
requests, and does not pass it on as the 
client equipment is not considered a peer.

Network Setup
For this research, a simple test bed 
network was required. It consists of 
several computers networked together, all 
running Linux.

Physical Installs

The physical machines that were used 
vary widely. End nodes consisted 
primarily of laptops, as they were what 
was available, and are more than 
sufficient for testing purposes. The 
routers were all standard i386 desktops, 
with multiple network cards. To be 
thorough, a multi-access network was 
used between three routers, as well as a 
point to point ethernet link between one 
of the three and a fourth router. 

Software Installs

The primary OS of the network was 
Linux. All routers ran Linux, as the 
daemon was specific to netfilter. The 
distribution of choice was Debian. The 
target host, which also included the 
initiator, was running OSX 10.5 Leopard. 
Two of the external hosts were running 
old versions of Gentoo, while the third 
external host was running Windows Vista. 
Since this attack is against network 
protocols, and not software, the specific 
patch level, and operating systems are 
unimportant. 

Software Design
The testbed system used requires a basic 
version of the software to be created. The 



software is required to have the following 
functions. It must:

1. Receive packets via multicast.
2. Authenticate the above packets from 

any source, using an extensible 
authentication scheme.

3. Monitor for packets matching the 
signature on all monitored interfaces.

4. Perform an action against packets 
matching the signature if no upstream 
peers are present.

5. Generate authenticated packets to 
pass on the signature to upstream 
routers, using multicast.

Daemon Development

The daemon was built using C, as it is 
most native to Linux. The daemon uses 
UDP port 9494, as an arbitrarily chosen 
port. The test daemon is also capable of 
listening to several multicast addresses, 
o n e o n e a c h i n t e r f a c e . I n t h e 
implementation, unicast, as well as 
multicast were both supported. This is so 
that an ʻinitiatorʼ can communicate with its 
nearest node without being multicast 
aware . I t a lso loads a dynamic 
authentication module for passwords. 
However, since only one authentication 
scheme is supported, a true dynamic 
module loader is not present. Below is a 
sample packet header as it was used in 
the testbed system. The authentication 
section carries authentication data in 
ASCII. The password authentication 
format is: 
“password:<username>:<password>”
 where <username> is a username, and 
<password> is a password. The payload 
carried a dotted decimal representation of 
the attacked network, with an optional 
prefix notation for a subnet. That is: 
“192.168.0.0/24”.

Operating System Integration

Integration with the network is achieved 
via netfilter. Packets matching the 
signature, in this case the destination 
address, add an entry to a recent match, 
which is accessible via a ʻprocʼ node. 
Upon a match, the daemon may also 
create a separate netfilter rule to block, if 
the interface is setup as such. No other 
countermeasures were developed in the 
testbed as blocking provides the simplest 
method to test the performance of the 
protocol.

Installation

Since the daemon is configured via a 
simple configuration file, the only unique 
installation step  to each machine was 
creating the configuration file. Each router 
had the daemon installed on it, and then 
ran as root. It required root access due to 
the integration with netfilter. 

Testing
The system was tested using the 
aforementioned test network. Network 
t r a f fi c w a s g e n e r a t e d a s H T T P 
downloads. This included many small file 
downloads, mimicking standard HTTP 
traffic, as well as large single file 
downloads. Since only spoof protection 
was implemented, there were no 
th resho lds based on connect ion 
numbers, or amounts of traffic. Statistics 



were recorded for each of the two types 
of legitimate traffic before malicious traffic 
was generated, while malicious traffic 
was being generated, while the protocol 
was being triggered, and after the source 
of the malicious traffic had been 
discovered. 

Normal Traffic

Normal traffic was generated using 
several web  browsers on the network. 
That is, one on each of the three “user” 
hosts.  While the protocol was being 
triggered, response times were recorded. 

Exceptional Traffic

Exceptional traffic was mimicked by 
downloading a large file to one or two 
hosts. This is still legitimate traffic, but is 
enough to slow the response to other 
hosts since it is monopolizing network 
resources. Since this is not considered 
malicious traffic, the protocol did not stop, 
or even slow, this traffic. To slow this type 
of traffic, shaping could be implemented 
at the web server. In this scenario, it was 
not implemented. While the protocol was 
tr iggered, download speeds were 
recorded. 

Malicious Traffic

Malicious traffic, as defined by  the only 
threshold implemented, is any spoofed 
traffic. Since the whole point of this 
protocol is to trace back senders of 
excess, malicious traffic, the senders 
were set to flood the web server with 
traffic. The traffic was not legitimate, and 
did not TCP Checksum correctly. This 
meant that the web server merely 
dropped the traffic before it could reach 
the web  server daemon, and ruled out 

TCP SYN flood from the attack.

Results
The first phase of testing was to establish 
baselines of the network. To simulate a 
proper network connection, access lines 
were limited to 10 Mbps, half duplex, 
where network cards allowed. Most 
importantly, this included the web servers 
connection. Response times for standard 
web traffic from all three “user” hosts 
were under a second. Ping times were 
less than 1 ms. Exceptional traffic was 
clocked at 900KB/s, divided between 
each connecting host. That is, if only one 
was connected, it experienced 900KB/s. 
If two were connected, each would 
experience 450KB/s. On a 10 Mbps 
connection, this is the most that can be 
expected, which is around 7.2 Mbps. 
Immediately  after a single host started 
packet flooding, response times jumped 
to 30 seconds or more. Packet loss 
approached 100%. Exceptional traffic 
speed plummeted to bursting between 
0KB/s and 3KB/s. 

Response times without the 
protection algorithm

The first step  in responding to an attack is 
detecting an attack. Some factors can 
decrease this time, such as a network 
monitoring solution or IDS. However, 
smaller networks may only be alerted 
when users are unable to visit web pages 
or receive email. I will label the time to 
detect an attack as D. One important note 
is that few network administrators have 
any type of access to their ISPʼs routers. 
That is, to do any kind of tracing or 
mi t igat ion, they would need the 
cooperation of the ISP. For requesting a 



response from the ISP, I will label this R. 
Once the ISP has been notified, their 
support technicians must be contacted, 
as few, if any, ISPs have their technical 
staff answering support calls. I will call 
this notification time N. Once a technical 
person has been informed, they must 
then start the process of discovering the 
source. Each router along the chain 
would need to be connected to, checked, 
and possibly have a packet filter enabled. 
I will denote this process of checking 
each router as C. Since more than 1 
router needs to be contacted, we would 
have to multiply out by each router that 
requires contacting. I will denote the 
number of routers that need to be 
contacted with n. This leaves us with the 
total time T. 

T = D + R + N + ( C x n )

If we take a small company, without an 
IDS or network monitor, we can assign D 
as 10 minutes. I will assume a diligent 
ISP with sufficient phone support staff to 
promptly handle the call, and assign R as 
1 minute, and N as 1 minute as well. With 
a fast typing technical staff, we can hope 
for 30 seconds per router (C). If we guess 
at 4 routers (n), all accessible to the ISP 
technical staff member, we are left with:

T = 10 + 1 + 1 + ( 0.5 x 4 )
T = 14 minute

If the company has an IDS or other 
network monitoring, we could assume 1 
minute for D, leaving us with 5 minutes 
response.

Unfortunately, the Internet is not quite 
that simple. With many ISPs, and none 
giving access to their neighbors, we need 
to multiply  the number of ASs. We can 
multiply  all of the numbers by the number 

of ASs (A) by everything but the detection 
time.

T = D + ( A x ( R + N + ( C x n ) ) )

In this extended case, R, N, C, and n 
would all be average values of their 
singular counterparts between the ASs. If 
we use the numbers from the first 
example, but between 2 ASs, we get:

T = 10 + ( 2 x ( 1 + 1 + ( 0.5 x 4 ) ) )
T = 18 minutes

We can very quickly see how fast these 
numbers may climb  as more routers are 
added. Deep  call queues of an ISP could 
translate to even slower times. 

Response times with the 
protection algorithm

Once the initiator was triggered, response 
times for regular traffic was restored to its 
normal state. Exceptional traffic was 
again clocked at 900KB/s. However, the 
most important mark of the performance 
of the protocol is the response time. Once 
triggered, normal speeds were restored in 
between one and two seconds. This 
speed is due to the 1 second timer 
implemented in the daemonʼs code in 
order to ensure netfilter was finished 
adding the rules. If netfilter was triggered 
too quickly, it would merely  report that the 
resource was not ready, and the rule 
would not be added. With a more closely 
integrated daemon, this time could be 
decreased drastically. 

Shortcomings
The first shortcoming with the proposed 
solution arises when large portions of the 
Internet donʼt participate. When a router 



has no peers out of its interface, the 
default policy is to block packets destined 
for the attacked network. So if a section 
of the Internet, such as Asia, does not 
participate, then an attack from Asia 
would prevent legitimate traffic from 
accessing the destination. This could be 
overcome by  adding an options field to 
the initiator packet that gives the attacked 
host the ability to inform all routers that it 
is OK to block certain non-conforming 
areas of the Internet. That is, a local 
news website in Florida may not care if all 
of Asia gets blocked, as their content is 
not relevant to Asia anyways. Or a retailer 
deems that it is OK to block parts of 
Africa, as they donʼt ship their products 
outside of North America. Instead of 
blocking, another action could be 
implemented, such as was mentioned 
earlier. An IDS could be used to filter 
malicious traffic from a non-participating 
AS, instead of blindly blocking traffic. 
Since only  traffic destined for the 
at tacked host would need to be 
processed, it could be a viable option 
over blindly deploying a filtering system 
for the entire AS ingress. Ultimately, 
blocking traffic from an external AS to the 
attacked network is much more desirable 
than having all traffic from all networks 
being dropped. That is, a partial DDoS is 
favorable over a complete DDoS. In the 
end, it is the attacked host that controls 
the criteria for detection.

Other protocols support forensic analysis 
of packets from the past to determine the 
attackerʼs location. This protocol is only 
effective against stopping current attacks 
and does not serve to reconstruct the 
attack path after the attack has finished. 
As I have mentioned previously, protocols 
that depend on the attacked host require 
a second augmentation to mitigate a 
current attack. They  also depend on the 

attackers packets reaching the host to be 
processed, which may not be possible. 

Conclusions
DDoS attacks are common on the 
Internet. There are current solutions, but 
they require the target for the attack to 
have a large budget to combat the 
problem. Since response times from 
manual intervention are slow, a faster 
method is needed to combat the problem.  
This method is one such approach. Its 
simplicity does not demand huge 
resources to be spent implementing it, 
and its design makes it work in an 
environment that doesnʼt require time 
consuming patches to be applied, nor 
maintained. Since attack response can 
be triggered by clients, ISPs can easily 
implement accounting controls as a 
revenue generator to pay  for the 
implementation of the protocol. 
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