CANADIAN THESES ON MICROFICHE
IR i

el
(O

LA

" THESES ”CANADIENNE‘S;_:SQRM_[QBQEIQHE: i

. v Nat|onal Library of. Canada

- Collections DeVeIopment Branch

-

r‘anadlan Theseson’ . . e

Mrcrofrche Se’fvrce T : sur mrcrofrche

: Ottawa Canada
K1A 0N4

\ NOTICE

‘-;The\:quaht'y of “this mrcrsbﬁche is: heavnly dependent

‘.--'_‘_upqn the quality: of the. original- thesis submitted for.

';'mrcrofllmmg Every: ‘effort “has been made to ensure

: “ﬁthe hlghest quallty of reproductlon possrble

CIf pages are mlssmg,,contact the umversnty whlch

'granted the degree

- }‘

Blbhothéque natuonale du Canada . \ B

szrrectrén du developpement des collectlons

'_ Ser\uge des théses canadlennes

, f v

S
SN
hY \' ,

AVIS

La quallte de cette mlcroflche depend grandement de

~*la "qualité de a thése soumise’ au. microfilmage. Nous-

-"_“dereproductron T e T e

S’rl manque des pages‘veurllez

R avec I umversite qur a confere le grade L

Some pages may have mdlstrnct prrnt espemally

‘, if the ongmal pages were . typed- wrth\a poor typewrlter
v rrbbon or. if the unlverstty sent usa poor p otocopy

S

| \'publrshed tests etc) are not ﬁlmed

Reproductron in full or in. part of thrs frlm is gov-‘_‘;_',,.if"
1970, '
which”*

-‘:'-‘erned by . the Canadian Copyright Act; R.S.C.
- ¢, .C30- Please read the authonzatlon forms
‘ f.accompany thls thesrs ' S

U THIS, DISSERTATION S
 HAS BEEN, MICROFILMED

'EXACTLY AS RECEIVED S

' 'NL 339 (82/08)

_-‘ g 'a o . Xy

..‘\

B \

Prevrously copyrrghted materrals (journal artlclesvl

\g La qualrte d |mpress|on de certalnes pages peut
lalsser a désirer; surtout si les pages orlgmales ont 'été
dactylographlees a Ia‘lde d un’ ruban:usé ou si. 'univer-

: . . B “ B ".~. - ’/ . o s | ; E ": ' \‘s\..
Lo . N] _’ \\\--\\\\\\ L |) , &’/ ’_“:‘,‘: . -] /)
A SBN T DR / '//“ " -
R

-avons: tout falt pour assurer une qualate superleure :

Comm_uniqUe‘r, SN

\,,j |

srte hous"a fait~ pa}/enrr une photocopre de mauvarse

\
: \

,| . L k

Loat
,;/’ /_,/3:.»1" : i

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS LAVONS RECUE

-

o e

La reproductlon meme partlelle ‘de ce’ mlcrofrlm,_
n.est soumlse a-la Loi canadlenne 'sur; Ie droit: d auteur,
.SRC 1970, c. C-30. Veunllez prendre connals ance des.‘r
: ‘.'formules d autorlsatlon qun acco,mpagnent cett'v ése.

Les documents qun font de;a Iobjet dun dront R
_;d auteur (articles de vrevue examens publtes etc) ne
R ,sont pas mrcrofrlmes . e

‘~,‘Nat|dhal b”ty\
' »of Canad

. Canadran trheses DIVlSlO_]

o ‘du Canada

("’
v 'Ottawa Canada §
v K1A 0N4

R ; . . e : . e
f i . 'vt
§ ;

”Bubhotheque natlonale . .

Dlwsron des theses canadlennes -

PERI}ISSION TO MICROFILM — AUTORISATION DE MICHOFILMER

e . Plea‘se prmt or type—Ecrlre en lettres moulées ou dactylographrer R "' SN

//

Full Name of Author - Nom compiet de I auteur ,‘ e

"':'1 E,c[lard lam /)95?/&

’”-Date of. Blrth —Date de narssanca f’-

Aug 30 1757

Country of Birth — Lneu de nalssance

Cau a q, ER s "

| 'Permane'nmdress — Resndence f|xe = o
o 0/5[2 Oak - Ro‘L
".'.s,kxn,_js‘__fon Ou i“amo :

'Tltte of Thesns —-1- Tltre de ia these

Tlue Deargn anc(
Halp/f I/Ji‘fua[nachine

. \‘) o . L _-‘uv / - ’ _V”«.-/;:_v:,‘,

Imp/fmlcyﬂ‘ ai:on

Umversuty— Umversne ’i'}, R

\
~f ﬂ/bcrlg

Urt: ve/rS:?l‘l

L 'Degr efor Wthh thesrs was presented—Grade pour quuel cette theﬁ;e fut presentee . s .. L '.-”::‘“ R \\

ﬂSo

i

Year thls degree conferred — Annee d: obtentlon de ce grade o

Name of Supervrsor - Nom du dtrecteur de these I '

: .,‘:_v'_jPermlsswn i hereby granted to the NATIONAL LIBRARY OF
~ 'CANADA to |crofnm th;s thesrs and to Iend or:sell copses df-;
the film. \ e T

./

. :vThe author re erves other publlcatlon nghts and ne»ther the
~-thesis nor exter sive. extracts from-it. may. be prlnted or other-.- e

o WIse reproduce wrthout the author s wntten permlssmn

o ‘_"preter ou de vendre des exemp|a|res du hlm e oo Qd v

P T l/ovala. Coh i

R W autorlsatron est par Ia presente accordee a la BIBLIOTHE

“QUE NATIONALE DU CANADA de mlcrofllmer cette. these et de

L auteur se reserve les autres dronts de publlcatlon ni la these
_ ‘i de Iongs extrarts de’ celle-ci ne . doivent ‘étre |mpr|mes ou
: '.__au,trement__reprodmts,sans _Iautonsatrqn écrite de Lauteur. .

i"_;Date o

ru/j

| Signature.., -

: NL'-sn (4/77)'- T

N

The Dés;gri 'énd‘lmpl'ementatio'n' of the Maple Virtual Machine

'THE UNIVERSITY OF ALBERTA

Richard W. Gillespie . -

L A THESlS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUlREMENTS FOR THE DEGREE e

OF M‘ASTER OF SCIENCE |

I P

| S EDMONTON ALBERTA b
_.f. FALL 1982 |
B f‘., : " j: : ' | . -. \ »‘..‘ » A‘:'

" THE UNIVERSITY OF 'ALBERTA

¥ FRELEASE FORM

o . § oo
n . | . e

Name of’ Author L vahard W, Glllesple c ‘ SERIE ,
Trtle of Thesus(o The Desugn and Implementatlon \of the Maple Vlrtual

.
,,,‘ z'" o Machme

Degree For Whlch Thesns Was Presented R Master :.‘o_f' Sciehc o
Year Thls Degree Granted 1982 B T g

\,

‘,\‘;:

o Permnssnon is granted to THE UNIVEF?SITY OF ALBERTA LIBRARY to‘ -
':_"reproduce smgle coples of ‘this thesns and to Iend or seﬂ such coplesfv: i

2 E

e ‘“A‘for pnvate scholarly or scnentuflc research purposes only

The author reserves other pubhcatuon rlghts and neuther the thesns’ L

"nor extenslve extracts from it may be prlnted or' otherwnse reproduced'-'_ o

e

wnthout the authors wrltten permlssnon o »:‘_ REEEE

L a 3.: o (S:gned) ._ : AL sl
""‘»:TPERMANENT ADDRESS W 0/1 Uak K. ”Pi 50’7’.7‘.,’/“_-&'*

';v/(mastm '- n‘(“ar‘:o
¢ N e ,

‘;l THE UNIVERSITY OF ALBERTA ’

bt FACULTY oF GRADUATE STUDIES AND RESEARCH T

. O . S A T
. . . . DR . - ¥ . (\ B . N
& . . N . ! . - \ S A . - B

The undersxgned certlfy that they have read and recommend to the Faculty of ; -
’,‘Graduate Studi‘es and. Research for acceptance a thesns entrtled The Deslgn ar;.d
‘jlmﬁlementatlon of the Maple Virtual Machme $ubm|tted by Rcchard W Glllespne in
N ‘_ partral fulfnlment of the requurements for the degree of Master of Smence
e u [
s Riveds
4"%; R R IS T Supervnsor o

///7

L o ?/L% Pa—\—

R '- E J Pelletler -

I

. -
| o

‘ Abstract;;.“ e

{@W—“ﬁf:

The Maple pro;ect mvolves the’ deS|gn and mple\nentatlon of\ the varlous.

_components . of the - Maple Programmmg System ThlS system is . a““ complete

,programmlng envuronment throu\gh which . programs wrltten in the Maple language_

may mterface wnth each other dlrectly rather than through a complicated operatlng

system lnterface The elements of the System are deflned usmg the Maple.

programmlng language. -

At the bottom level of the Maple Programmlng System is an abstract macl‘ﬂne._

N

Wthh is tanlored to *the Maple language and executes an- mtermedlate form of

’portance A partlcular deslgn for an abstract machme to run. Maple programs is

‘Maple programs “The flrst part of the - Maple pro;ect to be desugned and

L

. chlne to’ execute expresslons wrltten in". the ‘language : are 0utl|ned The runtlme

garbage collectlon Wthh is presented as /)art of the machme is' of partlcular im-

presented together with the representatlon Wthh the Maple language constructs ,

' have on the machme Flnally the detanls of a pulot lmplementatlon of the Maple ab—

Y .

stract machme called the Maple Vlrtual Machme are presented

)

- nmplemented IS' an. hunderlymg machme The major constructs ' of W Maplc};-

e
-programmmg language are descrnbed by thls thesns and the requnrements of a ma—

™

- ' s Aeknowledgementé |
~+ | would like to thank the'fmembers of my. examining committee, Drs. Tony
. Marsland ‘and* Jeff Pelletaer for their time and efforts in’ shapmg this thesnsf b

} .
partlcularly want to thank my - supervnsor Dr Paul Voda for his help and

guxdance durung thls work. As well I wish to thank Chris Gray for his =~ =

Y

suggestions. and cntncxsms : : “ el

Fmally, my fond thanks to Anne whose help through the darker tlmes wm

much needed and whose affection and support was always there.

Thls work ‘was. supported in part by a grant from the NatuonaI\Suence

and Engineering Research Council. of Canada ' '

°

) . L . .) . .
4 - . t (. . . (2 .
. »

6 RN B o oy

‘T;ble of Contents .
- S | o .
Chapter, : T _ ' . ' Page -
1ontroduction ...l e
2. The Maple Pr.ogramnjin‘g Language IV .,....; R
- 2.1 Fegtures of,‘the M?pl'e Language Ce SR Y.
T2 ASEMANticS LS .4
\ 212 Types and Genericv'Func‘;tiéns S sl EEREEE 5
E 2.1.3 Classes AT e .6
f21.4 Intégratéd-Languages and: Environinent_s D ’ '.Tff’. e - . . 8
22 Maple | S Ci e L R ST 8
2.2.1 Introduction to the Ma’plé ‘beg.;rarﬁ.mingd Language e o ..: P 9 ‘
222 f\)lap!é Groprs e Mo . R .10
223 Maple‘: Cléésés P TR .k 11
224 Maple Functions - R e 14
225 Méplg Reco‘rd‘sy.: i ’ o ‘. Ce - ... 1B
226 Maple Use Clauses%020
2.2.7 Maple Nanﬁ_e'5 e S R L 20
228 The Maple Tree Lo 22
'2\.3\.Summary_ R e R o .23
N 3. The Design of the Maple M‘ach'in’é i A e 24
| 31 The \Srﬁelz;lltalk. Machine S . R ST S ,- .‘.25(, |
"3.2. ‘Thew Lawipe Doubte Stack Machine~ L L L _.26‘
3.3 The Maple Machine P
33.1 The ’Mable Machine Storage Manager . . . ; el L ¢, 27 -
_ 3.32 The Maple’M;c_:Hi_ne Interpreter . - . .. S S b e 28 .
1 34 Summary o O ‘41
G \ . @

Vi

b)
. | "\ . 3
4, An Implementatnon of the Maple Machme S N , L Solteo.. .43
e Virtual Mamory S S e 43
4.2 The Smalltalk—~ 80 Vlrtual Ma;hme o P .‘ e RPN .44
421 Smalltalk -80 Vlrtual Memory - B .44
422 The Smalltalk 80 Interpreter BT e R45
: 4.3 The Maple Virtual Machine A o e o 46
4.3.1 The Maple \/irtual" M‘:amofy A o EXURET:
432 Tne Magle'Virtua! Machine Interprefer' ETE N .. .48
4:4 Maple Opcodes .. . ; S ’ e e o . B0
4.4.1 Memory Al|ocat|on T T S P e 50
442 Name Paths SR Sl LBl
443 F‘unction‘Applivcati*on L e .&i L Ceo....B2
444 Use Clauses R 53
445 Case Clauses T e S 53
446 Integer Operatlons j\\. e T 54
45 Summiary R S 56
5 Summary e e e o e- 97
5 1 Future Research r TR PRI S 58
References e S IR DU A <. .60
Appendnx A A Grammar for the Maplg Programmmg Language C e .'u 62
Appendnx B Maple Vnrtual Machme Opcodes LT 66
\
\ i 1
. @
L n)
\ -
i y

LAV

List of Flgdrns

Figure ‘ |

3.1 Runtime Garbagq‘CoIléction , ‘
3.2 Runtime Garbage Collection (cor'wtinued)
3.3 Runtime ‘Garbage Collaction’ (continued)
3.4 General Fdrm of~\E—_nvironment Frames

. 35 The Storage of a Class

&

N

Page
31
32
33
36
39

s

Chapter 1

Introduction

One of the fundamental areas of Computing Science is the study of high—-level
computer programming languages. -The use of high~level languages reduces the time
and effort involved in programming, fliminating coneern for the minute details of
machine language programming. ' %

The design of programming languages has progressed a great deal due to the
- advances made“ in language theory, particularly during the 1960's [Tennent 1981
Historically, programs haye been executed within the environment of 'a'n operating
" system which is completely independent of the programming language: Recently,
“efforts have been made to integrate programmihg languages with their environment.
This integration involves defining the surrounding system in, terms of the features
of the programming language, and allowing programs to have direct access to both
the‘ system and pach other. The system then pre-—defines some programs and data
which are useful for user—deﬂned programs It is these pre—defined entities whnch
supply Ea unlform envnronment for programs to run in. Also, this allows the
programming language to be the command language. for the programmmg system

Since the early days of‘rComputmg Science, operatmg systems have been
evolving from collections’ of disjoint pieces of software into unified programming
systems which integrate elements of a programming Ianguage' with the eiements of
an operating system. :fhe programming language which such a system.is based upon
prevides very general structuring meehanisms, but no specific structures. Fo?rr_fex—
faniple; such a.language does not even provide pre—de‘fined data types suqh as in-
tegers or characters. However, the programming system would provide definitions
of those types for programmers to use. The dlstmct:on is that those types agree
~|n defmmon and use with all other types which can be defmed in the system.

ln an integrated programming system there' is no operating system per se. The

user communicates directly with the compiler of the language, and expressions are

compiled ‘immediatel‘y upon definitioh. Programs in the system communicate directly,

with no complicated ‘system calls necessary as an interface Any program in the
system is completely accessible to any other program in the system

Wo programs of a traditional operating syntém map directly onto functions in
an: m&agrated progrmﬁmir\g system A functionris a body of code which may be
executed many times, with different arguments each time The ;ction ot sxecuting
the body of a function with a perticular value bound to the function argument is
called a function app//cauon The protess of running programs in & typical
operating system corrasponds to doing function applications in an integrated
programming system. As well, the data files of an operating system map onto vari-
ables in an integrated prc}grammihg system, since both are merely éonactbonﬁ of
data which can change.

The primary components of the Mapls Programming System are the Editor. the
Compiler, the Maple iTrae, ar'\d the underlying machine The Editor is the interface
between the user and the rest of the' Maple system, and is used to enter
programs (functions) and data definitiohs into the Maple Programming System These
functions may be directly executed. or the user can have them” stored in the Maple
Tree so that they may be refgrenced later. The Editor uses the Compiler to have
those functions and data definitions compiled and stored In the M}ipié Tree. The
Editor and the Gempiler have not yet been dasigned.

The - Maple Tree is the equivalent of a file system in a traditional operanng
system. The Tree contains all of the functions and variables which are available to
user—defined functions. These include the ones the provided by the system, pius
the user defined ones. The grammar of the Maple language imposes a hierarchical
structure on programs, and this is reflected in the structure of the Maple Tree.
The Editor is the only means through which a user may modify‘ the structure of
the Tree by adding, changing, or deleting definitions in the Tv:ee; a user program
cannot change the Tree structure. ‘ ‘ "

The execution .of Maple expressions requires the machine which underlies the
otHer:/c:omponents of the Maple Programming System. The machine has an~
architecture which is tailored to the structure of Maple programs so that Maple

programs can execute quickly on it An actual, hardware implementation of the ma-

chine was not practical at this time, so a simulator, the Maple abstract machine, has

by

'»."".f‘;;stood A ‘glscussnon of the ma;or concepts of the language is presented flrst Thevfj L

b e e T PR SRR YT b
B ' . M -

' ~*been desugned and lmplemented to run Maple programs »
: The desagn and mtplementatlon of a pnlot verslon of the Maple abstract machine
: J»,‘are presented by thls thesns Anlunderstandmg of the Maple programmmg language ‘

"'-fas necessary before the requnrements of the underlylng machlne may can be under—_ s

fdesngn of the o Maple abstract Machme and the the deta:ls of ‘a partlcular o

o 3v‘,nmplementatuon of the machme the Maple Vlrtual Machme are presented after the

- ‘;Ianguage descrlptlon Of pr:mary mterest |n thIS drscussnon is the »double stack'l,

'model for per‘l"ﬁi"mmg runtlme garbage coIlectuon Flnally a summar°y of the results, :

of the thesns |s glven and some toplcs for future research are presented

. : . S . . . ,‘ N /':‘ . .
g SR
B ,‘D~ :
S ‘o [l
S °
T .
e v
Cle ..
e bq_
o , : s
L ¥ ! Tb : - A‘('_
.‘l{b ; : E A B o

SV AR P T g g o e 2 RN A a5 8 1 18 S S o g

Chapter 2

The Maple Programmmg Language L

The syntax and semantncs of the Maple programmlng Iangu‘age ’ 'are “best'\ j""
descrlbed by. . flrst presentlng the features of the- Maple language and the languages_

where ‘those. features orlgunated and descrnblng Maple in’ terms of those features

The descrlptlon of - Maple whuch s presented ls not mtended to.- be a’-' g

. comprehens:ve descrlptron of Maple but is devoted mamly to the data structures' R

_, “-,:_of ‘the language The control structures of Maple are better descrlbed elsewhere ;

: :?b[Voda 19823] The complete Maple language mcludlng both syntax and semantlcs i‘ Ce

C L

"":also glven elsewhere lVoda 1982b]

N : 21Features ‘_o..f ‘*th'_ej "'Maple l;anguagef s

2 1 1 Semantlcs

vMost programmung Ianguages have their” -syn‘taxf ‘designed’ ‘first' and the'i_f"_

. ";jsemantlcs specnfled in an ad hoc fashlon Iater The result usually, |s a Ianguage“,_ :

: ‘,_whose semantncs are very dlfﬁcult to descrlbe When the semantncs of a language“'"f -

,;.‘v,:_.are not well descrlbed the wnter of ‘a- compller for the language has problems_
,deducung the meanlngs of the language constructs R ,» L
LlSP [McCarthy 1960] was the flrst programmlng language to be desrgned from

5 o
a slmple semantlc basrs (alth0ugh there are some problems w:th bmdmgs of names)

':"_f vUnfortunately, a pleasant syntactlc sugarmg was not built on top of the semantlc

. ‘base. Consequently the LlSP syntax makes the language very drfflcult to use

‘prumarlly due to the prollferat|on of parentheses in the text of LISP programs L |

Maple also |s bunlt from a slmple semantlc baSlS However the pragmatlcs of

-‘,,'programmlng W|th the Ianguage were taken mto consnderatnon when the syntax was

?,,defxned Thus Maple has a syntax Wthh |s easuer to use’ than that of LISP al—' g

‘ .\;'though the syntax of Maple |s stlll qu1te dlfferent from that of more tradmonal
L block structured languages such as Pascal lJensen and erth 1975]\; S

| ;;_,;;; N

¥
i e
¥

/1 2 Types and Genenc Functlons . | . . !.

The notlon of the de\}r}tnon of data types was fll'St mtroduced by Algo|68

/
/

[Pagan 1976] and popularlzed by Pascal The abstract data “types of Pascal allow a-

r

jjto the data structure to Wthh it |s bound For example |f a stack were to. be"_':‘ B
represented by an array and a mdex mto the array for the top of the stack then,"v b
S the name stack' can be bound to. that representatuon After the dBflnltIOn of the :

o ,stack representatlon the name stack can be \used m place of the actual represen-,

‘ tatlon

s

When Pascal was flrst descrlbed lts type deflmtlons were adequate However‘". .

programmer to gnve a name to. some data structure That name is’ then equlvalent?ﬂ

v' the restrnctnons ImeSSd by Pascal (functlons cannot return large structures func— =

od

\ "tuons cannot be part of structures) are now conmdered to! be too llmmng The lan-r'"
':guage Russell [Boehm Demers and Donahue 1980 Demers and Donahue 1980]{.) v,
f‘__expanded on Pascal types by generallznng functlon deflnmons and allowmg types to‘.‘j ‘

" vbe consndered values Wthh may be mampulated |n the Ianguage Lawme [Sw1erstra

PR

.),‘

.:-,"..>.11980] atlso has generahzed types

As 8 consequence of generahzung the types WhICh functlons can return and

I:"the types of functlon parameters generlc functlons may be created A gener/c ‘.
_Tfunctlon is’ a functlon whnch can be parameterlzed by a type rather than only by',fiv"‘
_'values Generncs are useful for reducung the redundant programmnng made necessary e
N by languages w1thdut generlcs For example to’ lmplement stacks of mtegers lh ah""» 3

v Ianguage W|thout gener:cs one would desngn an abstract data type to representf ‘
\stacks of mtegers and then deslgn functlons to mampulate that type However f‘

stacks of characters were needed also then it would be necessary to dupllcate thet . el
e deflmtlon of the mteger stacks and thelr functlons replacung all uses of mteger by e
Hvr:'character Thls would mvolve a great deal of caéle and .would also lead to the,.

'prob|em of glvmg names to the functlons for the dlfferent stacks On the other-._w

v, .“hand ‘a generlc functlon f0' stack manlpulatlon would have the type of the

~‘»-elements |n the stack as a parameter and such a functuon would be - able to‘.“"' ‘

o S
s 'mampulate any type of stack

Because of Pascals lumltatlons on functuon parameters and return types genenc'..r Sl

-»functions are not possrble m Pascal Smce Russell allows types to be treated as

"':'values generlc functlons were ancluded m the language easnly Lawune also has

P

B generlc functlons as part of the language The language Ada [Barnes 1980] also

c{lalms to have generlc functlons however the generlcs of Ada are actually ;ust -

o

%Omplle tlme macros _ ‘ | |
7 Maple has generallzed types and generlcs S|m|lar to those of Russell Russell__~
it SUffers from the syntactlc problem that the programmer must specnfy the types of it
-);/arlables and functuons far more often than is: deslrable In Maple the types of val—. k‘
S ues can be mferred or derlved from the context of use Thus Maple does not‘
lsuffer from the over-typmg of Russell E | L '
, ’l ﬂ,‘ - .- \‘, , \ ,\ LT (Co
l213 Classes . e L
! The concept of classes was flrst lntroduced |n the Ianguage Slmula [Dahl et a/ S

1973] A c/ass also known as a def/n/t/on procedure [Tennent/ 1981]

: “},‘%procedure whose body provudes a set of defmltlons The body of a class generally;;,]
consnsts of a set ~of varlable and functlon deflnltlons The varlables Wlthln the class

""""'may only be accessed by use of the functlons defmed ln the class Executlon of a '

b class produces an /nstance of the class An mstance consnsts of locatlons for the?f"f N

vvanables of the c,lass and-- coples of the functlons For example a class to.
fff'.mplement a stack would contaln some mternal representatlon of thg stack, say an
:array plus an lndex mto the array to represent the top, of the stack aﬁd} functlons_]
;"v'“to manlpulate the array representatlon say top pop and push‘ An mstance of s
"'f‘thns stack class would conslst of space allocated to store the array and mdex and'v_;_”

a copy of each of the functlons

l When an mstance is’ created 'it is bound to some name The functlons"‘v""j R

I assocrated wsth the mstance can then be se/ected from that name |n a fashlo_,:.f-
snmllar to record selectlon in Pascal If c were an mstance of the stack class t/hen‘l_"' '

the selectlon ctop WOuId call the functuon top assocnated w;th mstance ¢, / R
Iy The Smalltalk programmmg language [Goldberg 198” | '5 the one language

WhICh Maple most closely resembles One of the features Wthh Smalltalk and-

L
45 .

i Maple share is the class: concept SR , _
,1 The August 19‘81 lssue of. Byte magazme was. devoted to the Smalltalk
‘...’ programming language. A-more- easil found but out-—of date descrlptuon of

Smalltalk may be. found in [lngalls l 78] Lo . :

o As well stack defmes a method new Whlch create _4

¢

The Smalltalk desvgners [XerOx Learnlng Research Group 1981] call Smalltalk an

.- '_’ob;ect based Ianguage An ob/ect in. Smalltalk is a collectlon of data and/or func—f

x'tnons Thus everythlng in Smalltalk |s an object A var/ab/e in Smalltalk is an ob;ect

‘Whlch represents some storage locatlon and whose contents are allowed to change

A class ln Smalltalk lS a data structurmg mechanlsm ra‘her than a deflmtlon

3 ‘procedure A Smalltalk class |s an object WhICh prowdes a template for the struc—“ :

'ture of other objects called mstances Thls template consusts of the defmltlon of

varnables and methads (method is ‘the Smalltalk word for functuon) There are some,

'»vanables |n 8 class defmmon Wthh are: Iocal to each mstance called /nstance vari- _ L

K -__ab/es and other varlables Wthh are local to methods called method var/ab/es

‘ Whlch exnst enly whlle the method |s belng executed Every mstance has |ts own " e

"copy of lnstance varlables whlch make up the lnternal representatlon of the

f{f mstance A class also contalns a method Wl"llCh belongs only to the class and not

‘_'to the lnstances Thxs method called new lS used to create new lnstances All of

i
-_the other methods deflned by a cla\ss belong to. the mstances/of the class For

‘_example the deflnltlon of a stack cl\s%Smalltalk would consnst of the name

_}stack‘ " the mstance varlables a and ot 1for ray and top mdex) and the methods |

'top pop and push’ AlI of these are avallable to\any mstance of the class stack'

'allocatflng memory locatlons for 'a‘"and t and assocnatnng the‘t 'r‘,e stack functlons]

o W'fh those memory Iocatlons RIS e

The process of calllng a method of an object~ |s referred to as’ sen lga\ :
message"“ The message consnsts of the name of the obJect the name of the

" -method and arguments (|f any are reqwred) The value returned by a method IS an- |

"‘other lnstance although not necessarlly an mstance of the same class '

A Smalltalk class may be-aﬁsubclass of another superc/ass A subclass is ob- :

':"fitalned by modlfyung the defmltlon of some part or parts of the superclass Note

that the . superclass of one class may, agam have another superclass Ultlmately aII

fclasses are subclasses of a partlcular superclass called Object Wl"llCh has no

,superclass of its. own S }L - \

Although the deflnltlon of cIasses lS hlerarchlcal there is no hlerarchy among

._th_e mstances of a class ln fact the Smalltalk language does onot lmpose any

-~

‘new stack lnstanCes by

A M TR R S N R ST RIS AL 110ty 1 Lt e e 0 L O IR N S LT R L I TR e Y

.orgamzatlon on- any objects whuch are created |n a running Smalltalk system there
is no need for such organlzatlon smce the user needs only to mentlon the name
-;of an. ob;ect and the . system fn’ds |t\Thls does lmply however that the Smalltalk e
_ ,‘,system must |mpose a hldden rgamzatlon on the ob]ects ,
B Maple |s not ~an object—based Ianguage hke Smalltalk but does have a snmllarl
A ‘ class data structure However the classes of Maple are not based of a slmple
@class hlerar\chy, the superclasses as those of Smalltalk are. A class hierarchy is

possrble m Maple but is of hmlted use:: As well Smalltalk classes have class vari~

'ables whlch are. avallable to every ;nstance of a class but only one: copy of those

'varlables is ever allocated Maple has no such varlables Although Maple doesnt e

have the class hlerarchy lt does lmpose 3 hlerarchy on the structure of programs

4,

- 21 4 lntegrated Languages and Enwronments i l ‘ _ o
Another feature Wthh Maple shares Wlth Smalltalk is the mtegratlon-of the =

S ‘,pr grammmg Ianguage wuth its envnronment to produce a programmmg system' In

fect a programming System WhICh is tallored to a. partlcular language fulfulls the
role Wthh lS usually fulled by an operatmg system The reSuIt is that the command'
o Ianguage for the programmnng system is the same as the programmlng language‘
-,52‘: »‘posslbly wnth a few addltlons Thus programs may mterface dlrectly wnth the"
: env;ronment in which’ they are runnlng B ' RIS S
' Both the Smalltalk and Maple systems supply deflmtlons of the functlons and
varlables whlch prov:de the envnronment for programs Whenever somethmg nee /s‘"
to be dor‘th\at the system level (eg lnput or: output) tﬁere is euther a. functlon al-"
‘ .,-ready defmed to dOilt or such a functlon may be bullt from the predefmed func—'v 2
0 ".tlons : . E . . .
22 Maple e

The Maple programmmg Ianguage mtroduces a hlerarch;cal structure to Maple"'-/\

Cp programs whuch |s not unhke that of the: dlrectory system of the UNIX operatlng- AR

S» a

referred to as the Maple3 Tree The Maple Tree contams all predefmed functlons

‘and varlables whuch are pre deflned by the Maple system as welI as. the user;_iﬂ

f_' system [Rntchle and Thompson 1974] Th:s entire | collectlon of Maple programs is;:" |

deflned functlons and varlables The. predeflned section of the Maple Tree mcludes
. such thlngs as arlthmetlc functlons array constructors strmgs text formatters, and
the mput/output functnons Each node of ‘the. Maple
Whlch has. a name assocuated WIth |t Every node in th Tree has a special name
assomated wuth it, called up¢ whlch refers to the 'fathe”' node of that node The:

orgamzatuon of the Maple Tree is best explamed |n term' -of the concepts mtro—

‘ duced by the programmlng language o S |

221 lntroductlon to the Maple Programming Language /
' Before descrlbmg the Maple Ianguage in. detall some oi the general concepts
- of the language fnust be mtroduced R ' : L '
.’ There are actually two Maple programmmg Ianguages There is a strongly typed
"and restrlctlve Ianguage known as the strict. Maple I’anguage ‘which is easy to- de—
scrlbe However that whnch is easy to descnbe is not always easy- to ‘use. There lS
"“Jalso an extended Maple language whlch is eas|er to use than - the strlct language
h The extended language ts,defmed from - the struct language by the lntroductlon of
:abbrewatlons into’ the syntax and semantlcs The extended language relaxes the
specnflcaﬂon of type mformatuon by havmg the compller lnfer types from context
‘The result |s that the extended Maple language has a hlghly context—sensmve
grammar ThlS dlscussuon deals wuth the extended language because it-is easner to

use -and read Appendlx A guves the syntax for the Stl’lC’(language The

,abbrevnatlons whlch Iead ‘to the extended language are guven elsewhere [Voda '

. 1982b] PR t.;efﬁ S e T L i e

v ‘

Al statements whsch can be formed f,rom the grammar for the Maple language

~are expressuons Maple is a strongly t%rped language the strlct Maple language

. especlally so. An expressnon m Maple may be elther a- type or.a value A type ex—"

pressnon must be used in the s0— called type posltlons of the Maple syntax if an-

expressnon us a value then lt also has a type assocnated wnth it, and a value ex—'

]

pressnon must explucutly state what |ts type |s The extended Maple language relaxes

the type specmcatlon by havung the compller derlve the type of an expressnon

n

from the context of the express:on Expressuons Wthh are. types are for use by 8

£

ree is a Maple expression

l
J

.

the comprler for performmg type checktng and cannot be mampulated by the

i
:
§
<
¢
H
£
&
§
i
£
§
¢
i
H
H
]
H
H
h
;

machine at'runtime. o _ B ‘<

-

The Maple language has two chief data structurmg constructs groups and

c/asses Groups are used to impose " a hlerarchlcal structure on the Maple Tree

whlle classes provnde the general format for the deflmtlon of storage structures :

‘e

An mternal node of the Maple Tree is elther a group or a class The leaf nodes of

the Maple Tree are elther e/ements (lnstances) of classes or, functrons

v

The strlct Maple language l\ncludes six different kinds of clauses. One of these

the. .use clause, introduces temporary»values ingp Maple expressnons. The rest of .

the Maple clauses-are for control of' flow These - are: case clauseS* selectlon

clauses, parallel executnon clauses and two exceptlon handllng clauses falll and

attempzl The . last three (par, f-ll and attempt) are’ not descrlbed m th|s thes:s

since th|s dISCUSSlOl’l deals pnmarnly wrth “the. 7data structures of Maple and these"

“last three clauses are- not» lmportant to the defmltron and mampulatlon of data

o structures:- m Maple The extended Maple language mtroduces further control of X

‘flow clauses Wthh are deflned in terms of case . clauses and the predeflned

Il

boolean class These addutlonal boolean clauses mclude the if, while, and for

-8

statements

2 2 2 Maple Groups -

-

the Maple Tree. A group .may .. be consndered a 'dlrectory in the Maple Treev

hrerarchy, and is used to collect several dlSJomt fueld values (or types) to constuct

a value group {or type group)

' The syntactlc deflnltlon of a group rs snmllar to. a -record declaratnon ln Pascal. '

' ln Maple sy tax ‘a group defrnmon is a\lnst of: flelds separated by seml colons and
enclosed wnt "n square brackets Each fleld has a name called the: selector of the

- fleld followed by a type arrd possrbly by a value on. the rlght snde of a colon n

“the - extended la guage the type need not be speleled if it can be derrved by the,

S compuler Note t at ‘a Pascal record consnsts strlctly of. flelds which - are storage

E x'_values However t e frelds of a Maple group may be classes, elements functuons

\ whuch lS not a functlon fleld is called a proper fleld

<

ln Maple groups‘tre expressrons whrch are. used to mtroduce structure mto'

10

s

. ,-M\W

" from the base type 'int’. In addition to a value of the base type, every element of

the class ‘power’ has three functions associated with it 1) a function which returns

the next ‘power’ after that element by adding one to its base type value ('next'l, 2)

) ’

a functlon to convert the. base type value- of an element to the external type 'int

by simply* returning the value of that element (log), 3) a functlon to raise 2 to the
power of the base type value of an element and return the 'int type value (tolnt).

Note that only the functions 'next,’ 'log’, and tolnt are assocnated w:th an slement

. w»
'y

of class 'power’.

The defunmon of the class '‘power’ builds the functlons once, but doesnt allo-

cate any memory for any values of the base type. of the class. ‘An element of the

class '‘power’ contains storage for a value from the implicit set, and has the . ele—
. ment functions - defmed in the sort group associated with it: No elements are bullt

, untll the functlon new is lnvoked o =

. Each sort field. of a class provides the defmltuon of ‘a new apparent type ‘in -
‘terms of ‘a base type The apparent type of a sort field lS the type of the sort

.group. For example the apparent type of the sort fneld of class power is:

BE

[next with [] is powert; . ¢ - C e
- log-with [] is int ; ' S IEE \

‘tolnt with [] is int ;
g ‘ ‘ ’

The base type of a sort field must be from another class. 'The function 'new’ of a

’class then makes use of the new functlon of the class f’or the lmp|lClt set. For

example the ‘new’ of the class power is defmed in terms of the new of the

‘int's (Wthh are pre“defmed in the Maple Tree) The keyword sort was chosen.

because a sort field deflnes a new type in the language, ‘and not because there is.

A

some hidden ordermg sort is s:mply a synonym for type
The functlons flelds of the sort group of a class are called element functuons

because when they are selected from an. element they may refer . to the value,

__from the. base ‘type de_flned by that sort fleld, of that element ,Snnce'element'
.k'f‘:unctions can refer to. the element they are 'selected 'from binar'y “and pcst—fixf‘u
functions - may be built Element functlons are also dlscussed in sectnon 224 The =
fUﬂCthhS of a class Whlch are not deflned wnthln a. sort group are used to deflne ”

' hew elements of the class and to mampulate exnstlng elements of the class.

.

13

Note that the Maple programming languagé allows a class to contain more than
one sort field. However, having more than one sort field associated with a class is
of unknown practical value.

_A class value is a class in ‘which each field of the class has- a value A sort

value is the value' of the sort group followed by the keyword as and the type of
the lmphClt set of that sort field. A class type is a class in-which only the types

of the flelds are specmed A sort type is the type of the sort group of the sort'

x

field.

-

. 224 Maple Functions

Functlons in Maple are always fields within a group. or. class When a function
is declar}ed an expressnon or expression list makes up the body of the' function.
The value returned by a function is the value of the last expressmn of the func—
tion body (lt lS important to dlstmgulsh between the return value of a function and

the functuon value: the functnon value is the body of " the functnon) A functlon fleld

| consnsts of the keyword with, the type of argument Wthh the functlon accepts

the keyword is, the type of the value returned by the function, and the function

body «Note that both the argument and the return value can be of any Maple type :

except that a functnon cannot return another functlon as its result It can, howaever,

return a group which contams function flelds For an example of a function defini~

tlon see functlon next ‘in- the example class of section 2.2.3. The types of both

‘ .

. the argument and the return value -&f next are '‘powert. The value réturned by
1

'next’ is the value of its argument plus one.

' The use of a functlon m a ‘program is called a functlon apphcatlon A functlon"

o appllcatlon conS|sts of the functien” name followed by the argument ‘to the function.

The semantlcs of Maple InSISt that the argument be of the proper type.

A lVlaple functlon always has one argument |f more than one argument is re—

qulred then they must be combmed lnto a smgle group argument If no arguments :

- are desnred then the empty group is used as both the argument type in the defini~

tnon and the value of the argument when the function apphcatlon lS done Thef

argument is always referred to by the name ‘arg wnthm the function body .

;o

14

Thera are special ’yinds of Maple functions called element functioes. Such an
aelement function may rofer to the element from which the function has been se-
Iected Within the body of an element function the value of the element from
whuch the function was selacted is referred to by the nama elem An eslement
function can be declared only within a sort group of a class. The type of slem, in
an slement function, is 'always the base type of that sort field..A function which is
not an elemant function is called a single argument function. See the 'power’ class

of section 22.3 for examples of element functions.

The definition of a function creates some new names ‘which may be used-

within the body. In the case of an element function the name elem is also added

to the new environment. elem refers to the element 'from which the function was

y

. selected. The function application 'f a. where 'f' is a function and 'a’ is an expres-

v

sion, is executed by first evaluating the expression 'a. The body of function 'f' is

then executed with the value of e'xpres/éion 'a’ as the argument. Note that the name

dp, ‘when used within the bedy of a function:" refers to the part of the Maple Tree

where the function is dffmed and not where the function is used.
Thé argument to a Maple function is not limited to values but can also be a
‘type. A function which takes a type as an argument and returns a group -containing

functions to manipulate values of the specified type is a generic function.

2.2.5 Maple Records S A -

The Maple Tree provndes the pre-— def:nmon of many’ useful classes such as
int, ‘char’ and real' whlch contam their own 'new’ functions to- allocate storage.
Thus, any class, whose\ base.type is one of these pre-defined classes, can use the
’nevs}" “fun /tio'es ‘of that class to allocate new elemen'ts However, "often a user will
want ‘the values of the base type of a class to be compos:te values, or n—tuples
of values. For exaanpIe the implicit set of values of a stack will have an array and
an index for the top of the stack. However, the user cannot declare such a class

0
without the aid of the. Ianguage smce it is not’ possuble to then spemfy the body

of the new functlon for the class. [

'The -Maple ‘Ianguage provides a record construct! called rec, “which is a
'sh'ort—form_ way of defining “classes. rec, “When given a type group as an

/

/

o

16

‘argument, is equivalent to a class whose implicit set of values are value groups.
rec also supplies the definition of a function ‘new to Create new slomants of that
record. rec also defines some other useful functions which are used to assign val-
ues to elements of that record, and to compare two elements of that record
Congider the follow;ng roc definition and the type of the class which the
racord is equivaient to: '
r-rec | x is int ; y I8 char |
is equivalent to the class type
r is | type I8 sort | ;= with riype is | | alter
© ? with rtype is order .
x is var int
y is var char;
new with [] is var rtype;

coerce with | x is int ; y is char] is rtype .

1
Note that the bodies of these functions cannot be specified n the Maple
programming language.

The keyword alter indicates that that function field is only available to those
elements which are variables, ie. those elements created with the 'mnew' function of
the class. When var is specified on a proper field it indicates that that field is a
variable of the specified type if and only if the entire element is a variable; other—
wise the field is a constant of the type.'The (Bése type of the record, which is
not specified here, is chosen by the compiler but, at least, includes the two fields
'x' and 'y

fhe class which is created by rec includes some special functions which can-
‘not otherwise be declared in the Maple language. These functions are:

a assignment (=) tvo a variable slement, '
b. comparison (?) of two elements of the same class,
«F creation (new) of a new variable element of the class.
d. cre?tion (coerce) of a new constant element of the class.
- The two functions = and ? are element functions, ie. they aré defined within the
~ sort field of the class returned by the rec construct and manipulate the value of
thei' element from which they are selected. The cdmparisoh function compares two
elements and returns a ‘'value' of equals (=), less than (<), or greater than (>

these three values are represented by an enumerated type as described below.

Snnce the elements of Maple records can’ be made up of composute values lm =

L e

th '_ |mplementatlon type) the comparlson of two ‘. elements lS LWgone m lal -

‘Iilexlcographlc fash'lf}n The order of.’:_.‘the components in: the group of the rec0'_a' "

1 '«":Q.‘_deﬂnltron is the order deflned for the Iexucographlc orderlng on the elements ile.

'.,",gthe first' component has pn”'-lty ‘of the second component etc For example, ifoo
S two elements ‘a' and b of:\the record v above had the lmpllClt values 13]

and l 3 g] respectlvely then element. a’ would be less than element b‘ (sm:eﬂ’_:‘

'.3 3 and m < "q"l ln general ‘thlS ordenng |s not meanmgful for the record;,l

}."elements but there IS/ no known ordermg whlch actually lS meanmgful for 'aII‘.:,"

"*-"'ffelements The advantage of uslng a lexucographlc order:ng rs that lt ls WelI defmed

Record defmltlons are partlcularly useff‘_‘ as the types of the lmpllCl‘t set of a

class when lt'ls’ neCessary for the values to be n-tuples For example “a class to

represent stacks of lntegers would look Inke B

v:‘j\

','element ws called the state of that element Note that the state of an element (the-" .

'vanant Wthh |s on) may be changed as the: result of a functlon appllcatlon“'\-"'

mvolvmg that element o

o2 ll. -

A record Wthh contalns varlants may or “may. not have f/xed ‘flelds WhICh are'

the fuelds that all elements of that record wull contaln at all tlmes Syntactlcally, the

18

flxed flelds all come before the varlants All varlants have a varlant tag selector' e

fand possnbly varlant f:elds A varlant may have any number of vanant fl6|ds and:
those varlant flelds must elther be proper flelds or functlon flelds A varlant tag IS-'_'
the symbol N followed by any Iegal Map /e symbol (see [Voda 1982b]) For exam—""'

”ple any marrned person has a name and an age but. may be elther male or female’_* s

A male has a Wlfe who has a name and a female has a husband who has ‘a name‘:‘ ‘

Rather than defmlng two dlfferent records for representmg males and females ai_"‘

-

-_:'record wuth varlants may be used L "_'-‘ S RS

v ‘rec [Name is strmg
Lo Age is.int ; .
Imale WifeName: is strlng
o lfemale HusbandName is strlng
] ; S .

'Thls record is equ:valent to the Pascal type

type vr = record
Name i strmg Age mteger
case t (male, female) of -
male : (WifeName : strlng)
female - WlfeHusband trmg)
‘_.'end;, i e ‘

The Maple class type constructed by the above record s '

cvris [type |s sort | = wnth vrtype |s [] altér ,{, E
At : 2 with vitype is: ordered
-~ Name" isvar. stnng ; -
~Age is.var-int ;- ~
oo imale- WlfeName is- strlng
o lfemale HusbandName ls strmg
S 0 , .
S ale wnth [Name is stnng
- s Age is int; o
WlfeName is strlng
A |
R |s Imale vrtype
[-female with' L Name is string ;
i “Age is int; . S L e
i HusbandName IS strlng A
ale |s lfemale vrtype v _
R new wnth l] IS var vrtype e R

7..'l_'h"e'_."two"'.function‘s_: j.'.malé'--i,?and_“: "f‘e_male’[_‘_(Outslde of . the ':eort) “create ' and init_lal_ize: o

s 'L

. constant elements ln the states ’Imale and 'lfemale respectlvely

The record class constructed by rec contams a: functnon for each varlant tag

.19

",These functlons create new elements whlch are lnrtually in- the state of that variant R

record contaunmg varlants does not have a functlon coerce

The varlant flelds of an element may only be selected from an element lf it is

X

'vknown at complle tlme that the element |s in the proper state lt is thus protectlon

V'ement is. returned as: a varuant tag The returned state lS then used as the

dlscrlmlnator for a serles of expressuon llst@ each of Wthh lS preceded by av

vszS called an enumerated type Enumerated types fulflll the same role as enumerated'

whlch separates Maple from Pascal Pascal does not enforce any type checklng on

4

;tag although they may be changed as. ‘a side- effect of some other functlon A-f‘ |

.varlants the Pascal desngners merely state that to select variant flelds at the wrong IR

tlme is potentlally dangerous The type of ‘a varlant of a class ls the type of the-'_‘f..,;,'

:varlant fleld(s) preceded by the varlant tag RIS B
» The case clause of Maple allows the user to dlstlngulsh the state of an ele“." o

ment When the name of the element lS used m a case clause the state of the el—' -

S "-varlant tag lf there lS no llst preceded by the approprlate varlant tag then ‘a. specnal . : "
i S

llst headed by the keyword out ls executed lf ‘the. vartable person were an ele—

e ment of the record ‘vr! defmed above then the followmg case clause must always

v.be done ln order to legally manlpulate any varrant fnelds of person

. case person |n R R 8 T S
Imale . R IR e S PSR : < <
lfemale e S I APV

end : SR FREAES

A Maple record Wthh contams only varlant tags, and no flxed or varrant flelds

L ._types in Pascal Slnce there are no fuelds assocnated wnth the varnants the names_:.‘,_;j_".

| Qf the varlants (wnthout the - symbol) are avallable as values of the enumerated‘_

thls ordered‘ class for the result of comparlsons The boolean class deflned in the G

i

"""'vtags 1-’l,%, and 'I>’ The comparlson functuon created by the rec construct uses

= extended Maple Ianguage lS also based upon the ordered class

‘type rather than as functlons The class ordered' WhICh IS predeclared in the“ff"."l S

Maple Tree 1s such an enumerated type Thls class consusts of the three varlant o

A case clause’ may also use the value of an expressuon -as the dlscrlmlnator if
that value ls a varlant tag For mstance usmg the companson functlon of the ln— "

5 tegers and the class ordered

.case xyz7 0 |n

A< xyz. = 0;

= xxx.:=0; .~ :

1> yyy.:=:+5; ’
end ; e

'lf the value of nyz is less than O then the value O is: assngned to xyz lf the val-
e of xyz equals O then XXX IS assngned 0. Flnally i xyz |s greater than 0 then :
yyy is asslgned the value «—5 (Note that m the extended Maple language the
fselectlon operator\" " may be omltted from selectlons,l the compller automatlcallyf'»'“
;_ 3;mserts the operator) } | ‘ :

case values and case types are more compllcated to explam than the values

—

: and types encountered so f’i&r case - values and types are deflned in terms of the', -
umon values and types of ‘the expressnon llsts makmg up the case clause These'-,jv

o g

o mons are beyond ‘the . scope of thls dnscussuon and are best descrlbed elsewhere‘l‘

- [Voda 1982b]

o '22 6 Mapl@ Use Clauees o IO - | | |
' Maple use clauses correspond to the blocks of Algol and are used to |ntro~_' -
: :duce new temporary values lnto Maple express:ons The form of a use clause |s -.’:' S
- use LocaIValue jin Body e i E R

Thls corresponds to the pldgm Algol block L_ Lo Cln

" begin o o ' B
. declare loc ;o te U0

-~ log :f LocalValue PUPITINE

[N El,nd, .

©

) ‘;_Both 'LocalValue and 'Body are Maple expressnons The value of the expresslon'g e

.'LocalValue |s bound to the name l0c wrthm the body of the use clause. As wnthv S

) v"':functlons, the result of a use clause l$ the value of the Iast expressnon wnthln the_‘_, _, ;

"body of the clause “The value of Ioc cannot be referenced from ou‘tsude of the» :

use clause although loc may be used to form the result of the use clause

-

‘t is. mterestlng to note the close relatlon between use clauses and functlons.":“

The use clause "use L in B",. may also be represented by the funstlon apphcatuon

[(x W|th Ltype is Btype B)] X L

1
. R

" The functnon body B’ls the- same as B except all occurrences of th/name/lor: are'

replaced by the name .arg. Ltype and Btype are - the types of expressmns L and B o

respectlvely S R <

The use clauses of Maple a'rhmrtlcmarly useful for: the' defmltlon of packages :

2

»and generlc functlons as’. desqlbed in [Voda 1982a] A package |s a use clausei B

Wthh returns a group Wthh contams the local value(s) declared by the use Thns is

due to the fact that the value local to the body of the use may remaln bound to

the result of the use For example

P

use lntnew[1 m loc’ i'- O loc end

|s a use clause Wthh declares an mteger varlable, assngns zero to lt and then uses;.."
| that var:able as the value of the use ThlS example demonstrates a. use whnch;,f

Ieaves |ts local value bound after the clause IS flnushed Other applncatlons of use:
I clauses to construct packages are gnven Q/[Voda 1982a] The fact that the Iocal
value can be bound to the return value of a use . clause has repercussnons |n the
garbage collectlon of a. runnlng system Not all’ local values can be thrown away
after ‘the use clause has been evaluated as IS done w:th AlgoI blocks ln fact thef
same holds true for. functlons m Maple since’ the argument to the functlon may

’ remam bound to the value returned by the functnon The |ssues of local values; o

By Wthh r“emam bound and garbage colledtlon are. addressed in Chapter 3

&

227 Maple Names e : | L . - o

A name |n the strlct Maple language must be’ fully descrnbed by the name path : :

Wthh Ieads to that node in the Maple Tree A name path is 2" series of selectlons s

of fleld selectors from groups and follows a path’ through the Maple Tree Thev

selectlons start elther at the current envuronment lnducated by the specnal namex :

env or at the root of the Maple Tree mdncated by the speclal name root The ‘ o :

names in. the selectlons must elther be’ up (to move up' the Tree) or the fleld'>

selector names of a group (to move down the Tree) ln general a user W\l” not

want to bother to fully quallfy names un thls manner because lt becomes quute o

N
\

tedlous The extended Maple language allows the user to abbrevuate names by not :
o _\specnfylng the complete path. - For such’ abbrevlated names ‘the Maple compller is -

_ responsuble for 'fmdmg the appropnate node in the Maple Tree The rules for i

"fnndmg such names are glven elsewhere lVoda 1982b]

_228 The Maple Tree R -
_ The Maple Tree provudes the m‘tegrated envnronment for Maple programs The

| Maple Tree lS a group whlch mcludes all the predeflned functlons and varnables

"From the very top the Maple Tree mlght look somethmg llke thls o '

‘ root l standard e

. AR precision : rec | lsungle ldouble lman'y.._ 1.
L o fixed with--precision - _ Gt
S _}float with precnsnon Yo ,,"
= int fixed single -; ' s
real : float: smgle
Cchar i oL R
_array with. Tl]»: e
.. -seq with sort 1. R
- ~str|ng seq char,, B

........

" .nonstandard : .

R l paul '_[-,'.:, RS POt TR
‘ jeff l] ol T SR R

e e

I order vecf[l<.; 1= >] o o .'i AT

22

»'“‘The group standard’ mcludes the predefmed 'types whlch ‘are'fu"s'ef'ul":'for

l""f.‘;programmers Note that for eff:cnencys sake these are generally programmed m the.'

";’:_,'j,'.machlne code of the. host computer

-"»"','-iw»ﬁ-.‘bles for a partlcular Maple system The group prog contams the most heavuly used R

|

. i The gr0up nonstandard contalns the mstallatlon dependent programs and varla—

) ',1‘.?'.’functxons m the Maple Tree and corresponds to the ’/bm dlrectory of UNIXQ-‘:“‘ '

“:‘._"-‘:‘J-Flnally,_ the group user contams all the users of the Maple system and thell’“‘ e

"1’."».‘.5.,|nd|v1dual fUl’lCthl’lS and varlables

i
[,

Every node’ m the Maple Tree has a name and |s elther a group class, func- o

tion, or element Groups and classes form the mternal nodes of the Tree,,vwhnle

_functnons ‘and elements are the Ieaf nodes of the Tree. Any node m\ the MapI?,/---

; Tree may refer to any other node in the Tree by specufylng the name path of the

_.other node R

2. 3 Summary

\

' This chapter has bnefly descn\bed the Maple programmmg Ianguage Thls Ian—f

‘.

'guage shares such features as s:rhple semantncs generallzed types classes and o

23

lntegrated envnronment wuth other 1anguages whnch have been desngned in the past. S

,The Smalltalk language in partncular is quite sgmllar to the Maple Ianguage ._I_".‘

The descnptnon cof the Maple language presented m thls chapter has”

o ‘;emphasvzed the data structures of Maple rather than the control of flow clauses‘,"-"’ S

The representatuon of Maple data structures turns out to. be of prlme |mportance m-"
R “ : \

the desugn of the Maple abs‘tsagt machlne

AR

Chapter 3 ,
N .The Desngn of the Maple Machine

A compller for a programming language must generate machme code to be run

on a target computer architecture. If the code for the target- machme can be gen—‘

")erated eas|ly then the compller may be desngned and |mplemented qulckly ln order

for. the code generatlon to be' done - simply, the’ compulers mternal representatlon‘

of the code and the external representatnon in machme code must correspond

o
&

‘ _qclosely There are two approaches used to achueve thlS S|malar|ty the mternal rep—

resentatnon is, forced to match the machlne representatlon or vnce versa‘

L 'Unfortunately, the - flrst solution results in a reductuon m the portablluty of the com—

!

,:H,pller since the compller is desngned for a partlcular architecture. The second‘\

solutlon on the other hand requnres that a new machme be . deslgned and bullt to

run’ the code generated But, rather than buuldmg such a machme w:th hardware it

. can be sumulated in software on any given .host computer A srmulator for. such an o
abstract machme accepts mstructrons fog;rthe target machlne as mput and executesﬁj

fthose mstructlons ‘on the partucular t]ost computer A sumulator whuch lS tallored for ’

a partlcular hngh Ievel language is. called an abstract machme

lt is e$pecxally attractlve to use a sumulator when the programmlng Ianguage

' desxgn is stnll evolvmg lt is far easrer to change a small part of a program which
' . sumulates a machme than to change a hardware lmplementatlon in order to facnlltate

some new feature of the language A program s also easy to experlment W|th

q 3;.smce chapges to the sumulated archltecture can be made qulckly and the result -

noted. Unfortunately the prlce pald for these advantages is slow executlon tnme»

Once the language defmmon has stablllzed a\nd the best machnne arch|tecture'

'realnzed the abstract machrne can be - umplemented in . furmware as mlcrocode orf

even hardware as an actual machme to speed up executlon

Smce the . Maple Rrogrammmg language has not stablllzed and |t ns not clear\;

what archltecture |s best for runmng Maple programs, ‘a prehmunary abstract*,_'

".'.machme has been des:gned The deS|gn of - this- abstract machme was mfluenced by .

e

-

. ‘ " . t .) . R ﬂ .]
- the machine designs for Smalitalk and Lawine. * - Lt

3.1.The Smalltalk Machine = ; - ' S 7

A complete Smalltalk system consists. of several dnstmct pieces, such as an . .

edltor a comp}ler and a debugger Most of these may be wntten in Smalltalk |tself

because there is an abstract machine underlynng the Smalltalk system This Smalltalk :

-

Machme [Krasner 1981] consists. of two prlmary parts a storage manager and .an
rﬁ’

mterpreter of the Smalitalk mstruct:ons s »‘ : e

~The - storage manager for. the Smalltalk Machme is tanlored to the Smalltalk lan—

guage by belng based upon Smalltalk objects Memory references within the ma-—

slze This allows the storage manager to optlmlze ‘'space allocatnon but requ:res

L

extra bookkeepmg to keep track of where each’ ob;ect is Iocated As well ln a

- chme are in terms of ob;ect descnptlons these ob;ect descrlptlons may be of any

' runnmg system memory tends to become fragmented as Ob]GCtS are created and

destroyed ‘ i }
The " Smalltalk mterpreter is a stack-—ornented machme whuch executes the‘

bytecodes, - or’ instructlons emitted by the . Smalltalk compller These bytecodes‘

mstruct the mterpreter to N o _
" ‘a._ push an object descrlptuon onto the stack
b store the value on the top of the stack in a vartable
c. f‘pop the top of the stack !
d. z‘_branch (condltlonally or uncondntuonally) o .
e. send a message to an ob;ect ’ o
f.

; ;return the. value on the- top of the stack as the result of the current-

i method

755
~.".

Note that performmg any of these operatlons may take one or more bytecodes»

The Smalltalk mterpreter stack is used for standard stack operatnons such as“
pushmg poppmg and stormg results it IS also used for callmg» functnons:a{nd'
passmg parameters Sendmg a message to a method of “an object yvhich"'_',
corresponds to callmg ‘a routlne on typlcal machlnes lS done by/ spec:fymg the

selector (name of the’ method) and’ the object wh:ch that selector belongs to =

9

, rather than by glvmg the address of the code to: be executed The mterpreter"

25

main_tair}s?‘a dictionary which associates the qa'mes 6f methods -with the locations of
those};?{methods in memory. The stack' is ussed to temporarily sﬁtore the object and
the arguments of a message and to hold the resultmg return value |

E Branches in the Smalltalk interpreter are represented by actual bytecodes srmply

as a speed cons:deratuon At the source level of. Smalltalk branches are represented

as methods selected from a boolean class However at the machlne level such a

reprasentation would be slow and branchlng |s done sufflcuently often, to make this

a sugmfuoant conslderatlon , .

- Variables in the Smalltalk - mterpreter are |mplemented as ﬂelds wuthm some -

_area of . memory, the partrcular area dgpends upon the kind ‘of variable. There is a

temporary area . for method varlables and a global area for class variables.” In adcln- o

. tion,. every ob}ect has an area of memory wrthm it for instance variables. The

compnler is responsrble for ensurmg that the correct area field is' accessed for any

a

partlcular varlable R : -

32 The Lawme Double Stack Machme , v
The abstract machlne de5|gned to run l_awine programs [Swierstra 1978,

Swierstra 1980] i5 an extensuon -of the standard stack archltecture Typucally a ma—

bchme has a slngle stack On such machmes a corgpiler must ‘use that one stack to

-+ hold all the mformatlon‘needed for functnons lmkage information | for calling and

returnmg from the functlon parameters Iocal varlables and the function result if.

"'the language definition is sufﬁcnently restrlctlve ‘as Pascals is, the size of each

' puece of functlon mformatuon is- of * fixed .size. However, uf the parameters and

return value can be of any size then\lthts system is cumbersome When a functlon"
evaluatlon has been completed the top of the 'stack must contaln the return value
from the function. Space must’ be. reserved for ‘the return value ‘before the call is

done so that the .Innkage‘.lnformatson may also be put on the stack for the call, and

‘easily popped off after the function evaluation. Thus, it is necessary to: reserve

space for the return value at each. call of a function, leading to a great deal of

duphcatlon of code if a functron |s called several trmes

The problems of a smgle stack machlne can be avo:ded by using a double

o stack model. One_ stack, ,called the ,/ncarnat/on stack, is ,used, to hold the linkage

't

26

i

: ' o { . ;
information and parameters for function calls The oth‘er stack the arithmetic stack,

§
L

is used to hold arguments to functions and the result of function calls Callmg a

function mvojves evaluatmg the arguments on the anthmetic stack, reserving space
on the arithmetic . stack for the return value copying the parameters from the
arithmetic stack to the incarnation stack placmg the . hnkage information - m the

incarnation stack, and branching to the code for the function’ body. -

Probiems encountered with such a double stack model are the extra copying

- of paramet_ers and the. necessity of rese'rving‘ sp'ace',for fumctibn results. The

Lawine machine _overcomes‘these problems by having the stacks ‘temporarily switch

" roles: the incarnation stack becomes . the 'arithmetic; stack, and vice versa. This"
- switch occurs just before evaluating the function parameters, and the stacks are

switched - back -after the parameters have been loaded. This way the machine’loads _

the parameters . onto the original incarhation stack' (since it is made to look like the

arithmetlc stack) and’ sw:tches the roles back so that the parameters are actually

on the mcarnation stack of the function invocation With this scheme no. space’ is

requnred on. the arithmeticistack of the‘function call to evalua_te‘the arguments . and

~ there is no need to reserve. spaceion the arithmetic stack. before the call isr done.

The functlon result can be put dlrectly on - the arithmetic stack wuthout havung to

worry a\bout over—writing- any of the arguments

3.3 The Maple Machine

The des:gn of the Mapie abstract machine was strongly influenced by - the ma-

chine designs for Smalltalk and Lawme In Maple, like- Smalitalk, the machine consnsts

- of .of two main portions a storage manager and an mterpreter for Mapie opcodes-.

Smce the . architecture described in this section is: .a first attempt at a desngn for

the Maple abstract machine, it includes several deliberate simplifications.

\. . . . ~. " . ‘ . |
331 “The Maple Machme Storage Manager B R

An attempt was ' made to desngn the storage manager for the Mapie Machine h

“along the lines of the Smalltalk Machine ie to _base it on some elementary data

. entity- of the Maple_pro‘gr‘amm;ing language. Maple, however, has two basic data

structures: groups and elements. It is not cclear how to design the Maple storage -

27

. . g ‘,‘ ’
- manager based on either of these. Consequently the basic unit of the Maple
Machine memory is simply a word, and all Maple groups and elements are
composed.- of b/ocks of words. A block may contam ‘any number of words and
each word may be an mstructnon a pointer, or data A good des'gn for the Maple
memory would mcorporate the . hierarchical nature of the Maple Tree envnronment'
~Such a hierarchical storage scheme is left as a future research toplc

‘ The Maple Tree is stored in a so called 'static’ part the memory of the Maple
'machlne It is called . statlc because the contents of that section of memory may
~ not be ‘changed at runtlme. in_yhthe Edltor is allowed tomampula}e the structure‘
of the" Tree "althoughﬁa ’run\h'ing program is allowed to change the value of variable
element nodes in the Tree Every node: of the stored Maple Tree is represented by-

‘a block of memory and (except for the root) has a ponnter “to the father of "that

node Every internal- node of. the Tree has pomters to |ts fleld values h

It is the responsnblhty of the Mapl\e storage manager to allocate ‘and deallocate :

memory in blocks of words at a tlme The Maple Editor “and Compller when they
are deSIgned will require the storage manager to allocate ‘and deallocate memory"

_permanently When an expressaon is. evaluated at \un\me the ‘storage manager,

needs to allocate memory to store temporary values and then deallocate that -

'memory later when it is no longer, required. - ;a\

332 The Maple Machlne lnterpreter ' RN . f"\;

The Maple lnterpreter |s an abstract machlne archltecture for e)(ecutnng Maple

-.opcodes The machlne deslgn was motlvated by the desngn of the Lawihe machine *

and is an extended s‘tack machune The . Maple machlne has one stack the Result

‘Stack (RS), for storlng the results of expression evaluatlons and two stacks which

grow and shrink by blocks at a time, called Perm and Temp. The values placed on
. RS are actually pointers to blocks on Perm or Temp whic contam the values of

- expressions. Assocuated with these three stacks are three eglsters RSP PSP and

TSP which polnt to the tops of RS, Permi, and Temp respectuvely The machine

also has program- counter PC Wthh pomts to the current mstructron “to be

executed by -the mterpreter Finally, the machine hafs two reglsters ENV and ROOT

.

Wthh are used to poxnt to partmular parts of the" Maple Tree ENV pomts to the

28

~

current environment frame of the rﬁﬁﬁl’ng Maple system and is used to_find names

in the Maple ‘Tree relative . to - the current semantic environment at runtime.
(Environment frames are discussed in detail below.) ROOT points to the top of the

Maple tree.

v
v

The Maple opcodes emitted‘ by the compiler instruct the lnterpreter to perform

'
0

the following general actnons
a follow a name path through the Maple Tree

. . \\
b. allocate a block of memory for a new element or group,

o

branch (conditionally or unconditionally'),
d. - .apply a function to an .argument,
e._ execute a use clause, ' ’ .
f." execute a case clause,
g ' store a value in a variable,
b push a value onto RS,
it .pop a value.from RS,
i perform simple integer| arithr’netic,h.

k. perform garbage collection.

Runtime Garbage Collection

Normally, garbage collection is the- respons:blhty of the storage manager but,

'due to the design -of the Maple Machine . archltecture the mterpreter handles

garbage collectnon in collaboratuon wuth the storage manager., Thns garbage eollectlon'.

scheme was msplred by the double stack model of the Lawine: machme

3

!

expressnons at runtnme Evaluat:on of expressxons on. these stacks is defined in
- such a _way that garbage collectlon' can be doﬁe easily at runtime. Whenever some
‘expressmn /E is' evaluated the block ‘of memory Wthh contams the value of E .is
placed on the top ‘of .Perm, and the top of RS is made to point to the beginning
of this block. Any expressuon values which are not needed permanently are evalua-—‘

- ted on Tem It is important- to note that values |n the Maple Machine can be of
p- P

any size, and so Perm and Temp will grow by varymg amounts The pointers

‘

placed on- RS are _absolute addresses into’ the stacks Perm and Temp.

The stacks Perm and- Temp are used to ‘store the results of evaluating Maple "

29

Due to the design of the Maple language, the compiler can, in certain Circum-
stances, determine whethgr or not some intermediate value, E', which is needed
during the evaluation of expression E is required after E has been finished Such a
circumstance is a use clause which declares a local counter; the counter is not
neéded after the evaluation of the clause. In such cases, the nterpreter is
.instruc‘ted‘ to switch the roles of the stacks so that the Perm stack temporarily
behaves as the Temp stack and vice versa |

Considar the nested function applications 'f(gix)). where function 'f' may discard
of its argument after evaluation of the function body, and 'g’ may not The o‘rder
of evaluation starts with argument 'x’ to function 'g. but since the argument to
function ‘f" may be discarded the stacks Perm and Temp are switched (Figures
- 3.1(a) and (b)) and TSP is saved in the current environment frame. 'x' is evaluated
on the new Perm y(since all expressions - place their value on the current Perm
stack), which is the Tem‘pAstack of the evaiuation of function "f",‘and a pointer to
the value of 'x' is pushed on RS (Figure 3.1(b). Next the evaluation of ‘gix)' is done

on Perm (Figure 3.2(a) and the pointer to this is placed on top of RS (the pointer

/ . .
to 'x' is removed from RS during the function application). Perm and Temp are then

[

revereed back to their original roles for the continuation of the application of
function 'f. The value of 'figix)) is placed on .Pe*rm‘(Figure 3.2(b) and the top of
RS points to that value (again, the pointer to 'gix) is removed when 'f' is applied).
Finally, by restoring t.he‘ value of TSP from the environment frame, the temporary
values of x aand ‘gix) are popped" off Temp (Figure 3.3). Note that if 'g could
have discarded of its -argument then the stacks would have been reversed once

more before evaluation of "X’ and 'x’ would have been placed on the -original Perm.

Then, after 'g was complete the value of 'x’ would have. been popped off that(

stack and the evaluat»on of 'f would have proceeded as above \

With the above garbage collection scheme there is no need for the - storage

manager ‘to determme when partlcular parts. of memory are no longer being used

™

(as the Smalltalk storage manager ‘must), prowded the .compller can determine whuch
- values -can be discarded. A full’ scheme for the compiler to decide what can or

” cannot be discarded has not been desngned but a simple one has. There are two

p055|bllmes when vaiues are created and may be dlscarded after -evaluation of the

30

3

': Result 1;4,“, _f:-Temp
(a) |

Before evaluatlon of f(g(x))

VéLuéEbffx-i;L

‘“Résﬁif".i‘ﬁ‘£7‘f*?:Péfmej"”~*

Stacks sw1tched and X evaluated ' LR

' f Flgure 3 R : R
Runtlme Garbage Collectlon.

¥The evaluatlon of 'f(g(x))' where f may dlspose of

o dts argument ‘and g may not, proceeds (b). by switching:

.7 the ‘stacks- Perm ‘and Temp, and evaluatlng X on the
y*»orlglnal Temp (b) L AT : '

| value of

. l- ‘-'Vallue:,of. X

. Temp . . *'“~g;£-»Resu1t«'g» S lPerm“gt

' o (a) '
After evaluab1on of g(x)

Tvalue of [o o
ARG e Value of
————{ <y ;I,‘f,fﬁn:"'_ g(x)

Value- oi;xff'

"'perm;_7‘j~7ﬂajf'3esnlt» . Temp

LR oy

' S;aqks‘SWitched_backfand f(g(x))aevaluated
: e | Flgure 3. 2 _ T

Runtlme Garbage Collect1on (contlnued)

"z'The evaluatlon of g(x) proceeds on- the same stack as
x since ‘g may not dispose of its- argument (a). “The .

“top of RS."is replaced by the pointer to g(x). In- (bl-‘

,,/the stacks have been SWltched back, and the value of .
“£(g(x)). ‘placed on-the original Perm. The: p01nter to
*lthat value has replaced the top of RS.; RRTIEETR

»fValue“of‘?,l T
C£(g(x))

2 Petm";ff.~":.'nesalf.fii=;;¢;~'3remp*;

B o Flgure 3 3 ‘ '
Runtlme Garbage Collectlon (cowt1nued)

The value of f(g(x)) has been completely evaluated andf
the temporary values of X and g(x) are popped off Temp.

s A

"feach of |ts sons

enclosmg construct a functuon whnch returns an: element (rather than a group) and
- a use clause Wthh uses. an element as its value ln both cases the argument (or'

Iocal value) Wthh is - created durmg the evaluatlon can normally be dnscarded At

_complete scheme for determmmg whnch functlons and usa clauses are dlsposable is

‘

-‘Ieft to future research Some of the dlfflcultles of dec1d|ng automatlcally,,whether

™

’somethlng can be dlscarded are lllustrated by the follownng examples

. use g: [X s lnt 5 y |s char -

in g S B

use h : l_m‘ ’is‘var‘ilnt :“i'nt'n'e_w\ 2 ; n is char B "
'_|n h‘;,-.w v . A ‘

lThe fnrst use clause declares a group g whose ftelds are aII constants and re-
"turns that constant group ‘as the value of ‘the clause Slnce the group - Wthh is

L returned is. a constant the local .group - g does not need to remaln -after, the use

. 34

clause has been evaluated However the second use declares the. group ’h’ wh:ch,'._» e

"contanns the varlable fleld"x' Smce thet fleld X |s ‘a varlable the group Wthh ls' - &

= »returned by the clause cannot be dlscarded because lt may be changed outsude of,"

- 5

E ;"ithe use clause That IS the value of the clause may be changed after the evalua—-_--
tlon of the clause has been completed because of the varlable fleld The syntactlc' :
"and semantlc dufferences between these clauses are very sllght but have much.

‘ 'mfluence on the garbage collectlon It would appear that lt will not be easy for the_. .

f -Compller to decude exactly what- can’ and cannot be dlscarded and '

' _”essary to be content wnth dlscardmg far less than could be dtscarde

' Envnronment Frames and Groups

The Maple Tree lS stored m the memory -of . the Maple machlne by the Edltor
g ”and Compller The Tree ns stored as nodes Wthh are represented by blocks of

'pomters and values and the nodes are llnked by those pomters to create thei

-hlerarchncal structure Every node in the Tree has an’ UP pomter assomated wuth |t -
) Wthh pomts to lts ‘father node Every lnternal node of the Tree has a pomter fo\rf ,
When -an expressuon IS evaluated at runtlme the value ls constructed on Perm" |
) _The mtermeduate values created durlng the evaluatlon of an expresslon need to.
‘vhave hnkage mformatnon assocnated w;th them as well smce they may be groups'

-too The Maple mterpreter creates an enwronment frame on Perm whenever such‘

s s

: 'be nec- L

s

_linkage information is “required during the‘ evaluation of - a ‘Maple expressio'n An

enwronment frame is a block of . memory whlch contalns polnters to other runtlme'

"values on Perm (or Temp) or to nodes in the Maple Tree Each pomter lh the block
corresponds to a dlfferent name whlch ns created durlng the evaluatlon The ENV

.reg:ster of the Maple Machme always pomts to the flrst word of the enwronment

‘frame for the expressnon whlch IS currently belng evaluated Flgure 34. shows the o

general form of an envnronment frame although hot aIl envuronment frames W||| 5

'need or. have all the flelds shown The fleld UP is a pomter to the father node of

; the expresslon belng evaluated This only dlffers from the most recently allocated-_ _

. '-appllcatlon, UP pomts to the envnronment of the deflnltlon of the functnon rather

‘-_than the use of the functlon ST ‘- S S

Fleld TSP of the env:ronment frame lS a word whnch may be used to store

‘~.“the current pomter to the top of the Temp stack |n case there is. a dlsposable

t"-jh,frame when a functnon apphcatlon is belng executed For a functlon,

functlon or use clause to be executed in thls envnronment Fleld ARG is used only_a

- when a functlon or use clause is bemg evaluated For a functlon ARG pomts tovf
"“.’the block of memory Wthh contalns the argument to the functson For a use o

clause ARG ponnts to the Iocal value declared for the clause Note that in- elther

| ,'case AFlG W|Il pount to an area on Perm or on- Temp dependmg on whether or

v "-‘-'not the assocnated value may be dlscarded Iater RET is used only for functlons it

S ‘v‘contams the address to: return to after a functlon has been evaluated PREV lS also"','f'_‘ :

:bused only for functlons,_ |t pomts to- the envnronment frame of the mvocatlon of
i ‘the functlon as opposed to UP which - pounts to. the envuronment of the defumtlon ‘
of the functlon PREV lS used to restore the runtlme enwronment frame when the ’

. fevaluatlon of the functlon lS fmlshed F|nally ELEM is only used for element func-—ﬂ

jtlons For these ELEM pomts to the representatlon of the element from Wthh the’ '

,functlon was selected

A name path |s traced up through the Maple Tree or the runtlme mtermedlate s

fexpressmns by follownng the UP pomters of the Tree nodes or. the enmronment

,frames Followmg a path down through the Tree is done shghtly dlfferently A'..

“'jMapIe Tree node is a block contalnmg pomters to" its flelds and an UP pounter __A_;‘**'

'Whenva; n:ewb rgroup IS created durlng the evaluatlon of an expressnon ,the_.,_"

) a Cole
,’v t 'v .}r .
A
up | rsp’ | ARG | 'RET | PREV' | ELEM -
¥y Flgure 3 4 N : .
General Form of EnV1ronment Frames :

anch f1eld of an env1ronment frame occuples a" 51ngle wordf
- of storage. Not" all ‘environment. frame$ contain all of the
. fields shown here," althought the existance of any field ...
-ina, partlcular frame 1mp11es the exlstance of the. fields -
jto its left in- this: dlagram “Fields. UP and TSP are always' :
.present in‘an, env1ronment frame, whlle the other fleldS/ K
- are ‘optiional. depend ng Upbn what k1nd of expre551on is. L
7~be1ng evaluatedw /} ERE BN . R e

B . , -

lnterpreter is mstructed to allocate a new block of memory on Perm If the group

‘has n fields then the block contalns n+1 words. The flrst word of the block O

contams the UP polnter to the block - representlng the group whlch contalns thls
group The rest of the words of the block contain pounters to the blocks . where
the values of the flelds of the group’ are stored. The only exceptlons are field

values Wthh only requure one word to store In such cases the value is stored di—:

Co rectly |n the word of: the the block representmg the group For mstance the group ‘

[alsmt 5 - : . S D A
lc:|smtld|smt 2] o - o
.]- . :

ls stored as a block of three words contamung an up pomter&» an mteger B value

[

37

fer '‘a, and a ponnter to another block for b The block for ’b‘ would agann contain -

hree words an up. pomter and- mteger values l and 2 for 'c and o respectlvely
The path from ‘g “to c gbc is’ followed by selectmg the b fleld of the block '
for g, followmg that pomter to the block representmg 'b’ and selectmg the e

fleld from that block

?

n fact followung the up. pomters of /envuronment frames blocks or Tree’.'y

nodes lS ;ust a partlcular example of the general case -of followmg any name path. -

in general the the compller emlts code Wthh mforms the lnterpreter to take the -

ith fleld of a block and follow the pomter located |n that" word By keepmg track: :
L of the result of followmg the last pomter thls can’ contlnue untll the approprlate‘ '

'7 name locatlon is found Slnce the Machlne has no knowledge of whether a

partlcular word is an mstructlon a pomter or Just data the compller is responsuble

for ensurmg that any word treated like a pomter to a block of memory actually is

a pomter

Representatlon of Classes and Elements

‘can be thought of as a template for the structure -of the, elements of the class '

12

Slnce the functlons assocuated wrth a class cannot be changéd at run tlme there IS

no pomt in: aIIocatlng storage for those functlons for each element of the class

Thus no: element storage representatnon contalns any functlon bodles The functlons

and the flelds reserved for functlons in blocks are filled wnth pogtters to’ those’

E “_ The Maple Machlne represents classes and elements as dlstlnct entmes A class ‘ '

oo

. are complled mto a statlc part of memory (separate from the rest of the Tree), ,',

i

'-statlc defmmons (Actually, the same holds true for groups whlch have functlonv

flelds) An element is represented solely by the an value from the base type of the

class for. that element
For example the -class:

l type is soft [a with xtype .
Vo b wnth real”. .. ;
. as |nt

¢ with .
d wlth .
| R

/

/

- would be represent/ed by a statlcally allocated block containing four words ,(as.

v'»shown in Flguge '3.5) the. up pomter a pomter to a- block representmg the sort ‘

grobp, and pointers to the code for 'c' and 'd. The block representmg the sort

" group would contaln pomters to the code for: functnons ‘a’ and b An element of_

' ;-..thls class which would be’ allocated dynamlcally at runtlme would be represented,'

i by a block contammg an up’ pomter and and mteger value from the lmpl|c1t set. for"'
, that class Slnce an element of th:s class requlres jUSt one word to store the lnte-—_'-.'

ger value lt would be stored directly |n the . block contalmng the element mstead in

. »o a : . X i
a separate block be’ |tself

To select a. functlon fleld from an element the compller has to- do extra work

- since the functlon flelds are not stored W|th the element The compller emlts code-

;to select the funetnon bodles from the class functnon representatlon in the 'static’

part of memory rather than selectmg the lfunct:ons from an- element

Varuable elements are represented by pomters to the storage locations they .
‘occupy Itis, the responslblllty of the compiler .to ensure that these pomters point

‘“_to the correct blocks of _memory.. It is also ‘the responslblhty of the compller to

k)

= ensure that constant elements do not have thelr fuelds changed

: Records' - ‘ . R
2 : .~

. As descrlbed |n Chapter 2, a record is" equnvalent ‘toa- class defmltlon The‘

'._"compller actually buulds a class in the ‘Maple Tree, when a record lsvdeclared. For

L example the record T rec;[x is‘int ;ly-is’ int] is translated into the following

class type: RS T

=

38

'(.slass X)

—> ﬁp type fd | a

>| code for
function d

> code for
function ¢

i
1.
\

0 l o (vsbrt;of class x)
>l up |a|b| :

>| code for
| function b

->| code- for
| ,function a

: Flgure 3. 5 ~
The Storage ofa Class

" The class 'x! glven on the recedlng page ‘is stored in
“the memory of the Maple abstract machine as a block.
contalnlng four p01nters. These pointers are to other

~ blocks of memory containin either function code or ‘group
.representatlons., R A ' % L '

ris | type is sort [;= with rtype is [] alter; o
] ‘ ? with r.type is order;
U x is var int
y is var int
L '
new with | 1 is var rtype .
coerce with [x, y is int] is rtype; _
and creates the code for the functions = 7. new, and coerce. The bodies of
these four functions cannot - be - specified in the Maple programming language
.because they requnre explucut knowledge of the underlylng machine archltecture The
"compller also constructs the |mplementat|on type for the class The |mplementat|on
type contains the same fieids as the flxed part of the group of the rec deflnmon
The varlant fnelds are also present in the lmplementatnon type, along . wnth ‘a field to

' hold the current state of the element_ The compller deflnes the function ‘bodies of

=07, new and coerce recurswely in terms of the constltuent types of the

lmplementatIOn type

t

. The rec. construct uses the low Ievel prlmltlve functlons of the machlne to

mampulate the storage of elements The functlons =, ?, new, and coerce /are de—

" flned using the prlmltlve functlons of the machlne As a record class ; bunlt up -

these functlons are defined in terms of the functlons of the constltuent types of
" the record For instance, the functlons for Ihe record r deflned above are deflned

- in terms of the functions of 'int, Wthh are supplled by the Maple Tree.

If a record uses. varlant flelds then any elements of that record have enough

space allocated to store ‘all the flelds of the flxed part a variant tag and enough'
space for varlant whose flelds occupy the most’ _storage. The varlant ‘tags are
mapped onto the mtegers by the compller and there is “one fleld in: the block for‘
'the tag fleld of the record. The value in the tag field of the allocated blocg mdl-’
cates the . state of the element It is' the responsnblllty of the compller to ensure

that the proper fields - are accessed accordlng to the state of the element The ma-

chine - has no: knowledge of what flelds can be legally accessed at any time, so the -

.

" compiler has a big responsnblhty in thus area.

H t

. The assngnment function, _:'=', of a record IS defmed 5|mply by applylng the =

" of each field of the- |mplementatlon type on each ‘word of the block representlng

t

~an element of that record. Note that the "=’ functlon of each .of - these flelds can' ‘

'agam be defmed in terms of ‘'smaller - records For mstance the h= of record r

40

SRR -

above is. defined in terms of the = for int {which is a pnmltlve operatuon of the .

machlne) on the two flelds x and 'y of the |mplementat|on type
' The comparlson functlon 7, of a record is also " defined relatlvely simply in
terms of the constltuent fields . of the implementation type. Recall that there is.a

‘lexicographic‘ordering 'defined on .all records, in the order of the specification of

Ly

- the flelds in the group of the rec definition. Thus,
- comparlson of two records a and- b with n fields:

lf fleld‘l of a < fleldl of b then ' :
“alse |f\fleld1 of a > field1 of b then - : :
‘a ar;> b ’ o
else if féeIdZ of a < field2 of b then' ' '
else if field2 of a > fleld2 of b then ' L o
- a>b

alse if fleld-'n of a < field h of b ‘th‘enl

& a < b .
else if fleldn of a > fieldn of b then - o T

else a=b = - /
The’ c'omparison of/;ield. of 'a with a field of 'b' is _defined by the 7 function

of the type of those flelds

Functuon new which creates a. new varlable element of the record type.

allocates a block of memory large enough to store .an element of the record class. -

The varlable element returned by new s represented as a pomter to the block of
memory allocated by the storage manager

Fmally the functlon coerce creates a constant of the record type and assigns

a value to it immediately. ‘This is done by, allocatmg a block of memory for an ele—

P
ment of the record class, just as new does The definition of coerce is recursive

in the types of ' the individual flelds of the . lmplementatlon type and uses the =

functIOns to’ put the values mto the approprlate flelds

“34Summary o T ' N

The desugn of the Maple abstract machme has been descrlbed and it has been

shown How some of the deslgn decnsnons were mfluenced by the abstract machlne

s

desngns\)»of. Smalltakk and - Lawine. It has laos been show.n. how the vhlgh level

is deflned as a lechograph:c

41

constructs; of the Maple programming language are mapped onto the machine
constructs. Finally, the machine represehtations' of the data structures (groups,
classes elements, and functlons) have been descrlbed An actual mplementatuon of

4 the Maple abstract machme is described next

42

Chapter 4

An Implementation of the Maple Machine

-

The design outlined in Chapter 3 leaves many ‘details of the Maple Machme to

i
be. resolved by the nmplementatlon. For instance, the storage manager can be

implemented as a virtual memory system. The choice of virtual memory influences

everything . from runtime memory allocation to stack linkage. This chapter presents a
pilot implernentation of the- Maple Machine. Its storage manager does 'emp|oy

employ virtual memory leading to the name Maple Virtual Machme for: the entire

package The machme implementation was’ mfluenced primarily by the Smalltalk

Vnrtual - Machine. ‘AS was the case wuth the machme desngn the . machine
lmplementatlon includes many simplifications. - |
- 4.1 Virtual Memory _
| The amount of - main E memory addressable by computers . (especially
microcomputers) has grown rapldly in recent years but still doesn't seem to’ satisfy
the - needs of programmers Fortunately, through the use of Virtual memory [Dennmg
1970: Geacv1974] a: computer system can be made to appear to have more main
"'memory than the computer is physucally capable of addressmg
Vnrtual memory is a system whereby a program may refer to memory locations

/

wh:ch are - not actually in mam memory These extra memory Iocatlons are on a

| ‘secondary storage device, typucally a disk of some, sort The virtual memory is'

usually divided mto fuxed sized pages and main memory will contam a certain num-
ber . of these pages whlle the rest of the pages are in secondary store. Any

partncular vurtual memory page can be in main’ memory at any time ‘and it is the]Ob

¥

of the virtual memory system to decnde which pages should be in mam _memory. f«;

0

a page WhICh is requnred by a program |s currently in secondary store then the

>

v:rtual memory system must read the page mto main memory. Slnce the number of

pages WhICh may reside in-main _memory is. limited, it is necessary to move a mam‘

memory. page. back to secondary storage before the newly requested page may be

~

43

p

brought in; this is referred to as paging. The page which is swapped out to
secondary store is chosen according to the paging algorithm of the particular
virtual memory system.

Virtual memory systems are quite efficient t;ecause computer. programs tend to
refer to memory' locations which are physically close to each other. Most
references within any virtual memory }page are to locations also within that page, if
the page size is chosen Iarge enough, However, if the page si‘rze is chosen too
large then pages may contain many unrelated words and main memory space ,is
wasted by the words unrelated to. the wordl(s) responsible for the pages bemg
swapped in. A virtual memory_ system tries to take advantage of this /ocality of
reference'by ke?ping pages which have been mostly recently used in ‘main memory
so that the expected future references to those pages can be resolved qUickIy.

- s : ~

4.2 The Smalltalk-80 Virtual Machine

The Smalltalk 80 Virtual Machme [Krasnerﬁﬂqe‘l Kaehler 1981] is a virtual .

1

memory machine lmplemented i’ software orl gw

Smalltalk Virtual Machine occupies approx:mat

‘ system accountmg for about . 40% of that ‘total; the interpreter - and the primitive

-routines make up the rest;;;~:. ‘

i
.. 4

‘4.2.1 Smalltalk-80 Virtual Memory

Unlike most virtual memory systems whnch are based upon data whnch is

_segmented nnto flxed sized pages, the Smalltalk Vn}tual Machine is based upon

Smalltalk ob;ect descr:ptnons (representataons of objects on’ the machine). The
Smalltalk system swaps object descriptions (whlch are of varymg sizes) rather than

» pages of memory. Since the object descnptlons are not - of umform size the

. Smalltalk system must perform a lot of bookkeepmg to keep track of exactly :

where each object description is Ioceted The object— onented vurtgal memory was

adopted in order that the Smalltalk Virtual Machine would reflect the structure of
| the Smalltalk Ianguage and take advantage of the strong Iocahty of - reference within
Smalitalk objects Smce anrof the data Words contamed by an object are hlghly

related there_is little waste of space in fnain memory “ "

44

=

R

' The contents of mam memory are malntamed by a storage manager called

: ‘».':.--.OOZE (Object—Orlented Zoned Envnronment) Every object in the Smalltalk system is

a5

represented by a. 16 bxt obje&t descnptor ‘allowing for a maxmum of 64K unlque

vobjects OOZE mamtams a hash table of object pomters WhICh pomt to. the locatlonl'

4

in maln memory of the object -they represent When lt was. dlscovered that OOZEt
»~ﬁ"'"spent an’ nor@pate amount of tlme |n hashmg some optlmlzatlons were applled

‘These : optlrnuzatlons lncluded movmg the hashlng functlon to mlcrooode and havmg“

th°e b-sys.tem 'Hote the the addresses of frequently used objects

“1f the” hash table does not contaln an entry for a partucular object then OOZE-‘

- must locate! that ob;ect on dlSk The hlgh &”r bits of an ob;ect descrlptor are

‘.used to, lo::ate the ob;ect on: dlSk slnce all objects wnth the same hlgh order bItS'-

o are- stored sequentlally on dlSk The low order blts of the object descrlptor

: lndlcate the offset of that objcect W|th|n the sequence of objects mdlcated by the

e

v_fhlgh order blts e B G

The swapplng performed by the Smalltalk system is. sllghtly more compllcated_‘

than that\ of a more tradltlonal Vlrtual memory system because not all objects are

G the same sxze As objects are swapped in and out mam memory becomes
: =y

o fragmented Occasnonally |t lS necessary for OOZE to go through mam memory andvy)

.perform a. compactlon\\by movmg all actlve memory to one end mergmg all the '

v".unused meﬂory into one large block and updatlng the hash table

' OpZE also malntalns 2 reference count for each object ThlS reference count o

» “lndncates ho

) objects ref rence count becomes zero the memory used by that object is’ freed e

/ O o T U TR ' i

by the ‘stoyage_‘manager. a ET LA S _ “ o
422 The ‘Smalltalk -80 lnterp"l'eter R T

5

"The Smalltalk lnterpreter works ln cooperatlon wuth the storage manager to execute'('v'

- _the bytecodes emltted by the Smalltalk compller The general actlons of the /v b_

vbytecodes are’ glven in Chapter 3 a_ ' SR ~

o -

Varlous of the hlgh level operatlons of the Smalltalk language are lmplemented'4 "
o

L dlrectly as. prlmltlve operatlons on the Smalltalk 80- Vlrtual Machlne The prlmltlvel "

1o

“ '.-‘;operatlons of prlmary umportance are mteger arlthmetlc and ‘the subsﬁtﬁ‘gtmg >f

R

N many other objects stlll pomt at: that partlcular ob;ect Whenever an . :~

. . . S ' . - . A
w . . T . SO

vanables Which are. umplemented as’ byt’“co%‘s on - the Smalltalk-BOf'machine'\
/

Prlmltlve operatnons alsomlnclude the graphnc operatnons to manlpulate the bltmap:‘

-

'screen qunckly These are lmplemented as: prlmxtlve routunes
_ v .

,143JThe Maple V|rtual h}achme B A , o
The Maple Virtual - Machine is- a program nmplemented on the UNIX operatmg

' ‘system runmng on a VAX 11/780 The program consnsts ‘of two: prlmary modules"

va VIrtUaI memory storage manager wrutten in the C programmlng Ianguage and. ‘an

instructlon mterpreter wrltten in Pascal lmtlally, the entlre program was to be wrlt—-
[2 N .
- ten m Pascal “but” the Pasca| |mp|ementat|on used lacks random—access disk

lnput/output The dlsk mput/output was done in C but smce the mterface l\zetween '

46

",-,Pascal and C is hard to use the whole vurtual memory system was lmplemented m,'r e ‘

- C “The entlre program occupues approxlmately 40K bytes wnth the mterpreter S
accountlng for 80% ‘and” the vnrtual memory storage manager accountlng for the A :
rest” The wrtual memory module of the Maple machme |s small relatuve to the‘, .

: mterpreter because ‘the’ C compller emlts more effncuent code on the VAX than the o

S Pascal compaler

" The reason for the vast dlfference in. Slze between the Maple Vnrtual Machlne.,’.’

"'--'program and the Smalltalk 80 program |s that the VAX is; a 32 blt machme whlle,

the Xerox mlcrocomputer is a 16 blt machlne Thus an” mstructlon on the Xeroxv_ -

, “machme only occuples one - half the space of a VAX lnstructxon The more

',‘,‘Q;.'powerful mstructnon set of the VAX only partially - compensates for the space__"_"

v‘|mbalance SOl

T

.431 The Maple Vlrtual Memory

'The Maple storage manager was deSIQned as a standard VIrtual memory system;‘

' ‘based‘ on'

';-and data s represertted |n v:rtual memory One sect|on of wrtual memory'

reserved as . statlc memory whuch does not change at runtnme When a Maple pro-—

) gram is® compnled the compller mteracts dlrectly wnth the storage manager to storep

R

} all executable code in_ this statuc area. Note however that no assumptlons are made'_

/

7
S/

4

/ . . . B i B Sl "-"

conhguous

 The Maple Vlrtual Machme has a maxlmum of 128 pages of vrrtual memory

47

each of Wthh contains 256 words The entlre vrrtual memory is stored as a UNlX‘ -

. fite, and when usmg 128 pages thls took over 132K bytes to store. Slnce none of ‘

~the test programs run wrth thls program ever approéched thus small |lmlt on pages

» 128 pages were consudered suffrcrent for a flrst |mplementat|on »

Each word of vnrtual memory is represented as a 32- blt VAX rnteger Any.

‘partucular word may be used to store 32 blts of data an address (as two 16 bnt‘

" parts) or an mstructnon (as two 16 bit parts)

An address ln the Maple Vnrtual Machlne consrsts of ‘a page number and anf‘
ke '*.offset wrthm that page Slnce Pascal does not permlt access to the blt level

as “not . possnble to optlmnze the allocatlon of bltS to these two parts'

- ,Consequently each: part takes up- a full 16 blts although the page offset actually = - :

: requnres Just 8 blts to store Not. only are there 8 bltS wasted but the number of"f

pages is. llmlted to 65535 (216 - 1) ThlS page hmlt was not a problem in-. thls

'lmplementatlon "‘”' o

An lnstructlon on the Maple Vrrtual Machme also conS|sts of two parts the'
L opcode and data for the opcode Note that not aII opcodes use the data fleld of
the mstructlon word The' opcode and datafields are- each allocated 16 blts for the" o

b'-'same reasons glven above for addresses The opcodes for thus mplementatlon fall',

: i_unto the foIIowmg general categorues ’ / o
a - memory allocatuon and deall catlon _ _
) b. ..._‘fmdlng a node ln the Maple Tree (name path followmg) | U
c. : ‘comparlsons and branches | |
d functnon apphcatlon ’ .
e v,’fevaluatlon of Maple clauses S “ -) P: R
8 f ' ‘lnteger arrthmetic R 5 ot ‘ | ’

; g,.kv_‘ -‘Result Stack operatlons L ‘

'The opcodes are dlscuss d

-v‘put is nota mcluded in the @ebove l|st An approprlate mput/output faclllty is left for :

", ,'future research B e

,Jirnore detall Iater in ‘thlS chapter Note that mput/out-— N

Each of the mterpreter stacks RS, Perm and Temp descnbed in Chapter 3

, are stored as contlguous vnrtual memory locatnons Rather than reserve some fuxedg
area of memory for these stacks they\are allowed to occupy unhmlted pages of .
‘v;rtual memory, whlch are hnked together by po:nters A page Wthh is used to‘»
store part of ‘a stack is not allowed to be used for any -other kind of data unt|| it
is -no . Ionc[er reqwred by that stack. ‘A pomter next at the. top of each stack page :
fgives “the. page number of the page which - precedes it in the stack The mterpreter'

contams "eglsters whlch point to the top of each stack Each page of vurtual_;

?'»memory also contams a Slde pomter “which lS reserved for future use by the

EdltOl" anc Compller for makmg changes to defmmons in the Maple Tree RIS

- The, v

: ?‘words ‘an

ngrtual m

1,,5‘5' -

the page whuch may be allocated

storage manager can mamtam 8 pages of v;rtual memory m the mam

lt 's the reSponslblhty of the compaler to erther report an’ error or to

a8

b'programm r creatmg a group wrth many more than 20 flelds Smce an element |s

€ oo Iarge euther If ‘a programmer does create a data type Wthh ns too*

v;'memjy of the Maple V|rtua| Machme The storage manager keeps a table m mam |

_mem ry - whnch |nd|cates the Iocatlon of each page of: vurtuai memory and the num—» &

“ber .of words allocated WIthm each page ThIS table |s not a hash table as

:_ Smalltalk 80 but |s dlrectly mdexed by the page number for each page Hashmg‘

,was ‘not. necessary |n thls |mplementat|on because there are onIy 128 pages m the-"f

f‘entlre system and. 'a table of 128 entnes could easlly be stored m mam memory

RS
i)

| as a. copy of. lts nmplementatnon type |t seems unhkely that elements' SRR

e

Each of the pages in mam memory mamtams mformatlon fOr swappmg about 1)
‘where it came from on dlsk and 2) how: the contentsf of the page have been used
while’ “the page has been 'in main memory f any’ word wnthln a page has been
- changed then the whole page is consrdered to have been changed If none of the ‘
. words wuthm a page have been changed then that page need not be wntten back
to d:sk when |t |s swapped out of mam memory Thns small optlmlzatuon saves a
G_great deal of. unnecessary drsk access. ’ ' ST ‘
The Maple Vurtual Machme uSes a modnfucatlon of the Ieas't-recently-used

pagmg algornthm \known as the Clock algonthm [Carr “and Hennesy 1981] Whenever

a page |s swapped mto main. memory all pages m maih memory ‘are marked

' i UNUSED Then, whenever the contents of a page are referenced the page s,

marked USED When a new page needs to be swapped in, the memory manager
: Iooks at each page ‘in’“main memory for the flrst .one’ whnch is’ stxll ‘marked

:"'UNUSED from the prevnous swap If none of the pages are still marked UNUSED

: a:_"then the flrst page exammed is’. swapped out. The <search for an UNUSED page R

-f"does not always start wnth the same page because that page w@uld tend to be ‘

N swapped very frequently lnstead the search always starts ‘at the next page -after.

j',‘the last page to be . swapped and contlnues around the hst of pages |n a cychc
' ,fashnon So, nf page 3 has)ust been. swapped then the next tlme swappmg 's re— '

"__‘_vqulred page 4 wull be the. flrst candudate ons1dered

7 "‘v~43 2. The Maple Vlrtual Machme Interpreter : ‘
The mterpreter cooperates w:th the storage manager to: fetch mstructnons from
statnc sect|on of v:rtual memory and execute them Smce the mterpreter and stor= <
age manager cannot tell whether a partncular word represents -an mstructlon 2

';‘address or. data the compﬂer ns responslble for ensurung that the code
executed correctly PR 1 e | pe “ S
As mentloned m Chapter 3 the mterpreter mamtalns snx reglsters These are |
) represented m the Maple Vlrtuah Machme by 32 brt reglsters whuch pomt at varnous
parts of vrrtual memory S :”‘ S " T ' |

at program counter PC s L

; b.'{_. a pomter to the current enwronment frame ENV

L9

" Appendlx B | S AU

ﬂ“o'\.

K ",‘a pomter to the top of the Result Stack RSP

e o

_ ‘a pomter to the top of ‘the Perm Stack PSP o - S
e ‘a pomter to. the t’op of the Temp Stack, TSP’

Cfoa polnter to the root of the Maple Tree, ROOT.

‘\\

‘ ’,Slnce the two stacks Perm .and Temp are represented in the inte‘rpreter by

'_ polnters 1o thelr respectlve tops the contents of the two stacks may be swutched ‘

easaly by swapplng the two reglsters PSP and TSP

e

l

B ;44 Maple Opcodes

The Mapl rtual Machlne has over--30 opcodes Many of these opcodes are

"for relatlvely common .operatlons such_as branching (6 opcodes) and mteger arlth—'

metlc (7 opcodes) There are also several opcodes for operatlons tallored to the

-_,-Maple Iangauge such memory allocatlon »name path followmg, functlon
s "appllcatlon use clauses case. clauses and garbage collectlon A complete lnst of

‘;the opcodes and thelr executlon on the Maple Vlrtual Machme are glven in .

--'4 41 Memory Allocatlon

The opcodes CONS FIELD and ENDCONS are used to allccate a new block of“l

:“""memory on top of Perm and to |n|t|al|ze “the flelds of that block to partlcular val-

.ues CONS allocates a block of memory the size of which-is lndlcated by the data
R ,: fleld of the instruction, stores the ENV reglster in the flrst word of the block (as"
.v"the UP pomter) and sets ENV to pomt to thls block. The opcode FlELD is used to v'

”".: assugn, a value to a partlcular fleld of the block allocated by the most recent; o
‘vCONS The data fleld of FlELD is: used to lndicate Wthh word of the allocated |
- 'block is to recelve the value Wthh lS currently on top of RS. The opcode
. ‘ENDCONS lndlcates that the flelds of the block have beemcompletely lnltlahzed'*and»
'b,,.'causes the lnterpreter to place the pomter to thls block on top of RS to repre—'._.’,

sent the value of the current expressuon ENDCONS also restores the prevuous :

envnronment pomter back to . the. ENV reglster

The CONS FIELDs ENIDCONS sequence is used- to allocate memory for groups B

N

50

i 'and elements which are created at runtlme Between any CONS ENDCONS palr) "

" there can be any number of FIELD opcodes wnth one expressuon (enCOded in

MapIe opcodes) for each There should be as many express»ons and assocrated.

5 FIELD mstructrons as there are erIds in ‘the group or element ‘which is bemg allo— -

jcated The fmaI value' of a _particular word of a block is - the Iast value assugned to

it by *a FIELD instruction. There is no restnctlon on the srze or complexnty of the .

code for the erId expressnons

.'442 Name Paths

Nodes |n the Maple Tree are found at runtume by foIIowung name pathsr

'through the Tree. A name path can start reIatnve to: either the current pos:tlon o

Ienvnronment) |n the Tree or “the top (root) of the tree. The Interpreter has two

opcodes for these sntuatlons CURR and ROOT CURR pushes the ENV reguster ‘on

51.

top - of RS whlle opcode ROOT pushes the ROOT reg:ster on. RS. In either case,.. ;’

- the top of RS then pomts at a bIock of memory whlch contalns pornters to other

sectlons of the Maple Tree. The opcode SEL takes the address A on the top of .
"RS pops: A off RS selects the Ith field of the. bIock pomted to by A (where iis

' the value in the data fleld of the- SEL lnstructlon) “and pushes the’ contents of that

: 'fleld on RS These SEL Instructlons are repeated as much as necessary to arrlve at

the desrred node’ In the Tree. .‘

If the node beIng found is a functlon then an ‘extra. mstructlon is" necessary at.}
*the end of the sequence of SEL Instructnons Enough SELs are done to, fmd the o
block in whlch the function was: declared Recall that functlons are not stored wnth_;‘

‘the groups or eIements which contam them but rather they are in a statlc portlon")
- of vurtuaI memory WhICh is not changed at- runtlme Durmg the evaluatlon of a
-functlon ‘up |s supposed to refer to. the envnronment of the deflnltlon of the')
functlon However at runtlme the envuronment of the’ usage of the functlon IS not

’the same as the . envnronment of the defmutnon of the f@ctlon Smce the ponnter to__

- the code of the functlon is actuaIIy stored |n the: bIock of the deflmtuon of the

functuon the address of . the bIock contamlng that pomter is also the up pornter for L

A L3

the body of the functlon Therefore once the -block o ntanmng the functlon has . o

been found the opcode FSEL |s executed FSEL pushes - spy of the top of RS, i

fi""vonto RS (as the up ponnter for the functlon body) and replaces the top. of RS

with’ pomter to the code for the function body.

If on the other hand, a Maple variable "which only occupues a snngle word is

belng found a- different mstructlon is used at the end. Recall that such varlables :

are stored,dlrectly in the block of thelr definition. Since ,varuables are represented.

as pointers to' the area of memory containing their: value it is necessary to put the

address of the variable field on RS. Once_ the block containing the variable has

been found the top of RS contains the address of the first' word of*‘the' bl'ock All

that needs to be ‘done is to add the offset” of the variable - field to the top of RS

and then the top of RS wnll contam the address of the varlable fleld Thls is

achieved by the opcode OFF_SET which adds .|ts data .f|eld to the top of RS.-

R
4.43 Functron Appllcatlon

' <
Since there ‘are two klnds of functlons smgle argument functlons and element‘

functlons the mterpreter has two klnds of-functlon appllcatlon mstructnons A smgle v

'argument functlon appllcatlon is . executed by the followmg steps Flrst the address

of the code for the functlon and the. envuronment ponnter of the functlon defmmon

are placed on top of RS {using the name path scheme descrlbed above in 442)

Then the argument |s evaluated and a pomter to the argument is placed on the top

.of RS The opcode APPLY then mstructs the mterpreter to create a new

\-envnronment frame to contaln the argurrtent pomter the return- address “the

_envnronment pomter for the function, and Ihe current ENV. Fmally all the functlon

a’:~

‘mformatlon on RS is popped off and placed m the envuronment frame and’ the»'
mterpreter branches to the code for the: functlon The compiler. is respons:ble for
ensurlng that there is a RETURN opcode as the: last mstructlon of the function

'-,body RETURN has the effect of restormg the PC and ENV reglsters from the

env:ronment frame of the functlon evaluatlon

If an element functaon is being applled then there are some shght changesv

First the pomter to the element from WhICh the functlon s selected is the first

-‘thlng pushed on RS. Then the functlon body |s found and the argument evaluated

as above. The opcode EAPPLY mstructs the mterpreter to construct an envuronment :

frame as before except it wnll also contam the. element pomter The Wuatuon of -

vthe functlon proceeds as before .
P c

N

52

PR B

In this implementation the function ‘body refers to the argument, through the
. . - i N ! .

. envlronment frame, vvith the code ’CURFI B SEL 3' and the element by 'CURR ; SEL

' ,5 A functlon performs its evaluatlon on Perm and leaves a pointer to the block

‘Irepresentmg the functnon value on top of RS. If a functnon can dlspose of |ts

argument after evaluatlon then the followmg is: done Before the argument is evalu—

~ ated, the opcode MARK places a copy of TSP in the current envnronment frame

Then the opcode SWITCH causes the two stacks Perm and Temp to reverse roles‘
so_ that the argument is - evaluated on the Temp stack of th]ﬁunctlon Once the
‘ argument is evaluated another SWlTCH reverses the stacks back again. ' After the

- APPLY or EAPPLY nnstruotnon a DISCARD opcode will cause the argument to be

’ dlscarded from Temp by restormg the TSP from the envnronment frame and re— . |

_questmg the storage manager to deallocate the memovy used for Temp in the

meantnme‘-_" 'b R B

4.4.4 Use Clauses .

A use-—clause is lmplemented slmllar to a functlon The code to evaluate the

'local value of the use-— clause |s emltted and th%address of the local value is

placed on top of RS The opcode USE causes a new environment frame to be al— -

o

Iocated wnth the address of the Iocal value placed in the ARG fleld of the

envnronment frame The code for the. body of the use comes next ‘with the local
'value refered to by ’CUFIR SEL 3. Flnally the opcode ENDUSE pushes the pomter R

to the .value of the use-—clause on RS and réstores the prevuous ENV reglster from

"-the envrronment frame

A dlsposable use—clapse is |mplemented by a MARK and SWITCH before the
code for the local value Wthh causes the local’ value to be placed on Temp After
© the code for the local value, and before the USE lnstructlon another SWITCHA

. reverses the stacks back agaln After the ENDUSE mstructlon a DISCARD causes‘

the Iocal value to be dlscarded from Temp

v -

4.4.5 Case Clauses’

A case—clause 'requires 'mo_re' work on the 'part' of the compiler than "any‘ of

the previous Maple - instructions. . The compiler compiles the statement lists into

K

static memory and COnstruct\s a block which contains' the address of "each -

statement list The code for the caée—‘clauSe starts with the code to evaluate the.

discriminatof of the clause. Next comes the opcode CASE followed . by a word
containing the address of the ‘block of_"staternent ‘list addresses. CASE causes the
interpreter to use the value on top of RS .(the value of the,dls‘criminatqr) as an

index ,into the block of ‘addresses. The inte’rpreter then branches to the .first in—

v“struction of the appropriate statement list It is the —responsibility of the the com—

piler to’ place a branch at the end of each statement l|st which returns executlon

to the instruction after the CASE lnstructron As well the ' compller must erlsure

that there are enough\entrues in the statement ||st block for - every posmble value','

of the discriminator, lncludlng the out clause. : i o

Since the value of the case-— clause is the value of the last expressmn in. the -

e
expressnon list which is executed the mtermedlate expressnons must not leave their

B values on RS. The opcode POP is used to dlspose of the value on top of RS and

the lntermedrate express:ons must each be followed by a ‘#POP |nstruct|on to

remove their values from RS.

4.4 6 Integer Operatlons

Slnce the basrc unit stdrage on the Maple V|rtual Machme is the ‘32— brt word‘

"there are several opcodes for manipulating words. These opcodes. perform mteger.

"arlthmetlc assignment, and comparlsons All the mteger opcodes, except for NEG
and ABS, assume that they are invoked as element functnons :e the current

_env:ronment frame contarns an argument fleld and an element field. The argument

field is assumed to contain an .integer value rather than a- pomter The element fl6|d‘.
is assu led to be an rnteger varlable |e a pointer to a word contalnlng an . mteger’
‘value Since these opcodes are mvoked as functlons they all restore the prewous.
ENV: reglster as they return The opcodes NEG and ABS are smgle argument func-

.‘tlons and, as such, do- ‘riot have element flelds Note that none " of these mteger in-

' \
, .structnons allocate any memory on Perm. - ° \

The followmg integer arlthmetlc opcodes put their integer value result dlrectly
on top of RS: '

'a ADD, to add two mteger values

. 54

SUB to subtract one number from another,

b.

{
c. 'MUL to multiply two mteger values, ,l'
d- DlV to lelde two integers and return the quotlent

e. MOD, to return the remainder of dividing one integer by another
f. NEG, to return the negation of an integer,

g." 4ABS to return- the absolute value of an mteger o

The first integer to these instructions is the. element from - whlch the funZon was

“chosen. The second mteger lor only lnteger for NEG and ABS) is the argument to
the functlon . o '

The» opcode ASSIGN takes the integer value in thetar'gument and stores it in
the elemient integer variable.- ASSIGN also pushes a-null valug, 0, on RS to repre—

sent the "null group returned by the ass:gnment functlon =, of the Maple

programmmg Ianguage The opcode DATA is used to pushy the next word m the

code stream on top of RS.
The opcode CMP compares the value of "the . element variable to the value of

the argument -and pushes the result of the comparlson on RS. There are three in=

teger constants defined within the mterpreter LessThan, EquaITo and GreaterThan

The mterpreter pushes the approprlate one of these constants on RS dependmg

.upon how. the . value of the element compares- to the value of the argument
The branch opcodes of the Maple Vlrtual Machme use the top of RS as the

condition code of the most recent comparlson If ‘the branch is taken the top of

RS is popped otherwnse it is left alone sO that further branches may use that‘

condmon The -various branch opcodes are:

a. BRA, branch uncondmonally

—

l‘b. ’BLT branch on less than,
c BLE, branch on less than or equal to,
d BEQ, branch on equal to, .
e BGE branch on greater than or equal to,
f. GT branch on greater than. .
" Each of these branch mstructuons uses the followmg“ word in the code stream- as

the address to branch to. -

B5 -

All records in Maple are built, ultimately, out of these integer opcodes. For

instance, the .:= function of*a record is defined recursively in terms of the :=

functions of the constltuent types of the recorcr But at the lowest level these

types must be mapped .onto the mtegers and they use the ASSIGN opcode to

3

perform the as&gnment

45 Semmary

The detauls of of an mplementatron of the Maple abstract machnne called the

Maple Vlrtual ‘Machine, have been presented Since the Smalltalk-80 Vlrtual Machine

N

. had a strong lnfluence on the nmplementatlon some. of the detanls of the Smalltalki_f

machnne have been presented ‘The detauls of the instruction set for the Maple

Vartual Machine have been presented smce the Compder must know the: exact

workmgs of the: machme ‘ « - _w'

56

Chapter 5 | . ﬁ '

Summary

This thesis has presented some‘ -of the details o'f the lntegrated Maple
Programmlng System, and descrlbed the machlne which and forms the foundation
for the rest of the Maple project The portion of the machlne of pnmary |mpor~
tance is the runtime garbage collection scheme _— é{;fl

The Maple Programmlng System is based upon the Maple programmmg language
'WhICh is' is. strongly typed -and ‘contains the mechanisms for the definition of some
very generalized data types, including groups and classes. The data strLctures of
~ the Maple language ‘may | contain - both data and functlons as ' fieids.. Due to the.
_hlerarchlcal nature of the data structures the entlre collectlon of Call Maple
programs and data in a Maple Programming System is called the Maple Tree.

In order to run Maple programs’ effrcnently a machlne architecture which -

‘tailored to the Maple language is | requ:red The Maple abstract machine, ‘with its
double‘ stack scheme for runtlme garbage collectlon has been descrlbed As ‘well, e
‘the representatlon of the Maple programm\gf language data structures on . this ab-— S

stract machme have been presented él;lowever many of the detalls of the machlne

" were not given since. they were left for particular lmplementatnons to resolve

Since the design of the’ abstract machine ‘was sugnlflcantly vdlfferent fr_omf vy_lf‘l'atw
has come before, an implementation of the Maple abstract' machine was creaté‘d.“

The detalls “of this lmplementatlon called the Maple Virtual Machme ha 8 been;_’

presented This - machine, lmplemented on a VAX computer has: successfully ru

some simple hand-— complled test programs These test programs were quute slow

Wthh is not surprlsmg considering the whole machlne was lmplemented in ‘sof;%

ware.

57

g
5.1 Future Research

The Maple‘project is fertile ‘with‘ future research topics, foremost of which is
the structure of the Maple compiler. As mentloned in Chapter 2, the extended
Maple Ianguage |s highly context-—sensmve The compuler for the extended language’
will requlre ‘slnghtly more complicated parsmg .technnques than 'more simple
languages such as Pascal Also, the compiler.is responsible for det‘brmining which
runtime values may be d|5¢8rded during garbage collection. The full scheme for
making thls decnsnon has not yet been desngned Other areas WhICh requnre more
work are the exact specnfncation of the structure of the Maple programming sys—
tem, especially the mput/output mechanlsms, and the lnteractuon, between the various
eomponents of the Maple Programming System (Editor, Compiler, Machine). The
exact specnflcatuon of the mteract:ons are necessary because the Machine may need
to be shghtly altered to conform to the decisions made. For example,” the Editor
may or may not commynncate dlrectly with the storage manager wuthm the Machme.
If the Editors does not_communicate directly then it must use .the Compiler as an °
intermediary. ' ' | |
. The appearance of the Maple Editor to the user is quite imp.ortant since that is
the major‘ interface to 'the user. A machine—user interface similar to that of :

Smalltalk {Tesler 1981] would be desirable. Smalltalk has a h|gh resolutron screen a

_ keyboard and a 'mouse’ for ‘the user to mterface with the ‘Smalltalk programming

g system The result is that the Smalltalk system |s hlghly user-friendly. When aa. .

[

system is easy for a user to become acqualnted wnt‘h‘ angjﬁ use, there |s a great

Mtiieal of encouragement for the user to switch to that system Thus, - it would be

“its acceptance if the Maple Programmmg System were as user—friendly as
Smalltalks ;Vand the Ed«tor were as easy to mterface with: ‘
Smce the abstract machlne descrlbed m this thesis was a pllgt mplementatnon '
“»* there were many deliberate snmphflcatlons made. There is much work WhICh needs
a to be done to optlmlze the bit allocatuon in instructions ‘and addresses in the
memory of the machme Indeed the - instruction set - presented here is not
necessanly the best poss:ble for runnmg Maple programs; it IS not known at
present what mstructlons would be best As well, the basic de5|gn of the v:rtual
memory_fstorage manager might be' i\mproved if based upon some unit of storage

of the Maple language, especially 'some hierarchical model.

o refmements made to the Maple programmmg Iang age

Fmally, the entlre Maple pro;ect must be contnnually updated to handle fmﬁer

. B9

o

~_ References -

Barnes J P. G, 1980. An Overwew of Ada Seftware - Pra /ce and Expenence
.Volume 10, 1980 851 - 888 . " S

Boehm H., Demers A, Donahue J 1980 An . /nforma/ Descnpt/on of Russe//
: - Technical Report 80-430, Department of Computer Sclence Cornell
Unlversuty Ithaca New York : ,

‘ Carr,‘ RW Hennessy JL ‘lQBl Proceed/ngs of the E/ghth Symposrum on -‘ j
: Operat/n_g Systems Prmcrp/es Pacnflc Grove Calnforma December 1981

87—?5

v

:‘,,

,Dahl O Bwtwrstle G Myhrhaug F ,Nygaar‘d,‘. K., 19735,mu/a B‘egin..l?hiladelphia:_ ‘

S

'Auerbach 1 973

k';Demere, A, Donahue .J.‘ 1979 . Rewseq Report on Russell. Technlcal" Report
: : 79 -389, Department of - Computer Scuence Cornell Umversny Ithaca New

B York,

Denmng P J. 1970 Vlrtual
o 153—189

. Gear, W.C. 1974 Computer Organ/zat/on and Programm/ng,, 2nd E‘d)'tibn."‘»’:'_y :

‘ MCGFBW"HI" Book (/‘/ompany, New York, New York

’ Goldberg A 1981 lntrodumhg the Smalltalk 80 System BYTE Volume 6 Number .

8 14-26.

lngalls,- | VDHH 1'9'78' Th Smalltalk 76 Programmmg System Desngn and
Implementatxon roceedings _of ‘the . Fifth ~ Annual Conference -on -

' Pr/nc/p/es of Pr(pgramm/ng Languages January 1978 9 - 16

l

: '_Je’nsen‘, K erth N 4975 Pasca/ User Manual and Report 2nd.'.Ed_i'tion,

Sprlnger Verlag New York, New York

Number 8 378 387

.I‘Kae'hler' T 1981 Vlrtual Memory for an Object Orlented Language BYTE Volume 6 // o

 Krasner, f:e. 192; The Smalltalk—*80 Vlrtual Machlne BYTE Volume e Number &
7 300-320. ‘ S

e Lo R L . K ERIY

\ emory, Computing Surveys Volume -j2;'_"‘Numberf_ 3 L

Y

V_McCarthy ~J., 1960 Recursnve Functions of Symbollc Express:ons and Thelr
' Computatnon by Machine, Part ! Commun/cat/ons of the ACM Volume 3,

Number 2 184 185. . @w"&‘%

: A DT
N SRR .. i o
5 I . f * . 2{ 3

Pagan, F.G 1976 A Pract/ca/ Gu1de to A/go/6‘8 Wlley and Smns Toronto Ontaruo

a" N \77

,"Rutchle DM Thomson K 1974 The Uan Tlme Sharlng System Commun/cat/ons of’

the\ ACM.: Volume 17, Number 7.°1874; 365- 375

Swierstra, S.D. 1979 ‘Machine. Arch/tectures for' ‘Block- Structured Languages ¢
Memorandum 262, Deépartment of Apphed Mgthematlcs Twente Umversny Lo

of Tachnology Netherlands
Swierstra,- SD 1980 Lawme, An Exper/ment in Language and Mach/ne Destgn

61

Ph.D. Dissertation, ‘Department - of Applied Mathematlcs Twente Unlversny‘-', -

_of. Technology Netherlands

: "Tennent, : RD lQBl Prmcvp/es Programm/ng ‘ Langddées; ,‘.'PrentiCe/'HaIl

, lnternatuonal lncorporated London Englandl

Tesler, L. 19812_ "l'he.;SmaIltalk» Environment ‘.el'yrs,volume ej_Nurn'ber‘. g '90{147[‘\

Voda, P.J. 1982a Maple A Programmmg Language and Operatlng System s
Proceedings - of the Ninth Annual - ACM Symposwm on Pr/nr:/p/e.s bf'

o Programm/ng l.anguages January 1982 157 168 x

L '.Voda PJ 1982b Map/e A Tota/ Modu/ar Enwronment the Map/e Language
" . Technical- Report , (ih productlon) Deparl‘ment of Computmg Scuance i

Umverslty of Alberta

. o . o
S

-VV".The Xerox Learnmg Research Group 1981 “The Smalltalk 80 System BYTE Volume_"":"f_,:'

6 NumberB 36—47 BT v’% [LR T e

‘*‘0 .

fyd' Appendlx A

'u A Grammar for the Maple Programm1ng Langpage o

\.

ThlS appendlx g1ves a grammar for the strlct Maplg

Tprogramm1ng language. The extended Maple language 1s formed

:from thlS grammar by applylng the abbrev1at10ns descr1bed 1n *‘y

'_[Voda 1982b] Thé syntax productlon names should be

'self explanatory Brace brackets are for meta grouplng

.;erpetltlons, alternatlves or optlonal phrases.;The symbol

"*" follow1ng such a grouplng 1nd1cates zero or more tlmes 1-f7h

-]

repetltlon, and "+“ 1nd1cates one "Or- more tlmes repetltlon..ggxf

';The symbol P[P 1s used to separate alternatlve phrases-'
{ '.

w1th1n a grouplng fFlnally,'when a set of brace'bracketsfdogff‘

gnot contaln a repetltlon or set of alternat1ves they'enclosen-f”

- R

_yan opt10na1 phrase. All non termlnal productlon names7start3;”fl”'

]w1th a capltal letter, and all termlnal symbols are 1n g]ﬁ

fboldface type. When the symbols "|"”"*"5 and "+" are part of ”éwp”

5a productlon they are enclosed in double quotes.‘

o

The Maple Tree is the ba51c structure of a Maple system.

lfThe Maple Tree 1tself is.a. group contalnlng other groups,c-

¥

_Jclasses, funct1ons, and elements. However, 1n general a
‘ B ‘ N

7

’”fMaple program is an express1on"7’

.
',croup“alt_<,F1gld }* 1 | Record

TEXPfeSSiOD' Group | Selectlon-l Clause |;(EXpresSjoha)l:"“"

- : -~7 Lo ‘ v SR B]&_”¢ﬁ'
 ‘«*1F1eldﬁ-iFe1ector { ProperF1e1d I‘FUPCtionField I

”,/tfﬁ S :‘ SOrtFleld } : | ”
.']7Proper7Geld is. F1eldType { FleldValue }

;JFleldType = Typev.l' "{‘ "‘& ‘:fk;* :r _ _‘ - V_@\

'F1eldValue # Expre551on»f"

”qrgyType:— Group l ElementType

'ffFunctlonFleld = w1th ArgumentType ProperFleld

\

) r_;"_vAI'gumentType = Type | R
: {isOrtFleld 1s SortType SOrtVaIUe :\5 f_r.,_,
. ,.._‘-Sort'rype Sort - \ = '

]‘SortValue:- Sort

?Gro electLon ElementSelectlon
‘i -5
s i t;) I

7f Selec§;on,{
‘9{TGrdUbSele§£i6n'=:Subject Selector { Argument }

-3;{fsubJ€Ct ‘ env lﬁGrOUpEXPresslonz‘y‘ »
‘rSelector StandardSelector] Word | OPerator | ,E#}-»;

CharacterSelector'

"5:StandardSe1ector ' arg] elem | tag | ﬁf'-*Afu“‘
ph B

5§;QﬂuWord Letter'{ Letter | Dlglt e }*f;ff,iiﬁ3”

D T T R

lﬁ'ﬁéLetter ¥¥é71;15,f;:l z] A | ”;335 i

- &

%“ffOperator { SlmpleOperator }+rLs_vﬁ

TefffCharacterSelector ’”?{fLetter |

:‘r:iMapleSymbo »

.;; GroupExpress1on Expre551on

'”eaﬁQSortExpreSSi'n_

‘?TquIassSelectlon fife:““”1 n“'f

LRy

64

 ;Reco;d3s rec RecordGroup o 3 - o ;}
'ffRéco:dGroup, ApparentGroup - ‘_ - f\$\
aﬁ5CiaQSe =*CaseC1ause | AttemptClause I“Paralielcladsevf
o FallClause R » | . SR

CaseClause = case Dlscrlmlnator 1n CaseTa11

Dlscclmlnator‘: Expre551on

AﬁtemptC1ause attempt Expre551onLlst else CaseTall
CaseTall { Alternatlve }* OutPart .
: Alternat1ve = "I" Selector Expre551onLlst

s

: OutPart = out Expre551onLlst end’

Expre551onLlst : Exp:esslon ;-?vExpfessioh ;'}*f _

 c ParallelClause =’par é}ocess { Process }* end S

‘ Process : Expre551on : : i ;

1~*Fa11C1ause = £a11 < Exceptaon }

Exceptlon ; Selector ‘.‘ Ae;4i S "f' - _'vsf_‘

=-Sort,& { shared } sort ApparentGroup { Implementatlon }

)ApparentGroup [{ leedPart }* { Varlants }* 1

leedPart ApparentFleld G o

ApparentFleld Selector { w1th ArgumentType } 1s'”
'slApparentFleldType { SldeEffect }

| | B { o ApparentFlePdValue 3 . |

'f[}Apéagghgéigiamybe =11 ElementType S :\.ﬁ"

'“”{fxppéféngpigiav;iﬁe’t Expre551on . i | 7

‘l}7§iGEEffecfl { Var1antTag }* alter' e;yfrc“e_:}i 5{@“,'”e fsjﬂ 3

VarlantT%g [Selector s

Varlants,— VarlantTag leedPart

Implementatlon .as SortSelectlon

'vElementType ’
. ElementSelection = Element . Selector f{ Argument }

Element = Expression

P

-

{ VariantTag }#* { var } SortSelection

R

‘?,.‘“‘“ \
R . .
e

(%]

Y N)
T Appendix B

Maplebvirtual'MaChindfopcodes

‘ Every Maple V1rtual Machlne opcode is made up of one or
~more meta operatlons on the actual machlne. Th1s appendlx"
| descrlbes how . the opcodes glven 1n Chapter 4 are 1mp1emented
on the 1nterpreter. The format of each opcode 'is glven,
> along with-a descrlptlon of how the 1nterpreter executes it.
The varlous Maple Vlrtual machlne meta operatlons ‘used in_

the descrlptlons are: e

' '

*. 1s used as the a551gnment operator,

b. ,top refers to the top of RS

l:¢f push pushes the negt word oans;

4. pop pops.the top of Rsvofff

‘ve.‘nsquare brackets are used to show Whlch opcodes use
v_uthelr data fleld, |

‘,f.-r alloc m' means allocate a block of m words on the

‘top of Perm,and return the address of that block,
L g. 't'represents.somevwordrof,temporary_storage.within‘

" the machlne,

1

‘X y 'means deallocate all memory between

ad ress X and address y,) | .

1) 1s 1ndexed address1ng. The contents of Xlare

" used as a poxnter to a block of memory,dand the i th

66

| .
-word is seiected from that block. X(0) is the word
'which‘the'coﬁtgnts of X point'to. o

The'descripfion of the opcodeéstarts:wiﬁh.mgmory alloca-.

tion: | l' | | |

L[_CONS n] :=%‘
t « alloc (n+1) .
~t(0) « ENV . *®%x up pointer

ENV <« t _ o o

[FIELD i] :=

ENV(i) « top
pop. . \

CENDCONS :=="

CcpushENV i o
- . ENV « ENV(0) ' . \ C

[OSEL i) i== | S
top « top(i)
[FSEL i] :==
push top -
top « top(i)

[OFFSET i] :== . N

‘top'%Atbp + 1

APPLY :==

t « alloc 5
t(4) « ENV
“t(2) « top

pd

‘pop
f t(3) « pC
PC «}top,

pPoOp
- t(0) « top
- pop
ENV <« t
EAPPLY :==
‘At‘¥ alloc 6”
t(4) « ENV-
t(2) « top
pOp
t(3) « PC
PC '« top
pop
t(0) « top
X

. pop
t(5) « top

pop LT

ENV « &

: RN &

RETU' Cp==
PC <« ENV(3)
ENV « ENV(4)
‘MARK ==

>EN§(1ﬁ « TSP

 SWITCH

t « PSP
PSP « TSP °
TSP « t

i

s

68

- N

%% new .environment frame
%%% save previous. environment
.ﬁ*g save argument pointer

<

xx% save return address

¥*¥* prepare to branch to functlon)
code . :

¥ save up pointer for function

body

)

k new env1ronmenb\frame .
** save 'previous environment
¥*¥ save argument pointer | -

Mﬁ*g*,save return address

*¥ K prepare to branch to functlon

code

*¥% save up p01nter for funct1on‘

body

x save the pointer to the.element’

restore return address

DISCARD :== /

rel ENV(1) TSP
* TSP «. ENV(1)

“USE :=
t iéalloc 3
t(0) « ENV
t(2) « top

POP
. ENV « t

ENDUSE :==

ENV « ENV(0)

CASE addr‘:=£ ‘

PC <« addr(top)
POP

,ADbL:==

£ +'ENV(5)
t « t(0) + ENv(z)
push t

SUB :==. |
t « ENV(5) '
t « t(0) - ENV(Z)
push t:

MUL :==lv
t « ENV(5)

St o« t(0) x ENv(z)
push t

% save pointer to local value

5

~x*% address of. element

-

*** address of element -

***x address of element.

"t « ENV(5)
t « t(0) div" ENV(Z)
push t

70

**%x address of element
. v"
B

t « ENV(5) B
t « t(0) mod ENV(2)
push t ,

**¥*x address of element

NEG :== | S

£ « - ENV(2)
push t

ABS' ==

t <« abs ENV(2)
push t

——
==

ADD :

-t « ENV(5) - . #*x% address of element
t « t(0) + ENV(2) Ny :
push £t .

:_CMP == S . o o .
ot o« ENV{5) = ‘ |

“"if t(0) < ENV(2) then push LessThan

elif t(0) ENV(2) then. push EqualTo o
else. push GreaterThan : L
fi C :

BLT addr :

if top = LessThan then PC « addr; pop fi

R

BEQ addr :==

H

if top

'BGE addr :==

it

if top
pop fi. -

it

BGT addr :==

it top

.

ASSIGN =

~ t « ENV(5) .
ENV(0) « ENV(2)

DATA value :==

push value

‘GreaterThan theh'PC

‘EqualTo then PC « addr; pop fi.

- éddr; pop fi

5

-
™,
.

GreaterThan or top = EqualTo then PC « addr;

if top = LessThan or top = EdualTo then PC « éddt{ bapﬁf'ifi

